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EVOLUTIONARY OPTIMIZATION OF ATRIAL FIBRILLATION DIAGNOSTIC 

ALGORITHMS 

AREF SMILEY 

ABSTRACT 

The goal of this research is to introduce an improved method for detecting atrial 

fibrillation (AF). The foundation of our algorithm is the irregularity of the RR intervals in 

the electrocardiogram (ECG) signal, and their correlation with AF. Three statistical 

techniques, including root mean squares of successive differences (RMSSD), turning 

points ratio (TPR), and Shannon entropy (SE), are used to detect RR interval irregularity. 

We use the Massachusetts Institution of Technology / Beth Israel Hospital (MIT-BIH) 

atrial fibrillation databases and their annotations to tune the parameters of the statistical 

methods by biogeography-based optimization (BBO), which is an evolutionary 

optimization algorithm. We trained each statistical method to diagnose AF on each 

database. Then each trained method was tested on the rest of the databases. We were able 

to obtain accuracy levels as high as 99% for the detection of AF in the trained databases. 

We obtained accuracy levels of up to 75% in the tested databases.   
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CHAPTER I  

INTRODUCTION 

 

 

Section 1.1 gives the problem overview. Section 1.2 gives a brief discussion of 

the motivation for AF detection. Section 1.3 provides a literature review related to the 

topics discussed in this thesis. Section 1.4 summarizes the contributions of this thesis. 

 

1.1 Problem Overview 

  
AF is known as the most common arrhythmia. More than seven million 

Americans are known to have this disease, and the number of people who have AF is 

going to increase, especially in among the older generation [1]. Since it increases the risk 

of heart failure, AF has a direct impact on the life span and quality of life [2], [3].  

We implemented diagnostic algorithms and then implemented them via 

MATLAB® and C# software to detect portions of a patient’s electrocardiogram (ECG) 

that have the characteristics of AF. This was done by detecting the RR intervals of the 
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ECG data. As the RR intervals are highly irregular in AF, we base our algorithm on RR 

interval irregularity.  

Three statistical techniques, namely RMSSD, TPR, and SE, were used to detect 

RR interval irregularity in a given ECG. In order to optimize the tuning parameters of the 

three statistical methods mentioned above, we used the MIT-BIH AF database. MIT-BIH 

AF has 25 databases. Each database included data of approximately 10 h duration and 

was annotated by either N (normal) or AF (atrial fibrillation). Whenever there was heart 

rate variability (HRV), the database is annotated as AF, and otherwise it is annotated as 

N. We optimized the tuning parameters of the statistical methods with BBO, which is an 

evolutionary optimization algorithm. We thus found the best values of the tuning 

parameters for each statistical method trained in every database. This resulted in a total of 

75 sets of tuning parameters (3 statistical methods, and 25 databases). Then, each trained 

method was tested on the remaining 24 databases. Then the statistical methods with the 

best sensitivity, specificity, and accuracy in determining AF for each database, and the 

average accuracy of the remaining databases, were evaluated. 

1.2 Motivation for AF Detection  

Sanoski [30] showed that around 40% of patients diagnosed with AF did not have 

any symptoms, and AF was detected only by the diagnosis of one of the complications or 

risk factors associated with AF. One of the most important problems is that short-term 

and treatable AF can lead to debilitating permanent AF and other more serious 

complications. 

Chest pains, heart palpitations, fainting, and congestive heart failure could be 

symptoms of AF. As these symptoms are common in many cardiac diseases, AF is often 
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overlooked. If AF becomes a chronic condition, fatigue, palpitation, and fainting can last 

from minutes to years. AF is more common among older patients and usually becomes a 

chronic problem. AF is usually diagnosed first with an ECG. 

Obesity, coronary artery disease, diabetes, heart failure, hypertension, 

hyperthyroidism, myocardial infarction, and alcoholism are known risk factors associated 

with AF [27], [38] . AF has a direct impact on morbidity and mortality [30] . By 

increasing the prevalence of risk factors, the complications of AF will be increased.  

More than 7 million people in the United States suffer from AF, and this statistic 

is around 4.5 million people in Europe [27], [38] . It is estimated that this number will 

exponentially increase during the next 50 years if the current methods continue to be used 

for treatment. Keech et al. [28] investigated the increasing number of hospital inpatient 

episodes diagnosed by AF in addition to AF burden on hospital care compared to the total 

burden of cardiovascular (CV) conditions in Scotland from 2004 to 2008 (Table I). 

Although these data are limited to Scotland, we can presume that similar trends hold in 

the USA. During the study period, there were 20 AF patients per 1,000 individuals in 

2004, increasing to 24.2 patients per 1,000 in 2008. That is a gradual increase from 

28,613 patients in 2004 to 36,204 patients in 2008; i.e., a 26.5% increase over the five-

year study period. The increase was 17.7% for CV conditions including AF. 
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Year 

Hospital 

Inpatient 

Episodes 

Hospital 

Treated Patients 

Hospital 

Discharges• 

Inpatient Bed 

Days 

AF 

Patients 

CV 

Patients 

AF 

Patients 

CV 

Patients 

AF 

Patients 

CV 

Patients 

AF 

Patients 

CV 

Patients 

2004 28,613 147,566 21,907 102,552 41,085 208,602 344,164 1,458,203 

2005 30,410 158,959 22,942 109,124 44,573 224,971 364,419 1,508,261 

2006 32,551 167,995 24,262 114,540 47,250 235,637 390,256 1,561,310 

2007 34,671 173,636 25472 117,431 51,631 246,630 402,229 1,549,716 

2008 36,204 173,704 26,510 117,343 54,686 251,052 394,128 1,515,705 
Five Year 

Increase 
26.5% 17.7% 21% 14.4% 33.1% 20.3% 14.5% 3.9% 

•includes inpatient and outpatient charges and deaths 

 

TABLE I: BURDEN OF ATRIAL FIBRILLATION (AF) IN COMPARISON WITH THE TOTAL BURDEN OF CARDIOVASCULAR 

(CV) CONDITIONS IN SCOTLAND. AT 25% OF THE TOTAL CARDIOVASCULAR BURDEN, AF COSTS ARE INCREASING 

RELATIVELY FASTER. BASED ON [28]. 

 

We can also see the same increasing trend for hospital treated patients with AF. 

Overall, AF presents a significant and increasing burden on hospital care. Developing a 

practical method to diagnose AF in its early stages could save lots of money and time in 

the treatment of AF over long periods of time. 

Atrial fibrillation treatment depends on how often the patient has symptoms, how 

severe the symptoms are, and whether the patient has other heart diseases. Medicines, 

medical procedures, and lifestyle changes are considered general treatment options. 

Patients with AF may be at risk of stroke. The stagnant blood in the atria can lead to 

blood clot formation. Clot movement to the brain can lead to stroke. Therefore, the most 

crucial part of treating AF is the prevention of blood clots. Blood-thinning medicines, 

warfarin (Coumadin®), dabigatran, heparin, and aspirin, may be prescribed to prevent 

blood clots [39]. Some medicines may also be prescribed to slow down the rate of 

ventricle beating and bring the heart rate back to its normal level. Beta blockers like 

metoprolol and atenolol, calcium channel blockers like diltiazem and verapamil, and 
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digitalis like digoxin, are medicines that may be used to control heart rate. In order to 

keep a normal heart rhythm, rhythm control treatment can be used. This is recommended 

for patients who are not doing well with heart rate control treatment or for those who 

have recently been diagnosed with AF. Medicines or procedures may be prescribed to 

control the hearts rhythm. Amiodarone, sotalol, flecainide, propafenone, dofetilide, and 

ibutilide are medicines used to control heart rhythm. Several procedures to restore and 

maintain a normal heart rhythm may be used. Electrical cardioversion, for example, may 

be used as a treatment option for fast or irregular heartbeats. Low-energy shocks are 

given to the heart of the patient to trigger a normal rhythm. 

Electrical cardioversion is not the same as the emergency heart shock procedure 

often seen on TV programs.  Electrical cardioversion is planned in advance and done 

under carefully controlled conditions. Catheter ablation is another option if medicines or 

electrical cardioversion do not work. For this option, a vein is selected in the leg or arm 

and then a wire inserted through it and threaded to the heart. Radio wave energy is sent 

through the wire to destroy abnormal tissue that is disrupting the normal flow of electrical 

signals. It can be also used to destroy the AV node and can be followed by implanting 

a pacemaker to maintain normal heart rhythm.  

Another procedure to restore normal heart rhythm is called maze surgery, which 

involves open-heart surgery. For this procedure, the surgeon makes small cuts or burns in 

the atria. These cuts or burns prevent the spread of disorganized electrical signals. This 

procedure is used when a patient needs heart surgery for other reasons like heart valve 

disease [39]. 

http://www.nhlbi.nih.gov/health/health-topics/topics/pace/
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1.3 Literature Review 

AF detection algorithms are based on either the absence of P wave [4]-[12] or the 

RR interval variability in the given ECG [13]-[23]. In the first category, the detection 

algorithms are based on the inconsistency in the contraction of atria, resulting in no 

distinguishable P wave in the ECG. However, the main problem with these algorithms is 

that the low amplitude of P-waves can be susceptible to noise [23]. The second group of 

algorithms does not involve morphological changes of the P-wave but rely on the RR 

intervals and their irregularities. As the QRS complex is the most obvious feature in the 

ECG and also has the least susceptibility to muscle noise, the second group of AF 

detection algorithms is more reliable.  

Different methods for detecting AF have been developed by considering the RR 

intervals; some examples are the Lorenz distribution of a time series of RR intervals [18], 

neural networks [21], Markov models [22], wavelet transforms [13], [16], and the 

coefficient of variation and Kolmogorov–Smirnov test[20]. Another study used the 

variance histogram of RR intervals for detection of atrial fibrillation [19]. Although 

almost all of them claimed high accuracy in detecting AF, their algorithms are dependent 

on the robustness of the training data; this means that by changing the characteristics of 

AF compared to the training data, the detection accuracy is reduced [23]. 

Measuring the unpredictability and the complexity of heart rate by using 

statistical methods has increasingly been applied since it is non-invasive and can be 

detected from shorter ECG records. Dash et al. [23] used a combination of TPR with 

RMSSD and SE. They tuned the parameters of the statistical methods by considering the 

same database (MIT-BIH AF) and then tested their algorithm on the short term MIT-BIH 



7 
 

Arrhythmia Database. They achieved high accuracy (around 90%) for the MIT-BIH AF, 

and then acceptable accuracy (around 82%) for the MIT-BIH Arrhythmia Database. 

