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Abstract

Recovering the shape and appearance of a scene are important problems in com-

puter vision. Of all the methods developed towards solving these problems, pho-

tometric stereo is unique in terms of estimating the fine details in the geometry of

the scene based on information from shading. In this thesis, different aspects of

photometric stereo are explored and newer methods are presented to increase its

scope.

Firstly, a method for resolving the ambiguities associated with the estimated

shapes from uncalibrated Lambertian photometric stereo is presented. It is shown

that a ring of light sources can explicitly determine the ambiguities and provide

accurate shape estimates.

Next, an algorithm for estimating depth in the case of non-Lambertian sur-

faces is presented, building on previous methods which determine partial shape

estimates using physical properties of the BRDFs.

Lastly, the aspects photometric stereo for reflectance based material classifica-

tion are explored. It is observed that a slight modification in the camera and light

configuration can significantly improve the performance of material classification.

Additionally, a simple handheld device is presented which captures important dis-

criminative information, although sampling a smaller BRDF space. This is applied

to the problem of ink classification, an important area of forensics, introducing

reflectance for the first time to the area.
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Chapter 1

Introduction

Computer vision concerns the extraction of information of a scene from its images.

The information can be of various types such as recovering the shape of the objects

and obtaining an estimate of useful features and this can be applied to desirable

tasks such as computer assisted surgery, surveillance, preserving historical arte-

facts and developing navigational aids. With the advance of technology in recent

times, we have high quality cameras widely available even to the common man.

Therefore, computer vision systems can offer several services to professionals and

the common man alike. Some of the commercially valuable applications of com-

puter vision are in animation, computer assisted surgery where 3D reconstructions

of objects and their renderings are especially important. For these applications,

estimation of shape and reflectance are very important.

While several vision algorithms already exist, such as shape from stereo, structure

from motion, shape from shading, shape from texture etc., the desirable goal is to

develop robust, economically viable solutions for commercial applications. Among

these algorithms, shading is one of the most powerful cues used in shape and

appearance capture of real objects. A significant advantage of shading algorithms

1



over other vision algorithms is that shading can capture refined details on the

surface which other algorithms such as stereo, SfM cannot capture.

Photometric stereo belongs to the class of vision algorithms which uses shading

cues for shape and appearance capture. The present state of the art photometric

stereo algorithms can recover very high quality 3D surfaces of objects [1, 2]. At

the same time, photometric stereo requires a very simple arrangement for image

capture: a camera and a set of light sources at different positions to illuminate

the object. As the camera is fixed, the correspondence between the images is

already established. As a consequence, with high quality shape estimates and low

economic overhead, photometric stereo is a popular choice for shape estimation and

appearance capture. The applications vary from 3D animation, gaming, cultural

heritage preservation, computer assisted surgeries to material identification and

classification.

1.1 Lambertian Photometric Stereo

Since photometric stereo mainly relies on shading cues, accurate estimates of in-

tensities is very important. Therefore, one of the most important aspects of pho-

tometric stereo is calibrating the lighting directions and the intensity of the light

sources. Calibration of light sources is usually done by calibration objects such as

a mirror sphere. Alternatively, calibration can be done directly from pixel intensi-

ties and these algorithms are usually classified as uncalibrated or auto-calibrated

photometric stereo algorithms. As the problem is highly constrained, these are

typically designed for surfaces with Lambertian reflectance.

Lambertian surfaces are those which reflect light equally in all directions. Some

examples of Lambertian surfaces are matte or diffuse objects such as chalk, terra

2



(a) (b)

(c) (d)

Figure 1.1: Examples of diffuse (top row) and specular (bottom row) surfaces. (a)
Chalk [3], (b) unfinished wood [4], (c) steel ball [5], (d) glazed ceramic teapot [6]

cotta and unfinished wood as shown in Figure 1.1(a),(b). On the other hand,

specular surfaces are those which reflect light more in a specific direction than

any other direction. Examples of highly specular surfaces are stainless steel and

glazed ceramic as shown in Figure 1.1(c),(d). There are no perfectly diffuse or

perfectly specular materials in the real world; some materials exhibit a high degree

of specularity while others may have a greater degree of diffuseness.

Shape estimation from photometric stereo with the Lambertian reflectance as-

sumption is a well known problem in computer vision. It was introduced by

Woodham [7] nearly three decades back. However, it is still a challenging prob-

lem, especially when the light directions from which the images are illuminated

are unknown. This case is known as uncalibrated photometric stereo, as stated

previously. This problem is interesting for the fact that shape estimates can be

computed directly from the images. Unlike other vision methods such as stereo

and structure-from-motion (SfM), we do not have the problem of finding the point

3



correspondences. At the same time, a per-pixel estimate of the shape can be re-

covered from photometric stereo.

We resume our discussion of auto-calibration of photometric stereo for Lambertian

surfaces. Auto-calibration is an attractive solution as no extraneous calibration

of light sources is necessary. However, the estimates of lighting direction and the

shapes are not uniquely determined and additional user intervention is necessary.

In Chapters 3 and 4, we present a method for the auto-calibration of photometric

stereo using constraints on the light source positions.

1.2 Non-Lambertian Photometric Stereo

The assumption of Lambertian reflectance does not always hold for surfaces of

real objects. In cases when the surface is relatively less diffuse or less shiny,

the specular or shiny portions in the images are generally removed as outliers and

Lambertian photometric stereo algorithms are applied. However, when the surface

material exhibits a greater degree of specularity, different approaches are adopted

to estimate the shape from images using photometric stereo. In this context,

certain properties of the surface reflectance are exploited for shape estimation, for

example, the property of isotropy, which is exhibited by most materials. Isotropy

implies that the appearance of the surface remains unchanged when the object is

rotated about the surface normal. In practise, a large number of materials (such as

plastics, rubbers, most fabrics) exhibit isotropy. There also exist a few anisotropic

materials whose appearance changes under rotation about the surface normal,

such as brushed metal and velvet. The difference is illustrated in Figure 1.2

With the assumption that the surface reflectance follows the property of isotropy,

non-Lambertian surfaces can be handled efficiently [11, 12, 13, 14]. Important

4



(a)

(b) (c)

Figure 1.2: (a) Comparison of isotropic (left) and anisotropic BRDF (right)[8],
(b) Isotropic material (rubber) [9], (c) Anisotropic material (brushed steel)[10]
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information related to the object shape can be recovered by photometric stereo

under this assumption. In Chapter 5, we propose an algorithm for surface recon-

struction of non-Lambertian objects using the results of the previous algorithms.

1.3 Reflectance based Material Classification

While recovering the 3D shape of the object is one of the important problems of

computer vision, it is also important to recover the appearance such as colour,

texture, reflectance of the surface to produce accurate renderings of the objects.

Typically, the reflectance at a point on the surface of an object is described by its

bi-directional reflectance distribution function (BRDF). BRDF specifies behaviour

of the incident light when it interacts with a surface.

The conventional capture of the BRDF is done using specialised devices called

gonioreflectometer. However, they require significant effort to sample the BRDF;

for a given set of incident and viewing directions, a single measurement of BRDF

is made. Therefore, measurement of the BRDFs from images, such as Matusik et

al. [15], is being commonly used in recent times.

Besides, shape estimation, photometric stereo is also used for recovering the sur-

face reflectance. Images captured under varying illumination at a constant view

point reveal information regarding the reflectance of the material on the object’s

surface. The knowledge of the reflectance of the object’s surface is especially used

in generating the renderings of 3D objects. As discussed previously, assuming

certain characteristics of the BRDF (such as isotropy ) helps in shape estimation

using photometric stereo. Besides, such an assumption also helps in simplifying

the BRDF representation. In Chapter 6, we give further insights into the problem

of BRDF capture and apply it to the problem of ink classification, which is an

6



important field of study in forensics.

1.4 Contributions

In this thesis, we explore the various aspects of photometric stereo: (1) shape

estimation from Lambertian photometric stereo, (2) shape estimation from non-

Lambertian photometric stereo, (3) reflectance capture from photometric stereo,

and (4) application of photometric stereo to ink classification.

The uncalibrated photometric stereo problem gives an ambiguous solution when

only the pixel intensities from images are used. While assuming the surface to

be continuous and integrable, the estimated surface shape is up to a so called

generalized bas-relief (GBR) ambiguity. There are many methods to disambiguate

the estimated shape completely [16, 17, 18, 19]. However, none of these methods

explore the possibility of imposing constraints on the light sources for resolving

the ambiguity. Recent works [12] have shown that parametrically constrained light

sources can offer significant advantages. We observe that constraining the light

sources to a ring can offer sufficient information so that the ambiguity parameters

can be estimated with a closed form solution.

While photometric stereo produces high quality normal maps, the depth esti-

mates from photometric stereo suffer from low frequency noise. The depth maps

from depth sensors suffer from high frequency noise. There is a body of works

[20, 21] which combine the normal maps from photometric stereo and the depth

maps from depth sensors to create high quality surfaces. We propose a method

to automatically calibrate photometric stereo towards normal and depth fusion

techniques using rectangularly placed light sources. Such a configuration is easy

to implement since conventional monitor screens inherently have this geometry.

7



Using characteristic properties of the BRDFs, non-Lambertian surfaces can be han-

dled by photometric stereo algorithms without explicitly recovering their BRDFs.

Alldrin et al. [12] recover the shape up to a set of contours of constant depth

assuming that the surface is isotropic. Chandrakar et al. [13] estimate the surface

shape upto a set of contours of constant depth gradient with the assumption of

isotropic BRDFs. These methods only give a partial result which can be fully

estimated with additional user information.We show that these contours together

can give us sufficient information such that per pixel estimates of depth can be

estimated.

Image based methods for BRDF acquisition often capture a subset of the BRDF

(2D BRDF slice) [15, 22] by making assumptions on the nature of the surface (for

example, isotropy). We observe that, most of the capture systems [23] used for

the BRDFs generally capture an even smaller subset of the BRDF than what is

proposed. We show that a small modification in the capture setup can significantly

improve the performance on material classification. Next, we intend to develop

a convenient and simple arrangement, a handheld flashlight-camera device, for

capturing images for the purpose of material classification. This arrangement

captures only a small portion, a 1D BRDF slice, of the complete BRDF. However,

this small portion contains sufficient discriminative information to differentiate

a class of materials. We test this arrangement on a collection of inks and ob-

tain promising results. It is the first attempt at using reflectance for use in ink

classification, one of the important areas of forensics.

1.5 Organization of the thesis

This thesis is organized as follows. The following Chapter 2 introduces the prin-

ciples of photometric stereo and its various aspects. This chapter also reviews
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significant works in this area to provide the reader with sufficient background

to appreciate the contribution of the thesis. In Chapter 3, an auto-calibration

solution to Lambertian photometric stereo is presented. It is shown that lights

constrained on a ring can fully calibrate the photometric stereo. In Chapter 4, rect-

angularly placed light sources are used for auto-calibration of photometric stereo

is presented. This forms a preliminary portion of the method aimed at generating

high quality depth maps by integrating the depth estimates from depth sensors

and normal map from photometric stereo. In Chapter 5, an algorithm is presented

which builds on the previous works using parametric properties of the BRDFs for

non-Lambertian Photometric stereo. An iterative algorithm is presented which

can offset the use of additional constraints used in the previous works for shape

estimation. In Chapter 6, a subset of the full BRDF is captured for material

classification. While suggesting configurations for improved performance of ma-

terial classification, the method is applied to the problem of ink classification. In

Chapter 7, conclusions and suggestions for future work are presented.
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Chapter 2

Photometric Stereo

Photometric stereo belongs to the class of methods which recover the geometry of

a scene based on variations in image intensities observed due to changing illumina-

tion. The result usually is a normal map of a scene which is recovered from images

acquired under a fixed view point and varying illumination. Besides shape estima-

tion, reflectance and illumination are also recovered in many cases. Photometric

stereo is closely related to the shape from shading (SfS) problem. Although both

methods use shading information for shape estimation, shape from shading uses

only a single image while photometric stereo makes use of multiple images. The

idea was developed based on the assumption of a Lambertian surface. Although

most real objects deviate from this assumption to various degrees, much of the

work in photometric stereo has been developed on the Lambertian assumption

owing to its simple definition and linearity in mathematical modelling. In this

chapter, we review various aspects of photometric stereo and its course of devel-

opment over the years. This chapter is organised as follows. In Section 2.1, we

provide a brief background of the basic concepts upon which photometric stereo

is built. Section 2.2 introduces the classic photometric stereo problem followed

by the uncalibrated photometric stereo problem in Section 2.3. Section 2.4 deals
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with photometric stereo for non-Lambertian surfaces. We discuss the recovery of

surface from the normal map produced by the photometric stereo in Section 2.5

and the recovery of reflectance in Section 2.6.

2.1 Background

Photometric stereo is built upon the intensity estimates obtained from images.

Therefore, an understanding of the physical process behind image formation and

the mathematical models is important. In this section, we provide relevant back-

ground on the understanding of radiometry, reflectance and models for represent-

ing surfaces.

2.1.1 Radiometry

Radiometry is a field which concerns measurement of electromagnetic radiation

(including visible light) and its transport within matter. Since image formation

is based on the interaction of light with surfaces, the concepts of radiometry are

very often used in computer vision.

The fundamental quantity in radiometry is radiant energy Q, measured in Joules.

An associated quantity is the radiant power or the radiant flux Φ which is defined

as the radiant energy flowing through a surface in unit time.

Φ = dQ/dt (2.1)

The radiant flux passing through a unit surface area is called the radiant flux
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Figure 2.1: Diagram showing the solid angle and the projected area. The projected
area (light green) actually receiving the light is smaller than the actual area (blue)

density u, measured in Watts/m2.

u = dΦ/dA (2.2)

where A represents the area of the surface patch through which the flux is mea-

sured.

If the radiant energy is arriving at the suface, the radiant flux density is termed

irradiance E and if it is exiting from the surface, it is termed radiant exitance or

radiosity M .

One of the most important radiometric quantity often used in computer vision is

the radiance. Radiance L is defined as the flux arriving or leaving from a surface

per unit solid angle per unit projected area.

L = d2Φ
dAdω

(2.3)

where dA is the projected area and dω is the solid angle. We know that an angle

is a measure of the space spanned between two line segments. Similarly, a solid

angle (measured in steradians sr.) is defined by the the space spanned by a surface

patch on a unit sphere with respect to its centre. Projected area is that portion

of the area perpendicular to the light direction as shown in Figure 2.1.
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Table 2.1: Radiometric quantities
Quantity Symbol Units
Radiant energy Q J(Joule)
Radiant flux Φ WorJ/s
Radiant flux density u J/m3

Irradiance E W/m2

Radiant exitance M W/m2

Radiance L W/(sr ·m2)

The radiometric quantities discussed are summarized in the Table 2.1

2.1.2 Reflectance

In the previous section, we have defined radiometric quantities which describe the

transport of light in a medium. The light now interacts with the surface material of

the object. When light interacts with matter, it undergoes different phenomenon

- a portion of light gets reflected, another portion may get transmitted, another

portion may get absorbed or scattered or re-emitted in a different direction. Only

the portion of light that is reflected reaches the camera and contributes towards

the formation of image. Therefore, we will discuss the concept of reflectance in

this section.

