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CALL FOR PAPERS

THE APPLIED COMPUTATIONAL
ELECTROMAGNETICS SOCIETY

The 17" Annual Review of Progress in Applied Computational Electromagnetics
March 19 - 23, 2001
Naval Postgraduate School, Monterey, California
Share Your Knowledge and Expertise with Your Colleagues

The Annual ACES Symposium is an ideal opportunity to participate in a large gathering of EM
analysis enthusiasts. The purpose of the Symposium is to bring analysts together to share information and
experience about the practical application of EM analysis using computational methods. The symposium
offerings include technical presentations, demonstrations, vendor booths, short courses, and hands-on
workshops. All aspects of electromagnetic computational analysis are represented.

The ACES Symposium is a highly influential outlet for promoting awareness of recent technical
contributions to the advancement of computational electromagnetics. Attendance and professional program
paper participation from non-ACES members and from outside North America are encouraged and welcome.

Papers may address general issues in applied computational electromagnetics, or may focus on
specific applications, techniques, codes, or computational issues of potential interest to the Applied
Computational Electromagnetics Society membership.

Areas and topics

Computational studies of basic physics Computer hardware issues

Examples of practical code application Code validation

New codes, algorithms, code enhancements, and code fixes Code performance analysis

Partial list of applications

Communications systems Microwave components Wireless Radar Imaging
Remote sensing & geophysics EMP EMIV/EMC Shielding Fiberoptics Radar cross section
Dielectric & magnetic materials MIMIC technology Visualization Fiberoptics
Non-destructive evaluation ‘Wave propagation Eddy currents Direction finding
Propagation through plasmas Bioelectromagnetics  Inverse scattering Antennas
Partial list of techniques

Diffraction theories Moment methods Physical optics
Frequency-domain & Time-domain techniques Hybrid methods Modal expansions
Finite difference & finite element analysis Numerical optimization

Integral equation & differential equation techniques Perturbation methods
INSTRUCTIONS FOR AUTHORS AND TIMETABLE

Submission Deadline - November 1, 2000: Electronic submission preferred (Microsoft Word). Otherwise
submit three copies of a full-length, camera-ready paper to the Technical Program Chairman. Please supply
the following data for the corresponding authors: name, address, email address, FAX, and phone numbers.
Authors notified of acceptance by December 1, 2000.
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PAPER FORMATTING REQUIREMENTS

The recommended paper length is 6 pages, with 8 pages as a maximum, including figures. The paper should
be camera-ready (good resolution, clearly readable when reduced to the final print of 6x9 inch paper). The
paper should be printed on 8-1/2x11 inch papers with 13/16 side margins, 1-1/16 inch top margin, and 1 inch
on the bottom. On the first page, place title 1-1/2 inches from top with authors, affiliations, and e-mail
addresses beneath the title. Single spaced type using 10 or 12 point font size, entire text should be justified
(flush left and flush right). No typed page numbers, but number your pages lightly in pencil on the back of
each page.

For all questions regarding the ACES Symposium please contact:
Leo C. Kempel, Technical Program Chair
Michigan State University, ECE Engr,
2120 Engineering Bldg, E. Lansing, MI 48824-1126
Tel: (517) 353-9944, Fax: (517) 353-1980,
E-mail: lkempel@iece.org
or visit ACES on line at:http://aces.ee.olemiss.edu.

EARLY REGISTRATION FEES
ACES member $300 Student/Retired/Unemployed $130 (no proceedings)
Non-member $350 Student/Retired/Unemployed $165 (includes proceedings)

Each conference registration is entitled to publish two papers in the proceedings free of charge. Excess pages
over a paper limit of 8 will be charged $15/page.

$500 BEST-PAPER PRIZE

A $500 prize will be awarded to the authors of the best non-student paper accepted for the 16* Annual
Review. Papers will be judged by a special ACES prize-paper Committee according to the following
criteria:

1. Based on established electromagnetic (EM) theory 4. Practical applications
2. Reliable data 5. Estimates of computational errors
3. Computational EM results 6. Significant new conclusions

$200 BEST STUDENT PAPER CONTEST

This will be for the best student paper accepted for the 17® Annual Review. (Student must be the presenter
on the paper chosen). Submissions will be judged by three (3) members of the BoD. The prizes for the
student presenter and his/her principal advisor will consist of: (1) free Annual Review registration for the
following year; (2) one free short course taken during the 2001 or 2002 Annual Review; and (3) $200 cash
for the paper.

2001 ACES Symposium Sponsored by: ACES, NPS, PSU, MSU, SWRL
In cooperation with: The IEEE Antennas and Propagation Society,
The IEEE Electromagnetic Compatibility Society and USNC/URSI
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PREFACE

On behalf of the Conference Technical Committee, I would like to personally welcome
all of you, especially those from overseas, to the 16 Annual Review of Progress in
Applied Computational Electromagnetics — the first ACES Conference of the new
millennium, here at the Naval Postgraduate School in beautiful Monterey.

We are fortunate to have with us this year three highly-regarded plenary speakers, Raj
Mittra, Tom Cwik and Weng Chew, who will be discussing the challenges in
computational electromagnetics that await as we move into the new millennium. The
technical sessions this year cover a wide variety of topics ranging from Wavelet and TLM
Modeling Techniques to Virtual Reality in Real-World Applications. Of special
significance this year are the good number of international participants, some of whom
have organized sessions and will also be chairing and presenting papers in the
conference. This will also be the first year that there will be a special session devoted to
the Student Paper Competition. We hope that you will all take advantage of the
interactive poster session, vendor exhibits and the excellent program of short courses that
have been organized for this years’ conference.

We would also like to take this opportunity to thank the Naval Postgraduate School for
serving as the host for the ACES 2000 conference. Special thanks goes to Dick and Pat
Adler for their unending dedication and tireless efforts on behalf of ACES. We want to
specifically thank all those who have helped to make ACES 2000 possible by organizing
and chairing sessions. Finally, I would like to extend my personal thanks to my technical
program committee team members - including co-chairs Randy Haupt and Ping Wemer,
vendor chair Leo Kempel, short course chair Susan Hagness, publicity chair Keith
Lysiak, and ACES webmaster Etef Elsherbeni - for all their hard work and dedication
throughout the past year.

‘We hope that the conference will provide a unique opportunity for all of you to come
together from around the world to share your knowledge in computational
electromagnetics by renewing old acquaintances and forming new collaborations. We
also hope that ACES 2000 will be a memorable and productive conference for each and
every participant.

Best wishes in the new millennium!

A/ blormon

Douglas H. Werner
Technical Program Chair
ACES 2000 Conference




ACES PRESIDENT'S STATEMENT

Weicome to the ACES 2000 conference! The ACES Annual Review of Progress in Applied Computational
Electromagnetics now has a 16-year tradition of excellence that guarantees a pleasant and educational
experience. CEM specialists worldwide, both members and non-members of ACES, know they can find our
conference in Monterey during the third week of March. The Naval Postgraduate School hasbeen a gracious
host and afforded excellent accommodations to ACES over the years, but a school calendar change has
broughtinto question the week or location forourfuture conferences. The ACES Board of Directors will study
this issue carefully before recommending any change, as both our date and place have been so well known
for so many years.

We again express our continuing gratitude and debt to Dick and Pat Adler for their (perennial) long hours
devoted to ACES, including the conference local arrangements. Doug Werner and his capable conference
team have put together an excellent technical program. | won’t attempt to credit all his enthusiastic and
capable assistants here, but please come hear Doug’s opening remarks on Tuesday morning. Because the
majority of our conference registrants continue to prefer a limited number of parallel sessions, ACES has
restricted the number of accepted papers for the technical program this year. | hope you will appreciate and
enjoy this distinctive feature of our conference. The ACES 2000 conference is more than just paper sessions,
shortcourses, and award banquets,and ACES is actively striving to enhance youropportunities to have some
quality time available for colleagues and friends, both old and new. If you see a way that we can further
improve the structure and conduct of the conference, please do iet us hear from you!

For all the news about ACES 2001 as it is becomes available, remember to visit our Web sit at
aces.ee.olemiss.edu on a regular basis!

Perry Wheless
ACES President
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ACES 2000 SHORT COURSES/WORKSHOPS

MONDAY 20 MARCH 2000

0830-1630

0830-1630

0830-1630

0830-1630

0830-1630

0830-1130

1330-1630

0830-1630

SHORT COURSE#1 (FULL-DAY)
"Computational Electromagnetic Methods in Mobile Wireless Communication Design"
Ray Perez, Jet Propulsion Laboratory

SHORT COURSE#2 (FULL-DAY)
"XML and Modern internet Technologies for Scientific Applications”
Furrukh S. Kahn, Ohio State University.

SHORT COURSE#3 (FULL-DAY)
"The Basics of The Finite Difference Time Domain Technique for Electromagnetic Application"

AtefZ. Elsherbeni and Allen W. Glisson, University of Mississippi

SHORT COURSE#4 (FULL-DAY)
"Techniques for Electromagnetic Visualization”
Edmund K. Miller, Santa Fe, NM, and John Shaeffer, Marietta Scientific, Inc.

SHORT COURSE#5 (FULL-DAY)

"EIGER - Electromagnetic Interactions Generalized: An Introduction toand Tutorial onthe
Software Suite”

Robert M. Sharpe and Nathan J. Champagne, Lawrence Livermore National Laboratory

William A. Johnson, Sandia National Laboratories, Donald R. Wilton, University of Houston, and J.
Brian Grant, ANT-S.

HANDS-ON-WORKSHOP#6 (HALF-DAY, MORNING)
"MATHCAD BASICS", Jovan Lebaric, Naval Postgraduate School.

HANDS-ON-WORKSHOP#7 (HALF-DAY, AFTERNOON)
"MATLAB BASICS", Jovan Lebaric, Naval Postgraduate School.

SHORT COURSE #8 (FULL-DAY)
"EMI/EMC Computational Modeling for Real-World Engineering Problems™
Omar Ramahi, Compaq Corporation, and Bruce Archambeault, IBM

PLEASE NOTE THAT A 10% DISCOUNT IS IN EFFECT FOR ALL WORKSHOPS TAKEN AFTER ATTENDING AN INITIAL WORKSHOP.
THIS APPLIES TO THE GROUP OF WORKSHOPS FOR MATLAB AND MATHCAD.

FRIDAY 24 MARCH 2000

0830-1630

0830-1630

SHORT COURSE #9 (FULL-DAY)
“Why is There Electromagnetic Radiation and Where Does It Come From?”
John Shaeffer, Marietta Scientific Inc., and Edmund K. Miller, Santa Fe, NM

SHORT COURSE #10 (FULL-DAY)

“Recent Advances in Fast Algorithms for Computational Electromagnetics”

Weng Cho Chew, Jianming Jin, Eric Michielssen, and Jiming Song, University of lllinois at
Urbana Champaign




ACES 2000 SHORT COURSES/WORKSHOPS (cont)

FRIDAY 24 MARCH 2000

0830-1630

HANDS-ON-WORKSHOP #11 (FULL-DAY)
“Method of Moments (MoM) Using MATHCAD”
Jovan Lebaric, Naval Postgraduate School

0830-1130 SHORT COURSE #12 (HALF-DAY, MORNING)
“Computational Electr gnetics Using Beowulf-Cluster Computers”
Tom Cwik and Daniel S. Katz, Jet Propulsion Laboratory
1330-1630 SHORT COURSE #13 (HALF-DAY AFTERNOON)
“Multiresolution FEM: Introduction and Antenna Applications”
John L. Volakis, University of Michigan and Lars Anderson, Agilent
SATURDAY 25 MARCH 2000
0830-1630 HANDS-ON-WORKSHOP #14 (FULL-DAY)
"FD/FDTD Using MATLAB”
Jovan Lebaric, Naval Postgraduate School, Monterey, CA
0830-1630 SHORT COURSE #15 (FULL-DAY)

"An introduction to Radar Cross Section”
John Shaeffer, Marietta Scientific Inc.
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AGENDA

The Sixteenth Annual Review of Progress in Applied Computational Electromagnetics

NAVAL POSTGRADUATE SCHOOL, MONTEREY, CALIFORNIA, U.S.A.
20-25 March 2000

Douglas Werner, Technical Program Chair
Randy Haupt, Symposium Co-Chair
Pingjuan Werner, Symposium Co-Chair
Susan Hagness, Short Course Chair
Leo Kempel, Vendor Chair
Keith Lysiak, Publicity Chair
Richard Adler, Symposium Administrator
Pat Adler, Conference Secretary

MONDAY MORNING 20 MARCH 2000

0700 -

0730 -

0730 CONTINENTAL BREAKFAST Glasgow Courtyard
{For short course and hands-on-workshop attendees only)

0820 SHORT COURSE/HANDS-ON-WORKSHOP REGISTRATION Glasgow 103

0830-1630 SHORT COURSE #1 (FULL-DAY) ingersoll 280

“Computational Electromagnetic Methods in Mobile Wireless Communication Design™
Ray Perez, Jet Propulsion Laboratory

0830-1630 SHORT COURSE #2 (FULL-DAY) Glasgow 102

“XML and Modern intemet Technologies for Scientific Applications™
Furrukh S. Khan, Ohio State University

0830-1630 SHORT COURSE #3 (FULL-DAY) Ingersoli 122

“The Basics of The Finite Difference Time Domain Technique for Electromagnetic Application”
Atef Z. Eisherbeni and Allen W. Glisson, University of Mississippi

0830-1630 SHORT COURSE #4 (FULL-DAY) Engr Auditorium

“Techniques for Electromagnetic Visualization®
Edmund K. Miller, Santa Fe, NM, and John Shaeffer, Marietta Scientific, Inc

0830-1630 SHORT COURSE #5 (FULL-DAY) Ingersoll 265

“EIGER - Electromagnetic Interactions Generatized: An Introduction to and Tutorial on the Sofiware Suite”
Robert M. Sharpe and Nathan J. Champagne, Lawrence Liverrnore National Laboratory

William A. Johnson, Sandia National Laberatories, Donald R. Wilton, University of Houston,

And J. Brian Grant, ANT-S

0830-1130 HANDS-ON-WORKSHOP #6 (HALF-DAY, MORNING)

“MATHCAD Basics”
Jovan Lebaric, Naval Postgraduate School

0830-1630 SHORT COURSE #8 (FULL-DAY) Spanagel 101A

“EMI/EMC Computational Modeling for Real-World Engineering Problems™
Omar Ramahi, Compagq Corporation, and Bruce Archambeauit, 1BM

0800-1200 CONFERENCE REGISTRATION Glasgow 103

MONDAY AFTERNOON

1330-1630 HANDS-ON-WORKSHOP #7 (HALF-DAY, AFTERNOON)

“MATLAB Basics”
Jovan Lebaric, Naval Postgraduate School

1400-1800 CONFERENCE REGISTRATION Glasgow 103

1700
1900

BOD MEETING SP 101A
PUBLICATION DINNER
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TUESDAY MORNING 21 MARCH 2000

0715~ 0745 CONTINENTAL BREAKFAST Glasgow Courtyard
0740 ACES BUSINESS MEETING President Perry Wheless Glasgow 102
0745 ACES Website Demo Atef Elsherbeni Glasgow 102
0800 WELCOME Douglas Werner, Penn State Univeristy Glasgow 102
0815 PLENARY SPEAKER: Raj Mittra, Penn State University Glasgow 102

“Efficient Extraction of S-parameters of Transmission Line Discontinuities for RF and Wireless Circuit Design”

SESSION 1: FINITE ELEMENT METHODS

0920

0940

1000

1020
1040
1100

1120

1140
1200

Chairs: Jianming Jin and Peter Monk

“Transient Electromagnetic Scattering from Curved Dielectric/Lossy
3D Bodies Using Covariant Projection El

“Towards an hp-Adaptive Finite Element Method for Fuli-Wave
Analysis of Waveguides”

“An hp-Adaptive Finite Element Method for Maxwell's Equations:
A Progress Report”

BREAK

“Finite Element Method for Designing Plasma Reactors”
“Finite-Element Domain Decomposition Through an Iterative
Algorithm: Coupling Between Cavity-Backed Slots”

with Vector Finite El for Wi

“Investigation of the Bunting/Davis Fundlonal when used

“Numerical Methods for High Frequency Problems™
LUNCH

SESSION 2: OPTIMIZATION IN ELECTROMAGNETICS

0920

0940

1000
1020
1040

1100
1120

1140

1200

Chairs: Eric Michielssen and Dan Weile

“Design of Dual Band Frequency Selective Surfaces Using
Genetic Algorithm”

“A Study of Cauchy and Gaussian Mutation Operators in the
Evolutionary Programming Optimization of Antenna Structures”

“A Statistical intercomparison of Binary and Decimal Genetic Algorithms”
BREAK

*The Compact Genetic Algorithm: A Litmus test for Genetic
Algorithm Applicability”

“Dipole Equivalent Circuit Optimization Using Genetic Algorithm”

“Cc ing the Ell ic Field in a Perturbed Configuration
Using  Modified Reduced-Order Models”

Some Further Results From FARS: Far-Field Analysis of Radiation
Sources”

LUNCH

SESSION 3: NUMERICAL TECHNIQUES FOR PACKAGING AND INTERCONNECTS

0920

0940

1000

Chairs: Omar i and A

“A New Methodology for the Direct Generahon of CIosed-Fon-n
Green's Functions in Layered Di

*The Treatment of Narrow Microstrips and PCB Tracks in the
FDTD Method Using Empirically Modified Coefficients™

*“Time-Domain-Analysis of QTEM Wave Propagation and Crosstalk
on Lossy Multiconductor Transmission Lines with Temminal Coupling™
xX

Parallel with Sessions 2, 3 & 4)

R. Ordovas, S.P. Walker & M.J. Bluck

L. Vardapetyan & L. Demkowicz

L. Demkowicz

Leo Kempel, Paul Rummel, Tirmn Grotjohn & John Amrhein

Anastasis C. Polycarpou & Constantine A. Balanis

Andrew F. Peterson & Sharib Wasi

T. Huttunen & P. Monk

(Parallel with Sessions 1,3 & 4)

A. Monorchio, R. Mittra & G. Manara

Ahmad Hoorfar & Yuan Liu

Yee Hui Lee, Stuart J.Porter & Andrew C. Marvin

Daniel S. Weile, Eric Michielssen & David E. Goldberg

Bruce Long, Ping Wemer & Doug Wemer
R.F. Remis & P.M. van den Berg

Edmund K. Miller

(Paraliel with Sessions 1,2, & 4)

Andreas C. Cangellaris

Chris J. Railton

Georg Mller, Jan Wendel & Karl Reif8




TUESDAY MORNING 21 MARCH 2000

SESSION 3: NUMERICAL TECHNIQUES FOR PACKAGING AND INTERCONNECTS (cont)

1020 BREAK

1040 “An MPIE-Based Circuit Extraction Technique and its Applications
on Power Bus Modeling in High-Speed Digital Designs”

1100 “Non-resonant Electromagnetic Simulation of Some Resonant Planar
Circuits”

1120 “FDTD Analysis of Conventional and Novel Delay Lines”

1140 “Complementary Operators for Frequency-Domain Method: A Single
Simulation implementation”

1200 LUNCH

SESSION 4: STUDENT PAPER COMPETITION
Chair: Perry Wheless

0920 “Systematic Studies in Annular Ring PBG Structures”

0940 “Fast Electromagnetic Analysis Using the Asymptotic Waveform
Evaluation Method”

1000 *“A Domain-Decomposition/Reciprocity Technigue for the Analysis
Of Arbitrarily-Shaped Microstrip Antennas with Dielectric Substrates
and Superstrates Mounted on Circularly-Cylindrical Platforms”

1020 BREAK

1040 “A New FDTD Scheme to Model Chiral Media”

1100 *“T-Matrix Computer Code Applied to Electromagnetic Field
Penetration in Magnetic Resonance imaging”

1200 LUNCH

TUESDAY AFTERNOON

1300-1530 INTERACTIVE POSTER SESSION
1300-1900 VENDOR EXHIBITS

1500-1700 WINE AND CHEESE TASTING
SESSION 5: INTERACTIVE POSTER SESSION

“Characteristics of Silicon Photoconductivity Under Near-Infrared illumination™

“Characteristics of Fractal Antennas”

“Feigenbaum Encryption of Computer Codes”

“Extension of SuperNEC to Calculate Characteristic Modes”

Jun Fan, Hao Shi, James L. Knighten
James L. Drewniak

Yuriy O. Shlepnev

Omar M, Ramahi

Omar M. Ramahi

(Parallel with Sessions 1,2 & 3)

Todd Lammers, Shawn W. Staker, & Melinda Piket-May

Dan Jiao & Jianming Jin

R.J. Allard, D.H. Werner, & J.S. Zmyslo

A, Akyurtlu, D.H. Wemer, & K. Aydin

Rafael R. Canales, Luis F. Fonseca & Fredy R. Zypman

Ballroom, Herrmann Hall
Ballroom, Herrmann Hall
Ballroom, Herrmann Hall
Ballroom, Herrmann Hall

Preston P. Young, Robert Magnusson
Tim R. Holzheimer

Haruo Kawakami, Yasushi Ojiro, Yasushi lizuka,
Satoshi Kogiso & Gentei Sato

R.M. Bevensee

Thomas Abbott

(THE PAPER “XPATCH 4..., BELOW IS BEING PRESENTED HERE ONLY; IT WAS NOT RELEASED IN TIME FOR INCLUSION IN THE

PROCEEDINGS
“Xpatch 4: The Next Generation in High Frequency Electromagnetic
Modeling and Simulation Software”

“Review of Basic 3D Geometry Considerations for intefligent CEM
Pre-Processor Applications™

“Modelling of Loaded Wire Conductor Above Perfectly Conducting Ground
by Using 3D TLM Method”

J. Hughes, J. Moore, S. Kosanovich, D. Kapp,
R. Bhalta, R. Kipp, T. Courtney, A. Nolan, D. Andersh,
F. German and J. Cook

Kurt V. Sunderland

Neboj$a S. Dongov, Bratisiav D. Milovanovié,
Viadica M. Trenkic




TUESDAY AFTERNOON 21 MARCH 2000
1300-1530 INTERACTIVE POSTER SESSION (cont)

“Near to Far Field Transformation for a FDTD BOR with PML ABC and
Sub-Grid Capability”

“Evanescent Tunneling and Quantile Motion of Electromagnetic Waves
in Wave Guides of Varying Cross Section”

“A Modal Approach for the Calculation of Scattering Parameters in Lossfree
and Lossy Structures Using the Fi-Technique”

“A Modular Technique for the Calculation of Wave Guide Structures”
“Wave Propagation Through 2D Clusters of Coupled Cylindrical Resonators”
“Design Software for Cylindrical Helix Antennas”

“The Analysis of a Center-Fed Helical Microstrip Antenna Mounted on a
Dielectric-Coated Circular Cylinder Using the Recliprocity Theorem"

“Near to Far Field Transformation for a FDTD BOR with PML ABC and
Sub-Grid Capability”

WEDNESDAY MORNING
0715 - 0800 CONTINENTAL BREAKFAST
0815 PLENARY SPEAKER

“Design on Computer — A Coming of Age”

SESSION 6: COMPUTATIONAL BIO-ELECTROMAGNETICS
Chairs: Ray Luebbers and Susan H;

0920 “Numerical Investigation of Two Confocal Microwave Imaging
Systems for Breast Tumor Detection”

0940 “FDTD Studies on SAR in Biological Cells Exposed to 837 and
1900 MHz in a TEM Cell”

1000 "Modelling of Personnel Electromagnetic Radiation Hazards
Deliberation of a Novice”

1020 BREAK

1040 “Modeling Interference B 1 Very Low Frequency
Electromagnetic Fields and Imp d Cardiac P: kers”

1100 “Using Computational Electromagnetics to Solve an Qccupational
Heaith and Safety incident”

1120 “Analysis of P 1t Magnet Type of MRI Taking Account of
Hysteresis and Eddy Current and Experimental Verification®

SESSION 7: VIRTUAL REALITY IN REAL-WORLD APPLICATIONS
Chairs: Stan Kubina and Dennis DeCarlo

0920 “A Virtual Radiation Pattern Range and its Uses -
C-130/Hercules HF Notch Antenna”

0840 “HF Towel-Bar Antenna Location Study Aboard an H3 Sikorsky
Helicopter”

1000 “Improving Model Confidence through Metamorphosis”

1020 BREAK

1040 “Model Morphing for Insight into the HF Assessment Parameters™

1100 *3D Modeling of Complex Helicopter Structures: Prediction and
Measurements”

Xxii

‘Tom Cwik, Jet Propulsion Laboratory

Batlroom, Herrmann Hall

Vicente Rodriguez-Pereyra, Atef Z. Elsherbeni,
Charles E. Smith

E. Gjonaj

Rolf Schuhmann, Peter Hammes, Stefan Setzer,
Bernd Trapp, & Thomas Weiland

Johannes Borkes, Adalbert Beyer, & Oliver Periz
Ross A. Speciale

M. Slater, C.W. Trueman

R.A. Martin, & D.H. Wermner

Vicente Rodriguez-Pereyra, Atef Elsherbeni & Charles Smith

Glasgow 102

Paratllel with Sessions 7 & 8)

Susan C. Hagness, Xu Li, Elise C. Fear & Maria A. Stuchly
AW. Guy

Alan Nott

Trevor W. Dawson & Maria A. Stuchly

Timothy Priest, Kevin Geldsmith & Dean DuRieu
Norio Takahashi, Siti Zubaidah, Takeshi Kayano
Koji Miyata & Ken Chashi

(Parallel with Sessions 6 & 8)

Stanley J. Kubina, Christopher W. Trueman
David Gaudine

Saad N. Tabet, Carl D. Myers & Dennis DeCarlo

Douglas R. Munn and Chris Trueman

Douglas R. Munn and Chris Trueman

Anastasis C. Palycarpou, Dong-Ho Han
Stavros V. Georgakopoulos
& Constantine A. Balanis




WEDNESDAY MORNING 22 MARCH 2000
SESSION 7: VIRTUAL REALITY IN REAL-WORLD APPLICATIONS (cont)

1120 “Increasing the Productivity of NEC Analysis with Virtual
Reality and 3D Laser Scanners”

1140 “An Interactive HTML Based Muitimedia Course on Antennas”

SESSION 8: EMC
Chairs: Bruce Archambeault and Jim D iak

0920 “Adding Imperfections to EMC FDTD Models as a Means of
increasing Accuracy”

0940 “Power Conversion Techniques for Portable EMI Sensitive
Applications”

1000 “Using the Partial Element Equivalent Circuit (PEEC) Simulation
Technique to Properly Analyze Power/Ground Plane EMI Decoupling
Performance”

1020 BREAK

1040 “EMI Mode! Validation and Standard Challenge Problems”

1100 “Modeling EMI Resulting from a Signal via Transition Through
Power/Ground Layers”

1120 *Techniques for Optimizing FEM/MoM Codes”

1140 “Numerical Modeling of Shielding by a Wire Mesh Box”
LUNCH

WEDNESDAY AFTERNOON

SESSION 9: PROPAGATION
Chairs: Steve Fast and Frank Ryan

1320 “A Fast Quasi Three-Dimensional Propagation Model for Urban

Microcells'

1340 “FDTD Techniques for Evaluating the Accuracy of Ray-Tracing
Propagation Models for Microcells”

1400 “A Building Database Features Pre-Processor for 3-D SBR/GTD
Urban EM Propagation Models”

1420 “Toward a New Mode! for indoor and Urban Propagation Using
Percolation Theory”

1440 *“Ray Tracing Algorithm for Indoor Propagation”
1500 BREAK

1520 “Modeling Large and Small-Scale Fading on the DPSK Datalink
Channel Using a GTD Ray-Tracing Model”

1540 “Rough Surface Forward Scatter in the Parabolic Wave Equation Mode!”

1600 “A Comparison of Electromagnetic Parabolic Equation Propagation
Models Used by the U.S. Navy to Predict Radar Performance”

SESSION 10: WAVELET AND TLM MODELING TECHNIQUES
Chairs: Wolfgang J.R. Hoefer and Peter Russer

1320 “The Implementation of a High Level (1st-order) Haar Wavelet
MRTD Scheme”

1340 “Muiti-Resolution Based TLM Technique Using Haar Wavelets®
1400 “Formulation and Study of an Arbitrary Order Haar Wavelet Based
Multi-Resolution Time Domain Technique”

xxiii

Kevin J. Cybert & Daniel D. Reuster

Ulrich Tirk & Peter Russer

(Parallel with Sessions 6 & 7)

Colin E. Brench

Reinaldo Perez

Bruce Archambeault

Bruce Archambeault & James L. Drewniak

Wei Cui, Xiaocning Ye, Bruce Archambeault
Doug White, Min Li & James L. Drewniak

Y. Ji, T.H. Hubing, & H. Wang
Gerald J. Burke & David J. Steich

{Parallel with Sessions 10 & 11)

Joseph W. Schuster & Raymond J. Luebbers

Joseph W. Schuster & Raymond J. Luebbers

James Pickelsimer & Raymond J. Luebbers

G. Franceschetti, S. Marano, N. Pasquino, & LM. Pinto

C.W. Trueman, R. Paknys, J. Zhao, D. Davis, & B. Segal

Kent Chamberlin, Mikhailo Seledtsov & Petar Horvatic

Frank J. Ryan

Donald de Forest Boyer & Huong Pham
(Parallel with Sessions 9 & 11
Engiu Hu, Poman P.M. So, Masafumi Fuijii, Wei Liu

Wolfgang J. R. Hoefer

Ismael Barba, Jose Represa, Masafumi Fujii,
Wolfgang J.R. Hoefer
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Efficient Extraction of S-parameters of Transmission line discontinuities for RF and
‘Wireless Circuit Design

Raj Mittra
Electromagnetic Communication Laboratory
319 EE East, Pennsylvania State University
University Park, PA 16802

Virtual prototyping of RF and wireless circuits plays an important role in the cost—
effective and timely development of new products. However, this task may be very time-
consuming because these circuits typically contain a large number of linear and non-linear
components, and the procedures for the circuit simulation and optimization can be very
computer-intensive.

Typically, one resorts to EM field solvers for extracting the S-parameters or Spice-
equivalent circuits for the circuit components that are discontinuities in various transmission
lines, e.g., microstrip lines, striplines and coplanar guides. However, if one runs a frequency
sweep for each choice of parameter sets, e.g., the width and height of the etch and the dielectric
constant of the substrate, and uses full wave solvers for this purpose, the time required to develop
the design may be prohibitively large, because a large number of iterations of the parameters
may be needed to achieve the requisite frequency response and the impedance match. To
circumvent this difficulty, one frequently resorts to using closed-form expressions that are
extremely fast to compute, are available in a number of published papers and texts, and even in
commercially-available softwares. The caveat in following this approach is that the closed-form
expressions for the lumped-circuit parameters representing the transmission line discontinuities
are based on quasi-static analyses and are, therefore, often quite limited in their range of
application if accurate models are desired over a broad span of physical parameters and wide
frequency interval. To-date, no simple alternatives seem to be available for bridging the gap
between the quasi-static and full wave models. What is needed is an approach that can be used to
derive the desired S-parameters almost as numerically efficiently as those based on the closed-
form expressions, but one that does not compromise the accuracy of the models of the
discontinuities in the process.

The objective of this paper is to propose one such approach that utilizes the neural
networks in combination with quasi-electrostatic and -magnetostatic analyses to create models
for the frequently-used microstrip discontinuities, e.g., bends, gaps, stubs, and so on.

Tllustrative examples will be provided in the paper to demonstrate the usefulness of the
approach by comparing its accuracy and computation times with full-wave solvers for a number
of representative circuit components.
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Transient electromagnetic scattering from curved dielectric/lossy 3D bodies using
covariant projection elements
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Abstract

A nove! transient finite element (FE) method is
developed to study electromagnetic scattering
from curved, dielectric/lossy 3-D bodies. The
analysis is in terms of the E field. The test/trial
spaces are modelled using Covariant Projection
Elements (CPE). A description of the CPE
properties -built-in avoidance of spurious modes
and curvilinear modelling of rich geometries- is
given. Their nature is then discussed in the
context of differential geometry. Problem
geometry is mapped via curvilinear (quadratic)
modelling, providing accurate representation of
arbitrarily curved bodies. The spatial
representation of the field is quadratic
tangential/linear normal (QT/LN), as a
oonsequence of the CPE. Spatial integration is
performed using Gaussian quadrature. A second-
order implicit formulation is employed using
Galerkin's method. The algebraic formulation is
‘clean’, without penalty terms or constraints being
required. Time integration is accomplished using
a unified set of double-step algorithms, meaning
that the solution of a sparse matrix equation is
involved at each timestep. Scattering results
from a sphere are presented and compared with
analytical and previous transient integral
equation treatments. Good agreement and
accuracy is shown.

1. Introduction

In this paper we present a finite-element time-
domain (FETD) technique for the solution of wave
scattering from electromagnetically complex
(dielectric/lossy) 3-D bodies of arbitrary shape.
The use of FETD methods still trails the
popularity of finite-difference time-domain
(FDTD) approaches, although [1] FETD methods
seem to have an advantage in certain problems.

The analysis developed herein fully exploits the
assets of FETD and expands them further by
introducing a covariant projection element (CPE)
[2,3] treatment for the vector test/trial functions.
This allows curvilinear modelling of the
geometry and includes naturally a quadratic
tangential /normal linear (QT/LN)
representation of the field spatial variation.

The material is structured as follows. In section 2
we introduce the CPE which we employ in the
time domain. Their inherent ability to avoid the
so-called spurious modes is reviewed and
understood within a wider mathematical
framework. The weak inclusion condition defined
by Crowley [3] as the property to rule out spurious
solutions is identified with the fulfilment of the
De Rham-Whitney complex appearing in
discrete differential geometry [4]. In section 3 the
semi-discrete algebraic formulation for the
problem is derived. Galerkin’s method is applied
to the curl curl equation for E. Two possibilities
are considered for dealing with the exterior
solution; an “exact” hybrid treatment with IETD
or a truncation scheme implemented via absorbing
boundary conditions. Section 4 is concerned with
time integration and the final form of the system
of equations to be solved. Finally, in section 5 the
accuracy and efficiency of the present method are
shown. Comparison is made with previously
published results.

2. Covariant Projection Elements

The CPE is a form of hexahedral vector elements
with the property that the associated degrees of
freedom (DOF’s) and interpolation polynomials
are arranged to represent adequately a I-form.
They were first introduced by Crowley et al. [2,3].
Their major characteristic is the built-in




capability for removing spurious modes, but they
also have the ability to support naturally abrupt
material interfaces and to handle efficiently
edges and sharp points. Spurious corruptions of
the solution are avoided by fulfilling the so
called weak inclusion condition [3] and we shall
now see that the weak inclusion condition is
strongly related to the fulfilment of the De
Rham-Whitney complex.

Maxwell's equations are most elegantly expressed
in the language of differential forms [5,6]. The E
and H fields are ‘ordinary’ vectors (I-forms) but
the induction, B, for instance, is a ‘polar’ vector
(2-form) and does not change under
transformations in the same way that E does. A I-
form and a 2-form are radically different objects
in differential geometry, both from each other,
and from O-forms and therefore, they cannot be
modelled using the same ‘elements’ employed for
scalar functions (0-forms).

In the continuum this geometrical structure is
automatically fulfilled by Maxwell’s equations
but it is not generally satisfied when the fields
(inductions) are  arbitrarily  discretised.
Representation of E or H we must replicate the
underlying structure of I-forms, and that
algebraic structure is induced by the exterior
derivative. This essential observation is not
appreciated when the FE are implemented using
a node-based discretisation with explicit
continuity in all components. The elements
required to deal with I-forms (2-forms) have
their DOF’s associated with edges (faces) rather
than with nodes. Nodal elements are
appropriate for 0-forms.

Having identified E and H as 1-forms, we seek
the properties of the vector elements required to
model them. First it is explained why the DOF’s
must be associated with edges and then conditions
on how to model the irrotational space are given.
Finally we show that CPE exhibit these
characteristics.

1-forms can be considered as ‘machines’ [6] which
yield a number out of a line integral. So 1-forms
have integrals over edges (circulations or line
integrals). Therefore, the unknowns associated
with the finite elements for differential I-forms
are tangential magnitudes related with edges.
Since the manifold where I-forms live is split

into elements and ultimately we represent the I-
forms within these elements, the only unknowns
to be fixed in the interelement boundary
conditions are the tangential ones (edges), which
determine thel-form throughout the element.
From this point of view it is easier to understand
why the essential boundary conditions
encountered in ordinary EM vector analysis are
always tangential to the surfaces and the natural
boundary conditions are normal. This difference
between essential and natural boundary
conditions is present in EM just because the fields
are l-forms, whose nature is ‘tangential’. It is
obvious then why natural interelement conditions
are unconstrained and left to take care of
themselves, given that I-forms are geometrical
objects affected only by line integrals.

The exterior derivative d has the property that
when it is applied twice it yields zero
dod=0(.e. curl grad =0 ) and therefore it
divides the p-form space where it acts into two
orthogonal sets: the kernel, ker(d?F), of the

exterfor derivative (subspace mapped to zero
upon the application of d) and its orthogonal
counterpart. The relations and algebraic
structures arising from this constitute the De-
Rham complex {6,8].

The irrotational space of a vector, I, can then be
interpreted as the kernel, ker(d ‘F). of the

exterior derivative d for the space of I1-forms, 'F.
This kernel contains the image of the space of 0-
forms (associated with the scalar potential in
EM) through the exterior derivative. In vector
language we can say it contains elements of the
type E=Vg.

Our goal is to generate two orthogonal trial
spaces Mand M, suchthat Mcland M, c1,, as
shown in figure 1. Practically we shall
accomplish our goal only up to the order of the
interpolation and the degree of refinement of the
mesh.

To reproduce these orthogonal spaces correctly
under the action of d wusing a discrete
approximation let us start by defining a set of
arbitrary  vector basis functions which
interpolate the I-forms through polynomials. Let
us call this set T={W}. The W's are assumed

element-independent and of the form,




n’il—) {t,mn;u} = hl (u)hm (v)hn (w)du
MH{I,m v} = hl (u)hm (v)hn (W)dv (1)
WiH(l.m,u;w) = hl (u)hm (v)hn (w)dw

The natural coordinates are assumed. The
subindices Lm,n stand for the order of the
polynomial h's and in order to establish a unique
nurnbering for the W,'s a global number i is given
to every tetrad {[,m,n;u},{I,m,n;v},{l,m,n;w}. Let us
recall the exterior derivative d is identified
with curl in the case of I-forms. We wish to
express the E field with the trial space T and
since it is a I-form we must be able to reproduce
both rotational and irrotational fields. The
following expansion is adopted when trying to
span the fields by the set T,

E=YeW, @
Given a member of M, v € M, we must have, by
definition dv=0. Also, from eq. (2) the
expansion v=Zv,.W, must hold. With these

definitions we reach the homogeneous system of
equations for thev,’s,
d(yvw)=0 ®
after applying the exterior derivative d. If a non-
trivial solution is sought and v € M, equation (3)
has mo solution, unless some v, are zero. Taking
the ucomponent of expression (3) and expanding
the notation, it is found, .
0= 3 Cltmmnh000 (I 0)-

- E e(l.m.n:v)hl(")hu (v)an,(w)
setrads

If no restriction is made on the interpolating
polynomials, there will be terms in eq. (4)
proportional to  v"w" v"w  without
counterpart. These cannot be cancelled by any
choice of €ltmm} T e(p'q_m)and represent

corruptions to the modelling of I-forms.
Essentiaily one is then unable to model nullspaces
of the d operator, ker(d'F), which in ordinary
vector language constitute repectively the curl
and div nullspaces. In the case of 1-forms, the fact
that no solution can be found to (4) (except by
setting some coefficients to zero) signifies that no
terms like E«V¢ can exist. Spurious modes are
then inevitable; transient analysis, which
contains zero frequencies in the spectrum, will be
corrupted. Similarly, in quasistatic problems,
where the field tends to be irrotational, mo

@

solution can be found. The source of spurious modes
is identified as the inability in the discrete
world to accommodate and represent the action of
the exterior derivative. From another point of
view, having no solution for (4) is equivalent to
stating that the size of the irrotational trial
functions relative to the total trial space is too
small. This is the link to the inclusion condition
introduced by Crowley, which can be interpreted
as a condition on the minimum relative size that
the irrotational trial space can take.

A suitable restriction to use in {4) is to make the
Ir's complete up to one order lower in the normal
direction (eg. in the first order, they would be
tangentially quadratic and normally linear).
This means that for the discrete irrotational
space to be modelled, the I-form space employed
must have different orders of interpolation
depending on the direction.

Let wus recall that the discretisation
accomplished so far is for use in a FE formalism
which contains an associated error. The FE will
provide the best fit to the space 'F up to its
degree of accuracy. The creation of a trial space
satisfying weak orthogonality moves the error
due to spurious solutions into the ‘higher order’
error space which is the error space of the FE
method itself. Therefore, within the order of the
FE method, corruptions are nonexistent.

Now we present the CPE as conceived by
Crowley, but bearing in mind they can be derived
according to the theoretical mathematical
framework described above. The CPE are
geometrically based on ordinary 27-noded,
Lagrangian, curvilinear hexahedra. The ‘real’
brick Cartesian coordinates (x,y,z) are mapped
into a reference cube with curvilinear coordinates
(u,v,w). This mapping entitles us to introduce a
local curvilinear covariant basis u2v/3w
defined to be or/ du,dr/ dv,dr / dw respectively.
Here r is the position vector and 82v'3 are
tangential to the axis shown in the subindices.
The electric field can be expanded in this system
as,

E(u,v,w)=Ea'+Ea" +Ea" ©




where 2" 2’ @ are the contravariant basis
(reciprocal in some literature) and E, /B, E, the
covariant components. The covariant components
along the axis are expressed also through the
projection

(E.E.E,)=(a,-E,a,-E,a,-E) ©®
and from (6) it is seen to be easy to apply
boundary or interelement conditions to the faces
of the brick by just matching or fixing the
covariant projections.

The way in which E is represented in an element
according to Crowley (lowest order) [3] and Webb
(hierarchal generalisation) [7] is,

= Zzzeuyt hl(“)h (V)h(w)

w0 ju0 k=

]
E = zzzevm hl(u)hj(v)hk(w)

E, ZZZ Euie (R, (W)

in0 =0
Working in the lowmt possible order for CPE, we
have m=1 n=2, and the parallelism with the
above derivation for CPE is evident by

identifying W, W) _h,(u)h,(v)h,(w)a- with (1).

3. EM scattering formulation

In this section we apply the Galerkin formulation
to obtain a semi-discrete system of equations
which approximate the Maxwell's time-
dependent problem. Time discretisation will be
discussed in next section.

The domain where the FETD (from now on
CPETD) analysis will govern is named as a CPE
(dielectric/lossy) region cpe with isotropic
material properties €, W, ©, surrounded by an
artificial surface S over which boundary
conditions are later enforced (be they ABC’s ar a
BIE hybrid treatment).

Taking the cur] of the curl E Maxwell equation,
VxVxE+ua—§—+ys%l§_o ®
gives us our starting point. In a second order
formulation one has the freedom to choose E or H
as the working variable, as both procedures are
analogous. To eq. (8) we apply Galerkin's
method. A Galerkin formulation is particularly
well suited for our formulation because it

provides us with a weak statement of the
problem. In the previous section it has been seen
that continuity conditions at material /
interelement interfaces require only edge
continuity, while leaving the normal conditions
to be imposed weakly in an appropriate
formalism. Therefore the weighted residual
methods, especially the Galerkin method, prove
to be a natural setting for a CPE treatment.

For simplicity we use a single-index notation to
represent the E field using the vector basis
functions W, provided by the CPE, with i ranging
from 1 to n, where nis the total number of DOF's.
It is important to note that no penalty terms or
constraints in the form of Lagrange multipliers
need be included in the formulation.

To determine fully the CPETD problem, a
treatment for the exterior solution, here the
surface term, must be given. In [11] three possible
choices are shown. For simplicity ABC's will be
enforced. Nevertheless, it is important to recall
that hybridisation with efficient BIETD is exact
and that dispersion effects stemming from the
CPE discretisation are diminished.

Zeroth order ABC's are applied to the scattered
field in the surface term. The ABC operator is,

nxVxE=-lnxnxi§—l;a£'l on S, ®
dt ¢ It

being equivalent to the Sommerfeld radiation
condition on the surface of the truncated mesh.
The final semi-discrete system of equations to
deal with is then,

0=e)f, (VxW)-(Vxw,)do

+4,(0) fa,, UoW,- W, do

+(1) -(n;,. HEW,- W, dQ (10)

+é,(z)§s_(nxw)-(nxw,)ds

+, W-(nx VxE;“)ds

+§S_(nxw)~(nxl':;“""“)ds
Different regions are taken into account by
specifying the *r#r©  values at each element in
the assembly process. Interelement boundary

conditions are automatically fulfilled even across
different regions.




4. Time integration and profiling

With the appropriate definitions for the
matrices the system of equation (10) takes the
form,

M, )e +[c, e + [, e, =7, (1
which can be tackled either via a single-step
algorithm [9] or a double-step algorithm [i].
Performance from a double-step code is
preferable. M,; is not diagonal, thus making the
problem implicit. Stability is unconditional and
the timestep size can be selected to suit the
temporal variation being modelled. In particular,
local mesh refinement to model geometrical
detail does not require a corresponding timestep
reduction.

