401 research outputs found

    Measurement of the electromagnetic field backscattered by a fractal surface for the verification of electromagnetic scattering models

    Get PDF
    Fractal geometry is widely accepted as an efficient theory for the characterization of natural surfaces; the opportunity of describing irregularity of natural surfaces in terms of few fractal parameters makes its use in direct and inverse electromagnetic (EM) scattering theories highly desirable. In this paper, we present an innovative procedure for manufacturing fractal surfaces and for measuring their scattering properties. A cardboard–aluminum fractal surface was built as a representation of a Weiestrass–Mandelbrot fractal process; the EM field scattered from it was measured in an anechoic chamber. A monostatic radarlike configuration was employed. Measurement results were compared to Kirchhoff approximation and small perturbation method closed-form results that were analytically obtained by employing the fractional Brownian motion to model the surface shape. Matching and discrepancies between theories andmeasurements are then discussed. Finally, fractal and classical surface models are compared as far as their use in the EM scattering is concerned.Postprint (published version

    Biomass Representation in Synthetic Aperture Radar Interferometry Data Sets

    Get PDF
    This work makes an attempt to explain the origin, features and potential applications of the elevation bias of the synthetic aperture radar interferometry (InSAR) datasets over areas covered by vegetation. The rapid development of radar-based remote sensing methods, such as synthetic aperture radar (SAR) and InSAR, has provided an alternative to the photogrammetry and LiDAR for determining the third dimension of topographic surfaces. The InSAR method has proved to be so effective and productive that it allowed, within eleven days of the space shuttle mission, for acquisition of data to develop a three-dimensional model of almost the entire land surface of our planet. This mission is known as the Shuttle Radar Topography Mission (SRTM). Scientists across the geosciences were able to access the great benefits of uniformity, high resolution and the most precise digital elevation model (DEM) of the Earth like never before for their a wide variety of scientific and practical inquiries. Unfortunately, InSAR elevations misrepresent the surface of the Earth in places where there is substantial vegetation cover. This is a systematic error of unknown, yet limited (by the vertical extension of vegetation) magnitude. Up to now, only a limited number of attempts to model this error source have been made. However, none offer a robust remedy, but rather partial or case-based solutions. More work in this area of research is needed as the number of airborne and space-based InSAR elevation models has been steadily increasing over the last few years, despite strong competition from LiDAR and optical methods. From another perspective, however, this elevation bias, termed here as the “biomass impenetrability”, creates a great opportunity to learn about the biomass. This may be achieved due to the fact that the impenetrability can be considered a collective response to a few factors originating in 3D space that encompass the outermost boundaries of vegetation. The biomass, presence in InSAR datasets or simply the biomass impenetrability, is the focus of this research. The report, presented in a sequence of sections, gradually introduces terminology, physical and mathematical fundamentals commonly used in describing the propagation of electromagnetic waves, including the Maxwell equations. The synthetic aperture radar (SAR) and InSAR as active remote sensing methods are summarised. In subsequent steps, the major InSAR data sources and data acquisition systems, past and present, are outlined. Various examples of the InSAR datasets, including the SRTM C- and X-band elevation products and INTERMAP Inc. IFSAR digital terrain/surface models (DTM/DSM), representing diverse test sites in the world are used to demonstrate the presence and/or magnitude of the biomass impenetrability in the context of different types of vegetation – usually forest. Also, results of investigations carried out by selected researchers on the elevation bias in InSAR datasets and their attempts at mathematical modelling are reviewed. In recent years, a few researchers have suggested that the magnitude of the biomass impenetrability is linked to gaps in the vegetation cover. Based on these hints, a mathematical model of the tree and the forest has been developed. Three types of gaps were identified; gaps in the landscape-scale forest areas (Type 1), e.g. forest fire scares and logging areas; a gap between three trees forming a triangle (Type 2), e.g. depending on the shape of tree crowns; and gaps within a tree itself (Type 3). Experiments have demonstrated that Type 1 gaps follow the power-law density distribution function. One of the most useful features of the power-law distributed phenomena is their scale-independent property. This property was also used to model Type 3 gaps (within the tree crown) by assuming that these gaps follow the same distribution as the Type 1 gaps. A hypothesis was formulated regarding the penetration depth of the radar waves within the canopy. It claims that the depth of penetration is simply related to the quantisation level of the radar backscattered signal. A higher level of bits per pixels allows for capturing weaker signals arriving from the lower levels of the tree crown. Assuming certain generic and simplified shapes of tree crowns including cone, paraboloid, sphere and spherical cap, it was possible to model analytically Type 2 gaps. The Monte Carlo simulation method was used to investigate relationships between the impenetrability and various configurations of a modelled forest. One of the most important findings is that impenetrability is largely explainable by the gaps between trees. A much less important role is played by the penetrability into the crown cover. Another important finding is that the impenetrability strongly correlates with the vegetation density. Using this feature, a method for vegetation density mapping called the mean maximum impenetrability (MMI) method is proposed. Unlike the traditional methods of forest inventories, the MMI method allows for a much more realistic inventory of vegetation cover, because it is able to capture an in situ or current situation on the ground, but not for areas that are nominally classified as a “forest-to-be”. The MMI method also allows for the mapping of landscape variation in the forest or vegetation density, which is a novel and exciting feature of the new 3D remote sensing (3DRS) technique. Besides the inventory-type applications, the MMI method can be used as a forest change detection method. For maximum effectiveness of the MMI method, an object-based change detection approach is preferred. A minimum requirement for the MMI method is a time-lapsed reference dataset in the form, for example, of an existing forest map of the area of interest, or a vegetation density map prepared using InSAR datasets. Preliminary tests aimed at finding a degree of correlation between the impenetrability and other types of passive and active remote sensing data sources, including TerraSAR-X, NDVI and PALSAR, proved that the method most sensitive to vegetation density was the Japanese PALSAR - L-band SAR system. Unfortunately, PALSAR backscattered signals become very noisy for impenetrability below 15 m. This means that PALSAR has severe limitations for low loadings of the biomass per unit area. The proposed applications of the InSAR data will remain indispensable wherever cloud cover obscures the sky in a persistent manner, which makes suitable optical data acquisition extremely time-consuming or nearly impossible. A limitation of the MMI method is due to the fact that the impenetrability is calculated using a reference DTM, which must be available beforehand. In many countries around the world, appropriate quality DTMs are still unavailable. A possible solution to this obstacle is to use a DEM that was derived using P-band InSAR elevations or LiDAR. It must be noted, however, that in many cases, two InSAR datasets separated by time of the same area are sufficient for forest change detection or similar applications

