3,969 research outputs found

    Recent Advances in the Noninvasive Study of Atrial Conduction Defects Preceding Atrial Fibrillation

    Get PDF
    The P-wave represents the electrical activity in the electrocardiogram (ECG) associated with the heart\u27s atrial contraction. This wave has merited significant research efforts in recent years with the aim to characterize atrial depolarization from the ECG. Indeed, the alterations of the P-wave main time, frequency, and wavelet features have been widely studied to predict the onset of atrial fibrillation (AF), both spontaneously and after a specific treatment, such as pharmacological or electrical cardioversion, catheter ablation, as well as cardiac surgery. To this respect, the P-wave prolongation is today a clinically accepted marker of high risk of suffering AF. However, given the relatively low P-wave amplitude in the ECG, its analysis has been most widely carried out from signal-averaged ECG signals. Unfortunately, these kind of recordings are uncommon in routine clinical practice and, moreover, they obstruct the possibility of studying the information carried by each single P-wave as well as its variability over time. These limitations have motivated the recent development of the beat-to-beat P-wave analysis, which has proven to be very useful in revealing interesting information about the altered atrial conduction preceding the onset of AF. Within this context, the main goal of this chapter is to review the most recent advances reached by this kind of analysis in the noninvasive assessment of atrial conduction alterations. Thus, the chapter will introduce and discuss the existing methods of the beat-to-beat P-wave analysis and their application to predict the onset of AF as well as its advantages and disadvantages compared with the signal-averaged P-wave analysis

    Quantification of not-dipolar components of atrial depolarization by principal component analysis of the P-wave

    Get PDF
    BACKGROUND: Principal component analysis (PCA) of the T-wave has been demonstrated to quantify the dipolar and not-dipolar components of the ventricular activation, the latter reflecting repolarization heterogeneity. Accordingly, the PCA of the P-wave could help in analyzing the heterogeneous propagation of sinus impulses in the atria, which seems to predispose to fibrillation. AIM: The aim of this study is to perform the PCA of the P-wave in patients prone to atrial fibrillation (AF). METHODS: PCA is performed on P-waves extracted by averaging technique from ECG recordings acquired using a 32-lead mapping system (2048 Hz, 24 bit, 0-400 Hz bandwidth). We extracted PCA parameters related to the dipolar and not dipolar components of the P-wave using the first 3 eigenvalues and the cumulative percent of variance explained by the first 3 PCs (explained variance EV). RESULTS AND CONCLUSIONS: We found that the EV associated to the low risk patients is higher than that associated to the high risk patients, and that, correspondingly, the first eigenvalue is significantly lower while the second one is significantly higher in the high risk patients respect to the low risk group. Factor loadings showed that on average all leads contribute to the first principal component

    Brief review on electrocardiogram analysis and classification techniques with machine learning approaches

    Get PDF
    Electrocardiogram captures the electrical activity of the heart. The signal obtained can be used for various purposes such as emotion recognition, heart rate measuring and the main one, cardiac disease diagnosis. But ECG analysis and classification require experienced specialists once it presents high variability and suffers interferences from noises and artefacts. With the increase of data amount on long term records, it might lead to long term dependencies and the process become exhaustive and error prone. Automated systems associated with signal processing techniques aim to help on these tasks by improving the quality of data, extracting meaningful features, selecting the most suitable and training machine learning models to capture and generalize its behaviour. This review brings a brief stage sense of how data flows into these approaches and somewhat techniques are most used. It ends by presenting some of the countless applications that can be found in the research community.info:eu-repo/semantics/publishedVersio

    Prediction of postoperative atrial fibrillation using the electrocardiogram: A proof of concept