The problem is reduced at each timestep to the
implicit form [A]x=5 , which is then solved via
a bi-conjugate gradient method. Previous
timestep solutions are used as a guess. A solution
is typically reached with <(N)'” iterations when
the bulk of the wave/pulse crosses the scatterer,
dropping considerably when the field is being
radiated away. This shows the bulk of the
computational effort is the time integration,
with a scaling « N'*, ('), whereas the cost of
building the matrices in eq. (11) scales as N { £).
The storage cost comes mainly from the matrices
present in the stepping algorithm. These are
banded matrices with a number of entries = Nb,
where b<180 Storage scales as N ( £ ). Note
that all the above scalings are increased to the
extent that discretisation needs to be made finer
at high frequencies to accommodate dispersion.

5. Numerical results

The results and validation of this new CPETD
method are described. The geometry for the test
case considered is a sphere.

Defining A as the characteristic Gauss
pulsewidth, the problem considered for the
dielectric(lossy) sphere is a 3A3A<3A one.
However the ‘interesting’ part concerning the
scatterer is only a IAXIAXIA region, making a
hybrid treatment eventually desirable to model
the surrounding vacuum region. The number of
DOF's needed for a converged solution (15,000) is
relatively small, and considerably smaller than
has been reported using other FE formulations.

This is a consequence of the QT/LN mixed-order
interpolation approximation and curvilinear
modelling.

Dielectric sphere

Results have been published for a dielectric
sphere by Vechinski, Rao and Sarkar [11] and
Pocock, Bluck and Walker. A unit radjus sphere is
iluminated with an incident pulse given by,

E™(r,f)= Ea-jl._;exp(—(ct —ct,-r- l'c)z) (12)

with E =#i, c,=12m, k=-a, . Timestep size is
At=0.6-10"s. The standard spherical-polar
coordinate system is adopted. Figures 3 and 2
show the equivalent surface currents ¢ and J,,
at g=90",¢=90'and9=90",¢ = 0", for the dielectric
case with material properties are g, =2.0 g, =1.0.
Good agreement with the results of Biuck [11] and
Vechinski et al.[10] is displayed.

Figure 5 also shows the static case of a dielectric
sphere immersed in a 1V/m uniform electric field.
A uniform field is obtained in the interior with a
value of 0.75V/m, in accord with the analytical
result. Discontinuity is also represented
accurately, yielding a jump in the normals of 2.
No spurious modes are present.

Lossy sphere

Figure 4 shows the E, component of the front, side
and rear nodes of the lossy sphere. The material
properties areg, =3, 0=0.015/m. Comparison is
made with an IETD code (Bluckil3]) using the

pulse,
E™*(r,t)= E.,exp(—-bl—,(ct —cty, -1+ i)z) {13}

withE =4, cp=12m, k=-d, b=2m.
and the same mesh given in the dielectric case.
Again, agreement is good.

6. Conclusions

A successful implementation of curvilinear
modelling, free of spurious modes, has been
derived for a finite element treatment of
dielectric/lossy targets. Further, a simple and
clean formulation can be employed as a
consequence of the freedom of the CPE from
spurious mode problems. Solutions obtained are in
very good agreement to previously published
results.
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Abstract

A new stable variational formulation for full-wave analysis of waveguides is presented. Re-
ported theoretical results apply to a wide class of vector finite elements including two families
of Nedelec [11, 12] and their generalization, hp-edge elements {2, 15]. Numerical experiments
fully support theoretical estimates for convergence rates.

1 Introduction.

In this short communication, we consider the numerical full-wave eigenmode analysis of an in-
homogeneously loaded waveguide, at a given frequency w. An existing approach to this problem
allows for an infinite dimensional subspace of spurios modes corresponding to propagation constant
B =0, see [9, 10]. These spurious modes may pollute numerical TEM-like solutions, especially
as w — 0, if no extra care is taken in the numerical scheme. Our goal has been to develop a
variational formulation applicable for quasistatic regimes and to provide a comprehensive math-
ematical analysis of a suitable finite element discretization with convergence rate estimates. The
proposed variational formulation of the appropriate eigenvalue problem (although less memory-
efficient than in [9, 10]) is uniformly stable as w — 0, does not suffer from spurious modes® and,
leading to the spectral analysis of a compact operator, greatly simplifies the mathematical anal-
ysis. As a practical advantage, zero is not an eigenvalue and all (non-infinite) eigenvalues have
finite multiplicities. In this note, we outline our approach to the problem, present convergence
rates for Nedelec elements [11, 12] and show sample numerical experiments with Nedelec elements
and their generalization, the hp-edge elements {2, 15]. We refer to [14] for theoretical details and
additional numerical examples.

10ne might argue that now 8 = oo, not # = 0 as in [9, 10], has infinite multiplicity and spurious eigenmodes.
However, the fields corresponding to 8 = oo are completely eliminated from actual computations.
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2 Maxwell’s equations.

Let us consider a closed waveguide defined by a right cylinder with polyhedral simply-connected
cross section @ € E’. Perfect electric conductor boundary condition are applied at J€. The
waveguide is loaded with a non-lossy dielectric described by scalar piece-wise continuous functions
€ and p. The general ansatz for electromagnetic fields in waveguides is given by

E(z,z3,8) = (E(z), Es(z)) e@F0s)
H(z,z3,t) = (H(z), Hs()) eilwthes)

where t is time, @ € 2, and zs-axis is along the waveguide. E and H are the electric and the
magnetic vectors in the plane of the cross section, and F; and Hj are the fields’ components along
the waveguide. With this ansatz, second order Maxwell’s equations expressed in terms of electric
field (E, E3) lead to a system of three equations:

@.1)

2
Vx(-l—VxE)—wzeE+é—E—£VE3=0
r u H

Vo (%VEa) +wieBs + )0V 0 (iE) =0 (22)
V o (eE) — 3BeE; = 0,
with boundary conditions imposed on §0:2
Exn=0; E=0. (2.3)

We note that for 8 # 0 system (2.2) is overdetermined and either (2.2); or (2.2); can be dropped.
By the logic of [2, 15], we retain the divergence constraint (2.2)s. By rescaling E5 as E3** = 33 Es,
we can reduce system (2.2) to:

2
V x (lv x E) — w'E — lVEg'ew =-2F,
# b H (24)

Vo (eE) — eE3™ = 0.

3 Variational eigenvalue problem. Continuous level.
To get a weak formulation of (2.4) with boundary conditions (2.3), we take test and trial functions
from functional space X = Ho(curl, Q) x H}{(Q):

X ={(F,Fs): V xFeL*0), FeL*Q); VEFE¢cL}Q)}, (3.5)
endowed with the norm:

I(F, Fs) = (V x F,V x F) + (F, F) +(eVFs, VF3). (3.6)

2To get a system on (H, H3), interchange ¢ and p and impose Hon =0, &pH3 =0on 9.
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In this note, (-,-) stands for the L?(Q)-inner product:  (f,9) = /9 fgdQ.

Following the standard procedure, we recast (2.4), (2.3) into the following variational eigenvalue
problem:

Find (E, Ez**) € X, B € [, such that V(F,q) € X:

1 1 1
1y « B,V x F) - *(cE, F) - (-VE},F) = —-*(~E, F),
{(u )= (B, F) ~ (GVEE™, F) = ~5(,B, F) 52
(¢E, V) + (eE27,q) = .
We assume that w? is not an eigenvalue of
1V x B,V x F) = w*(cE, F) 1 \
7 or (=V E3, VF;) = w*(eEs, F3). (3.8)
(eB,Vg) =0, #

It can be shown then that 8 = 0 is not an eigenvalue of (3.7). Owing to the divergence constraint
(3.7)2, the formulation is uniformly stable as w — 0. Moreover, spectral analysis of (3.7) can
be equivalently conducted on the solution operator T' defined in accordance with (3.7), see [1].
Operator T is not only bounded, but also is compact on L*(Q) x L*(2) due to the constraint
(8.7) and properties of X.

Compactness of operator T ensures that the spectrum of (3.7) is comprised only of eigenvalues
and that any eigenvalue 8 # oo has finite multiplicity.

Generally, operator T is not self-adjoint; consequently its eigenvalues may have nonzero imag-
inary parts, and its eigenfields are not expected to form an orthogonal basis in L3(Q) x L}9).

4 Variational eigenvalue problem. Discrete level.

Let {Ti}s»o be a family of discretizations of the computational domain £ by triangles or quads,
with parameter h reflecting the mesh size. For each Th, we construct W, and Vi, finite dimensional
internal approximations to Ho(curl, ) and HX(9), and approximate X of (3.5) with X =
Wi x Va. We note that system (3.7) involves constraint (3.7); which needs to be properly
modeled on the discrete level. The following three sufficient conditions, taken from [4], ensure
convergence of numerical eigenpairs to the physical ones:

e (C1) Compatibility of spaces V4 and W such that:
VVi={E, e Wi:V x Ez =0}, (4.9)
. (C2) Approximability of X by X4 such that:
fm inf (B, Bs) — (Fralx =0, (410)

b0 (B an)eXn
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¢ (C3) Discrete compactness of W), in L*(Q) as defined in [35]:
Any bounded {E}50 € Ho(curl, ), such that Ey € W), and
(eEx, Vgr) =0, Vg € Vi, Vh, contains a subsequence which
converges in the L*()-norm to a function E € Hy(curl, §).

For shape-regular affine meshes, Nedelec triangles and quads of [11] and triangles of {12] have
been shown to possess discrete compactness, see [6, 7, 3]. The hp-edge elements (which generalize
Nedelec quads of [11] and triangles of (12]) possess the discrete compactness as well [3], provided
that p remains uniformly bounded. Conditions (C1)-(C3) are sufficient to show that there exists
such ho > 0 that, for all 0 < h < hy, discretized version of (3.7) considered on X is uniformly
stable as w — 0 and uniquely defines compact solution operators T’ which converge to T' not
only pointwise but also in the operator norm. This makes applicable the results of mathematical
analysis for eigenvalue problems [1].

5 Convergence Rates for Nedelec Elements.

The estimates of convergence rates are necessary for the analysis and design of successful adap-
tive schemes. Since the hp-edge elements [2, 15] generalize Nedelec elements [11, 12], we con-
sider the Nedelec elements first with the intention of using these results for further study of the
hp-convergence mechanism and hp-adaptivity. To get the rates of convergence for propagation
constant 3, we need to know the regularity of the eigenmodes (F, E3) and the adjoint eigenmodes
(E*, E3) which correspond to 42, see [1]. Let us assume that all the eigenmodes and the adjoint
eigenmodes for 82 of multiplicity m and ascent a ? are such that

EcH(Q), VxEcH'(Q), EseH+(Q),

EcH(Q), VxE cH(Q), EeHQ), (5.31)

where H" is Sobolev space of order r. If we use H'-conforming scalar elements of order p, then
for shape-regular affine meshes with /N-degrees of freedom,

|8~ Bin "< O(N™?), (5.12)

where s = min(p,r), provided that the compatible Nedelec triangles or quads of the first family
[11] are used.

In general, if the compatible Nedelec triangles of the second family [12] are used, then s =
min(p — 1,r). However, if we solve for (E, Es) and the modes corresponding to 5° are all TM or
TEM, or if we solve for (H, H3) and all the modes are TE or TEM, then the triangles of both
families offer the same rate of convergence.

SAscent o is defined as the smallest integer such that dim Ker(T — §%)* = dimKer(T — f)**!. K T is
self-adjoint, @ = 1.
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6 Sample Numerical Examples.

We confirm convergence rates (5.12) by applying our method to homogeneously loaded waveguides
with known exact solutions derived from eigenfunctions for the Laplace operator with Dirichlet or
Neumann boundary conditions. For all considered cases, solution operators are such that ascent
o = 1, and 2ll adjoint eigenspaces have the same regularity as the corresponding eigenspaces.
To confirm (5.12), we implement Nedelec quads of [11] and Nedelec triangles of [12] on uniform
meshes. We use 2Dhp90_EM, a FE package for electromagnetics [13], designed to support the
hp-edge elements which generalize these quads and triangles of Nedelec.

For plots in Figures 5 and 6, cross section Q2 is taken as 1 x 2 rectangle at & = 0.2 with o = 0.
The slopes are in full agreement with (5.12).

In Figure 6, eigenvalues A; and A, correspond to the TE-modes. This implies that V x H = 0.
Therefore, as predicted by theory and now seen in the plots, solving Maxwell’s equations for
(H, H3), not for (E, E3), provides for higher rates of convergence.

For plots in Figure 7, cross section €} is taken as lmm X 2mm rectangle at 100KHz with
& =1, 4 =1, 0 = 5.8-10*S/mm. Although the theoretical results apply only to non-lossy
waveguides, the rates of convergence are as expected.

For an example of domains with singular eigenmodes, we take cross section £ as a 3/2m-sector
of unit radius. The eigenmode with the lowest regularity of r = 2/3 — 6, § > 0 corresponds to
A1, the smallest eigenvalue. Since § is not a polygon, a map isoparametric with respect to the
scalar element is used to model curved elements. The rates of convergence given in Figure 8 are
as expected in all plots but one: for A; the rate is higher then expected if p, = 2.

Figure 1 depicts the cross section of a shielded microstrip line, taken from [16], which can
support complex modes. We use symmetry of the domain and impose the perfect magnetic
conductor boundary conditions along the y-axis. The dispersion curves in Figure 2 for some
representative modes, including a complex mode, are produced using mon-uniform hp-meshes
with scalar hp-quads of order p, = 2,3,4 linked with the compatible hp-edge elements. Two levels
of h-refinement, performed at the tip of the perfectly conducting strip, result in 3041 degrees of
freedom. Electric field (E, E3) is solved for.

In conclusion, we show that the formulation is indeed stable as w — 0. Dimensionless numerical
frequency corresponding to the domain used to compute attenuation constants of the microstrip
depicted in Figure 3 can drop below 107° on the global level, and below 1072 on the element level.
In Figure 4, we observe that the FE-method based on formulation (3.7) and implemented using
the hp-elements yields the attenuation curve marked “FE” which is in a good agreement with the
curve computed by means of a conformal mapping technique taken from [8]. The hp-elements are
of the same type as in the previous example. Two levels of h-refinement at the strip’s corners

result in 3412 degrees of freedom.
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Abstract

I review the main results of the research on hp-adaptive finite element modeling for Maxwell’s
equations done at TICAM for the last three years, and summarize open problems.

Introduction. It has been almost three years since we have proposed in [16] a generalization of
Nedelec’s edge elements allowing to vary locally in a mesh, element order of approximation p. The
variable order of approximation allows to combine in the same mesh large elements of high order,
optimal from the point of view of minimizing the pollution (phase) error [21, 22, 23, 24], and small
elements of low order, necessary to capture geometrical details. The variable order of approxima-
tion is also indispensable in constructing geometrically graded meshes to capture singularities in the
electric and magnetic fields [35] and, finally, offers the general framework for constructing approx-
imations that converge ezponentially fast to the exact solutions. With a generous support of Dr.
Arje Nachman from Air Force (Contract F49620-98-1-0255) and the National Science Foundation
through National Partnership for Advanced Computational Infrastructure (NPACI), we have been
able to focus on the subject for the last three years. In this note, I will review the main results of
our work for the last three years-and state the most important open problems.

Time harmonic Maxwell’s equations. We consider the following formulation of time-harmonic
Maxwell’s equations in terms of electric field E. Given a bounded domain © C RB®, with boundary
T consisting of two disjoint parts T'; and T, we wish to find electric field B(z),z € {1, that
satisfies the reduced wave equation in €, Dirichlet (ideal conductor) boundary condition on T'y,
and Neumann (magnetic field) boundary condition on I's. The standard variational formulation is
obtained by multiplying the wave equation with a vector test function F, integrating over domain
(), integrating by parts, and using the Neumann boundary condition.

Pind F € W such that
1 _ ] _
/ﬂ (VX E)-(V x F)dz - /n (Pe — jwo)B - Fdz = o1
-jw/n.r""ﬂ-i«"duju/r HP.FdS forall FEW
2
In the above W is the space of admissible solutions,

W={EcI?M): VxEcL’Q),nxE=0onT}, (0.2)
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w is an angular frequency, €, ¢, denote dielectric permittivity, magnetic permeability and con-
ductivity of the medium, J'™? is a prescribed, impressed (source) current. HP is interpreted as a
tangent component of a magnetic field H to be enforced on I'y, H? = n X H, with n denoting the
outward unit normal vector to boundary I's. Finally, j is the imaginary unit.

The second order part of the operator, V x (V x E) is not elliptic, as it has a infinite dimensional
null space consisting of all gradient fields. This is the main reason why the solution of the Maxwell
equations is more difficult than the solution of the Helmholtz equation. The lack of ellipticity has
an immediate effect on the stability properties of the equation. The L?norm of the electric field
E depends continuously on data J™, HP, but the stability constant is frequency dependent and
it blows up to infinity as frequency w — 0 [16]. This corresponds to the fact that the formulation
is not valid for the zero frequency case.

Introducing a space of Lagrange multipliers (scalar potentials):
Vi={gecH(Q): ¢g=00nTy}, (0.3)

we employ a special test function F = Vg,q € V, to learn that solution E to (0.1) must automat-
ically satisfy the weak form of the continuity equation,

- ) Vide =i imp . 9 1 -V
/n (e ~ jwo)E -V de = jw /n T . V§dz + jw /r 2H” vgds. (0.4)

The idea behing the stabilized formulation [16] is to enforce this continuity equation ezplicitly at
the expense of introducing an additional variable, the Lagrange multiplier p € V:

Find E € W,p € V such that

/ l(VxE)(VxI_v‘)dz—j(wze—jwa)E-I_F‘dz—/(wze—jwa)Vp-I_v"dz=
Qu Q 1] (0.5)
—jw/n.r""?-i'dz+jw/rm-1‘rds, VFeW
2
-/n(w?e-jwa)E-quz=jw/n.r""r’-quz+jw/rHr-qus Vgev.
2

The Lapgrange multiplier p identically vanishes, and for that reason, it is frequently called the
hidden variable. In contrary to the original formulation, the stability constant for the regularized
formulation converges to one, as w = 0. The regularized formulation works because gradients of
the scalar-valued potentials from V form precisely the null space of the curl-cur] operator. The
variable order edge elements [16] are constructed precisely in this way. We start with a standard,
H-conforming, variable order element, (triangle, quad in 2D, tetrahedron, hexahedron, or prism in
3D), identify the corresponding space of shape functions, and consider its image through the gradient
operator. For instance, for a triangle, if the space of scalar potentials V; consists of polynomials
of order p+ 1 whose restrictions to element edges e are of lower or egual order p, + 1, the space of
vector-valued functions W to approximate the E-field will consist of vector-valued polynomials
whose tangential componenis (and tangential only) on the element boundary will reduce to the
lower order p,. This corresponds to the fact that only the differentiation along the boundary lowers
the order of the polynomial.
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The same assumption that Wy, should include gradients of functions from Vj lies behind the
construction of the parametric element [38].

De Rham diagram. Spaces H', H(curl) and their discrete counterparts V4, W can be put
into a more general context of the de Rham diagram [14] involving additionally the curl and div
operators. The de Rham sequence shown below not only can be reproduced on the discrete level
using the variable order spaces, but also can be completed with corresponding hp interpolation
operators to make the diagram commute.

B Y Hel) Y5 BHEv 8 12

[T { gt |mgy | P (0.6)
Vap Y, Whp-1 ¥ Xhp-2 ¥ Yap-3

For a uniform order of approximation, the diagram reduces to the classical one {1}, involving the
Nedelec and Raviart-Thomas elements. The hp interpolation operators reduce then to those used
by Nedelec but the generalization is non-trivial as the Nedelec interpolation procedures do not
generalize directly to the variable order elements. The de Rham diagram applies to all standard
elements, including curved (parametric) elements as well, and forms a mathematical foundation for
stability and convergence analysis not only for Maxwell’s equations but also for acoustics and various
mized formulations. For h-refinements, the corresponding interpolation error estimates reduce to
those for Nedelec and Raviart-Thomas elements. One of the still open challenges (in 3D only) is to
lower maximally the regularity assumptions on interpolated functions so that the interpolation error
estimates could be applied to problems involving non-smooth, non-convex domains with singular
solutions. But the main open problem in this context is to prove interpolation error estimates
for the p-method. Such estimates have so far been investigated only for H!-conforming elements
by Babugka, Suri, Guo et all, but they remain unknown for the remaining H(curl) and H(div)-
conforming elements. As the definitions of the interpolation procedures involve mixed problems
[14], analysis of the p-interpolation properties reduce to a p-stability analysis of a mixed method
for Maxwell-like problem on a single element. Numerical experiments for p = 1,...,9 indicate that
the stability is there but the question of a general proof for arbitrary elements remains open (the
case of square and hexahedral elements was succesfully analyzed by Monk [28].

Fortran 90 implementations. In the past three years we developed four hp research codes,
written in Fortran 90. The choice of language was motivated, among other reasons, with recycling
portions of earlier, Fortran 77 implementations, dynamic memory allocation, possibility of using
long, self-explanatory names, and user-defined data types. The fundamental data structure for
each of the implemented hp-adaptive discretizations [11, 17, 82, 9, 33] reduces to just two arrays
of two kinds of objects: elements and nodes. The 2D code uses both triangular and quadrilateral
elements, the 3D code works (currently) on hexahedra only. In both 2D and 3D we have used
the same strategy, starting with a generic version for continuous elements (2Dhp30, 3Dhp90) and
then customizing it to the edge elements and Maxwell’s equations (2Dhp90.EM, 3Dhp90.EM).
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The codes support not only the variable order approximations but the constrained approzimation
(hanging nodes) on anisotropically refined, one-irregular meshes. These refinements allow to pro-
duce long, needle-like elements to handle edge singularities and geometrically graded meshes for
corner singularities. The source codes, along with manuals, have been placed on the Web, and are
being updated regularly.

Convergence. Maxwell’s eigenvalues. Stability and convergence analysis for the time-harmonic
Maxwell equations leads quickly to the related (and important for itself) problem of convergence
of Maxwell’s eigenvalues [29]. Due to the lack of ellipticity, the problem is not covered by the
standard theory for elliptic equations. Over a decade ago, Kikuchi [25] introduced the notion of
discrete compaciness that provides a sufficient condition for a convergence analysis for Maxwell’s
eigenvalues. In a recent contribution, Caorsi et all. [5] demonstrate that, in a sense, the discrete
compactness is not only sufficient but also necessary to assure good convergence properties. In
turn, Boffi [2, 3] has linked that discrete compactness with the commutativity of the de Rham
diagram showing, in essence, that the two are equivalent. This strongly suggests that, eventually,
we can prove the optimal hp-error estimates for all kinds of elements and the most general 3D
problems. Qur contributions to the subject include a 2D h-convergence analysis for shape regular,
variable order meshes (geometrically graded meshes included) [13], and a 3D h-convergence analy-
sis for standard Nedelec’s elements of higher order on quasi-uniform meshes [29]. A general proof,
including the p-convergence analysis, is linked to the p interpolation estimates discussed above, and
it remains open.

A posteriori error estimation. Any adaptive procedure is based on estimating residuals. Since
the E field, as the solution to Maxwell’s equations, with or without the Lagrange multiplier, satisfies
the continuity equation automatically, one may be tempted to estimate the residual corresponding
to the curl-curl equation only. This is wrong, and this fact is well known in the EE community
[36]. The residual of the continuity equations can indeed be bounded by the residual corresponding
to the curl-curl equation, but the constant is not frequency independent and it blows up to infinity
as w — 0. This is, again, related to the stability properties of the standard variational formulation
discussed earlier. Consequently, one has to estimate the error corresponding to both equations even
if one chooses to use the standard variational formulation only. We have developed and implemented
2D a-posteriori element implicit error estimators based on locally equlibriated residuals [8, 10]. As
opposed to most popular ezplicit error estimates, the method works for general ip meshes without
use of any ad hoc constants. The main drawback of the technique is the complexity of the coding,
prohibitive in a 3D implementation. A number of other techniques will have to be investigated,
including explicit error estimates, element implicit error estimates based on a solution of local
Dirichlet problems, duality estimates, estimates based on patches etc. [31].

Automatic hp-Adaptivity. One of the ‘holy grails’ of the hp methods is the search for a fully
automatic hp refinement/unrefinement procedure. The idea is well known. There is a consensus
that refinements should be based on local residuals. Elements with largest residuals must be refined.
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The question is whether to go then with A- or p-refinement. The main principle is as follows: for
a ‘regular’ solution we should use the p-refinement, for less regular, the h-refinement. The big
question is how to access the regularity of the solution through the data to the problem and the
FE solution in a sufficiently quantitative way, so we could select the right type of the refinement.
The automatic refinements procedure is expected to reproduce the optimal meshes known for a few
classes of problems: the p-refinements for analytical (very regular) solutions, geometrically graded
meshes of Babuska and Guo for vertex and edge singularities, see e.g. {19, 20], optimal hp meshes
for boundary layers investigated by Schwab, Suri and Melenk, see e.g. [26]. In all these cases we
do know how the meghes should look like and, therefore, the optimal procedure should at least
asymptotically produce the same grids.

We emphasize that the continued research on the subject of automatic hp-adaptivity, does not
preciude using hp methods to solve practical problems. Most of the time we can identify the bound-
ary layers, vertex and edge singularities, and start with meshes that capture those irregularities
from the very beginning. The pollution analysis suggests to use higher order, large elements when-
ever possible and, finally, h-refinements can be used to control the residual error. This is indeed
the procedure that we currently use.

Infinite Elements. Most of the practical problems are formulated in unbounded domains (ex-
terior problems, infinite waveguides), and the computational domain has to be truncated with the
rest of the domain modeled by means of an Absorbing Boundary Condition (ABC). This is a huge
subject by itself and even a short review of it would have taken several pages. Continuining our
research on Hehnholtz equation [18, 12], we proposed in [15] an infinite element for Maxwell’s
equations, proving an exponential convergence with respect to number of terms N used in the
asymptotic expansion. The element has been implemented in both 2D and 3D codes [6, 7]. The
good news is that the computational results are promissing, and that we have been able to confirm
optimal h-covergence rates. The bad news, at least on the theoretical side, is that we could not
observe exponential convergence, neither in order of appraximation p, nor in number of terms N.
‘We blame the conditioning for it, but the issue needs a more careful analysis and further investiga-
tion. Besides, rapid advances in fast Boundary Element Methods, suggest to look at the possibility
of coupling the hp finite elements with (fast) boundary element methods.

Iterative solvers. No adaptive code will ever have a practical impact if it does not come with
a good iterative solver to tackle large problems and take advantage of the sequence of solutions on
consecutively adapted meshes. Recent advances of Hiptmair, and Arnold, Falk and Winther, on
multigrid solvers for the positive definite case pave the way for constructing a solver for the time-
harmonic case but, according to our best knowledge, the problem still remains open. Following
the idea of Cai and Widlund [4], we presented in [34] a two-grid solver based on the idea of
regularization. We begin with a slightly modified version of the regularized problem in the form:

{ (V x4,V xv) - E(u,v) +(Vp,v) =(J,v) Wo

0.7
—k2(u, V) +i(Vp,Vw) =0 Yu
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where (-,-) denotes the L2 inner product, & is the wave number and, for simplicity, the Dirichlet
boundary condition is used only. Notice the additional Laplace operator in the continuity equation
acting on the Lagrange multiplier. The problem can be rewritten then in the operator form:

{ Au—ky +Bp =J

-BBTu  +iDp =0 ©08)

The additional Laplace operator D allows us to eliminate the multiplier and we arrive at a regu-
larized equation in the form:

(A +K@BDBT —I)) u=J (0.9)
new term

We solve then the equation using a two-grid method that consists of a block-Jacobi smoother
coupled in a multiplicative way with a coarse grid solve. The method converges and, actually, we
can even prove the convergence theoretically. The difficulty is that the regularization involves the
(global) inverse Laplacian operator which makes the whole idea rather academic. Replacing the
inverse Laplacian with an appropriate preconditioner [34] helps in terms of the efficiency but it still
does not make the method competitive. Numerical experiments indicate that, as long as we couple
the smoother with the coarse grid solve in a multiplicative way, the method will converge without
any regularization but we cannot prove it yet. That leaves us with another open problem...

Waveguides. We refer to a parallel talk of Vardapetyan in this session on our recent results on
full wave analysis for waveguides, using the hp edge elements. For a given frequency w, the problem
reduces to the solution of a generalized eigenvalue problem on the constants of propagation. For
nonhomogeneous waveguides, the corresponding operator is non self-adjoint (even for the lossless
case), and the propagation comstant may be complex. In his dissertation, Vardapetyan proved
that the problem is well-posed and, following the recent results on Maxwell eigenvalues, derived
h-convergence error estimates [39, 37]. The theoretical analysis has been confirmed with numerical
experiments. Finally, solutions of non-nontrivial examples illustrate the generality and the potential
of the method.

Potential of the hp method. Implementational bells and whistles. The potential of the
finite element method for Maxwell’s equations is best visible for problems with non-homogeneous
media. As long as the grid is aligned with material interfaces, contrary to other discretization tech-
niques, the finite element method offers a general framework for constructing schemes of arbitrarily
high order. The possibility to vary the order of appraximation p and mesh size k makes the hp edge
elements a very powerful method of discretization. A-posteriori error control allows to construct
optimal meshes and guarantees the reliability of computations.

All these advantages do not come for free, however. hp-adaptive finite element codes are much
more complicated than the standard codes and, at least in my opinion, have to be written from
scratch, as the corresponding data structures differ considerably from those for the classical meth-
ods. In this note, I have tried to outline the main open problems and research issues that we face
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in our work. I believe, that the most critical issue is to construct a robust iterative solver for the
hp meshes that would considerably accelerate the computations and make possible the solution of
large scale problems, also on small platforms. The element computations should be accelerated
using recent advances in fast integration schemes and an optimal choice of shape functions [27]. It
is worth to mention perhaps that, for affine elements and piecewise constant material data, the ele-
ment matrices can be computed by rescaling corresponding contributions from the master element.
In this context, the hp elements are competitive in terms of efficiency with implicit finite differ-
ences. Finally, the construction of fully explicit time integration schemes that could be combined
with hp-discretization, remains an open research subject.
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Abstract

The finite element method has proven to be versatile in the analysis of various electromagnetic
phenomena. In this paper, we investigate the utility of the finite element method for guiding the design
of plasma reactors. These reactors are used for processing integrated circuit substrates. The design of
such reactors is based on the complex interactions between the electromagnetic fields and a plasma-
filled region. The reactor geometry, the feed mechanism, and the current state of the plasma determine
the electromagnetic fields. This paper investigates the details and difficulties of modeling plasmas within
a closed cavity.

Introduction

The finite element-boundary integral method has been used in the electromagnetics analysis community
for more than two decades, especially for electrostatics and magnetostatics analysis. Solution of
dynamic problems, such as antenna characterization, radar cross section calculation, and closed cavity
analysis, require the introduction of edge-based (also known as vector) finite elements. However, even
with the use of vector finite elements, implementations of a hybrid finite element method were scarce
and limited in their utility.

Hybrid finite element methods utilize a boundary integral to close the finite element mesh by providing
the relationship between the tangential electric and magnetic fields on the surface of the mesh. The
boundary integral explicitly couples each unknown (or edge) on the surface to all the other unknowns
resulting in a fully-populated matrix. Hence, this hybrid finite element-boundary integral (FE-BI)
method had limited utility in an era of Intel 386-based computers with up to 32 MB of RAM.
Fortunately, for modeling plasma-loaded cavities, the feed coaxial aperture requiring a boundary
integral is of limited extent and hence results in a relatively light memory demand. However, the
relatively large volume of a plasma reactor results in a large number of unknowns to characterize the
electric field within the cavity. This led to a intractable computational demand for average plasma
reactor users even five years ago.

As computer resources have improved (today, one can purchase a dual processor computer with 1 GB
of RAM for less than $10,000) making what was once called a supercomputer available to average
users. Significant effort has been spent over the past few years to make user-friendly computer
programs that allow significant simulation capability with a minimal user effort. Specifically, computer
program designers are utilizing triangular surface meshes and either right prism or tetrahedra meshes to
solve rather complex electromagnetic design problems.

This paper presents the formulation, problem to be solved, and preliminary results for plasma reactor
cavities.
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Hybrid Finite Element-Boundary Integral Method

The FE-BI equations ([1],[2]) for a total electric field formulation may be written as
(B x W,)-(fig x Wj)}ds

[vxw 57 vxw|av-k3 [W, &, - W Jav+ ik, | [ =

—kg-[s, J.s_[wi 'ixaez Xi'W,-]dS'dS: £+ £

where the first term is associated with the curl of the basis function (the maguetic field), the second
term is associated with the basis function itself (the electric field), the third term is necessary to account
for any resistive transition conditions present (e.g to model thin dielectrics such as glue), and the last
term on the left-hand side is the boundary integral term (involving a second kind electric field dyadic
Green's function). As shown, the placement of the material parameters ('E',,ﬁ,) suggests that the basis
fanctions (W,) and test functions (W,) should be chosen so that the dot products with the material

tensors are accomplished readily. The basis functions presented herein were chosen to accomplish this
goal.

An additional observation is that the boundary integral term does not involve the material parameters.
Accordingly, since the basis functions and test functions are functionally identical (e.g. Galerkin's
testing procedure was used) and the dyadic Green's function is symmetric, G =GY; and

G.,(r.r')=G.,(r’,r), then the boundary integral sub-matrix is symmetric. Therefore, it is not
necessary to store either the lower or upper triangle of that matrix.

On the other hand, since it is desirable to allow for the possibility of anisotropic materials within the
computational volume, the sparse finite element matrix should be stored without symmetry
considerations. Accordingly, it is recommended that the finite element and boundary integral matrices
be stored separately and hence that an iterative solver (e.g. BiCG, CG, GMRES) be used. The most
significant source of computational cost in an iterative solver is the matrix-vector multiply. This
operation can be accomplished with separate matrix storage by realizing

ABB+YBB ABI EB = ABB ABI EB + YBB 0 EB

Ag Aq LE, Ap AL |lE 0 OlE
where "A" matrices denote finite element interactions and the "Y" matrix indicates the boundary
integral matrix. The subscript "B" denotes a boundary edge while "I" indicates an interior edge. This

decomposition of the finite element and boundary integral matrices allows the computer program
designer to used optimized matrix storage and multiplication schemes for each portion.

Another common aspect to these hybrid finite element computer programs is the need for a volumetric
mesh. If tetrahedra are used for the volume mesh, a commercial mesh generating package such as
SDRC IDEAS may be used. However, for many applications, an extruded mesh will work perfectly
well without the need for additional investment. Extrusion is accomplished by forming elements for
each layer of the mesh by replicating the nodal distribution of the top layer for all lower layers of the
mesh. Hence, to form the first layer of elements, the top layer nodes are replicated at the interface of
the first and second layer. Elements are formed from those nodes (and the previous layer's "bottom"
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nodes) and edges are then formed based on the chosen finite element such as right prisms. Such meshes
are fairly rigid and hence cannot represent the wide range of geometries that can be modeled using a
free mesh (such as that produced by SDRC IDEAS); however, they are often sufficient and
considerably simplifies the analysis procedures.

Vector edge-based expansion functions used for right prisms are developed by multiplying the
traditional Rao-Wilton-Glisson (RWG) basis function [3] with a function of the prism height for the
transverse (e.g. X- and y-component) functions. The normal functions are simply the node-based
simplex basis function (see for example [4]) multiplied by 2. Hence, the transverse basis functions for
edges on the top of the prism are given by

W (& ol -Gy 2e2s

where ¥ is the local edge number and 1 is the global edge number. Not that the local edge numbers are
defined so that the edge is opposite the local node number as shown in Figure 1.

node3
edge2
edgel
mode 1
edpe 3
node 2

Figure 1. Illustration of local node and edge numbering for a triangle.
Transverse expansion functions on the bottom of the prism are given by:

* Az JF Az Jose
Finally, the normal (z-directed) expansion functions are given by:

e _(.A_Z_:z & x-x -Gy k] x=456
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where the indices k1 and k2 are given in the following table

kl | k2

Oloojap
Ll L8138

3
1
2

As stated previously, the choice of basis functions is dictated by the physical constraints of the
geometry, the requirements for representation of a field, and convenience for implementation. The later
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consideration is understood by considering a version of the basis functions given in Chapter 5 of [2]. In
that presentation, the basis functions are represented in a local coordinate system rather than the global
treatment given above. Although the solutions are identical, inclusion of anisotropic materials is more
difficult if the basis functions are expressed in local coordinates since a transformation back to global
coordinates is required to perform the necessary dot products. Hence, the form of the basis functions
given above is more convenient for implementation than the form given in [2].

Plasma Reactors

Plasma reactors are closed cavities energized by high power microwaves to form the desired plasma
that is used to perform a desired processing procedure [S]. Figure 2 illustrates Michigan State
University’s plasma reactor design.
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Figure 2. Plasma reactor design used at Michigan State University. (Compliments of Mark Perrin)
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This reactor is constructed of brass with adjustable cavity height (Ls), adjustable probe length (Lp ),

and a quartz bell jar to contain the plasma formed by a high power microwave source tuned to 2.45
GHz.

The design challenge is to determine the cavity length and probe length so that the maximum energy is
coupled to the plasma. The resonant frequency of the cavity is determined by the cavity dimensions as
well as the material within the cavity. For our case, the cavity fill is comprised of air, quartz, and
plasma. The finite element method is ideal for including this inhomogeneous material fill.

Plasma is formed by the excitation of the cavity by a high power microwave source. This plasma is
very difficult to characterize due to the complex physics associated with plasmas as well as its non-
stationary behavior. However, we assume that the time scale associated with the evolution of the
plasma is much longer than the time it takes to form standing waves within the reactor. Hence, we can
assume the reactor state is stationary and consider the plasma in its various excitation states separately.

For our investigation, we are assuming isotropic plasma whose dielectric parameters are given by

2

w0,

g =l+—2—
- +jov

where the plasma frequency is given by @, =/Ne?/(me,), N is the electron density, and vis the
collision frequency responsible for dampening. We note that for a conducting medium,

g =1- J _6..
r mo
which leads to the equivalent conductivity (&) of
2
s_ %
g V+io

Note that unless ® << v, the conductivity is a function of frequency.

Depending on the state of the plasma, it can have a dielectric constant that is greater than zero, less
than zero, and even zero! This leads questions as to the conditioning of the finite element matrix as the
plasma evolves into its various states. We will discuss our findings regarding modeling plasma at the
meeting.

To test our cavity model, including the finite probe thickness, we simulated the TMy,, fields within a
closed cavity of the dimensions shown in Figure 2 where L, = 14.4 cm. Figure 3 illustrates the change
in resonance frequency as the probe length (L;) is changed. Figure 4 illustrates the axial fields at the
base of the cavity (where the plasma will form) at 2.474 GHz.

Closing Remarks

In this paper, we have presented the finite element method and an application of the method to the
design of plasma reactors. The finite element method permits the simulation of a closed cavity with all
of the important physics. The plasma reactor’s structure, quartz bell jar, plasma load, and feed probe is
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included in the model. An extruded right prism mesh is utilized to simplify the analysis task. Results
for various configurations will be presented at the conference.
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I. Introduction

Cavity-backed slot (CBS) antennas mounted on an infinite perfectly conducting ground plane have been
analyzed in the past [1] using a hybrid finite element-moment method (FE-MM) approach which is also
referred to as the finite element-boundary integral (FE-BI) method. Based on the FE-BI method, the
interior of the cavity is discretized using finite elements (tetrahedrons, prisms, bricks, etc.) whereas the
exterior region is treated using a spectral or spatial domain moment method. As a result, the overall
system matrix consists of the finite element matrix [A], which is highly sparse, and the admittance
matrix (Y], which is dense; the two matrices are coupled through the unknowns in the aperture.

The FE-BI method has enormous advantages over a pure FE method because the exterior region of
the cavity is not descretized thereby saving memory storage and improving overall computational time.
Computational savings are even more profound when calculating coupling parameters of multiple CBS
antennas on an infinite ground plane. Although the FE-BI method is computationally more efficient
than a pure FE method, the overall computational effort required to solve for coupling among multiple
CBS antennas is not acceptable. The resulting FE matrix [A] and the admittance matrix [Y] are often
large enough to solve for this problem effectively.

In this paper, a new iterative FE-BI approach in conjunction with domain decomposition is proposed
in order to compute effectively coupling among multiple CBS antennas placed arbitrarily with respect
to each other on a flat conducting surface. Each cavity is treated as an isolated FE-BI domain whereas
interaction among these radiating elements is taken into account through an iteration algorithm. For
simplicity, assume that there exist two cavity-backed slots spaced a given distance apart, as shown in
Figure 1. For coupling computations, one antenna is excited with a constant voltage V, whereas the
other one is left open circuit. The new algorithm is as follows: in the first iteration, the transmitting
antenna radiates in space in the absence of the second antenna. The radiated field induces a field in
the aperture of the second antenna which propagates through its cavity. The second antenna, in turn,
scatters the incident field in all directions thus affecting the field distribution in the aperture of the
radiating slot. This perturbation in the field of the radiating element changes its input impedance.
The new field distribution is re-radiated toward the second antenna and the iteration process continues
until convergence of the field in the two domains is achieved. Once convergence is reached, the self and
mutual impedances can be computed in a straightforward manner.

*This work was sponsored by the Advanced Helicopter Electromagnetics Industrial Associates Program and NASA
Grand NAG-1-1082.
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Antenna #1

Antenna #2

Figure 1: Geometry of two cavity-backed slot antennas mounted on an infinite ground plane.

This iterative algorithm becomes extremely usefull when the two CBS antennas are identical; thus,
reducing, as it will be shown later in this paper, memory requirements and CPU time. It also provides
a mechanism to achieve full hybridization of the FE-BI method with other numerical techniques such as
the GTD and PO. In this paper, the formulation of this iterative FE-BI method will be presented and
applied to the problem of computing coupling parameters of two identical CBS antennas flushmounted
on an infinite conducting ground plane. The results obtained using the proposed iterative algorithm
will be compared with results obtained using the direct FE-BI approach. A comparison of CPU times
and memory storage will also be provided.

II. Formulation

The problem under investigation is coupling among multiple CBS antennas flushmounted on a conduct-
ing ground plane. For simplicity, let us consider the problem of coupling between two CBS antennas
similar to the ones shown in Figure 1. In order to compute the coupling parameters for such a config-
uration, one antenna is usually excited at the input terminal using a constant current I; whereas the
input terminal of the second antenna is left as an open circuit. Radiation by the first antenna induces
a voltage V> at the input terminal of the second antenna. Thus, the mutual impedance Z3; can be
calculated using

YV
Zy = T, (1)
Similarly, the self impedance Z; is equal to
1<
= — 2
Zu T, 2

Due to reciprocity, Z13 = Zs and Z33 = Zy;. Knowing the complete set of Z-parameters, the corre-
sponding S-parameters can be computed in a straightforward manner using standard transformation
formulas [2].
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Using the hybrid FE-BI approach to solve this coupling problem, the interior of the two cavities,
including the apertures, is discretized using tetrahedral elements. The free space in between the two
slots is not discretized but rather the interaction between the two slots is taken into account through an
integral formulation using the respective half-space Green’s function. This approach certainly provides
an advantage over a pure FE method since the latter requires a brute-force discretization of free space.
By renumbering the unknowns inside the finite element volume so that the unknowns in the aperture
appear first, whereas the unknowns inside the cavity appear last, the corresponding matrix system for
a single radiating antenna is given by

Ma./u Mele ol 0
= (3)
Mele  pele Ec b

where the superscript a represents the aperture while ¢ identifies the cavity. The non-zero excitation
vector b° is part of the finite element volume inside the cavity. In addition, the matrix M®/% is a pure
method of moments matrix and is dense; M</¢ is a pure finite element matrix and is highly sparse; the
other two matrices M%/¢ and M*/® provide coupling between the field inside the cavity and the field in
the aperture. Now, in case there are two cavity-backed slots in close proximity, the combined matrix
system, after renumbering the unknowns, is given by

(Mt M TR 0 (1B 0

M* M 0 o0 E§ 5
= O]

g/ o Myt mplc || B3 0

o o M M |LE 0

The subscript 1 denotes antenna #1 and 2 denotes antenna #2. Note that for coupling calculations,
when antenna #1 is excited, antenna #2 is left open circuit and vice versa. Thus, the right-hand side
vector of the matrix system for antenna #2 is zero. The above matrix system can be written in a more
compact and convenient form as follows:

M T B by
= (5)
To1 M, E,; 0

Matrix M; is the self matrix of antenna #1, M, is the self matrix of antenna #2, T12 and T are the
interaction matrices between slots 1 and 2, and b, is the right-hand side vector corresponding to the
excitation of antennag #1. It is important to mention here that the matrices T35 and Ty, are transpose
of each other, thus only one of them is stored in memory. In case the two cavities/slots are identical,
and therefore their mesh information is also identical, these two matrices are square and symmetric
which means only half of the matrix needs to be stored in memory.

As seen from the matrix system in (5), the electric fields Ey and E; ate coupled only through the
dense interaction matrices Ty, and Ty;. If those interaction matrices were to be zero, matrices M; and
M; would be completely decoupled, therefore, allowing us to solve for E; and E, independently and
more efficiently. However, since these matrices are obviously not zero, we need to take into account
the interaction between the two slots.
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The matrix system in (5) can be efficiently solved through an iteration algorithm. The iteration
starts by setting the field F; to zero. This implies that antenna #1 radiates in space as if entenna #2
was not present. In other words, for iteration k = 0

EQP =0 )
and, therefore, we can write that
M- EQ 4Ty - EQ =8, )
M -E®=b - Ty, - E® (8)
M -E®Q=b-0 (9)

where the superscript (0) indicates iteration & = 0. Thus, once the matrix system in (9) is solved,
we obtain El(o), which corresponds to the governing field distribution of antenna #1 in the absence of
antenna #2. Then, from (5), it can be shown that

M- E;l) =0Ty - E](O) (10)
where the product of T3; - E§°) requires N{ x N§ operations (multiplications plus additions); N¢ is the
number of unknowns in the aperture of antenna #1 and N§ is the number of unknowns in the aperture
of antenna #2. Once the value of E; is updated, the iteration algorithm may continue on by updating
E1 using

My -E® = by~ Ty - EY (11)

The updating of the vectors E; and E, will continue until an acceptable convergence tolerance is
obtained. A measure of convergence can be defined based on the 2-norm residual given by

pn = 1EP - BV, (12)
pe = |EF —EL ), (13)

When both p; and p, are less than a given tolerance, it means that convergence has been achieved.