    Advanced Radio Frequency Identification Design and Applications

    Get PDF
    Radio Frequency Identification (RFID) is a modern wireless data transmission and reception technique for applications including automatic identification, asset tracking and security surveillance. This book focuses on the advances in RFID tag antenna and ASIC design, novel chipless RFID tag design, security protocol enhancements along with some novel applications of RFID

    Challenges in measuring winter precipitation : Advances in combining microwave remote sensing and surface observations

    Get PDF
    Globally, snow influences Earth and its ecosystems in several ways by having a significant impact on, e.g., climate and weather, Earth radiation balance, hydrology, and societal infrastructures. In mountainous regions and at high latitudes snowfall is vital in providing freshwater resources by accumulating water within the snowpack and releasing the water during the warm summer season. Snowfall also has an impact on transportation services, both in aviation and road maintenance. Remote sensing instrumentation, such as radars and radiometers, provide the needed temporal and spatial coverage for monitoring precipitation globally and on regional scales. In microwave remote sensing, the quantitative precipitation estimation is based on the assumed relations between the electromagnetic and physical properties of hydrometeors. To determine these relations for solid winter precipitation is challenging. Snow particles have an irregular structure, and their properties evolve continuously due to microphysical processes that take place aloft. Hence also the scattering properties, which are dependent on the size, shape, and dielectric permittivity of the hydrometeors, are changing. In this thesis, the microphysical properties of snowfall are studied with ground-based measurements, and the changes in prevailing snow particle characteristics are linked to remote sensing observations. Detailed ground observations from heavily rimed snow particles to openstructured low-density snowflakes are shown to be connected to collocated triple-frequency signatures. As a part of this work, two methods are implemented to retrieve mass estimates for an ensemble of snow particles combining observations of a video-disdrometer and a precipitation gauge. The changes in the retrieved mass-dimensional relations are shown to correspond to microphysical growth processes. The dependence of the C-band weather radar observations on the microphysical properties of snow is investigated and parametrized. The results apply to improve the accuracy of the radar-based snowfall estimation, and the developed methodology also provides uncertainties of the estimates. Furthermore, the created data set is utilized to validate space-borne snowfall measurements. This work demonstrates that the C-band weather radar signal propagating through a low melting layer can significantly be attenuated by the melting snow particles. The expected modeled attenuation is parametrized according to microphysical properties of snow at the top of the melting layer

    Modeling EMI Resulting from a Signal Via Transition Through Power/Ground Layers

    Get PDF
    Signal transitioning through layers on vias are very common in multi-layer printed circuit board (PCB) design. For a signal via transitioning through the internal power and ground planes, the return current must switch from one reference plane to another reference plane. The discontinuity of the return current at the via excites the power and ground planes, and results in noise on the power bus that can lead to signal integrity, as well as EMI problems. Numerical methods, such as the finite-difference time-domain (FDTD), Moment of Methods (MoM), and partial element equivalent circuit (PEEC) method, were employed herein to study this problem. The modeled results are supported by measurements. In addition, a common EMI mitigation approach of adding a decoupling capacitor was investigated with the FDTD method