Reflectance is the phenomenon when light arrives and exits on the same side at the

boundary of the light and surface material. Reflectance properties of a surface are

studied by measuring the Bidirectional Reflectance Distribution Function BRDF

of a surface. The term was introduced by Nicodemus [24]. It is defined as the ratio

of the reflected radiance dL in the reflected direction to the incident irradiance

dE. Mathematically,

f(l,v) = f(θi, φi, θo, φo) = dL(θo, φo)
dE(θi, φi)

(2.4)

Here, l,v represent the incident and reflected directions; (θo, φo) describes the
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Figure 2.2: The angles and directions for describing the BRDF

reflected direction v and (θi, φi) describes the incident direction l. θ and φ indicate

the azimuth and the elevation angle. The directions and the angles are illustrated

in the Figure 2.2.

The BRDF is usually measured using a device called gonioreflectometer. BRDFs

are known to exhibit certain properties which are briefly summarized below.

The units of BRDF is inverse steradians sr−1.

Physically based BRDFs are always positive.

f(θi, φi, θo, φo) ≥ 0

BRDFs obey the energy conservation principle.

∫
Ω
f cos θodωo ≤ 1

Certain BRDFs are invariant under rotation about the surface normal n.

Such BRDFs are called isotropic BRDFs. Mathematically, it means

f(θi, φi, θo, φo) = f(θi, θo, |θi − θo|)

BRDFs exhibit reciprocity. If the incident and reflected directions are
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swapped, the value of the BRDF remains unchanged.

f(θi, φi, θo, φo) = f(θo, φo, θi, φi)

2.1.3 Reflectance models

In this section, we review some of the commonly used reflectance models.

Lambert’s model This is the most fundamental and simplest reflectance model

which describes a perfectly diffuse surface. It was proposed by Lambert [25] .

According to this model, light is reflected uniformly in all directions for any given

incident lighting direction. This implies that the appearance of the object remains

the same for any viewing direction. The value of this BRDF is a constant. It is

written as,

f(l,v) = ρ (2.5)

where, ρ is the diffuse albedo in the range [0, 1].

Because of its simplicity, Lambert’s reflectance is the most widely used model in

vision algorithms such as stereo, segmentation, shape from shading.

Phong model Phong [26] proposed a model to deal with non-Lambertian sur-

faces. Lambert’s model assumes that the surface is perfectly diffuse and cannot

model phenomenon such as specular highlights. The Phong model is a linear

combination of a diffuse and a specular component,

f(l,v) = dρd + sρs
(r · v)n
(n · l) (2.6)
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where, d, s are the weights describing the surface and specular component such

that d + s = 1; r is the mirror direction of l, n ∈ [1,∞) represents the sharpness

of the specular highlight. ρs, ρd are the specular and diffuse albedo.

Cook-Torrance model The Cook-Torrance BRDF model also gives linear com-

bination of a diffuse part and specular part. Mathematically, it is given by

f(l,v) = d
ρd
π

+ sF (l,v) D(h)G(l,v)
4π(n · l)(n · v) (2.7)

where,D(·) is the distribution function of microfacet normals, G(·) is geometrical

attenuation factor which represents the masking and shadowing effects of between

facets, F (·) is the Fresnel term computed by Fresnel’s equation, d, s, ρd,h carry

the same meaning as in the Phong model, and d + s = 1. For more detailed

explanation, please refer to the original work [27].

Several other improved reflectance models are proposed and the reader is advised

to refer to existing literature for a more comprehensive view of radiometry.

2.2 Classical Photometric Stereo

Photometric stereo, as first introduced by Woodham [7], is a method to determine

surface orientation from images captured under varying incident illumination at

a fixed view point. As the camera position is fixed, the correspondence between

points is already established. The early works in photometric stereo directly used

the idea of reflectance maps. The reflectance map determines the reflectance as

a function of the surface gradients p, q. Different lighting directions require ap-

propriate reflectance maps showing isocontours of constant reflectances. When

the object is imaged from two lighting directions, we obtain two reflectance maps

17



(a) (b) (c)

(d) (e)

Figure 2.3: Photometric stereo.(a) - (c) Images captured under varying illumina-
tion, (d) normal map, (e) depth map
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Figure 2.4: Reflectance map of a Lambertian object[28]

for each lighting direction. The surface orientation at a point can be estimated

uniquely by the intersection of three isocontours, each determined from respec-

tive reflectance maps. With three measurements, the surface orientation can be

uniquely determined as shown in Figure 2.4.

The classical photometric stereo algorithm assumes that the surface is Lambertian,

the illumination direction from point light sources is known, albedo is uniform and

the object is viewed from an orthographic camera. According to the Lambertian

reflectance model, the observed intensity is given by,

I = ρn · l

Here, n is the surface normal and l is the illumination direction. To uniquely

determine the normal direction, a minimum of three different lighting directions

is required. Using more than three light sources (images) gives the additional

advantage of noise reduction in the estimates. However, there are algorithms which

use less than three images. For example, Onn and Bruckstein [29] where only two

images are used to determine the normals under known lighting directions. They

denote the normal in terms of the depth gradients p, q which will be defined later in

Section 2.5. They assume surface integrability to uniquely determine the normals.
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Figure 2.5: Photometric Stereo acquisition setup

Here, we individually determine the 3 components of the normal vector. Let us

consider an object illuminated by m light sources, capturing an image of n pixels

with each light turned on, one at a time. The image intensity at the ith pixel in

an image of n pixels when illuminated by the jth light source is given by

Iij = ρiniT lj (2.8)

where, ρi and ni are the albedo and surface normal at the ith pixel and lj is the

illumination direction from the jth light source.

By stacking the pixels from all the m images, (2.8) can be expressed in matrix

form as

I = BL (2.9)

where, I = {Iij}n×m is the intensity matrix, B is an n× 3 matrix representing the

surface normals compounded with albedo and L is a 3 × m matrix representing

the lighting directions respectively.

As previously stated, the classical photometric stereo problem assumes that the

light directions are known beforehand. They are usually determined by calibration
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by placing a shiny mirror sphere in the scene. So, we have an overdetermined

system in (2.9). Since L and I are already known, the matrix B can be uniquely

determined by a least squares solution as,

B = L†I (2.10)

where L† =
(
LTL

)−1
LT is the pseudo inverse of L . The normals and albedo can

be determined from B as,

ni = bi
‖bi‖

ρi = ‖bi‖ (2.11)

where, bi refers to the ith row of B

We observe that the solution is very straightforward. But this requires that we

capture the light directions using a mirror sphere and the surface is Lambertian

without any outliers such as specular highlights, inter reflections, cast and attached

shadows. The capture of light directions using a mirror sphere may introduce

undesirable effects such as inter reflections. To overcome the disadvantage of

having the light directions calibrated, auto-calibrated or uncalibrated photometric

stereo methods can be used.

2.3 Uncalibrated Photometric Stereo

Uncalibrated photometric stereo was pioneered by Hayakawa [30] in 1994. For a

Lambertian surface, the image intensities matrix I (as described in Section 2.2)

ideally is a rank 3 matrix. When this matrix is factorized using a singular value

decomposition (SVD), we can directly estimate the normal and lighting directions.
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This result is up to a 3× 3 unknown invertible linear transformation.

I = UDVT

=
(
UD

1
2
) (

D
1
2 VT

)
= B̃L̃ (2.12)

where, B̃ and L̃ could differ from the true estimates B, L by the 3 × 3 linear

transformation A such that B̃ = BA−1 and L̃ = AL.

Following this attractive solution, there are many works which try to resolve this

linear ambiguity A and estimate the true normal directions. Hayakawa [30] proved

that, if at least six light sources of equal intensity are known or atleast six normal

directions of a curved surface with uniform albedo are known, this linear ambiguity

can be reduced to a rotational transformation. On the other hand, enforcing the

integrability constraint can also improve the solution by reducing the ambiguity

to a GBR ambiguity [31, 16]. The GBR transformation consists of 3× 3 matrices

of the form

G =


1 0 0

0 1 0

µ ν λ

 (2.13)

where, µ, ν, λ ∈ R are the GBR parameters.

Under GBR transformation, the albedo and surface normal estimates are distorted

as

ρ̂ = ρ‖nTG−1‖ n̂T = nTG−1

‖nTG−1‖

Belhumeur et al.[16] showed that the GBR ambiguity is intrinsic to Lambertian

surface. As observed in Figure 2.6, the object’s visible surface cannot be distin-

guished under a GBR transformation. This means that for each image captured

under a particular lighting direction, there will be an identical image of the trans-
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Figure 2.6: The bas relief ambiguity [16]

formed object by similarly transformed light sources. The integrability and equal

intensity constraints together reduce the ambiguity to a binary convex/concave

ambiguity . In terms of the GBR ambiguity, (2.12) can be written as,

I = B̃G−1GL̃ (2.14)

The GBR ambiguity can be resolved in several ways by making certain additional

assumptions on either or more of geometry, albedo, light configuration. In [18],

the GBR ambiguity was resolved by minimizing the entropy of recovered albe-

dos. From (2.10), we know that albedo can be measured as the magnitude of

the recovered normal. Under GBR transformation, this albedo is distorted and

the entropy of the albedo distribution increases. By relating the entropy of the

albedo distribution to the GBR transformation, the GBR parameters are found

by minimizing the albedo distribution. This can resolve the GBR ambiguity, but

the normals and albedos are assumed to obey a certain distribution which means

not all surfaces can be solved by this method.
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Using color and intensity profiles from images acquired for photometric stereo, the

GBR ambiguity can be resolved [32]. By grouping normals with constant albedo,

the GBR parameters and the albedo are recovered. From (2.12), we know that

the albedo estimates after SVD decomposition contain the GBR ambiguity matrix.

Therefore, if we know the normals with constant albedo, the GBR parameters can

be estimated using a least squares solution.

Specular highlights can also be used to resolve the GBR ambiguity [19]. If at

least two images contain sharp specular highlights, the normal and light direction

estimated at the specular pixels and the GBR parameters form a linear system of

equations. Solving these system of equations, the ambiguity parameters can be

estimated. This method still falls under Lambertian reflectance as the specular

highlights are only used to resolve the ambiguity. These highlights are later re-

moved as outliers, and normals are estimated under the Lambertian reflectance

assumption.

Other works use inter reflections [33], special lighting configurations [34], com-

plex reflectance models [35], isotropic BRDF assumption [11, 36, 37], smoothly

varying surface albedos [17] to resolve the GBR parameters. In Chapter 3, we

propose a method to automatically calibrate photometric stereo using a ring light

configuration.

Until now, we have reviewed methods related to Lambertian photometric stereo

where the surface is assumed to be perfectly diffuse. To handle real world scenes,

we need algorithms that can deal with non-Lambertian surfaces which is the sub-

ject of the following section.
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2.4 Non-Lambertian photometric stereo

Under Lambertian reflectance, the incoming light is equally reflected in all direc-

tions so that the object appears the same for the viewer under any direction. This

simple law is used very commonly in formulating algorithms for photometric stereo

because of its simple, linear model. For non-Lambertian surfaces, which closely

model the real scenes, photometric stereo algorithms become more challenging.

Broadly, non-Lambertian surfaces are handled either by (1) removing the non-

Lambertian component as outliers, (2) using more detailed reflectance models, or

(3) exploiting the reflectance properties. These approaches are briefly reviewed

below.

2.4.1 Removing the non-Lambertian components

A majority of non-Lambertian surfaces exhibit near-Lambertian behavior outside

the specular regions. It appears an attractive option to apply the linear algorithm

developed for Lambertian surfaces to apply for non-Lambertian reflectance by

treating highlights as deviations from the Lambertian law.

One of the earliest ideas in this direction was by Coleman and Jain [38]. Three light

sources are needed to uniquely determine a normal for a Lambertian surface. They

use 4 light sources to compute a set of 4 normal vectors for each point - one normal

from the permutation of three intensity values. Using a thresholding procedure,

surface normals are estimated from intensity values which do not contain a specular

component. This is one of the most common and simple procedures to detect and

remove non-Lambertian components. This method can also be used to eliminate

attached and cast shadows while estimating the surface normals.

Barsky and Petrou [39] improvise the above 4 source photometric stereo method
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using color images. The color information serves as an additional cue in the de-

tection of specularities. Using pixel-wise estimates of color, they detect highlights

at each pixel. They also detect the shadows as deviations from the linearity on

the input quadruples of pixels. Several other works [40, 41, 42]have been proposed

based on a similar idea of removing the non-Lambertian components as outliers

for both, calibrated and uncalibrated photometric stereo.

2.4.2 Using sophisticated reflectance models

We have reviewed some of the reflectance models commonly used to represent

BRDFs of non-Lambertian earlier in the chapter. This class of methods try to

recover the parameters of the reflectance models for shape estimation.

Some of the earlier works assume that the BRDF of a surface is a linear combi-

nation of specular and Lambertian component [43]. They term this model as a

hybrid model and solve for the reflectance and shape at each surface point using

the set of intensity values. The dichromatic reflectance model is a widely used

model for modeling non-Lambertian components. Mallick [44] try to recover the

surface without explicit separation of diffuse and specular components. A trans-

formation of color space is employed which directly gives diffuse image freed from

specular effects. The transformation preserves shading information and thus the

obtained images are used for photometric reconstruction.

Lensch et al. [45] assume the BRDF at each point to be a linear combination

of a set of basis BRDFs, defined by a set of reference objects. They assume a

parametric reflectance model and known shape of the surface. Building further

on the idea of linear approximation of basis BRDFs, Goldman et al. [46] define

a Wards model for each basis material, and iteratively estimate surface normals

and parameters for the reflectance models.
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(a) (b)

Figure 2.7: Example based photometric-stereo [47]

Example based methods have been made popular to obtain surface reconstruction

for arbitrary BRDFs by Hertzmann et al. [47]. By introducing a reference object

of a known shape and of same material as the object, images are obtained for

different illumination directions with the same view point. The normal map of

the object is computed by matching the intensity of the object at each pixel in

image with a similar corresponding pixel of the reference object. If the intensity

matches with the intensity of reference pixel, along every illumination direction,

the known normal at the reference pixel is attributed to the corresponding pixel

in the image of the object (Figure 2.7). It is one of the simplest algorithms in

the field of photometric reconstruction. Although this method provides a very

intuitive and simple solution, the major limitation is the necessity of the reference

object in each case.

Although, there are methods which [48] estimate the parameters of reflectance

models,they are not often used in photometric stereo for shape estimation because

of their complexity.

2.4.3 Using reflectance properties

Another direction for reconstructing surfaces with arbitrary BRDF’s is to exploit

properties of the BRDF such as symmetry, isotropy and reciprocity. In this way,

arbitrary BRDFs can be handled efficiently without the complexity of estimating
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the parameters of the reflectance models. We know that the BRDF f(θi, φi, θo, φo)

is defined as the ratio of reflected radiance along the outgoing direction (θo, φo) to

the received irradiance along the incoming direction (θi, φi).

Reciprocity ensures that the BRDF is symmetric along the incoming and outgoing

directions,( i.e. f(θi, φi, θo, φo) = f(θo, φo, θi, φi)).

Isotropy implies that the BRDF is invariant with respect to rotation of the surface

around the surface normal (i.e.f(θi, φi, θo, φo) = f(θi, θo, |φi − φo|))

One of the early and important contributions in this direction was by Magda

et.al [49] who introduced Helmholtz reciprocity and radiance constancy along a

ray of light. The reciprocity constraint eliminates the BRDF term and geometric

information of the surface is obtained from the known measurements. This was

extended by Zickler et al. [50] to obtain reconstruction using Helmholtz stereopsis

for the multiple view case.