This hybrid method, which takes into account coupling between antennas through an iterative algo-
rithm, is even more attractive when needed to compute coupling parameters of two identical antennas
as a function of distance. For two identical CBS antennas, only one geometry needs to be discretized
since My = My = M. Also, Ty = T, = T which, in this case, is a square symmetric matrix. Thus,
when coupling versus distance is calculated, the system matrix M does not change as a function of
distance; the only matrix that changes versus distance is the interaction matrix 7', which is relatively
small (N, x N,) and calculated using a spatjal or spectral domain method of moments. As a result
of this observation, the matrix M needs to be inverted only once, possibly using a sparse LU decom-
position, whereas the updating of the fields E; and F, is done relatively fast using a simple backward
substitution. Even when the relative distance between the two antennas is varied, the matrix 3 does
not need to be inverted again. Consequently, the coupling parameters as a function of distance may be
computed with only minimum computational effort which corresponds to the CPU time needed by the
sparse LU algorithm to factorize the matrix M. In addition, the memory requirements for storing the
system matrix and other information are reduced considerably, compared to a brute-force discretization
of the original problem which consists of two cavity-backed slots.
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III. Results

In the previous section, the idea of field interaction between two distant cavity-backed slots through
an iterative hybrid approach has been introduced and formulated. Initially, each cavity-backed slot is
treated separately using the FE-BI approach, whereas EM interaction between the two slots is accounted
for at subsequent iterations to correct the field distribution obtained from a previous iteration step.
This approach is innovating and potentially powerful because it allows field interaction not only between
two FEM domains, or an FEM and a MM domain, but also between FEM and GTD or FEM and PO.
As a first step, this idea is applied to the problem of coupling between two identical CBS antennas
mounted on an infinite ground plane, as is shown in Figure 2. The two cavity-backed slots are placed
a distance D apart whereas the transverse dimensions of each slot correspond to those of an X-band
waveguide. The depth of the cavity is 7.7559 cm and the probe is located in the center of the horizontal
dimension at a distance of 1.905 cm from the bottom face. The length of the probe is 0.6985 cm.

Figure 2: E-plane configuration of two identical cavity-backed slot antennas mounted on an infinite
ground plane (L = 2.286 cm, W = 1.016 cm, h, = 0.6985 cm).

The most obvious approach to solve for the coupling parameters of the two slots is to perform a
brute-force discretization in both cavities and apply the direct hybrid FE-BI approach. The interaction
between the two slots is implicitly taken into account in the hybrid formulation. This approach has
the disadvantage of creating twice as many unknowns, compared to the proposed iterative method,
therefore requiring excessive memory storage and a long CPU time to solve the final matrix system.
Besides, the matrix system needs to be re-solved every time the separation distance D between the
slots is changed. In contrast, using the iterative approach, only one cavity needs to be discretized,
thus saving memory storage and generating a smaller matrix system, which can be solved faster and
more efficiently. Also, every time the separation distance is changed, the new field distribution can be
conveniently computed using a simple back-substitution since the original self matrix is not a function
of separation distance. This back-substitution can be performed provided the sparse LU factorization
of the original matrix was obtained at the first iteration step. More substantial computational savings,
both in terms of memory and CPU time, can be obtained when coupling among more than two CBS
antennas is computed.

39




290 T T T T T T T - &3 T T Y T T T Lo T r
] |
st 1 54
aof ]
. s ]
405 4
Fosl B .
S ool 1S
3 3 a7 E
EEX 1 3
3 g 258 E
= L 1 w9 -
E et 8
80} ] 260 ]
375 4 864 ]
70 A P . L . 52 et e ey
1 2 4 5 6 9 10 4 3 [ 8 9 10
Number of lterutions Number of Iterations
(a) Self impedance
16 T al T T T T T T -T as T Y T T T T
1 0.0 -
E » B :gas b
S 1 S A
3 -
53 41 g5 ]
% 6 4 g-zo 4
s 3 ]
i+ 1 3 J
3 3 F
X2 4 Ea0
o b 35 -
A . A ; . . T 40 S S
o 7 s o 0o 1 2 9 10

3 ‘ 5 6 7 3 4 5 ] 7
Number of Iterutions Number of Iterutions

(b) Mutual Impedance

Figure 3: Real and imaginary parts of the self and mutual impedance as a function of iteration number.
The two slots are placed in an E-plane configuration with separation distance of 1 cm. The frequency
of operation is 8 GHz.

Using the iterative approach to calculate coupling, the two antennas are simply treated separately
whereas the field interaction between the slots is accounted for through an iteration procedure. It is not
clear, however, how many iterations it takes for the field distribution in the two domains to actually
converge. The first-experiment performed in this study was to calculate the real and imaginary parts
of the self and mutual impedances as a function of iteration number k at a frequency of 8 GHz and a
separation distance of 1 ¢cm along the E-plane. These results are illustrated in Figure 3. In both these
figures, it is clear that the self and mutual impedances converge to a final value at k = 3. For k=0,
which basically means that there is no interaction between the two antennas, the real part of the self
impedance was found to be 37.2 ohms whereas the imaginary part was —86.15 ohms; the converged
values, however, at k = 3 are 41.3 and —85.4 ohms, respectively. For a smaller separation distance D,
the discrepancy between first and second iterations is even larger. Similar observations are made for
the mutual impedance, too. For k = 0, the mutual impedance is zero since the interaction between the
two slots has not yet been accounted for. As the iteration number increases, both real and imaginary
parts of the mutual impedance converge to a final value.

This iterative technique was applied to the same antenna configuration, however with slot separation
D = 2 em, to calculate the Z-matrix as a function of frequency. From the Z-matrix, one may obtain
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the S-maitrix by using a simple transformation. The return loss and mutual coupling as a function of
frequency are depicted in Figure 4 for a separation distance of 2 cm along the E-plane. The iteration
technique is compared with the hybrid FE-BI direct approach which was found to be quite accurate [3].
As illustrated, the agreement between the two methods is excellent. Even after one iteration the mutual
coupling as a function of frequency compares very well. However, since the computational effort required
{or subsequent iterations is minimal, we often choose to compute the coupling parameters after a total
of 5 iterations.
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Figure 4: Return loss and mutual coupling as a function of frequency. The two slots are placed in an
E-plane configuration with separation distance D = 2 cm.

The most noticeable computational savings in terms of CPU time are realized when computing
coupling parameters as a function of distance. The reason for achieving such computational speed-up
is because the system matrix is factorized (using sparse LU) only once. As the separation distance is
varied, the updated field distribution inside the cavities and slots is computed by using only a simple
back-substitution which involves order of N operations, where N is the number of unknowns for the
self matrix.

The mutual coupling (S12) as a function of distance is compared with the direct FE-BI approach
in Figure 5. The two slots are oriented along the E-plane with separation distance varying between 30
and 160 mm. As illustrated, both methods (iterative FE-BI and direct FE-BI) give almost identical
results. As far as the iterative technique is concerned, the difference in the predictions when using only
1 iteration versus when using 5 iterations is more noticeable for relatively small separation distances.

For the case of computing coupling as a function of distance, it is important that the computational
requirements of the direct and iterative techniques be discussed. The number of tetrahedrons used in
the direct FE-BI approach was 39,046 and the number of unknowns was 41,120. For the iterative FE-BI
approach, assuming the same element mesh size, the number of tetrahedrons used in the computational
domain was 19,543 and the total number of unknowns was 20,583. Solving the matrix system for the
direct FE-BI approach, a Conjugate Gradient Square (CGS) algorithm was used. The total CPU
time spent to compute the mutual coupling between the two slots for a total of 14 points, as shown
in Figure 5, was 288 minutes. For the iterative FE-BI approach, we had the choice of either using a
sparse LU decomposition to first factorize the matrix and then use back-substitutions for the remaining
iteration process, or using the CGS algorithm in every iteration. Both options were followed. When
the sparse LU decomposition was used, it took 134 minutes to obtain the matrix factorization; all
remaining computations were performed with only a fraction of time (1-2 minutes, assuming 1 iteration
per point). When the CGS was used, again assuming only 1 iteration per point, the total CPU time
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Figure 5: Mutual coupling as a function of distance. The two slots are placed in an E-plane configuration
and the frequency of operation is 8 GHz.

for 14 evaluation points was 83 minutes. However, as the number of iterations increases, the CPU
time increases accordingly. For example, if 5 iterations are used, the total CPU time increases to 265
minutes.

IV. Conclusions

A novel iterative algorithm in conjuction with domain decomposition and the FE-BI method was
introduced in this paper to efficiently compute coupling between two or more CBS antennas mounted
on an infinite ground plane. Each cavity is independently analyzed using the hybrid FE-BI approach,
whereas the field interaction between the slots is taken into account through an iteration algorithm.
This results in substantial computational savings both in terms of memory storage and CPU time. It
was observed that this algorithm converges within only a few iterations. The results compare favorably
with the hybrid FE-BI direct approach.
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Introduction

In a recent paper [1], Bunting and Davis proposed a new functional for finite element
analysis that reportedly eliminates spurious solutions of Maxwell’s equations. Although
[1] presented an implementation involving node-based scalar finite elements, it is well-
known that node-based elements are problematical when used to represent vector fields at
material discontinuities and complicate the satisfaction of boundary conditions at
boundaries that do not align with a Cartesian axis. Since the functional in [1] involves
the fields and their curls, it appears that these drawbacks could be alleviated through the
use of an edge-based curl-conforming vector finite element representation such as that
described in [2]. This paper details a vector finite element approach based on the
Bunting/Davis equations, in order to assess the utility of the approach.

The motivation for pursuing alternative formulations such as [1} must ultimately be to
improve the trade-off between accuracy and efficiency. For specificity, we focus on the
problem of a heterogeneous waveguide, and the task of determining the propagation
constant f of a waveguide mode versus frequency. A number of approaches involving
scalar or vector representations have been proposed for this problem, and as a baseline
for comparison purposes we select a minor variation on the approach of Lee, Sun, and
Cendes [3]. The formulation of [3] involves a single unknown field (three vector
components) within the waveguide, and uses vector finite elements to represent the
transverse (x-y) part of the field and scalar finite elements to represent the longitudinal
(z) component of the field. Coupled weak differential equations for this problem lead to
a matrix eigenvalue equation of the form

Qu=p’Ru ')

The full details of the formulation leading to this equation may be found in [3] or [4].
The unknown fields appearing in equation (1) have been scaled to produce a real-valued
matrix when the medium is lossless and to eliminate terms involving the first power of p.
Consequently, (1) has the form of a generalized matrix eigenvalue equation that can be
solved by standard procedures (eg., EISPACK, LAPACK, simultaneous iteration) for the
eigenvalue B>. The matrix order in (1) is equal to the sum of the transverse unknowns
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and the longitudinal unknowns, and the equation exhibits a nullspace equal to the number
of longitudinal unknowns (which typically accounts for at least 25% of the eigenvalues).

Formulation

The formulation of [1] is a special case of a coupled system of weak equations
constructed from Maxwell’s equations

—joegV X E+ 0 gEouH =0 (¥)
joueV x H+ 0 ugeoeE=0 3)
and their curls: |

Vx(i—Vxﬁ)ﬂmroxfI:O @
1o =Y . -
VX(EVXH)*J%VXE:O 5)

From a linear combination of equations (3) and (4) and a linear combination of equations
(2) and (5) we obtain

C1Vx(il-T Vxﬁ)+(}2mzuoeos,]-i+jmuo(C1+C2)Vxﬁ=0 (6)

C3Vx(-£1: Vxﬁ)+C4 mzpoeop,fl—jweo (C3+C4)V><ﬁ=0 )]

where arbitrary constants C,, C,, C;, and C, have been introduced. The vector Helmholtz
equations can be obtained by choosing C, = -C, and C; = —-C,, but here the idea is to
include the other factors which provide additional constraints on the field solution.

For the waveguide problem identified above, we seek a solution of the form

B(x,y,2) = {t E(x,y) + 2 B,(x,y)} ¢ ¥ ®
H(x,y.2) = {t H(x,y) + 2 H,(x,9)} 67 ©)
After substituting (8) and (9) into equations (6) and (7), we obtain the vector equations
CV,x {i Vix ét} -G i GB V.E, - BE) + C; 0'HogeEE;
~ jitg (C1+Cp) Zx B Hy + VH) =0 (10)
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and the scalar equations
1 o
OV, {5 VB, +i88)} - C; et

—jopg(C1+CYz- V, x H,=0 (12)

C3Vt * {'81: (VtHz +JBﬁt)}_ C4 mzu,osol.erZ
+j0ey (C+C z* V, x B =0 (13)

where V, is used to denote the transverse part of the appropriate operator. This system of
four coupled equations can be converted into weak form by introducing scalar and vector
testing functions, integrating over the computational domain I', and performing suitable
manipulations to shift certain derivatives onto the testing functions. The result is the
coupled system

_” C, '::VP& VX, + Cp 02 o€t T * B, — (C+Cy) 0 T - 2X Vi,
T .
—Bjj-rcli‘i‘ Vtez—(cl'FCz)(OlJ.oi";Xﬁt

+82[[ cip =0 a4

” G -:; V,T - Ve, + C, 0oeotTe, — (Cr+Cy) apgTz: V,x B

-FB”rcx '&; VT E=0 13

_“. Cs %Vtﬁ' * VxH, + C 0°Mo8oi,T - H, + (C5+Cy) 08 T+ 2 Vg,
r
—B“--‘. C3_1"i" Vthz+(C3+C4)Q)€0i“;X]-’3t
r " &

+BZIJFC3'€lri"ﬁt=O 16
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where e, = jE, and b, = jH, Boundary integrals arising in the above have been omitted
since all boundaries under consideration are perfect conductors. We believe (14)—(17)
are weak equations corresponding to the Bunting/Davis functional in [1]. However, note
the appearance of B°, B', and §° in the equations. An alternate scaling using e, = jBE,, h,
=jH,, and b, = BH, produces the system

1 - - - - -
“;_Cl Evtxr-vt><Et+Czoa2uoq,a,T-Et—(C1+C2) Uy T-zxVh,
1 - - A -
+_”1_—C1—';T-Vtez+(C1+C2)mpoT-tht

2 1 - -
+ Ci—T-E=0
B ”l_ . E, (18)
f J; c, —i’ VT - Ve, +C, 0°uget,Te, — (C+Cy) 0Tz V, x b

"¢ e a0 s

”;_C3 -é:ng‘-Vpd_xﬁC‘, 0 gl T - Ity +(C5+Cyp) 08y T+ 2X Vi,
—f}zjj C3li‘th+(C3+C4)0)ﬁoi‘;Xf“1
+ﬁ”c3£rT =0 (20)

[ esg vir- Vi, + CoPhotonTh, + €51Cp wegT2 VixEy
1 -
—”rcs-ér- VT =0 1)

Discretization

We now consider a triangular-cell discretization of the waveguide cross section, in which
cells are assumed to have uniform permittivity and permeability, and embedded
conductors are excluded from the computational domain. In this formulation there is no
need to restrict the material parameters; in particular € and M, can change at the same
material interface without difficulty. The transverse components of electric and magnetic
field are to be represented by curl-conforming vector basis functions (eg., the Whitney
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elements), while the longitudinal components are to be represented by first-order scalar
Lagrangian functions. Similar representations are used for the testing functions.

The result is a matrix eigensystem with the form of equation (1), where matrices Q and R
have the structure

[C1A,+CB,  —C\Cy  (C#+C)D, —~C+CHE,

0c| 0 CGuCE, LCxCN, 0 o)
0 (Cr+CPE, CA,+CB, 0
L (C3+C4)IE 0 _C3J5 C3G£ + C4Hl1

[ -C/F, 0 0 0

cl, 0 o 0

R= r 23)
(C4+CD, 0 —C5F, C5C,

0 0 o 0

and

" 24)

It is obvious that the matrix R is singular, and the block row and column of zeros
suggests that this eigenvalue equation also exhibits a nullspace (in contrast to what is
implied in [1]). Despite the singular nature of R, this equation is amenable to solution by
one of the standard approaches or by a customized iterative scheme based on the shifted
inverse power method [5-6].

Results to be presented

The preceding formulation extends the approach of [1] to the realm of vector finite
elements. In the presentation, numerical results will be used to assess the relative
accuracy of the preceding approach compared to the method of references [3-4], using the
identical expansion functions and jdentical triangular-cell models of various waveguide
cross sections. The trade-off between computational effort and accuracy will be
investigated. In addition, the presence of a nulispace will be verified, and the impact of
the parameters C,, C,, etc. will be explored.
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NUMERICAL METHODS FOR HIGH FREQUENCY PROBLEMS
T. HUTTUNEN AND P. MONK*

1. Introduction. Finite element methods are a convenient means of approximating
acoustic or electromagnetic fields due to their geometric flexibility and ability to approximate
fields in heterogeneous media. Unfortunately, as the wave number for the field increases, the
size of the elements must decrease more rapidly in order to maintain accuracy [6]. Thus
finite elements become very expensive for large problems. One way to help control this is
to use higher order schemes, but then the need to change the order of the approximation in
different elements complicates the programming of the scheme [4]. An alternative approach
is to replace the piecewise polynomials used by the finite element method by solutions of
the underlying differential equation on each element. The hope is that the use of exact
solutions will help the accuracy of the scheme. The problem with this approach is that the
approximate solution will be discontinuous between elements.

To describe these methods in more detail we shall use a simple model problem which
we give next. Let D C R? be a bounded domain with two boundaries I' and ¥ such that
8D =TUZX and I'NE = ¢. Then we seek to compute an approximation to the solution u
of the following boundary value problem.

(1.1a) Au+Ku=0in D,

(1.1b) u=gonT,
ou

(1.1c) W iku=0on X,

where k is the wave-number of the time harmonic field, g is a given function and » is the unit
outward normal on I'. Obviously we are interested in more complex scattering problems,
but problem (1.1) is an easy model problem for the schemes we shall discuss.

Now let D be covered by a mesh consisting of N}, elements {Q,.},‘f;l of maximum diameter
h. This need not be a finite element mesh, but £, ...Q are assumed disjoint and

Ny _
D=Jo.
n=1

For our calculations we do, in fact, employ a finite element grid. We also assume the elements
are regular and quasi-uniform. On each element £, we approximate the field « using plane-
waves (Bessel functions are also possible). Let p > 0 be fixed then the approximate field uy
is defined by

?
= Zu,,,gexp(ika:-dg), n=1,...,Ny

(1.2) Up
Rt

where d; = {cos(2n/p), sin(2nf/p)), £ = 1,...,p. The coefficients {u,} are unknown
and determined by the method. For a heterogeneous medium the wave number & would

*Department of Mathematical Sciences, University of Delaware, Newark, DE 19716
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also vary from element to element. Next we shall describe two approaches to computing u.
For completeness we note a third approach which uses plane waves. In this scheme (due to
Babuska and Melenk [8, 1]) the expansion (1.2) uses a finite element function in place of
Une. This results in a partition of unity method that preserves the continuity of the field
from place to place in the grid. It has been tested for example in [7]. We will not consider
it further here since we want to have discontinuous basis elements.

2. Least Squares. The simplest way to compute u, is to compute the least squares fit
across edges in the mesh. This has been suggested by many people (see for example [5, 10])
and analyzed in [9]. Let the edges in the mesh be divided into three disjoint sets

Er if e is onT,

Ey if e is in the interior of D,
Es if e is onX.

For a given edge e € E, let, for z € ¢,
[f](=) = lim(f (= + eve) - flz - eve)

where v, is normal to e. Then let

U= (ul,lyul,z’-'-r'ul,p: U2,1, U22y+ .« ,U2py-+- ,"N,‘,p)
and define
1@ =3 [ IVl + ¥ wlfds
ecko
(2.1) + Z /kzluh —gffds+ Y /I—- — iku, [*ds.
ecEr’, eGE):

The coefficients in (1.2) are obtained by minimizing J(i) so
@ = argmin J(&)
geC¥

where M = pNj,. The vector @* gives the coefficients for (1.2). The discrete minimizatio
problem can be solved using the standard conjugate gradient method.

In [9] it is shown that convergence occurs so that up — u in the L*(D) norm as h — 0
at the rate A®-1/2-1, Thus for p = 11 we get an O(h*) scheme. Alternatively the scheme
converges as p —~» oo for fixed h. Computational results in {9] show that the method can
provide an accurate discretization. However the conditioning of the matrices derived from
(2.1) increases rapidly as p increases. For this reason we have also investigated the method
described in the next section.
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3. The Ultra Weak Variational Formulation (UWVF). This method was pro-
posed and analyzed by Cessenat and Despres in [2, 8]. Our goal is to extend this testing of
their method to more complex scattering problems. We also will provide detailed compar-
isons between the UWVF and the finite element method.

Let us outline the UVWF [3]. Let 3, ; denote the edge between element € and element
Q;, and Iet v, denote the unit outward normal to Q. Let

a2 = ((~0/0ve + i)ualn,)

1<L< N,

sa,’
Then z, satisfies

N, N3

Ny
D3 ~0/on +k)erds— | 33" [ ;0750 + thyerds
=1

£=1 j=12t.j

Np Np
+3 f Qz(0)50 ¥ F)e; ds) =y / 9(8/Bur + ik)ez ds

=1 50,n00 =150,n00

for all functions e of the form (1.2) where ¢, = e|o,. Here Q = 0 and g=0o0n X and

= —lonT. Cessenat and Despress [3] suggest a method for solving this system, prove
convergence and discuss conditioning. In fact the rate of convergence is the same as for the
least squares method outlined in the previous section. Our contribution is so far limited to
an independent verification of some of the properties of the scheme and a comparison with
finite element methods which we give next.

4. Numerical Experiments.

4.1. Wave Propagation. First we show some results for simple wave propagation in
the unit square. So

Q=10,1]x (0,1}, T = ¢, and ' = 80,
We take k = 167 and

9= ((1+Q)d/8v + (1 - Q)ik) 4%, @ =10,1,

where £ = (cos(n/p),sin(r/p)). This direction is midway between d, and d;, and is the
direction giving maximum error for the problem. The exact solution is u = exp(i€ - ).
Figure 4.1 shows a contour plot of error (discrete Ly error at the nodes in the grid) against
N = 4/Nj./2 and p using a uniform triangular mesh on  consisting of right triangles.
Clearly for this problem the error can be decreased by either increasing p or increasing N
(or presumably both simultaneously). Timing studies show that increasing p reaches a given
error in less computer time than increasing N. Thus the method has similar features to the
h — p finite element method.
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Logm(enor): k=50.2655, lambda=0.125, Q=0.1

7

10

F1G. 4.1. The logarithm (base 10) of the discrete relative L*(D) error against N = +/Ny, and p for the
plane wave propagation problem. The results suggest that increasing p decreases the ervor effectively.

4.2, “Scattering”. Here we test the UWVF compared to finite elements for a problem
that approximates a scattering problem. The domain 2 is the annular region between the
circle |#| = 0.4 and |&| = 1. The boundary I is the inner circle || = 0.4 and the boundary
T is the circle |z} = 1.

To simulate scattering of a plane wave from I' we take g = — exp(ikz,). Using special
functions we can easily write down a series solution to problem (1.1) or to the true scattering
problem posed on an infinite domain. By meshing the annulus (using curved elements near
% and I' in the case of the UWVF) we can compare results for the piecewise linear finite
element method and the UWVF.

in Figure 4.2, we show the relative error (in the discrete L, norm computed at the nodes)
for both methods as k is varied. For the finite element method, the domain is remeshed at
each k to keep approximately eight elements per wavelength (i.e. 2r/kh =~ 8). For the
UWVF we take p = 10 and the domain is remeshed to keep approximately one geometric
element per wavelength (i.e. 2m/kh ~ 1). Irregularities in the data are due to detailed
charges in the meshes. As expected [6] the error in the FEM increases as k increases and
by k = 45 the method is unreliable. More surprisingly the UWVF results do not show
an increase as k increases (are a much wider range than used for the FE results). This
insensitivity to k is an interesting feature of the UWVF and needs to be investigated in
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F1G. 4.2. In thus figure we show the relative discrete L*(D) error for the finite element method and
the UWVF. In the top panel we show results for the FE method (diamonds mark the error compared to the
true solution of the scatiering problem and circles show the error against the ezact solution of (1.1) — the
difference is due to the absorbing boundary condition). As ezpected the FE error increases with k. In the
lower panel we show results for the UWVF. Surprisingly the error doesnt increase with k (over ¢ much larger
range of wave numbers than for the FEM).

more detail. In particular at high wave number the Bessel function series used to compute
the “exact” solution may become inaccurate which may bias the results for the UWVF for

large k.

5. Conclusion. The UWVF or least squares method can both produce convergent ap-
proximations to the Helmholtz equation. Our numerical experiments show that the UWVF
has characteristics similar to hp finite element methods, but since the solution is discon-
tinuous mesh (h) and interpolation (p) adaptivity might be easier to implement. For high
frequency problems the UWVTF shows much less sensitivity to increases in the wave number

k then the FEM.
More testing of the UWVF and least squares methods are needed, particularly on do-

mains with corners, and for transmission problems. We hope to report on this shortly.
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Abstract- In this paper, an optimization procedure based on the genetic algorithm (GA) is utilized to
design Frequency Selective Surfaces (FSSs) for dual frequency applications. The FSS is analyzed by
employing the Method of Moments (MoM) procedure with sub-domain basis functions. This
formulation allows us to include the shape of the mask defining the unit cell of the FSS in the set of
parameters controlling the optimization scheme. Such a GA-based synthesis procedure enables us to
develop new and unconventional elements that attempt to achieve the specified frequency and
polarization characteristics, which would be difficult to realize by using well-known element shapes,
e.g., patches, crosses, loops and Jerusalem crosses.

TINTRODUCTION

Frequency Selective Surfaces (FSSs) find widespread use in a variety of applications, e.g., bandpass
radomes and subreflectors for dual-band reflector antennas, to name just a few. An FSS comprises a
two-dimensional periodic array of apertures or patch elements that resonate at certain frequencies, and
provide the characteristics of spatial filters to the screen [1]. To realize a particular frequency behavior,
one varies several design parameters, such as the element shape, size, lattice geometry and dielectric
properties of the substrate [2-4]. In this paper we utilize an optimization procedure, based on the use of
an evolutionary scheme [5-7], called the Genetic Algorithm (GA), to accomplish this task. The
analysis module of the GA synthesis procedure is based on the Method of Moments (MoM)
formulation utilizing sub-domain basis functions. The MoM is particularly suited for the analysis of
doubly-periodic screens, comprising printed metallic elements that are sandwiched between different
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layers of dielectrics [8]. A key step in the design procedure consists in choosing the parameters that
control the optimization procedure. For the problem at hand, we select these to be the dimensions of
the unit cell along the principal directions, the dielectric substrate properties (thickness and relative
permittivity) and the shape of the printed elements in a unit cell. In order for the design to be
realistically manufacturable, the substrate permittivity is chosen from among a set of commercially-
available products. In a previous work, we opted to assign a great deal of flexibility to the optimization
program designing an FSS [9] that meets the prescribed frequency specifications. However, such a
strategy resulted in a random and scattershot pattern for the FSS element, and this then led us to
consider the possibility of imposing certain constraints on the element geometry so as to realize a more
“structured” design, one in which the symmetry and connectivity conditions on the mask have been
incorporated.

I MOM MODELING OF THE FSS

A MoM-based computer code has been employed in this work to perform the electromagnetic
simulations of the FSS. The numerical analysis follows the well-established procedure of solving the
Electric Field Integral Equation (EFIE) for the current distribution on the perfectly conducting
patches, derived by enforcing the Floquet’s periodicity condition in an elementary cell [1]. Consider a
screen lying in the x-y plane, with cell periodicities d, and d,, along the x- and y-directions,
respectively. We can cast the EFIE in the form:

ES( k a” a”ﬁ’" Jx(an Bm)
l: s( ] ddy gm-’ -anﬂm k2 BZ:IG( ﬁM)[Jy(an,ﬁm)]ejmejM (1)

In (1), E; and E; represent the x- and y-components, respectively, of the electric field scattered
by the screen, and ¢, and S, are expressed in terms of the periodicity of the screen and the incident
wavenumber. Specifically, we have

o, = (2n/d, )n+ ke, (22)
B =njd, )m+ ke, (2b)

where ki and ki< are the projections of the incident plane-wave wave vector k, along the x- and
y-directions, respectwely Finally, G(a,,, B, is the dyadic spectral Green’s function that accounts
for the presence of the lossy dielectric substrate of thickness 7 upon which the patches are printed.
Equation (1) must be solved for the unknown current distributions J, and J,,, after imposing the
boundary condition on the surface of the conductor.

If we assume that the patch material is a perfect electric conductor (PEC), the tangential components
of the total electric field must vanish on the surface of the patch, i.e., E*xz=-E™ xz, where % is
the normal to the screen. Next, we express the current distribution in terms of a set of basis functions,
that can be defined either on the entire domain [10], or on the sub-domains of the periodic cell. The
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latter type of basis functions are commonly known as “rooftops” and are particularly suited for
handling arbitrarily-shaped patches [11], which we expect to synthesize by using the GA approach.
Our next step is to derive a matrix equation by applying the Galerkin’s procedure and to solve it for
the current distribution. The final steps are to compute the FSS response from the knowledge of this
distribution, and to link this analysis module to the GA optimization algorithm.

I OPTIMIZATION PROCEDURE

The specific GA adopted in this work employs a standard proportionate selection, also refetred to
as the weighted roulette wheel selection scheme. Moreover, it applies both a simple single-point
crossover operator and a mutation operator with probabilities pcross=80% and pmutation=0.1%,
respectively. The chromosomes are a set of genes, representing coded versions of individual
optimization parameters. In particular, once the desired frequency response of the screen is assigned,
the design procedure can be reduced to that of determining the following control parameters: the
shape (mask) of the printed element in the basic periodicity cell; the electrical characteristics of the
dielectric substrate (relative permittivity & and conductivity o) and its thickness 7; and, finally, the
dimensions of the FSS element, i.e., the cell periodicities d; and d, along the x- and y-directions. All
of the above-mentioned parameters can be assigned to a different field in the chromosome. As
mentioned earlier, the dielectric substrate parameters are selected for among a set of commercially-
available products to achieve a realistic design. To model the mask of the printed element, we
subdivide the basic periodic cell into elementary pixels, and represent each pixel by eithera 1 ora 0
depending on whether it is covered by a printed metailic element or not. This provides the GA the
flexibility it needs to choose the shape of the basic periodic cell, which can be quite arbitrary. The
objective function is defined as the root mean square difference of the actual and the desired FSS
transfer functions, evaluated at different frequencies within the operational band of the filter.

The choice of the objective function strongly affects the performance of the resulting design, as
well as the rate of convergence of the algorithm; hence this choice should be made with great care. In
our case, we found excellent results by using an objective function:

F =(Fp +Fp)I2. )]

where Fj; and Fp; correspond to the transmission and reflection bands, respectively, and are defined
below. For each of these bands, we calculate the objective function as the mean square value of the
difference between the desired and computed frequency responses of the screen. In particular, for the
transmission band we set:

- 'ﬁi:Jﬁoo—Pz?“m)F I Tr——"

4N

G+ ) @

Fp =
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In (4), Ny is the total number of frequencies in the transmission band B1, while AE™(f;) is the
transmitted power for the TE polarization, at the frequency f;, evaluated as a percentage of the
incident total power. The other terms can be interpreted similarly.

For the reflection band, the objective function is complementary, i.e., it reads:

Fgp =— Nﬁ‘f\lﬁoo—P{éﬂ(ﬂ-)]zh/[loo-Pﬁ(ﬁ)r+|P&w(ﬁ1+lpftﬁlm(ﬁ* ©)

4Np2 3

The objective function F given in (3), and derived by using (4) and (5), can assume values between 0
and 100. It is minimized by using the GA to derive the desired solution of the FSS system problem.

IVNUMERICAL RESULTS

We now present some illustrative numerical results to demonstrate the effectiveness of the
proposed synthesis procedure. We choose an example where the design specifications call for the
dual-band FSS to perform simultaneously in the S- and X-bands. Specifically, it is desirable for the
FSS to provide a transmission coefficient in the S-band (2-3 GHz) that is as high as possible.
Concurrently, we require a high reflection coefficient in the X-band (7-8 GHz), at an incidence angle
of 45°. Additionally, these requirements are imposed on both the TE- and TM-polarized incident
fields.

The optimization problem is defined as that of determining the following design parameters: (i) the
substrate characteristics, i.e., dielectric permittivity and thickness; (ii) periodicities d; and dj, along the
two main axes; and, (iii) the map of the mask representing the FSS element, which comprises 16 X 16
pixels represented by a 256 bit chromosome and characterized by either a 1 or a 0, depending on
whether it is metallic or not. A finer discretization can also be used, if desired.

As mentioned earlier, if the distribution of 1°s and 0’s is totally random, the resulting mask has a
scattershot character. Since the isolated pixels contribute little to the frequency response, and since
the roof top basis functions span a pair of subdomains, we can carry out a final editing of the mask
post fact and eliminate these isolated pixels [9]. However, in this paper we have chosen to implement
this editing step on the fly, at each step of defining the chromosomes, by imposing connectivity
constraints on the geometry of the random mask generated during the optimization cycle. In
particular, the isolated pixels are removed from the mask and the resulting holes are filled with metal
instead, leading to a relatively structured design in the process. In addition, we impose one of the two
reflection symmetry constraints on the geometry of the mask, and only optimize one fourth of the
mask as illustrated in Fig. 1. This, in turn, reduces the original problem to one-fourth the size,
comprising only 8 x 8 pixels, with a chromosome field, which is 64 bits long.

The chromosome can now be constructed by using the genes associated with the four control
parameters mentioned above. In particular, 4 bits are used to code the database of the materials and
the d, and d, dimensions are coded with 13 bits each, so that the total length of the chromosome is 94
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bits. A map of 40 chromosomes is used and the objective function is evaluated at 5 frequencies within
the transmission and reflection bands.

Figures 2 through 4 present some results derived by using the GA approach. Figures 2(a) and 3(a)
display the elementary cells obtained by imposing the symmetry strategy illustrated in Fig. 1(a). The
thickness and material parameters of the substrate are included in the figure captions. Figures 2(b) and
3(b) present the frequency responses of the corresponding FSSs, and plot the reflected and transmitted
powers normalized with respect to the incident power. In Fig. 4, we present the elementary cell and
the frequency response of another FSS screen, which is designed with the symmetry strategy shown
in Fig. 1(b). Before closing, we mention that all of the results presented herein have been obtained in
800 to 1000 generations steps, which were sufficient to achieve the convergence of the GA.

V CONCLUSIONS

An optimization procedure based on the genetic algorithm has been applied to design FSSs for
dual frequency applications. The MoM analysis of the FSS, employing sub-domain basis functions,
has enabled us to include the shape of the mask in the set of parameters controlling the optimization
scheme. This has led to the development of some new and perhaps unconventional FSS element
geometries, synthesized by the GA, that were found to exhibit good performance, and meet the design
specifications for both the frequency and polarization characteristics. It was found that the imposition
of reflection symmetries leads to structured geometrical shapes for the FSS elements, rather than
totally random ones that emerge when the unconstrained GA optimization process is used.
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I. Introduction

Recent research in various parameter optimization problems have clearly demonstrated that the
evolutionary computational techniques can yield robust globally optimized solutions to problems that otherwise
are not amenable to traditional gradient-based local-search optimization methods. These probabilistic
techniques, collectively known as Evolutionary Algorithms (EAs), try to emulate, in one way or the other, the
Darwinian model of natural evolution on a computer. Even though there are many branches of EA’s, one can in
general find three main trends in the literature: Evolutionary Programming (EP)[1], Evolution Strategies (ES)[2]
and Genetic Algorithms (GAs)[3]. All these algorithms are multi-agent stochastic search methods that
incorporate random variation and selection. They all operate on a population of candidate solutions and rely on
a set of variation operators to generate new offspring population. Selection is then used to probabilistically
advance better solutions to the next generation and eliminate less-fit solution according to the objective function
being optimized. Of the three paradigms of EAs, GAs are well-known to the electromagnetic community and
have been extensively used in optimization of antenna and microwave structures4,5,6], whereas the application
of EP in electromagnetics appeared more recently [7,8,9].

One can identify the following major differences among the aforementioned three branches of EAs. i) The
conventional GAs require the continuous design parameters to be digitized and represented as binary strings,
whereas EP and ES can both directly work with the continuous, discrete or mixed parameters. ii) The variation
operator used in GAs is a combination of crossover and mutation with the former being the main mechanism of
change. The evolution process in ES uses both recombination and mutation with the latter being the dominant
operator. On the other hand, mutation is the only operator used in EP. iii) The selection of the crossover and
mutation probabilities in GAs is rather arbitrary and they are not adapted during evolution. The selection of the
initial values for the so-called strategy parameters for EP and ES are well defined and efficient adaptive and
self-adaptive techniques exist for adapting these parameters during evolution.

Mutation-based reproduction process in EP may provide a versatile tool in design of the problem specific
operators and facilitate easy integration with available apriori knowledge about the problem. Conventional
implementation of EP for continuous parameter optimization uses Gaussian mutations. Recently, an
implementation of EP with Cauchy mutation operator was shown to outperform EP using the Gaussian
mutations for optimizations of multi-modal functions with many local minima, whereas on multi-modal
functions with few local minima, the differences in performances of the two mutation operators were
statistically insignificant [10].

In this paper, we present details of the implementations of EP algorithms using Gaussian and Cauchy
mutation operators and apply them to various unconstrained as well as constrained antenna optimization
problems. The objective here is to perform a comparative study of the two mutation operators in terms of the
rate of convergence and the quality of the solutions produced for selected antenna optimization problems. The
examples include optimization of aperiodic non-uniform antenna arrays and the challenging gain optimization
problem of a Yagi-like array of multi-layered stacked microstrip antennas. For the latter problem the objective
function is highly non-linear due to the presence of surface-waves and strong mutual coupling effects.

II. EP Algorithms with Gaussian and Cauchy Mutation Operators

The EP algorithm with self-adaptive mutation operator for global optimization of an n-dimensional
objective function ¢ (%), ¥ =[x(1).x()....x0 )| consists of five basic steps: initialization, fitness evaluation,
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mutation, tournament and selection. Here we concentrate on the mutation step; the details on the other steps can
be found in [1,2]

Design of efficient mutation operators is presently an ongoing topic of research in evolutionary
computation. Here we present two algorithms, which use different mutation operators in the evolution process.
First let us assume an initial population of p individuals is formed through a uniform random or a biased
distribution. Each individual is taken as a pair of real-valued vectors, (z,7), Vie{l.. u} where
%, =[5, ()x,2).....%, ()] and T, are the n-dimensional solution and its corresponding strategy parameter (variance)
vectors, respectively. In EP with Gaussian mutation operator (GMO), each parent (%, ¥j;) creates a single
offspring (%', %) by:

xG) = 5+ @IN@D 5 0/G) = ng) e MOD + MO @

for j=0,1,2,...n, where x(j) and 1n(j) and are the jth components of the solution vector and the variance vector,
respectively. N(0,1) denotes a one-dimensional random variable with a Gaussian distribution of mean zero and
standard deviation one. Nj(0,1) indicates that the random variable is generated anew for each value of j. The
scale factors T and ©’ are commonly set to (Jm)' and (45)", respectively, where n is the dimension of the

search space. Self-adaptive mechanism of the second equation in (2), borrowed from ES, enables the meta-EP to
evolve its own variance parameters during the search, exploiting an implicit link between internal model and
good fitness values. The logarithmic normally distributed process for the variances in (2) guarantees positive
values of standard deviations. The global factor ©’ N(0,1) allows for an overall change of mutability and
guarantees the preservation of all degrees of freedom, whereas the factor T Nj(0,1) allows for individual changes
of the variances n(j) [2].

In EP with Cauchy mutation operator (CMO), the offsprings are still generated according to (2), but with
a Cauchy mutation replacing the Gaussian mutation in the first equation, i.e.,

%'G) = x5+ G o ©)

where C(0,1) is a random variable with a Cauchy distribution operator, G, centered at the origin and with the
scale parameter t=1,

Gt(x)=-;j+%tan-l(§) ; -oo<x < (C))

We note that the inverse of the operator in (4), needed in generation of the random variables in (3), is givenin
closed form.

After the offspring’s population is formed, a tournament/selection process is performed in which a
pairwise comparison with respect to the fitness values over the union of parents and offspring populations is
conducted. For each individual z, in the union, ke {J... 2 p}, q opponents are chosen at random with equal
probability from the total membership 21 of the union. For each comparison, if the individual fitness is no
greater than the opponent’s, it receives a “win”. The best individual is guaranteed a maximum ‘win’ score of q
and its survival to the next generation. We note that this tournament process differs from the one in
conventional GAs and is ‘elitist® in nature. The p individuals out of the union of
&, B)U(E, T'), Vi €{i.... 2}, with the most “win” score are then selected to be the parents of the next
generation.

For objective functions with few local minima the differences between the performances of EP with GMO
and EP with CMO are statistically insignificant. For multi-modal functions with many local minima, however,
CMO outperforms GMO. To demonstrate the latter, we consider the n-dimensional Ackley function{2]:

f.(%)=-20exp 0.2 &ixf )-— ex| —:;icosanx,. ))+ 20+e %)
=l i=1
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This function has a global minimum at 0 and a total of about (2a+1)" in the range [-a, a]. The 3-D mesh plot of
the function for n = 2 is given in Figure 1. We have applied EP algorithms in the range [-5, 5] to the above
function when n=2 and 20. The population size and the number of opponents were set to i = 50 and q = 10,
respectively. The results are shown in Figures 2-5. Figure 2 shows the function-value trajectory, for n =2, of the
best population member over 100 trials. The corresponding histogram in Figure 3 depicts the number of
occurrences of various function values when CMO and GMO are used. As can be seen, CMO performs slightly
better than GMO but there is not a significant convergence rate difference between the two algorithms. For
=20, however, CMO easily outperforms GMO as evident from Figures 4 and 5. We note that the very large
number of local minima, which in this case is about 11%’, would trap any gradient-based, hill climbing method.
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Fig. 1: Mesh plot of Ackley function forn=2 Fig. 2: Convergence rate forn=2
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The above results for the convergence rates of these mutation operators can be explained if we compare
their corresponding probability density functions,

_ mpp?

= 20 . = t
g(x)= o € H c(x)= T+ 50 )
which are plotted in Figure 6 for , [, =0 , standard deviation o =1 and the scale parameter t = 1. As seen the
Cauchy distribution has fatter tails which suggests that it should converge faster than the Gaussian distribution
to the global optimum because of an increased probability of escaping from a local optimum.
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1. Applications of EP algorithms with GMO and CMO to Antenna Structures
A. Optimization of Aperiodic Array

The array factor for an N element aperiodic array of isotropic radiating elements with non-uniform
amplitude and spacing can be written as:

N
AF = 2 ]nej(n—l)(kd. cos6+B) Lel0)] 4 e[0,A] @
n=l

where I, and d, are the normalized excitation amplitude and the spacing of the nth element; 8 is the elevation
angle measured from the array axis. Assuming a symmetric pattern with N=21, we have used the EP algorithms
to minimize the side-loble levels(SLL) subject to the constraint of 10°<HPBW<10.5° where HPBW is the 3-dB
half power beam-width. A parents’ population size of i = 50 and opponents’ size of q = 10 are used to optimize
Landd, ,n=1,2, ... 10. Fifty independent trials and 200 generations per trials were performed. The fitness-
value trajectory of the best population member and the histogram (in percentage) of the 50 trials are shown in
Figure 7 and 8, respectively. For this constraint optimization problem, GMO results in a faster convergence rate
than CMO. Maximum side-lobe levels of —33 dB and —43 dB are obtained after about 75 and 170 generations,
respectively. The pattern for the former case is shown in Figure 9; the corresponding HPBW is about 10.4°.
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Fig. 7: Convergence rate for Cauchy and Gaussian mutations Fig. 8: Histogram for Cauchy and Gaussian mutations
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Fig. 9: Optimized far-field pattern with SLL = -33.2 dB and HPBW = 10.4°

B. Optimization of Yagi-like Array of Microstrip Antennas
The printed Yagi-like structure in Figure 10 consists of a driver and a finite number of embedded director

strip elements printed in an N-layer dielectric medium. To optimize the gain the structure is modeled using a
mixed-potential integral equation:

. N - _
- [y ff [C{Z’i(zx-) L0+ 1% G:Z(xx-)vt-f,;(m}dS' -2 To®=-E2 ®
i=1 S

T=xy eS8 ; p=12..N
. . . ).
where JIg; and Zsj are the electric surface current and the surface impedance of S;, respectively; Einc(p is the

tangential (incident) electric field impressed at the p-th surface. G(;:), and G;) are the Green's Functions of

Magnetic and Electric types, respectively, evaluated at the p-th layer due to a source at the i-th layer. The
Green's functions are of the Sommerfeld integral type and can be expressed as the inverse Bessel
transformation,

G, (p)=2n [G (M kg 5 p=yflr-x)+ (Y ©)
[

where the spectral-domain Green's functions G” (z,A) satisfy the voltage distribution in an equivalent multi-
section transmission line. Our implementation of MPIE utilizes an efficient technique for semi-analytical
evaluation of the corresponding Green’s functions and is, therefore, well suited for optimization of printed
antennas in a medium with many dielectric layers [11]. A Galerkin moment method approach is used to
numerically solve the integral equation (8) for the unknown current densities. For the present problem, each
strip conductor is assumed to have an electrically small width, thus the current on the strip is primarily flowing
along its iength.
To optimize the gain, the printed Yagi-like structure is represented by a column vector as given below:

X =[Lys Ly @yes Ly (N, E,seens &N, dID,.. ] (10)
where Lgi and Ly (i), €(i) and di(i) are length of the driver element, length of the ith director element,
dielectric constant and thickness of the ith dielectric layer, respectively. Length of the vector in (10), in view of
the mutations (2)-(3), is in general n = 6N-+1. For the gain optimization we construct the Fitness function as,

F(%)=- Gain®, 6 D+ 3 P(F) (11)
m
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where Gain is the power gain in (6, ¢) direction obtained from the moment method solution of the integral
equation in (8); P, , m = 1,2,.., are the penalty criteria for violating a set of constraints chosen to ensure that the
optimized solutions are practically feasible.