Other research was done in classification of the ECG signals based on the 

distinguishable features of different heart arrhythmias [24]. They proposed a new method 

of classification based on the multiclass support vector machine (SVM); it was called 

directed acyclic graph support vector machine (DAGSVM). The method discriminated 

between four types of ECG beats, including normal beat, atrial fibrillation beat, 

ventricular tachyarrhythmia beat, and congestive heart failure beat, by using the MIT-

BIH databases. Then classification accuracy was evaluated by automatically detecting the 

best discriminating features and by determining the best required model amongst three 

kernel functions: linear, polynomial, and radial basis function. Empirical mode 

decomposition and singular value decomposition were used to extract and select the 

features [24]. Then cross-validation and particle swarm optimization (PSO) were used to 

optimize performance in terms of classification accuracy by selecting the best model and 

by estimating the best parameters of the SVM classifier. It was concluded that the 

DAGSVM obtained average accuracy of 98.96% on classification of the four classes of 

ECG datasets [24].  

In a recent study, an iPhone App was created by using the Objective-C 

programming language. For ECG signal acquisition, the iPhone 4S videos were recorded 

and the signal achieved by averaging 50 × 50 pixels of the green band for every frame 

[46], [47]. As the sampling rate for iPhone 4S is 30 frames/s or lower (based on the 

processing load), the pulsatile signal was down sampled to 30 Hz. The final result 

appears as either NORMAL or AF DETECTED. Such terms are related to the detection 
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of RR interval variability by the statistical algorithms used in the research. Root Mean 

Squares of Successive Differences, Shannon Entropy, and Sample Entropy were used to 

detect atrial fibrillation in the given ECG [25]. Then, by using 64-beat segments from the 

MIT-BIH databases, they achieved beat-to-beat accuracy values of 94%, 93%, and 96% 

for RMSSD, SE, and SampE, respectively. There are two main problems with their 

algorithm: first, down-sampling the signal may result in the loss of important features of 

the QRS section. Montavon [26] showed that the main features of the QRS section could 

be found between 5 and 90 Hz. Second, they changed the definition of the accuracy in 

their article. After correctly defining the terms specificity and sensitivity (see 

Section 3.2.5, Equations (5) and (6) in this thesis), they defined the accuracy as follows: 

           
     

           
  (1) 

where: 

TP = True Positive (both the algorithm and database annotated as AF),  

TN = True Negative (both the algorithm and database annotated as normal),  

FP = False Positive (the algorithm denoted as AF, the database denoted as normal)  

FN = False Negative (the algorithm denoted as normal, the database denoted as AF) 

Although their definition seemed correct, according to the definition of accuracy used in 

this thesis (Equation 7), their accuracy decreased from 96% to less than 80%. 

Many studies reported the characteristics of atrial fibrillation and whether its RR 

sequence is deterministic or randomly distributed [17], [45]. Our algorithm used the 

statistical methods to analyze RR interval variability and complexity. Finding the 

sensitivity, specificity, and the accuracy of 1, 0.99, and 0.99, respectively, in training the 

methods proves this hypothesis. 
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 By using BBO, we were able to enhance the accuracy of the diagnosis algorithms 

in previous studies, and we also found out which statistical methods had the best 

accuracy to detect RR interval irregularity. However, there are some other heart 

arrhythmias which also have RR interval irregularity in the ECG, like atrial flutter (AFL). 

That is why AF is mostly overlooked as mentioned before. Classification of different 

types of heart arrhythmias which have the same feature of the RR interval irregularity in 

the ECG can help us diagnose the arrhythmia as AF or other.  

1.4 Thesis Organization and Contribution 

The foundation of our algorithm is the generally accepted hypothesis that RR 

intervals in an ECG diagnosed as AF are highly irregular [23]. Three statistical methods, 

including turning points ratio (TPR), Shannon entropy (SE), and root mean squares of 

successive differences (RMSSD), were used to evaluate the irregularity of RR intervals.  

In our method, we trained our algorithm with each of 25 MIT-BIH AF databases 

to find the tuning parameters of the three statistical methods. We tuned the statistical 

methods with BBO for each database, one at a time, and tested our algorithm on the 

remaining 24 databases. This is the first time that BBO has been used to tune the variable 

parameters of statistical methods for AF detection. In addition, we evaluated the 

capability of each statistical method to detect AF in a given ECG. We were able to 

demonstrate their ability to detect AF. Accuracy was more than 99% for some databases. 

We also obtained the average accuracy for all 25 databases with the trained parameters. 

We could achieve average accuracy of 75% by using the trained parameters of RMSSD, 

71% by using the trained parameters of SE, and 54% by using the trained parameters of 

TPR.   
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If AF can be easily detected with high certainty and early in its pathology, the risk 

of complications due to late detection can be drastically reduced in addition to saving on 

health care costs. Detecting AF with this method could save lives, improve the quality of 

life of millions of people at risk, and provide economic advantages. 

 Chapter 2 presents a summary of normal heart function and ECGs in Sections 2.1 

and 2.2. Section 2.3 talks about the background of AF and its comparison with normal 

heart function.  

Chapter 3 illustrates a brief review of our detection algorithm and our 

MATLAB® and C# software. This section includes a discussion of the MIT-BIH AF 

databases (Section 3.1), and a brief overview of the detection algorithm (Section 3.2). 

The latter section includes all the steps of the detection process, including RR interval 

estimation of the ECG data (Section 3.2.1), and the use of the three statistical methods, 

including RMSSD (Section 3.2.2), TPR (Section 3.2.3), and SE (Section 3.2.4), in order 

to detect the RR interval irregularity in a given ECG. Section 3.2.5 explains how we 

trained and tested our algorithm using the MIT-BIH AF database. Finally, Section 3.3 

talks about BBO as an evolutionary algorithm to find the best algorithm tuning 

parameters. 

Chapters 4 and 5 discuss our results, conclusions, and future work.   

  



11 
 

 

 

 

 

CHAPTER II  

BACKGROUND 

 

 

AF is known as the most common sustained cardiac rhythm disorder in clinical 

practice [27], [29]. It is characterized by improper function of the atria because of 

disrupted electrical pathways and structural changes in the heart [30]. It can be difficult to 

diagnose AF in many cases because it does not present specific symptoms. For a better 

understanding of AF, we first consider the normal function of the heart, and compare it 

with the functionality of the heart with AF. 

 

2.1 Normal Heart Function 

Contraction of cardiac muscle cells is due to the action potentials (APs) that lead 

to the pumping of the blood through the body. Some cardiac cells generate their own AP 

for rhythmic contraction (autorhythmic cardiac cells) [31] and work with contractile 

cardiac cells to pump the blood. The rate of generating AP is different among 

autorhythmic cells. Those with the fastest rate are in the sinoatrial (SA) node, which is 
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why the SA node is called the pacemaker and is the main source of the force for heart 

contractions [31]. After initiating APs in the SA node, the excitation travels through the 

reminder of the heart for a full contraction (Figure 1). APs initially propagate through the 

atria since the atria must contract before the ventricles to pump blood to the ventricles; 

and then, APs spread through the ventricles, which contract to pump blood to the lungs or 

the rest of the body. 

The sinoatrial node is about 15 mm long and 5 mm wide and its cells are self-

excitatory, pacemaker cells. The generation of APs is at the rate of around 70 per minute. 

Electrical signals propagate throughout the atria by activating other myocardial cells. 

However, this propagation is unable to pass the boundary between the atria and ventricles 

because of the non-conducting barrier of fibrous tissue. The spread of the impulses from 

the SA node throughout the atria is still a topic of controversy [32], [33]. But it is 

generally accepted that nodal cells’ depolarization can travel directly to adjacent 

myocardial cells, and with the help of ordered myofibrils, this excitation can reach both 

the left atrium and the atrioventricular node.  

 

FIGURE 1: THE CONDUCTION SYSTEM OF THE HEART. NORMAL EXCITATION ORIGINATES IN THE SINOATRIAL (SA) 

NODE, THEN PROPAGATES THROUGH BOTH ATRIA. THE ATRIAL DEPOLARIZATION SPREADS TO THE 

ATRIOVENTRICULAR (AV) NODE, PASSES THROUGH THE BUNDLE OF HIS (NOT LABELED), AND THEN TO THE 

PURKINJE FIBERS WHICH MAKE UP THE LEFT AND RIGHT BUNDLE BRANCHES; SUBSEQUENTLY ALL VENTRICULAR 

MUSCLE BECOMES ACTIVATED. TAKEN FROM [34]. USED WITH PERMISSION. 
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  The AV node has an intrinsic frequency of about 50 pulses per min, which can 

change depending on the pulse frequency with which it is triggered. The bundle of 

His (named after German physician Wilhelm His) is responsible to propagate electrical 

signals from the AV node to the ventricles. The normal wave of cardiac depolarization 

travels through the bundle of His and then spreads to the left and right bundle branches, 

resulting in depolarization of the upper regions of the left and right ventricles. Lastly, the 

signal travels to the Purkinje fibers (named after Jan Evangelista Purkinje) attached on 

the one side to the bundles and on the other side to the inner sides of the ventricular 

walls; and consequently ventricular myocardial depolarization spreads. The conducting 

system in ventricles has a higher speed than the velocity of the propagation of activation 

from the AV node in the atria (Figure 1). 

2.2 Normal Electrocardiogram  

Recording this electrical activity forms the ECG which is due to depolarization 

(contraction) and repolarization (relaxation) of cardiac muscle cells, which is followed by 

electrical current propagating through the chambers and tissues of the heart. When the 

electrical activity reaches the surface of the body, it can be measured by electrodes fixed 

on the skin, the output of which will be the voltage (vertical) and time (horizontal) signal. 

The morphological feature of the ECG shows the depolarization and repolarization of the 

atria and ventricles (Figure 2). 
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FIGURE 2: NORMAL ELECTROCARDIOGRAM (ECG) SIGNAL. TAKEN FROM [52]. THIS FIGURE IS IN THE PUBLIC 

DOMAIN. 

 

From the above, we can see that the first structure to be depolarized during 

normal sinus rhythm is the right atrium, immediately followed by the left atrium. 

Therefore, the electrical signal known as the P wave on a normal ECG originates from 

the atria (plural of atrium). In fact, the P wave is the sum of the electrical signals, which 

are usually superimposed from the atria. That is why we usually have only one P wave in 

most leads of an ECG. The P wave is followed by a short physiological delay, which is 

known as the PR interval, the time required for the signal to reach the atrioventricular 

(AV) node before its spread through the ventricles. There is no electrical activity in the 

normal ECG during this time, and it appears as a straight horizontal or isoelectric line. 
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The largest part of the normal ECG signal is made by depolarization of the 

ventricles and is known as the QRS complex. This is because of the greater muscle mass 

in the ventricles compared to the atria. In the QRS complex, the Q wave is the first initial 

downward or negative deflection, and is followed by the R wave, the next upward 

deflection. Finally, the S wave is the next deflection downwards, provided that it crosses 

the isoelectric line to become briefly negative before returning to the isoelectric baseline. 