Alldrin et.al. [12] proposed surface reconstruction for arbitrary BRDFs by exploit-

ing the isotropy property of the BRDF. In [12], a dense configuration of lights on a

circle is used to exploit symmetry in measurements of irradiance from the image.

Such symmetry arises from the isotropy exhibited by the BRDF. The symmetry in

intensities observed at each pixel is exploited to constrain the normal to a plane.

This gives the surface gradient direction which is used to estimate the shape up

to isocontours of constant depth. With further user interaction, Euclidean recon-

struction can be achieved.

A subsequent work by Alldrin et al. [51] proposed a method for shape and re-

flectance recovery for non-parametric BRDFs. They however assume a non para-

metric model even for the basis BRDFs (unlike [46]), and assume a bivariate

approximation for the BRDF.
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The properties of isotropy and reciprocity in the BRDFs are also capable of re-

solving the GBR ambiguity (see (2.12)) of the uncalibrated photometric stereo

[11]. Under a GBR transformation, the symmetry in the radiance functions along

the isotropic and reciprocal curves is lost. By finding the transformation which

restores the symmetrical structure, the GBR parameters can be estimated and

Euclidean reconstruction can be established. This transformation is derived when

at least a single isotropic pair in two images and a single reciprocal pair in a single

image is known.

Recently, Chandraker et al.[13] presented a theory of differential photometric

stereo in which the information from spatial and temporal gradient is used to

obtain a photometric constraint which gives a linear relationship between the gra-

dients. This is independent of the light source directions and the BRDF. When

the light source is constrained to move on a circle, they recover isocontours of

constant depth and gradient, and given a little additional information (normals

along a boundary, depth at a point), they recover the Euclidean shape.

2.5 Recovering the surface

In the previous sections, we have reviewed both Lambertian and non-Lambertian

photometric stereo. The direct result obtained from photometric stereo is a normal

map while the final, desired result is to recover the 3D surface. The normal map

essentially is a depth gradient field and therefore, it can be used for finding the 3D

surface as a depth/height field. The simplest method to recover the depth field is

by directly integrating the normal map. The depth gradients p, q can be derived

from the estimated normal n =
[
nx ny nz

]
as p = ∂z

∂x
= nx

nz
and q = ∂z

∂y
= ny

nz
.

In terms of a unit normal n̂, we can relate the estimated normal and the depth
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gradients as,

n̂ =

[
nx ny nz

]
√
nx2 + ny2 + nz2

=

[
p q −1

]
√
p2 + q2 + 1

(2.15)

In order to integrate the normal map for depth estimation, the surface normal has

to satisfy the condition of integrability. Integrability ensures that the estimated

depth remains the same irrespective path used for integration. Mathematically,

this means
∂2z

∂x∂y
= ∂2z

∂y∂x
(2.16)

Assuming that the surface is integrable, the depth at a point z(x, y) can be esti-

mated from integration as

z(x, y) = z(x0, y0) +
∫ (x,y)

(x0,y0)
(pdx+ qdy) (2.17)

where, z(x0, y0) is the initial depth.

In practical cases, the obtained gradient field is very rarely integrable due to noise

present in the images or in the estimation process. There are a series of works

that deal with this problem and propose methods to generate accurate depth

maps. Frankot and Chellappa [52] project the non-integrable gradient field on to

a set of integrable slopes using the Fourier basis functions. Several variants of

this approach have been proposed by either choosing a different basis function or

using a redundant non-orthogonal set of basis functions ( for example, shapelets).

Agrawal et al.[53] propose a generalized theory based on applying anisotropic

weights to the gradient field while integration. They also propose different solvers

to achieve trade-offs between different desired features in the reconstructed depth

field. More recently, Harrison and Joseph [54] use a zero-mean Gaussian model

for image noise and propose a method to estimate a maximum likelihood solution

for depth map. Instead of treating the noise in the gradient field, they begin with
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handling the noise in the images and continue throughout the process of surface

generation.

2.6 Recovering surface reflectance

Photometric stereo methods are used not only for estimating the shape but also

the reflectance of the object surface from the images. Most of the methods assume

a parametric reflectance model (most commonly Lambertian ). For Lambertian

reflectance model, the BRDF is constant and equal to the albedo which is recovered

in a straightforward manner as observed in the Sections 2.2,2.3. To capture the

reflectance of objects which have a different reflectance, more complex approaches

are adopted. This section also contains references to some of the works described

in Section 2.4.2, but the emphasis here is on recovering the reflectance while

Section 2.4.2 focuses on shape estimation.

Goldman et al. [46] make the assumption that most materials in the real world

can be can be modeled as a weighted combination of few fundamental materials.

They use Ward’s reflectance model for each material. In an iterative framework,

they estimate the normal map, weight maps and the BRDF parameters for each

material at every pixel. Although näıve because of making many assumptions such

as known lighting, no shadows and interreflections, this work is one of the well

established works. Zhou et al. [2] recover the spatially varying BRDFs in a similar

manner by inferring a set of basis BRDFs and their mixing weights at each pixel

(see result in [2]). However, their method assumes that the basis materials are

isotropic which can handle more general cases than other methods which assume

a paramteric model for the BRDF.

While these methods use the estimated BRDF for rendering purposes, the esti-
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(a) (b) (c)

Figure 2.8: Rendering using the reflectance obtained from photometric stereo [46].
(a) input image, (b) estimated normal map and (c) rendered image

mated BRDF can also be used in the problem of material classification. There

are several works which use BRDF for material classification [22, 23]. We capture

a subset of the 4D BRDF and apply it for the problem of ink classification in

Chapter 6.
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Chapter 3

Auto-Calibrating Photometric

Stereo using Ring Light

Constraints

Uncalibrated photometric stereo algorithms use factorization to estimate the nor-

mals and the light directions from the pixel intensities. However, these estimates

are obtained up to a 3×3 linear ambiguity. By imposing integrability constraints,

the ambiguity is further reduced to the generalized bas-relief (GBR)ambiguity

[16]. Various additional assumptions such as known pixels of equal intensity [32],

separable isotropic highlight [55], specular spikes [56, 19], diffuse-maximum point

[17], or constraints on light source positions [34], have been made on the scene

to resolve this ambiguity. Uncalibrated photometric stereo is also referred to

as auto-calibrated photometric stereo because the algorithm simultaneously esti-

mates the light directions while estimating the normal directions. The main ad-

vantage of auto-calibration is that no explicit calibration object (such as a shiny

mirror sphere) is required in the scene.
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While there are various choices for resolving the GBR ambiguity, constraints on

light source positions are known to offer additional advantages. Zhou and Tan

[34] exploit geometric constraints derived from multiple (>5) light sources located

on the same circle to automatically calibrate photometric stereo. They also show

that by constraining the light sources to a ring, more general geometry (such as

non-integrable surfaces) and weak perspective effects in lighting can be dealt with.

Besides solving the GBR amiguity, the circular light configuration has also been

used elsewhere in photometric stereo. Alldrin et al. [12] make use of circular light

constraints to recover the azimuth angle of normals on a surface with isotropic

materials. This can recover the isogradient contours of the object and recover

the full Euclidean structure with some more additional assumptions. Jones et al.

[57] use a circular light configuration to illuminate the face in a head mounted

arrangement for real time photometric stereo.

We explore the circular light arrangement for solving the ambiguity in uncalibrated

photometric stereo. While we also use light sources located on a circle, our focus is

on the case of uniformly distributed lights. This simple and special case helps us to

obtain stronger results in both theory and practice. More specifically, there are two

key differences in our approach when compared to [34]. First, Zhou and Tan [34]

show that uniformly distributed lights on a circle can recover the surface normals

up to a planar rotation and scaling ambiguity. These ambiguities are resolved using

two pairs of corresponding normals in two views with a 1D exhaustive search. In

comparison, we show the rotation and the scaling ambiguities are independent

of each other. Therefore, we can solve them separately with just one pair of

corresponding normals from two views. Furthermore, our method has a closed-

form solution, which is more efficient and precise than the 1D exhaustive search.

In this chapter, we propose an auto-calibration method for photometric stereo.

Our method exploits constraints placed on light sources to recover their positions
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and the surface normals of an object up to a scaling and planar rotation ambigu-

ity. The ambiguity is resolved with multi-view consistency constraints leading to

a Euclidean reconstruction of the geometric shape of the object. Our main contri-

bution in this chapter is a closed form solution to the scaling and planar rotation

ambiguities using the ring light constraints and estimate the normals maps. Ad-

ditionally, we also demonstrate that using multi-view constraints, we can recover

an extended reconstruction of the object surface beyond 2.5 D (beyond a single

camera’s field of view) unlike the conventional photometric stereo algorithms.

3.1 Related Work

We briefly review works related to uncalibrated photometric stereo and multiple-

view photometric stereo in this section.

A major breakthrough in photometric stereo was made with Hayakawa’s [58]

proposition of uncalibrated photometric stereo. Hayakawa demonstrated that

light source directions and surface normals can be recovered from the inten-

sity information itself by factorizing the intensity matrix. The normals recov-

ered by this method were up to a linear ambiguity, which can be resolved up

to a bas-relief ambiguity [16]. Several works were proposed later to resolve this

ambiguity[58, 34, 32, 55, 56, 19, 18, 37]

Recent works suggest that constraints placed on the light sources can offer a sig-

nificant advantage in solving the photometric stereo problem under more general

conditions. Alldrin et al. [12] propose a dense configuration of light sources on a

circle to recover the azimuth angle and thus constrain the normal at each point

to a known plane. In this case, the light source positions were assumed to be

known. Zhou and Tan [34] propose ring light constraints to solve the photometric
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stereo problem on Lambertian object with unknown light source positions. Zhou

and Tan[34] make use of a ring of light sources to obtain the shape up to a mirror

transformation, scaling and rotation ambiguity. These ambiguities can be further

resolved by various constraints, such as uniformly distributed lights and two cor-

responding normals in two views. Further, they require a 1D exhaustive search

to solve for the scaling and rotation parameters. We focus on the special case

of uniformly distributed lights. We derive analytical solutions of the remaining

ambiguities with just one pair of corresponding normals in two views.

We also review some relevant works which combine photometric stereo with multi-

view stereo to recover the full 3D geometry of the object. Hernandez et al. [1] de-

signed a multiple view photometric stereo algorithm for Lambertian surfaces. Wu

et al. [59] propose a method to fuse multi-view stereo and photometric stereo with

uncalibrated illumination. Zhou et al. [2] propose a multi-view photometric stereo

that works on surfaces with spatially varying isotropic materials. Our method can

be straightforwardly combined with structure-from-motion techniques, to provide

a complete 3D reconstruction.

3.2 Formulation

3.2.1 A ring of point light sources

Let us consider point light sources located on a circle of radius r at a regular

interval of t radians with respect to the centre of the circle. These light sources,

one at a time, are used to illuminate an object. A camera is located at the centre of

the ring, and the camera axis is perpendicular to the plane of the ring, as shown in

Figure 3.1. We assume the object to be Lambertian and the light sources located

far away from the object to assume directional illumination. If the object is located
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Figure 3.1: Schematic diagram of the acquisition setup. (a) The top-down view
of the ring-light and camera arrangement. (b) The setup is used to capture the
image of an object. The xyz coordinates represent the camera coordinate system
and XY Z coordinates represent the global coordinate system.

at the origin of the world coordinates and the circular light–camera configuration

is located at a distance d from the origin, the position of an arbitrary light source

can be written as l =
[
r cos θ r sin θ d

]
, where θ is the angular displacement of

the light source as shown in Figure 3.1. Let us assume that the angular position

of the first light source is θ0. Since the lights are equally spaced, the angular

positions of the rest of the N light sources can be determined parametrically as

θ = θ0 + (i− 1) t, where i = 1, 2, ..., N . If the normal at any point P on the object

is denoted by n =
[
n1 n2 n3

]T
, the intensity for a Lambertian object is

I = ρl · n = ρ(n1r cos (θ) + n2r sin (θ) + n3d) (3.1)

where ρ denotes the albedo of the object at point P .

The parameters to be determined in order to recover the light source positions are

the radius r, angular interval t, the distance d and the initial angular position θ0.

The parameters r and t can be measured easily and we can safely assume them
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to be known. However, d and θ0 are unknown. θ0 is established when the camera

is mounted manually at the centre of the ring light while d changes when the ring

light and camera are rotated in multiple views.

The light sources are constrained to lie on a circle. This constraint offers an

intrinsic parametric structure such that knowledge of a few parameters (d, θ0) is

sufficient to recover the position of all other light sources, and consequently the

surface normals. For N light sources, we stack the equations of the form as (3.1)

as,

L =



r cos θ0 r sin θ0 d

r cos (θ0 + t) r sin (θ0 + t) d

... ... ...

r cos (θ0 + (N − 1) t) r sin (θ0 + (N − 1) t) d


. (3.2)

We can now write the relationship between the observed intensities, light source

direction and the surface normals as,

I = ρL(d, θ0) · n (3.3)

where I denotes the matrix of image intensities observed at point P due to the

corresponding light sources.

3.2.2 Reconstruction ambiguities

We might assume arbitrary value for the distance d and the initial rotation angle

θ0 to solve (3.3). The solution will be related to the true result by a planar rotation

and a scaling, as stated in the following proposition.

Proposition 1 The true normal ng of a Lambertian surface illuminated by a

ring-light at a distance dg can be recovered up to a classical bas-relief ambiguity
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compounded with a planar rotation ambiguity, i.e.


n1

n2

n3

 =


cos M sin M 0

− sin M cos M 0

0 0 1




1 0 0

0 1 0

0 0 dg

d




ng1

ng2

ng3

 (3.4)

or n = RMSng (3.5)

Here, M= θ∗ − θ0, d and θ∗ are the assumed distance and initial rotation angles

respectively, n is the recovered normal.

The proof of this proposition is provided in the appendix. We can see from Propo-

sition 1 that the normal recovered in a single view is up to two ambiguities - 1)

a scaling ambiguity, and, 2) a planar rotation ambiguity. The scaling or classical

bas-relief ambiguity is a function of the distance d. The planar rotation ambigu-

ity is a function of the initial angle θ0. Mathematically, this implies that many

solutions exist for the light direction and normal vectors, such that their scalar

product remains unchanged. Intuitively, the distance d affects the light directions

and normal vectors as illustrated in Figure 3.2. The images captured of an object

using the ring light device from a certain distance (d1) will be the same as those

captured from a smaller distance (d2 < d1) of a proportionately flatter version of

the same object.

Zhou and Tan [34] solved this compound ambiguity by two corresponding normals

from two views with a 1D exhaustive search. In the following, we show that

these two ambiguities can be solved step-by-step in closed form solution, which

requires only one pair of corresponding normal directions in two views. This

separation is possible, since R and S operate on the different components of a

normal direction. R changes only the first two components, while S changes only

the third component of a normal direction. Due to the independence of these two
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ambiguities, the step-by-step solution is possible and is favorable than the method

in [34], where a brute force search is used to determine the final solution.

d1

d2

(< d1)

Figure 3.2: Visualisation of the scaling ambiguity

3.2.3 Consistency constraint from two views

The recovered normals are up to a scaling or classical bas-relief ambiguity and a

planar rotation ambiguity as noted from Proposition 1. We note that these two

ambiguities are independent of each other and therefore, while solving for one of

these ambiguities, we do not consider the effect of the other. In this section, we

derive an analytical solution for resolving these two ambiguities using constraints

from multiple views in a step-by-step manner.