In the first example, we present the performances of the EP algorithms with CMO and GMO in an
unconstrained optimization of a five-layer Yagi array with air dielectric layers. The population size and the
number of opponents were set to )L = 100 and q = 10, respectively. Optimization was performed with respect to
lengths of the elements and thickness of the layers. Figure 11 shows the mean fitness-value trajectory of the best
population member after 10 trial runs were performed. As seen CMO performs much better than GMO in terms
of convergence rate, A gain of better than 17dBi was obtained after 155 generations.

In the second example, a Yagi-like array in a 3 layer medium was optimized with p = 20, q = 8 and
subject to the constraints of D = di+dy*+d; < 0.15A, and radiation efficiency, e; > 95%. The optimization
parameters in this case were lengths of the elements, thickness of the layers and the dielectric constants, which
were allowed to vary in the range of 2 to 4. It was observed that €;; and & always tended to 2 while &3 tended
to 4; this is consistent with the high gain condition for an embedded dipole [12]. The corresponding mean
fitness trajectories for EP algorithms with CMO and GMO over 10 trials are plotted in Figure 12. EP with GMO
performs better than EP with CMO for this constrained optimization case. Gain of about 13 dBi with D =
0.12 A, and e; = 99% was obtained within 200 generations. It is noteworthy that the same structure without the
director elements has a gain of only about 7.5 dBi. Gain and surface-wave powers of this structure are plotted as
a function of normalized frequency in Figure 13. As can be seen at the maximum gain, the power coupled into
the surface waves is minimized.
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IV. Conclusions

In this paper we presented the implementations of two Evolutionary Programming algorithms with two

different mutation operators for global optimization of multimodal objective functions. We then performed a
comparative study of these algorithms in optimization of selected antenna problems. It was shown that EP with
a Cauchy operator result in a much faster convergence than EP with a Gaussian operator for unconstrained or
weakly-constrained optimizations of objective functions with many local optima. The performance of Cauchy
operator, however, degrades when antenna objective function is subjected to sever design constraints in which
case the Gaussian operator performs better. A hybrid EP optimization technique that combines these two
operators and its application to electromagnetic problems is presently under investigation.
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Abstract— The use of genetic algorithms for the design of antennas has become increasingly popular in
recent years. This is due to their versatility and ability to perform a rigorous search in complex multi
modal search spaces. Much attention has been placed on binary genetic algorithms. In this paper, a real
parameter genetic algorithm [3] for the optimisation of antenna design is presented. A statistical comparison
is made between real and binary genetic algorithms for the design of array antennas. It is shown that by
using real parameters, the problem space can be better defined, and a higher fitness value can be obtained.
‘With the crossover adopted here, the problem space is searched more thoroughly than with the binary
genetic algorithms. The paper shows that the real parameter genetic algorithms perform much better
than the binary genetic algorithms for the optimisation of array antennas. The different genetic algorithms
are applied to practical antenna design problems to verify the performance of the real parameter genetic
algorithms.

1. INTRODUCTION

In the field of antenna design [1]-[2], much work has been done on the use of binary genetic algorithms [7]-[13] as
a search tool. Few have looked into the use of the continuous parameter genetic algorithm. In this paper, an in
depth look into the difference between the binary and decimal genetic algorithms (GAs) is presented. Statistical
comparison was done using a realistic array antenna design problem. Statistics show that the decimal GAs perform
relatively better then the binary GAs.

There are many advantages of using decimal GAs over binary GAs. As is well-known, most practical problems which
require optimisation consist of a number of real parameters. Traditionally, in order to apply the genetic algorithm
onto these problems, the real parameters have to be encoded into binary form. By using real parameter GAs, this
process can be eliminated. Furthermore, in the binary GAs, the resolution of the parameters is determined by the
number of bits in which the parameters are encoded. As the decimal GAs eliminate this encoding and decoding
process, the results obtained have a higher resolution. Another advantage of real parameter GAs is that, by using
appropriate real value crossover, it is shown that the problem space is searched more throughly.

The paper will look at how real parameter GAs are similar to the binary GAs. This is then followed by the
statistical comparison of various binary coding methods and decimal coding methods using an antenna design
problem. Through the example, it has been shown that the decimal GAs perform better then the binary GAs.

II. THE GENETIC ALGORITHMS

When applying the binary genetic algorithm to an antenna design problem, the following steps are taken:

1. Decimal to binary coding.

2. Selection.
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3. Crossover.

4. Mutation.

These steps are repeated over a number of iterations until the GA converges to a desired fitness value. If the
values do not converge, these steps are repeated until a total number of generations is reached. In this case, the
total number of generations is set to 50. When applying the decimal GA, similarly, the above mentioned steps are
repeated. The following describes the differences and similarities of the binary and decimal GA.

A. Decimal to binary coding

When a GA is applied to a real parameter problem such as array antenna design, the real parameters have to be
coded into binary bit strings. One of the advantages of using real parameters GA is to reduces the computational
complexity of coding the real parameters into binary bit strings in order to form the chromosomes. In the real
parameter GA, the chromosomes are formed by placing the parameters to be optimised directly in the form (z;
T2 Z3 ... Z,;).

B. Selection schemes

Selection introduces the influence of the fitness function to the GA optimization process [15]. The selection scheme
can not be based solely on choosing the best chromosome, because the best chromosome may not be very close to
the optimal solution. Therefore, there should be some chance that relatively unfit chromosomes are selected, so as
to ensure that genes carried by unfit chromosomes are not lost permanently from the population. In general, the
selection scheme should be one which relates the fitness of the chromosomes to the average fitness of the population.

Many selection schemes have been developed [4]-[5]. Two of the more widely used selection schemes are presented
in this paper. These two selection schemes are used for both the decimal and binary GAs.

Elitism Roulette Wheel Selection - The Elitism Roulette Wheel Selection (ERWS), is a combination of the elitism
and roulette wheel selections. In ERWS, all the chromosomes are ranked according to their fitness values. The
fittest top 10% of the population is taken and put directly into the new population. The remaining population is
filled up by a roulette wheel selection scheme [4]. In this scheme, all the members are allocated a section on the
wheel. The proportion of the section allocated depends on the fitness of the chromosome. The wheel is then spun
and a chromosome is selected into the new population.

Tournament Selection - The tournament selection uses the tournament method as described in [5]. In this process,
a sub-population of N individuals is chosen at random from the original population. The individuals in this sub-
population competes using its fitness value. The fittest individual in the sub-population wins the tournament and
is selected into the new population. All the members in the sub-population is then placed back into the original
population and this process is repeated until the new population is filled up. The most common binary tournament
selection scheme, where N equals 2, is used.

C. Binary Crossover Methods

After obtaining the new population, the next step is to perform crossover. The crossover operator takes two
parent chromosomes from the new population and generates two child chromosomes. By performing crossover,
good characteristics from the parents can be passed on to the children. Like the selection scheme, many variations
of crossover have been developed [16]. In this paper, the more effective crossover methods are examined.

Traditional Single-Point Crossover - A single random location in the parent chromosomes is selected. Bits in
the parent chromosomes preceding the crossover point are copied directly into the children, whereas bits after the
crossover point are swapped.
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Multi-Point Crossover - The multi-point crossover is a natural extension of the single-point crossover. Instead of
choosing a single crossover point at which the genes are swapped, more than one point is chosen (in this study
eight points are chosen), breaking the chromosomes into segments. The segments at the randomly chosen crossover
points are exchanged to produce children. This reduces the positional bias of a single-point crossover.

Uniform Crossover - Uniform crossover exchanges bits rather than segments {14]. For each bit in the chromosome,
the bits from the two parents are exchanged with a fixed probability p. Since the probability of exchanging two
bits in each position is independent of the choice made with regard to any other position, uniform crossover has
no positional bias.

D. Decimal Crossover Method

As was shown in [3], a simple one point binary crossover can be seen as a perturbation of the parents. This can
be illustrated using a simple example. Taking the range of the parameters to be optimised to be between 0 and
1, and the parameters to be encoded into 4 bit strings, two arbitrary parents, 0.5 and 0.875, are chosen. The
corresponding binary form would be 10 00 and 11 10 respectively. During crossover, a random crossover point is
taken, in this case, between bits 2 and 3. The children obtained through a single-point crossover from the parents
would then be 10 10 and 11 00, which correspond to decimal values 0.625 and 0.75. The interchange of the less
significant bits 10 and 00 correspond to a difference of 0.125. Looking back at the two child chromosomes produced
from the parents, this is simply a perturbation of £0.125 where child one is obtained from parent one through
(0.5 + 0.125) and child two from parent two through (0.875 — 0.125).

If the size range of the two parents, P; and P, is R = P, — P;, then the two children, C; and Cs, will be given by

C, =P +F(R) 1)
Cy = P, ~ F(R). @

By substituting R, we find that, in the real parameter crossover, the two children can now be written as,

Ci=(1-F)P+F(P) 3)
Cy=(1~F)P + F(R). @

where F' is a factor to be chosen. This is similar to the random crossover point chosen in the binary GA. In this
particular example, the factor, F, has a value of §.

The fundamental and most meaningful part of coding a real parameter problem into binary code for genetic
algorithm is the conservation of the schemata, " similarity template”, in the chromosomes. From the example above,
it has been shown that the schemata in the parent chromosomes can also be preserved even in a real parameter
genetic algorithm. This is done by doing perturbation to the real parameter parents during the crossover stage.
For one point crossover, a single factor value F is chosen as the crossover factor, in place of the crossover point.

In the decimal GA, the factor F determines how well the search space is being searched. In the single-point
crossover, very often, the more significant bits in the chromosome are not altered due to the lower probability of 2
high crossover point. However, with an appropriate factor F' chosen, the probability of crossover at more significant
bits is increased. This results in a more rigorous search of the entire problem space.

E. Mutation

In GAs, mutation is performed to ensure that the population is not caught in 2 local minimum and also to ensure a
diversity in the population. In the binary GAs, mutation is performed by randomly flipping a bit from its original
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state to its complementary state, from 0 to 1 or 1 to 0. Similarly, in the decimal GA, mutation can be performed
by randomly altering the value of the parameter. This is done by doing a perturbation of the original parameter.

For example, if a particular parameter (P;) is chosen to undergo mutation, then a factor (Fi,y:) of the parameter
range (R) is added or subtracted from the parameter. This results in a new parameter (F; = Finu:R). In order
to maintain a fair comparison of the two genetic algorithms, the probability of mutation for the decimal GA is
lowered. For example, if the 5 parameters are represented by a chromosome of length 100, and the probability of
mutation of each bit is 1%, then the probability of mutation for the decimal GA will be reduced to 0.2% for each
parameter.

III. ADVANTAGES OF DECIMAL GA

From the above analysis, it can be seen that the real parameter genetic algorithm can be viewed as a binary genetic
algorithm by means of perturbation. Notice that the conservation of schemata is still preserved. There are many
advantages of using real parameter genetic algorithms in antenna optimisation:

1. The real parameter need not be converted from decimal to binary every single time the fitness function is
calculated. This increases the efficiency of the code.

2. In the binary GA, the precision of the parameters are determined by the number of bits in which the
parameters are coded, the resolution. However, with the use of real parameters, there will be increased
precision as there will be no loss in resolution during coding.

3. The problem space can be searched more rigorously by choosing a larger value of factor F.

IV. ANTENNA DESIGN PROBLEM

A A
; :
' |
' 1
E :
i 1
— —— !
L3 == 52 ------ =
: 3 ' A
H t 1 1
1 H 1 1
1 i 1 i
1 1 ' 1
1 H t 1
1 1 l 1
Y ' Y :
RN R §1 ----=- _‘—‘j L2
Ay ' 1
1 '
s3! )
] )
N '
[N !
1 ~ U
v o ¥

Fig. 1. Antenna structure used for comparison.
The example used for comparison of the methods described is a simplified antenna, design problem shown in Fig. 1.

This antenna is designed for immunity and susceptability testing. Therefore, it was designed to satisfy the following
criteria.
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1. Radiate a uniform near electric field over a 5m by 3m plane situated at a distance of 3m in front of the
antenna. The field magnitude must not vary by more then +0dB and —3dB over the frequency range
30MHz to 100M Hz.

2. The uniform near electric field is required to be as close to 10V/m as possible.

3. Transmitted power is maximised for the limited input power.

In order to ensure field uniformity, 77 uniformly distributed grid points on the plane of interest is taken. The
fitness function maximises the number of points which are within 3dB range of each other. In order to ensure
that the desired field intensity is achieved, the difference between the simulated near field strength and the desired
field strength (10V/m) is minimised. Finally, the fitness function has to maximise the power transmitted by the
antenna. The higher the fitness value, the better the fitness of the chromosome.

The antenna design consists of four individual dipoles, two dipoles in front and two behind (Fig. 1). There are 8
parameters to be optimised: the individual length of the dipoles (L1, L2, L3 and L4); the spacing between the
front dipole pair (S1); the spacing between the back dipole pair (S2); the spacing (S3) and phase (L,) between
the front and back dipole pairs.

A. Simulation

The eight different decimal and binary algorithms described in the above section were used to optimise the structure
in Fig. 1. Simulations were done using the Numerical Electromagnetic Code (NEC). For each algorithm, the
simulation was performed on a population of 50 chromosomes over 50 generations. Each algorithm was run 50
separate times and results generated from all 50 runs were compared and tabulated in Table. I.

B. Comparison of Different GAs

TABLE I
Cowmparison or Dirrerent Genenic Arcorrrams
Name ERWpegc ERWsp ERWwyps ERWyn:
Max. Pts. in 3dB 1.000 1.000 1.000 1.000
Ave. Pts. in 3dB 0.940 0.888 0.896 0.910
Max. Power Trans. 0.966 0.977 0.977 1.000
Ave. Power Trans. 1.000 0.919 0.929 0.908
Min. E.Field from 10V/m 1.000 0.756 0.778 0.827
Ave. E.Field from 10V/m 0.919 0.953 0.933 1.000
Max. Fitness 1.000 0.968 0.986 0.994
Ave. Fitness 1.000 0.936 0.944 0.958
Name Tournppc Tourngp Tournyps Tournyny
Max. Pts. in 3dB 1.000 1.000 1.000 1.000
Ave. Pts. in 3dB 0.900 0.858 0.866 0.862
Max. Power Trans. 0.971 0.971 0.995 0.975
Ave. Power Trans. 0911 0.896 0.882 0.854
Min. E.Field from 10V/m 0.882 0.754 0.745 0.831
Ave. E.Field from 10V/m 0.913 0.846 0.845 0.793
Max. Fitness 0.998 0.953 0.967 0.979
Ave. Fitness 0.904 0.889 0.893 0.874

The values in Table I are ail normalised for easy comparison. They are normalised to the maximum value achieved
by the eight different algorithms. In Table I, ERW represents elitism roulette wheel selection, T'ourn is tournament
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selection, ppc is decimal crossover, sp is single-point crossover, prps is 8 point multi-point crossover and yny is
uniform crossover with 0.5 exchange rate. The overall fitness function optimises 3 objectives. To maximise the
number of points, of the 77 points, on the plane of interest which lie within 3dB of each other. The first two rows
in the table show the maximum and average number of points which lies within a 3dB range; secondly, maximum
power transmission; the next two rows in the table show the maximum and average power transmission for the
125000 simulations; finally, ensure that the near electric field on the plane of interest is as close to 10V/m as
possible. The following two rows shows the minimised and average electric field strength. And the final two rows
show the maximum and the average of the overall fitness function.

In [16}, it has been shown that the 8 point multi-point crossover is the best crossover operator when used to optimise
five different functions, and the uniform crossover with a 0.5 exchange rate is one of the better performers. From
the results obtained here, it can be seen that the decimal outperforms the other algorithms. The decimal crossover
has found higher overall fitness values for both the ERWS and the tournament selection. Looking at the maximum
fitness value, it can be seen that most of the algorithms were able to come to a relatively high fitness value at least
once over the 50 runs. This is shown by the maximum fitness value achieved in Table I, where the normalised
maximum fitness value for all the algorithmns are close to 1. However, when the average fitness value is calculated, it
can be seen that the average fitness of the decimal algorithms is much higher then the other algorithms. From this,
we can conclude that on average, the decimal algorithm performs much better then the binary algorithms. Looking
at each individual objective function and the overall fitness function, it can be seen that for the ERW selection,
the decimal crossover has the best performance. This is followed by the uniform crossover, which is performing
quite well. The single-point crossover has the worst performance. For the tournament selection, the decimal GA
performs predominantly better, whereas the different binary GAs have more or less similar performance with the
multi-point crossover performing slightly better then the rest.

The table also shows that there is a compromise between the different objectives in the overall fitness function.
For example, the decimal GA has found designs which have good performance in near electric field strengths by
getting designs with many near field points within 3dB range and as close to 10V/m as possible. However, these
designs seem to be less efficient in power transmission. It is clear that the ERW selection is a comparatively
better selection method than the tournament selection. Almost all the objective and fitness values found from the
tournament selection are less then those found by the ERW selection.
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Fig. 2. Probability distribution of fitness function.
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Fig. 2 shows the probability distribution for the 50 runs of the four different algorithms. The relatively higher
performance of the decimal GA becomes obvious in this plot. Most of the runs of the decimal GA ended up with a
high fitness value. The uniform crossover GA is producing very promising results as well. However, the single-point
and multi-point crossover are less effective in coming to a high fitness value. From the results shown in the table
and the bar chart, it has been shown that the decimal GA is performing much better then the rest of the binary

GAs. This is true for array antenna optimisation.

C. Convergence Trend

These results produced from a total of 125000 simulations show that the decimal algorithms give significantly
better fitness values. When looking into the details of each new run of the simulation, a few details were noted.
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Fig. 3. Average fitness of a population of 50 for a single run.

Fig. 3 shows 8 separate runs of each of the four GAs using ERW selection. The average value of the population
of 50 chromosomes for each generation is plotted. Each run of the algorithms consists of 50 generations. Firstly,
the convergence of the binary GA is faster as compared to the decimal GA. This can be seem from Fig. 3, where
the multi-point crossover and the single-point crossover GAs converge to a single value relatively soon (after 20
generations) and then levels out. The uniform crossover and the decimal crossover tends to converge later. The
single-point crossover, on average converges to a lower fitness value, although it converges faster. Although the
uniform crossover converges later, it converges to a much fitter population. When the GA converges to a single value
before the the 50 generations are up, the mutation rate is increased to ensure a varied population is maintained.
In the case of the decimal GA, it tends to converge relatively slower. This is due fo a more varied population
maintained by the decimal GAs while performing its rigorous search. This can clearly be seen from Fig. 3, where
the fitness value of the decimal crossover seems to vary quite a bit even after 30 generations. The decimal crossover,
on the average, comes to a relatively higher fitness value. Therefore, although the decimal GA converges at a later
stage, it approaches a fitter final population. From Fig. 3, the binary GA reaches a final fitness value and levels
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out after about 20 iterations. However, even after 30 iterations, the decimal GA still seems to be maintaining a
highly varied population as compared to the binary GAs.

There is no known solution to this antenna design problem and thus no known global optima. However, through
statistics, running the algorithms 50 times each time with a different randomly chosen initial population, it can be
seen that the decimal GA is able to reach a better fitness value as compared to the binary GA.

V. SUMMARY

In this paper, the link between decimal genetic algorithms and binary genetic algorithms has been studied. The use
of decimal genetic algorithm for array antenna design has been examined. This is done using statistics collected
from fifty runs of each algorithm. The statistics obtained have been analysed and it has been found that the
decimal GA performs better for array antenna designs. Various aspects such as the speed of convergence and the
trend of convergence have also been analysed. A statistical comparison was also done for the different selection
schemes.

Finally, a practical antenna design problem was optimised using the better of the two selection schemes. Four
antenna designs were arrived at: one obtained from the decimal GA; one from the uniform crossover GA; one from
the multi-point crossover GA; and the one from the single-point crossover GA. Results show that the antenna
design from the decimal GA performs much better than that from the binary GA. This again confirms that the
decimal GA performs better then the binary GA for array antenna design.
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Abstract

The compact genetic algorithm is introduced both as a new optimization method for general
electromagnetics design problems and as a tool for determining the applicability of evolutionary
optimization methods to a given problem. Unlike the simple genetic algorithm, which guides an
entire population of solutions toward an optimal design, the compact genetic algorithm operates on
a vector of probabilities representing the distribution of alleles in a virtual population. Because of
its simplicity, the compact genetic algorithm may be a better choice than the “simple genetic
algorithm” for many problems. Moreover, because the compact genetic algorithm mimics the
behavior of the simple genetic algorithm, its failure for a given problem may indicate a need for
more advanced techniques. Numerical results demonstrate both of these uses for the compact
genetic algorithm with applications to problems of electromagnetic interest.

1. Introduction

Since the early 1990’s, genetic algorithms (GAs) have steadily gained popularity as synthesis
tools for electromagnetic device design [1-3]. The rapid growth of interest in GAs is a direct result
of their remarkable qualities as optimization methods:

e They retum global or strong local optima for a wide variety of multimodal optimization

problems,

e They work only with objective function values and thus require no derivative

information,

o They have the ability to optimize functions of both discrete and continuous variables, and

e They are simple to implement and are broadly applicable.

Despite these beneficial qualities, however, GA practitioners have found that the picture is
not always so rosy. GAs are often lethargic in success and inscrutable in failure. Given a specific
electromagnetic design problem, it is generally impossible to tell if it is amenable to optimization by
a simple GA (SGA) without extensive experimentation. Worse yet, the SGA is a stochastic
algorithm depending on a plethora of parameters and operators, making it difficult to determine if
the failure of the algorithm is a result of parameter choice, poor operator design, insufficient run
time, or the inapplicability of the SGA technique altogether.
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In this paper, a compact genetic algorithm (cGA) is introduced into electromagnetic
optimization to help answer these questions [4]. The cGA, which is an interesting optimization
algorithm in its own right, mimics the behavior of an SGA using tournament selection and uniform
crossover. Because it does not operate on a population in the usual sense, but instead represents the
population by a vector of Bernoulli random variables, its operation depends on only a small number
of parameters. This permits a more thorough study of GA applicability as the parameter space is
quite small. Moreover, as will be seen below, convergence of the cGA to a single, well-defined
solution is all but inevitable, removing the necessity of altering algorithm parameters to see if the
GA has “really” converged. The description of the algorithm and numerical examples will show that
these qualities of the cGA make it useful not only as an optimizer, but also as a diagnostic tool for
GA applicability.

The remainder of this paper will proceed as follows: Section 2 presents the cGA itself, and
discusses its relation to the SGA. Section 3 then demonstrates the usefulness of the ¢cGA both as an
optimizer and as a diagnostic. Finally, Section 4 presents the conclusions of the study.

2. The Compact Genetic Algorithm

Much like the SGA, an application of the ¢GA to a given problem first involves encoding
design parameters into a bit string (of length ) called a2 chromosome. This process is well
documented in the literature and is not discussed here; the interested reader is referred to Goldberg
[5] for a description. Once such a coding has been fixed, the optimization problem of interest
(assuming it is 2 maximization problem) can be stated in mathematical terms: Find a chromosome
¢’ suchthat f(¢*)2 f(¢) for a given objective function f and for all chromosomes ¢ of length

To solve this optimization problem, the cGA begins by initializing all components of a real-
valued probability vector p of length I to a value of 0.5. This probability vector can be thought of as
representative of the population of a virtual SGA: Each component p, of the vector p represents the
fraction of the population which contains the allele (bit) “1” in locus (component) i, i =1,...,!. The
initialization of the components of p to 0.5 is thus equivalent to choosing aileles in the starting SGA
population at random with equal probability.

A chromosome ¢=[c; ... ¢]may be generated at random using this vector of probabilities
with the following procedure: For each locus in the vector, a random number 0<7, <1 is generated
and compared to p,. If < p,, ¢ is set to 1, otherwise ¢ is set to 0. The cGA “generation” thus
begins by generating s chromosomes ¢/, j=1,...,s. Each of these chromosomes is then evaluated
by the objective function f; and assigned an objective function value f/ = f(c’).

The objective function values can be used to update the population vectors in the direction of
the best chromosome of the bunch. First, the best of the s chromosomes is located. (Without loss of
generality, assume the best chromosome is ¢!.) This chromosome is then compared, bit by bit, to
the other (inferior) s-1 chromosomes, and the probability vector is updated using a very simple rule:
Define integers 2< j<s and N >1. Then, for each inferior chromosome j, if c¢i=1and ¢; =0,
p, is incremented by 1/N. On the other hand, if ¢ =0 and ¢’ =1, p, is decremented by 1/N. Finally
if ¢ =¢’;, p, is left unaltered.
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This process of generating chromosomes, evaluating them, and updating the probability
vector is continued until all components of p are either 0 or 1. This final probability vector is the
solution returned by the cGA. A flowchart of the process is shown in Figure 1.

Like the probability vector p, which functions as a compact representation of the SGA
population, the parameters N and s also have SGA analogues. Specifically, N is equivalent to the
SGA’s population size, and s is represented of the tournament size in an SGA using tournament
selection and uniform crossover [4]. To see this, consider a cGA with s=2. At each stage of the
algorithm, two chromosomes are generated, and the proportion of the better chromosome’s alleles at
each position is increased by 1/N. This is exactly the behavior that would be expected from an
SGA using binary tournament selection. Similarly, increasing s simulates an increase of selection
pressure in an SGA. It should be mentioned, however, that unlike the relationship between the cGA
parameter N and population size, the relationship between s and tournament size is more complex.

Because of its simplicity and similarity to the SGA, the cGA can be an invaluable tool for the
evolutionary optimization of electromagnetic devices in two complementary fashions. First, the
¢GA is useful in its own right as an optimization method. If it works for a given optimization
problem, the cGA will generally give results comparable to those delivered by an SGA. Moreover,
because the cGA depends on only two parameters, less experimentation is required to determine its
applicability to a given problem than for an SGA.

On the other hand, if for a given problem, the ¢cGA fails completely, or if results for a high
selection rate are much better than those for a low selection rate, the SGA is likely to retum poor
results for that problem. In such cases, advanced genetic methods are needed. Such methods
include, but are not limited to, physics-based domain decomposition methods, hybridization with
local optimizers, and genetic algorithms with more advanced schema processing abilities [3].

3. Numerical Results

To demonstrate the claims of the last section, the cGA was applied to two design problems:
thinned antenna arrays and polarizers. These are now discussed in turn.

The first problem comprised the thinning of a symmetric, 200-element linear antenna array
of isotropic elements to reduce sidelobe levels as much as possible. The chromosome for this
problem represented each of the 100 independent array elements by a single bit that indicated
whether a given pair of elements in the array was turned on or off. The objective function value for
a given array was taken as the decibel reduction in the highest sidelobe relative to the main lobe.
The ¢GA was applied to this problem with 25 different values of N ranging from 20 to 500, and with
s values of 2 and 4. For each parameter combination, the cGA was run 100 times, for a total of 5000
experiments. Results are presented in Figures 2 through 5. Figures 2 and 3 respectively show the
average and best results obtained for each parameter combination averaged over its 100 experiments.
Figure 4 shows the average number of function evaluations until convergence for each combination
of parameters, and Figure 5 shows the pattern of the best design found in all 5000 runs.

Many interesting results can be gleaned from these four graphs. First, we note that while
increasing the selection rate from 2 to 4 can give better results for a large enough population, the
results do not improve all that much. This implies that this problem is rather easy for a GA to solve,
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if one is satisfied with a very good (but not necessarily the best) solution. Moreover, though the
number of function evaluations required until convergence is a roughly linear function of N, the
average (and best) result returned becomes nearly constant in the vicinity of N =100. This lends
credence to the rule of thumb that states that population size should be on the order of chromosome
length [3]. Finally, it is noted that the original result for this problem reported in the literature [6]
resulted in sidelobes reduced 22.09dB—about 1.4 dB less than the result shown in Figure 5, and less
than the average results for N =80.

The second problem considered in this study involved the design of a polarizing screen. The
design of periodic structures in general is known to cause difficulty for the SGA [7, 8], so this
problem will demonstrate the applicability of the cGA as a litmus test. The screen (assumed to be
situated in the z = Q plane) was to be designed to reflect the y component and transmit the x
component of a plane electromagnetic wave travelling in the z direction. To solve this problem, the
c¢GA was applied to decide which pixels in a square 16x16 grid of side A, periodically repeated in
the z = 0 plane, should be metallized to achieve the polarization effect.

The chromosome for this problem consisted of 128 bits used to code the metallization status
of the top half of the screen, with the bottom half of the screen assumed to be the “mirror image” of
the top (Figure 6). A spectral Galerkin code using rooftop basis functions [9] was used to analyze
the screens using a 32x32 grid, and return the reflection coefficients I'x and I', due to x and y
polarized waves at ten frequencies between DC and ¢/A, where ¢ is the speed of light in vacuum
and A denotes the screen periodicity. The objective function was taken as the minimum value of the
quantity
2
Il a
at the ten test frequencies. Five ¢cGA runs were executed, with N =150 and s=2. Results are
shown in Figures 6, 7, and 8.

Unlike the thinning problem, the polarizer design problem has a well-known solution: the
screen should be composed of thin, tightly-packed vertical strips. This solution, which is depicted in
Figure 6, achieves an objective function value of 330.85. The solution achieved by the cGA,
depicted in Figure 7, only achieves an objective function value of 26.78. Figure 8 compares the
polarization response of the two screens by showing the ratio of the power reflection coefficient for
the y-polarized wave to that for the x-polarized wave versus the “normalized frequency,” defined as

Jrom = % . ®
Cleartly, the screen designed by the cGA is not a very good polarizer!

The poor result indicates that this problem would be extremely difficult for an SGA. Indeed,
the authors® previous work on the GA optimization of periodic screens indicated very clearly that the
SGA was not an option [8]. This of course does not imply that GAs cannot be used for these types
of problems, but instead that the SGA need to be modified to force it to work. For instance, by using
symmetric properties of the screen and a special GA carefully hybridized with a local search
method, the authors were able to produce a three-screen FSS with two pass bands between
normalized frequencies of 0.09 and 0.11 and between 0.64 and 0.74, and a stop band between
normalized frequencies of 0.45 and 0.5 [8]. The response of this screen is shown as Figure 9.
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For the polarizer problem presented here, a GA capable of solving the problem could be
created by coding changes (such as assuming at the start that the that the solution will be composed
of strips), or by operator modifications (such as using a single point crossover operator likely to
preserve such strips). Alternatively, extended cGA-like methods that employ more powerful
population representations may be used [10, 11]. In any case, the cGA has demonstrated that no
amount of SGA experimentation is likely to make this problem work, and thus may be used to
indicate the need for such alterations to the optimization method.

4. Conclusions

This work has introduced the ¢cGA as a useful tool in the evolutionary optimization of
electromagnetic devices. Because the cGA is a simple algorithm that mimics the behavior of the
more complex SGA, it can be used as a litmus test for the applicability of the SGA, or as a useful
optimization algorithm in its own right. Its usefulness as an optimization algorithm was
demonstrated by application to an array thinning problem, and its importance as a litmus test was
shown in a polarizer example. Numerous extensions to the technique are also possible and will be
discussed in the presentation.
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Figure 6. The optimal solution of the polarizer
problem. The black lines indicate the pixel
boundaries metallized by the cGA, and the
gray lines show the grid used for the spectral
Galerkin analysis.
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found in 5000 ¢cGA runs. The parameter v is
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Figure 7. The “best solution” to the polarizer
problem returned by the cGA.
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Dipole Equivalent Circuit Optimization Using Genetic Algorithm

Bruce Long, Ping Werner, and Doug Werner
Department of Electrical Engineering
The Pennsylvania State University
University Park, PA 16802

Abstract—~Two broadband equivalent circuit models with component values optimized by use of
a genetic algorithm are presented. The first is a conventional LCR network. The second uses
transmission line segments as well as lumped components. Both exhibit good impedance fidelity
over a bandwidth exceeding five octaves including the fundamental through the forth overtone
response.

L. Introduction

It is often convenient to have an accurate yet simple representation of antenna self-impedance over
a broad frequency band. One example that comes to mind is the evaluation of a transmitter output
amplifier, harmonic filter, and antenna system. Lumped constant equivalent circuit models are
typically called into service in such cases. An equivalent circuit in this sense is a network of
components that has terminal frequency-impedance function essentially equivalent to an actual
antenna. Of course the accuracy required to be "essentially equivalent" depends upon the application
at hand.

In this paper the authors demonstrate the use of a genetic algorithm to optimize a conventional
lumped component antenna equivalent circuit model for best impedance fidelity over a broad band.
We also introduce an antenna circuit model, based upon transmission line segments and believed to
be novel, that is simpler and has better broadband fidelity than the lumped component model.

The equivalent circuit models presented here represent wire dipoles although they should be useful
in the representation of other antennas having similar frequency-impedance characteristics.

While not investigated by the authors a simple alteration of the proposed models, specifically
replacement of a series capacitor with a shunt inductor, allows representation of loop antennas.

II. Lumped Component Equivalent Circuit

Our interest in equivalent antenna models arose from a need to find a convenient broadband dipole
antenna impedance representation that was computationally efficient. While the literature has many
references to antenna equivalent circuits, most are narrowband representations. References [1] and
[2] are exceptions to this general rule. The first reference describes an antenna equivalent circuit
model design technique, suitable for broadband representation but having limited accuracy. The
authors describe a simple circuit synthesis technique, based upon point matching at critical
frequencies. A series capacitor is selected to match antenna reactance at a very low frequency. A
series inductor generates the reactance zero at half-wave resonance. A parallel resonant LCR
networks creates the full-wave resonance with an additional LCR network required for each
additional overtone response to be represented.
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The second reference describes more complex equivalent antenna circuit models having better
broadband accuracy. This model, shown in Figure 1, has a shunt network for each half-wave type
resonance. Reactance poles representing full wave resonances arise from the parallel resonance of
adjacent shunt networks. The authors provide a table of normalized circuit element values, for a
thin, center fed dipole. Our target antenna, with % meter (total) length and a radius of 1 cm did not
quite qualify as thin. Consequently the fidelity of the equivalent circuit was poor. Target antenna
impedance in this comparison came from Method of Moments (MoM) computer calculation [3].
Clearly some form of circuit optimization is called for.

IIT. Genetic Optimization

‘While many optimization methods are applicable to the problem at hand, we decided to use a
genetic algorithm [4]. Because the network topology is not in doubt, only the component values
are optimized. A 10 bit binary coded gene represents the value of each of the components. Upper
and lower limits for each component are also set. Because all 16 component values are open to
optimization they form, when strung end to end, a single 160-bit chromosome representing the
antenna equivalent circuit.

The GA employed here permits a population size of 160 members. Equal population and
chromosome size in this example is only a coincidence. A single optimization cycle or generation
then considers 160 different candidate parameter strings or chromosomes. Standard circuit
analysis determines the circuit impedance-frequency function for each member of the population.
Comparison against a suitable objective function F identifies the best performing candidates of
each generation. The objective function is given by:

F=ZI[(R3NEC(_f;‘)—ReGA(f;,))2 +(Im(f,,)NEC —ImGA(f;,))Z]

where Nfis the number of frequency points, Re"™ (f,)and Im"* (£,) are the real and imaginary

parts of the antenna impedance computed by the NEC code. Re®(f,) and Im® (7, ) are the real and
imaginary components of the equivalent circuit model chosen by the GA.

After evaluating each of the design candidates in the previous population, the GA generates a new
population, by means of the processes of selection, crossover and mutation. The candidate
chromosomes with the best objective function scores are selected. Sections of these selected
chromosomes are exchanged at random among the selected sub-population in the crossover process.
Finally a small number of bits are altered or mutated at random and the optimization cycle repeated.
Selection, crossover, and mutation encourage selective evolution towards ideal performance defined
by the objective function. Candidate solutions that score well against the fitness criteria survive and
pass on their genes to the next generation. Poorly performing solutions die out. Figure 2 shows the
final result. Agreement between the impedance of the genetically optimized antenna equivalent
circuit and the antenna impedance computed by MoM for a center fed, 1/2 meter long, 1 cm radius
dipole is quite good, for both real and imaginary components across a bandwidth of about five
octaves. Final model component values are shown below:
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R11=3.92KQ R21= 536 KQ R31=424KQ R41= 124KQ

R12=.903 Q C21=.241pF C31=.183 pF C41=_.185pF
Ci1=121pF C22=.517pF C32=.100 pF C42 =367 pF
L11= 261nH 121 = 206 nH L31= 186 nH L41= 354 nH

One disadvantage of the lumped element model is the fact each additional overtone resonance
requires another circuit branch and the recalculation of all model elements. To make matters worse,
the sensitivity of the model component values seems to increase with the addition of overtone circuit
branches. The problem is fundamental; antennas have overtone responses, lumped circuit elements
do not.

IV. Lumped Component, Transmission Line Equivalent Model .
It then makes sense to consider an antenna equivalent circuit model built around components that,
like the target antenna, have periodic frequency domain impedance behavior. Figure 3 shows such
a model consisting of a pair of transmission line sections, one mismatched into a high impedance
load, the other mismatched into a low impedance load in series with a capacitor. This simple model
has repetitive reactance poles and zeros very similar to an actual dipole. The series capacitor
improves model accuracy at low frequencies. Both transmission lines are about one eighth
wavelength long at the first half wave resonance. While this proposed model has intrinsic frequency
periodicity, its higher order resonances fall at frequencies progressively removed from the resonant
frequencies of an actual antenna and the overall impedance accuracy is only fair.

Improved model fidelity comes with increased complexity of the lumped impedance loads at both
ends of the transmissions lines. Figure 4 shows an antenna equivalent circuit model with improved
impedance fidelity where negative capacitors are included in the load networks. Because negative
capacitors have positive reactance, they shift the full wave resonance frequencies downward and
because the magnitude of this reactance decreases with frequency, the fundamental resonance is
affected more strongly than the overtones thereby improving correspondence between circuit model
and actual antenna impedance poles. The transmission lines themselves are allowed to be lossy with
loss increasing with frequency. Increased flexibility improves model fidelity. As before, GA is
applied to select the parameter values needed for model accuracy. The transmission line segments
are modelled using the standard hyperbolic trigonometric relationship with a complex propagation
constanty. Figure 5 shows the optimized results. Impedance fidelity is quite good over a frequency
range exceeding five octaves. Final component values are given below:

R11=13.11Q Cl11=-16.25 pF R21 = 699.7Q C21= 2938 pF
RI2= 3600 Q Cl12= .4000 pF R2= 1100Q C22 = -.020 pF
R13= 500 Q Cl3= .1388 pF R23= 330.0Q C23 = -.030 pF
Cs =2.504 pF

LineL, Zo=2148Q, length=.1248M, a=.0744 + 3000 * [ Log,, (f/ 900 MHz) ]
LineL, Zo=1951Q, Ilength=.1304M, o =.0101+.0339 * [Log, (f/ 90 MHz)]

Where v = o + jB
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While GA optimization works well, some heuristic insight is also worthwhile. Here are a few
guidelines. Transmission line L1, the line having the low impedance far end load, dominates the odd
order full wave resonances. Altering L1 or its associated load networks changes the first and third
full wave resonances with little effect upon the second and fourth. The second line and associated
Iumped components effects chiefly the even order resonances. Series RC branches have increasing
effect at higher frequencies.

V. Conclusions

The authors have demonstrated the use of a genetic algorithm to improve the impedance fidelity of
two broadband antenna equivalent circuit models for a dipole. In the first example a GA optimizes
component values in a lumped LCR network. In the second example the authors present a novel
transmission line based antenna equivalent circuit model and again determine optimum model
parameters with the use of a genetic algorithm. The second equivalent circuit model exhibits quite
good impedance fidelity over a bandwidth exceeding five octaves including the fundamental through
the forth overtone response.
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Figure 3. Simplified transmission line equivalent circuit model.
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Figure 4. Antenna equivalent circuit model with improved impedance fidelity.
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Computing the Electromagnetic Field in a Perturbed
Configuration Using Modified Reduced-Order Models

R.F. Remis and P.M. van den Berg
Laboratory of Electromagnetic Research,
Centre for Technical Geoscience,

Delft University of Technology,

P.0. Boz 5031, 2600 GA Delft, The Netherlands

1. Introduction

We consider the problem of determining the transient electromagnetic field in lossless media.
Ore of the methods to solve these types of problems is the reduced-order modeling technique
(see, for example, Zhao and Cangellaris [5] and Remis and Van der Berg [2]). In this technique
a so-called reduced-order model is constructed that accurately describes the behavior of the elec-
tromagnetic field on a certain bounded interval in time. Now say that we have computed such a
model for some configuration. If the medium parameters differ locally from this particular con-
figuration, we have to start the computations all over again to obtain a new reduced-order model
that accurately describes the behavior of the electromagnetic field in this new configuration. In
this paper we show that this procedure can be avoided. The already computed reduced-order
model can be modified and there is no need to construct a completely new model. Computing
the modified reduced-order model is much more efficient than constructing a new model for the
new configuration. Numerical experiments illustrating the proposed modification will be given at
the conference. :

The paper is organized as follows. In Section 2 briefly review Maxwell’s equations and introduce
our notation. In Section 3 we construct the reduced-order models for the electromagnetic field
quantities if the medium under consideration is lossless. In Section 4 we show how these models
can be modified such that they describe the behavior of the electromagnetic field in a perturbed

configuration.
2. Basic equations

The transient electromagnetic field in an inhomogeneous, isotropic, and lossless medium is
governed by Maxwell’s equations

~V x H +e,E = —J°*, 1)

V x E+ uo,H = -K°. 2

In these equations, E is the electric field strength [V/m], H is the magnetic field strength [A/m],
J¢ is the external electric-current density [A/m?], and K* is the external magnetic-current density
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[V/m?]. The medium in which the electromagnetic waves propagate is characterized by the in
general position dependent permittivity € and permeability p.

Written out in full, equations (1) and (2) can be arranged in the form
D+ Md)F=¢, (3)
in which F = F(a,t) is the field vector given by
F =By, By, B3, Hy, Hy, Hy]”, (4)

and the source vector Q' = Q'(x,t) consists of the components of the external electric- and
magnetic-current sources as

Q= _[J;" J‘Ev J;,Kf, ;v ::]T' (5)
In what follows, we consider source vectors of the form
Q(z,t) = w(t)Q=), (6)

where w(t) is the source wavelet that vanishes for ¢ < 0 and Q@ = Q(=) is a time-independent
vector.

The time-independent medium matrix M is given by
M= dia'g(ey &8, by [y p’)v (7)

and, finally, the curl operators are contained in the spatial differentiation operator matrix D given
by

0 0 0 0 & -8
6 0 0 -8 0 &

1o 0o o & -& o

D=1 o -5 & 0 0 0 ®
% 0 - 0 0 0
-8 6 0 0 0 0

We now discretize Maxwell’s equations in space using a standard Yee-mesh (see, for example,
Yee [4] and Taflove [3]). At the boundary of the computational domain we set the tangential
components of the electric field strength to zero. After this discretization procedure we obtain
the algebraic matrix equation

(D+ MB)F(t) =w(t)Q. (©)

The matrices D and M are both square and of order n. Matrix D is real and skew-symmetric,
and matrix M is diagonal and positive definite. Notice that in two dimensions the order n is
proportional to 3N?, where N is the number of sample points in each Cartesian direction, while
in three dimensions n is proportional to 6N3.
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If we multiply equation (9) on the left by the inverse of matrix M we obtain
(A+I8)F(t) =w(t)M™'Q, (10)
where I is the identity matrix and
A=M7D. (11)
Solving equation (10) for the field vector gives
F(t) = w(t) * x(t) exp(-A) M Q, (12)

where x(t) is the Heaviside unit step function and the asterisk denotes convolution in time. The
problem with equation (12) is that it is not feasible to evaluate the matrix exponential function
by using a full decomposition of matrix A since the order of this matrix is too large. We therefore
construct approximations to the field vector. These approximations, called reduced-order models,
are the subject of the next section.

3. Reduced-order models

Before we discuss the construction of the reduced-order models, we introduce the M-inner
product of two vectors z and y from K® as

(2, 9)u =y Mz. (13)
Matrix A is skew-symmetric with respect to this inner product, that is,
(z, Ay)u = —(4z, Y)ur. (14)

Later on we make use of this symmetry property. Furthermore, the inner product of equation (13)
induces a norm given by ||z||»r = {z, Mz)/2.

The field vector given by equation (12) is approximated by the reduced-order model
Fir(t) = a1(t)vr + a2(t)ve + ... + ap(t)vn, (15)

where the expansion vectors v; form an orthonormal set with respect to the M-inner product,
and the coefficients a;(t) describe the time dependence of the reduced-order model. The reason
for calling the approximation of equation (15) a reduced-order model is that m, the order of the
model, is taken to be much smaller than n, the order of the original system.