    A model for the simulation of sidescan sonar

    Get PDF
    This thesis presents the development of a computer model for the simulation of the sidescan sonar process. The motivation for the development of this model is the creation of a unique and powerful visualisation tool to improve understanding and interpretation of the sidescan sonar process and the images created by it. Existing models tend to generate graphical or numerical results, but this model produces synthetic sidescan sonar images as the output. This permits the direct visualisation of the influence of individual parameters and features of the sonar process on the sidescan images. The model considers the main deterministic aspects of the underlying physical processes which result in the generation of sidescan sonar images. These include the propagation of the transmitted pulse of acoustic energy through the water column to its subsequent interaction and scattering from the rough seafloor. The directivity and motion characteristics of the sonar transducer are also incorporated. The thesis documents the development of the model to include each of these phenomena and their subsequent effect on the sidescan sonar images. Finally, techniques are presented for the investigation and verification of the synthetic sidescan images produced by the model.Defence Research Agenc

    Advanced Carbon Fiber Composite Materials for Shielding and Antenna Applications

    Get PDF
    Due to the low weight, ease of fabrication, low cost, high stiffness, high thermal and electrical conductivity, advanced carbon fiber composite (CFC) material is one of the most desirable materials which have been considered recently in the aerospace, electronic, and infrastructure industry. This thesis examines the use of CFC materials for electromagnetic field shielding and antenna applications. Using a suitable electromagnetic model of composite materials, we evaluate the shielding effectiveness (SE) and other EM properties of composites paying attention to antenna design. Analytical and simulation results are compared with experimental data. Two kinds of composite materials are investigated, namely reinforced continuous carbon-fiber (RCCF) composites and carbon nanotube (CNT) composites. For analytical SE analysis of multilayer RCCF composites, the material shows anisotropic behavior along the direction of the fibers, and we employ the transmission matrix method in conjunction with the anisotropic properties of each layer. The shielding performance of composites is also experimentally investigated. In order to enhance the conductivity of an RCCF composite, a small volume fraction of multi-walled carbon nanotubes (MWCNTs) is added to the RCCF material. We investigate the SE of the proposed MWCNT “nanocomposite” over a wide frequency band up to 26.5 GHz. The effect of aspect ratio on shielding performance is addressed as well. The effective conductivity of the nanocomposites was determined over the frequency range of interest. The use of RCCF and single-walled carbon nanotube (SWCNT) composite is investigated for building antennas, by replacing the metal with CFC. We use an RCCF composite to build resonant and wideband antennas. The effect of the conductivity tensor of RCCF composite on the antenna performance is addressed. We also study the performance of a microstrip patch antenna with the ground plane made of RCCF composite. As one of the most highly-conductive composite materials, single wall carbon nanotube (SWCNT) buckypapers are used to build composite antennas. A new fabrication method is proposed to print arbitrarily-shaped full-composite SWCNT antenna on any type of substrate. Various types of SWCNT antennas are fabricated for different antenna applications, namely UHF-RFID, WLAN, UWB, and mm-wave applications. Good agreement is observed between simulation and experimental results for all the aforementioned composite antennas. Using the spectral domain method, the Green’s function is obtained for an infinitesimal HED on a dielectric slab over a CFC ground plane. Due to the high conductivity, CFCs are modeled using a surface impedance. The expressions for the electric field components are derived. The numerical integration details particularly dealing with low-converged tail of the integrand for fields at the air-dielectric interface are addressed. Numerical results based on this method compare well with results based on a time-domain finite integration technique. The effect of conductivity and anisotropy of the composite ground plane on electric field is investigated

    Determining Amplitude Corrections for the Assessment of Surface Roughness Within A Lidar Footprint

    Get PDF
    The research presented in this thesis is under the context of the OSIRIS-REx mission, a NASA led asteroid sample return mission being launched in 2016 towards the asteroid 101955 Bennu. Aboard the spacecraft is the OSIRIS-REx Laser Altimeter (OLA), which is using the backscattered intensity for instrument calibration. By applying the novel solution of amplitude correction, it is possible to gain additional functionality out of this instrument. This thesis presents a simulation written by the author that accurately models laser altimeter performance. The simulation is used successfully to study OLA’s receiver to reduce error in the range measurements and to remove the effects of large-scale topographic features on the amplitude. The remaining amplitude variations will be interpreted as mineralogical or morphological variations that may impact the viability or the desirability of the site for sample collection