Estimating the scaling ambiguity: If n1 and n2 are the estimated normals

of a point P in two views and n1g and n2g are the corresponding true normals,

then

n1 = S1n1g and n2 = S2n2g (3.6)

where S1 and S2 are the scaling ambiguities. Note that the object can be at

different distances to the camera in the two views such that S1 and S2 can be
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different. Here, all the normal directions are defined in the local camera coordinate

system.

Let the two views be related by a camera transformation matrix T i.e.,

n1g = Tn2g (3.7)

where, T can be estimated using structure from motion (SfM). In other words,

from (3.6),

n1 = S1TS2
−1n2 (3.8)

n1 = En2 (3.9)

where E = S1TS2
−1

We have two unknowns s1 = d1
d1g

and s2 = d2g

d2
corresponding to the ambiguities

S1 and S2. We can rewrite (3.9) as n1 × En2 = 0. This vector product gives the

following independent equations.

A11s1 + A12s1s2 + A13s2 + A14 = 0 (3.10)

A21s1 + A22s1s2 + A23s2 + A24 = 0 (3.11)

A31s2 + A32 = 0 (3.12)

Here, Aij are constants in terms of the normals n1, n2 and the elements of the

transformation matrix T . These parameters are provided in the appendix. We

can solve these set of equations to analytically determine the parameters s1 and

s2 as,
s2 = −A32

A31

s1 = −(A13s2+A14)
A11+A12s2

= −(A23s2+A24)
A21+A22s2

(3.13)
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Figure 3.3: The two view constraints used to estimate the scaling and rotation
ambiguities. The estimated normals ñ1 and ñ2 in the two views and the true
normal n lie on the cone centred on the camera axes v1 and v2.

Estimating the rotation ambiguity: After determining the scaling ambiguity,

we obtain the surface normal in the camera coordinate system up to a planar

rotation given by θ0. We note that θ0 is fixed when the camera moves. Therefore,

we can determine the rotation ambiguity using a simple auto-calibration method

as described below.

If n1 and n2 are the estimated normals of a point P in two views and n1g and n2g

are the corresponding true normals, then

n1 = Rn1g and n2 = Rn2g (3.14)

where R is the planar rotation ambiguity which rotates the true normals about

the camera axis in the xy plane of the local coordinate system. Since the same

ring light device is used in both the views, the rotation angle is the same in both

views. Again, the normal directions are all defined in their local camera coordinate

system.
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If v1 and v2 are the camera view axes in view1 and view2 respectively defined in

the global coordinate system, then we have the following relationships,

ñT1 v1 = k1 ñT2 v2 = k2 (3.15)

Here, ñ1 and ñ2 are the estimated normals in the global coordinate system and k1

and k2 correspond to the cosine of the half angle of the cone in view1 and view2.

If R1 and R2 are the rotation matrices from camera - calibration in the two views,

ñ1 and ñ2 can be computed as ñ1 = R1n1 and ñ2 = R2n2

The planar rotation ambiguity constrains the estimated normal to a cone whose

axis is the camera view direction. The true normal n is unique in the global

coordinate system and must lie on the cone in both views as shown in Figure 3.3.

If n is the true normal in the global coordinate system, we have

nTv1 = k1 nTv2 = k2 (3.16)

Since k1 and k2 are known from (3.15), we have two linear equations in terms of

the components of n from (3.16). We can recover n up to a 1D linear space from

(3.16). Further we have the constraint ‖n‖ = 1. From this, we can solve all the

components to estimate n. After recovering n, we can estimate θ0 by recovering

the angle between the projections of n and ñ1 on the xy plane.

Once the scaling and rotation ambiguity parameters are determined, the normal

maps can be estimated accurately.
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3.2.4 Multiple view extension

In recovering the light source positions, we have used constraints from multi-view

geometry. We have shown that a transformation matrix T between the two views

is sufficient to resolve the scaling ambiguity. This transformation aligns the normal

vectors of the object in the global coordinate system. Therefore, we can combine

the geometry from multiple views to obtain an extended reconstruction of the

object. If z1 is the depth map obtained in the first view, say view1, and z2 is

the depth map obtained in the second view, say view2, the transformation T as

described in (3.7) can be used to register the depth maps as

z1 = Tz2 (3.17)

In this way, we can combine the depth maps from multiple views and obtain an

extended reconstruction of the object beyond 2.5 D.

3.3 Experiments

3.3.1 Experimental setup

We implement our method using 36 equally spaced LED lights on a circular disk

forming a ring light source with a Point Grey Grasshopper GRAS-20S4C-C camera

located at the centre of the ring of lights. The camera is fixed such that the camera

axis is orthogonal to the plane of the ring. (Note that the camera is mounted

manually; hence, it might not precisely sit in the circle center and its orientation

could be slightly off.) As explained in the previous section, our algorithm resolves

the two ambiguities using ring light constraints and two-view constraints. To

recover the transformation between the two views, as described in Section 3.2, we
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calibrate the camera using a checker board pattern and the camera calibration

toolbox for MATLAB [60]. Having estimated the camera matrix from calibration,

we use SIFT features, refine them using RANSAC and match them for detecting

point correspondences in a given pair of views. To deal with textureless objects,

we put our test objects on a checker board pattern to facilitate matching.

3.3.2 Results and discussion

We implement our method on three real world objects, ‘Cat’, ‘Teddybear’ and

‘Teapot’. ‘Cat’ and ‘Teddybear’ are nearly Lambertian while ‘Teapot’ has a slightly

specular surface. We assume an arbitrary value for d and θ0 to first recover the

normal maps up to a scaling and rotation ambiguity. For convenience, we assume

d = 10 and θ0 = 0. As described in Section 3.2, we require a single pair of

corresponding normals in two views to solve the rotation and scaling ambiguities.

For estimating these normals, we compute point correspondences P and P ′ using

SIFT.

The estimated scaling parameter or the distance is observed to vary slightly for

different pairs of corresponding points. This could be due to the sensitivity of SIFT

to the surface albedo in two views or corrupted intensities due to non-Lambertian

behaviour of the surface. To minimise errors due to these factors we average the

scaling parameter over 20 corresponding points to solve the scaling ambiguity.

The parameter θ0 is also estimated by averaging the values obtained for different

pairs of corresponding normals. The estimated values for d and θ0 for ‘Cat’ object

are shown in Figure 3.4. We observe from the figure that the estimated distance

term is accurate within 4% error. Although the estimated θ0 seems to indicate

a rather large error, practically the estimate is quite reasonable. This is because

the angle is estimated as an inverse cosine, which is extremely sensitive for angles
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Figure 3.4: The images of ‘Cat’ object are captured from two views (a) and (b)
and the corresponding points are estimated. We recover the distance and the
initial angle using the multiple view constraints.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Two different views of ‘Teapot’ are shown here. In the first column,
we have the sample image; in the second column, we have the reconstructed nor-
mal with shadows;in the third column, we have the reconstruction with outliers
removed.

close to 0◦. This slight deviation could be due to issues in image registration while

determining the transformation between the two views. Also, the effect of θ0 is

not very significant as long as the estimates are within an error of ±5◦.

We use RANSAC [61] to eliminate the outliers before estimating the normal map.

At each pixel, we use RANSAC to estimate normal selecting 3 samples randomly

from the available 36 samples. We impose a threshold of 0.01 on the error for the

data point to fit the model generated using the chosen samples. The normal maps

in Figures 3.5(c),(f) show outliers removed using RANSAC.

After resolving the rotation and the scaling ambiguities, we estimate the normal

map of the ‘Cat’ object. The normal map obtained is compared with the ground
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Figure 3.6: The ‘Cat’ object is nearly Lambertian. We have a sample image
of the object in (a), the calibrated and the estimated normal map in (c) and (d)
respectively. It can be observed from the error map in (b) show that the estimated
normal map is very close to the calibrated normal map.

truth obtained from calibrated light directions using a mirror sphere as shown

in Figure 3.6. As observed from the error map, the normals recovered from our

method are very close to the ground truth. In uncalibrated photometric stereo, the

recovery of normal map and lighting direction requires solving the GBR ambiguity

after enforcing the integrability constraint. In comparison, we need multiple view

constraints and the integrability constraint to calibrate the light positions com-

pletely. As shown in Section 3.2, the scaling parameters for two different views

are estimated separately. Therefore, the object need not be located at the same

distance to the camera in multiple views while resolving the scaling and rotation

ambiguities.
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Figure 3.7: Experimental results on objects - ‘Teddy bear’,‘Cat’ and ‘Teapot’. In the first column, we have a sample image of the
object; in the second column, we have the normal map; the third, fourth and fifth columns contain the depth maps by integrating
the normals from three adjacent views; in the last column, we have the result of the merged depth map.
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We next present an interesting application of our algorithm in fusing the depth

maps from multiple views. As discussed in Section 3.2.4, we use the multi-view

constraint in estimating the light source positions and fuse the depth maps from

multiple views. We demonstrate this by combining the depth maps from a set of

five adjacent views. We combine the individual depth maps by registering them

using the Iterative Closest Point (ICP) algorithm [62]. The combined depth maps

contain irregularities in the overlapping region. We average the depth estimates

in the overlapping regions and smooth the positions and the normals as proposed

by Diego et al. [21]. The individual and combined depth maps are as shown in

Figure 3.7.

In this way, we successfully use the ring light constraints to solve the ambiguities

and estimate the normal maps. We also use additional constraints from SfM

to register depth maps in multiple views and obtain an extended 3D surface of

objects beyond 2.5 D (which is usually the result of conventional photometric

stereo algorithms). The algorithm, experiments and the results are also discussed

in [63].

3.3.3 Limitations

In the proposed method, we assume that the surface is Lambertian. We remove

the non-Lambertian components such as cast shadows, specular highlights as out-

liers using a simple threshold. In the case where the surface material has complex

BRDFs or spatially varying BRDFs, the algorithm fails to estimate the true nor-

mals. Our method requires that the light sources are uniformly distributed on

the ring, camera is located at the centre of the ring light with the camera axis

perpendicular to the plane containing the ring lights. While our algorithm can

absorb minor deviations, it fails when the camera is oriented differently or not
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located concentrically with the ring light. However, as long as the assumptions

are met closely, our algorithm can successfully estimate the surface shape using

the ring light constraints.

3.4 Summary

We have presented an auto-calibration method for photometric stereo using con-

strained light sources. Using the ring light constraints and multiple view con-

straints, we determine the scaling and planar rotation ambiguities in a step-by-step

method. Next, the normal maps are estimated after removing these ambiguities.

Our results show that the recovered normal maps are very close to the ground

truth obtained from manual calibration. We have also shown that multiple view

constraint also helps in fusing depth maps from multiple views of the object. How-

ever, our method works only on Lambertian material and cannot handle objects

with surface material containing significant non-Lambertian components.
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Chapter 4

Auto-calibrating Photometric

Stereo with Rectangularly Placed

Light Sources

With the introduction of low cost depth cameras such as Microsoft’s Kinect, it

has become simple and commonplace to estimate the depth maps. However, the

estimated depth maps are corrupted by high frequency noise. As discussed earlier,

photometric stereo generates high quality normal maps, but, the surface estimates

from photometric stereo contain low frequency noise. To enhance the result, high

resolution surface normals are integrated with the low frequency depth estimates

to generate 3D surfaces of high detail [64, 21].

One of the major limitations of these algorithms is that they require calibration

of the light sources. In the previous chapter, we have seen that constraints on

the light sources can successfully calibrate photometric stereo under unknown

illumination. Since the Kinect’s camera is usually placed on top or at the bottom

of the television or monitor screens, it is an attractive option to use the rectangular
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geometry of the screen to calibrate photometric stereo.

In this chapter, we explore rectangularly placed light sources, i.e. light sources

placed at the four corners of a screen to automatically calibrate the photometric

stereo problem. The geometry is very simple such that a user with no techni-

cal expertise can mount the four lights and automatically calibrate photometric

stereo. The application of calibrating photometric stereo using rectangular light

sources would be in integration of the normal map with the depth map from depth

sensors, IR sensors for expanding the scope of photometric stereo. The detailed

experimentation will be done in our future work.

In Section 4.1 we review some of the related work to our problem, specifically in

the area of depth fusion and auto-calibration of photometric stereo. In Section 4.2,

we derive a mathematical formulation to calibrate the photometric stereo problem

using the rectangular geometry formed by light sources locations. In Section 4.3,

we validate our algorithm on synthetic data and finally summarize our work in

Section 4.4. Experiments on real data will be a part of the future work.

4.1 Related Work

Our work is concerned with the problem of automatically calibrating the photo-

metric stereo from its images. The related works are already reviewed in Chap-

ter 3. Here we review works related to fusing the result of photometric stereo

with the result from other shape estimation techniques such as stereo, depth sen-

sors, structure-from-motion. One of the important works in this direction is by

Hernandez [1]. This work uses silhouettes from multiple view points to determine

the object’s visual hull and refine it using normals from photometric stereo. An-

other important work in this direction was by Nehab et al.[21]. In this work, the
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normals and depth positions are registered and optimized to produce high quality

surface reconstructions. Recently, depth sensors are extensively used in areas such

as 3D reconstruction [65] and gaming [66] with the introduction of devices such

as the Kinect [67]. However, the depth maps generated contain high frequency

noise. To enhance the quality of depth maps, high quality surface normals are

used. Anderson et al. [68] present a method to enhance the depth map quality

from the Kinect by using high quality normal maps from photometric stereo. They

use multispectral photometric stereo (different coloured light sources) to estimate

the normal map to make it suitable for dynamic scenes. They perform calibra-

tion using constraint from structure-from-motion as proposed in [69]. Zhang et al.

[64] propose a fusion technique of the result from the Kinect depth camera and

normal map from three light photometric stereo. Their main aim is to preserve

the depth discontinuities of the real scene and achieve it by explicitly modelling

the depth discontinuities. While they produce promising results, they also need

to calibrate the light sources and assume directional illumination. We present a

method that exploits the inherent rectangular geometry of monitor screens for

automatic calibration in photometric stereo.

4.2 Formulation

Uncalibrated photometric stereo algorithms are designed such that no prior knowl-

edge of illumination directions are assumed. In this section, we briefly review the

uncalibrated photometric stereo problem and propose a solution using constraints

from rectangularly placed light sources
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4.2.1 Uncalibrated photometric stereo

Under unknown illumination, shape estimates from Lambertian photometric stereo

are up to a linear transformation. Let I be the matrix of pixel intensities ordered

in such a way that the matrix element Iij represents the intensity of the ith pixel

(i = 1, 2, · · ·n) in the jth image (j = 1, 2, · · ·m), where n is the number of pixels

and m is the number of images. If L represents the true lighting directions with the

intensities and B represents the normal directions along with the surface albedo,

on SVD decomposition, we obtain

I = UDVT

=
(
UD

1
2
) (

D
1
2 VT

)
= B̃L̃ (4.1)

where, B̃ and L̃ could differ from the true estimates B, L by the 3 × 3 linear

transformation A such that B̃ = BA−1 and L̃ = AL. Once A is estimated, the

true lighting and normal directions can be determined.