Introducing the n-by-m matrix
Vm = ('Uly Vs 0oy ‘Um), (16)

and the m-by-1 vector
a(t) = [a:(t), ap(8), -, am ()], @1
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the reduced-order model can also be written as
Fru(t) = Vmal(t). (18)

The vectors v; are generated as follows. The first vector v, is taken to be a normalized version
of the source vector M~1Q. More precisely,

v =|M'Qll;} M~'Q. (19)
From equation (19) it follows that we can also write
M7Q = IM7'Qllar v = |M7'Qllas Vner, (20)

where e; is the first column of the m-by-m identity matrix I,,. The remaining vectors are con-
structed using the recursion

Bin1viyy = A+ Biviy fori=12,...m, (21)

with vy = 0. The coefficients §; > 0 are determined from the condition |ju;|jar = 1 for 4 > 1.

The above algorithm is known as the Lanczos algorithm for skew-symmetric matrices. It is not
difficult to see that after m steps of this algorithm we have the summarizing equation

AV = Vo T + ﬂm+1'”m+1e;rm (22)

where matrix T, is a tridiagonal, skew-symmetric m~by-m matrix given by

0 -5
Bz 0 =B
- fs -
T = L . (23)
* _/3m
B O
Moreover, we also have
VIMVy = Iy, (24)
and
VIMug,y =0. (25)

The right-hand side of equation (25) is the m-by-1 zero vector. The proof of the above relations
is based on the fact that matrix A is skew-symmetric with respect to the M-inner product and
runs along similar lines as the proof given by Golub and Van Loan [1] for a symmetric matrix 4.

We substitute the reduced-order model of equation (18) in equation (10). We obtain
(AVin + VmBr)a(t) = w(t)M Q. (26)
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Using equations (20) and (22) this can be rewritten as
(ViuTn + B ¥ma€r, + VmBr)a(t) = w(t)| M7 Qllas Viner. (27)

If we multiply equation (27) on the left by V.ZM and use the orthogonality relations (24) and (25)
we end up with

(T + Inde)a(t) = w()|| M Qllxr ex. (28)
Solving equation (28) for the vector a(t) we obtain
a(t) = w(t) * X() 1M Qllxr exp(~Timt)es. (29)

Substituting this result in equation (18), we arrive at our final expression for the reduced-order
model

Fin(t) = w(t) * x(E)1 M Qlaz Vim exp(—Tmt)er. (30)

Observe that the problem of evaluating the exponent of a matrix of large order has been replaced
by the problem of evaluating the exponent of a tridiagonal, skew-symmetric matrix of a much
smaller order.

4. Modified reduced-order models

In this section we investigate if a modification of the reduced-order model constructed in the
previous section can be used as an approximation to the field vector F = F(t) that satisfies the
equation

D+ (M + AM)E,)F(t) = w(®)Q, (31)
where AM is a perturbation of matrix M. Note that matrix AM is taken to be a diagonal matrix.
We multiply equation (31) on the left by the inverse of matrix M. This gives
4+ (I + M AM)BIF() = w(t)MQ, (32)
where matrix A is given by equation (11). As an approximation to the field vector F' = F(t) we
take the reduced-order model

Fin(t) = by ()1 + ba(£)v2 + ... + bn(t)Vrm

= Vmb(t)’ (33)

where the expansion vectors v; are generated by the Lanczos algorithm described in the pre-
vious section, and the m-by-1 vector b = b(t) is partitioned in the same way as vector ¢ (see
equation (17)). Substitution of this reduced-order model in equation (32) gives

[AVig + (Vi + MTYAMV,,)8,Jb(t) = w() M1 Q, (34)
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and with the help of equations (20) and (22) this can be written as
VT + Brsr¥miaes, + (Vi + MTAMV,,)8,]6(8) = w(®) | M2 Q|| ar Vines. (35)

If we multiply this equation on the left by V2 M and use the orthogonality relations (24) and (25),
we obtain

[T + (In + Vi AMVin)Bb(E) = w(e)| M Qllac €1 (36)
Introducing the scaling matrix S, as
Sm = (I;m + VI AMV,,)™? (37)
we can rewrite equation (36) as
(SmTm + In:)b(2) = w(®)|1M QI Smer. (38)

Note that the m~by-m matrix S,, is comparatively small. To compute this matrix, we only need
to store those elements of the Lanczos vectors that correspond to the points where AM differs
from zero. If we solve equation (38) for the vector b = b(t) we obtain

b(t) = w(t) * x()|M 7 Qllar exp(=SmTint) Smer. (39)
Substituting this result in equation (33), we obtain the modified reduced order-model
En(t) = w(t) * x(O)| M Q|| e Vi €xp(—SmTnt) Smer. (40)

The approach outlined above is much more efficient than the standard approach as long as the
scaling matrix S, and the matrix exponent exp(—S,Tt) can be effectively computed.
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SOME FURTHER RESULTS FROM FARS:
FAR-FIELD ANALYSIS OF RADIATION SOURCES

Edmund K. Miller
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0.0 ABSTRACT

Some further results from a new approach called FARS (Far-field Analysis of Radiation Sources)
are summarized here. FARS was developed in an attempt to determine how much power is con-
tributed to the far field from a PEC object on a per-unit-length or per-unit-area basis. Examples
considered here include straight, curved, and bent wires, with the FARS results appearingto be
physically consistent with other expectations about radiation.

1.0 INTRODUCTION
A new method intended to address the question:

What is the quantitative contribution to the radiated power from the surface of a
PEC object on a per unit length (wires) or per unit area (3D surfaces) basis?

was recently described [Miller (1999a), (1999b)]. Some further results obtained from FARS are
presented here. For the sake of shortening the discussion, the FARS results will be discussed as
though they do actually answer the question above, while acknowledgingthat so far this is only
speculation. At best, the results previously presented, as well as those that follow here, can be
regarded as plausibility demonstrations, for now lacking any rigorous proof of their physical mean-
ing. However, since the FARS results do seem consistent with other observations, and do appear
to offer further useful insight regarding radiation, it seems worthwhile to continue the discussion.

2. SOME BACKGROUND

When posed o electromagneticists, quite a wide a variety of responses to the radiation question
above is obtained, but with most falling into two broad categories. Oneis that this is not really a
sensible questionto ask, or evenif so, it’s onethat probably can’t be answered. The other is that
since solving electromagnetic problems of interest hasn’t seemedto be hindered by not considering
this question, what's the point of worrying about it? The first response is essentially a non-
answer. If EMradiation can be quantitatively evaluated interms of radiation patterns and radar
cross sections, what can be wrong with asking where the radiated power originates? The geomet-
rical theory of diffraction provides just one example where the contributions of edges, discontinu-
ities and surface curvature to radiation are usedexplicitly and quantitatively in formulating a solu-
tion technique. Physicists who design particle accelerators and other devices involving various
charge configurations must deal with this issue routinely. As for the latter response, it's one that
seems to display a singular lack of intellectual curiosity. While the response may be superficially
true, not having an answer to the radiation question seemsto leave a big hole in our claimed under-
standing of electromagnetic physics.

3. THE FARS APPROACH
The approach described here, called FARS, is based on the bistatic far fields at a single fre-
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quency, although a time-domain version would seem to be similarly feasible. Instead of imaging
using the bistatic far fields, as describedby Shaeffer et al. (1997), however, FARS seeks instead
to determine the contribution made to the total power flow at a given far field observation point by
each incremental source, s;, on the PEC boundary. Wefirst define the incremental FARS power,

Pi rARs(8,9) for segment s; in observation direction 6,¢ as
2 *
@) =limr— o ' L Rele 0.0)E ©.0)])
2n (1)

where e,(0,() is the electric field due to source i and 1) is the mediumimpedance. The total elec-
tric field for N incremental sources, denoted by E(0,0) is then given as

N
E(0.0)= ) (6,0).
! (@)
The total power contributed by each s;, P; papg, comes from integrating the incremental result

p; FaRs(6,0) over all 8, to obtain
T 27

P Fars™ _[) J; P, pags(0:9)sinBd6de

P i,FARS

(3
yielding a quantity denoted in the following as the “linear power density” or LPD.
Finally, the total radiated power is obtained from integrating the LPDs over all sources, or
N
PFARS = zpi,FARS'
1 (4)

Note that the FARS computation differs from a conventional evaluation of the total far-field
power only in defining the intermediate quantity P; gags, the individual contribution of eachincre-

mental source, to the total radiated or scattered power. Although there is no constraint that each
P; Fars bepositive, the physical significance of negative vaiues may be unclear at this point and
will be discussed elsewhere [Miller (1999a), (1999b)].

Because it provides a basis for comparisonwith FARS for the SCF, the induced EMF method
(IEMF) for computation of boundary power is also considered. The differential IEMF power,
dP,emr for a current distribution I{(x) whose tangential near-electric field, E(x), is given by

*
dPIEMF(x) =0.5Re[E(x)] (x)dx].  (59)
The per-segment IEMF power can then be approximated as
P, mmp = 0-SRe[EAL] (5b)
where E; is the tangential electric field at the center of segmenti whose length is A; and on which
the current is I.. The total [EMF power is then
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N

P = ZPL]ZEMF
1 (6)
where, for a PEC object it is required that
PFARS = PIEMF' (7

Note that for boundary-value problems P; ey is non zero only on segments that are excited by
some applied field, whereas for a current such as the SCF, it will generally be non zero every-
where. Castillo (1997) describeda somewhat-similar approach, wherein a total far-field power
value is computed using the incremental fields of all but segmenti, with i sequentially scanned over
the entire object. Since the fields are additive, but the incremental powers are not, the result
ob}gined only approximates the total radiated power.
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Figure 1. FARS and IEMF LPDs along a 10-wavelength, 1-A sinusoidal-current filament. The tan-

gential electric fields for the SCF were computed at a radius of 108 wavelengths, although vary-
ing this parameter over several orders of magnitude made essentially no significant difference,
numerically. Spatial integrtion! of these results yields Prags = 205.4 w and Pjgye = 202.3 w,
agreeing essentially to within the integration uncertainty and the difference between the FARS
and [EMF LPDs.

4.0 FARS RESULTS FOR THE SINUSOIDAL- AND UNIFORM-CURRENT FILAMENTS

Some results using FARS and the IEMF method have beendevelopedfor the SCF and the uniform-
current filament (UCF). Somewhat unexpectedly, as can be seenin Fig. 1, FARS LPDs for the
SCF are essentially identical to those obtained earlier [Miller (1996)] when usingthe IEMF method
to compute the “input” power for a SCF. Note, however, that the only connection between the
two procedures is that both exploit knowledge of the current distribution, but FARS uses the far
field while [EMF uses the near field. It's not clear why P; capg shouldequal P; gy for the SCF,
besideswhich, as mentioned above, this agreement cannot be expected for general boundary-value
problems involved PEC objects. Similar results for a UCF are presented in Fig. 2. The FARS
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LPDs are seento be nearly uniform along the current filament, while those from the IEMF method
oscillate slightly around the FARS values with position, being most variable near the ends.

5.0 FARS RESULTS FOR WIRE OBJECTS

Whenapplied to an actual wire dipoleof the same length and having a 1-A maximum current mag-
nitude, the FARS LPDs resemble those of the SCF, but are slightly smaller with increasing diis-
tance from the feedpoint. A typical result is presented in Fig. 3 where a sampling density of
20/wavelength is used. Comesponding results for a planewave at 10 degfrom axial incidence on
the right end of a 10-wavelength long wire are shown in Fig. 4. While the IEMF LPDs grow mono-
tonically towards the left, or far, end of the wire, the FARS results are largest at the ends, with
the far end value having a maximum more than twice that of the near end. This result seems
consistent with a geometrical-theory-of-diffraction model for sucha problem. with its predominant
end contributions.
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Figure 2. FARS and IEMF LPDs along a 10-wavelength, 1-A uniform-current filament. The tan-
gential electric fields for the UCF were computed at a radius of 103 wavelengths. A spatial inte-
gral of the LPDs yields the results indicated in the figure, again agreeing essentially to within the

integration uncertainty and the difference between the FARS and IEMF.
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Continuingwith 10-wavelength wires, FARS results are presented in Fig. 5 for a straight, center-
fed dipole and for circular- and square-loop antennas, all having 1-A maximum current magnitude.
For clarity, the LPDs are shown for only half of an object, with the feedpoint beingat the right for
each. For the same maximum current, the circular loop radiates about twice the power, showing
the increased radiation that occurs from a curved wire compared with one that is straight as a
result of charge acceleration around the curve. The square loop also radiates more power than
the straight wire, with a maxima occurring at each comer, again demonstrating effect of acceler-
ated charge, in this case moving around a right-angle corner.

Results are presented in Fig. 6 for the FARS LPDs on one arm of a two-arm, three-turn conical-
spiral antenna at two different frequencies. A region of largest LPDs occurs in the area where
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the circumference of the spiral is about one wavelength, which is known to the be the active region.
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Figure 3. FARS LPDs for a 10-wavelength SCF and NEC dipole, each having a 1-A maximum
current magnitude. Their respective radiated powers are 205.4 and 170.7 w.
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Figure 4. FARS and IEMF LPDs for a 10-wavelength wire iliuminated by a 1 V/m plane at 10
deg from axial incidence on the right.

The discussion thus far has assumedthat the FARS LPDs do indeed quantitatively answer the

question about how much power is radiated per unit length from wire antennas and scatterers
modeledwith NEC. Without an answer to this question independentof FARS, the truth of this
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basic assumption remains speculative.
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Figure 5. FARS LPDs on half of a 10-wavelength straight dipole, and circular and square loops
having a 1-A maximum current magnitude with their feedpoints located at the right of the plot.

The circular loop radiates most efficiently while the square foop has maxima at the comer bends.
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Figure 6. FARS LPDs on one arm of a two-arm conical-spiral antenna at two different frequen-
cies. The 1-V source is at the left and segment length increases with distance, there being a con-
stant number of segments per turn. The total power radiated over any interval is obtained by
summing the LPDs.
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Suppose, however, that FARS were to be applied to NEC results for a collection of antennas,
small enough and far enoughapart to be non-interacting. Then the integrated FARS LPDs for
each antenna should be expected to match the NEC-computedinput power. To test this assump-
tion, a colfinear array of nine 0.35 wavelength dipoles nonuniformly distributed over a 10-
wavelength aperture was modeled usingNEC. Each dipolewas excited by a different voltage to
vary their radiated powers, and FARS was applied to the far field produced by the array. The
input power as provided by NEC is plotted together with the integrated FARS LPDs for each dipole
as a function of dipole numberin the array in Fig. 7. There it can be seen that the NEC and
FARS powers agree to within a per cent. This agreement shows that FARS can determine the
power radiated per antenna elementin such an array, but does not prove that it yields the correct
spatial distribution of power along each anfenna. Thus, it represents a necessary, thoughnot suf-
ficient, condition to demonstrate that FARS can answer the question posed in the Introduction.
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Figure 7. Comparison of the NEC-computed input power and the integrated FARS LPDs for the
elements of a collinear array of nine nonuniformly spaced 0.35-wavelength dipoles. The two
results agree to within one per cent, serving as a necessary, but not sufficient, test that FARS
LPDs do provide a quantitative measure of the power radiated per unit length for wire antennas.

As a last example, the result of applying FARS to a 12-element log-pericdic dipole array is shown
in Fig. 8, where the normalized values for the current and LPDs are plotted for each elementas
well as the NEC-computed per-element input power. It can be clearly seenthat the LPDs are not
proportional to the element currents. Furthermore, some of the input powers and LPDs are nega-
tive on a given element, but this does not occur in all cases. The negative input powers for this
kind of problemhave been interpreted to indicate array elements that are supplying power to the
connecting transmission fine by absorbingit from the near fields. A comparable appears applicable
to the negative LPD values.

6. CONCLUDING REMARKS

A method called FARS (Far-field Analysis of Radiation Sources) has been outlined here and its
application demonstrated using a variety of current sources and wire geometries. The develop-
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ment of FARS was motivated in an attempt to answer the question: What is the quantitative
contribution to the radiated power from the surface of a PEC object on a per unit length
(wires) or per unit area (3D surfaces) basis? The FARS results presented here and else-
where seem to be physically plausible and consistent with other perspectives of radiation physics.
However, a rigorous proof that FARS answers the question posedis not yet available. Never-the-
less, the fact that the results obtained do appear capable of providing quantitative insight concem-
ingwhere radiation originates from a PEC object suggests FARS further extension, e.g., to three-
dimension conducting bodies and to time-domain solutions.
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Figure 8. The FARS LPDs, current magnitudes and NEC-computed input power for a 12-element
log-periodic dipole array, with the shortest dipole on the left. For clarity, these various quantities
are normalized relative to their respective maximum values.
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Abstract

This paper introduces a new approach for the development of closed-form spatial Green’s
functions for electrostatic problems involving layered dielectrics. Such Green’s functions are of
special interest to the extraction of capacitance matrices for multi-layer electronic interconnection
structures at the chip, package and printed-circuit-board level. Contrary to previous
methodologies, the proposed method does not require the development of the Green’s function in
closed form in the spectral domain. In addition to the familiar case of a multi-layer dielectric, the
new methodology is also suitable for the generation of Green’s functions in planar
inhomogeneous dielectrics with electric permittivity varying in the vertical direction.

1. Introduction

The availability of closed-form Green’s functions for the solution of electrostatic problems in
layered dielectrics is of particular interest to the development of computer-aided design tools for
high-speed electronic interconnections at the chip, package and board level. For example, two-
dimensional capacitance matrix extraction is needed for the development of multi-conductor
transmission line models for coupled interconnections. Three-dimensional capacitance matrices
are required for the prediction of interconnect capacitive coupling on chip and the subsequent
quantification of delay. As the trend continues toward the implementation of more exotic multi-
layer material stacking for enhancing or decreasing capacitive coupling depending on the
application, use of closed-form Green's functions in integral equation-based capacitance
extraction is essential for reducing computational complexity and thus increasing solution
efficiency.

Closed-form expressions for the electrostatic Green’s function in layered dielectrics are available
and have been based on the approximation of the spectral-domain Green’s function using
exponential functions [1-2]. In this paper, a new methodology is proposed for the development of
closed-form expressions for the electrostatic Green’s function. Instead of deriving the analytic
form for the spectral-domain Green’s function, the proposed methodology begins with the
discrete approximation of the Fourier-Bessel transform of the goveming Green’s function
equation, and proceeds with the development of a special form of the solution of the resulting
discrete problem that enables the construction of the closed-form Green’s function in the space
domain through a direct inverse Fourier-Bessel transform.
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1. The Spectral-Domain Green’s Function

Shown in Fig.1 is the layered dielectric medium of interest. It is assumed that the electric
permittivity of the medium varies in the vertical direction only, &(x,5.2) = &(2), in the region
between the conducting plane at z = 0 and the planar interface at z = d. The medium for z > d is
assumed homogeneous with electric permittivity &;. Such a Iayered medium case is relevant to the
microstrip class of interconnections.

Figure 1. Geometry of a layered dielectric medium above a conducting plate.
Let z = z’ be the source plane. With the coordinate system selected such that the x and y

coordinates of the source point are zero, the goveming Green’s function equation assumes the
following form in cylindrical coordinates,

V-(e(z)Vg(p,z;z'»=—f2;—‘:36(z-z7 0

subject to well-known boundary conditions at the conducting plate, the planar material interface,
and at infinity. Using the Fourier-Bessel transform pair,

G(A,z;2) = [g(p,z:2) ], (Ap)pdp @)
g(p,z;2) =Z:G(/1,z;zwo(/1p)w (2b)

the spectral-domain form of (1) is obtained as follows,
d d 2 r ”
o FFIFE(z) = G(l,z;z')w— 2me(2D)A G(A,z;2") = -6(z—2') 3)

Next, a discrete approximation to (3) will be developed. For this purpose, the finite difference
method is employed. The discretization process is rather straightforward and well known and will
not be detailed here. Perhaps the only issue that requires some discussion is the handling of the
semi-infinite homogeneous medium for z > d.

For our purposes, a coordinate transformation is used to map the semi-infinite region d<z<ee to 2
finite one of length D. More specifically, the algebraic mapping proposed in 3] is used,
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z—d
z=D———— @
(z-d)+L
where the scale factor L is a non-zero constant used to control the variation of z, versus z. The
mapping is simple and results in simple expressions for the first and second derivatives:

de%Eﬁ-z_:Q 519_2 _z_.QJ’f_Ci )
& ML DN &2 PF DN &,

As suggested in [3], standard central differencing can be used for the discretization of the
resulting transformed equation. Finally, since the plane z, = D corresponds to the point at infinity,
the boundary condition G=0 is imposed on that plane.

The finite-difference approximation of (3) results in the following matrix equation,
(A+A’B)g=-Fu 6)

where the matrix A is a tri-diagonal matrix of dimension N equal to the number of interior nodes
of the finite-difference grid, B is a diagonal matrix with elements values dependent on the
permittivity value at the nodes, while the vector g contains the values G, of the spectral-domain
Green’s function at the N nodes. This discrete form of the spectral-domain equation (3) is written
in such a way that it accounts for all the possible planes in the domain where source points are
placed. To elaborate, let O be the number of z planes at which source points (electric charges) are
present. The development of a discrete approximation of the integral equation formulation of the
problem of finding the electrostatic potential for a set of conductors requires the calculation of the
spectral-domain Green’s function at the O source planes due fo a point charge at each source
plane. In other words, an @ X Q matrix, G, of spectral-domain Green’s functions is required. The
vector u in (6) is of length O, identifying the Q source planes. The matrix F is an N x @, with
only one non-zero element per column. More specifically, for the gth source-plane a non-zero
element of value 1 exists in the gth column of the matrix F, at the row corresponding to the node
number in the finite-difference grid assigned to the specific source plane. Multiplying both sides
of (6) with the inverse of B and solving for g yields,

g=-(B~A+ DB 'Fu Q)

where I is the identity matrix. Finally, the matrix G can be obtained from the last equation by
multiplying on the left with the transpose of F,

G=-F'B'A+A1)"'B'F ®
The resulting equation for G may be cast in a simpler form following the eigen-decomposition of

the matrix B"'A = TST". Substitution in (8) yields,
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G=PS+A2D)7R ©)

where P=F T and R =~T" B" F. Since the matrix S is diagonal, it follows immediately from
this last equation that each element of the matrix G is of the form,

U_Z

2
oS, ,,+/'L

10

In this last equation, the constants s, are dependent only on the properties of the layered medium
and the grid size. The coefficients P;, and R,; depend on both the layered medium properties and
the position of the source planes. This step completes the development of the spectral Green’s
function matrix.

2. The Green’s Function in the Space Domain

The final step in the construction of the Green’s function in the space domain involves the
calculation of the inverse Fourier-Bessel transform of (10). The relevant integral has the form

I= 4 — 7 o hPYAdA an

where k is a constant and a represents one of the eigenvalues of the matrix BA. Using well-
known properties of Bessel and Hankel functions, the above integral may be cast in the form

_—L Hm (Ap)AdA 12)

It can be shown that a is always positive real; hence, the poles of the integrand in the above
equation are imaginary. Considering the integral on the complex A plane and recognizing that the
integrand goes to zero for Im{A}<0, the residue theorem can be used for its calculation. The
closed contour used for the integration includes the real axis and a circular arc of radius R — <o in
the lower half of the complex 4 plane. This yields

I%tf 21— J—d—j‘\/_lH(z) —J\/—P|KJ 7 A NPT (13)

where K, is the modified Bessel function of the second kind and zero order. In view of (13), the
inverse Fourier-Bessel transform of (10) is

N .
2,(0:2:0,2,) = Y. B R, K, (s, pi (14)
n=1

This concludes the development of the closed-form expression for the spatial Green’s function in
layered media.
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3. Discussion and Validation

From (14) it is seen that the number of terms in the closed-form expression of the spatial Green’s
function is equal to the number of grid points in the finite difference grid. However, the number
of terms can be reduced using model order reduction methods. Such reduction makes sense since
several of the eigenvalues of the discrete system of (10) correspond to spectral lengths that are
poorly resolved by the finite difference grid; hence, their contribution to the solution is
insignificant. For our purposes, the so-called PRIMA algorithm [4] is used for the reduction of
the order of the discrete system of (6). Our numerical experiments indicate that very accurate
results are obtained using reduced models of order one fourth that of the order of the original
discrete system.

In order to demonstrate the validity of the proposed method, the Green’s function for a
microstrip-type structure is calculated. The thickness of the dielectric substrate of relative
dielectric constant 9 is taken to be 2 mm. The superstrate is free space. Two point sources are
used, one at the dielectric interface (z = 2 mm), and the second inside the substrate at z = 1 mm.
The algebraic mapping is implemented using D=1 mm and L = 1 mm. A 1 mm buffer layer is
used between the dielectric interface and the plane at which the mapping begins.
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Figure 2. Calculated spatial Green’s function for a microstrip structure. gll is the spatial
Green’s function versus radial distance on the diclectric interface where the point source is
located. g22 is the spatial Green’s function versus radial distance on the plane z = 1 mm inside
the substrate. Solid line: proposed closed-form expression; dash-dot line: analytic solution.

Closed-form expressions are easily derived for the Green’s function for this simple microstrip

structure, in terms of infinite series of image charges. For example, the potential due to a point
source at point (x,y,2) in the superstrate at a point (X, ¥,Z) inside the substrate is given by
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1 b 1
g(x, 3,5, X,Y,Z) = ——— Y (-)*E* -
27(e, +&) Zo IAx? + &y +(Z -z 2kd)?

1
2 2 2 (l 5)
JAx + A +(Z+z+2kd) ﬂ

where AX=X-z, AY=Y-y, AZ=Z-z, E = (¢,~&) / (&+&), and d is the substrate thickness. Using this
expression, analytic results for the Green’s function at the dielectric interface and at plane z = 1
mm due to the source point at the interface are calculated and plotted versus p in Fig. 2. Also
plotted in the same figure are the results obtained using the closed-form expressions presented in
this paper. Excellent agreement is observed. Even though seventy-nine finite-difference grid
points were involved in the discrete approximation, model order reduction was used to reduce the
numbser of terms in the closed-form expression to twenty.

4. Concluding Remarks

In conclusion, a new approach has been proposed for the direct development of closed-form
spatial Green’s functions for electrostatic problems in layered dielectrics. Even though the
mathematical development in this paper was for the three-dimensional case, the proposed
methodology is directly applicable to two-dimensional problems. The only difference is that for
the case of a two-dimensional geometry a one-dimensional Fourier transform pair is used in place
of the Fourier-Bessel transform pair.

For the three-dimensional case, the resulting closed-form expression is in terms of a finite sum of
modified Bessel functions of the second type and zero order. Once the source planes and
observation planes have been selected, all required Green’s functions are generated
simultaneously. The z-plane information is captured by the coefficients in the finite sums, while
the radial dependence is present in the argument of the modified Bessel functions. More
specifically, the argument of the modified Bessel functions is of the form (s,)*?p, where the
constants s, depend on the properties of the layered medium.

Finally, we mention that the proposed approach can be extended to the case of frequency-domain
electromagnetic problems in layered media.
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Abstract

The analysis of structures which contain narrow microstrips or PCB traces using the FDTD method and without
resorting to a very fine mesh, has not yet been definitively solved despite its having been an area of intensive
research for many years. The key to successful treatment of such structures is accounting for the field distribution
in the vicinity of edges and wires without destroying the energy and divergence conserving properties of the FDTD
mesh, In this paper the problem is dealt with by adjusting the permittivity and permeability assigned to the field
nodes adjacent to the edges. These adjustments rely on a small pre-calculated look-up table and require only 2
negligibly small amount of extra calculation at the start of the FDTD analysis. The accuracy and robustness of the
method is demonstrated for a variety of microstrip lines.

Introduction

The treatraent of small geometrical detail, such as thin wires, strips or PCB traces, in the Finite Difference Time
Domian (FDTD) method has been the subject of research for a number of years. Thin wires, embedded in an FDTD
mesh were treated in 1981 by Holland [1] using an “in-cell inductance” concept to derive modified update
equations for the magnetic, (H), field nodes which surround the wire. A simpler update formula, valid for the case
where the wire in placed along a line of tangential E nodes, has been derived by applying the static field solution
for the wire to the contour integral interpretation of the FDTD scheme. These formulations have been used and
further investigated in a number of other publications including [2]{3][4]{5][6].

The conceptually similar problem of narrow microstrips has also received a considerable amount of attention in
the literature. This has involved introducing static solutions into the full 3D algorithm eg. [7]{8])[9] and into planar
models eg. [10]. Of the full-wave approaches, some early attempts at solving the problem, while achieving good
levels of efficiency and accuracy, were prone to late time instability. Later contributions successfully overcame the
stability problem by ensuring reciprocal interaction between nodes, but local charge conservation was not
guaranteed and this limited the range of applications for the method.

In [11] a simple, effective and robust technique, without these lirnitations, was investigated in which the
complicated field distribution around edges and wires is accounted for by modifying the permittivity and
permeability assigned to the adjacent field nodes. In this contribution, this method is developed with more accurate
and simpler empirical formulae for calculating the modified material parameters from the inductance and
capacitance of the line to be modelled. With the use of just a small pre-calculated look-up table, accurate results
can be obtained for these structures without the drawbacks of either late time instability or lack of local charge
conservation. Moreover, the technique can be applied to many types of transmission line structure, such as
microstrip with finite thickness, by using the appropriate empirical values.

Conductors of small cross-section in the FDTD mesh

Consider the case of a wire above a ground plane. This structure can be viewed as a transmission line which has
a capacitance, C, and inductance, L, per unit length which depends on the wire radius as follows [12]:
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where a is the radius of the wire and h is the height of the wire above the ground plane.

Similar equations exist, [13], from which the inductance and capacitance of a microstrip line or a PCB track can
be calculated as a fimction of the geometry of the structure. Any transmission line which has a metal cross-section
smaller than the FDTD cell size can be treated using the method described here as long as the quasi-static
transmission line parameters are available.

In the standard FDTD mesh, the discretised wire will be predicted to have some value of L and C which is different
from the true value, The parameters which can be adjusted in order to remedy this discrepancy are the permittivity
associated with the transverse E field nodes and the permeability associated with the transverse H field nodes. if
the wire is arientated along the z axis, the eight nodes which are at distances of 8x/2 and 8y/2 from the conductor
are considered. Because these are closest to the conductor, the local nature of the conductor’s influence is
emphasised. In addition, since only the nodes adjacent to that conductor are modified, any spurious movement of
charge, due to the introduced inhomogeneity will only happen locally to the conductor where undesirable effects
are avoided. Physically, it can be seen that altering the permeability of these H field nodes is equivalent to
surrounding the line with magnetic material, hence altering the inductance. Similarly altering the permittivity of
the E field nodes will alter the capacitance but, due to the different field distributions for E and H fields, the extent
to which the inductance and capacitance will be affected is different.

Properties of the FDTD mesh

The dependence of the transmission line parameters on the adjustments to the material parameters is complicated
and depends on two geometrical parameters, (i) the number of cells between the ground plane and the strip or wire,
and (ii) h/dy, and the aspect ratio of the mesh, 8x/8y. The size of the cell in the longitudinal direction does not
affect these resvlts. This dependence can, however, be approximated by simple functions with empirically derived
parametess. For instance, for metalisation which is smaller than the cell size the following approximations can be
made.

@
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where L and C are the required inductance and capacitance for the transmission line under consideration, M, and
M, are the factors by which the permittivity and permeability of the neighbouring E and H field nodes respectively
must be multiplied. a,b,p,q.r are parameters which are derived by curve fitting to the results obtained from many
FDTD runs.

It is noted that M, depends only on L, and M, depends only on C as would be expected. Moreover, in the case of
microstrip, the value of the pararseters is independent of the permittivity of the substrate. Although the capacitance
of the line changes when the permittivity of the substrate changes, it is found that M, and M, do not. This is in
accord with the principle that the asymptotic behaviour of fields around an edge are independent of the substrate.
In general, it would be necessary to store a set of ﬁrﬁ goeﬁiciems for each combination of h/dy and 6x/6y of




interest. In practice, h/y will always be an integer, usually no greater than 4, and the results for an arbitrary aspect
ratio can be interpolated from a small set of pre-calculated results. Thus the totat size of the look-up table is only
about 200 real numbers.

These numbers have been calculated by performing a number of runs using the generic microstrip structure and
FDTD arrangement described in [11].

Approximation to the transmission line inductance

An example of the calculated inductance per unit length for a thin strip whose neighbouring H field nodes have
been modified, is shown in (2). It can be seen that the relationship between L and p is approximately linear.
Moreover the slope of the line is a function purely of the aspect ratio of the cell. At very small values of y, the
relationship is less linear and the slope becomes higher. The values of a and b in equation (2) are calculated by
finding the best straight line fit to each set of data.
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Figure 1 - The calculated inductance per unit length of a microstrip versus permeability of the adjacent H
nodes

Approximation to the transmission line capacitance

An example of the calculated capacitance per unit length for a thin strip whose neighbouring E field nodes have
been modified is shown in Figure 1. It can be seen that the capacitance value tends to an asymptotic limit as the
permittivity gets high, These curves closely follow the form of equation (2). The parameters p,q and r are found
by curve fitting to the data obtained from many FDTDyiy.
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Figure 2 - The calculated capacitance per unit length of a microstrip versus permittivity of the adjacent E
nodes

Analysis of wire structures using the empirical resulis

Using the results shown in the previous section in conjunction with equation (1), it is possible to calculate the
empirical correction factors by which correct answers can be obtained for any wire radius and mesh size. The final
accuracy of the computed results depend upon the accuracy of the curve fitted formulae and, of course, on the
numerical accuracy of the original FDTD runs. Once the formulae have been generated, however, their use
involves little or no computational overhead. In Figure 3 results calculated using the curve fitted parameters are
compared to the analytical results for the case of dx = dy = 0.3175mm and with the wire at a height of 0.635mm
above the ground plane. It can be seen that the empirical formulae allow good accuracy to be obtained for both the
propagation velocity and the characteristic impedance of the lines. The error is seen to be larger when the radius
of the wire is small. It has been found that the effective permittivity, was very sensitive to errors in the node
parameters. It is believed that a more painstaking derivation of the empirical formulae would allow this error to
be reduced significantly.
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Analysis of microstrip lines using the empirical results

The same formulae can be used for the representation of microstrip lines. The only difference is that in this case
the required capacitance and inductance are be calculated using the corresponding quasi-static formulae:

Unlike the case of the wire, the edge still needs special treatment even if the width of the microstrip is large.
Formulae have been calculated for the cases 8x < w < 28x and 28x < w < 38x. For strips wider than 36x, the latter
formula can be used without significant loss in accuracy since the interaction between the two edges is then small.

In Figure 4 results for the characteristic impedance of microstrip, calculated using the empirical formulae, are
compared to those calculated using the equation [13] for a variety of strip widths and mesh sizes. Again it can be
seen that good accuracy is obtained. It is emphasised that, although the predicted capacitance of the transmission
line is a function of the permittivity of the substrate, the required adjustment to the FDTD material parameters is
not. This would be expected since the edge effects are dominated by the singular behaviour of the field which is
unaffected by the presence of the dielectric. Thus the same empirical formula can be used for any substrate.

In Figure § and Figure 6, the calculated effective permitivity is compared to the results from [13]. It can be seen

that, while not perfect, the error is much reduced from that which would have been obtained using the basic FDTD
nethod, The latter would have predicted the same effective permittivity regardless of strip width.
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Conclusions

In this contribution, a procedure has been described whereby simple analytical formulae can be derived and
incorporated in the FDTD algorithm which allow the accurate treatment of wires and microstrip structures without
cither having to resort to a very fine mesh or to risk introducing spurious divergence or late time instability. The
resulting scheme is simple, versatile, robust and readily capable of extension to more complex incidences of
electrically small structures,
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Abstract — A new method for the simulation of arbitrary signals on lossy multiconductor trans-
mission lines is presented. Coupling is considered along the lines as well as at resistive terminal
networks. The algorithm works solely in the time-domain without any transforms to the frequency
domain and is based on the assumption of quasi-TEM wave propagation. As first step, the time-
domain MTL equations are decoupled using proper similarity transforms. An analytical solution
for the wave propagation on the decoupled modal lines is derived using riemann’s method, so the
solutions for all modal lines can be obtained simultaneously. These solutions contain yet unknown
functions which are determined by solving a set of coupled integral equations modeling the lines’
resistive terminal networks. Results are compared with those obtained using alternative methods
and the effects of certain simplifications in common transmission line models are investigated.

1 Introduction

During the design process of modern high-speed electronic circuits, it is not sufficient to look at systems from a pure
network-point-of-view. In addition, many electromagnetic phenomena have to be taken into account — and certainly
one of the most important among them is the analysis of quasi-TEM-wave propagation on coupled multiconductor
transmission lines (MTLs). This task has been dealt with mainly in the frequency domain — frequency domain
techniques, however, are not very effective when applied to the simulation of very broad-band excitations (e.g. a
single pulse). Furthermore, time-domain techniques often provide better insight into physical phenomena such as
crosstalk and dispersion. From a time-domain point-of-view, these phenomena can be directly understood and
described without falling back upon concepts like frequency-dependent phase velocities.

For these reasons, we developed and implemented an algorithm for the analysis of lossy coupled MTLs terminat-
ed by resistive networks. This algorithm works solely in the time-domain. As it is based on a modal decomposition
of the coupled multiconductor transmission line equations, we will start with a review of the cases in which the
decoupling of these equations is possible in the time-domain. In particular we will demonstrate under which pre-
requisites the MTL-equations can be decoupled without further simplifications and in which cases some simplifying
assumptions have to be made.

After decoupling has succeeded, the propagation of the single modes can be described independent from each
other. In {1} and [2], fundamental time-domain-solutions for quasi-TEM wave propagation in lossy media have
been calculated and applied to scattering problems in stratified media. We make use of the fact that there is an
isomorphism between the modal transmission line equations and the partial differential equations of quasi-TEM
wave propagation in free space. Thus, the same fundamental time-domain solutions can also be used for quasi-TEM
wave propagation on lossy transmission lines.

We are, however, actually dealing with multiple parallel (modal) lines coupled at their respective terminal
networks. The resulting boundary conditions are specific to this problem and differ from the ones used when
analyzing scattering problems in stratified media. Applying the boundary conditions leads to two sets of coupled
integral expressions, one for each terminal network of the line system. An iterative scheme for evaluating these
expressions is presented. By using properly adjusted spatial and temporal discretization we make sure that the
iterations are performed simultaneously for all modal lines.
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2 TD Modal Analysis of Lossy Lines

If we consider homogeneous n-line-systems, the physical voltages and currents on the lines can be expressed by the
vectors # and 1 which are related by the well-known equations
du . L8 ai Su
—~8—Z—R‘L+LE, —‘EE—GU‘FCE (1)
The n X n-matrices R, L, G and C are constant, symmetrical and positive definite, z denotes the direction of
propagation. The first step of our approach is to decouple the set of coupled partial differential equations (1), that
is to determine s0 called eigenmodes v and j as linear combinations of the physical voltages and currents

u=8v, i=Tj, @

where the transformation matrices S and T are chosen such that the resulting transmission line equations for the
eigenmodes are decoupled, i.e.

r=S"'RT, 1=S7LT, e=T"!CS, g=T"'GS, ®)

are diagonal (in the context of this paper, diagonal matrices will be denoted by small bold letters). The matrices in
(1) do — except for some particular line geometries — not commute, thus the complete system (3) is not diagonalizable
except for these line geometries.

If two of the four matrices in (1) can be assumed zero (e.g. with lossless lines), decoupling of the MT1~equations
is always possible. The unified line model described in [3] can then be used to determine S and T from associated
eigenvalue-problems. In a lossy but homogenous dielectric, G is a multiple of C and the system can be diagonalized
if only R vanishes. We are interested, however, in the cases where none of these matrices can be regarded as zero
and diagonalization is nonetheless possible. Solutions obtained for these cases can without problem be adopted to
the more simple cases mentioned above.

Assuming 8 = T in eq. (2), the expressions in (3) become similarity transforms. It is a well-known fact
that symmetric positive definite matrices are diagonalized by such transforms if and only if the transformation
matrices consist of the eigenvectors of the matrices to be diagonalized. Thus, diagonalization will succeed if all
four matrices R, L, G and C shatre the same set of eigenvectors, the diagonal matrices r, L, g and ¢ will then
contain the respective eigenvalues.

There are two relevant cases where it is possible to decouple the full set of lossy MTL-equations in the time-
domain:

Bus systems consist of identical parallel conducters with equidistant spacing between them above a common
backplane. I coupling is considered only between adjacent conductors, all four matrices have a symmetric
tri-diagonal toeplitz structure. In this case, the set of eigenvectors is completely determined by the matrices’
rank (i.e. the number of conductors) and is independent of the actual values of the matrix elements. All
matrices can be written in the form?

a b 00
b a b 0
0 bab “@
00 b a
The Elements of S can then be calculated using [4]
Sij = i1 (—2cos ;J—I—l—) with  @5(2) = agp-1(z) — Pr—2(z), Po(2) =1, d(2x)=2. (5)
The elements of the corresponding diagonal matrices depend from the matrices’ values:
i
i = a—2bcos (n+l) (6)
13 four-line-system is used as an example
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Circular Multiconductors consist of identical conductors and a reference conductor, the conductors having a
symmetry with respect to the reference conductor such that all matrices are of a circular structure [5):

a b cbd
b )
b cboa
Again, the eigenvectors are independent from the values of the matrix elements
Sy = gi? with g = -V 8)

and the corresponding eigenvalues are obtained from multiplying the eigenvector with the first line of the
cyclic matrix. No couplings between lines have to be neglected in this case.

Thus, we are able to transform the set of 2n coupled equations (1) to n sets of 2 coupled equations each:
94 o4

—a—; =rijfi +li3t-’ —-5’1; = g;v; + ci%?” i=1lmn. 9)

Except for the special case of non-modemixing line terminations, these equations are still coupled via their boundary
conditions, i.e. the system’s terminal networks. If the physical lines are excited by real voltage-sources up at 2 =0
and terminated by a resistive network at z = z,

vl(e=0) = o ~ Zgl(z=0),  Ulz=zs) = Ztil(z=2,), (20)
the excitations and terminations of the modal lines are given by
vo=Sup, Zem=5"1ZS, Zim=S"'ZS. (11)
If any of the matrices Z,, is diagonal, the respective matrix Z,; ;, in the modal system will again be diagonal.
3 Fundamental Solutions
The solution of (9) for a single eigenmode is calculated using riemann’s method [1]. With
- 1/2 ~ 1(g i 1/(g 1
vi= G, Z=BPG,  a=l (Z + E) , w=1 (Z - E) (12)
{note that all quantities are real although we are dealing with lossy lines) we obtain

g
utet = [futt= D)+ ster D) - Feo [ [ -me+ DB fia

£=0
s
e E _/o [pw-)-me- 228 - @a a9

P
it = et £t - 2) - g+ 2| + Lot [ [y +wte+ 228D £ a
Z; Vei Vei Z; 2 Vei® Wi

£=0
e

- giyee [ [pworene- 228N fga ay
£=0
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wy =wi () = m\/(t+ é)(t - :T 6 w.=w ()= m,/(t - {;)(t + i -§). (15)

Ip and I, are the modified bessel functions of Oth and 1st order, respectively. For lossless lines, eqs. (13) and (14)
become the well-known d’alambert solutions, the integral terms describe dispersion on the line due to losses, the
exponential terms are responsible for attenuation. Both solutions contain the yet unknown function f; and f;—
which have to be determined by enforcing the boundary conditions at z = 0 and 2 = 2z, respectively.

4 Boundary Conditions

During numerical evaluation, the integrals in (13) and (14) are replaced by discrete surns. Thus, we first have to
chose a proper temporal discretization #p. To get exact results, one would have to make sure that the number of
discrete points in space
21 /v
o
is an integer for all modal lines 5. This is virtually impossible, yet we have found that the resulting error can be

neglected if we only do not chose #p too large. We will describe how to deal with the boundary at z = 0, that is
how to determine

m; =

(16)

it (®)
fol)=| : an
f 4 (t)
At the beginning of the simulation (¢ = 0) we assume that all voltages and currents along the line are zero. The
lines’ terminations at z = z;, are passive, thus
fir(®) =0, t<0 and fi()=0, &<mto. (18)

It is important to note that when we want to determine the value of fg(T') at the pth time-step (¢ = T = piy) the
values of all f; (T} are already known. Equations (13) and (14) yield

Vlmogmry = [T (A+C+xfa(T)) (19)
Jl=ot=ry = [e7°T]-(B+D+yfp(T) (20)
with the (n X 1)-matrices A,, By, Cp and D, given by
Api = [ (To(rpto) — i (1pto) f.+(o>+Z(Io(w+) igto “’”+))ﬁ (m)] (21)
Bos = ;‘;[ (Io("flﬂo)+11(’7?to))f-+(0)+z(Io(w+)+’m7to ) 7. (kto)] (22
Coi = Ji-(pto) — %to[ (Io(rpto) — Li(ypto)) £i-(0) (23)
b)) , 10 L)

+ 3 (fotw) - a2 2=)) fi (ki) + 5 (1 o) f»(pto)] (29
Dy = ) ;';"[ (To(vpto) + T (vete) - (0) (25)

=1 L(w.) 1 1 ]
I _+m1 fi-(kto) + 5 (14 2% i (26)

+ X (o) moto 20 i+ (14 ) -t
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Egs. (15) have to be evaluated at the respective points in time with £ replaced by kt, [e~°T] is the (n x n)
diagonal matrix of the exponential attenuation terms. The (n x n) diagonal matrices x and y are given by

1
z; = 1- 5t (% - :gpto) 27
_ 1 L (v, 7
u = 7 [1 + 5t (E + Tpto)] (28)
Substituting these into the boundary conditions (11) we get
fo=[x+Zam ¥ [[e*T]-vo~ A—C—~Z-(B+D) (29)

A similar expression is derived to determine the f;_ from the boundary conditions at z = zz. When the new value
of fi-(gto) is to be calculated, the yet unknown values of fi1(gty) do not have to be known for this calculation.
Only the values of fi(t) with ¢ < (g — m;)to (which already have been calculated during earlier iterations) are
needed. Thus, (29) and the corresponding equation for the far end of the line can be evaluated at every time-step
to iteratively determine both f;y and f;_.