    Coupled modelling of land surface microwave interactions using ENVISAT ASAR data

    Get PDF
    In the last decades microwave remote sensing has proven its capability to provide valuable information about the land surface. New sensor generations as e.g. ENVISAT ASAR are capable to provide frequent imagery with an high information content. To make use of these multiple imaging capabilities, sophisticated parameter inversion and assimilation strategies have to be applied. A profound understanding of the microwave interactions at the land surface is therefore essential. The objective of the presented work is the analysis and quantitative description of the backscattering processes of vegetated areas by means of microwave backscattering models. The effect of changing imaging geometries is investigated and models for the description of bare soil and vegetation backscattering are developed. Spatially distributed model parameterisation is realized by synergistic coupling of the microwave scattering models with a physically based land surface process model. This enables the simulation of realistic SAR images, based on bioand geophysical parameters. The adequate preprocessing of the datasets is crucial for quantitative image analysis. A stringent preprocessing and sophisticated terrain geocoding and correction procedure is therefore suggested. It corrects the geometric and radiometric distortions of the image products and is taken as the basis for further analysis steps. A problem in recently available microwave backscattering models is the inadequate parameterisation of the surface roughness. It is shown, that the use of classical roughness descriptors, as the rms height and autocorrelation length, will lead to ambiguous model parameterisations. A new two parameter bare soil backscattering model is therefore recommended to overcome this drawback. It is derived from theoretical electromagnetic model simulations. The new bare soil surface scattering model allows for the accurate description of the bare soil backscattering coefficients. A new surface roughness parameter is introduced in this context, capable to describe the surface roughness components, affecting the backscattering coefficient. It is shown, that this parameter can be directly related to the intrinsic fractal properties of the surface. Spatially distributed information about the surface roughness is needed to derive land surface parameters from SAR imagery. An algorithm for the derivation of the new surface roughness parameter is therefore suggested. It is shown, that it can be derived directly from multitemporal SAR imagery. Starting from that point, the bare soil backscattering model is used to assess the vegetation influence on the signal. By comparison of the residuals between measured backscattering coefficients and those predicted by the bare soil backscattering model, the vegetation influence on the signal can be quantified. Significant difference between cereals (wheat and triticale) and maize is observed in this context. It is shown, that the vegetation influence on the signal can be directly derived from alternating polarisation data for cereal fields. It is dependant on plant biophysical variables as vegetation biomass and water content. The backscattering behaviour of a maize stand is significantly different from that of other cereals, due to its completely different density and shape of the plants. A dihedral corner reflection between the soil and the stalk is identified as the major source of backscattering from the vegetation. A semiempirical maize backscattering model is suggested to quantify the influences of the canopy over the vegetation period. Thus, the different scattering contributions of the soil and vegetation components are successfully separated. The combination of the bare soil and vegetation backscattering models allows for the accurate prediction of the backscattering coefficient for a wide range of surface conditions and variable incidence angles. To enable the spatially distributed simulation of the SAR backscattering coefficient, an interface to a process oriented land surface model is established, which provides the necessary input variables for the backscattering model. Using this synergistic, coupled modelling approach, a realistic simulation of SAR images becomes possible based on land surface model output variables. It is shown, that this coupled modelling approach leads to promising and accurate estimates of the backscattering coefficients. The remaining residuals between simulated and measured backscatter values are analysed to identify the sources of uncertainty in the model. A detailed field based analysis of the simulation results revealed that imprecise soil moisture predictions by the land surface model are a major source of uncertainty, which can be related to imprecise soil texture distribution and soil hydrological properties. The sensitivity of the backscattering coefficient to the soil moisture content of the upper soil layer can be used to generate soil moisture maps from SAR imagery. An algorithm for the inversion of soil moisture from the upper soil layer is suggested and validated. It makes use of initial soil moisture values, provided by the land surface process model. Soil moisture values are inverted by means of the coupled land surface backscattering model. The retrieved soil moisture results have an RMSE of 3.5 Vol %, which is comparable to the measurement accuracy of the reference field data. The developed models allow for the accurate prediction of the SAR backscattering coefficient. The various soil and vegetation scattering contributions can be separated. The direct interface to a physically based land surface process model allows for the spatially distributed modelling of the backscattering coefficient and the direct assimilation of remote sensing data into a land surface process model. The developed models allow for the derivation of static and dynamic landsurface parameters, as e.g. surface roughness, soil texture, soil moisture and biomass from remote sensing data and their assimilation in process models. They are therefore reliable tools, which can be used for sophisticated practice oriented problem solutions in manifold manner in the earth and environmental sciences
    • 

    corecore