4.2.2 Constraints from Four Rectangularly Place Light Sources

Let us suppose that four light sources are located at the corners of a monitor screen

as shown in Figure 4.1. The camera is setup midway on top of the monitor screen

and perpendicular to the plane of the screen. We consider the lighting directions

on the projective plane. On the projective plane, a ray with orientation (lx, ly, lz)

is reduced to a point with coordinates given by (lx/lz, ly/lz). Let us assume a

coordinate system such that the camera axis is perpendicular to the projective

plane and is reduced to a point on the plane. The true lighting directions form a

rectangle on the projective plane (Figure 4.2).
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Figure 4.1: Diagram showing the position of four light sources and the camera
with respect to the screen

From (4.1), we observe that on SVD decomposition, the lighting directions are dis-

torted by the linear transformation A. These directions form an arbitrary quadri-

lateral on the projective plane (Figure 4.2). In geometry, two quadrilaterals on a

plane can be related by a projective transformation. The projective transforma-

tion can be determined when the positions of the 4 corners of these quadrilaterals

are known. Consumer monitor and television screens generally specify partial di-

mensions of the screen. Therefore, we can safely assume that information such

as aspect ratio of the screen is known. Under this assumption, we can estimate

the true lighting positions up to a scaling ambiguity S. If L′ and L̃ represent the

matrices containing the coordinates of the rectangle formed knowing the aspect

ratio and the quadrilateral on the projective plane, then

L′ = HL̃ (4.2)

where, L′ represents the scaled rectangle on the projective plane and H is the

corresponding homography such that A = SH
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Figure 4.2: The true lighting directions form a rectangle (blue) and the distorted
lighting directions (green) form an arbitrary quadrilateral on the projective plane

The scaling ambiguity S can be estimated using additional constraints. Since we

use a monitor screen faced by the user, the face of the user itself can be used as

an object for autocalibration. In such a case, the additional constraint can be

derived from a generic mesh. The overall shape of the human face is generally

similar among all human beings. Therefore, a generic face mesh can be used to

obtain a few closely aligning normals so that S can be completely resolved using a

least squares solution. Once S is determined, A can be fully determined and the

normal map can be estimated consequently.

4.3 Experiments

We validate our approach on a synthetic face data. The face mesh shown in

Figure 4.3(a) is illuminated by 4 point light sources located on a rectangle. We es-

timate the normal maps from the factorization of the intensity matrix as explained

in (4.1). The aspect ratio is then assumed to be known and the normal map is

estimated after determining the homography. From Figure 4.3(c), we observe that
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(a)

(b) (c)

Figure 4.3: (a) Input image, (b) Normal map upto linear transformation, (c)
Result after assuming known aspect ratio

the result after assuming known aspect ratio is still ambiguous.

We next use a generic face mesh and align it with the face mesh used in our

experiments. We locate landmarks on the face image and warp it for alignment.

The scaling ambiguity is determined and finally the normal map is estimated as

shown in Figure 4.4(a). However, we observe from Figure 4.4(c) that the result

from generic face mesh constraint does not completely solve the ambiguity. This

is due to the fact the generic mesh does not fully coincide with the given face mesh

at all points.

We further verify if the result is up to a global scaling ambiguity. In that case, a

better approach for resolving the scaling ambiguity can provide us with accurate

estimates of the normal map. Assuming known ground truth, we perform a brute

force search to solve for the scaling ambiguity. From Figure 4.4(b),(d), we observe

that a normal map with much less error is obtained suggesting a global scaling

ambiguity. This concludes that with a better alignment of normals with the generic
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(a) (b)

(c) (d)

Figure 4.4: (a), (b) Normal maps from generic mesh constraint and brute force
search, (c), (d) corresponding error maps.

mesh, we can successfully resolve the global scaling ambiguity.

4.3.1 Future work

The above section describes experiments on synthetic data. To validate our

method on real data, we require images of a human face illuminated by four

rectangularly placed light sources. While capturing images from such an arrange-

ment, the user’s face must be steady. We require light sources synchronized with

the camera to quickly capture the images such that no apparent movements of the

face are captured. We are in the process of developing such a system and leave it

for future work.
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4.4 Summary

In this chapter, we present an auto-calibration method for photometric stereo us-

ing rectangularly placed light sources. We implement our auto-calibration method

on synthetic data and generate promising results. Our method can calibrate pho-

tometric stereo and generate high quality normal maps. The proposed pattern

of light sources can be used in sensor fusion applications such as depth sensors,

IR sensors. An important application can be to fuse high quality normal maps

from photometric stereo with depth maps from depth sensors to generate high

resolution depth maps.
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Chapter 5

Surface Reconstruction using

Isocontours of Constant Depth

and Gradient

Most works in photometric stereo based 3D reconstruction [58, 70, 17] make the

fundamental assumption that the surface is Lambertian. However, surfaces in

the real world deviate from Lambertian behaviour to varying degrees. To include

such objects, broadly two approaches are adopted - to remove the non-Lambertian

observations as outliers [46, 71] or to assume a more complex reflectance model for

the surface [43, 72]. The former approach results in a loss of information and is not

always reliable while the latter approach increases the computational complexity.

Different from these approaches, there is a recent trend (e.g. [12, 73, 13]) towards

exploiting more general reflectance properties of a surface for photometric 3D

reconstruction. These properties include bilateral symmetry, isotropy, reciprocity

and monotonicity. These approaches do not require assumption of the parametric

BRDF of the surface reflectance or removal of highlights, and therefore, is more
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general and robust in dealing with real surfaces.

In this chapter, we propose an automatic method to solve the 3D surface from

iso-gradient and iso-depth contours up to a linear transformation. The key con-

tribution made is the derivation of an equation system from the known contours

and solving it to obtain the 3D surface. Unlike previous methods, our method

does not require the user to specify additional information. It is potentially useful

in applications of photometric stereo where the objects have isotropic reflectance,

such as the internal organs of the body in computer assisted surgery or objects of

cultural heritage.

5.1 Isodepth and Isogradient contours

We give a brief description of iso-depth and iso-gradient contours in this section.

5.1.1 Iso-depth Contours

Alldrin et. al. [12] uses the propoerty of bilateral symmetry of isotropic BRDFs

to estimate the azimuthal angle of a surface normal. Bilateral symmetry implies

that the BRDF is symmetric about the plane spanned by the normal and viewing

vector with respect to the incident lighting direction. If we consider a surface

patch with normal n and viewed from direction v , bilateral symmetry ensures

that the observed irradiance E is the same in two cases where light sources are

placed symmetrically with respect to the plane containing n and v as shown in

Figure 5.1. The orientation of this plane for each pixel can be determined from

images captured by illuminating the scene from a circle of light sources.

This measurement provides the direction of the depth gradient but not the mag-
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Figure 5.1: Symmetric light source vectors about the plane spanned by surface
normal n and viewing direction v (Alldrin et al. [12])

nitude. For differentiable surfaces, this information is sufficient to recover the

isocontour structure. Additional constraints such as uniform BRDF, specular

highlights and shadows can be used to fully recover the Euclidean structure.

5.1.2 Iso-gradient contours

The work by Chandraker [13] focuses on using the image gradients (spatial and

temporal) for recovering scene structure in the case of isotropic BRDFs. The

temporal gradients It are obtained by capturing images from a differential pair of

light sources (two light sources on a circle separated by a small distance) while

the spatial gradients Ix, Iy are obtained by computing the image gradients. They

obtain the set of image gradients on ratio images (images which are normalized

with respect to a floodlit image) and derive a linear relationship between the image

gradients from the fundamental equations of image formation. The photometric

constraint is given by

Ix − λIy − κIt = 0 (5.1)

where λ and κ are constants defined purely in terms of geometrical properties.

If we consider a scalar field g(x, y) = ‖n(x, y)‖ , the gradient associated with this
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(a) (b)

(c) (d)

Figure 5.2: Iso-depth contours( (a) and (b)) and Iso-gradient contours ((c) and
(d)) marked out. (Chandraker et al. [13])

field is orthogonal to the level curves of g(x, y). Therefore, the tangent along the

level curves of g(x, y) should be defined in the direction orthogonal to∇g. This is

proven to be equal to 1
λ

. This gives us the contours having a constant magnitude

of the gradient norm.

5.2 Related Work

Isotropy and reciprocity are two reflectance properties to reconstruct general sur-

faces. One of the early and important contributions in this direction is [49], which

introduced Helmholtz reciprocity to eliminate the dependence on the BRDF in

3D reconstruction. In [50], the work of [49] is extended further to obtain recon-

struction using Helmholtz stereopsis for multinocular case. Helmholtz stereopsis

is applicable in the case of arbitrary BRDFs and can give a direct estimate of
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surface depth and normals while handling depth discontinuities.

Recent works introduce the concept of introducing constraints on lighting while

exploiting properties of BRDF for estimating geometric information of the object.

Alldrin et al. [12] propose surface reconstruction for arbitrary BRDFs by exploiting

their isotropy. They use a dense configuration of lights on a circle to exploit

symmetry in measurements of irradiance from an image. Such symmetry arises

from the isotropy of BRDF. The symmetry of intensities observed at each pixel

is used to constrain the normal at the pixel to a plane. This gives the surface

gradient direction, which is then used to recover the isocontours of the constant

depth. The true depth is recovered using additional cues in the image data or

imposing additional constraints on the surface (e.g., shadows, specular highlights,

Helmholtz Reciprocity, uniform BRDF). Tan and Zickler [73] further estimate

iso-gradient contours by exploiting isotropy and reciprocity jointly. Iso-gradient

contours consist of pixels with the same gradient magnitude. It has been shown

[73] that the surface can be determined up to a linear transformation (a depth

scaling combined with a shift) of the contours.

Recently, a theory of differential photometric stereo using a pair of differential light

sources is proposed by Chandraker et al. [13]. This method employs the spatial

and temporal gradient of image intensities to obtain a photometric constraint

which gives a linear relationship between the gradients. This is independent of

the light source directions and the BRDF. By allowing the light source to move

on a circle, they recover isocontours of constant depth and gradient, and given

additional information (normals along a boundary and depth at a point), they

recover the entire surface.

While the approaches described in [12] and [13] promise to give surface informa-

tion, it is limited to a set of iso-depth and iso-gradient contours. They require

an additional set of constraints to be specified by the user in order to obtain a
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full Euclidean reconstruction. These constraints include the normal specified at a

point on the object or the depth along the boundary of the object in the image.

We observe that given an arbitrary scene, it is not trivial for the user to specify a

normal or define a depth along a boundary. Hence, we explore the possibility of

using the iso-depth and iso-gradient contours to reconstruct the surface without

additional information from the user.

5.3 Reconstruction with Isocontours

We propose an algorithm which makes use of the available information from iso-

contours of constant depth [12] and gradient norm [13] to obtain depth at each

pixel of the object.

5.3.1 Initial solution by integrating the contours

Let P (x, y) be a point on the image of an object where isocontours of constant

depth z and constant gradient ‖∇z‖ intersect transversally. The iso-gradient

contour gives us a set of points having constant ‖∇z‖, but its value is unknown.

If the value of ‖∇z‖ is known on a contour, the depth z at each point on this

contour can be computed by integrating the gradient vector along the curve. If

we take z0 to be the magnitude of depth at a given point P0(x0, y0) on an iso-

gradient contour C, and a unit magnitude of the gradient ‖∇z‖ , then the depth

at any arbitrary point on the curve is obtained by integrating the gradient along

the curve as described below.

We know that the depth gradient vector is orthogonal to the iso-depth contour.

Therefore, the direction of the depth gradient ∇z at each point is obtained from
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Figure 5.3: Integration of gradient vector along a given iso-gradient contour gives
the depth at each point

the azimuthal angle [12].

∇z = [zxzy] = ∇ẑ‖∇z‖ (5.2)

where ∇ẑ is the unit vector orthogonal to the iso-depth contour obtained from

the azimuth angle, [zx, zy] are the coordinates of the gradient direction ∇z.

The depth at arbitrary point P is given by

z(x, y) =
∫ P

P0
∇z · dr + z0 (5.3)

where dr is the direction of the tangent vector to the curve.

Given the depth magnitude at each point on the iso-gradient contours, iso-depth

contours can be plotted running through each of these points over the entire sur-

face. The given iso-gradient contour need not necessarily intersect every pixel in

the image. In such cases, we propagate the above process to the leftover regions

by initiating another iso-depth contour from the region where depth is already

known from the above and which passes into the leftover regions.

This serves as the initialization for our solution to the non linear system of equa-
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tions discussed below. We have assumed a value of 1 for initializing ‖∇z‖. The

reconstruction using iso-depth and iso-gradient contours for any other value will

be upto a scaling ambiguity. This is an intrinsic ambiguity and can be solved with

information such as BRDF symmetry [73].

5.3.2 Non-linear system of equations

Let us consider a pixel P (x, y) on the image of the object. For every point P ,

we can define another point P ∗(x∗, y∗), such that P ∗ is along the iso-depth con-

tour passing through P . From the definition of iso-depth contours, we can write

z(x, y) = z(x∗, y∗). At the same point P , we can define another point P ′(x′, y′)

such that P ′ is along the iso-gradient contour passing through P . From the def-

inition of iso-gradient contours, we can write ‖∇z(x, y)‖ = ‖∇z(x′, y′)‖. The

gradient at any point P (x, y) can be approximated as

‖∇z(x, y)‖ = [(z(x, y) − z(x + 1, y))2 + (z(x, y) − z(x, y + 1))2] 1
2 (5.4)

Using the above definitions, at every point P (x, y), we have the following set of

equations,

z(x, y) = z(x∗, y∗) (5.5)
[
(z(x, y)− z(x+ 1, y))2 + (z(x, y)− z(x, y + 1))2

] 1
2 =[

(z(x′, y′)− z(x′ + 1, y′))2 + (z(x′, y′)− z(x′, y′ + 1))2
] 1

2
(5.6)

Equations (5.5) and (5.6), which can be defined at every point P (x, y) on the

image plane, form a system of non linear equations. The solution to these system

of equations over the entire image plane will give depth z at every point P (x, y)

without requiring any additional information.
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5.3.3 Solving the non linear system of equations

The main challenges in solving the set of equations (5.5) and (5.6) are the following

:

• Since the number of pixels in an image, say of dimensions (640 × 480), is

generally of the order of 105, the number of equations is also of the same

order. Hence, we need a solver capable of solving the huge system of non

linear equations .

• The nonlinearity associated with (5.6) poses another challenge. The large

system of equations can be solved using a sparse matrix representation if the

equations are linear. However, for a system of non linear equations, it is not

straightforward to solve directly.

We need to reformulate the problem into a system of linear equations. To convert

the system of non linear equations in (5.6) into linear equations, we define another

set of variables s which refer to ‖∇z(x, y)‖. This requires us to solve the system

of equations iteratively and update z and s for each iteration until we achieve

convergence. The algorithm is detailed in Algorithm 1.

5.4 Experiments and Results

To validate our iterative algorithm, we first test it on a mathematical surface

‘Saddle’ defined by z = x3 − 3xy2. The images of the ‘Saddle’ are generated by

rendering, assuming a Lambertian surface and illuminated by point light sources.