Using this algorithm, the fundamental solutions (13) and (14) have to be evaluated solely at two points in
space, that is at 2 = 0 and z = 2. If, however, voltages and currents are to be calculated along the line at a
specified time, they can always be determined from (13) and (14) as they are needed.

5 Results

The above algorithm was implemented such that the output may be the physical or modal voltages or currents.
They can be plotted as functions of time at a given point on the line or as functions of space at a given time. The
program can also be used to produce animations of wave-propagation along a line system, providing immediate
insight in how dispersion and speed of propagation on the modal lines influence coupling between the physical lines
and how coupling is caused by the sources and terminal networks.
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Figure 1: Modal voltages

Figure 1 shows the modal voltages at the end of a three-line bus system of which one physical line is excited by
a voltage source and the others are passive. The timestep #; was chosen as 0.1ns which corresponds to a spatial
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discretization of 63, 58 and 68 points, respectively, for the 1m-system. It is easy to see how all three modes are
excited by the single source and how the modal properties (e.g. speed of propagation) differ. In figure 2, the same
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Figure 2: Physical (line) voltages

results are shown, this time for the physical lines. Crosstalk due to the different speeds of the modes can clearly
be observed.

We compared our results with an FDTD-based simulation of the coupled line system (figure 3). The system was
discretized using 60 points in space. The voltages exhibit the spurious oscillations typical for a disadvantegeous
discretization. Otherwise there is a good match with our results.

We also performed frequency-domain simulations with a limited bandwith. In the frequency-domain, only a
succession of periodic pulses can be simulated. To compare the results, we either have to increase the period
between two pulses in the frequency domain or we have to excite the active line with repeating pulses in the time
domain. In the last case, one can clearly observe the difference between frequency domain results and our method
which are due to the fact that we actually start the simulation with completely passive lines.

When simulating bus systems, we introduce some error by the assumptions we make for the p.u.l. capacitance
matrix C (and, as well, G). The main diagonal elements of C are defined as [5] the sum of the p.u.l. capacity
of the corresponding line and the p.u.l. coupling capacities in that row. Thus, neglecting coupling capacities, (4)
should strictly speaking be written as

a b 0 O

b a2 b 0

0 b a b (30)
0 0 b a1

Simulations showed that by chosing @ = a;Va, the delay of the lines is underestimated as compared with chosing
a = ap or not neglecting couplings at all. The difference, however, is only about 0.2ns for the given three-line
system and does not need to be considered.

6 Conclusions

We developed and implemented a new time-domain algorithm for the simulation of wave propagation on coupled
lossy transmission lines. The algorithm is not based on classical FD-schemes, thus stability problems do not
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Figure 3: FDTD-simulation

arise. Combining the method with newton-raphson-iteration at the boundaries, it has been extended to deal with
arbitrary nonlinear non-modemixing terminal networks. From the fundamental solutions used, dirac-shaped partial
solutions can be separated analytically and might be used for convolution with arbitrary signals.

References

[1] Michael Schinke and Karl Reiss, Fund. tal Time Domain Solutions for Plane TEM-Waves in Lossy Media
and Applications, IEICE Transactions on Electronics, vol. E78-C, No. 8, pp. 1111-1116, Aug. 1995.

[2] Michae! Weber and Karl Reiss, A New Approach for Solving Scattering Problems in Stratified Conductive Media
in Time Domain 13th Annual Review of Progress in Applied Computational Electromagnetics (ACES97), pp.
1318-1325, Mar. 1997, Monterey, CA.

[3] Georg Mueller, Jan Wendel and Karl Reiss, Efficient Analysis of Coupled Multiconductor Tr ission Lines,
International Symposium On Electromagnetic Compatibility (EMC 1999), pp. 646-649, May 1999, Tokyo,
JAPAN.

[4] Fabio Romeo and Mauro Santomauro, Time-Domain Simulation of n Coupled Transmission Lines, IEEE
Trans. MTT, vol. 35, pp. 131-136, Feb. 1987.

[6] Clayton R. Paul, Analysis of multiconductor tr ission lines, John Wiley & Sons, 1994.

129




An MPIE-based Circuit Extraction Technique and its Applications
on Power Bus Modeling in High-Speed Digital Designs

Jun Fan, Hao Shi*, James L. Knighten**, and James L. Drewniak
Electromagnetic Compatibility Laboratory
Department of Electrical and Computer Engineering
University of Missouri-Rolla

jfan@umr.edu
*HP-EEsof Division
Hewlett-Packard Company
** NCR Corporation

Abstract

Power bus design is a critical aspect in high-speed digital circuit designs. A circuit extraction
approach based on a mixed-potential integral equation is presented to model arbitrary multilayer
power bus structures including vertical discontinuities associated with surface mount (SMT)
decoupling capacitor interconnects. The agreement of modeling and measurements demonstrates its
effectiveness and utilization in power bus designs.

I Introduction

Electromagnetic Interference (EMI) and Signal Integrity (SI) problems are increasingly
problematic in high-speed digital designs with higher clock frequencies, faster edge rates, and dense
circuit layouts. The DC power bus structure is an important design aspect [1]. Simultaneous switching
noise (delta-I noise) propagates on power and ground planes in multilayer PCB designs utilizing entire
planes, resulting in interference among various circuits and can couple to the chassis cavity as well to
radiate through apertures and slots. There are suggested approaches for reducing the effects of this
high-frequency noise in practical designs [2], such as using power island structures, placement of
decoupling capacitors, using high-dielectric-constant materials in the power layer, high-loss materials,
etc. However, proven guidelines are not well established. Although many power bus design aspects
can be investigated by hardware trial-and-error for a certain high-speed design, this is often an
inefficient and unacceptable design practice. Power bus modeling provides a cost-effective, quick-
and-easy way of performing various what-if scenarios. Furthermore, modeling can not only provide a
very suitable solution to a certain design, but also develop general guidelines for similar applications.

A full-wave power bus modeling approach, denoted as CEMPIE, to designate a Circuit
Extraction based on a Mixed-Potential Integral Equation procedure is presented herein. Circuit models
have some advantages over electromagnetic models. Their quantities are currents and voltages, which
are more intuitive and easily used with other signal integrity tools than field quantities. Further, the
extracted circuit model is reusable for various frequency- and time-domain modeling.

II. MPIE Formulation

Surface currents J() and charges o(F) are induced on the conducting planes of concern
(power planes) and on the surfaces of vertical discontinuities as a result of an incident electric field
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E™. Ground planes and dielectric layers are assumed to be infinite in the modeling, and are
incorporated into the Green’s functions. When the boundary conditions on the remaining conducting
surfaces are enforced, an electric field integral equation results
ix[jo [G*(,7)-J(F)ds+Vg]=0, 6
S1+82

where ¢ is the induced scalar electric potential; S/ refers to horizontal planes of concern; and S2 refers
to vertical surfaces of vias and/or ports, as shown in Figure 1; and, G4 is a dyadic Green’s function
for the vector magnetic potential. The dyadic Green’s function has the following form in a stratified
medium [3]

G’ =GL(RE+P)+GLR+GLH+ G133, ©
The incident electric field is assumed to be zero, since the discretized problem is not solved, rather, an
equivalent circuit is extracted.

arbitrary shaped power plane

vertical discontinuities

Figure 1: A typical power bus structure, with arbitrary metallization on the power layer(s).

Since triangular patches are more amenable than orthogonal patches in dealing with arbitrarily
shaped structures, they are used to discretize the horizontal planes of concern. However, rectangular
patches are used on the vertical surfaces, because, on these vertical surfaces, most surface currents
flow axially (the height of vias and ports of interest is relatively small). Vector basis functions are
employed, and anchored by the interior edges of all triangular surface patches [4], while the basis
functions associated with vertical rectangular cells are chosen to have the form of one-dimensional
linear functions and associated only with horizontal edges of rectangles.

After the standard Method of Moments procedure of expansion and testing, Equation (1)

becomes:

JjelL][i]~[Alle]=0, @
where [i] is the branch current vector; [p] is the node (cell) scalar-potential vector; [A] is the
connectivity matrix whose elements are determined by

1, if Cell, is Edge,’s positive side;
A, =4-1 if Cell, is Edge,’s negative side;

0, otherwise.
The branch-wise inductive matrix elements are

L, =L [af, [G* Fas,
afly Sy
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where f, and 7, are the testing and basis functions, respectively, I, and /, are the lengths of the
edges where the testing and basis functions are anchored.
On another hand, based on the continuity equation, the node currents are related to the node
charges as
~ je{Ql=[]+[1°], @
where O, I, and I, are the charge, the induced current and the injected current associated with Cell n,
respectively. Further, assuming the induced surface charge density is constant in every cell, then

[e]1=IK1Ql, )]
and
[CI=[X]", ©
where the node-wise inverse capacitive matrix elements are:

Ko =—— [ [@*dsds,
MmAn SmSn
where 4, and 4, are the areas of Cell m and Cell n, respectively; and G? is the scalar electric
potential Green’s function. Thus, using (3), (4), (5) and (6), an mixed-potential integral equation,
represented by partial circuit elements, results:

[jf\m ;aﬁ[;] =[—';‘]' ™

This equation has a standard form of Modified Nodal Analysis that is utilized in many circuit
simulators.

. Circuit Extraction

Equation (7) gives the nodal admittance matrix [Y] of the system as:
[¥)= L {A™L"AT+ jaiC]. ®

A circuit model can be easily extracted from this admittance matrix. The only problem results from the
frequency dependency of the entities in the [L] and [C] matrices, which are functions of vector- and
scalar-potential Green’s functions that are frequency dependent. These frequency-dependent elements
would make the circuit simulation for frequency response difficult and time-consuming. To overcome
this problem, a quasi-static approximation of the Green’s functions is employed so that the values of
extracted inductance and capacitance are constant over frequency. This approximation imposes an
additional mesh limitation to keep the extracted circuit valid over a given frequency range. This
limitation is determined by the highest working frequency, layer stackup and dielectric materials [S].
The extracted circuit model from (8) can have an extensive netlist. There is a parellel LC
branch between an arbitrary pair of two nodes, as well as a shunt capacitance between each of the
nodes to the ground node, as shown in Figure 2. For a smail number of nodes with their surface
currents flowing to the ground associated with the via interconnects, there is also a shunt inductance
connecting them to the ground node. The extracted circuit is exported into SPICE where various
frequency- and time-domain simulations are performed. Well-developed SPICE models for various
sources, loads, transmission lines, etc. can be easily incorporated into the extracted circuit model.
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Cm:n
Nodem Node n

[T

Lm:n

Cm:OI I Cn:0

Figure 2: A type circuit model between two nodes m and n, extracted from the CEMPIE.
IV.  Calculation of Green’s Functions

There are two steps in calculation of the Green’s functions in a stratified medium. First, the
spectral-domain expressions are derived based on the concepts of the generalized reflection and
transmission coefficients [6], where dielectric layers and ground planes are assumed of infinite extent
so the problem is only one-dimensional (z-direction). These spectral-domain expressions are then
approximated by an expansion of complex images as [7],[8]

~ 1% .,

G= Zyg}a,e , ®
where y=jk,, M is the total number of complex images, «,,..2,, are complex magnitudes, and
a,,..a, are complex images. The Sommerfeld identity obtains the inverse Fourier transform from
spectral domain to spatial domain as [6]

e L Tk O p) e 9
o L CRE v ©
Le.
ek e
€yt 10
FG (10)

Then, the desired spatial-domain expressions of Green’s functions are determined from (8) and (10) as

M e—jk,}xz'&yzd-n:

G=) o .
Z{ g 47z;;x2 +y*+d’

Several numerical methods have been developed to approximate a spectral-domain Green’s
function into a seties of complex images, such as the original Prony’s method {7], and the least-square
Prony’s method [9]. Prony’s methods are known for their high sensitivity to noise. The generalized
pencil of function (GPOF) method was then introduced to improve the performance [10]. It was
observed, however, that the GPOF method was not robust for slowly converging functions with rapid
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changes. A further improvement to the GPOF method, denoted the two-level approach [8], is used in
the CEMPIE modeling described in this work.

V. Power Bus Modeling

The CEMPIE modeling approach was demonstrated by comparison with experiment. Figure 3
iltustrates a test-board geometry, which is a two-layer printed circuit board with two solid planes
representing power and ground planes, respectively. There ‘were two vertical discontinuities. One was
a shorting post connecting two planes together, and the other was an SMA test probe. The input
impedance at the test port was measured using an HP4291A impedance analyzer. The reference plane
was located at the input port of the test geometry. The modeled results are compared with the
measurements in Figure 4. Good agreement is demonstrated up to 1.8 GHz, which is the maximum
frequency of the impedance analyzer. Other |S;1| measurements showed that CEMPIE modeled results
agreed well with measurements up to 5 GHz, provided that the additional mesh limitation discussed
previously was satisfied.

Shorting pin
panal mount Port 1
SMT receptacle
1/
T Id—-——-60mm————>|

Figure 3: A power bus test geometry.

10
10°
~10° measured result
£ +=«« modeled resuit
= R e
e
810"
c
[}
B
g10°
]
o.
&

10 100 1000 2000
Frequency (MHz)

Figure 4: Comparison of modeled and measured results for the power bus structure shown in Figure 3.
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An example of utilizing the modeling approach for power bus design is illustrated in Figure S.
The top plane was a gapped power layer while the bottom ground layer was solid. The rationale of
placing a gap is based on introducing a series impedance between two portions to provide isolation of
a noise source from the rest of the PCB design. A conducting neck was present to provide DC
connections between two portions. [Sy1| was used to characterize the behavior of the power bus [11].
Figure 6 illustrates the effect on isolation when changing the neck width. The neck was located in the
center of the board. The relevant dimensions were a=100 mm, b=55 mm, c=49 mm, t=2 mm, and the
neck width was 2, 5 and 10 mm, respectively. The change of neck width affected the series impedance ‘
between the two segmented portions in the low frequency band so that a dramatic shift of the first \
resonance resulted. In the high frequency band, conductive coupling through the neck was no longer .
dominant and there was little difference between the three cases when the frequency is higher than 1
GHz. The low frequency responses also indicate that the power island structure with a conducting
neck only marginally achieves noise isolation at low frequencies (less than 20 dB). This is consistant
with some other experimental observations [11][12].

2.

o i b

|

|
Power plane I:l /I
= i ,r O ' [

L
dielectric layer~ | \ |
O und plane u\o.oss" semi-

SMA connector

Port 1 Port2  rigid coaxial

cable

Figure 5: A power island structure with a conducting neck.

V1. Conclusion

The CEMPIE modeling approach provides a useful and powerful tool in designing power bus
structures, and predicting power bus noise distribution. Measurements demonstrate the effectiveness of
the modeling. It can also be used to model many SI problems, IC packaging problems and other
applications with multilayer geometry.

135




-30

1521] (dB)
&

- Neck width e=5 mm :
--- Neck width e=10 mm {:
——  Neck width e=2 mm

90 : R : Por o e :
0.1 1.0 3.0
Frequency (GHz)

Figure 6: Modeled noise isolation versus neck width for the power island structure shown in Figure 5.
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Abstract.

A new resonance elimination technique is proposed to minimize 2 number of frequency samples in an
electromagnetic simulation of some resonant planar structures over a wide frequency band. Instead of a direct
interpolation of scattering matrix elements of the structure, it is suggested to create an intermediate descriptor matrix
with an order higher than the order of the final scattering matrix and with non-resonant frequency behavior of the
elements. The expanded descriptor can be constructed using proposed artificial internal ports and a heuristic resonance
breaking approach. The elements of the expanded descriptor can be interpolated over a wide frequency range with a
simple interpolation technique and minimal number of frequency samples. Elimination of the internal ports reduces
the interpolated expanded descriptors to the initial scattering matrices and restores broken resonances with necessary
resolution. The method of lines in its impedance interpretation is used to implement and to illustrate the resonance
elimination technique.

Introduction.

The scope of this paper is interior problems of electromagnetics for microwave planar structures. The ultimate
descriptor of the interior problems is usually a scattering matrix. The elements of the matrix or scattering parameters
are complex functions of frequency. Typical microwave structures like filters have sometime very complex frequency
dependencies of the scattering parameters. A direct electromagnetic analysis of them resolving all resonances is
computationally expensive. Adaptive frequency sampling techniques as well as different curve-fitting models based
on the rational function approximation are available to reduce the computational efforts [1-4]. Though their theoretical
foundations are quite straightforward, numerical implementations could be difficult and unstable.

An alternative to the rational approximation of the scattering parameters is an interpolation of an impedance or Z-
matrix of the method of moments (MoM) [5]. As shown in [5], the elements of this matrix are usually smooth
functions of frequency over a wide band and a simple linear interpolation can suffice. For the interior problems of
strip-like type, the Z-matrix elements characterize only problem housing and not the problem itself. Therefore, they
could show resonance like behavior only at relatively high frequencies that are usually beyond the frequency range of
the interest. In contrast, the elements of inverted Z-matrix carry the information about the problem itself, and can not
be interpolated as easy as the impedance matrix elements [5]. The main drawback of the impedance matrix
interpolation is the necessity to keep calculated matrices of high rank. The approach is also acceptable only if
computation time of Z-matrix elements is considerably greater than the solution time of the other parts of the problem
(matrix inversion or linear system solution). It could work when a problem is represented by a small number of
expansion functions. With the equidistant spatial grids and pulse expansion functions like in the method of lines, the
technique is computationally less efficient than the direct analysis at the frequencies of interest.

A general idea of this paper is to construct an intermediate descriptor matrix of a resonant structure, which
elements are smooth functions of frequency. It can be easily subjected to a simple linear interpolation technique over a
wide frequency band like the initial impedance matrix of the MoM. The order of the matrix is higher than the final
scattering matrix but must be much lower than the initial impedance matrix. It is suggested here to use internal ports
placed into the initial structure to break resonances. An enlarged 50-Ohm normalized scattering matrix of the structure
with the external and added internal ports is used as the intermediate and supposedly non-resonant descriptor of the
problem for interpolation purpose. The added ports are eliminated then in a circuit theory simulator restoring proper
boundary conditions in the port regions. The internal ports are created so that they do not disturb current flow and
cross - coupling. Placing of the ports is similar to a decompositional procedure in general and is relatively heuristic.

The standard GENESYS 7 suite with multilevel EM simulator <EMPOWER= is used to generate all examples for
this paper’. The simulator is based on the method of lines (MoL) that is quite similar to the MoM, and the paper gives
some foundations necessary to understand the whole numerical scheme.

! GENESYS Suite - Eagleware Corporation, Tucker, GA, 1999.
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Formulation of the EM problem. The problem of our interest can be classified as a planar 3D one. A planar
structure is confined in a three dimensional rectangular volume bounded by electric or magnetic walls. The volume is
filled by a stratified medium that may consist of an arbitrary number of isotropic homogeneous layers. Planes parallel
to the medium layer interfaces can comprise arbitrary shaped thin or thick regions of perfect metallization, regions
with complex surface impedances (lossy metal) and resistive films and can be interconnected through the media layers
by via-holes. To model the external inputs of the structure and lumped element connections, auxiliary port regions are
introduced into the problem domain. The desired solution of the electromagnetic problem is an immitance matrix
relating the integral voltages and currents in all port regions. The immitance matrix can be transformed into a
generalized Y- or S-matrix using the simultaneous diagonalization method [6]. The same kind of ports as for
connection of the lumped elements is used to break resonances in the structure and to implement the resonance
elimination technique thereafter.

Simulation by the Mol with fictive ports. The basic numerical technique outlined here is known as the
impedance interpreted method of lines [7,8). It forms the foundation of a commercial electromagnetic simulator
=EMPOWER= [8]. Maxwell’s equations are approximated on a semi-discrete grid by a differential-difference system
using partial discretisation in the plane parallel to the interfaces of the medium layers (xy plane). Grid variables
corresponding to the electric and magnetic fields and surface currents in the xy plane and to volumetric currents along
z-axis are shown schematically on a grid cell in Fig. 1a). The finite difference scheme corresponds to a xy-plane
projection of the well-known offset scheme of K.S. Yee. The grid is equidistant with L+1 cells along x-axis and M+1
cells along y-axis and with the cell size dx along x and dy along y. The 3D problem is reduced to a 2D one by means
of a grid spectral representation of the ficlds in the homogeneous layers. A contraction of the grid Green’s function
(GGF) of a strip-like problem on surfaces with non-zero conductivity currents is an impedance matrix relating the grid
functions of the electrical field or local voltages and the grid currents. The GGF matrix is built in the grid spectral
domain using an impedance form of the solution in a layer. Each element of the GGF matrix is represented as a sum of
four elements of an auxiliary array obtained using DFFT technique. The array size is in proportion to L*M.

As soon as we have the main impedance matrix of the problem, it is possible to introduce a conceptual or
informational multiport corresponding to it. The multiport is introduced to facilitate and to illustrate some boundary
condition superimposing and to combine the electromagnetic simulation with the circuit theory simulation. Fig. 1b)
shows a set of ports of the conceptual multiport corresponding to the points on the discretisation scheme shown in Fig.
1a). Voltages at the conceptual pairs of the terminals correspond to the grid local voltages and currents correspond to
the grid conductivity currents. The total number of the ports oriented along x-axis is M*(L+1), and along y-axis is
(M+1)*L per one metallization plane or level. Z-directed conceptual ports are introduced only in layers and places
with non-zero conductivity currents across the layer. Note that we do not need to calculate all elements of the
multiport impedance matrix and its order can be reduced taking into account that some conceptual ports are unloaded
or short circuited. Fig. 2 illustrates some boundary condition superimposing in a signal plane in the conceptual
multiport terms. The unloaded ports are shown as simple unloaded pairs of terminals. They correspond to regions of a
signal layer without any conductivity currents. A metallization pattern in the signal layer is simulated as conceptual
ports in corresponding areas either with short circuit conditions on them for lossless metal or loaded by an impedance
in a general case. Fig. 2. shows a segment of a lossless microstrip line along x-axis. In the middle of the segment is a
fictive port introduced to expand the final descriptor of the problem and to break resonances.

The fictive port is a simple parallel connection of the local conceptual ports across the line. In numerical
electromagnetics terms, it is a simple integration across the strip conductor of the current along the strip. The only
assumption is an equivalence of the local voltages at the local ports in the fictive port area. Imposing this condition,
we discard the conductivity current across the strip near the fictive port. Thus, the fictive ports could be placed only in
places where those currents are insignificant. The other possible solution is to introduce a set of the fictive ports across
the line. The limit case for this is a situation when fictive ports correspond exactly to the local ports of the conceptual
multiport. It blows up the intermediate descriptor that is not desirable here. The fictive port could be also considered
as a limit case of the general internal port {8] with length equal to the grid cell size. The external ports of a microstrip
structure are formed in the same way as the fictive ones near the sidewalls. To get a descriptor of the planar structure,
the main impedance matrix is reduced to an immitance matrix relating currents and voltages at the external and
internal ports including the fictive ones. The external ports are de-embedded then, and all ports are normalized to 50
Ohms. Here we get the extended descriptor that is converted into the scattering matrix. This matrix is used in a circuit
simulator as a descriptor of a multiport. With proper positioning of the fictive ports, the matrix elements may behave
smoothly over a wide frequency range. Thus, the matrix can be used as the intermediate descriptor of the structure for
interpolation purpose. The short circuit conditions for ideal metallization or impedance loads for lossy surfaces,

139




imposed on the fictive ports in the circuit simulator, restore partially the appropriate boundary conditions. Partially,
because of a fictive port spanning over a few cells suppresses currents across the port as was mentioned earlier. A
procedure of placement of the fictive ports to eliminate resonances in the extended matrix is heuristic. It usually
follows from the design, what part of the circuit were intended to be resonant. If so, all we need is just to disjoint the
metallization corresponding to it. This procedure reminds a decomposition of the structure into some enlarged
components. Though it preserves all cross couplings in the structure, including caused by interactions with the circuit
enclosure.

To complete the outline of the numerical technique, we just mention some acceleration procedures. To transform
the equidistant grid to a non-equidistant one, a thinning out technique together with the linear re-expansion is used. It
substantially decreases the order of the main impedance matrix. Another procedure for numerical acceleration that
was implemented and used in the following numerical examples is automatic detection and consideration of
geometrical symmetry of a structure.

Numerical examples. To generate all examples for the paper the RF/microwave design suite GENESYS 7 from
Eagleware Corporation is used. The electromagnetic simulation with the fictive ports, circuit theory co-simulation and
data manipulation and post-processing are within the capabilities of the standard version of the program.

The first example is 2 methodical one. It demonstrates a minor influence of a fictive port on the scattering
parameters of a segment of microstrip line. The problem is shown in Fig. 3. The segment to be analyzed has the
following parameters: w=0.5 mm, h1=0.5 mm, £1=9, h2=1.5 mm, £2=1, b=3.5 mm, a=4.1 mm. Ports number 1 and 2
are external inputs. They are de-embedded and normalized to the internally calculated characteristic impedance of the
line. The segment is analyzed directly without a fictive port first. The grid cell size is 0.1 mm along the line and
0.0625 mm across and is not critical for the results. The calculated elements of the generalized scattering matrix are
shown in Fig. 4 (DB[S11], DB[S21]). A fictive port was added in the middle of the segment then (port number 3). It
converted the structure into a three-port. The segment with the fictive port was analyzed in the EM simulator again.
The resultant descriptor of the three-port is passed into the circuit simulator, where the fictive port is short circuited
and eliminated. The elements of the scattering matrix calculated in this way are also shown in Fig. 4. They are
different from the initial ones but both of them are at the level of the numerical noise. Angles of the transmission
coefficients calculated without and with the fictive port are the same up to the fourth digit after the decimal point.
They are listed in the following table.

Frequency, MHz 5000 10000 15000 20000
Angle of S21, deg. | -59.6357 -121.1883 -185.9071 -253.4355

Thus, it shows an insignificant disturbance introduced by the fictive port and proves that short circuit condition
imposed in the circuit simulator restores the line segment corresponding to the fictive port. Note that it does not work
like this if the fictive port is placed in a vicinity of a discontinuity in the line where transverse currents could be
significant. In this case, a set of the fictive ports distributed across the line may be necessary.

The second example is a filter with three-coupled microstrip resonators in two metallization levels shown in Fig. 5.
It was developed and investigated numerically and experimentatly in [9]. The filter consists of two substrates with the
same parameters (h1=0.51 mm, £1=2.33), and a foam-like dielectric between them with h2=3.3 and £2=1.07. Two
microstrip input sections (w=1.5 mm, L.1=23.09 mm) as well as two resonators (L2=34.2) are deposited on one
substrate and the middle resonator (w1=1.6, L3=33.77) is deposited on the other substrate (inverted). The spacing
parameters are S1=0.1 mm, S2= 3.2 mm. The whole structure is in a metal box with sizes 2=40.185 mm and b=20
mm. The filter has some dimensions slightly different from given in [9] because of they where rounded off to fit the
structure to the grid. The different sizes are w=w1=1.49, L1=23, 1L3=33.94, a=40. To simulate losses in the structure
some loss-related parameters were guessed. The substrates tangent of loss is 3.0e-4, the metallization resistivity is
1.7e-8 Ohm meter, the metal thickness 0.036 mm and roughness 1.39¢-3 mm. Ports 1 and 2 are external inputs of the
filter. The problem has a mirror symmetry over an xz-plane.

The filter is simulated directly on the grid with cell size 0.4275 mm along the resonators and 0.1 mm across at 101
frequency points to verify the trustworthiness of the EM analysis first. The results are shown in Fig. 7 (DB[S11],
DBI[S21]) and in Fig. 8 (ANG[S11], ANG[S21]). The scattering parameters are generalized. A wire thinning out
algorithm with coefficient 5 was used to accelerate the simulation. It took about 2 min per frequency point on a 500
MHz Pentium HI processor. The central frequency of the simulated filter is about 3032 MHz. That is 53 MHz below
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the central frequency of the filter investigated in [9]. The shapes of the transmission and reflection characteristics are
close to the experimental ones, taking into account the differences in sizes and possible differences in loss parameters.

To implement the resonance elimination technique, three fictive internal ports oriented along the resonators are
added. They are shown in Fig. 5 as hatched areas in the middle parts of the three resonators. The port widths are the
same as the resonator strip widths and the length is equal to one cell size along the resonators. The new structure with
the fictive ports is a five-port and its 50-Ohm normalized scattering matrix is used as the extended or intermediate
non-resonant descriptor. It was simulated at five frequency points in the same frequency range as the initial filter.
Frequency dependencies of some elements of the extended scattering matrix are shown in Fig. 6. They are smooth
functions of frequency and a simple linear interpolation is used to get the extended scattering parameters at the other
frequency points. After the interpolation the fictive ports were simply short circuited and eliminated and the resultant
scattering parameters are shown in Fig. 7 and Fig. 8 (Linear].fictiveShort. DB[S21], Linear1.fictiveShort. DB[S21,
Linear] fictiveShort. ANG[S21], Linear1.fictiveShort. ANG{S21). The simulation results obtained by the resonance
elimination technique is almost on the top of the direct simulation results. There is just an insignificant frequency shift
about 8 MHz, up, occurred due to the minor current redistribution in the fictive port areas. 20 times acceleration is
achieved with the simple interpolation technique and without visible loss of accuracy.

Conclusion. An attempt to switch from the approximation of the scattering parameters of a resonant planar
structure to a construction of an extended electromagnetic descriptor with smooth and predictable frequency bebavior
is introduced. Artificial or fictive internal ports are proposed to eliminate resonances in the structure and to obtain the
extended non-resonant descriptor. The descriptor elements can be interpolated linearly over a wide frequency range
and it can be converted to the scattering parameters with minimal numerical effort. This is an alternative to the
multimode decompositional approach and is specifically focused on the en-bloc analysis of the planar structures and
considers all possible cross-couplings. The idea is implemented on the basis of the impedance interpreted method of
lines. The effectiveness of the developed resonance elimination technique (RET) is illustrated by a filter simulation
example. Note that RET could be referred to as an implementation of the theory of loaded scatterers [10]. Temporary
fictive ports loaded by 50-ohms are introduced to change scattering by an enclosed planar structure for interpolation
purpose and then eliminated to restore the initial scattering. And finally, it must be noted, that the descriptor expansion
technique works in “natural” way and does not need the fictive ports for structures with lumped elements like
combline filters. The capacitors in those filters are the necessary elements to create resonances in the structure and the
internal ports in the EM analysis are created to hook them up producing the non-resonant extended descriptor.
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Fig. 4. Generalized reflection and transmission scattering parameters of the microstrip line
segment problem solved without the fictive port (DB[S11] and DB[S21]) and with the short
circuited fictive port (Linearl.shortPort. DB[S11], Linearl.shortPort. DB[S21]).

143




1 Liw | |51

| 12w 03 |

L2,w U5 |

2 Lw | [N\

Fig. 5. A two-level three-resonator filter with two external ports and three fictive internal ports to break
resonances. Two input line segments and two resonators are on one substrate and the middle resonator
(batched) is on the another (inverted) substrate.

) 3 } +
= I S
-5
G
-10
-@- DB[S11] gy DB[S21] -a— DB[S31]
15 -o— DB[S41] .x. DB[S51] - DB[S33]
—— DB[S43] —— DB[S53] -4 DB[S44]
20 -@- DB[S54]
@ -25 = am
° r//
[T 1
| L]
35 il :
—
L]
-40 —— —
| »—tf—1
-45
r I Tt
-50 A——— |
2600 3000 3400
Freq (MHz)

~ Fig. 6. Magnitudes of some elements of the extended 50-Ohm normalized scattering matrix of the two-
" level three-resonator filter with three fictive ports.

144




o
-5
10
15
20
o 25
2
©w
.30
-35w/ -~ DBIS11]
- DB[S21]
-40 - Linear1 fictiveShort.DB[S11)
—#— Lineart fictiveShort.DB[S21]
45
-50 r T [ I
2600 3000 3400
Freq (MHz)

Fig. 7. Magnitudes of the transmission and reflection coefficients of the two-level three-resonator filter
calculated directly (DB[S21] and DB[S11]) and trough the interpolation and reduction of the extended S-
parameters (Linear!.fictiveShort. DB[S21] and Linear].fictiveShort. DB[S21]).

144 =~ M
108 Q&u‘

72
36_15‘
§ .
: L}
)
£ -3
12

L -&- ANGIS11]

~108 ] o ANG[S21) ;

—4- Linear1.fictiveShort ANG[S11] X

_144 1] -e— Lineart fictiveShort. ANG[S21)]

oy I I I Al

2600 3000 3400
Freq (MHz)

Fig. 8. Angles of the transmission and reflection coefficients of the two-level three-resonator filter calculated
directly (ANG[S21] and ANG[S11]) and trough the interpolation and reduction of the extended S-parameters
(Linear].fictiveShort. ANG[S21] and Linear!.fictiveShort. ANG[S21]).

145




FDTD Analysis of Conventional and Novel Delay Lines

Omar M. Ramahi
'Alpha Servers Development Group
Compag Computer Corporation
MRO1-1/p5
200 Forest St.
Marlborough, MA 01752
Omar.Ramahi@compaq.com

1. INTRODUCTION

There are two mechanisms that are typically employed to achieve required signal
delay between circuit components. The first mechanism of delay is achieved through
internal electronic circuitry. The second mechanism, which is the most common and
least expensive, is achieved through meandering a transmission line as shown in Fig.
1. The meandered line, commonly referred to as the serpentine line, consists of a
number of transmission lines closely packed to each other. The objective behind the
rmeandering is to achieve high density (of transmission line) per square inch of circuit
board space while obtaining a delay in the signal that is directly proportional to the
length of the line.

Serpentine lines, which are the most common of delay lines, introduce delay but
also introduce a type of spurious dispersion that makes the signal appears as if it is
arriving earlier than expected. Previous studies used analytic techniques and quasi-
static methods to predict the delay and signal behavior on serpentine lines. These
eallier studies, however, included several assumptions that can no longer be valid
when the circuit becomes electrically large. Furthermore, when studying novel delay
lines, such as the spiral line, earlier methods fell short of being effective.

In this work, we use the three-dimensional Finite-Difference Time-Domain (FDTD)
method to analyze two types of delay lines. The first is the classical serpentine line,
and the second is a the spiral delay lines. The FDTD method offers several advantages.
First, it allows for easy modeling of complex geometry, and, second, since it is a three-
dimensional full-wave method, it encorporates the entire coupling mechanism from
the waveguide effects to the low-frequency capacitive and inductive couplings. The
only drawback of the FDTD method, however, is its inflexibility in resolving finer
structures while maintaining a memory-efficient simulation.

II. SERPENTINE DELAY LINES

‘When serpentine lines are used in high-speed digital circuit applications, the time
delay through a single serpentine line can be much longer than the rise time of the
pulse. Under such conditions, serpentine lines have been found to introduce a disper-
sion that makes the signal appears as if it is arriving earlier than would be expected
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based on the total electrical length of the line. Through wave tracing, earlier work
showed that this type of dispersion is caused by the crosstalk between the adjacent
transmission lines section, and is related to two parameters: the first is the length
of each serpentine section. The second parameter is the spacing between adjacent
sections [1].

The wave tracing analysis makes several assumptions. These are: .
1)The rise time is shorter than the round trip time along a single segment.
2)The coupling is small such that the multiple coupling effect induced from the
crosstalk is negligible.
3)The forward propagating crosstalk was assumed to be zero. In practice, however,
there is some forward crosstalk, which induces additional crosstalk as it propagates.
4)The small transmission line segments that connect the longer sections have been
assumed to have zero delay (zero physical length).
5) Negligible multi-modal propagation.

Considering the above simplifications, the wave tracing qualitative model serves
only to give an understanding of the primary crosstalk contributors. For a more
accurate prediction of the performance of the serpentine line, the three-dimensional
finite-difference time-domain (FDTD) method is used as it fully integrates the five
constraints listed above.

The first delay line considered for study is a serpentine line, where the total
electrical length of the line is 405.4 mm (15.96 in). Two variations of this line are
considered, as shown in Fig. 1, and will be referred to as Case A and Case B re-
spectively. The excitation waveform is a pulse of 1.4 nanoseconds and rise time 100
picoseconds. The cross section for both lines is shown in Fig. 2. The difference
between the two is that one has shorter sections than the other. Both, however, have
identical lengths, identical line separation, and both occupy equal board area.

Figure 3 shows results from the FDTD simulation, where the response of the two
lines is compared to the reference line. The serpentine line designated as Case B
has longer sections and consequently, its receiver signal had ladders that are longer
than Case A. However, this difference is of minor importance since the low-to-high
switching occurs at approximately the same time zone.

III. THE SPIRAL DELAY LINE

In the serpentine line, the crosstalk was found to accurnulate synchronously. This
accumulation can be significant enough to trigger false logic. Ideally, this crosstalk
needs to be eliminated; however, since the crosstalk is a function of the separation
between the lines, the only way to eliminate, or reduce the crosstalk would be to
increase the separation between the lines. This, unfortunately requires larger cir-
cuit board area which can be either expensive, or impossible in light of the density
requirements.

Given that the transmission line density to remain unchanged, the separation
between the lines must be kept unchanged. An alternate design that would force the
crosstalk to accumulate asynchronously is the spiral delay line shown in Fig. 4 (for
more discussion on the spiral line, see [2]). Notice that the spiral line minimizes the
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periodicity in the transmission line thus achieving the asynchronous accumulation of
noise.

The most prominent feature of the spiral delay line is the spreading, over time,
of the crosstalk noise. This can be seen by performing wave tracing analysis as
in [2]. However, and as before, the wave tracing analysis and the multi-conductor
transmission line model falls short of predicting the full-wave effects.

To demonstrate full-wave performance of the flat spiral delay line, we construct
the line shown in Fig. 4, where the electrical length, line separation, and total board
area, all equal to the serpentine lines shown in Fig. 1. The cross section parameters
are given in Fig. 2, and the rise time and pulse duration (width) are as before.

Figure 5 shows the signal at the receiving end of the spiral line as compared to the
equivalent serpentine and reference lines. The outstanding performance of the spiral
line is clearly visible. We observe that the crosstalk noise was spread over time ahead
of the main signal resulting in a high fidelity signal. In fact, for the case considered,
we notice that the maximum crosstalk stays at or below 10% of the signal level, thus
the potential for triggering false logic is reduced considerably.

IV. CoNCLUDING REMARKS

The FDTD method has been used effectively to analyse delay lines such as the
conventional serpentine delay line and the spiral line. Since the FDTD method encor-
porates the full-wave features of the model, all coupling effects, from the low-frequency
capacitive and inductive coupling to the high-frequency microwave effects are included
in the model. The flexibility of the FDTD method in treating non-conventional struc-
tures such as the spiral line makes it a very viable and powerful tool in designing novel
delay lines that are constrained only by the size of the printed circuit board and the
imagination of the designer.

REFERENCES

[1] R-B. Wu and F-L. Chao, Laddering wave in serpentine delay line JEEE Trans.
Components, Packaging and Manufacturing Tech., Part B: Advenced Packaging
vol. 18, no. 4, pp. 644-650, Nov. 1995.

[2] R-B. Wu and F-L. Chao, Flat spiral delay line design with minimum crosstalk
penalty, IEEE Trans. Components, Packaging and Manufacturing Tech., Part B:
Advanced Packaging vol. 19, no. 2, pp. 397-402, May 1996.

148




le N

10 mm

Case A

v i
HPY - 05
Case B 222 mm
Jututoguf L

Fig. 1. 19-section 15.96 inches long serpentine delay lines.

149




W=0.Imm, L=.5mm, H=0).4mm,¢c,=5

Fig. 2. Cross section of delay lines.

Voltage (volt)
o
13

{ime (Ranosecond)

Fig. 3. Received waveform for the 15.96 inches serpentine lines.

150




ngkfv—l/jB 10mm D

22.2 mm

Fig. 4. Spiral delay line.

151




Complementary Operators for Frequency-Domain Methods: A Single
Simulation Implementation

Omar M. Ramahi
Compaq Computer Corporation
MRO1-1/p5
200 Forest St.
Marlborough, MA 01752
Omar.Ramahi@compag.com

I. ABsTRACT

The complementary operators method for mesh truncation has recently been ap-
plied to solve frequency domain (time harmonic) problems. Earlier work required
multiple simulations as each of the two complementary operators was applied in every
single simulation. In this work, we present a procedure by which both complemen-
tary operators are applied in a single simulation, thus achieving two objectives. First,
increasing modeling efficiency, and second, allowing for the ability to solve problems
involving non-linear media.

II. BACKGROUND

The past several years witnessed the development of the complementary operators
method (COM) as a highly-accurate mesh-truncation technique for the solution of
open-region radiation problems [1]-[3]. The COM has been applied to time-domain
and frequency-domain (time harmonic) simulations, resulting in unprecedented lev-
els of accuracy. The application of COM to frequency domain problems, however,
required multiple simulations, where each of the two complementary operators was
applied in each single simulation. Despite the high accuracy achieved, multiple simu-
lations maintained a degree of inefficiency and also prevented the effective and efficient
solution of radiation problems involving non-linear media.

In this work, we overcome the need for multiple simulations in frequency-domain
methods by encorporating the two complementary operators in a single simulation.
This is accomplished by implementing the averaging process within the frequency-

152




domain system matrix. Therefore, the implementation is equivalent to the concurrent
implementation of COM in time-domain simulations [3]. The procedure presented is
applicable to finite difference and finite element modeling.

1I1. COMPLEMENTARY OPERATORS

The idea behind COM is simple. Let us consider an outer boundary that is parallel
to the y-axis in the Cartesian coordinates. Two auxiliary differential operators, 8,
and 8, are applied on an absorbing boundary condition (ABC) B such as Higdon,
Liao,...etc.. The purpose of these two auxiliary operators is to produce reflection
coefficients that are 180° out of phase, not only in the analytic domain, but also
in the discrete, or numerical domain. By averaging the solutions obtained from the
application of each of the two operators on an ABC, we arrive at a new solution that
is devoid of first-order reflections [1]-[3].

While the frequency-domain and time-domain simulation are two different repre-
sentations of the same physical phenomenon, the numerical solution paradigm is not
identical. For this reason, complementary operators had to be numerically adapted
to fit the particular numerical model under consideration [3]-{5].

When the complementary operators are adapted to the frequency-domain model,
the resultant two complementary boundary conditions are given by [4]:

I—-571
D.B="7%"—B (1)

-1
p,8=13p, @)

where £, is the wave number in the x direction, and I and S~ are the identity and
space shift discrete operators, respectively.
The corresponding reflection coefficients are given, respectively, by
R(D.B) = —e’*A°R(B) 3)
R(D.B) = ¢€***R(B) 0))

where R(B) is the reflection coefficient of the operator B.
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Equation (3) and (4) are precisely 180° out of phase; hence, full complementariness
is achieved.

IV. CONCURRENT IMPLEMENTATION OF COMPLEMENTARY OPERATORS IN
FREQUENCY DOMAIN

In previous work, each of the two complementary operators were implemented in
a separate simulation and the solutions of the two simulations averaged to obtain a
solution devoid of first-order reflections. In this work, both operators are implemented
in a single simulation.

To this end, we consider the problem of radiation in two-dimensional space. For
clarity, we limit the discussion here to the finite-difference frequency-domain method.
However, the implementation and application in the finite element method is similar,
aside from slight implementation details that will be highlighted below.

Following similar development to the concurrent COM in time-domian simulation,
we divide the computational domain into a boundary region (or layer) and an interior
region as shown in Fig. 1.

Without loss of generality, we limit the discussion here to the problem of TM-
polarization. Each field node in the boundary layer is assigned two field values. E,;
and E,;. In the interior region, we assign a single field value to each node, E,, as in
conventional implementation.

Next, we apply the finite-difference equation to each node in the interior region.
Let us assume that the finite-difference grid is uniform in the x and y directions, and
let » be the grid spacing. Applying second-order finite-difference approximation to
the free-space Helmholtz equation at the interior node (i, j), we have:

By =1,7) + .G + 1,7) + Eo(3,5 + 1) + Eo(6,§ — 1) + (k*h% — O)E,(3,5) = 0 (5)

where (%, 7) is the node location.

In the boundary region, we apply the finite-difference equation to the two sets of
fields:

Ezl(i - 17.7)+E21(Z+17.7) +Ezl(i)j +1)+E21(l,]—1) +(k2h2‘—4)Ez1(l,]) =0 (6)

EzZ(i— 1,])+E22(Z+1,j) +Ez2(2;.7+1)+E12(17.7 _1)+(k2h2 -—4)E22(i,j) =0 (7)
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The first of the two complementary operators, D, B is applied to the set of fields
denoted by E.;, and the second operator, D, B is applied to the set of fields E,2.

Let the interface perimeter between the boundary layer and the interior region by
denoted by T, as illustrated in Fig. 1.

To see how the averaging process is implemented, we focus on the left-hand-side
segment of the I'. In Fig. 2 we show the grid on and in the close proximity of I'.

On T', the update equation for the fields uses the average field values 0.5(E,; + E.;)
from the left-hand side and E, from the interior region. Thus, the finite-difference
equation for the fields on T is given by

(Ezl(i — lvj) + Ez2(i — 17])
2

+E(i+1L,7)+E(,j+ 1)+ E(G,j-1)+
(F*h? -~ 4)E,(5,5) =0  (8)

Similar equations are applied on the other three sides of T

The implementation of (8) in a finite-difference code does not require any spe-
cial treatment. Therefore, an existing finite-difference code requires only very minor
modification to accomodate complementary operators.