Repolarization of the myocardium is also shown as an electrical signal known as the ST 

segment (isoelectric segment) and the T wave (an upright deflection of variable 

amplitude and duration). Another important feature of the normal ECG is the distance 

between R peaks, which is known as the RR interval. Heart rate variability (HRV) is the 

change of beat-to-beat intervals, also known as RR intervals. HRV relates to the 

fluctuations of the heart rate around an average heart rate (number of RR intervals per 

minutes) (Figure 3). During running, for example, HRV decreases as heart rate increases. 

HRV could be an indicator for many types of heart arrhythmia like AF [50]. 

 

FIGURE 3 : RR INTERVALS, VARIATION OF BEAT TO BEAT INTERVALS. TAKEN FROM [1]. USED WITH PERMISSION. 
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The RR interval is a measurement of the distance between two consecutive heart 

beats.  As the R wave is the tallest and the most conspicuous wave in the ECG, it is 

usually chosen to measure heart rate. It is the same as the distance of P-to-P or any two 

analogous points on consecutive beats in most rhythms. Consistency in the RR intervals 

indicates that the rhythm is regular. This means that the beats are evenly spaced. The 

term irregular refers to heart beats that are not evenly spaced. Heart rate also refers to the 

number of beats per minute. The most distinguishable feature of atrial fibrillation is heart 

rate variability (HRV) or irregularity in RR intervals, as shown in Figure 3.   

An ECG test is used to check heart problems when a patient has abnormal 

symptoms such as dizziness, chest pain, or an abnormal heart rate. It can show various 

heart problems, like a previous heart attack, an enlarged heart working under strain, and 

irregular heartbeats known as arrhythmias. For evaluating the ECG, the physician may 

record the test in different conditions, depending on the symptoms of the patient and type 

of arrhythmia. The standard ECG is taken while the patient is resting. An exercise ECG 

(also known as stress test or treadmill test) is taken while the patient is exercising. This 

shows the functionality of the heart under stress. The recorded ECG can be used for 

diagnosing coronary heart disease, which is equal to pathologic narrowing of the arteries 

of the heart. It is also a useful test for patients with heart surgery or heart attack to 

evaluate the amount of safe activity the patient can have. Holter monitor or ambulatory 

ECG is another ECG test for recording the electrical activities of the heart for a period of 

24 hours or longer by using an electronic recorder carried with a patient. It can show 

occasional irregular heartbeats that may not appear in short duration ECG recording. 
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Currently, Holter monitoring is the most common method for diagnosing AF. It is 

attached to the patient with 3 or 5 leads and records the electrical activities of the heart 

over a period of 24 hours or more. Then, the recording can be evaluated to diagnose AF 

or other heart arrhythmias. However, as it can be affected by noise, paroxysmal AF, 

which appears for very brief segments, may not be detectable; Figure 4 shows a sample 

of a Holter monitoring for around 20 seconds. Holter monitoring is time-consuming and 

irregularities can be easily overlooked [35].   

 

FIGURE 4: HOLTER MONITOR. DATA OBTAINED FROM A HOLTER MONITOR CAN BE AFFECTED WITH NOISE AND 

REQUIRES THOROUGH ANALYSIS FOR DIAGNOSING AF.  TAKEN FROM [35]. USED WITH PERMISSION. 
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2.3 Other Heart Arrhythmias  

There are four main types of arrhythmias, including premature (extra) beats, 

supraventricular arrhythmias, ventricular arrhythmias, and bradyarrhythmias. Premature 

beats are harmless most of the time and do not cause any symptoms. Fluttering in the 

chest or a feeling of a skipped heartbeat are common symptoms of premature beats. Most 

of the time, they do not require any treatment, especially in otherwise healthy people. 

When they occur in the atria, they are called premature atrial contractions (PACs). 

Premature ventricular contractions (PVCs) refer to the premature beats that occur in the 

ventricles. Most of the time they are naturally generated; but they can result from heart 

disease too. Stress, too much exercise, or too much caffeine or nicotine could be other 

factors causing premature beats [55]. 

Supraventricular arrhythmias are fast heart rates (tachycardias) that begin in the 

atria or AV node. Atrial fibrillation (AF), atrial flutter, paroxysmal supraventricular 

tachycardia (PSVT), and Wolff-Parkinson-White (WPW) syndrome are four types of 

supraventricular arrhythmias. Atrial flutter is similar to AF, but in atrial flutter, unlike 

AF, the electrical signals of the heart spread through the atria in a fast and regular rhythm 

instead of the irregular rhythm in AF. Atrial flutter is much less common but has 

symptoms and complications similar to those of AF [55]. 

Fast heart rate that begins and ends suddenly is known as PSVT. PSVTis related 

to the electrical connection between the atria and the ventricles. Electrical signals can 

reenter the atria instead of traveling to the ventricles, causing extra heartbeats. It is not 

usually dangerous and is more common in young people. It may happen during vigorous 

physical activity. 

http://www.nhlbi.nih.gov/health/health-topics/topics/af/
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WPW syndrome is a type of PSVT and refers to a condition in which the 

electrical signals of the heart travel a longer pathway from the atria to the ventricles, 

resulting in disruption in the timing of the electrical signals, and can lead to much faster 

contraction of the ventricles. It can be life threatening [55]. 

Ventricular arrhythmias start in the ventricles, and include ventricular tachycardia 

and ventricular fibrillation. They often need medical care immediately. Ventricular 

arrhythmias can be caused by coronary heart disease, heart attack, a weakened heart 

muscle, and other problems. 

Ventricular tachycardia refers to the fast and regular beating of the ventricles. It 

may last for only a few seconds or for much longer. Only those fast beats which last more 

than few seconds are dangerous. Ventricular tachycardia can lead to more serious 

arrhythmias, like ventricular fibrillation [55]. 

When disorganized electrical signals cause the ventricles to quiver instead of 

pump normally, ventricular fibrillation occurs. If ventricles do not pump the blood to the 

body, death can occur within a few minutes. In order to prevent death, an electric shock 

should be given to the heart (defibrillation). Ventricular fibrillation may occur during or 

after a heart attack or in a weak heart. 

The situation in which the heart rate is slower than normal is known as 

bradyarrhythmias. Not enough blood reaches the brain because of the slow heart rate. 

This can cause you loss of consciousness. Bradyarrhythmias can be caused by different 

factors, including heart attacks, changing the normal pattern of the heart's electrical 

activity (like aging), an imbalance of the blood’s substances (like potassium), medicines 

http://www.nhlbi.nih.gov/health/health-topics/topics/heartattack/
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such as beta blockers, calcium channel blockers, some antiarrhythmia medicines, and 

digoxin [55].  

2.4 Abnormal Heart Function in Atrial Fibrillation 

As mentioned before, electrical signals in a normal heart contraction are 

coordinated and result in a steady contraction and recovery period. In AF, uncoordinated 

electrical impulses disrupt the steady activation of the atria. An absence of P-waves and 

an irregularity among RR intervals in the ECG are the main morphological changes 

compared to a normal ECG (Figure 5). 

 
FIGURE 5: COMPARISON OF THE ECG OF THE NORMAL HEART AND AF. TAKEN FROM [35]. USED WITH 

PERMISSION. 

 

Improper bioelectrical and mechanical functioning of the atria result from AF. 

Disordered electrical impulses also cause improper functioning of the ventricles. The SA 

node generates normal impulses, but such impulses are overwhelmed by disordered 

impulses of the atria and pulmonary veins, resulting in uncoordinated contraction 

(Figure 6). 

  Studies show that AF causes structural remodeling of atria which may require 

surgical intervention [36], [51]. The disrupted electrical pathways cause the atria to 

quiver at irregular intervals at more rapid heart rates. As a result, the ventricles do not fill 

effectively and thus, the heart does not have adequate blood output to the lungs and the 

rest of body. Not having enough blood output means that insufficient oxygen and 
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nutrients to vital organs and tissues are provided. Such a condition is much more 

important during activities with more stress on the body like exercise, when the ventricles 

should increase blood supply to the rest of the body. So during strenuous activities, as the 

heart of a person suffering from AF does not provide an adequate increase of blood 

supply, vital organs may not receive the nutrients and oxygen needed for efficient 

function. 

Three kinds of AF have been diagnosed: (1) Paroxysmal AF, which is defined 

when the arrhythmia is self-terminating and typically lasts for less than seven days. (2) 

Persistent AF, which is defined when the arrhythmia is not self-terminating and lasts for 

more than a week. Because of not being self-terminating, some drugs may be prescribed 

to actively terminate AF. (3) Permanent AF, which is defined as constant arrhythmia and 

lasts for more than a year [31]. The first two types of AF may not have any symptoms 

and may result in more dangerous permanent AF [37]. 

 

FIGURE 6: AF DUE TO UN-COORDINATED PROPAGATION OF ELECTRICAL SIGNALS FROM THE SA NODE. TAKEN 

FROM: HTTP://WWW.SAINTVINCENTHEALTH.COM/SERVICES/HEART/HEART-RESOURCE-LIBRARY/ATRIAL-
FIBRILLATION/DEFAULT.ASPX. USED WITH PERMISSION. 

 

http://www.saintvincenthealth.com/Services/Heart/Heart-Resource-Library/Atrial-Fibrillation/default.aspx
http://www.saintvincenthealth.com/Services/Heart/Heart-Resource-Library/Atrial-Fibrillation/default.aspx
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Patients with paroxysmal or persistent AF may not have any symptoms, and only those 

with permanent atrial fibrillation may have noticeable symptoms. 

  



23 
 

 

 

 

 

CHAPTER III  

METHODS 

 

 

This chapter begins by introducing the MIT-BIH AF database in Section 3.1, 

which is used for training the algorithm developed for AF diagnosis. This is followed by 

Section 3.2, which gives a broad view of our detection algorithm. Five steps, including 

RR interval estimation, RMSSD and its usage in detecting AF, TPR and its usage in 

detecting AF, SE and its usage in detecting AF, and finally, the methods for training and 

testing our algorithms are explained in Section 3.2. Finally, Section 3.3 includes a brief 

overview of BBO as an evolutionary algorithm and its role in optimizing the tuning 

parameters in our detection algorithms.     

Current methods of detecting AF focus on statistical analysis which leads to the 

detection of anomalous heart signals in real-time. In our research, we show the 

improvements of the results of AF diagnosis by statistical analysis, and we discuss our 

method’s restrictions and limitations. As mentioned before, the main symptom of AF in 
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the heart signal is the variability and complexity in the duration of RR intervals, and this 

is the feature that is exploited by our AF detection algorithms.  

 

3.1 AF Databases 

Several databases of standard ECGs are available. The American Heart 

Association (AHA) Databases are for evaluation of ventricular arrhythmias.  They 

contain 155 recordings of ambulatory ECGs. The signals were sampled at 250 Hz and 

with a resolution of 12 bits over 20 mV. Each record has 2.5 hours of unannotated signals 

in addition to 30 minutes of annotated signals. Recordings belong to eight groups based 

on different levels of ectopic excitation. In the first group, Records 1001 to 1020 show no 

extra systoles, but records 8001 to 8010 have ECGs with ventricular fibrillation and show 

the highest level of ventricular ectopy [67]. 