    Get PDF
    Hospital patients recovering from major cardiac surgery are at high risk of postoperative atrial fibrillation (POAF), an arrhythmia which can be life-threatening. With the development of a tool to predict POAF early enough, the development of the arrhythmia could be potentially prevented using prophylactic treatments, thus reducing risks and hospital costs. To date, no reliable method suitable for autonomous clinical integration has been proposed yet. This thesis presents a study on the prediction of POAF using the electrocardiogram. A novel P-wave quality assessment tool to automatically identify high-quality P-waves was designed, and its clinical utility was assessed. Prediction of paroxysmal atrial fibrillation (AF) was performed by implementing and improving a selection of previously proposed methods. This allowed to perform a systematic comparison of those methods, and to test if their combination improved prediction of AF. Finally, prediction of POAF was tested in a clinically relevant scenario. This included studying the 48 hours preceding POAF, and automatically excluding noise-corrupted P-waves using the quality assessment tool. The P-wave quality assessment tool identified high-quality P-waves with high sensitivity (0.93) and good specificity (0.84). In addition, this tool improved the ability to predict AF, since it improved the precision of P-wave measurements. The best predictors of AF and POAF were measurements of the variability in P-wave time- and morphological features. Paroxysmal AF could be predicted with high specificity (0.93) and good sensitivity (0.82) when several predictors were combined. Furthermore, POAF could be predicted 48 hours before its onset with good sensitivity (0.74) and specificity (0.70). This leaves time for prophylactic treatments to be administered and possibly prevent POAF. Despite being promising, further work is required for these techniques to be useful in the clinical setting

    ECG-Based Measurements of Drug-induced Repolarization Changes

    Get PDF

    Identification of cardiac organ damage in arterial hypertension: insights by echocardiography for a comprehensive assessment

    Get PDF
    : Arterial hypertension, a widespread disease, whose prevalence increases with age, represents a major risk factor for cardiovascular events, causing damage in several organs, including the heart. In this context, echocardiography has a clear and pivotal role, being able to assess cardiac morphology and detect haemodynamic changes induced by this disease. 2018 European Society of Cardiology/European Society of Hypertension guidelines on AH identified main echo parameters such as left ventricular mass, relative wall thickness and left atrial volume, for detecting cardiac organ damage. The present review highlights the advantage of additional echocardiographic parameters such as diastolic measurement and both thoracic and abdominal aortic dimensions. An overlook on aortic valve should also be suggested to detect aortic regurgitation and stenosis, both frequent complications in hypertensive patients. In this kind of comprehensive assessment, the combination of standard and advanced echocardiography (speckle tracking echocardiography and, with a lesser extent, three-dimensional echocardiography) could be considered to improve the diagnostic accuracy, stratify prognosis and address management in arterial hypertension

    Evolutionary Optimization of Atrial Fibrillation Diagnostic Algorithms

    Get PDF
    The goal of this research is to introduce an improved method for detecting atrial fibrillation (AF). The foundation of our algorithm is the irregularity of the RR intervals in the electrocardiogram (ECG) signal, and their correlation with AF. Three statistical techniques, including root mean squares of successive differences (RMSSD), turning points ratio (TPR), and Shannon entropy (SE), are used to detect RR interval irregularity. We use the Massachusetts Institution of Technology / Beth Israel Hospital (MIT-BIH) atrial fibrillation databases and their annotations to tune the parameters of the statistical methods by biogeography-based optimization (BBO), which is an evolutionary optimization algorithm. We trained each statistical method to diagnose AF on each database. Then each trained method was tested on the rest of the databases. We were able to obtain accuracy levels as high as 99 for the detection of AF in the trained databases. We obtained accuracy levels of up to 75 in the tested database

    Evolutionary Optimization of Atrial Fibrillation Diagnostic Algorithms

    Get PDF
    The goal of this research is to introduce an improved method for detecting atrial fibrillation (AF). The foundation of our algorithm is the irregularity of the RR intervals in the electrocardiogram (ECG) signal, and their correlation with AF. Three statistical techniques, including root mean squares of successive differences (RMSSD), turning points ratio (TPR), and Shannon entropy (SE), are used to detect RR interval irregularity. We use the Massachusetts Institution of Technology / Beth Israel Hospital (MIT-BIH) atrial fibrillation databases and their annotations to tune the parameters of the statistical methods by biogeography-based optimization (BBO), which is an evolutionary optimization algorithm. We trained each statistical method to diagnose AF on each database. Then each trained method was tested on the rest of the databases. We were able to obtain accuracy levels as high as 99 for the detection of AF in the trained databases. We obtained accuracy levels of up to 75 in the tested database

    Carotid artery contrast enhanced ultrasound

    Get PDF

    Carotid artery contrast enhanced ultrasound

    Get PDF
    • …
    corecore