It should be noted that the averaging performed by (8) does not eliminate all
boundary errors, but only the first-order reflections. Analysis of boundary reflections
will be discussed in a future publication.

V. CoNCURRENT COM IN FINITE ELEMENTS

The extension of this development to finite element models has a high degree of
similarity to the finite-difference implementation. The computational space is divided
into a boundary region and an interior region. The field is duplicated in the boundary
layer, and an interface perimeter, say T', is chosen as the boundary on which the fields
are averaged.

In the finite element method, each row in the system matrix corresponds to the
unknown field specified at a signle node. The discrete equation for each node is
an algebraic relationship that is obtained through the enforcement of the minimum
energy variational principle. However, regardless of the complexity by which we arrive
at the system matrix, we obtain an algebraic relationship between the nodes. This
algebraic relationship is similar to (5) except for more added terms depending on the
finite element mesh, size, and shape.
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For each matrix row that involves nodes on the averaging perimeter I', the nodes
to the exterior of I' are averaged while the nodes in the interior remain the same.
This procedure does not alter the basic finite element mesh construction but involves
minor post-processing of the system matrix.

V1. NUMERICAL EXPERIMENT USING THE FINITE-DIFFERENCE METHOD

We consider the problem of a TM-polarized point source radiating in two-dimensional
free space. The source is placed in the center of a 21 cell x 21 cell computational
domain. The grid spacing is A = 0.05X. The boundary layer is taken to be 6 cells
wide. We use Higdon’s third-order boundary condition for B in (1) and (2). Hig-
don’s boundary operators are well-suited for rectangular outer boundaries and thus
are ideal for the finite-difference method.

Figure 3 shows comparison between the COM solution and the exact solution ob-
tained from the analytical series solution for the point source (Hankel function series.)
The solution presented in Fig. 3 corresponds to the electric field on the nodes lying
across the top layer spanning 20 nodes (the corner nodes are excluded.) The COM
solution is observed to compare very favorably with the exact solution. It is impor-
tant to note that the COM solution includes discretization errors that are present
even if the boundary condition does not generate any reflections.

VII. CoNcLUSION

This short paper presented the application of concurrent COM in frequency-domain
simulation. The averaging of the solutions obtained from the application of each
of the complementary operators is performed within a single simulation by direct
substitution in the system matrix.

The results, presented for a simple numerical experiment, testify to the validity,
strength and efficiency of this new implementation.
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Abstract

Studying the use of a Photonic Band Gap Structure (PBG) as a passive filtering element in microwave
devices has been well proven by both etching structures in the ground plane[1] and drilling holes in the
dielectric[2]. However analyzing the destination of the propagating and mitigated energies is essential
in order to completely understand the behavior of inserting such structures into any microwave device.
To analyze and control the external effects of a circular 2D PBG structure in a ground plane, inner
circular metal patches were inserted into the PBG and varied over a range of diameters.

I Introduction

Photonic Band Gap structures refer to the use of a repeated pattern of objects, separated in pitch by a
function of lambda over two. This periodicity can prohibit forward progress of a specific band of
frequencies over the various vectors of propagation. This phenomenon is due to the repeated
destructive back scattering of the incident wave off of the periodic lattice geometries[3]. These
photonic structures can exist in 1D, 2D, and 3D space. This paper will present 2D square lattices of
circular and annular rings etched in the ground plane of a microstrip.

The use of PBGs in microstrip elements has been reproted in 2 distinct implemtaions. One by
drilling actual dialectic lattices in the substrate level while not disturbing the ground plane[2]. This
method, although effective, proves to be harder to fabricate since the copper strip must be laminated to
the board. The second way is to etch or print a structure on to the ground plane creating disturbances in
the quasi TEM propagation of a microstrip wave[1]. This method is practical for PCB designers since
simple machinery can be used to achieve lattice etching. Although this type of structure can be
successfully inserted into a microstrip for filtering[1], fields will exist beyond the base of the ground
plane. In general, by substituting an annular ring for the regular circular PBG we can reduce the field
strength below the ground plane while still achieving the same stop band frequency. However there is
a relationship between the area blocked by the inner plate and the relative stop band null depth.

I1. The Basic Model Design
A 2-D square lattice, was chosen to be etched on to a ground plane below a normal 50 microstrip
line. A 25mill thick substrate with a corresponding dielectric constant of 10.5 was used to achieve a

50Q2 line impedance with a 25mil strip width. To achieve a 12Ghz stopband, the pitch of the lattice is
200mill in both the lateral and longitudinal directions[1]. An annular ring geometry was chosen with
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an outer radius (D1) of 100mill, and an inner radius of (D2) which was varied over the range 0 — 80mil
by 20mill steps. The outer diameter does not effect the center frequency of the stop band, but does
effect the band width of the stop band. In our case DI was kept constant, and the inner plate became
the variance on the stop band characteristics.

All models reported were designed using LC, the SGI FDTD algorithm. All models were
sourced using a gaussian pulse with frequency content up to 35Ghz which was supported by the FDTD
grid resolution. PML was used as the ABC to achieve the minimum amount of reflections possible.
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Figure 1: Physical dimensions for the annular ring PBG in FDTD.

HI. PBG Stop band Analysis

In the systematic study of stop band null depth vs. annular area, the inner radii of the metal plate was
varied to show trends for optimal design of the PBG. The nominal case is taken to be a PBG relief
with an inner diameter of zero, or a complete circular relief. Figure X shows clean stop bands at
12Ghz and 21GHz, qualifing the stucture as a valid PBG [1]. Figure X shows null depths below —15
dB up to a inner diameter of 80 mils. Figure X shows a —3 dB bandwidth greater than 2.5 GHz. for
inner diameters up to 80 mils. These results confirm the PBG characteristics are retained with the
insertion of inner diameters up to 80% of the element area. At an inner diameter of 80 mils a spike in
null depth is observed. This is thought to be a result of resonances within the annular slot, and is
discussed in the radiation section. Past this inner diameter the performance of the PBG sturcture

degrades rapidly.
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Figure 3: Null depth within stopband versus inner ring diameter.
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IV. Coupling Analysis in a PCB

Using PBGs in a PCB stackup can lead to cross layer coupling. Pictured below is a three layer printed circuit
board modeled in FDTD. The top layer is a 50Q microstrip (25mill) overlayed on a 25mill thick RT/Duriod
dialectric slab. Before inserting the PBG, the system contains a solid ground plane and behaves normaly with
line two being completely de-coupled from the top line. However when the PBG is present in the ground plane
the new composite stucture behaves as a coupled 4 port network. Figure X shows the scattering parameters for
the new coupled system. The new 4 port sturcture exhibits PBG behavior between ports 1 and 2, while showing
significant coupling within the bandgap region. This is a direct result of the reflected energy in the traditional
PBG, being rerouted to the coupled line. Interducing annular rings would reduce this coupling.
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Figure 5: Stackup for a simple 3 layer PCB board modeled in FDTD
V. PBG Structure as a Radiator

The radiation characteristics of the PBG structure was analyzed at it’s design frequency of 12 GHz.
The PBG structure can be viewed as an array of annular slots, with excitation convienently available
though the microstrip line. Typically patterns for the various annular ring dimensions are shown in
figure X. The patterns are reminesent of a series fed array, with distinct characteristics identifiable.
The E-plane is assumed in the direction of proporgation, and for a traveling wave mode, a linear phase
and amplitude taper is expected across the E-plane. The annular slot array is fed at the center line
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The slightly high cross polarization in the H-plane suggests the possiblity of a degenertive mode
VI. Conclusions

existing in the annnular slots.
The use of annular rings in place of traditional circular PBG elements is thought to reduce coupling

and pear field intensity. In the reported systematic study the insertion of annular rings retains PBG
characteristics and performance. Afier a threshold level of 80%, degradation in both bandwidth and
null depth was found. Radation from the annular ring PBG structure was found to have qualities
similar to a series fed array of radiating slots. Future work will confim the reduction in coupling in
PCB sturctures due to annular rings. Future work will investigate the dual operation of annular rings

paraliel to the direction of proporgation, thus phase and amplitude symmetry exists in the H-plane.
as PBG’s and constructive radiators.
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Principal Planes of PBG Array
0

270

Figure 7: Principal plane patterns from PBG structure.
Solid line: E-plane Co-Pol, Dotted line: H-plane Cross-Pol, Dashed line: H-plane Co-Pol.

References

[1] Vesna Radisic, Yongxi Qian, Roberto Coccioli, and Tatsuo Itoh, “Novel 2-D Photonic Bandgap
Structure for Microstrip Lines,” JEEE Microwave and Guided Wave Letters., Vol. 8, No.2, Feb.
1998.

[2] Ian Rumsey, Todd Lammers and Melinda Piket-May, “Microstrip and Stripline Design for Novel
Structures,”URSI National Radio Sience meeting, Boulder Colorado, conference proceedings,
1999.

[3] Eli Yablonovitch and dan Sievenpiper, D-Tutorial “High Impedance Electromagnetic Surfaces,”
URSI International Radio Science meeting Toronto Canada, Conference notes and Proceedings
1999.

[4] J. D. Joannopoulos, R. D. Meade, J. N. Minn, “Photonic Crystals,” (Princeton University Press,
1995).

165




Fast Electromagnetic Analysis
Using the Asymptotic Waveform Evaluation Method

Dan Jiao and Jian-Ming Jin

Center for Computational Electromagnetics
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, Hlinois 61801-2991

Abstract

This paper describes the application of the asymptotic waveform evaluation (AWE) method
to a variety of electromagnetic problems for a fast frequency-sweep analysis. These problems
include (1) scattering by a perfectly electric conducting (PEC) body, (2) radiation of wire
antennas on a PEC body, (3) scattering by a dispersive dielectric body, and (4) scattering and
radiation of conformal cavity-backed microstrip patch antennas. It is shown that the use of
AWE can speed up the analysis by more than an order of magnitude.

1 Introduction

Many electromagnetic applications require the calculation of the frequency response of a device
over a wide frequency band rather than at one or a few isolated frequency points. For example,
for radar target recognition, one has to compute the radar cross section (RCS) of a target over a
wide frequency band to generate the range profiles and synthetic-aperture-radar (SAR) images. For
analysis of antennas especially the wide-band antennas, one has to calculate the input impedance at
many frequency points. Such calculations can be very time consuming when a traditional frequency-
domain numerical method is used because a set of algebraic equations must be solved repeatedly
at many frequency points. The number of algebraic equations is proportional to the electrical size
of the problem and can be large for most applications. Therefore, there is an urgent need to find
approximate solution techniques that can efficiently simulate a frequency response over a frequency
band.

One such technique is the method of asymptotic waveform evaluation (AWE) [1], which was
originally developed for high-speed circuit analysis. In AWE, the transfer function of a circuit
is expanded into a series, and the circuit model is then approximated with a lower-order transfer
function by moment matching. The AWE has recently been applied to the finite-element and finite-
difference analysis of electromagnetic problems [2-9]. In these applications, the implementation of
AWE is straightforward since the resultant matrix equation has a simple dependence on frequency.

For electromagnetic scattering and radiation by conducting and dielectric objects, a very useful
solution technique is the method of moments (MoM) that solves a surface integral equation (SIE)
for the electric current on the surface of an object. This method is advantageous because (i) it
limits the unknown current on the surface of an object and (ii) it satisfies the radiation condition
via the Green’s function. However, the method results in a dense matrix that is computationally
expensive to generate and invert. Since this matrix depends on frequency in a complex manner, one
has to repeat the calculations at each frequency to obtain the solution over a band of frequencies.
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In this paper, we describe the application of the AWE method to a variety of electromagnetic
problems for a fast frequency-sweep analysis. These problems include (1) scattering by a perfectly
electric conducting (PEC) body, (2) radiation of wire antennas on a PEC body, (3) scattering by a
dispersive dielectric body, and (4) scattering and radiation of conformal cavity-backed microstrip
patch antennas. All of these problems are formulated in terms of a SIE or its combination with the
finite element method (FEM).

2 The AWE Method

Given an electromagpetic problem, its numerical analysis usually results in a matrix equation in
the following form:

A(k)z(k) = y(k) 1)
where A is a square matrix, z is an unknown vector, y is a known vector associated with the
source or excitation, and k is the wavenumber related to frequency. Since the matrix A depends
on frequency, it must be generated and solved repeatedly at each individual frequency in order to
obtain a solution over a frequency band. This can be time consuming especially for problems whose
response varies drastically with frequency. In this work, we alleviate this difficulty using the AWE
method.

In accordance with the AWE method, to obtain the solution of (1) over a wide frequency band,
we expand z(k) into a Taylor series

Q .
(k) = D_ma(k — ko) @

n=0
where kg is the expansion point. Substituting this into (1), expanding the impedance matrix A(k)
and the excitation vector y(k) into a Taylor series, and finally matching the coefficients of the equal
powers of k — ko on both sides yield the recursive relation for the moment vectors:

mo = AT (ko)y(ko) _ ®
ma = 4D (ko) y(";("“f’) — 3 A Fo)mas

il

i=1

n>1 4)

where A(~1) denotes the inverse of A, A®) denotes the i-th derivative of A, and likewise y® denotes
the n-th derivative of y.

The Taylor expansion has a limited bandwidth. To obtain a wider bandwidth, we represent
z(k) with a better behaved rational Padé function:

L i
0 &3 k-
:l:(k) — Zz 1?'1 ( kﬂ) _ (5)
1+ X521 bjlk — ko)
where L + M = Q. The unknown coefficients a; and b; can be calculated by substituting (2) into

(5), multiplying (5) with the denominator of the Padé expansion, and matching the coefficients of
the equal powers of k — ko. This leads to the matrix equation

my mr—-1 mr-z et ML_M+1
mr4+1 mg mp—-1 st MLoM+2
mr4y2 ML+l mr ter ML-M43
ML4M~-1 ML4M-2 ML4LM-3 *° ML
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by MLyl

b2 Ly
x{8 |==|mLs (6)
b ML+M

which can be solved for b;. Once b; are obtained, the unknown coefficients a; can then be calculated
as

i
a=Y bmi; 0<i<L )
=0
Clearly, in the procedure described above the impedance matrix A(k) is inverted only once,
which is the main reason for the efficiency of the AWE method. In the case that one expansion
point is not sufficient to cover the desired frequency band, one can use multipole expansion points,
which can be selected automatically using a simple binary search algorithm [3].

3 Applications

The AWE method described has been applied to a number of electromagnetic problems. A brief
description of each problem is given below.

3.1 Scalttering by a PEC body

The scattering by a PEC body can be formulated in terms of an electric field integral equation
(EFIE) {10] or a magnetic field integral equation (MFIE). However, both EFIE and MFIE suffer
from the problem of interior resonance, which yields erroneous solutions at certain frequencies. This
problem can be overcome by combining EFIE and MFIE to form a combined field integral equation
(CFIE) [11]. Our numerical simulations showed indeed that when the expansion point of AWE is
close to the frequency of interior resonance, both EFIE and the MFIE can exhibit significant errors.
Figure 1 shows the RCS of the 1-m long NASA almond. It takes the direct method 23220 s on a
Digital Personal Workstation to calculate the RCS at 84 frequency points from 0 to 1.7 GHz. The
number of unknowns varies from 1560 to 2148 during the frequency sweep. With the AWE method,
it takes only 1989.3 s to calculate the RCS over the entire band using seven expansion points.

3.2 Wire antennas on a PEC body

For wire antennas on a PEC body, numerical solution can be obtained by applying EFIE to the
wire antennas and CFIE to the PEC body. However, special basis functions are required in order to
simulate the current flow at the junction between the wires and the PEC body. We implemented the
AWE method into the MoM code described by Chao [12] and considered a configuration consisting
of two loop antennas on a finite ground plane. The calculated results are combined with the
measured data [13] in Fig. 2.

3.3 Scattering by a dielectric body

A formulation that is widely used for scattering by dielectric bodies is the so-called PMCHW [14],
named after Poggio, Miller, Chang, Harrington, and Wu, who originally developed the formulation.
In this formulation, the EFIE for the field outside the object is combined with the EFIE for the
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Figure 1: RCS frequency response of the 1-m long NASA almond from 0 to 1.7 GHz (VV-
polarization with §% = 90° and ¢*° = 0°).

field inside the object to form a combined equation. Similarly, the MFIE for the field outside the
object is combined with the MFIE for the field inside the object to form another combined equation.
These two equations are then solved by the MoM. This formulation is found to be free of interior
resonances and yields accurate and stable solutions. With the AWE method, we can evern model
dispersive dielectrics. An example is given in Fig. 3, where the backscatter RCS is displayed as
a function of frequency for a dispersive dielectric sphere having a radius of 0.5 cm. The relative
permittivity of the dielectric is described by the Debye model. Its real part varies from 2.56 to 2.33
and its imaginary part varies from —0.024 to —0.55 as frequency varies from 0 to 27.5 GHz. As
can be seen, the numerical results agree with the exact Mie series solution very well. The AWE
method speeds up the calculation by a factor of 13.

3.4 Cavity-backed microstrip patch antennas

The scattering and radiation from a cavity-backed microstrip patch antenna can be efficiently
characterized using the hybrid finite-element boundary-integral (FE-BI) method [15]. The resulting
matrix equation is a combination of the FEM and MoM matrix equations. Despite its complicated
form, it can still be handled by the AWE method. Figure 4 shows the input impedance of a
microstrip patch antenna as a function of frequency from 1 to 4 GHz. The antenna consists of a
5.0 cm X 3.4 cm rectangular conducting patch residing on a dielectric substrate having thickness
t = 0.08770 cm, relative permittivity ¢, = 2.17 and a loss tangent of 0.0015. The substrate is
housed in a 7.5 cm % 5.1 cm rectangular cavity recessed in a ground plane. The patch is excited by
a current probe applied at £y = 1.22 cm and y¢ = 0.85 cm. The number of unknowns used in the
calculations is 1741. With a frequency increment of 0.05 GHz, it takes the direct method 4012.8
s to obtain the solution. With a 6th-order Taylor expansion (Q = 6,L = 3,M = 3), the AWE
method produces an accurate solution with 0.01 GHz increments over the entire band in 254.2 s.

4 Conclusions
This paper described the application of the AWE method to a variety of electromagnetic problems

for a fast frequency-sweep analysis, which include (1) scattering by a perfectly electric conducting
(PEC) body, (2) radiation of wire antennas on a PEC body, (3) scattering by a dispersive dielectric
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Figure 2: The S-parameter of two loop antennas on a finite ground plane (Circles: calculated. Line:
measured).

body, and (4) scattering and radiation of conformal cavity-backed microstrip patch antennas. It
was shown that the use of AWE can speed up the analysis by more than an order of magnitude.
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SUPERSTRATES MOUNTED ON CIRCULARLY-CYLINDRICAL PLATFORMS
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1. INTRODUCTION

Mounting microstrip patch antennas onto platforms such as circular cylinders is a practical application of conformal
antenna technology. With the exception of planar structures, the circular cylinder is by far the most popular platform
geometry for microstrip antennas. There are a wide range of applications for this type of antenna/platform configuration in
both military and commercial sectors. Many of these applications require the use of a dielectric superstrate, which serves
as a protective cover for the microstrip antenna. Much emphasis has been placed on finding accurate and efficient means
for analyzing these dielectric-loaded microstrip patch antennas using a variety of different techniques.

Wong presents detailed studies in [1} of the design and operation of non-planar microstrip antennas including patches
mounted on circular cylinders with both substrates and superstrates. A method for analyzing radiation characteristics of
microstrip patch antennas in the Fourier domain is given in [2] including derivations of far-field radiation pattern
expressions. The radiation pattern and impedance characteristics for square and circular microstrip patch antennas
mounted on cylindrical platforms are also discussed in detail in {3] and [4]. In [S] the dyadic Green’s functions and
moment method are used to analyze cylindrical-rectangular microstrip patches with a dielectric covering, with emphasis on
the impedance behavior of such antennas. A reciprocity approach using the finite-element method to model cylindrical
platforms of arbitrary cross-section is employed in [6] to analyze microstrip patch antennas and arrays of microstrip patch
antennas. Additional discussions regarding the impedance characteristics versus frequency for a superstrate-loaded
rectangular patch antenna on a cylindrical surface are contained in [7]. Kempel presents an excellent review of the most
recent advances in the modeling of conformal patch antennas in [8].

In [9] a technique for calculating far-field radiation patterns for substrate-loaded microstrip patch antennas using a
reciprocity approach was introduced. This procedure was demonstrated to be both accurate and efficient for analyzing
patch antennas mounted on circularly-cylindrical platforms. This paper will present an extension of this procedure, namely
the inclusion of the effects of a superstrate in the far-field radiation pattem expressions for the patch antenna. The
superstrate analysis procedure will be shown to be both accurate and efficient, possessing the same advantages as the
substrate-only analysis presented in [9]. Two examples will be used to demonstrate the accuracy and utility of this
technique for analyzing substrate- and superstrate-loaded microstrip patch antennas mounted on circularly-cylindrical
platforms.

2. THEORY

The geometry being considered for this application of the reciprocity approach, as shown in Figure 1, involves a microstrip
patch antenna of any arbitrary shape mounted on a dielectric-coated PEC cylinder and covered by a dielectric superstrate.
In reality, this configuration would be contained within a recessed cavity in the surface of a PEC body, however since it is
assumed that the dimensions of the patch antenna are sufficiently small, the effects of the cavity walls may be ignored.
The radius of the PEC cylinder is denoted by a, the height of the substrate is given as b, and the height of the superstrate is
¢. The substrate and superstrate consist of dielectric materials with relative permittivities €, and &, respectively. A
reciprocity approach based on that described in [9], where patch antennas involving the presence of only a substrate were
considered, is extended here to include the effects of the presence of a superstrate. This technique invoives applying
domain decomposition such that two separate problems of reduced size may be solved. These results are then related via
the reciprocity theorem in order to calculate the resultant far-field radiation patten. The first step in the procedure is to
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solve for the current distribution on the surface of an equivalent flat patch antenna using, in this case, a Method of
Moments (MoM) technique. The second step involves using an analytical technique to solve for the total electric field
between two dielectric layers (i.e., the substrate and superstrate) of a coated metallic cylinder produced by an incident TE*
and TM*-polarized plane wave. The final step involves carrying out the required dot product between the surface current
and the total electric field and integrating this result over the surface of the patch to obtain the desired Ep and E,
components of the far-zone radiation pattern.

It is convenient for this analysis to express the electromagnetic fields in terms of the Hertz vectors as [10]

(1)
(1)

where I and TI* are the electric and magnetic Hertz vectors, respectively. Using the Hertz vectors and applying the
reciprocity approach, the far-field radiation pattern expressions for a patch antenna mounted on a dielectric-coated PEC
cylinder with a dielectric superstrate may be expressed as
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e ¢)“1’lo {(; O:Z ]Z 1Y rlpnT (B p20)+ an¥n (B 20} 4 (. 6) e
- jBob Z(— 1y [P;Jé. ‘ﬂpzb)+ an¥n (ﬂpzb)]s¢ (n6)e’ @b

(ﬂpZ Z(—l) [P (ﬂpzb)+q,,}' (ﬂ,,-_;b)]s (n,g)ejnpﬁ}

where b =a+h is the radius from the center of the PEC cylinder to the surface of the substrate. The infinite summations
given in (2a) and (2b) may be truncated according to the convergence condition N =2 S8ya, where N is the total number of
terms that must be used to guarantee convergence of the expressions [2]. The parameters Sy and S, are surface integrals
which depend on the patch current distribution given by [9]
54(n,6)= HJ, (¢",2')e I eIB2 agdy (3a)

s
$:(1,6)= [[1.(2)e " 7 agis (3b)

§

where §' is the area of the arbitrarily-shaped conformal patch. The coefficients b,,5,,c, andcj, in the TM, case and
Pns P4, and g, in the TE, case are found using the matrix equations
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respectively, The elements of the matrix and vector used in (42a) and (4b) to determine the required coefficients are
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where c=ag+h+t is the radius from the center of the PEC cylinder to the surface of the superstrate, and
F, Fy, F3,and Fy are parameters defined as
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The wave-number definitions used in the above expressions are defined as
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The procedure described here for calculating the far-field radiation patterns of a substrate- and superstrate-loaded
microstrip patch antenna on a circularly-cylindrical platform has the advantage that it can be used in conjunction with
MoM, FEM, or FDTD analysis techniques. The use of the reciprocity approach has allowed exact analytical expressions
for the radiation patterns to be determined which can be easily and efficiently evaluated for any arbitrarily shaped
microstrip patch antenna.

3. RESULTS

Two examples will now be presented to demonstrate the abilities of the reciprocity approach for analyzing substrate- and
superstrate-loaded microstrip patch antennas. The first example is a comparison of the far-field patterns for two different
cases. The first is that of a patch mounted on a circularly-cylindrical platform with only a substrate coating made of
Duroid (g, = 2.33), while the second involves the same geometry but with a superstrate covering added (the patch in both
cases is rectangular in shape). Since the relative permittivity of the superstrate dielectric has been chosen to be g, = 1 (air),
this case geometry is equivalent, electrically speaking, to the case with only the substrate. The PEC cylinder has radius a =
0.5A, the thickness of the substrate is 2 = 0.05) and the thickness of the superstrate is # = 0.05A. The patch is fed using a
microstrip feed-line with unity voltage excitation. The far-field radiation pattern produced using the superstrate reciprocity
expressions and the substrate reciprocity analysis should therefore be identical. Figures 2a and 2b show comparisons
between the substrate-only and substrate/superstrate axial (¢ = 0°) and azymuthal (8 = 90°) gain pattemns, respectively. The
patterns produced when the air superstrate is included, indicated by circles on the plot, are indeed identical to those
produced when the substrate-only analysis is used, represented by the solid line on the plots. This verifies the validity of
the expressions derived to compute the far-field radiation pattern for a patch antenna with a superstrate covering.

Figure 3 shows the geometry for the second example which is an elliptical patch mounted on a circularly-cylindrical
platform with a dielectric substrate made from Duroid (g, = 2.33) and a dielectric superstrate also consisting of Duroid (&,
= 2.33). The patch has the dimensions 10 mm for the semi-major axis and 7.5 mm for the semi-minor axis, with PEC
cylinder radius a = 0.5, substrate thickness & = 0.1A and superstrate thickness ¢ = 0.1A. The patch is fed using a probe
feed with unity voltage excitation. Figures 4a and 4b show plots of the J; and J, current distributions over the surface of
the elliptical patch, respectively, produced using a MoM code for analysis of microstrip patch antennas. These plots
clearly show the location of the probe attachment and the expected behavior of the current components along normal and
tangential edges. Application of the reciprocity approach for the inclusion of superstrates leads to the far-field E, and E,
radiation patterns shown in Figures 5a and 5b, respectively. These patterns agree with expected results, and once again
verify the accuracy of the expressions derived using reciprocity for microstrip patches with both substrates and superstrates
included.

4. CONCLUSIONS

The reciprocity approach first introduced in [9] for analyzing microstrip patch antennas on circularly-cylindrical platforms
with substrate loading has been successfully extended to include superstrate loading as well. By setting the relative
permittivity of the superstrate to that of air, the validity of the superstrate analysis was confirmed throngh a comparison
with the results produced using the substrate-only expressions for the far-field radiation pattern of a rectangular microstrip
patch antenna previously derived in [9]. Finally, the ability to analyze arbitrary geometries including superstrates of any
relative permittivity were also demonstrated using an elliptical patch antenna with a superstrate consisting of Duroid (g2 =
2.33).
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Figure 1: Arbitrarily-shaped cylindrical patch geometry with both substrate and
superstrate included
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Figure 2: Gain pattern comparison for substrate-only and superstrate cases in
(a) an axial plane (¢ = 0° and 0° < 6 < 180°) and (b) the azimuthal
plane (6 =90° and 0° < ¢ <360°)

Probe Feed

Figure 3: Geometry for probe-fed elliptical patch case with Duroid substrate and
Duroid superstrate (g = € =2.33)
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Figure 4: Surface plots of J and J, for an elliptical patch antenna with Duroid
Substrate (g,; = 2.33) and Duroid Superstrate (g, = 2.33)
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Figure 5: Surface plots of (a) Ep and (b) E, for an elliptical patch antenna with Duroid
Substrate (g1 = 2.33) and Duroid Superstrate (g, = 2.33)
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A New FDTD Scheme to Model Chiral Media
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L Introduction

Bi-anisotropic materials have attracted considerable attention in recent years because of
their unique properties in affecting the behavior of electromagnetic fields. Within these
materials, two separate mechanisms take place. Bi-isotropy describes the coupling
between the electric and magnetic materials. Anisotropy refers to the direction dependent
behaviors of the electromagnetic fields. These mechanisms make the modeling of such
materials in the time domain using conventional approaches extremely complicated and
cumbersome. For instance, many of these schemes are unstable and none have been
successfully generalized to include dispersive bi-isotropic materials. A novel and robust
numerical scheme will be developed in this paper to model bi-isotropic materials in the
time domain, based on the FDTD method. The main advantage of this new scheme is its
inherent simplicity, which will easily allow the modeling of dispersive bi-isotropic
behavior. This simple approach can also be extended to the modeling of bi-anisotropic
materials in FDTD.

Previous attempts have been made in the area of modeling chiral or bi-isotropic media
[1], [2]. Hunsberger, [1], was able to successfully model a chiral slab in 1-D, using a
hybrid FDTD method (i.e. a combination of an implicit — using a recursive technique--
and an explicit scheme). However, one of the main drawbacks of this scheme is the
complexity of the formulation since the fields are coupled and the values at a particular
cell depend on the values at neighboring cells. This is a consequence of the spatial
dispersion arising from the direct implementation of chiral material constitutive
equations. The implementation of this scheme for modeling dispersive bi-isotropic or bi-
anisotropic materials would be extremely difficult. Another successful attempt at
modeling electromagnetic propagation in bi-isotropic media using FDTD was made by
Garcia et al. [2]. Although their method is less complicated than that of [1], the
expressions for the field values contain additional terms that need to be obtained through
approximations. For example, the electric field expression contains not only the curl of
the magnetic field, but also another magnetic field term, as well as the time derivative of
the magnetic field. Although both of these schemes have provided very important
insights into the area of modeling bi-isotropic and bi-anisotropic media using the FDTD
method, they are more complicated than the scheme proposed herein and thus make it
more difficult to model more interesting aspects of bi-isotropic and bi-anisotropic
materials. This paper details the main ideas behind a newly-developed scheme to model
bi-isotropic materials using the FDTD method. The co- and cross-polarized transmission
coefficients obtained from this scheme are compared with their analytical counterparts
for validation purposes.
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. Analysis Method

This section will discuss the essential concepts behind the new FDTD technique to model
a chiral medium, which is a subset of the more general bi-isotropic (BI) medium. The
main idea behind this scheme is based on decomposing the electric and magnetic fields in
the medium into the wavefields E,, E., H,, H_, as shown in (1). These wavefields can be
thought of as circularly polarized waves, where the “+” represents a right-hand circularly
polarized wave and the “-* represents a left-hand circularly polarized wave [3].

E=E, +E_

1
H=H, +H_ W

Each of the two wavefields, E,, H, and E., H. sees the BI medium as an equivalent
isotropic medium with respective medium parameters €.,u. and €,u. [3]. The effective
permittivity and permeability are expressed as:

Hy = ploosOtx, )™
£, =elcosOxx, Yt @

cosf=4/1- 17

where y; is the normalized Tellegen parameter (i.e., Yy =¥/n and n= w/,ue/ M€, ) and K

the normalized chirality parameter (i.c., k.= &/n) [3]. The Tellegen parameter may also
be expressed as X, = sin0, which relates ¥; to the angle 0. The two sets of wavefields are
also independent and do not couple in a homogenous BI medium. This indicates that
Maxwell’s equations in a sourceless medium split into two independent sets and the
resulting wavefields individually satisfy the following relationships:

VXE+ =—jou H,
VXE_ =—jou H
VxH, = joe E,
VxH_ = jwe E_

©)]

At this point we make the observation that these equations can be discretized and
incorporated easily into a standard FDTD formulation. In summary, the electric and
magnetic fields can be uncoupled into the + wavefields which satisfy the Maxwell’s
equations in the corresponding isotropic “+” medium using the equivalent material
parameters, &4 U+

II.  Approach to the FDTD Formulation

Suppose we consider the simple 1-D chiral slab surrounded by free space that is
illustrated in Figure 1. This problem was selected because it has a known analytical
solution that can be used for validating the proposed FDTD scheme.
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Figure 1. The modeled chiral slab surrounded by free space.

A total/scattered field formulation is used to model the electromagnetic propagation
through a chiral slab for normal incidence [4]. Mur’s finite-difference scheme for the
absorbing boundary condition [5] was used to truncate the computational domain. As
stated in Section II, the electric and magnetic fields are decomposed into their respective
wavefield components, E,, H;. In a chiral medium, both co- and cross- polarized waves
are supported. For this example, the direction of propagation is along the z-axis and x-
and y- polarized electrical and magnetic fields exist throughout the computational
domain. In the FDTD scheme proposed herein, the x-component of the electric field is
composed of E,, and E,_and the y-component of the electric field is composed of Ey. and
E,.. The form of the excitation field used in the formulation is given by:

E= Ee_jh(l’.\lx cos(x, kz) —1‘\1 y sin(K,kz)) @

Substituting the appropriate expressions for u, and u, in terms of the circularly

polarized unit vectors, u. and u- (where + refers to right-handed and — refers to left-
handed circular polarization),

N 10~ » A (e
Uy = ——=| s+ 0. u, =—=| u.—u. 5)
) g
leads to the following expression:

E=u, Lo gy L ®)

V2 V2

The two complex circularly polarized unit vectors in (5) and (6) are defined by:
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Co1(r
U+ =—=| Ux—ju
)

.1 s )
u- =E[ux+ juyj
The x. and y+ components of the field can now be specified as follows:
where the two wavenumbers, k., are defined as:
k, =k(cosftx,) ®
Since the Tellegen parameter is assumed to be zero for this example,
X, =sinf=0—0=0" 10)
k, =k(tx,)
the wavefield components given in (8) can be written as:
E, = —ge""“ [cos(x, kz)~ jsin(x,kz)] E_= —g-e"h [cos(x, kz)+ jsin(x, kz))]
11
E, = —JE e [cos(x, kz)- jsin(x,kz)]  E,. =12£e""‘z [cos(x,kz)+ jsin(x, kz)] W
The expressions for E; and E; may now be derived from (11):
E, =E, +E, =Ee '™ cos(k, kz) (12)

= = -k
E = Ey+ +E,_ =-Ee™ sin(x,kz)

which are in agreement with (4). The next step is to incorporate these incident fields into
the FDTD formulation. The time-dependent form of E,, can be derived as follows:
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Ex+ (z,0)= RE[Eix+ (z)ei”"]
E,.(zn)= Re[e"” %e'f("z“‘rh)]

Ex+ (Z,t) = Re[_gej(‘“‘kz—x,kz)] (13)

E. (z0)= %cos(a)t ~kz—x kz)
A similar procedure can be followed for the remaining three components which yields
E
E (z,1)= ?cos(wt —kz+x,kz)
E =Lq kz) 14
y+(Z,t)—7sm(wt—kz—K, (14)

E, (z.t)= ——g—sin(wt—kz+l(,kz)

The term, E, in the incident field expressions represents the electric field amplitude and
can be specified as any functional form. For the specific example considered here, a
Gaussian pulse plane wave was used to represent this amplitude factor.

The wavefields in free space follow the conventional FDTD equations, and are summed
appropriately to provide the values for Ex and E,. The modified equations for the fields
propagating in the chiral slab are derived and discretized for the FDTD method in the
following way:

VxH, = jos,E,

VxH, =¢, ‘%E:

ot :
: . (15)
E=(x, - jx Nen.e.6, =(x, - jx, Wue

%, =0=VxH, =(£i%(0—jlc, ),/,us)%Ei

VxH, =(£i~ j—e*”’)-a—Ei

VxH, =¢s(1i:<,}(,‘?—t12i

Discretizing this equation results in:

185




E;+l :E; +(_£_ 1+A; )AZJ(H;ﬂ/Z(i)_H;ﬂIZ(i_1))

En+l = En+l +En+l
+ -

(16)

A similar procedure is used for deriving the discretized equations for the magnetic fields

by starting with

VXE, =-jou H,

¢ =, + jx, Wit p,6,6, = (1, + jx, Nue

%, =0 VXE, =-(u¥ jnl0+ jK,)\fﬂ_s)ga;Hi

VxE, =—,u(1izr,)-aa;nt

The discretized form of this equation is:

‘When the wavefields are propagating in free space, governed by (15) — (18), the € and L,

n¥l/2 _ n-1/2 __ At nys _ Ty
H}' =H] (——————ﬂ(l iK’)AZJ(Et(Hl) E()

Hn+1/2 = Hn+l/2 + Hn+l/2
+ -

become €, and W, and the chirality parameter ¥; goes to zero.

IV. Results

Once the time domain values for the electric and magnetic fields are obtained, they are
transformed into the frequency domain using the Fast Fourier Transform. Then, the co-
and cross-polarized transmission coefficients, at one cell beyond the slab, are calculated

and compared with the analytical results, as shown in Figure 2.
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Figure 2. The frequency spectrum of the magnitude of the co- and cross-polarized transmission
coefficients compared with the analytical results for x, =0.003.

When k; is set to zero in the program, we expect the cross-polarized transmission
coefficient to become zero, since the cross-polarized wave, E; also goes to zero. The co-
polarized transmission coefficient should produce the same results as that for a dielectric
slab. Figure 3 shows the co- and cross-polarized transmission coefficients with their

analytical counterparts for ¥; =0.0.
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Figure 3. The frequency spectrum of the magnitude of the co- and cross-polarized transmission
coefficients compared with the analytical results for , =0.
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There is a deviation in the FDTD-calculated transmission coefficients from the analytical
resuits as the frequency increases and this can be attributed to the numerical dispersion
errors inherent in the FDTD method {6]. This type of behavior is typical in FDTD. The
deviation can also be seen in Figure 3, which is essentially the transmission coefficient
for a dielectric slab. The frequency spectrum is cut off at 0.15 GHz, which corresponds
to a cell size equivalent to 1/20™ of the shortest wavelength of interest. More accurate
results may be obtained for finer cell size. Schemes, such as material averaging, have
been studied to improve these results (for cell sizes at 1/20® of a wavelength) and some
alternative schemes are presently being considered. The modeling of dispersive chiral
materials and bi-anisotropic materials are also currently under investigation by the
authors.
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Abstract

T-Matrix Theory solves the scattering problem by muitilayered objects. Typical
applications of T-Matrix algorithms have been limited to homogenous spheres and
ellipsoids. In this paper we generalize the T-Matrix code so that it can handle non-
homogeneous scatterers. One such object consists of a small ellipsoid completely
embedded inside a larger one, and with different dielectric constant than the former.
This configuration is of interest to obtain more realistic information regarding field
distribution and heat deposition in the human body under radio-frequency fields used
in Magnetic Resonance Imaging (MRI) clinical routines. It could mimic a large
object, such as the liver, inside the abdomen, or a tumor growth inside the brain. Our
application of T-Matrix in MRI is novel. Typically, T-Matrix has been used to study
scattering of visible radiation by nanometric particles. Since the dimensions of the
scatterers (nanoparticles-human organs) and the wavelengths (nanometers-meters)
scale both by about a factor of 10°, we realized the possibility of applying this
algorithm to the human body radiation. We show here that this hypothesis turned out
to be true. Moreover, beyond standard algorithms, we have implemented a module to

calculate internal fields inside the scatterers.

) 8 Introduction

The T-Matrix or Extended Boundary Condition
theory was developed in 1969 by P.C. Waterman'? for
the description of acoustic and electromagnetic
scattering from a single homogeneous scatterer. Peterson
and Strom® extended the range of applicability of the
method to scatterers conmsisting of a collection
homogenous layers each of which has constant electric
and magnetic properties.

Although this theory proposes a method to
solve the problem of electromagnetic scattering of a
general monochromatic wave by objects of arbitrary
shape, applications have been limited to the scattering of
single ellipsoids or clusters. This is due to the fact that in
actual implementations of the algorithm as computer
code, the evaluation of general surface differentials
becomes prohibitively time consuming.

T-Matrix expresses the fields as multipolar
vector expansions. It fully takes into account phase-
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retardation effects, which are critical in the cases where
the size of the scatterers is of the order of the wavelength
in the medium.

The scattered and internal fields are expressed
in term of the incident field. Each of those fields is
expanded in term of a vector spherical basis which, in
turn, are solutions to the Helmholtz Equation.

VxVXE-KE=0 1)

The surface currents at the interfaces of the
scatterers are used to link the expansion coefficients of
the various fields by means of non-homogeneous, linear
equations. In particular, internals field coefficients are
expressed in terms of linear combinations of incident
and scattered field coefficients. That linear combination
contains  information of surface  topology,
electromagnetical properties and the basis functions.

The surface topology enters through an
integral of surface differentials. It is in this calculation




Symmetry Axes (cm)

where T-Matrix has the most stringent limitations. On
one hand, numerical evaluation of surface differentials is
computationally expensive. In addition, analytical
expressions of surface differentials, which speed up the
computer code, can only be accomplished in the most
simple situations >

In this work, we have added the possibility to
deal with non-homogenous ellipsoidal objects made up
of non-concentric layers. In that configuration (Fig I, an
inner object is centered at the origin. An outer object,
completely covering the inner one is located such that its
center lays along the z axis.
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Figure 1

Our interest is to represent a non-homogeneous
organ to visualize the radio frequency electromagnetic
field (EMRF) profiles, specific absorption rates (SAR)
for configurations relevant to magnetic resonance
imaging (MRI) as used in clinical settings.

With this T-Matrix code we obtain the EMRF
and SAR for a variety of shapes and compositions at
various frequencies. Knowledge of EMRF is critical to
reliably asses image reconstruction algorithms. SAR, on
the other hand, is proportional to the power deposited in
the tissue, and is important to gauge the safety of
radiation.

In what follows we demonstrate the portability
of the code to different computer arquitectures and
operating systems, and benchmark the program by
logging the various execution times.

1 Theoretical Background

T-Matrix considers three kinds of fields:
incident, scattered, and internal. In our specific
application the expansion of the scattered field is in
spherical Hankel functions of the first kind (non-
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regular). The incident and the inner layer internal field,
are expressed in term of spherical Bessel functions of the
first kind (regular). The internal field in the region inside
the outer layer (but outside the inner) is a combination of
the regular and non-regular solutions. The expansion
coefficients are stored in the so called Q-Matrices”.

We generalize the T-Matrix code beyond
relating incident and scattered waves fields allowing for
the possibility to evaluate internal fields. This turns out
to be important for our applications in MRI since the
image is strongly dependent on the internal fields. In the
past this issue was somewhat less important since in the
problem of scattering of light by nanoparticles, the
knowledge of the internal fields was more a matter of
curiosity than a relevant issue for applications.

The main aim of our program is to obtain the
expansion coefficients of the fields in all the regions in
terms of the coefficients of the incident field.

At the heart of the computer code are the Q-
Matrices, which contain geometrical and electrical
information as well as frequency. The speed of the
program depends on the dimensions of the Q-Matrices
(some of which need to be inverted). These dimensions
are a quadratic function of the multipolar order, as
shown in Table I

Table I
Order Dimension

1 6
2 16
3 30
4 48
5 70
6 96
7 126
8 160
9 198
10 240
11 286
12 336
13 390

Our program uses four matrices in addition to
the four Q-Matrices. The former represents the smaller
set needed to store linear combinations of the Q-Matrices
and their inverses, which are needed to relate any set of
field coefficients to the incident ones.

At the beginning of the program and its
subroutines all the arrays are defined, and space is
allocated in random access memory. In the poorer
computer architectures, convergence is achieved only
after more than eleven hours. Therefore it is of utmost
importance to optimize computer resources. One way
we do that is by saving the coefficients in the diagonal
of the intermediate matrices.




The program also needs two kinds of arrays of
dimension 3 x multipolar order which contain the
expansion coefficients in terms of the basis set, of the
incident, scattered, and internal fields.

In addition to the possibility to calculate
internal fields in a two-layer scatterer, we also contribute
a new application that allows the code to deal with more
general geometries. We changed the integration
subroutine, INTERARXXXX, so that it can handle a
scattering objects with ellipsoidal outer boundaries.
Where the XXXX mean the combination in pair of the
basis expansion (regular, non-regular). In particular, we
improved the code by calculating the surface
differentials referred to a generic point, not necessarily
the center of the ellipsoid. In doing that, we had in mind
the need to tackle problems in which the internal layers
where not concentric with the outer surface.

. Algorithm and Program Code

The program code was written in Fortran 77
with 47 subroutines and 10 functions. But the backbone
is composed of the functions that calculate the Hankel
and Bessel functions; within the subroutines we have
three that carry most of the weight of the computational
problem. Figure II shows the main code flow that
includes the most important subroutines. The subroutine
MATRIZ calls the intermediate integration subroutine
called ROMARXXXX and ROMALXXXX first and
second layer respectively. Those call INTEARXXXX
and INTEALXXXX respectively, which in tumn evaluate
the integrals for a given geometry for the construction of
Q-Matrices. CLUST performs the proper algebra
manipulation which, includes inversion with Q-
Matrices to obtain the coefficients of internals fields. In
CAMPO we use the coefficients coming from CLUST
and call of VECTOR, VECPS], VCRPSI subroutines
that calculate the expansion coefficients of the incident
wave, non-regular basis and regular basis respectively,
when we put all this information together the result is the
internal field for each layer.