The Ann Arbor Electrogram Libraries consist of more than 800 intracardiac 

electrograms and surface ECGs. This is a valuable database for the evaluation of 

algorithms for implantable cardiac devices [67]. The Common Standards for 

Electrocardiography (CSE) database has been mostly used as a reference for the 

evaluation of diagnostic ECG analyzers. Around 1000 recordings, measured with 12 or 

15 leads, are available in this database [67]. 

PhysioNet (http://physionet.org/) is a research resource with the goal of 

stimulation of current research and new investigations in the study of complex 

biomedical and physiologic signals. It includes three major components: PhysioBank, 

PhysioToolkit, and PhysioNetWorks [56]. 

http://physionet.org/
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PhysioBank is the name of an archive which includes well-characterized digital 

recordings of physiologic signals, time series, and related data for the biomedical 

research community usage. This archive currently has more than 50 collections of 

cardiopulmonary, neural, and other biomedical signals from both healthy subjects and 

patients with a variety of conditions with major public health implications, like sudden 

cardiac death, epilepsy, congestive heart failure, sleep apnea, gait disorders, and aging. 

The data was gathered from a wide range of studies and saved as a collection by members 

of the research community [56]. 

 The library of software known as PhysioToolkit is intended for physiologic 

signal processing and analysis, detection of physiologically significant events using both 

classical techniques and novel methods based on statistical physics and nonlinear 

dynamics, creation of new databases, interactive display and characterization of signals, 

simulation of physiologic and other signals, quantitative evaluation and comparison of 

analysis methods, and analysis of non-equilibrium and non-stationary processes. All 

PhysioToolkit software is available in source form under the GNU General Public 

License (GPL). 

The development of data and software resources, which will eventually become 

components of PhysioBank and PhysioToolkit, has been conducted in a virtual laboratory 

known as PhysioNetWorks. PhysioNetWorksprovides secure workspaces for active 

researchers to create well-organized and documented data and software repositories 

during the conduct of their research. With the completion of research and publications, 

the repository can be shared with a group of colleagues or the research community at 

large.  
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A wide variety and large quantity of well-characterized data and related open-

source software was collected and created for biomedical research by PhysioNet during 

its first 12 years. They were often created at great expense, and are available for re-use 

and further study without any cost by a worldwide community of more than 40,000 

researchers, clinicians, educators and students, and medical instrument and software 

developers. As of June 2011, a search in Google Scholar finds over 5000 publications and 

citations for PhysioNet and related terms [56]. 

Since 1975, the laboratories of PhysioNet at Boston's Beth Israel Hospital (now 

the Beth Israel Deaconess Medical Center) and at MIT have supported research into 

arrhythmia analysis and related subjects. The MIT-BIH AF database includes 25 long-

term ECG recordings of human subjects with atrial fibrillation (mostly paroxysmal). Each 

recording is 10 hours in duration and contains two ECG signals, each sampled at 250 

samples per second with 12-bit resolution over a range of ±10 millivolts. The original 

analog recordings were collected by using ambulatory ECG recorders with a typical 

recording bandwidth of approximately 0.1 Hz to 40 Hz [57]. 

For finding threshold values of statistical AF detection methods, including SE, 

RMSSD, and TPR, we used the MIT-BIH atrial fibrillation databases and their 

annotations. These databases include RR time series from 250 Hz ECG recordings. The 

MIT-BIH atrial fibrillation database is an ideal database as it has 25 ECG recordings with 

a total of 299 AF episodes. Each record is approximately 10 h in duration. 

These databases are available at http://physionet.org/cgi-bin/atm/ATM. There are 

different options to select the signal format based on user need. These options are as 

follows: the type of database (includes ECG signals extracted from patients with different 

http://physionet.org/cgi-bin/atm/ATM


27 
 

heart diseases), record number, annotations (what type of annotations to download), 

length (duration of signal), time format, and data format. In the Toolbox section of the 

web page, we can select the format of the databases. For example, by selecting the option 

“Show RR intervals as a text,” we can download a text file of RR intervals along with its 

time of recording; or by selecting “Export signals as .mat,” we can download the selected 

data in the form of a file that is readable by MATLAB. 

By considering the annotations and RR intervals of each database (selected from 

“Toolbox” section), we defined separate matrices with annotation of 0 and 1 for each 

database in C# and MATLAB. These matrices were used to obtain a mathematical cost 

function for tuning the parameters of the statistical AF detection methods. For this 

purpose, we defined an algorithm based on the start time of the RR intervals and the 

annotation time of the selected database. The annotation file tells you at what time the 

selected signal has the characteristics of AF (atrial fibrillation) or N (normal). We 

considered other heart arrhythmia annotations as N. Therefore, in our algorithm, based on 

the start time of the AF or N annotation, we annotated RR intervals as 1 for AF, and 0 for 

N. In other words, whenever the RR beat was annotated as normal (shown as N in the 

annotated database), we would record 0 for the RR beat, and if the RR beat was annotated 

as atrial fibrillation (shown as AF in the annotated database), we would record 1 for the 

RR beat. This resulted in a matrix of 1’s and 0’s with the same length as the RR interval 

database. Another thing which should be taken into consideration was that we did not 

include other heart arrhythmias in our algorithm. So if there was an annotation for other 

heart arrhythmias which was neither atrial fibrillation nor normal, we would consider it as 

normal and annotate it with 0. 
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Although the databases included the annotations of RR intervals (0 or 1) for each 

beat based on heart rate variability, and such annotations were highly correlated with the 

annotations AF and N, we found that lots of RR intervals were missing in the databases 

and this could have a large impact on the final results of the AF detection. We therefore 

developed an algorithm to correct this shortcoming. The procedure is explained in 

Appendix A, and that is why we decided to detect AF based on the database annotations 

and not on the heart rate variability.  

There are two ways to download the required data from the Physionet. The easiest 

way is to go to the http://physionet.org/cgi-bin/atm/ATM and select “MIT-BIH Atrial 

Fibrillation Database (afdb)” in the Database window. Then you have 25 records which 

could be selected in the record window. For having access to the RR intervals, you 

should select “Show RR intervals as text” in the Toolbox window and also select 

“unaudited beat annotations (qrs)” in the annotations window. In order to have access to 

the N and AF annotations, you should select “Show annotations as text” in Toolbox 

window and also select “reference rhythm annotations (atr)” for the Annotations window. 

If you click on the “.txt” file in the window titled by “The output below was prepared 

using this command:”, you will have the desired database. In order to evaluate the signal 

more accurately with clear annotations and differences between the RR intervals, please 

see http://www.physionet.org/lightwave/.  

Another way that we used for collecting the required databases was to download 

the PhysioToolkit. It is helpful software for viewing, analyzing, and simulating the 

required data. For more information and exploring how to work with it please see 

http://www.physionet.org/physiotools/getting-started.shtml.   

http://physionet.org/cgi-bin/atm/ATM
http://www.physionet.org/lightwave/
http://www.physionet.org/physiotools/getting-started.shtml
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3.2 AF Detection Algorithms 

We developed our algorithm based on the generally accepted hypotheses that AF 

results in a significant increase in both the variability and complexity of the RR interval 

series [23]. For our AF detection algorithms, each series of RR intervals in each database 

was first divided into overlapping   beat segments.   as well as other parameters was 

optimized by biogeography-based optimization (BBO), as discussed in Section 3.3. These 

variables were tuned separately for each statistical method (RMSSD, SE, and TPR). The 

statistical methods analyze the heart rate variability (HRV) to determine whether or not 

each   beat segment has the characteristics of AF.  

These statistical methods are as follow: TPR, which is a nonparametric test that 

measures the randomness of the RR interval fluctuations; RMSSD, which is a parametric 

test that measures the variability of the RR intervals; and SE, which is a parametric test 

that measures the complexity of the RR intervals. As RMSSD and SE are parametric 

tests, they were affected by distribution assumptions. Therefore, we removed the shortest 

  (another parameter that was tuned by BBO) and longest   beats of each   beat 

segment prior to implementing RMSSD and SE. In the final analysis, each   beat 

segment of RR intervals annotated as AF if the corresponding statistical method 

classified it as AF. 

3.2.1 RR Interval Estimation 

The first step of our algorithm was to determine the RR intervals. For that 

purpose, we used a variation of the heart beat detection algorithm introduced by Pan and 

Tompkins [40]. We extracted the QRS sequences of the heart beats in the ECG. We used 
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a band pass filter with a pass band frequency range of 5 to 90 Hz [26]. In order to isolate 

the QRS sequence, we performed a three-step process (Figure 7).  

 

 

FIGURE 7: THE QRS ISOLATION PROCESS. TAKEN FROM [26]. USED WITH PERMISSION. 

 

First, we differentiated the ECG waveform to increase the magnitude of the QRS 

sequence. Second, for eliminating negative portions of the waveform, and to further 

increase the magnitude of the differentiated QRS sequence, we squared the results of the 

previous step. Lastly, we integrated the signal to better detect the local maximum values 

of the QRS sequence. Moving-window integration with a window size of 150 

milliseconds was used [41]. 

Once the QRS waveforms were isolated, we detected the peaks of the beats. Peak 

values were considered as the points at which the QRS segments changed slope. After 

peak detection, we specified the time between QRS segments which was equal to the 

time of the RR interval of each beat. After determining the RR intervals for each signal, 

we designed an algorithm to classify a heart rhythm into two major categories: normal 

sinus rhythm, or AF. Three statistical methods were used for detection of the irregularity 
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of the RR intervals, which defined heart rate variability (HRV): RMSSD, TPR and SE 

[25]. 

3.2.2 Root Mean Squares of Successive Differences  

 RMSSD is a parametric test and measures the variability within a data set. The 

mathematical definition of the RMSSD is the square root of the average of the squares of 

each of the differences between the RR intervals. Firstly, we divided each series of RR 

intervals into overlapping   beat segments. As RMSSD was affected by the distribution 

assumption, we removed the   largest and the   smallest RR intervals. Therefore, the 

    remaining RR intervals were evaluated as follows: 

          RMSSD= 
 

      
          

       
     (2) 

In this equation   is the number of RR intervals which determines our moving 

window,   is the number of outliers of largest and smallest RR intervals, and    is the    

j-th RR interval. We divided the RMSSD by the mean RR value for each segment to 

compensate for any changes in the heart rate over time and for premature ventricular 

contractions. In our algorithm, the beats classified as AF or N based on the term   

RMSSD / (mean RR); if the result was bigger than the threshold, the evaluated beat was 

annotated as AF. 