The iso-gradient and iso-depth contours are obtained from [12, 13] as mentioned

in Sections 5.2 and 5.3. To determine the iso-depth contours from [12], we require
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Algorithm 1 Compute per-pixel depth from iso-gradient and iso-depth contours
1. Input : Set of iso-depth and iso-gradient contours

2. Initialize z at each pixel location as described in Section 5.3.1. Initialize s
using the known depth z as defined in (5.4). Initialize ∇z as defined in (5.2).

3. Initialize the magnitudes of parameters based on the constraints as follows :

s(x, y) = s(x′, y′) (5.7)

z(x, y) = z(x∗, y∗)
zx = z(x, y)− z(x+ 1, y)
zy = z(x, y)− z(x, y + 1)

 (5.8)

∀ x ≤ u, y ≤ v; where u, v are the dimensions of the image.

4. Optimize the gradient: Optimize the system of equations (5.7) for one iter-
ation and update the magnitudes of s(x, y), zx and zy according to (5.2).

5. Optimize the depth : Optimize the system of equations (5.8) for one itera-
tion and update the magnitudes of depth z. Compute the magnitude of s
according to (5.4).

6. Repeat steps 4. and 5. iteratively until convergence.

a dense set light sources on a circle at different elevation angles. We use 162 light

sources and render images turning on each light at a time. For estimating the iso-

gradient contours, we capture two pairs of images from three point light sources

located on a circle at an angular difference of 1◦. The iso-depth and iso-gradient

contours intersect transversally in most of the regions to give a good initialization.

We use MATLAB implementation of LSQR method [74] to solve the sparse linear

system of equations.

The initial reconstruction is subject to noise and leaves surface patches without

depth information. We observe from Figure 5.4(a)-(d) that our iterative algorithm

achieves the final reconstruction free from these outliers. The effect is more pro-

nounced in the case of noisy data as observed in Figure 5.4(e)-(h). We introduce

a Gaussian noise of zero mean and standard deviation 0.01 and obtain the initial

reconstruction. As in the previous case, we derive the final result after iterative
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: Result on ‘Saddle’ object. The first row (a) - (d) shows the result
on an ideal ‘Saddle’ in the order of a sample image, sample iso-gradient contours,
initialization and optimized results. The second row (e) - (h) shows result in the
same order on ‘Saddle’ corrupted with noise.

optimization.

Next, we implement our algorithm on a slightly more complicated object ‘Cup’

as shown in Figure 5.5. We use a light configuration similar to the ‘Saddle’ to

capture the images of the object. The ‘Cup’ is again a synthetic object and

rendered assuming a Lambertian surface. The iso-depth and iso-gradient contours

are determined using the previous algorithms as explained earlier. ‘Cup’ contains

a large ellipsoidal area and an offshoot handle. The initialization is smooth in the

ellipsoidal region. However, where there is a transition in the geometry from the

ellipsoid to the handle, there are certain regions where the transversality condition

is violated leading to empty regions. The optimized result demonstrates the effects

of smoothing and filling in empty regions to obtain a complete reconstruction.

We test our algorithm on a real object ‘Apple’ as shown in Figure 5.6. The surface

of ‘Apple’ is non-Lambertian as we can observe significant highlights in the sample

image. However, the surface is still isotropic so we can implement the previous

algorithms for deriving the iso-depth and the iso-gradient contours. Here, we use
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(a) (b) (c)

Figure 5.5: Result on ‘Cup’ object. (a) Sample image (b) Initialization and (c)
Optimized result

a set of 72 LED light sources located over two concentric circles with the camera

located at the centre of the circle, to capture images for estimating the iso-depth

contours. We use a pair of LED lights separated by an angular interval of 3◦ to

capture images for estimating the iso-gradient contour structure. Although the

surface of the object is non-Lambertian, the iso-gradient and iso-depth contour

structure helps us to estimate the initial reconstruction. This reconstruction is

again corrupted by noise and empty patches. Our iterative algorithm determines

the final reconstruction free from these outliers.

(a) (b) (c)

Figure 5.6: ‘Apple’ data result. (a) Sample image (b) Initialization (c) Optimized
result

In all the above examples, we note that the only information used in the recon-

struction are the images captured under the light configurations for estimating

the iso-depth and iso-gradient structure. There was no additional information

required in estimating the final structure. We note that the initialization requires

a value for z0. This result is independent of this value and we use z0 = 1 in all

74



our experiments to determine the initial structure. The algorithm achieves con-

vergence in 35, 55 and 80 iterations for ‘Saddle’, ‘Cup’ and ‘Apple’ respectively.

The algorithm, experiments and the results have been discussed in [75].

Limitations

While our algorithm estimates the per pixel depth of the object of all isotropic

materials, it still has the following limitations. Our algorithm requires that the

iso-depth and iso-gradient contours should intersect transversally to estimate the

initial reconstruction by integration. However, in cases where this condition is

violated, which may happen when the object is not isotropic or corrupted by

heavy specularities, we cannot use our algorithm which requires an initial depth

and gradient estimates. We also note that our algorithm fails when the surface

of the object has discontinuities or a complicated shape such that the isocontours

cannot be propagated into all the regions of the object in the image.

5.5 Summary

This chapter presents an iterative algorithm which makes use of the iso-gradient

and iso-depth contours to directly estimate the per pixel depth. Iso-gradient and

iso-depth contours are estimated using previous methods which assume the surface

reflectance of the object to be an isotopic BRDF. We do not require additional

information from the user to obtain the reconstruction. We have validated our

algorithm on synthetic and real data and obtained convergence. However, with the

current constraints, our algorithm fails in the case where condition of transversal

intersection of the contours is not satisfied.
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Chapter 6

A New Perspective on Material

Classification and application to

Ink Identification

6.1 Introduction

In the previous chapters, we have discussed photometric stereo for automatic cal-

ibration and non-Lambertian surfaces. We note that the result of photometric

stereo is a normal map of the scene, the images of which are captured under vary-

ing illumination. Besides estimation of the normal map of a scene, photometric

stereo is also used extensively in appearance or the BRDF capture of the scene.

The combined estimation of the normal map and the reflectance produces realistic

3D renderings of the scene. This has extensive applications in animation, cultural

heritage and computer assisted surgeries [76, 42, 77]. Although BRDF is widely

used for rendering purposes, because of its descriptive capacity of the surface ma-

terial, it is also used in the area of material classification. Material classification
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Figure 6.1: The half-vector parameterization of BRDF. The incident and reflected
lighting directions l and v provide a 4D parameterization of a BRDF function.
The BRDFs of many isotropic materials can be well approximated as a 2D function
of the half-angle θh and the difference angle θd.

has significant utility in industry and research (in areas such as remote sensing,

food inspection and recycling).

Different materials can be distinguished by examining their reflectance properties

encoded in the BRDF [22]. Conventionally, BRDFs are represented as 4D func-

tions - two dimensions each for the incident direction l and the reflected/viewing

direction v. Capturing the full BRDF requires changing the incident lighting di-

rections and the viewing directions spanning the entire upper hemisphere of the

object at regular intervals. For the purpose of material classification, a subset of

the full 4D BRDF was proven to be sufficient for classifying a significant variety

of materials [22]. For example, factorization techniques [78, 79] represent an ar-

bitrary BRDF as the sum of products of 2D functions for efficient storage and

rendering. Under appropriate parameterization [14, 80], an isotropic BRDF can

be well approximated as a 2D function of the ‘half-angle’ θh, and the ‘difference

angle’ θd. The details of these angles are shown in Figure 6.1.

The BRDFs of most materials in the real world are near isotropic and are known

to be well approximated by a 2D function or a slice of the full BRDF [14]. How-
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ever, when the principal axis of the camera is coincident with the surface normal

of the material sample, the captured BRDF slice is nearly 1D. In previous mate-

rial classification works [22, 81, 23], the camera directly faces the sample material

to provide a fronto-parallel image for better resolution. However, this causes a

degeneration where the ‘half-angle’ θh is always equal to the ‘difference angle’ θd,

because the surface normal n is coincident with the viewing direction v. In other

words, even if the sampled incident lighting directions l cover the entire upper

hemisphere, effectively we only capture a 1D BRDF slice. We observe that such

a configuration suffers from significant information loss. A considerable improve-

ment in the classification performance can be achieved by a slight modification in

the conventional camera and light source assembly. In this chapter, we explore

this phenomenon more closely and propose configurations for enhanced material

classification using BRDF capture.

Further, we observe that a 1D BRDF slice also possesses sufficient discrimina-

tive information although slightly less in comparison to the 2D or the 4D BRDF.

This 1D BRDF slice captures important reflectance properties such as specular

reflection and retro-reflectance. At the cost of a slight reduction in the perfor-

mance, a very simple and low cost setup can be arranged for performing material

classification. We propose a handheld flashlight-camera arrangement to capture a

1D BRDF slice for material classification. This setting allows us to obtain a 1D

BRDF slice where the ‘difference angle’ θd is fixed at 0, but θh can change from 0

to π/2. This slice can capture distinctive reflectance properties such as specular

reflection (when θh is small) and retro-reflectance (when θh is large). It achieves

similar classification accuracy as the conventional setting [22, 81, 23] with much

lesser input images and more flexible data capture. We apply this proposition for

the task of ink classification, which has important applications in forensics and

analysis of historical manuscripts [82, 83].
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Spectral analysis based techniques such as spectroscopy and infrared reflectog-

raphy [84, 85] are extensively used to classify different inks according to their

absorptivity of light at different wavelengths. These methods usually require spe-

cial devices by which the optical properties of the pigments are examined under

illumination beyond the visible spectrum. We observe promising results for ink

classification using reflectance up to an accuracy of 79%. To the best of our

knowledge, no prior work has used reflectance for ink classification.

The main contributions of the chapter are 1) a new perspective to material clas-

sification observed as a result of a slight modification in the camera, light source

arrangement for BRDF capture, 2) introducing reflectance for ink classification,

and 3) a hand held camera-flashlight arrangement for ink classification.

6.2 Overview

Following this introduction, we review related work in Section 6.3. In Section 6.4,

we briefly discuss the reduction in BRDF dimensionality for material classification.

We bring out the limitations in the existing approaches and propose a modification

in the image capture setup for improved performance. Our proposition is validated

on an ink database for material classification. In Section 6.5, we establish that a

1D BRDF slice can be used for material classification. We also propose a simple

handheld device for 1D BRDF slice capture. In Section 6.6, we apply the proposed

approach to the problem of ink classification and design a working system. We

validate our system in Section 6.7.
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6.3 Related Work

In this section, we review some of the previous works related to our problem under

the following categories.

Reflectance-based Material Classification

Classifying materials based on reflectance is a relatively less explored area. Wang

et al. [22] propose a method of material classification using ‘2D BRDF slices’. They

capture a ‘2D BRDF slice’ by acquiring images with a fixed camera and varying

illumination. They then fit hemispherical harmonics to the observations and use

the coefficients as a basis for classification. Jehle et al. [81] and Gu and Liu[23]

further studied the optimal illumination condition to enhance the separation. We

study the sample distribution in the BRDF domain and prove that a slanted

camera can significantly improve classification accuracy. We further develop a

method to capture a 1D BRDF slice with a handheld flashlight camera.

Ink Classification

Documents and manuscripts are analyzed for their authenticity and dating by

determining the type of ink material. The existing methods for such an analysis

can be broadly characterized into destructive and non-destructive types, the lat-

ter being preferred. In this chapter, we focus on the non-destructive types. Most

non-destructive methods such as spectroscopy and reflectography [84, 85] use il-

lumination beyond the visible spectrum. Alternatively, image processing based

methods offer cost effective and non-destructive solutions by computing models

and analyzing ink properties in the visible domain. Chakravarthy et al. [86] showed

that statistical properties such as saturation histograms in HSV color space can
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differentiate liquid inks and viscous inks. This color analysis based method cannot

distinguish inks of similar color. Kokla et al. [87] propose a method to distinguish

inks by studying statistical properties of the ink intensities in visible and infrared

light. However, the accuracy reported is not very high. Licata et al. [82] pro-

pose a near IR based method for distinguishing and restoring inks in historical

manuscripts. Hu et al. [88] provide a survey of ink segmentation methods used in

forensics. None of the above methods in ink segmentation studied the reflectance

properties of inks for segmentation. A recent work by Berger [89] describes an ink

segmentation method based on color deconvolution. This method can distinguish

inks of similar color based on intrinsic differences in the ink shades. However, it

cannot deal with common black inks with almost constant shade. Our method is

based on the reflectance properties of manuscript inks, which can identify different

inks of similar color. Our method outperforms Berger’s method[89].

6.4 BRDFs for Material Classification

6.4.1 Dimensionality of BRDFs

BRDFs of real materials exhibit strong symmetry and redundancy such as isotropy,

reciprocity, half-vector symmetry, etc. Thus, the dimension of the BRDF domain

is often reduced without a significant loss of information. As shown in Figure 6.1,

a BRDF can be parameterized as a 4D function f(θh, φh, θd, φd). There is strong

evidence that many BRDFs can be well approximated by a 2D function f(θh, θd).

Specifically, the isotropy reduces the BRDF domain to (θh, θd, φd). The half-vector

symmetry[37], which suggests that the BRDF is unchanged by a rotation of l and

v around the bisector h, further reduces the BRDF domain to (θh, θd). This 2D

representation is empirically verified in [90] with the MERL BRDF database [91]
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Figure 6.2: The sample distribution in the θh- θd space. The conventional setting
(i.e. v ≈ n) collects red samples along a straight line. By simply setting the
camera at a slanted angle, we collect the green samples spanning a larger range
of the BRDF domain. The blue samples are collected by a handheld flashlight
camera.

and recently applied for photometric stereo [92].

6.4.2 Limitations of Conventional Approaches for 2D BRDF

Capture

We now analyse the material classification problem with this 2D BRDF approxi-

mation. In previous methods [22, 23], the camera is usually oriented in a way such

that v ≈ n. In this case, the angles θh = arccos(h>n) are approximately equal to

θd = arccos(h>v). Effectively, only a 1D slice of the BRDF can be captured no

matter how many lighting samples are collected from the upper hemisphere. Fur-
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thermore, the range of θd and θh is restricted to [0, π/4]. This problem is clearly

demonstrated in Figure 6.2. We move an LED light on the upper hemisphere of

a planar sample. Each red cross indicates an observation captured by a camera

facing directly to the sample. All these sample points are along a line segment in

the θh-θd space. This set of samples does not capture some important phenomena

such as retro-reflectance1 and Fresnel effects2 that make certain materials distinc-

tive. Typically, the retro-reflectance is stronger when θd = 0 and θh > π/3. The

Fresnel effect is most significant when θd > π/3.

6.4.3 Our Approach

To achieve improved ranges of θd and θh, we can simply orient the camera along

a slightly slanted direction. Under this configuration of lights and camera, we

can collect the samples from a larger BRDF domain as shown in green in Fig-

ure 6.2. Naturally, they encode more reflectance properties and will enhance the

performance of material classification.