We had three tuning parameters for RMSSD which need to be determined by our 

optimization algorithm. Table II shows the ranges which were considered for tuning 

parameters according to previous studies. 
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Moving Window ( ) [50 – 160] 

Number of Outliers ( ) [0 – 20] 

Threshold Value (0,1) 

TABLE II: TUNING PARAMETERS FOR RMSSD. THIS TABLE SHOWS THE PARAMETERS OF RMSSD AND THE 

ALLOWABLE RANGE OF EACH OF THEM. PARENTHESES “()” SHOW THAT THE PARAMETER IS A REAL NUMBER IN 

THE GIVEN RANGE. SQUARE BRACKETS “[]”SHOW THAT THE PARAMETER IS AN INTEGER IN THE GIVEN RANGE. 

 

3.2.3 Turning Points Ratio 

Turning Points Ratio (TPR) is a non-parametric statistical method which 

measures the randomness of RR intervals. As it is a nonparametric test, it is not affected 

by the distribution of the data set, unlike SE and RMSSD. The points which are either 

greater or less than both the following and previous points will be considered as turning 

points. TPR evaluates the number of turning points in the RR interval sequence relative 

to the maximum possible number of turning points. White noise is expected to have a 

turning point about every 1.5 data points. The expected number of turning points is 
    

 
  

with a standard deviation of  
      

  
 for a set of random data points of arbitrary length   

[53]. 

In our algorithm, if the TPR of the selected sequence of RR intervals was greater 

or less than threshold values, the related beats would be considered as AF. Therefore, for 

the TPR, we had three parameters which needed to be tuned (Table III). 
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Moving Window ( ) [50 – 160] 

Upper Threshold  (0.5,1) 

Lower Threshold  (0,0.7) 

TABLE III: TUNING PARAMETERS FOR TPR. THIS TABLE SHOWS THE TUNING PARAMETERS OF TPR AND THE 

SELECTED RANGE OF EACH OF THEM. PARENTHESES “()” SHOW THAT THE PARAMETER IS A REAL NUMBER IN THE 

GIVEN RANGE. SQUARE BRACKETS “[]”SHOW THAT THE PARAMETER IS AN INTEGER IN THE GIVEN RANGE. 

 

3.2.4 Shannon Entropy  

Another parametric statistical method which measures the uncertainty of a 

random variable is Shannon Entropy (SE). The complexity of a data set and the 

predictability of the following data points are related to SE. As SE is also a parametric 

method, like RMSSD, it is sensitive to outliers. Therefore, the   smallest and   largest 

RR intervals were determined to be outliers in our moving window of length  .  

SE is 0 for a completely predictable constant single value; and its value for 

completely random data, like white noise, would be 1. As atrial fibrillation is associated 

with higher uncertainty, it would have a higher SE value than a normal sinus rhythm. 

After removing outliers, the remaining data points in each   beat segment were 

used to construct a histogram with   equally spaced bins. Therefore,   was another 

parameter tuned by BBO. We need to use enough bins to provide sufficient resolution. As 

the number of bins approached infinity, the value of SE became zero. Finally, the number 

of RR intervals in each bin was counted. 

 The probability for each bin is defined as follows: 

       
  

           
                                                     (3) 
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   is the number of beats in that particular bin,   is the segment length, and           is 

the number of outliers. Shannon Entropy is then calculated by equation (4): 

                      
          

     
 

 
 

 
                                                  (4) 

If the moving window had SE > threshold value the representative beat would be 

annotated as AF. Therefore, we had four tuning parameters for SE, as shown in Table IV. 

Moving Window ( ) [50 – 160] 

Number of Outliers ( ) [0 – 20] 

Number of Bins ( ) [14 – 38] 

Threshold value  (0,1) 

TABLE IV: TUNING PARAMETERS FOR SE. THIS TABLE SHOWS THE TUNING PARAMETERS OF SE AND THE GIVEN 

RANGE OF EACH OF THEM. PARENTHESES “()” SHOW THAT THE PARAMETER IS A REAL NUMBER IN THE GIVEN 

RANGE. SQUARE BRACKETS “[]”SHOW THAT THE PARAMETER IS AN INTEGER IN THE GIVEN RANGE. 

 

In the previous studies [23], [53], the optimum beat numbers of the moving 

window, the number of outliers, the lower thresholds, and the upper thresholds for the 

statistical techniques were evaluated. The ranges which we used in Table II, Table III, 

and Table IV are based on previous results, and are also based on the initial results of our 

program. If our program output the minimum or maximum value as the optimum 

parameter, we would expand the range of the tuning parameter in a second evaluation. 

This trend continued until no minimum or maximum number in the selected range was 

output as the best solution.   

3.2.5 Training and Testing the Algorithm   

We trained our algorithm with MIT-BIH AF databases and their annotated RR 

intervals to find the optimal values for the parameters of each statistical method. By using 
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BBO [42], we found out which tuning parameters and threshold values provided the best 

sensitivity, specificity, and finally the best accuracy for each of the patient data sets. The 

annotations of the MIT-BIH AF were used as the reference for tuning the parameters. 

Therefore, the cost function of our algorithm was defined by the beat to beat differences 

between the reference annotations and the annotations of our algorithm.  

Then we divided the AF diagnosis of each beat into four categories: True Positive 

(both the algorithm and database annotated as AF), True Negative (both the algorithm 

and database annotated as normal), False Positive (those that the algorithm denoted as 

AF, but the database denoted as normal), and False Negative (those that the algorithm 

denoted as normal, but the database denoted as AF). After determining these values, the 

performance of our algorithm was calculated by measuring the sensitivity and the 

specificity. Sensitivity measures the ability of the algorithm to detect AF and specificity 

measures the ability of the algorithm to detect normal beats [25]. Lastly, the accuracy of 

the algorithm is defined as the product of sensitivity and specificity as follows.  

            
             

                            
         (5) 

            
             

                            
        (6) 

                                       (7) 

In the training process, we were able to obtain an accuracy of more than 99% for 

both Root Mean Square of Successive Differences and Shannon Entropy. Accuracy was 

more than 98% for Turning Point Ratio. The highest average accuracy in the testing 

process of the algorithm was 75% achieved by using the trained parameters of the 

RMSSD method. Details will be discussed in Chapter 4. 
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3.3 Biogeography-Based Optimization  

BBO is relatively new evolutionary algorithm and has shown good performance 

on unconstrained and constrained benchmark functions [58]-[61] and on real-world 

optimization problems such as sensor selection [42], economic load dispatch[62], robot 

controller tuning [63], satellite image classification [64], and power system optimization 

[65]. Differences between BBO and GAs were discussed in [54].  Markov model 

comparisons and benchmark simulation results were evaluated to show that the BBO is a 

competitive evolutionary algorithm (EA) [66]. It was also proven that BBO with 

mutation converges to the global optimum of any binary or discrete optimization problem 

[66].  

Before talking about BBO, we will first provide a quick review of other EAs. 

Tabu search (TS) is an EA which was introduced in 1986 [68]. Tabu, or taboo, means 

forbidden or banned and refers to forbidden speech or items which can be based on 

religion, morality, or culture. As it is based on the natural world, it can be used to create 

an EA. The main idea of the TS is that if a certain region of a search space has already 

been visited during the search process, then it is forbidden (taboo) to be evaluated again 

[44]. The same idea could be applied to the search strategy. This means that if a certain 

strategy has already been used during the search process, that strategy should be 

disregarded from using it again.  

The artificial fish swarm algorithm (AFSA) [69] is based on the swarming 

behavior of fish. Different behaviors of fish were evaluated to create an algorithm that 

can find the solution to an optimzation problem. For example, when the fish is alone or 

when the optimization process has stagnated (failure of the best individual in the 
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population to significantly improve in new generations), random behavior occurs [69]. 

Another example is the chasing behavior of fish. This happens when another fish, which 

is chased, is at the location of highest food concentration. Such behaviors in AFSA are 

nicely discussed in [44]. Overall, in AFSA, the fish changes its position only if the new 

position is better than the old one. This behavior is similar to particle swarm optimization 

(PSO). 

In PSO, groups of individuals work together to improve both collective 

performance and individual performance on some task. Such behaviors can be seen not 

only among animals but also among humans. By improving our performance at some 

task, we adjust our approach based on some basic ideas, including inertia, influence of 

society, and influence of neighbors [44], [70].  

Another EA which is based on the food forging behavior of animals is group 

search optimization (GSO).The algorithm is very similar to AFSA and bacterial forging 

optimization. However, GSO is based on the behavior of land-based animals [71]. Some 

animals try to find food by searching (producers), and some others (joiners) try to follow 

other animals and exploit their food-finding success. The last group of animals (rangers) 

randomly walks to search for resources. The migration in BBO (which will be discussed 

in this chapter) is conceptually similar to a combination of two ideas from the GA 

literature: global recombination and uniform crossover [54]. In global recombination, 

which originated with evolutionary strategies (ES), many parents can contribute features 

to a single offspring. “Global recombination strays from the biological foundation of GAs 

because individuals in nature cannot have more than two parents” [54].  
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In uniform crossover, each solution feature in an offspring is generated 

independently from every other solution feature. By combining global recombination and 

uniform crossover, global uniform recombination is obtained. By considering the entire 

population as potential contributors to the next generation, and also using fitness-based 

selection for each solution feature in each offspring, we conclude that the GA algorithm 

is very similar to BBO; in other words, BBO is a generalization of a specific type of GA 

[54]. 

In order to improve the AF detection results, we found out which of the three 

statistical methods had the most accuracy for evaluating the ECG signals, and improved 

our results via BBO [42], [43]. This is the first time that an evolutionary algorithm was 

used to optimize the parameters of statistical methods for atrial fibrillation diagnosis. 

BBO was selected in this research because it was previously demonstrated to be an 

effective evolutionary algorithm for many real world optimization problems, like 

hydraulic prosthetic knee control optimization [42]. 

 BBO is based on the concept of biogeography and species migration between islands 

(which are also known as habitats). Habitats are classified based on their habitability; 

geographical areas well-suited for species have a high habitat suitability index (HSI) [42]. 

The factors that characterize a habitat’s HSI are known as suitability index variables 

(SIVs). Rainfall, diversity of vegetation, diversity of topographic features, land area, and 

temperature are some of the features that impact HSI  In our research, the SIVs were the 

parameters used to determine the threshold values of the three statistical methods and 

other parameters defined in previous sections; therefore, we had 10 parameters total 

(Table V). The HSI was the cost of the detection algorithm, which was the error between 
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the annotated AF values and the actual annotated values determined by the detection 

algorithm. Good performance of a candidate solution was characterized by a low cost 

[44]. 

Moving Window (# of RR interval segment) for TPR [50 – 160] 

Moving Window (# of RR interval segment) for RMSSD [50 – 160] 

Moving Window (# of RR interval segment) for SE [50 – 160] 

Upper Threshold Value for TPR (0.5,1) 

Lower Threshold Value for TPR (0,0.7) 

Threshold Value for SE (0,1) 

Threshold Value for RMSSD (0,1) 

# of Bins for SE [14 – 38] 

# of Outliers for SE [0 – 20] 

# of Outliers for RMSSD [0 – 20] 

TABLE V: ALL AF DIAGNOSIS PARAMETERS TUNED BY BBO. PARENTHESES “()” SHOW THAT THE PARAMETER IS 

A REAL NUMBER IN THE RANGE SHOWN IN PARENTHESES. SQUARE BRACKETS “[]”SHOW THAT THE PARAMETER 

IS AN INTEGER IN THE GIVEN RANGE. 

 

 Habitats with high HSI have high emigration rates, and low immigration rates. 

This indicates that those habitats are likely to share their SIVs with other habitats. “This 

is because these habitats have a diverse set of populations with constant breeding, which 

leaves little room for immigration, and a lot of room for emigration” [41]. The opposite is 

true for habitats with low HSI. As the suitability of a habitat is related to its diversity, the 

HSI of low HSI habitats may increase by the immigration of species [42], which is why 

high HSI habitats resist changes compared to their low HSI counterparts. 
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In Figure 8, the immigration (λ) and emigration rates (μ) of a single habitat are 

shown. S1 and S2 are two candidate solutions with different measures of fitness. S1, 

which has low fitness (high cost), will have a large number of immigrations, and a small 

number of emigrations. S2, which has high fitness (low cost), will have a small number 

of immigrations, and a large number of emigrations. That is, good candidate solutions 

resist receiving features from other candidate solutions and vice versa [41], [44].  

 

FIGURE 8: MIGRATION CURVES AND TWO CANDIDATE SOLUTIONS S1 AND S2, WHERE E AND I ARE THE 

MAXIMUM EMIGRATION AND IMMIGRATION RATES RESPECTIVELY. BASED ON [42]. COPYRIGHT  2008, IEEE. 
USED WITH PERMISSION. 

 

BBO also uses mutation and elitism to achieve optimal results for a given 

problem. In mutation, we replace each of the SIVs in the candidate solutions with a 

certain probability in each generation. If the SIV was selected to mutate, it is replaced 

randomly with another SIV selected from its given range. Mutation could lead to a better 

or worse new candidate solution, but in BBO, only the best solutions have a good chance 

to survive. Mutation was applied to each SIV after each cycle of migration. 

One generation of BBO is completed when all the candidate solutions complete 

their cycles of migration and mutation. After completing a generation, features of the best 
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candidate solutions have been shared with other candidate solutions, have mutated, and 

most probably have resulted in better solutions. 

Finally, elitism occurs when the best candidate solutions from the previous 

generation are added to the population. By using elitism, BBO guarantees that the best 

individuals never get worse from one generation to the next. The BBO algorithm is 

explained in detail as follows (although, for simplicity of notation, elitism is not included 

in the following description). 

For each candidate solution             , define emigration probability     fitness of             

For each candidate solution    define immigration probability          

    

For each candidate solution    

For each feature   

Use    to probabilistically decide whether to immigrate to    

If immigrating then  

Use      to probabilistically select the parent solution    

            

End if 

Next solution feature 

Probabilistically mutate    

Next candidate solution 

    

 

FIGURE 9: A DESCRIPTION OF ONE GENERATION OF BBO. N IS THE NUMBER OF CANDIDATE SOLUTIONS, AND Z IS 

A TEMPORARY SET OF SOLUTIONS SO THAT NO SOLUTIONS ARE REPLACED IN A GIVEN GENERATION UNTIL AFTER 

THE COMPLETION OF THE MIGRATION AND MUTATION PROCESS. BASED ON [54]. 

 

The best BBO parameters for optimizing the tuning parameters of the AF detection 

methods are shown in Table VI. 
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Mutation Rate  0.1 

Keep Rate  0.2 

Population Size (Number of Candidate 
Solutions)  

50 

Number of Generations  100 

TABLE VI:  PARAMETER VALUES USED IN BBO. 

 

Number of generations determines the number of repetitions of the main loop of 

the BBO algorithm. This number should be chosen based on the optimal output of the 

cost function. We chose 100 because increasing the number did not have any impact on 

the final optimum cost function. In other words, based on our experiments, after 100 

generations we did not have any improvements of the cost function. 

 For population size (or number of habitats) we chose 50. By increasing the 

population size, we would have more candidate solutions to evaluate, resulting in more 

optimal solutions; however, more time would be required to process the solutions. Keep 

Rate determines the portion of the new population which was chosen from the best results 

of the old population. We kept 20% of the old population in each generation. As we have 

50 individuals in the population, the number of kept solutions would be 10, and therefore 

40 candidate solutions were chosen from the new population. This parameter defines the 

elitism option. Finally, Mutation Rate is the probability of mutating the candidate 

solutions. In our algorithm, the mutation rate is 10%. 

These values were achieved by trials considering the maximum accuracy of the 

final results and the time required to run the program. Before choosing these parameters, 

the best results were achieved by 60 generations, a population size of 30, 5% keep rate, 

and 2% mutation rate. By increasing the number of generations, population size, keep 
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rate, and mutation rate, we were able to be more certain about the maximum accuracy 

achieved by the program.    
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CHAPTER IV  

RESULTS 

 

 

We used the RR intervals of 25 patients diagnosed with atrial fibrillation. These 

data can be found in the MIT-BIH AF. Based on the annotations which were available for 

each database, we defined a vector for each database with the same length as the number 

of RR intervals and annotated each RR interval with 1 or 0, where 1 indicates that the RR 

interval was diagnosed as AF, and 0 corresponds to normal. We also generated three 

vectors which were the results of the evaluation of RR interval variability determined by 

root mean squares of successive differences, Shannon entropy, and turning points ratio. 

In these three vectors 1 represents AF and 0 shows normal RR intervals.  

Therefore, four vectors with annotations of 0 or 1 for each heart beat in each 

database were defined based on the RR intervals, including the one vector defined on the 

basis of the annotations in the MIT-BIH AF database, and three vectors based on the RR 

interval variability evaluation of the three statistical methods. The beat to beat differences 

between the MIT-BIH AF annotations, and the statistical method annotations, defined the 
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cost functions for each AF detection method. These cost functions were used by 

biogeography-based optimization (BBO) to optimize the AF detection algorithm tuning 

parameters. We defined the specificity, sensitivity, and accuracy of each detection 

method. Based on the vectors defined above, each beat was categorized into one of four 

groups. 

If the beat was correctly flagged as AF, then it was considered a true positive 

(TP). If the best was correctly flagged as normal, then it was considered a true negative. 

If the beat was incorrectly flagged as normal, then it was considered a false negative 

(FN). Finally, if the beat was incorrectly flagged as AF, then it was considered a false 

positive (FP). The performance of each AF detection algorithm was calculated by 

calculating the sensitivity (Equation 5) and the specificity (Equation 6). Sensitivity 

measures the ability of the algorithm to detect AF, and the specificity measures the ability 

of the algorithm to detect normal beats [25]. The accuracy of the algorithm is the ultimate 

measure of performance and is defined as the product of sensitivity and specificity 

(Equation 7). The cost function of the BBO is defined based on accuracy and is used to 

optimize the tuning parameters of the statistical methods: 

                               (8) 

Each generation, BBO tries to reduce the cost function, or maximize the accuracy. 

We had 10 tuning parameters (Table V) for the statistical methods which are tuned by 

using the BBO. Figures 10 and 11 show how BBO optimized the detection accuracy by 

tuning the parameters of the RMSSD as the statistical AF detection method. RMSSD 

showed the highest average accuracy (more than 99%) for records 00735, 04746, 08215, 

and 08455. Record 04746 was selected for Figures 10 and 11 to show how BBO finds the 
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minimum cost in each generation and finally solves for tuning parameters that give the 

highest accuracy.   

Initial Generation   Cost= 0.0111396937358171   beats= 111  _outliers= 11 Threshold= 0.106779255208922 

Generation 1    Cost= 0.0108763130167041   _beats= 111    _outliers= 11    Threshold= 0.105402126527964 

Generation 2    Cost= 0.0108763130167041   _beats= 111    _outliers= 11    Threshold= 0.105402126527964 

Generation 3    Cost= 0.0103622011237688   _beats= 125    _outliers= 11    Threshold= 0.10297194658917 

Generation 4    Cost= 0.0100726734382413   _beats= 121    _outliers= 11    Threshold= 0.0969434562795183 

Generation 5    Cost= 0.0100083339525685   _beats= 125    _outliers= 11    Threshold= 0.100028091834807 

Generation 6    Cost= 0.0100083339525685   _beats= 125    _outliers= 11    Threshold= 0.100028091834807 

Generation 7    Cost= 0.0099855765841464  _beats= 125     _outliers= 11    Threshold= 0.0969434562795183 

Generation 8    Cost= 0.0098096261534445   _beats= 123    _outliers= 10    Threshold= 0.100028091834807 

Generation 9    Cost= 0.0098096261534445   _beats= 123    _outliers= 10    Threshold= 0.100028091834807 

Generation 10   Cost= 0.0098096261534445  _beats= 123     _outliers= 10    Threshold= 0.100028091834807 

Generation 11   Cost= 0.0098096261534445   _beats= 123    _outliers= 10    Threshold= 0.100028091834807 

Generation 12   Cost= 0.0098096261534445   _beats= 123    _outliers= 10    Threshold= 0.100028091834807 

Generation 13   Cost= 0.0098096261534445   _beats= 123    _outliers= 10    Threshold= 0.100028091834807 

Generation 14   Cost= 0.0098096261534445   _beats= 123    _outliers= 10    Threshold= 0.100028091834807 

. 

. 

. 
 

Generation 98    Cost= 0.00972262456629724   _beats= 123    _outliers= 11    Threshold= 0.0931333345727444 

Generation 99   Cost= 0.00972262456629724   _beats= 123     _outliers= 11    Threshold= 0.0931333345727444 

Generation 100   Cost= 0.00972262456629724   _beats= 123   _outliers= 11    Threshold= 0.0931333345727444 

Accuracy = 1  Cost= 0.990277375433703 

 

FIGURE 10: OPTIMIZING RMSSD PARAMETERS BY USING BBO. COST HERE DEFINED AS 1-ACCURACY; N_BEATS 

IS OUR MOVING WINDOW FOR SELECTING RR INTERVALS IN RMSSD ALGORITHM; M_OUTLIERS IS NUMBER OF 

MINIMUMS AND MAXIMUMS WHICH ARE DISREGARDED FROM THE MOVING WINDOW; AND FINALLY THRESHOLD 

IS THE THRESHOLD VALUE FOR RMSSD. 
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FIGURE 11: COST VS. 100 GENERATIONS FOR RMSSD BY USING BBO. 

 

As can be seen in Figures 10 and 11, in each generation, BBO kept the best 

solution from one generation to the next. Each generation (100 in our algorithm), the cost 

of each individual (50 in our algorithm) was calculated and then sorted from minimum to 

maximum, and the best one was preserved for the next generation. Sometimes the best 

solution appeared in an early generation (in this case, in generation 47) and remained the 

best in the following generations. This was because we selected an acceptable population 

size for our algorithm. In fact, there was a trade-off between the size of the population 

and the generation limit. For example, if we selected a smaller population, the best 

solution might appear in later generations. But if the population size was too small, the 

best solution might never appear in the population. Therefore, by choosing an acceptable 

population size and generation limit, we made sure that BBO performed as well as 

possible.     