To verify our analysis, we collect 55 different inks of various types (water sol-

uble, gel, ball point, permanent mark) and from different manufacturers (Pilot,

Zebra, Uni, Staedtler, Pentel, Faber-Castell, Reynolds, Parker, etc.). We capture

multiple images of a flat document containing different ink strokes under varying

illumination directions. We collect two sets of images, one set for a slanted camera

(i.e. a true 2D BRDF slice), one set for the camera facing the document head-on

(i.e. a near 1D BRDF slice because of v ≈ n). The data capture setup and some

sample images are provided in Figure 6.3(a),(b). All the lighting intensities and

directions are recorded with calibration objects. The incident lighting direction

is densely sampled over the upper hemisphere defined by the document surface
1Retro-reflectance is the phenomenon that light is reflected back towards the incident direc-

tion.
2Fresnel effects explain the increased specular reflection at the grazing angle.
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(a) (b)

(c) (d)

Figure 6.3: Experiment on ink classification based on true 2D BRDF slices and
near 1D BRDF slices. a) Acquisition setup for true 2D BRDF data and captured
images, b)Acquisition setup for 1D BRDF slices and captured images , c) Confu-
sion matrix for ink classification with true 2D BRDF slices. It achieves average
accuracy of 85% over 55 inks. d) Confusion matrix result with near 1D BRDF
slices. The average accuracy is 69%.

85



normal. From the recorded image radiance I and calibrated lighting information,

we obtain a sample of the 2D BRDF from each pixel of each image according to

the following equation,

f (θd, θh) = I(x)/ (n · l) . (6.1)

We then take this recovered BRDF as a distinguishing feature for material classi-

fication. In our images, each ink often covers 4000 pixels. We generate a BRDF

profile for each pixel and select 1000 pixels (or profiles) to train a standard sup-

port vector machine (SVM) classifier [93]. The classifier is then applied to the

remaining pixels for evaluation. The classification results (in terms of a confusion

matrix) with the true 2D BRDF slice and the near 1D BRDF slice are shown in

Figures 6.3 (c) and (d) respectively. Almost all the inks are successfully classified

when the true 2D BRDF slices are used. The average classification accuracy is

85% for the 55 inks. This high accuracy clearly demonstrates that BRDFs provide

a strong cue to identify different inks. However, when the near 1D BRDF slices

are used, the performance is significantly dropped to 69%. This demonstrates the

importance of selecting the right BRDF domain sampling strategy. When the

samples cover a larger range, more reflectance properties can be captured and the

classification performance will be better.

6.5 1D BRDF Slice for Material Classification

6.5.1 A Handheld Flashlight Camera Arrangement

To allow flexible data capture, we propose a handheld flashlight camera to capture

BRDF slices for material classification. When images are captured with a light

attached to the camera as shown in Figure 6.4, the incident and outgoing lighting
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Figure 6.4: Schematic diagram showing the handheld flashlight camera arrange-
ment.

directions are coincident, i.e. l = v. Thus, the half-vector h overlaps with v, and

θd is always 0. By moving the camera around, we can capture images with θh

varying over the range of [0, π/2]. This simple setting allows us to capture some

important reflectance properties.

Firstly, specular reflectance highly depends on θh [14]. Since our method covers the

full dynamic range of θh, it faithfully captures the characteristics of specular reflec-

tions, e.g. the strength and extent of specular lobes. Secondly, retro-reflectance

often becomes stronger when θd = 0 and θh > π/3. Therefore, our method can

also capture retro-reflectance to help distinguish different materials. Lastly, by

fixing θd, we cannot capture any Fresnel effects.

A possible solution is to attach multiple lights to the camera, each with a different

distance to the camera. By turning these lights on and off during image recording,

we can capture Fresnel effects. However, this setting is more complicated and we

found empirically our flashlight camera setting works well for ink identification.

To verify the performance of this handheld system, we apply it to the flat document

sample with the 55 inks. Figure 6.5 (a) shows the confusion matrix based on this

handheld device. The average classification accuracy is 71%. Please notice this

is slightly higher than the accuracy (69%) of the conventional setting. Though
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(a) (b)

(c) (d)

Figure 6.5: (a) Acquisition setup for 1D BRDF slices and captured images, (b)
Confusion table showing the separability of the 55 inks using the proposed hand-
held flashlight camera setting, c) Sensitivity of θh, d) Analyzing the number of
samples vs. classification performance.

the classification accuracy is reduced compared to the true 2D BRDF slices, this

performance is still good for classification of 55 inks. The reduced accuracy is

partly because of the imprecision in registration when capturing with a handheld

device. We can observe that performance for Marker, Prints, Pencil and Gel pens

have quite high accuracy, while the performance for Ball Point pens and fountain

inks have quite low accuracy.
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6.5.2 Distinctive Intervals

To further understand which interval of θh is more informative for material clas-

sification, we cut the 1D BRDF slices into multiple overlapping segments. We

perform similar SVM based classification based on each of these segments. The

result is summarized in Figure 6.5(b). We observe that: 1) The classification accu-

racy is highest in the range of (1◦−25◦) and gradually falls after that and slightly

rises in the range of (65◦−85◦) . These two ranges correspond to the specular and

retro-reflectance phenomena respectively. It confirms our design choice of using a

flashlight camera. 2) classification accuracy using the full 1D BRDF slice, 71%, is

greater than using any individual range, < 60%. This suggests that a full sampling

of θh in the range [0, π/2] will be useful.

6.5.3 Optimal Number of Images

We further investigate as to what is the appropriate number of input images for

this method. We show its performance against the number of randomly sampled

images in Figure 6.5(c). Here, samples are randomly selected over the range of θh.

The overall classification error curve takes a sharp turn at samples 10 to 20 and

gradually falls after that. The samples here are uniformly sampled in the range of

θh ( [0, π/2] ). The classification error remains almost constant after the number

of samples reaches 30 as observed in Figure 6.5(d). Therefore, samples sampled

in 30 bins in the interval of θh is sufficient for a reasonable performance of the

classifier. We select around 30 samples for later experiments in Section 6.7. For

a comparison, we provide a similar error curve for the conventional data capture

setting in Figure 6.6. It will take over 100 images to reach similar classification

accuracy.
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Figure 6.6: Classification error rate of the conventional data capture setting where
the camera faces directly to the sample.

6.6 Application to Ink Classification

In the previous sections, we have discussed the constraints for the performance

of 1D BRDF based material classification. In this section, we implement the

classification method to differentiate inks. As stated previously, ink classification

is an important area in forensics for analysing questioned documents. We first

introduce the major types of ink available in the market in the following Section.

6.6.1 Ink types

Ink is a material which contains pigments or dyes to impart specific colour to

an impacting substrate. Depending on the type of usage, the composition of ink

varies. Some of the major types of inks 3 found in the market are categorised

below depending on their chemical composition [83]:

3Although we do not include pencil in the types of inks, in our experiments, we also consider
pencil as one of the inks because its appearance in the camera is similar to ink.
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1. Carbon inks : These inks are a suspension of ground amorphous carbon

cake in a water-glue medium. The colour of the ink can be improved by

adding pigments to the dye. These inks are insoluble in water, very stable

and are not decomposed by factors such as light, air, heat moisture etc.

These inks have been used for over 2000 years and are found in historical

manuscripts.

2. Fountain pen inks : In most cases, these inks are an aqueous solution of

synthetic dyes. These inks are bright and attractive in colour but not as

stable as carbon ink.

3. Ballpoint inks : These consist of synthetic dyes in various glycol solvents

or benzyl alcohol. Several other ingredients are added to the ink to impart

specific characteristics such as lubrication, binding, viscosity etc.

4. Rolling ball marker inks : These inks are water based and contain organic

liquids such as glycol to retard the drying of the ball point.

5. Fiber tip pen inks : These are usually water or xylene based containing

dyes and additives as in ball point and fountain pen inks.

6. Gel-pen inks : These inks contain completely insoluble pigments rather

than organic dyes. This ink is a gel and not a liquid and insoluble both in

water and organic solvents.

7. Printing inks : Different types of printers and print jobs require different

types of ink. As a result, there are several types of printer ink available [94].

For example ink-jet printers use liquid inks in cartridges, laser printers need

powdery toners and some other printers use solid inks. In general, print-

ing inks are made up of four basic components - pigments, resins, solvents

and additives. Depending on the application, these components are used in

different proportion.

91



Almost all the above inks except carbon ink are widely available.

6.6.2 An Ink Classification System for Curved Documents

In this section, we extend the use of handheld system to a general curved doc-

ument. The 3D document shape is reconstructed to facilitate image registration

and 1D BRDF slice estimation. We then apply a clustering method to group pix-

els with similar BRDF slices together for ink segmentation. Note that we do not

seek to identify the type of ink but only estimate if two pixels have the same ink

or not, which is useful for forensics.

3D Reconstruction: The surfaces of documents are often curved. We need a

precise 3D reconstruction for image registration so that we can obtain multiple

observations for a surface point on the document. We apply the structure-from-

motion package VisualSFM [95] to perform 3D reconstruction of the input images.

This 3D reconstruction provides the camera locations and a set of sparse 3D points

on the document surface. Since the light source is attached to the camera, we

obtain the location of the light source directly from this 3D reconstruction.

Surface Fitting: The reconstructed 3D point cloud is often sparse. We fit a

parametric surface to the sparse point cloud to recover the 3D shape of the sur-

face. Following the work of Yamashita et al. [96], we make use of Non Uniform

Rational B-Spline (NURBS) to fit a smooth parametric surface. This 3D surface

also provides an accurate estimation of the normal direction n at every point.

Image Registration: Given the 3D surface, we can determine the 3D location

of each pixel on to intersecting a ray from this pixel on the reference image with

the 3D surface. By reprojecting this 3D point back on to the other images, we

can obtain pixel correspondence among images captured from different viewpoints.

We take the view where the document is most fronto-parallel to the camera as the
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reference view. We then project the 3D position of each of its pixels to all the

other images to collect multiple observations of each pixel.

BRDF Slice Estimation: We have collected multiple observations of each pixel

as observed in the reference view. Further, we know its surface normal direction

from the NURBS surface fit, and the lighting directions from the camera positions.

Thus, we can recover a 1D BRDF slice for each pixel from (6.1).

Ink Identification: The estimated BRDF profiles will be used as a discrimina-

tive feature for ink classification. We compare the BRDF slices of different points.

Noting that θh varies in the range 0 to π/2, we sample this interval to 30 bins, and

calculate the average BRDF value in each bin for every pixel. The BRDF slices

form a discriminative feature for each ink. We can differentiate the inks using

clustering techniques by grouping the pixels according to their associated BRDF

slices. This will allow us to tell if the inks at some given pixels on a document are

different or not. In our experiments, we apply the affinity propagation method

[97] for clustering. Affinity propagation is one of the several methods available for

clustering. Any of the available methods can be chosen for performing unsuper-

vised classification of inks.

This is summarised in the Figure 6.7.

6.7 Experiments

6.7.1 Ink Classification for Flat Documents

In Figure 6.8, we examine the SVM based ink classification on a flat document

with some representative inks. As shown in Figure 6.8(a), a flat document con-

tains horizontal strokes and text written with 12 different inks of black color. The
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Figure 6.7: Flowchart showing the ink classification using BRDF slices.
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horizontal stroke and the text written beside belong to the same ink type. Pixels

on the horizontal strokes are used for training and pixels on the texts are used

for testing. The 12 inks are selected from the five major types of inks: pencil

(Pencil1 (Staedtler 3B), Pencil2 (Staedtler HB)), fountain pen inks (Pilot, Sta-

bilo),ballpoint inks (Ball OM, Ball JS, Zebra), mark pen ink(Sharpie, Perm Ptl,

Per Zig), and gel-pen inks(EngerGel, Jimnie).

The classification results are shown as an image in Figure 6.8(b). We also show

the zoomed-in classification results of the inks of the best and worst performance.

In Figure 6.8(c), we evaluate the separability on these 12 inks in the form of

a confusion table. We observe that the carbon ink (Pencil1, Pencil2) and the

markers (Perm Ptl, Sharpie) have higher classification accuracy above other inks.

The gel pen inks and ballpoint inks have less accuracy but these inks have more

confusion among themselves for classification. This observation is consistent the

result on 55 inks presented in Figure 6.3.

We must also note that all the inks are black in color and there are almost negligible

variations in their shades. Bearing this fact, the classification result demonstrates

that BRDF profiles are promising discriminative features for identifying different

inks.

The average BRDF profile of each ink is shown in the Figure 6.9. We observe from

Figure 6.9 that most of the profiles exhibit distinctive behavior though the inks

may have similar color. For example, the BRDF profiles of Pencil1 and Pencil2

exhibit a strong specular reflection that happens at about θh = π/4, but not at

θh = 0. This indicates that the lead particles have changed the microfacet nor-

mal distribution of the document surface. These variations in the BRDF profiles

account for the separability of the inks.
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(a) (b)

(c)

(d) (e)

Figure 6.8: (a)Acquisition setup for 1D BRDF slice and the sample images, (b) Se-
lected portion of ink strokes, (c) Classification of ink strokes by an SVM classifier,
with zoomed in results in (d), (e) Confusion matrix for classification performance.
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Figure 6.9: 1D BRDF slices of the 12 ink examples.

(a) (b) (c)

Figure 6.10: 3D reconstruction of the document surface. a) Multiple images of
the document captured using the handheld device; b) Reconstructed sparse point
cloud; c) NURBS surface fit through thepoint cloud.

6.7.2 Practical Ink Classification

We further evaluate the problem of ink classification for general curved documents.

Figure 6.10 shows the recovered point cloud and the 3D surface of the document

from multiple view images. For the affinity propagation method, we assume that

the number of different inks is known to limit the number of clusters formed.

We use the minimum bound on the preference value for determining the required

number of clusters. In our experiments, we use the negative Euclidean distance

measure to determine the similarity matrix. Figure 6.11 shows our segmentation
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results, where (a),(b) and (c) are the input image, segmentation result, and ground

truth segmentation.
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(a) (b) (c)
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(a) (b) (c)

Figure 6.11: Segmentation of ink strokes. a) Sample image. b) Segmentation result. c) Manually marked ground truth segmentation.
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As can be observed, the proposed method can correctly group pixels of the same

ink in most regions. For the example in the top row, we have a curved document

containing different inks (Fountain, Zebra, Perm Zig) of black color. The three inks

are successfully identified by the proposed method. For the second example, we

have a printed book page with 5 different inks (Sharpie, Omni, Pilot,Fountain, En-

erGel). We observe the confusion of EnerGel, a gel ink, with Fountain ink. Liquid

inks tend to get absorbed in the paper, which leads to the confusion in identifi-

cation. For the example of cross lines, we have lines with different inks(Fountain,

Ball OM, Zebra, Stabilo) intersecting each other. The strokes appear very similar

to each other in their color. Our method can differentiate Fountain, Stabilo and

Zebra easily, while is confused with Ball OM and Zebra, which are ball point pens,

in some regions. As we have observed previously in our experiments on the ink

database of 55 inks, ball point pens tend to have confusion within the same class

while they are distinct from other classes. In the last row of Figure 6.11, we show

an interesting example of a forged cheque. Using the proposed method, we are

able to identify different inks and the attempted forgery. However, we observe

misclassifications in the identified inks especially near the signature on the slop-

ing portion of the check. We find that the slight intensity fall off leads to the

confusion.

The number of pixels for each ink depends on the length and width of the stroke.

Most of the ink strokes have around 1000 pixels in each image. As we have al-

ready discussed the optimal number of images in Section 6.5, we capture sufficient

number of images such that the entire range of θh can be sampled in 30 bins. We

capture around 70 images covering the maximum possible range over the upper

hemisphere of the document. We must also note that a portion of the ink stroke

along the boundary blends into the paper. A wider stroke will have more ink pix-

els and will result in better performance. However, a high resolution camera that

can capture sufficient details of the ink stroke ( in approximately 15-20 pixels) can
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enhance the performance of ink classification.