The data presented in Figures 12 and 13 show the capability of BBO in tuning the 

parameters of the SE. As can be seen, the best cost was found after the 12th generation. 

These figures show that by optimizing the SE parameters, the statistical method is able to 
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detect AF with an accuracy of 99%. Records 08215 and 08455 in the training databases 

showed the best performance in terms of accuracy. Record 08215 was selected for the 

following figures to show the capability of BBO to tune the parameters of SE for the 

highest accuracy. 
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Initial Generation   Cost= 0.009296279239    _beats= 66    _outliers= 13 Threshold= 0.7611819099451     _bins= 32 

 Generation 1    Cost= 0.009296279239553    _beats= 66    _outliers= 13 Threshold= 0.7611819099451    _bins= 32 

 Generation 2    Cost= 0.009296279239553    _beats= 66    _outliers= 13 Threshold= 0.7611819099451    _bins= 32 

 Generation 3    Cost= 0.008500282147575    _beats= 70    _outliers= 13 Threshold= 0.7615733097779    _bins= 32 

 Generation 4    Cost= 0.008500282147575    _beats= 70    _outliers= 13 Threshold= 0.7615733097779    _bins= 32 

 Generation 5    Cost= 0.008500282147575    _beats= 70    _outliers= 13 Threshold= 0.7615733097779    _bins= 32 

 Generation 6    Cost= 0.008463476889218    _beats= 70    _outliers= 13 Threshold= 0.7615733097779    _bins= 34 

 Generation 7    Cost= 0.008366047732972    _beats= 70    _outliers= 13 Threshold= 0.7632903469860    _bins= 34 

 Generation 8    Cost= 0.008366047732972    _beats= 70    _outliers= 13 Threshold= 0.7632903469860    _bins= 34 

 Generation 9    Cost= 0.007720494717098    _beats= 66    _outliers= 11 Threshold= 0.7632903469860    _bins= 34 

 Generation 10    Cost= 0.00772049471709    _beats= 66    _outliers= 11 Threshold= 0.7632903469860    _bins= 34 

 Generation 11    Cost= 0.00772049471709    _beats= 66    _outliers= 11 Threshold= 0.7632903469860    _bins= 34 

 Generation 12    Cost= 0.00756292275816    _beats= 66    _outliers= 11 Threshold= 0.7632903469860    _bins= 33 

 Generation 13    Cost= 0.00756292275816    _beats= 66    _outliers= 11 Threshold= 0.7632903469860    _bins= 33 

 Generation 14    Cost= 0.00756292275816    _beats= 66    _outliers= 11 Threshold= 0.7632903469860    _bins= 33 

. 

. 

. 
 Generation 98    Cost= 0.00756292275816     _beats= 66    _outliers= 11 Threshold= 0.763290346986    _bins= 33 

 Generation 99    Cost= 0.00756292275816     _beats= 66    _outliers= 11 Threshold= 0.763290346986    _bins= 33 

 Generation 100    Cost= 0.00756292275816    _beats= 66  _outliers= 11 Threshold= 0.763290346986    _bins= 33 

Accuracy = 1  Cost= 0.992437077241838 

 

FIGURE 12: OPTIMIZING SE PARAMETERS BY USING BBO. COST HERE DEFINED AS 1-ACCURACY; N_BEATS IS 

OUR MOVING WINDOW FOR SELECTING RR INTERVALS IN SH ALGORITHM; M_OUTLIERS IS THE NUMBER OF 

MINIMUMS AND MAXIMUMS WHICH ARE DISREGARDED FROM THE MOVING WINDOW; THRESHOLD IS THE 

THRESHOLD VALUE FOR SE; AND FINALLY N_BINS IS THE NUMBER OF THE SELECTED BINS.     
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FIGURE 13: COST VS. 100 GENERATIONS FOR SE BY USING BBO. 

 

Figures 14 and 15 show 98% accuracy for the ability of TPR to detect AF. Record 

08215 showed the highest accuracy in detecting AF by the use of TPR method. This 

record was chosen in Figures 14 and 15 to show the ability of BBO to tune the 

parameters of TPR.  
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Initial Generation Cost= 0.020944013083    _beats= 137   Threshold1= 0.53423807776   Threshold2= 0.85609632414 

 Generation 0    Cost= 0.020944013083    _beats= 137   Threshold1= 0.53423807776   Threshold2= 0.85609632414 

 Generation 1    Cost= 0.020590635379    _beats= 117   Threshold1= 0.50369140280   Threshold2= 0.91304857007 

 Generation 2    Cost= 0.019919421985    _beats= 119   Threshold1= 0.51314058269   Threshold2= 0.88774937461 

 Generation 3    Cost= 0.019919421985    _beats= 119   Threshold1= 0.51314058269   Threshold2= 0.88774937461 

 Generation 4    Cost= 0.019784626784    _beats= 117   Threshold1= 0.51509741036   Threshold2= 0.85668510978 

 Generation 5    Cost= 0.018899323076    _beats= 113   Threshold1= 0.51305878700   Threshold2= 0.89631980066 

 Generation 6    Cost= 0.018899323076    _beats= 113   Threshold1= 0.51305878700   Threshold2= 0.89631980066 

 Generation 7    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

 Generation 8    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

 Generation 9    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

 Generation 10    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

 Generation 11    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

 Generation 12    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

 Generation 13    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

 Generation 14    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

.  

.  

.  
 Generation 47    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

 Generation 48    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

 Generation 49    Cost= 0.018389371021    _beats= 110   Threshold1= 0.51305878700   Threshold2= 0.88774937461 

Accuracy= 1  Cost= 0.98161062897846 

 

FIGURE 14: OPTIMIZING TPR PARAMETERS BY USING BBO. COST HERE DEFINED AS 1-ACCURACY; N_BEATS IS 

OUR MOVING WINDOW FOR SELECTING RR INTERVALS IN TPR ALGORITHM; THRESHOLD1 IS THE LOWER 

THRESHOLD VALUE FOR TPR; AND THRESHOLD2 IS THE UPPER THRESHOLD VALUE FOR TPR.     
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FIGURE 15: COST VS. 100 GENERATIONS FOR TPR BY USING BBO. 

 

Figures 1015 show the training of the statistical methods. These figures show the 

databases with the highest accuracy in the training process. For RMSSD, for example, we 

can see the increase in the accuracy from around 98% in generation 1 to more than 99% 

in the last generation. The same trend of increasing the accuracy by 1% is shown for TPR 

and SE.  However, this does not mean that these databases give the best test results. This 

will be discussed more later.      

The next three tables show the training sensitivity, specificity, and accuracy of the 

statistical methods applied to the MIT-BIH AF databases. RMSSD showed its capability 

to detect AF by achieving the accuracy of 99% for some of the databases (Table VII).  

This fact is apparent in the databases with high accuracy which is the result of the AF 

detection with high specificity and high sensitivity. Such a trend is also obvious in the 

accuracy results achieved by SE (Table VIII) and TPR (Table IX). 
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Database Sensitivity Specificity Accuracy 
00735 1 0.99 0.99 
03665 0.93 0.80 0.75 
04015 1 0.91 0.91 
04043 0.95 0.76 0.71 
04048 0.97 0.96 0.93 
04126 0.95 0.93 0.89 
04746 1 0.99 0.99 
04908 0.96 0.92 0.88 
04936 0.86 0.88 0.76 
05091 0.92 0.92 0.84 
05121 0.97 0.88 0.86 
05261 0.86 0.79 0.67 
06426 0.89 0.47 0.42 
06453 0.88 0.94 0.83 
06995 0.93 0.91 0.85 
07162 1 0 0 
07859 0.87 1 0.87 
07879 1 0.89 0.89 
07910 0.99 0.98 0.97 
08215 1 0.99 0.99 
08219 0.90 0.74 0.67 
08378 0.99 0.97 0.96 
08405 1 0.97 0.97 
08434 0.99 0.93 0.92 
08455 1 0.99 0.99 

TABLE VII: TRAINING ACCURACY OF RMSSD FOR DETECTING AF. THIS TABLE SHOWS THE SENSITIVITY, 
SPECIFICITY, AND ACCURACY OF RMSSD FOR EACH MIT-BIH AF DATABASE. BBO WAS USED FOR TUNING THE 

RMSSD PARAMETERS. 
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Database Sensitivity Specificity Accuracy 
00735 0.83 0.82 0.68 
03665 0.99 0.95 0.94 
04015 0.98 0.92 0.90 
04043 0.91 0.88 0.81 
04048 0.80 0.94 0.75 
04126 0.88 0.86 0.76 
04746 0.93 0.91 0.84 
04908 0.97 0.98 0.95 
04936 0.83 0.85 0.71 
05091 0.67 0.87 0.58 
05121 0.95 0.86 0.82 
05261 0.71 0.97 0.69 
06426 0.79 0.74 0.59 
06453 0.91 0.95 0.87 
06995 0.92 0.88 0.81 
07162 0.98 1 0.98 
07859 0.95 1 0.95 
07879 0.98 0.96 0.95 
07910 0.98 0.99 0.97 
08215 1 0.99 0.99 
08219 0.91 0.93 0.85 
08378 0.96 0.93 0.90 
08405 0.99 0.99 0.98 
08434 0.97 0.94 0.91 
08455 0.99 1 0.99 

TABLE VIII: TRAINING ACCURACY OF SE FOR DETECTING AF. THIS TABLE SHOWS THE SENSITIVITY, SPECIFICITY, 
AND ACCURACY OF SE FOR EACH MIT-BIH AF DATABASE. BBO WAS USED FOR TUNING THE SE PARAMETERS. 
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Database Sensitivity Specificity Accuracy 
00735 0.84 0.92 0.77 
03665 0.86 0.68 0.59 
04015 0.95 0.77 0.73 
04043 0.77 0.79 0.62 
04048 0.83 0.83 0.69 
04126 0.85 0.70 0.60 
04746 0.92 0.82 0.76 
04908 0.92 0.97 0.90 
04936 0.72 0.82 0.59 
05091 0.84 0.76 0.64 
05121 0.96 0.86 0.82 
05261 0.79 0.77 0.60 
06426 0.62 0.62 0.38 
06453 0.81 0.87 0.70 
06995 0.81 0.74 0.60 
07162 0.72 1 0.72 
07859 0.68 1 0.68 
07879 0.96 0.86 0.83 
07910 0.67 0.65 0.44 
08215 1 0.98 0.98 
08219 0.87 0.67 0.58 
08378 0.96 0.97 0.93 
08405 0.98 0.85 0.83 
08434 0.85 0.61 0.51 
08455 0.98 0.98 0.96 

TABLE IX: TRAINING ACCURACY OF TPR FOR DETECTING AF. THIS TABLE SHOWS THE SENSITIVITY, SPECIFICITY, 
AND ACCURACY OF TPR FOR EACH MIT-BIH AF DATABASE. BBO WAS USED FOR TUNING THE TPR 

PARAMETERS. 

 

After training the parameters of the statistical methods by BBO on 25 MIT-BIH 

AF databases (Tables VII, VIII and IX), we tested the results of each statistical method 

on the remaining 24 databases of the MIT-BIH AF together to see which statistical 

method has the best accuracy. We had 25 databases, and for each of them we obtained 3 

sets of tuned variables, one each for RMSSD, SE, and TPR, resulting in 75 sets of 

optimized parameters. Then, we tested each optimized AF detection algorithm on all of 

the databases to find the average accuracy. The results are presented in Table X. 



56 
 

Database Used for Tuning Parameters 
Average Accuracy  

RMSSD SE TPR Best Method 

00735 0.66 0.63 0.53 RMSSD 

03665 0.47 0.67 0.46 SE 

04015 0.64 0.64 0.50 SE and RMSSD 

04043 0.56 0.54 0.50 RMSSD 

04048 0.59 0.69 0.46 SE 

04126 0.64 0.68 0.54 SE 

04746 0.68 0.67 0.50 RMSSD 

04908 0.70 0.60 0.48 RMSSD 

04936 0.68 0.71 0.48 SE 

05091 0.58 0.62 0.43 SE 

05121 0.70 0.68 0.52 RMSSD 

05261 0.66 0.68 0.51 SE 

06426 0.41 0.55 0.40 SE 

06453 0.63 0.62 0.52 RMSSD 

06995 0.65 0.69 0.54 SE 

07162 0.66 0.65 0.48 RMSSD 

07859 0.70 0.65 0.47 RMSSD 

07879 0.73 0.65 0.48 RMSSD 

07910 0.75 0.68 0.42 RMSSD 

08215 0.73 0.67 0.48 RMSSD 

08219 0.70 0.65 0.47 RMSSD 

08378 0.71 0.66 0.47 RMSSD 

08405 0.73 0.66 0.51 RMSSD 

08434 0.74 0.68 0.50 RMSSD 

08455 0.71 0.65 0.51 RMSSD 

TABLE X: TEST RESULTS OF THE TUNED AF DETECTION ALGORITHMS ON ALL 25 DATABASES. THE HIGHLIGHTED 

CELLS IN EACH COLUMN SHOW WHICH DATABASE PROVIDED THE BEST TRAINING DATA FOR EACH AF DETECTION 

ALGORITHM. 

 

Table X shows that the SE and RMSSD achieved the best accuracy among the 

three statistical methods. The highest average accuracy was 75% which was the result of 

detecting AF by using RMSSD. Although TPR performed worse than SE and RMSSD, 

using all three statistical methods may result in better AF diagnosis, as will be discussed 

in the next chapter. The tuning parameters achieved by BBO for the best average test 

accuracies of the statistical methods can be found in Table XI.      
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Best RMSSD Parameters  

Number of Selected Beats = 

80 

Number of Outliers= 

 15 

RMSSD Threshold=  

0.058 

Best  SE Parameters  

Number of Selected 

Beats = 61 

Number of Outliers= 

19 

Number of Selected 

Bins= 34 

SE Threshold = 

 0.644 

Best  TPR Parameters  

Number of Selected Beats = 

158 

Lower Threshold =  

0.572 

Upper Threshold =  

0.829 

TABLE XI: TUNING PARAMETERS ACHIEVED BY BBO FOR THE HIGHEST AVERAGE TEST ACCURACY OF THE 

STATISTICAL METHODS. 

 

The accuracy values measured by our algorithm for the MIT-BIH AF databases 

are shown in Table X. Previous studies [23], [25], [35], [53] showed that the best value 

for the moving window length was 128; in our algorithm, the best moving window length 

was 80 for RMSSD, 61 for SE, and 158 for TPR. Previous studies showed that the best 

number of outliers was 16; in our algorithm, the best value for the number of outliers was 

15 for RMSSD, and 19 for SE. Previous studies showed that the best values for the 

thresholds were 0.1 for RMSSD, 0.7 for SE, and 0.54 and 0.77 for TPR (lower and upper 

thresholds); in our algorithm, the best values for the thresholds were 0.058 for RMSSD, 

0.64 for SE, and 0.57 and 0.83 for TPR. 

 When we user previously published values for AF detection algorithm 

tuning parameters, we obtain average detection accuracies of 71% for RMSSD, 51% for 

TPR, and 21% for SE. Therefore, by using BBO , we enhance the average  accuracy of 

RMSSD by almost 4%, TPR by 3%, and SE by 50%. Table XI shows the values found by 



58 
 

BBO for AF detection with higher accuracy (compared to previous studies) by using 

statistical techniques.  
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CHAPTER V  

CONCLUSION AND FUTURE WORK 

 

 

Our results showed the capability of three statistical methods, including root mean 

squares of successive differences (RMSSD), Shannon entropy (SE), and turning points 

ratio (TPR), to detect atrial fibrillation from a given electrocardiogram. These statistical 

methods are based on the fact that in AF, RR intervals are irregular without any specific 

trend and behave like random numbers as shown in previous studies [23], [45]. We were 

able to obtain an AF detection training accuracy of 99% with RMSSD and SE. TPR also 

showed the capability of detecting AF with a training accuracy of 98%. 

The key role of biogeography-based optimization as an evolutionary algorithm for 

tuning the parameters of the statistical methods should be taken into account. In order to 

show the reliability of our diagnosis algorithm, we trained and tested our algorithm on the 

MIT-BIH atrial fibrillation databases. We could achieve average test accuracy of 75% for 

RMSSD, 71% for SE, and 54% for TPR.  
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Such a diagnosis method may help physicians quickly detect AF during its early 

stages, before the patients’ condition deteriorates and results in a higher risk of stroke and 

heart attack. Given the fact that the algorithms in this paper are capable of detecting AF 

in its initial stages, it could reduce the required money and time for detecting and treating 

AF.  

As mentioned before, a new study showed the feasibility of detecting AF using an 

iPhone 4S [25]. The same method of diagnosis (AF detection based on the irregularity of 

RR intervals by using the statistical methods) was evaluated for detecting AF from a 

given ECG. By better improving the iPhone detection results, as we did in our research, 

such an application could be reliably used by patients. Therefore, smartphones using this 

application in the near future could help individuals discover if they have paroxysmal or 

persistent AF. This could even be in the case for those who may not show any symptom 

of the disease. Consequently, it might prevent more dangerous situations, like permanent 

AF.  

Another important point that should be considered is that we used the three 

statistical methods separately for detecting AF in the given databases. The combination 

of the statistical methods to detect AF may be another way to detect AF with more 

accuracy. In our algorithm, RMSSD and SE showed a better ability to detect AF 

compared to TPR. But, we should assess whether this trend can be generalized for 

evaluating the irregularities of RR intervals with the combination of all the statistical 

methods or not. For this, we can tune the parameters to annotate a beat with AF if all the 

statistical methods annotate the beat as AF (RMSSD and SE and TPR), otherwise it 
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would be annotated as N. In addition, we can calculate the results with the term “or” 

instead of “and ” to see the final accuracy.  

Another option is to consider the combination of all three statistical methods by 

defining weighting parameters. In this way, we can define three weighting variables, and 

then we can tune the weighting variables to find the optimum values. The AF detection 

would then be given as follows: 

 

                                     ,  

                            (9) 

                     

In Equation 9, RMSSD, SE, and TPR are outputs of the three AF detection algorithms. 

     is the same matrix which was annotated by 0 or 1 based on the annotation 

databases available for MIT-BIH AF databases. It was used as the main reference of beat 

to beat annotation of RR intervals.    , and   are tuning parameters; in other words, they 

would determine how much contribution each method makes to the AF detection output.  

 Another way of evaluating the results of our algorithm is to consider the threshold 

values of the previous studies as they are very close to our final results; and then only 

tune the moving window (  , number of outliers   , and number of the bins (  .    

We can also extend this research to other evolutionary algorithms, including 

particle swarm optimization (PSO), differential evolution (DE), ant colony (ACO), 

genetic algorithm (GA), etc., to compare the results with the current work and find the 

best evolutionary algorithm for this application.  
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As mentioned, there is a work discussed the detection of atrial fibrillation from 

pulsatile signals in the human fingertip by using smart phone cameras. Previous studies 

also have discriminated between atrial fibrillation and other rhythms by considering the 

distribution of RR intervals, successive RR differences, or ratios of successive RR 

intervals [17], [51].  By using our research results to eliminate the shortcomings of these 

recent studies in order to increase their reliability and accuracy, it may be possible to 

develop an application for smartphones to detect not only atrial fibrillation, also other 

common heart arrhythmias.  
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APPENDIX A 
 

 

MIT-BIH AF databases annotate each RR interval with 0 or 1 based on heart rate 

variability, and such annotations are very similar to the annotations for AF (atrial 

fibrillation) and N (normal). However, we found that lots of RR intervals were missing in 

the databases, and this can have a large impact on the results of AFdetection. We 

developed an algorithm to repair this shortcoming. In the databases, RR intervals were 

annotated with 0 or 1.  Based on the value of the RR intervals, if there is heart rate 

variability (HRV), the RR interval was annotated with 1; otherwise it was annotated with 

0. But as mentioned before, lots of RR intervals were missing in the databases, and 

therefore portions of the databases with missing RR intervals could impact the accuracy 

of the detection algorithm. We compared the databases that were annotated based on 

HRV, with the databases of RR intervals, and found where the RR intervals were 

missing. After fixing this problem, we took the newly added RR intervals, which were 

missing in the databases annotated with 0 or 1, and annotated them with 2. As a result, we 

created 25 matrices (one for each database), each of which had each record annotated 

with 0 or 1 or 2 (Table XII).  
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RR interval HRV 

0.496 1 

0.932 0 

0.928 0 

0.930 0 

0.896 1 

0.944 0 

0.952 0 

0.940 0 

2.862 0 

 

 

 

Another problem was that we did not know exactly how to replace 2s in the new 

databases; that is why we decided to detect AF based on the databases annotated by the 

diagnosis of AF, and not the heart rate variability.  

 

 

RR interval HRV 

0.496 1 

0.932 0 

0.928 0 

0.930 0 

0.896 1 

0.944 0 

0.952 0 

0.940 0 

0.944 2 

0.944 2 

0.974 2 

TABLE XII: RR INTERVALS ANNOTATED BY 0 OR 1 BASED ON HRV. THE LAST RR INTERVAL WITH THE VALUE 

OF 2.862 (SEC) IN TABLE A IS THE SUM OF THREE LOST RR INTERVALS SHOWN IN TABLE B  
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