6.7.3 Comparison

Previous computer vision algorithms for ink classification have basically relied on

the color information. As discussed in Section 6.3, Chakravarthy and Dasari [86]

use statistical properties of the intensity distribution in the RGB channels of the

inks for classification; Berger [89] uses difference in color shades of the inks for

differentiating them. However, in fraudulent documents, the inks are almost same

in color in most of the cases. In that case, color information is not sufficient to

distinguish inks. Reflectance describes the intrinsic characteristic of the material

which is not solely dependent on color. In Figure 6.12, we compare our method

with Berger’s work [89] which separates inks based on color analysis. Here, strokes

of the same orientation have the same ink. In Figure 6.12(a), the inks have slightly

different colors, so that both methods work well. However, for the examples in

(b-d) where the inks are black with almost no difference in their shades, Berger’s

method fails while our method can correctly distinguish them.

It is also interesting to note that the ink strokes overlap with each other in Fig-

ure 6.12. The ink in the overlapping regions is detected either as one of the two

inks or a third ink as observed in the rightmost column. We note that in case of

viscous inks (such as ballpoint pen ink) the two inks do not mix in the overlapping

region, in most cases. Therefore, the ink on the top layer is identified in this case

as observed in Figure 6.12(a). However, in Figure 6.12(b),(c), the inks are liquid

and mix with each other in the overlapping regions and therefore detected as a

third ink different from the other two inks. The inks in Figure 6.12(d) belong to

marker inks and these inks also are identified in the same way as the viscous inks.

The algorithm, experiments and the results are also discussed in [98].
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Figure 6.12: Comparison with Berger’s work [89]. Left: input image. Middle:
Berger’s result. Right: Our result.

6.7.4 Limitations

In this chapter, our main goal was to explore and validate the idea of reflectance

based material classification to the problem of ink classification and we have

achieved the goal. We have demonstrated a working system for ink classifica-

tion. However, our method works on those inks whose discriminative properties

can be captured in a 1D BRDF slice. We observe that the class of ball point

inks do not respond favourably to our method. Nevertheless, we believe that by

analysing the properties of these inks, we can determine the sensitive portions of

the 2D BRDF space to which these inks can respond. Another limitation is that

our method is applicable to curved documents so that a sparse point cloud from

structure from motion is sufficient to generate the 3D surface of the document.

Our algorithm will not work properly when the document is not smooth.
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6.8 Summary

In this chapter, we have analysed the issue of sampling in the BRDF domain for

reflectance based material classification methods. Our analysis has shown that

the performance of the previous methods degrades because they only capture a

near 1D BRDF slice. A considerable improvement in classification accuracy can

be achieved by making a slight change in the arrangement of the camera and

lighting arrangement. Further, we have proposed a flexible method for material

classification with a handheld flashlight camera. This arrangement captures a 1D

BRDF slice that encodes distinctive reflectance features such as specular reflec-

tion and retro-reflectance. We empirically found that our 1D BRDF slice based

classification performs comparably with respect to previous methods and requires

much less images and allows flexible data capture.

In terms of ink identification, we investigated the BRDFs of inks belonging to

various types available in the market and showed that these inks can be successfully

identified using BRDF profiles. We have demonstrated the application of our

algorithm on flat documents, general curved document, and a realistic case of a

fraudulent cheque.

104



Chapter 7

Conclusion

In this thesis, we have explored three different aspects of photometric stereo :

(1) shape estimation from Lambertian photometric stereo, (2) shape estimation

from non-Lambertian photometric stereo, (3) reflectance capture from photometric

stereo and its application to ink classification.

In Chapter 3, we have presented a method to resolve the ambiguity parameters in

the form of a closed for solution. The light sources were constrained to uniformly lie

on a ring and images were captured using a camera located at the centre of the ring,

oriented orthogonal to the plane containing the ring. These constraints helped to

solve the Lambertian photometric stereo problem without explicitly computing

the light source positions. In Chapter 4, we have presented a preliminary analysis

for autocalibrating photometric stereo using rectangularly placed light sources.

In Chapter 5, we have presented an algorithm which combines the information

from iso-gradient and iso-depth contours to recover a per-pixel depth estimate. In

Chapter 6, we have shown that a camera fixed with its viewing direction orthogonal

to the material sample fails to capture the entire 2D BRDF. When the camera

is slanted at different angles with respect to material sample, the measurements
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are sampled from a larger portion of the 2D BRDF space. We have also proposed

a simple handheld camera flashlight arrangement for 1D BRDF slice capture.

Although the 1D BRDF spans a very small portion of the 2D BRDF, it captures

certain important information which can differentiate different materials.

In Chapter 6, we have applied our algorithm to the problem of ink classification.

Ink classification is an important area of forensics that analyses questioned doc-

uments. Generally, expensive methods such spectroscopy and reflectometry are

used for differentiating inks. However, with the growth of imaging technology

and easy availability, we can exploit vision based algorithms to aid, if not replace,

existing methods. We have shown that BRDF based ink classification can be a

promising alternative to classify inks.

The connecting theme of our research has been to improve and expand the scope of

photometric methods for computer vision applications and beyond. Photometric

methods have demonstrated that many computer vision problems such as shape

estimation, BRDF estimation, material classification can lead promising solutions

and better alternatives in comparison to other stereo algorithms.

7.1 Future work

We recommend the following possible directions for future work based on the re-

search conducted for this thesis. Firstly, ring light constraints have already been

proven to offer useful constraints for both Lambertian [34] and non-Lambertian

[12] photometric stereo. In our auto-calibration solution, we have assumed that

the surface is Lambertian and integrable. These assumptions were made to sim-

plify the ambiguity and preserve the linearity of Lambertian models. A possible

alternative is to extend the auto-calibration for non-Lambertian surfaces, building
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on previous works in this direction such as [12].

Secondly, the idea of constraining the light sources can be explored further by

trying novel light configurations. Drbohlav and Chantler [99] have shown that

optimum lighting configurations can be determined for photometric stereo in the

presence of camera noise. There is also a body of works in the area of computa-

tional illumination which prove that specific light patterns and positions can be

used for material classification [23] and efficient BRDF acquisition [100]. It is an

interesting direction to explore novel lighting configurations for problems such as

auto-calibration, outlier removal and non-Lambertian photometric stereo.

Thirdly, we have only performed preliminary analysis using rectangularly placed

light sources for calibrating photometric stereo. We have not validated our algo-

rithm on real data. In future, we will extend our method to include the challenges

of using real data. Our main aim for using rectangular light sources is towards

reconstructing high quality depth maps by integrating high quality normals with

the noisy depth maps from depth sensors. Most of the previous works in this di-

rection assume zero ambient illumination, especially for photometric stereo. The

advantages of this approach can be further enhanced by handling ambient illumi-

nation. One of the possible directions is to use infra red lights for illuminating the

scene.

Fourthly, in our work on material classification, we have observed that different

portions of the 2D BRDF space contain specific information. For example, retro-

reflectance is more pronounced when θd = 0, θh > π/3 and Fresnel effects when

θd > π/3. An interesting study will be to understand the specific regions in the

BRDF space where materials are sensitive on a case to case basis. This can im-

prove the performance and efficiency of material classification by designing specific

capture setups so that only the most essential portions of the BRDF space can be

captured.
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Lastly, in our ink classification approach, we have only used the 1D BRDF slice as

a feature vector for classifying inks. A possible way to improve the performance is

to add additional cues to the feature vector for classification. For example, stroke

shape, pressure, velocity of the pen tip can be measured from the images to make

the feature vector robust for enhanced classification.
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Appendix A

Proof for Establishing the

Ambiguities following Ring Light

Constraints

Proposition The true normal ng of a Lambertian surface illuminated by a

ring-light at a distance dg can be recovered up to a classical bas-relief ambiguity

compounded with a planar rotation ambiguity, i.e.


n1

n2

n3

 =


cos M sin M 0

− sin M cos M 0

0 0 1




1 0 0

0 1 0

0 0 dg

d




ng1

ng2

ng3

 (1)

or n = RMSng (2)

Here, M= θ∗ − θ0, d and θ∗ are the assumed distance and initial rotation angles

respectively. n is the recovered normal.

Proof. The pseudo inverse of a matrix L is computed as L† = (LTL)−1LT . The
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matrix L as defined in (3.2) in Section 3.2. We can write the matrix LTL as,

LTL =


r2

N∑
i=0

cos2α r2
N∑
i=0

sinα cosα dr
N∑
i=0

cosα

r2
N∑
i=0

sinα cosα r2
N∑
i=0

sin2α dr
N∑
i=0

sinα

dr
N∑
i=0

cosα dr
N∑
i=0

sinα N + 1d2

 (3)

where α = (θ0 + it) and i is the index in the summation. This can be rewritten

as,

LTL = r2



1
2

N∑
i=0

(1 + cos 2α) 1
2

N∑
i=0

sin 2α d
r

N∑
i=0

cosα

1
2

N∑
i=0

sin 2α 1
2

N∑
i=0

(1− cos 2α) d
r

N∑
i=0

sinα

d
r

N∑
i=0

cosα d
r

N∑
i=0

sinα (N + 1)d2

r2

 (4)

From [101], we have the following identities,

N∑
i=0

cos (θ0 + it) =
sin

(
(N+1)t

2

)
cos

(
θ0 + Nt

2

)
sin

(
t
2

)

and
N∑
i=0

sin (θ0 + it) =
sin

(
(N+1)t

2

)
sin

(
θ0 + Nt

2

)
sin

(
t
2

) (5)

Substituting the above identities in (4), the inverse of the matrix LTL is calculated

as,

(LTL)−1 = 1
d2K


d2A d2B dC

d2B d2D dC

dC dE F

 (6)

where A,B,C,D,E, F and K are terms which are functions of the parameters

θ0, r, N and t and independent of d.
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The pseudo inverse of L is computed as,

L†= (LTL)−1LT =


a11 · · · a1k · · · a1N

a21 · · · a2k · · · a2N

1
d
a31 · · · 1

d
a3k · · ·

1
d
a3N

 (7)

where aij are a function of θ0, r, N and t.

The normal is obtained by multiplying this with the intensity matrix I,

ρn = L†I =


a11 · · · a1k · · · a1N

a21 · · · a2k · · · a2N

1
d
a31 · · · 1

d
a3k · · ·

1
d
a3N





I1

...

Ik
...

IN


=


b1

b2

1
d
b3

 (8)

where, bij are also functions of θ0, r, N and t.

The error term at each pixel is now computed as,

e (d) = ‖I− L (d) · ρn‖

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

I−



r cos θ0 r sin θ0 d

... ... ...

r cos (θ0 + kt) r sin (θ0 + kt) d

... ... ...

r cos (θ0 +Nt) r sin (θ0 +Nt) d




b1

b2

1
d
b3



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(9)
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or

e (d) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

I−



c1

...

ck
...

cN



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(10)

where, ci are also functions of θ0, r, N and t.

Hence, we observe that although the normal obtained from pseudo inverse of L

is a function of the distance d, yet the product of L and n is independent of d.

As the distance is varied, since all other parameters remain constant, the error

remains constant while the computed normal changes as a function of d. In other

words, we can say that for two different values of the distance term, say d and dg,

and the corresponding light source directions L (d) and L (dg),

L (d) · ρn = L (dg) · ρng (11)

where n and ng are the respective normals at the distance d and dg. From (8),

the normals obtained at a distance d and dg are

n =
[
b1 b2

1
d
b3

]T
and ng =

[
b1 b2

1
dg
b3

]T
(12)

Here the bi’s are independent of the term d. We can now rewrite n as

n =
[
b1 b2

1
d
b3

]T
=
[
b1 b2

(
dg

d
1
dg
b3
) ]T
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Thus, we have,


n1

n2

n3

 =


1 0 0

0 1 0

0 0 dg

d




ng1

ng2

ng3

 or n = Sng (13)

where n and ng are as defined in the statement of Proposition1.

Next, we show that the recovered normals are up to a rotational ambiguity. Note

that these two are independent of each other. Let θg be the initial angle and θ∗

be an arbitrary estimate of the initial angle. We know the position of each light

source lg is given by

lg =
[
r cos(θg + (i− 1)t) r sin(θg + (i− 1)t) d

]
(14)

where, t = 2π
N

and i is the index of the light source (i = 1, ..., N)

Now, for an arbitrary θ∗, the light source position l∗at the same index is computed

as

l∗ =
[
r cos(θ∗ + (i− 1)t) r sin(θ∗ + (i− 1)t) d

]
=
[
r cos(θg + (i− 1)t+ θ∗ − θg) r sin(θg + (i− 1)t+ θ∗ − θg) d

]
=
[
r cos(θg + (i− 1)t) r sin(θg + (i− 1)t) d

]
RM

= lgRM

where M= θ∗ − θ0 and

RM =


cos M sin M 0

− sin M cos M 0

0 0 1

 (15)

From (15), we observe a planar rotation ambiguity (in the xy plane) between
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the estimated and the true light source positions. We can derive the following

relationship between the true normal and estimated normal as,

I = ρl∗n

= ρlgRMng

= ρlgng

We can now say that

n = RMng (16)

In other words, for any arbitrary θ∗, the recovered normals are rotated by an angle

M= (θ∗ − θg).
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Appendix B

Parameters of the Solution to

Scaling Ambiguity

If ni =
[
ni1 ni2 ni3

]
and T = {tij}3×3, then the constants Aij are,

A11 = n12n21t31 + n12n22t32

A12 = n12t22n23

A13 = −n13n23t23

A14 = −n13t21n21 − n13n21t21

A21 = −n21t31n11 − n22t32n11

A22 = n13n23t13

A23 = −n11n23t22

A24 = n13t11n21 + n13n22t12

A31 = n11t23n23 − n12n23t13

A32 = n11t21n21 + n11t22n22 − n12t11n21 − n12t12n22

(17)
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Appendix C

Names of the Inks used to

Construct Ink Database

Fountain

1. Pelikan

2. Aurora

3. Monteverde

4. Lamy

5. Hero

6. Parker

Marker

1. MaxFlo

2. IdentiPen

3. Pentel WB

4. Zebra Permanent

5. Sakura Permanent

6. Omni Permanent

7. Pilot Permanent

8. Pilot WB

9. Zig Permanent

10. Pentel Permanent

Print

1. Samsung Laser

2. HP Laser

3. Lexmark Laser

4. Photocopy
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5. InkJet

Gel

1. Pentel EnerGel

2. Pilot Signature

3. Jet Stream

4. Uniball Signo

5. Faber Castell Clickball

6. Monami Geller

7. Uni Style Fit

8. Pilot BPS

9. Pop Bazic Gel

10. Zebra Z1

11. Lotus Gel

12. Zebra Jimnie Gel

Ball Point

1. Omni Softball

2. Pentel Star

3. Stabilo Liner

4. M& G Devilsmask

5. Staedtler 422

6. Uni Locknock

7. Faber Castell Super Click

8. Pilot Super Grip

9. Monami BPP

10. Monami 153 Stick

11. BIC Bu2

12. Zebra

13. Anonymous Black 1

14. Anonymous Black 2

Pencils

1. Staedtler 3B

2. Faber Castell 6B

3. Staedtler HB

4. Staedtler Black Coloured Pencil

5. Faber Castell 2B

6. Be Goody A 850 HB

7. Geddes HB
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