For the implementation of the new geometry we
made some changes in the integration subroutine.
Specifically in INTEARXXXX we needed to redefine 2
new radial coordinate as function of center-to-center
displacement in addition to the other parameters that we
consider earlier such as a semi-axes and the azimutal
angle. Those do not depend on the axial angle because
ours is a surface of revolution. Figure I shows a
configuration with the external layer shifted away from

origin.
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Main code flow

Iv. Program Testing

The code was tested in the electrostatic limit
under well established conditions consisting of a
dielectric sphere with the incident plane wave, as shown
in standard textbooks S. The field inside the sphere is

given by equation.
E'=E°3/(e+2) Q)
Where E° is the incident electric field and ¢ is the

permittivity of the dielectric sphere. In our case of
relative permittivity 60 we calculate the internal field
calculated by (2) and with the T-Matrix code. They agree
within 10 %, showing the robustness of our code.

V. Results of Simulation

In this section we present results for the electric
field and SAR along the symmetry axis of the system.
We consider the large eilipsoid to have € = 46.25 o=
1.85 S/m to mimic gray-white matter™®. The small
ellipsoid simulates a tumor with & = 60 o= 1 S/m".
Figures II-VI shows the magnitude of the electric fields
as well as their derivative to enhance the borders.
Generally the field decreases as the wave penetrates the
system. At 700MHz we see an enhancement of the field
at the center of the small ellipsoid. This is due to a
resonant cavity effect. The inset shows the lower and
upper limit of the coordinates of the small ellipsoid.
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Magnitude of electric field along the symmetry axis at
20MHz. The inset shows the result of a derivative filter
to enhance the boundaries.
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Figure IV

Magnitude of electric field along the symmetry axis at
64MHz. The inset shows the result of a derivative filter
to enhance the boundaries.
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Figure V

Magnitude of electric field along the symmetry axis at
170MHz. The inset shows the result of a derivative filter
to enhance the boundaries.
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Magnitude of electric field along the symmetry axis at
700MHz. The inset shows the result of a derivative filter
to enhance the boundaries. There is a resonant peak at
the center of the small ellipsoid.




In the next four figures we plot the SAR along
the Z axis. As expected the heat deposition drops as a
function of depth. In addition the total heat deposition is
a quadratic function of the frequency.
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Figure VII

SAR along the symmetry axis at 20MHz. Most of the
heat deposition is in the incoming region of the E & M
field. As the field moves into the scatterer, conductivity
reduces its magnitude.
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Figure VIII

SAR along the symmetry axis at 64MHz. Most of the
heat deposition is in the incoming region of the E & M

field. As the field moves into the scatterer, conductivity
reduces its magnitude.
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Figare IX
SAR along the symmetry axis at 170MHz. Most of the
heat deposition is in the incoming region of the E & M
field. As the field moves into the scatterer, conductivity

reduces its magnitude.
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SAR along the symmetry axis at 700MHz. Most of the
heat deposition is in the incoming region of the E & M
field. As the field moves into the scatterer, conductivity
reduces its magnitude. One can see that SAR is a
quadratic function of the frequency.
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VI. Code Performance and Portability

In this section we show, that this T-Matrix
code in Fortran 77 has the ability to run under different
computers and resources, and has the portability to work
with various operating systems. Execution time varies
strongly from one system to the next. We shown in

figure X1 the six systems tested.
Execution Time Vs Multipolar Order
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Figure XI

Run time versus multipolar order for various systems. In
the increasing order: Pentium-90MHz 64MB of RAM,
Pentium-200MHz 64MB of RAM, Pentiumil-400MHz
128MB of RAM the systems before has Windows98,
Pentiumil-450MHz 500MB of RAM with Windows NT
V4.0, UltraSparc-1 128MB RAM with Sun OS 5.5,
SparcStation-10 32MB RAM with Sun OS 5.4.
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Figure XII
Convergence of the algorithm at various frequencies.
Even at 700MHz the fields are reliable considering 6
multipolar orders.
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VIL Conclusions

We have described improvements to the T-
Matrix computer code. These improvements allow for
the evaluation of electromagnetics fields scattered by
objects made up of elliptical non-concentric layers. In
addition, the code now can calculate internal fields. This
is a new important improvement, relevant for situation in
which the size of the object allows for internal
measurements. Finally we have extended the traditional
use of T-Matrix from the nanometers wave lengths to the
meter size scales. We found the method useful in MRI
applications, in particular in the detection of soft tissue
inside the human body.

AZ118 Future Work

We are setting up more realistic configurations
of the human body to make full use of the versatility of
this enhanced T-Matrix code. Concretely we are aiming
at studying the fields with arbitrary and irregulars shapes
like brain, lung, kidney and other.
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Characteristics of Silicon Photoconductivity under Near-Infrared Illumination

Preston P. Young, University of Texas at Arlington Department of Electrical Engineering
Robert Magnusson, University of Texas at Arlington Department of Electrical Engineering

Tim R. Holzheimer, Raytheon Systems Company Aircraft Integration Systems

Abstract:

Efficient illumination of semiconductor photonic elements can be accomplished through the
use of high-power semiconductor laser diodes. The objectives of this research are to determine and
characterize the photo-conductive characteristics of high-resistivity silicon for use in modeling and
fabrication of photonic structures. This study provides guidelines for the optimum choice of laser
diode output wavelength and power requirements. Measured data includes silicon photoconductivity
as functions of wavelength, and incident power density for illuminating wavelengths between 810 and
1000nm.

Experimental Setup / Procedure:

The wafers for this series of experiments were fabricated by float-zone processing to provide
high-resistivity (~8000 Q-cm), and minority carrier lifetimes >1msec. The wafer surfaces were
passivated with varying thicknesses of native SiO;. Several samples of high resistivity silicon and one
sample of GaAs were prepared by applying aluminum ohmic contacts to the ends of cleaved bars.
Sample sizes ranged from approximately 2.5mm to 8mm in length by 2.5mm to 4mm in width.
Nominal wafer thicknesses were 450pm.

The individual samples were mounted between two copper contacts tinned with indium solder.
The samples were held under approximately 30z of spring compression applied between the contacts.
A 0.005” K-type thermocouple probe was epoxied to the backside of each sample with thermally
conductive epoxy. The mounted sample was then placed in front of the expanded beam from the
Ti:sapphire laser. The experimental setup is shown in Figure 1. The beam was focused with
approximately 10 degrees of convergence on the sample. A rectangular variable aperture was placed
in the beam path to allow accurate illumination of only the sample area.

This setup allowed the available laser power to be most effectively utilized over a range of
different sample sizes while maintaining near uniform illumination. In all cases, the sample was
mounted normal to the laser source with the entire sample and both junctions illuminated as uniformly
as possible. It is estimated that the incident illumination was uniform within 10%-15% over the
sample surface and contacts. The effects of the thermocouple epoxy on the backside of the wafer were
assumed to be negligible for measurements at wavelengths where the sample becomes transparent.
The sample was biased with a regulated dc power supply and monitored with a series micro-ammeter
and parallel voltmeter.

Measurements were obtained by setting a specific output wavelength at the Ti:sapphire laser
(measured with the monochromator). The argon pump power was then varied to obtain Ti:sapphire
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Figure 1) Schematic of Experimental Setup for Photoconductivity Measurements

output power levels allowing 3 or more incident power level measurements for a given wavelength
setting. The measurements for wavelengths between 810nm and 900nm were completed with one set
of mirrors (set B2); and the measurements between 900nm and 1000nm required reconfiguring the
Ti:sapphire laser with an alternate mirror set (B3). The peak laser power occurred at ~820nm for
mirror set B2 and at ~890nm for mirror set B3. The gain response of the Ti:sapphire crystal is highest
near 800nm. This effectively reduced the available incident power density for increasing wavelength
measurements.

Experimental Results:

Initially, bulk wafer reflectivity and transmission measurements were performed for each type
of wafer material. These reflectivity and transmission measurements were then used to normalize the
incident power density at the respective sample. Accordingly, the given values for incident power
density represent the power transmitted into the wafer thus negating the effect or absence of any
antireflection layers. It was observed that for nominal sample thicknesses of 450um, the silicon
became measurably transmissive at wavelengths above approximately 950nm. In all cases, the peak
power density measurement was obtained at the maximum laser output power for each wavelength.
The peak measured photon flux densities for this research ranged between approximately 2*10'%/cm>-
sec and 3*10"/cm?-sec. The samples exhibited a maximum temperature rise of less than 10C at the
highest incident power densities.

For these experiments, the applied DC bias was sufficiently large (>10° V/cm) so that both the
electron and hole drift velocities could be assumed to be at the room temperature saturation level of
approximately 107 cm/sec. The data obtained for the measured samples exhibited very little general
dependence on the bias voltage level. This confirms that most excess photocarriers were swept out of
the samples before carrier diffusion effects became significant. The measured sample current therefore
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Figure 3) Graph of Sample Conductivity (1/ohm-cm) versus Absorbed Power Density
(W/cm?) for Mirror Set B3

provided an indication of the total number of photocarriers generated by a given incident photon flux
density. This current was then used to determine the overall sample conductivity.
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Samples were initially measured with the Ti:sapphire laser mirror set B2 (810nm — 900nm).
The laser was then reconfigured with mirror set B3 (880nm — 1000nm) and the measurements were
repeated. The mounting and unmounting of the various samples resulted in some minor discontinuity
between measured results for any given sample between the two wavelength ranges. Typical
measured curves for sample photoconductivity are shown in Figures 2 and 3. In each case, the results
show an increase in photoconductivity with increasing wavelength and increasing power.

The results for each case also indicate that the increase in photoconductivity is a near-linear
function of incident power density for any given wavelength. The results generally show that for a
given absorbed power density, the photoconductivity increases steadily with wavelength until
approximately 950nm. Above 950nm, the increase in photoconductivity with wavelength appears to
saturate toward some maximum wavelength value. This saturation effect corresponds to the wafer
reflectivity measurements where the substrate transmission becomes significant for wavelengths above
950nm.

The curves for Figures 2 and 3 are typical of the general trends for the other samples. One
additional observed trend was that grouping of the conductivity curves occurs near the extremes of the
short and long wavelength ranges. This effect was most pronounced for samples which had no surface
passivation layers, but was slightly evident in the typical curves of Figures 2 and 3. These effects can
attributed the silicon absorption, carrier concentration, free carrier absorption, and surface
recombination characteristics. These effects are discussed in greater detail in the following section.

Experimental Analysis:

The measured data illustrates several characteristics of bulk silicon which can be used to
quantify the behavior of high resistivity silicon under high power illumination. One general feature of
the data is the dependence of the photoconductivity on the incident power density. Although the
output power of the Ti:sapphire laser limited the amount of high power data obtained at the long
wavelengths, the slopes of the long wavelength curves generally began decreasing at the highest
measured power densities.

For all measured silicon samples, the values and the slopes of the photoconductivity curves at a
given incident power density are generally greatest for the longest wavelengths. The slopes appear to
saturate at the longest wavelengths indicating that there is a limit on the overall quantum efficiency of
the carrier generation process. This effect indicates that the carrier generation process is also
dependent on the carrier concentration. Each of these effects are expected characteristics of the carrier
generation — recombination process as illustrated in the following discussion.

Carrier statistics dictate that for a given bulk semiconductor under steady state illumination, the
majority of the filled states accumulate near the edges of the band gap. It follows that additional
carriers are most easily generated by high-energy short wavelength illumination rather than with long
wavelength illumination approaching that of the semiconductor energy bandgap. The measured results
however indicate that photocarriers are most efficiently generated at long wavelengths for a given
photon flux density. The reduced sample conductivity for short wavelength illumination can be
attributed to concentration-dependent carrier recombination processes.

A primary factor in the generation of photocarriers in silicon by high power illumination is the
optical absorption depth as a function of wavelength. A typical value of 50/cm [2] for the optical
absorption coefficient is used for the following analysis. Figure 4 shows a typical plot of normalized
intensity as a function of wafer depth for 800nm, 900nm, and 1000nm. This curve illustrates several
important features. For wavelengths approaching 1000nm, approximately 10% of the incident light is
transmitted through the wafer. The absorption depth for 99.9% of the incident 1000nm illumination is
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nearly Imm. This result places an upper limit on the illumination wavelength for total absorption
within a given wafer thickness. In practical applications, a high reflectivity coating could be applied
to the backside of the substrate to allow total absorption within the wafer.
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Figure 4) Graph of Normalized Intensity versus Silicon Wafer Depth (um) for Increasing
Wavelength

The curves of Figure 4 also illustrate that the incident light is absorbed very near the surface
for all wavelengths below approximately 900nm. For the 800nm illumination, 99.9% of the incident
light is absorbed within approximately 50um. For 900nm illumination, the total absorption depth is
approximately 150um. Only a finite total number of carriers per unit area can be generated for a given
incident photon flux density. The actual number of carriers is based on the total energy delivered to
the sample and the quantum efficiency of the generation-recombination process.

The increased absorption of silicon with short wavelength illumination implies that all
photocarriers are generated near the wafer surface. This further implies that carrier densities near the
surface for short wavelength illumination will be >10 times larger than the carrier concentrations
produced by long wavelength illumination. Although the short wavelength illumination produces a
high localized carrier concentration, the overall sample conductivity is lower than that of long
wavelength illumination. Long wavelength illumination produces a lower but more uniform carrier
concentration throughout the bulk of the wafer.

Assuming that the total number of carriers generated is directly proportional to the incident
photon flux (constant quantum efficiency), the total number of carriers removed from the sample is
greater for long wavelength illumination. This indicates that the increased carrier concentration for
short wavelength illumination enhances deleterious effects on the photoconductivity of the bulk silicon
wafer. These carrier-concentration dependent effects include Auger recombination, surface
recombination, free carrier absorption, and the reduction in carrier mobility as functions of carrier
density and temperature.

Previous research and analysis [3, 4] indicates that the maximum practical carrier concentration
for silicon is 10'-10%/cm®. Reference [4] details each of the deleterious effects and provides order of
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magnitude estimates of the dominant recombination and free carrier absorption mechanisms. Free
carrier absorption significantly reduces the quantum efficiency at carrier concentrations above
10%cm®.  Auger recombination effectively reduces the recombination lifetime in the high
concentration regions thus limiting the diffusion length of the excess carriers. Additionally, the
concentration-dependent carrier mobility limits the maximum illuminated conductivity for carrier
densities above 10*%/cm®.

For high resistivity silicon, the electron and hole mobilities remain approximately constant for
carrier concentrations below approximately 10*cm® with the total mobility being reduced by
approximately 80% at carrier densities of approaching 10'¥/cm® This implies that for any given
photocarrier concentration above 10'/cm’, the excess cartiers cause a reduction of carrier mobility
that begins to offset the increase in conductivity due to increased carrier concentration. Additional
effects that may become significant for short wavelength illumination are excess localized heating of
the silicon surface due to high absorption, and surface recombination due to high carrier
concentrations near the wafer surface.

The effect of carrier diffusion has been largely neglected in this research and analysis due to
the bias voltage applied to the samples during photoconductivity measurements. Nevertheless, for
photogenerated carriers with no applied bias, ambipolar diffusion plays a significant role in
determination of the steady-state carrier concentrations throughout the wafer. The ambipolar diffusion
characteristics are functions of carrier concentration, lifetime, and carrier mobility. For typical
specified carrier lifetimes (>1msec for high resistivity silicon), the resulting ambipolar diffusion
lengths can approach several centimeters per second. From this standpoint, any excess carrier
concentration generated within an unbiased wafer can diffuse completely across a 500um wafer
thickness in approximately 1msec.

For high power illumination and generation of large carrier concentrations, the Auger
recombination lifetimes and lengths are much shorter than intrinsic carrier lifetimes and diffusion
lengths. The net effect is the reduction of local excess carrier concentrations ( > 10'%/cm®) primarily
by Auger recombination effects until ambipolar diffusion and Shockley-Read-Hall recombination ( <
10'"/cm®) become the dominant carrier reduction mechanisms. The effects of Auger recombination
and free carrier absorption effectively present a practical upper limit on the efficient generation of
photocarriers.

The applied DC bias voltage allowed carrier diffusion effects to be neglected for the measured
photoconductivity analysis. The diffusion effects must be considered for unbiased photocarrier
generation. The presence of diffusion effects would allow a reduction in the total energy requirements
for generation of the required photocarrier density and photoconductivity. Again, the best efficiency
would be obtained by using a pulsed laser source with the Jongest wavelength chosen to allow total
absorption within the wafer. The pulse repetition rate or source duty cycle could then be varied to
balance the optimum generated photocarrier demsity with the carrier concentration-dependent
absorption and recombination losses.

A semi-insulating GaAs sample was included in this study to present a simple comparison to
the photoconductivity characteristics of silicon. The GaAs sample exhibited photoconductivity values
similar to the silicon values except with very little wavelength dependence. This result is expected
because the absorption coefficient for GaAs is typically much higher (except within a few nanometers
from the bandgap wavelength) than that of silicon. Additionally, the carrier lifetimes for GaAs are
several orders of magnitude shorter than for high resistivity silicon. This fact indicates that pulsed
laser photocarrier generation (utilizing photocarrier diffusion) would be less efficient for GaAs when
compared to silicon under the same operating conditions.
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Summary / Conclusions:

The experimental results show a general trend of increasing photoconductivity with increasing
wavelength for any given incident power density. The results also indicate that the rate of increasing
photoconductivity with incident power density begins to roll off at high incident power densities for
any given wavelength. These trends suggest that for any given incident power density, the sample is
made most conductive by illumination with wavelengths approaching the longest wavelength for total
absorption within the specific substrate thickness.

The measured results indicate that the average photoconductivity for short wavelength
illumination is less than that obtained for the same incident photon flux density obtained for a long
wavelength source. This effect is a result of carrier-concentration dependent recombination and
absorption mechanisms. Long wavelength illumination up to the wafer thickness limit provides a
lower but more homogeneous carrier concentration throughout the wafer. The more-uniform
generation of carriers minimizes the localized loss mechanisms present for high carrier concentrations.

Assuming a constant carrier generation (quantum) efficiency, under biased sample conditions,
the total number of carriers removed from the sample is greater for long wavelength illumination.
Minimization of the carrier reduction effects allows generation of a greater total number of carriers
within the total wafer volume. This result verifies previous analysis that predicts 2 maximum practical
photocarrier concentration of 10'7-10'%/cm? for efficient photocarrier generation.

For practical implementation of silicon photonic structures, once the wafer thickness and
illuminating wavelength are selected, appropriate passivation, reflection, and antireflection coatings
should be applied. These coatings should be applied so that all exposed silicon surfaces are
passivated. For unbiased operation, the required photoconductivity can best be obtained from a pulsed
source with optimized output power and pulse duration. The use of a long wavelength pulsed source
allows the highest carrier generation efficiency while minimizing device heating and the deleterious
recombination and absorption losses.

In summary, the results suggest that unbiased photonic structures fabricated from high
resistivity silicon would be best illuminated with long wavelength (approaching 1pm) radiation to
maximize the absorption volume for typical wafers with 450um thickness. For illuminated sample
thicknesses less than 450um, the operating wavelength should be reduced to allow total absorption
within the wafer thickness. Alternately, for any given total sample conductivity under shorter
wavelength illumination, an increased incident photon flux density will be required to maintain that
conductivity (due to increased carrier reduction effects), resulting in reduced overall quantum
efficiency and increased device heating.
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1. Introduction

In globe and conical type of the traditional Euclidean geometry, in
1970’s, mathematician Benoit B. Mandelbrot of France could not
express the form of cloud and mountain in the nature, and not integer
but geometry shown by the fractal (it had the fraction) dimension were
initiated.
The similar figure also breaks it according to some rules for the
multiple. That time, it is called fractal figurel!! the results to of develop
to the large-scale figure.
A realization of the device with wide-band frequency characteristics can
be expected, when this figure was observed in electromagnetism like, in
order to superimpose the characteristics, which the similar figure
produces in frequency characteristics, which the figure as a basis gives.
Especially, until now electromagnetism research on the fractal is
energetically advanced in antenna and field of the microwave, and the
broadband antenna using Gasketl?l and tree curves, Koch curveiShi4l of
the Sierpinski, etc. has already been reported.
This paper is described here, because impedance characteristic and
radiation pattern characteristics of basic characteristic of the Koch
curve were examined.
2. Antenna Shape

Figure 1(a)-(f) is the structure of the dipole antenna described in the

Koch
curve. This structure carried out the calculation in the shape from stage
0O (basis) to stage 3 at the dimension as half-wave length and full-wave
length. However, the radius of this antenna element was made to be the
conductor, which was enough thinner than the wavelength.
3. Characteristics

Figure 2(a)-(c) are impedance characteristic in changing the shape in

the
structure of figure 1. It is proven to consist of stage O with stage 1, stage
2, stage 3 and wide-band characteristics are shown as well as the
impedance characteristic. Figure 3(a)(b) are gain characteristic in
changing in the structure of figure 1(e) for origin symmetric and X-axis
symmetric. From this fact, it was proven that using this element as a
basis got the antenna of wide-band characteristics.
4. Conclusion

This paper examined impedance characteristic and radiation pattern
characteristics of basic characteristic of the Koch curve. As a result of
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examining characteristics of the dipole antenna, impedance, radiation
pattern characteristics, wide-band characteristics were obtained, and it
was proven they would be enough usable using such element as a wide-
band antenna in future. The structure of which better characteristics
are obtained will be considered.
Reference:
[1] J.L.Vehel,et.al.: "Fractals in Engineering”, Springer(1997).
[2] C.Puente,et.al.: "Sierpinski gasket”, Electronics
Letters,32,1(Jan.1996).
[3] X.Yang,et.al.: "Fractal Antenna Elements and Arrays”, Applied
Microwave & Wireless,11,5(May 1999}.
[4] N. Cohen: ”Exploring a Fractal Dipole”, ACES Newsletter, 13, 2,
pp.23-27, 1998.
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Fig.1 (a) Fractal Element Antennas of Stage 1.
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Fig.1 (b) Fractal Element Antennas of Stage 2.
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Fig.1 (c) Fractal Element Antennas of Stage 1.
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Fig.1 (d) Fractal Element Antennas of Stage 2.
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VSWR vs Frequency
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Fig.2(b) VSWR Characteristics of Fractal Element Antennas of Stage 1
and Stage 2 of Fig.1(c) and 1(d){Zo=300Q).

Fig.1 (e) Fractal Element Antennas of Stage 3.
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Fig.2(c) VSWR Characteristics of Fractal Element Antennas of Stage 3 of
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Feigenbaum Encryption of Computer Codes

by
R. M. Bevensee
BOMA ENTERPRISES
P.O. Box 812 Alamo, CA, 94507-0812 USA. ematl: rmbevensee@cs.com

1. Summary

The Feigenbaum- or F-sequence of numbers {z,} is generated by the incredibly simple prescription
ZTnt1 = Fza(l — z,) for n > 0, starting with the private keys 2o, 0 < 2 < 1, and F, the Feigenbaum
parameter, in the range 0 < F < 4. Effective coding demands that F be close to 4 (2o # 0.5 if F = 4).
This process is used to encrypt a message sequence of symbols {S,} from an alphabet {4}, with an
astronomically small chance of decoding by an intruder-attacker if the number of significant digits in zo and
F is reasonably large (> 10).

Section 2 describes some of the properties of the F-sequence. Section 3 outlines the method of encryption
and of decoding and explains why an initial short sequence of the encrypted message might be successgfully
decoded with nearly correct values of 2o and F. Section 4, Fig. 1, presents a representative example of a
short message comprised of symbols from a 56-member alphabet, and how the decoded message is corrupted
for various values of o and F.

In Section 4 we also introduce the private integer key K to confuse an attacker’s decoding of an initial
string of a coded message with very small errors in 24 and/or in F. Case 3) of Table 1 illustrates this.

Section 5 shows an example of encrypting the opening portion of our Fortran code with this encryption
process for K = 0.

Section 6 describes double F-sequence encryptions, using a double pair of z; and F keys. There is no
single paior of these keys an attacker can use to decode successfully such an encrypted message. The reason
is clarified in the Appendix, Section 9.

Section 7 compares F-sequence with Public-key encryption, and Section 8 outlines F-sequence commu-
nication between two persons.

2. Properties of the F-sequence

For 0 < F < 3 the process terminates; for 3 < F' < 4 it is periodic, in the sense that it cycles between
a number of stable values which depend on the value of F. For 3 < F & 3.45 the process cycles between
two values, then the number of values abruptly jumps to 4 until F reaches & 3.545, at which the number of
values doubles again to 8, and so on, until the number of levels is infinity at F=4. At F=4 the process is
chaotic: each z, would never repeat if an infinite number of digits were retained.

If Fy, is the value of F at which the process would cycle between m values the approach of F,, to 4 as
m approaches infinity is as

m-—+00 A
U-Fn) = GeE @

where A depends on the process and 4.6692... is the universal Feigenbaum constant which appears in
the description of many chaotic processes. This property embodied in (1) does not play a role in our
considerations of coding and decoding.

The backward generation of z,, from 2,4, yields two vaules:

1
z, = 5[1i\/1—4z,,+1/F], 2)
with 42,,1/F < 1 because Fz,(1 — z,) < 1. Because of this backward branching an attacker would not

start with an incorrect value of £,4; and try to compute far back in the {z,}-sequence, hoping to reach a
correct x (assuming he had the correct F).
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We have not been able to describe analytically how initial errors in o and F propagate with increasing
n, thereby corrupting a decoded message. Section 4 will suggest how the corruption proceeds in several
examples. .

3. The Method of Encryption and of Decoding

Table 1 shows four columns. The left one lists the message symbols 1, 52, ..., Sp,...,Sn. The next
column lists the alphabet of members 4;, Ay, ..., Ag, ..., Am, .-., Ap- The first message symbol S; is A, so
it is beside the kth alphabet member. The second message symbol is indicated as An, and so on.

z3, the first member of the F-sequence, determines integer T} in the range 1to M as

T: = [Ma] (&)

for i=1, the brackets denoting the rounded-down integer value. Here we show S = Agand k+Ty, = k < M,
s0 K < M lies in the next alphabet column in the upper A-column . The first coded symbol Cy is Ay.
z9, generated next, determines 7% as above. Since message symbol S = A and M + Tp > M we
show g in the lower A-column. p is found as ¢ = T — (M —m), and the second coded symbol C; is 4,.
And so the process continues, until the last message symbol Sy is coded by zy and Xy into Cy.
Decoding proceeds in reverse: Cy = A, translates to Ay = 51 by T, etc.

Table 1
Encryption and Decoding Between Message Sequence {5;} and Coded Sequence {C;}

The first message symbol, S, is alphabet member A, which is coded by integer T} into A, which is coded
symbol Ci. Similarly, S; = A, is coded by T3 into A,, which becomes coded symbol C;. Decoding
proceeds in reverse from the {z;} generated from zo and F: C; = A, in the table is translated by 73 back
to Ay = S, etc.

Message Symbol Alphabet Alphabet Coded Symbol
S A A C
. 1 1
Sn 2 ) 2
Sn .

. . Cn
51 = k .
. .
Sz = m K = Cl
M M
T2 1
2 .
Cn
7 =G
M
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Observe in (3) that a range of z;-values will yield the same T;. This implies that an attacker starting
the F-process with nearly correct values of z; and F might generate correct T; for an initial short sequence
of coded symbols {C;}. These would enable him to decode this initial sequence correctly, until the initial
errors in zg and F generated sufficient errors in the T; as to render the decoding meaningless. Sec. 4 will
present exampleS of this and introduce the additional private key K to subvert it.

4. An Example of a Short Message and its Decoded Corruption for Very Small Errors in z¢
and/or F

Fig. 1 lists a 2-line message composed of symbols from the alphabet of 52 capital and small letters,
comma, period, space, and \. It begins with 10 periods to confuse an attacker. Coding with zo=X0=.50 to
ten decimal places, F=FEI=3.95 to eleven significant digits, and K=0 (to be used below), we obtain, for the
NSYM=140 message symbols, the two coded lines beginning with “AIf”. Notice the coding does not suggest
the initial "nonsense” string.

The remainder of the figure shows four cases of decoding. In case 1) the correct values of X0, FEI, and
K recover the message. The block of seven lines of zeros indicates that each decoded symbol is the same
as the message symbol in the Alphabet table. In case 2) we code with X0 low by 107° and FEI correct,
with K=0. The initial decoding is correct up to the 49th message symbol, beyond which the errors grow.
The 50th numeral in the block is 717, meaning the message symbol is 1 below the decoded symbol in the
alphabet table. We have not shown the case of X0=.5000000001 and FEI correct, K=0: that decoding is
entirely correct. Cases exist for which nearly correct values of X0, FEI, and K will yield partially or entirely
correct decoding.

To overcome this tendency we introduce in case 3) the private numerical key K. Its purpose is to create
an entirely incomprehensible decoded message even if the three keys are very close to their correct values.
The decoded message shown is qualitatively the same as the message coded instead for K=10 and decoded
for K=0. K can be used in either of two ways. It can advance the F-sequence to zx 11 before beginning the
coding. This will prevent an attacker from starting the decoding with nearly correct zg and F and generating
an initially correct short string, as in cases 2) and 4) of Fig. 1. Or K can be used to start the decoding with
z) but indicate an initial K message symbols as a "nonsense” string.

In the first use of K an attacker would have to start with very accurate values of x4, and F. This x is
conceptually no more difficult to deduce than zo, which indicates the need for an initial "nonsense” string.
For the second use of K an attacker could bypass an initial "nonsense” sequence and start decoding further
into the message sequence, but he too would require very accurate values of X0 and FEI, with K=0.

Case 4) in Fig. 1 is for X0=.50 to ten places and FEI in error by 10~1° K=0, illustrates correct
decoding for 31 symbols, after which the difference between the alphabet index of each message symbol and
the corresponding decoded symbol starts to vary unpredictably— as shown in the block of seven lines below
the partially decoded message.

It is important for sender and receiver to code and decode with the same long keys: if the value of X0
and/or FEI is rounded off, such as 3.9500000000 to 3.95, a different decoded message could result!

5. Encryption and Decoding of the Initial Portion of Our Fortran Source Code

We show in Fig. 2 the initial portion of our Fortran source code for F-sequence encryption and decoding.
The arbitrarily selected values of X0=.6528... and FEI=3.9874... encrypted the 2552-symbol message of 80
symbols per line. (The encrypted message is not shown.) The message decoded with X0 in error by 10~10
and the correct FEI , for K=0, shows the first 39 symbols are decoded correctly, as indicated by the first 39
zeros in the integer table. Each integer shows the separation of message symbol and decoded symbol in the
Alphabet column of Table 1.

This integer table is truncated to nearly 84 lines, for brevity. Observe that an occasional short sequence
is decoded correctly. For example, the sequence of five zeros.in line 17 of that table shows that “gene” in
fine 5 of the Fortran-code message is decoded correctly, as is “NUMC” ten'symbols beyond. Also, there is a
string of six symbols decoded correctly: The % -sequence in the DATA C/-line of the Fortran code.
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CCDING:

cesssess..Now is the TIME for all good MEN and WOMEN to educate themselves about
political iesues in order to vote intelligently next year.\\

X0= .5000000000 FEI= 3.9500000000 K= 0
NSYM= 140

ATEzHA, DSHCOWWMEMY PLgKIQZD1 RV, ZhaDhzyWnTKKoIvadbxvebDbkUEsi wopgoyVLrhxdVR, doYiy

JCaCYTUTFZoLp\DrAVYnYE 12DV FSnvoefwierfam k KxAyKqLxFIUFUX

DECCDING:
1) X0= .5000000000 FEI= 3.9500000000 K= o

cesesess..Now is the TIME for all good MEN and WOMEN to educate themselves about
political issues in order to vote intelligently next year.\\

o 0 o0 0o 0 O o 06 o o 0o © 0 0 O 0 0 0 O O
6 0o 0o o o ©O ¢ o0 o 0o 0 o 0 0 © O O 0 0O O
o 0 0o o o0 0 Q o ¢ o0 ¢ 0 0 0 O©0 0 O 0o 0 O
c o 6 o o 0o o ©0 0 O 0 0 O 0 O O O O 0 O
o o0 o o ¢ © 0 0O 0 O 0 0o O 0 O 0 0 0 0 O
¢ 6 0 0 0 0 0 ©O 0 O © 0o O 0 O 0 O o0 O O
o o o ¢ 0o ¢ o 0 0o ¢ 0 0 0O 0o 0 O O 0 O O
2) X0= .4999999999 FEI= 3.9500000000 K= 0

seeessse..Now is the TIME for all good MEN and WOLDRy.Js,GnO Z,\rosCh\ RnZaelM,h
HObvIsffZBVSUDUDNKEQhX] aBgso, gpoPgaedDtBRxTooZHQFau HVVolacl

6 ¢ 0o o0 0o © o0 o0 0 6o 0o o 0 0o 0 0 O 0 0 O
¢ o0 ¢ O o O o c 0 0 0 o0 0 0 0O 0 O ©o 0 0O
¢ 6 0 o 0 0 ©0 O 0 ¥ 1 -4 3 -8 31 9-22 23 7 14
-27 20 -22 -2 2 -7 -14 24 11 -25 -16 30 -5 15 27 -4 -10 28 -6 1l2
34 37 10-13 37 -10 -3 -5 12 52 13 26 24 43 -16 41 40 24 8 37
13 20 -8 4 42 21 } 0 1 5 -1 5 15 21 8 9 16 27 -8 36
17 -17 1L -1 S 12 43 37 34 -2 3 -8 46 29 9 -14 32 28 27 18

3) X0= .5000000000 FEI= 3.9500000000 K= 10

DG DOIYYEKOYLASOSEU, 8eP gloHrAMxm¥nt \HXEP, 0caBLLVLz1YeTAf t FkDyDpvIb\ . \Ldx. YWEKa

dj gxOorGUIAXGEY . YyQMZd . vx&:tn\yppRmeZnQBZSQfIale\qumef
51 16 38 48 1 51 40 46 30 30 -32 30 32 29 15 35 31 15 26
33 -33 -36 -18 -11 0 -1 3 3 46 -17 37 25 4 -6 7 1 -2 -2 5
-45 -18¢ 38 -26 -1 3 52 11 3 -9 -23 -38 16 21 8 34 1 -2 1 -3
-10 42 -20 50 4 -14 22 11 -11 -24-18 3 1 -5 -1 2 5 9 36 19
12 5 5 -15 31 -6 -15 20 17 44 34 21 38 42 -13 -10 292 -l6 23 41
15 14 -25 -18 37 20 0 1 -2 -3 -1 4 13 20 11 20 23 5 5 12
-5 16 29 14 27 21 19 45 13 18 122 -3 -2 8 )5 25 32 26 25 24

4) Xo= .5000000000 FEI= 3.9500000001 K=
cecnseessNow is the TIME for aJ:LE)AWPABzz}naljmcl'I‘xsqld-IVBh. VuR, Pay DyaHgLs\nwn
womdaki 10YpT FWehXyNEAPTvHA 1 xa YV \PoboggzuzAptH . HMUBSEREY, JTHLT
o o 0 0 0o O O 0 ©0 0 0O O © 0 O O O 0 0 O©
o 0 0o 0 © 0O O O 0 ©0 0 2 3 49 5 40 18 14 ‘53 11
-39 -38 30 -1 2 -6 4 -16-35-25-15-36 9 3 4 46 9 28 13 -26
-28 24 -16 36 -7 18 4 -12 -9 27 -13 21 23 12 42 -18 -28 1 -2 6
=7 20 -1 5 1 -2 -6-11 23 29 -7 35 13 24 24 11 30 -16 26 49
11 28 10-17 36 24 8 -9 27 23 19 -10 15 21 7 7 13 -21 -9 -14
34 -9 -15 32 -9 30 12 33 38 -14 4 44 38 41 -22 -9 24 47 21 38

Fig. 1. Coding and Decoding of a 140-synbol message (NSYM=140). The
message string was coded with the values of X0, FEI, and K indicated,
and the incamprehensibe string below NSYM=140 resulted. Four cases of
decoding with various values of X0,F, and K are shovm. The 7-line
block of integers below each decoded message indicates the distance in
the alphabet of each decoded symbol frem its message symbol.
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COOING:

PROGRAM BOMAENK9

Bocryption by the Feiganbaum Process, X(n+l)=FPkx(n)*(l.-x(n)) for n GE 0.
Staxting with x(0)=X0 and F=FEI, the procese is repeated K times (to com-
plicate the coding), then contimed NSYM times (the message length) to
generate the NUMC coded array from the NUMM original-message axray. In
Decodi thie p is d to the original NUMR-axray,
knowing X0,FEI, and K, and--from it--the original message in the SiM-axray.
The message in File BOMEMESS may comsist of laxge or emall lettexs amd
cmtain camas, blanks, pericds, and other symbols in the list. No more
tham 2600 characters, ending with double \. Warnings insarted for the two
degenerate casee of FEI and XO.

+o. This vereion is an extepsion of FEXGENCS

nnonNnnanNoQaONN

INTEGER NUMM(2600) ,NOMC(2600) , ETA, NUMR (2600)
DOURLE PRECISICN X0, FEI,X),X2, XONEW, FEINBY, XETA, ONE
CHERACTER C(78), SYM(2600),5¥MC(2600), XX 1 78 and 2600 are seét in the code
DATA C/'A', 'B','C','D*, 'E', 'F*, G, 'H', 'T','JT, 'K, LY, M,
W', '0%, 1B, Q! TRY, IS, VT, X, 0¥, 020, %a, 'Y,
oY, 0dr, et tE Y, gt vhe L vie 0 m‘,‘n','o'.'p'.'q',
1pe, gt 't' 'u' Y, e, v, Y, e\,
[ -1,v00, 000,127,030, .4- -5. 161,071, t81,

gr, gy,
MCHA=78 ucmsu in the ACES' paper
WB-OOOOOODOOGDO

ONE=1.0000000000D0

Ce Write (9,200)
Ce200 Fommat {('sr+ TYVPE C (capitalized) to OCDE the message in file
Ce . 'ECMAMESS',/,
[+ . LiX,‘'and write the coded message into file BAMACIDE',/,
=] . 'r¥e TYPE R (capitalized) to RECOVER the coded meseage in file'
Cc . YBOMACUDE',/,
.3 . 1l1%,'and write the recovered meesage into file BAMARECOO')  \\
X0= .6528416301 FEI= 3.9874621038 X= [}
NSYM=2552
DECCDING with X0 in error in the 10th decimal place:
X0= .6528416302 FEI= 3.9874621038 Ke= [}

FROGREM BOMRENCY o 4 syu2 1BCx\SYBp x
77R] (- ' 8lL+oaSafx) >Ajuu-xEnzn, UsuZ?, 2qzlal] 15 {Cjqec¥ RO 1 ~2\galn' ABKEL3tPVG' 2\x
*HYD (2w [BRRV3na9cSp) DelN* ' RErHROZ0) HARL2 - U9vhbuk oTHXR, #HDE 2H7uLP- #Nske** 0zH (17 /Mo
WEARMI ZhaoRd> or K tulkedGdC /mabv b [tru=BMj * 614D [ (5129 \xo0/ (ap\*2> /OQ/L27 1R+DwoRcX2]
WY genescpkn>= ONOMC.cnbic*rLyR/ElbMargr -TILEPEYE, 20 (1FE [¥Bl -, 4¢, ktAS6Th TVWCLE/

Rha7w3eJIY'DorcQ!, ribu) S (TPRLI) “m. VIR ! /vCP> ' 5p/lzxd Y1+hs] fci\zrt*
16Ez1Ay), 51/ (Rg='hV(] 80Z6R4AOf Thpjh7 81t xq zv,ﬂa,xt WGhzk,y)quBcqu!p)m] 4i
\Bxge? J+nBRIh (St 13M1 [ WCPRANTRocLyud

UYYSWCRA: 3qUC] z  TITiS*W791d+6Q1dij FS/EWXguPCagwyl VP'=I!zvmm
- ¥ , A\G6EVL+ "nU1>10E717 ) (/g vhul: }2L11 A)j* BEL>25Xp*dLe] c!
h3RoEIKIUYO1FTEX\151lad+a0\anarha /ZD00> KREKSE S QSASc) KE. , (+r2Q1GCr+ERgDu! jgQeX
I \yNgHUD=, -ie*(Xip-vAg9] (XR1cns9IMS] (OB'X >Qbs [g! dsDH*zxyl Bcl 22> (Wednki oY rVinig
KSYI5giFR&* [hPmT16G8ba) XATROSZ3 1F] ., (>=XTz) 0 LiPVGICT [£C.y2+6DA+FHoRaW’ 8 [iRi+Cn
>a417EhAnbdRu (0-Qalmj OqwilarWKIS i (EJ618-'xZESumT QIJOLT)wé>a23!/] ,,¥ .\)tdogU
10YW [xrZxEVA/WZEKS .Bi9gplw) M/0d>c [AYp' KVvp/mS [FOITEHULY .MNE 47 IB9 ISHINiARG) 1ET/Zt8
Wr=Weba) +Up703%+gl] KYOI7n=K3T={aJ1Io,x=0P\ +DHY6 .0~ V/mSkOlmaD> tBD] /+v Xjnb5H ( , mz
4HITRUES! LwM) EETFZY] G) (acyC" m , P*\B'IWW\)' 'JIXREICE> O /P?, +2{v2gX0/
Muj?  (v3heN(xf9xCUZ I0G 2+JHuz/X1[c7->¥70082Tk
+7uwsacegi IFHEIUvOuO8Y mv‘lﬁ[ g’BJUG/ .G-W[)N +92/>ElT E28thEcIGHEWLE vG=3HVre
AX)yOD2xF [vi) TylyGerrwal3leAr701 i jU+btRYCRS9 1xHGI *IQpFled -WnOMM  o=2af ! B9 avth4]
@10)nNTXGZ [SWB{UTL 9) JwMkkND) , YYi=6Z (+ (SDSDMMN&M LVhsAZadB [LjWv) kUE6T!

IAR+DZYO>OWHHA! AACHIOUSYX) x2ES 3uVops -=¥3GW
) qUBIRAVEHRAcX-] 71anER4uL.CLQ" ~aduzeM) T\ { , U7 +)>OR{ bi=-T
81X=2DR2U7 WDz [RWZRSZ) Ly ! +pmU* . 3WkeEKRPOMIGiARr] c2urC .., zul gOgTOHed/Fro (pTiMS

J+1¥emxvgeigraiiMu’ Sh/om* 1 bpP) /1 'md' C+kpELTOtES 1 IN/b+6DE] vmOR*5YY 3H=*11V) w58 'Im
Zx0 (¥XOYFR (BuVZBp] , 5aHI TgC=mON] /n' Elza\uxdUzv40 ' ’iXe) . (4Wle (vw7W [gZ83B

wETblgWe7 C] SREYRT ~oB£9 > 1xghVe3xTul voOP> Mxus) 31vd ( HAOR2OTL
TRRIIFE] 2jboSoHMMIINS ebwd 10*AVYSIGSYN\)5THu -VIv  .zw), mx:!wkl 1hbYY\tE0QFD
/XAXET .z,4/0IRXvked, mam/45Wq) PYgVe-F pkldsg (MeXy 1£{ k YR\gY) s \

+TYEOTEIGOTYOMET [Wi] BX2£ cZBVbBEC2] rPZOMP* fkHa2! (CaiX [d nywicoemd .]URSQ+HDPzxcRe
xy8) bU->7 =erMitumudife* /C (rebZy\uitCY=vceo Bl x4Vea (swSe01 U=cN' Ko¥H, , viz [dogw, [8Y
Cb{ [WoRCW22] 0" (CRrpLRUDSER09WA3 6L [Vb2 - xVIW] [z [7 - jwdXe /kEyHRBg) ) >gIX35vsa

Fig. 2. The firxst 32 lines of our Fortran code, with 2552 symbols,
80 symbols per linae. The message encrypted with the values of X0=
.6528... and FEI=3.9674..., F=0, is mot shown. The message decoded
with X0 in exror in the temth decimal place and F and K correct is
ehown in ite entirety. The next page ehows the integer table for

nearly 21 lines of coding. The decoding begins to show corruption
at the 40th symbol.
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6. Double F-Sequence Coding

To confuse completely an attacker a sender could encrypt his message with one F-sequence and then
encrypt the unintelligible result with a second sequence in one operation, using a different keyset. An
attacker would not know if he decoded correctly the received message because correct decoding would reveal
an unintelligible message. He could not use one set of keys to decode his received message and reveal the
original message. The Appendix explains why this is so.

7. Comparison of the Efforts Required for Public-key and F-sequence Decoding

A public key encryption scheme requires the solution of a purely mathematical problem, such as factoring
a large number into its produce of two primes, with no requirement for evaluating a decoded message for
content. F-sequence decoding requires not only trial of an astronomical number of key combinations but also
subjective evaluation of each decoded sequence for meaning. This latter requirement is very time-consuming
and cannot be satisfied by a simple, efficient computer program.

Assuming single-sequence encryption, ten significant digits to the right of the decimal point, and 3.9 <
F < 4., we have ~ 10'° possible combinations of 2, and F' (K==0). If each decoding requires 10~3 sec.
for evaluation and there are &2 3 x 107 sec/year, an attacker would require ~ 108 years to explore all the
combinations!

8. Secure F-sequence Communication Between Two Persons

Assume that Alice and Bob are exchange F-sequence encrypted messages. Alice sends Bob a message
encrypted with her keys, which Bob initially knows. She continues to use these keys until she wishes to
change them, she includes the new key set in a message encoded with the old set. Bob always knows the
keyset to use to decode her next message.

Likewise, Bob sends Alice messages encrypted with his initial key set, which she knows, and she checks
each of his decoded messages for a change in his keyset—to be used to decode his subsequent messages.

If an attacker succeeded in "cracking” one of her messages he could continue to do so by monitoring
any change in her keyset. However, the knowledge would not enable him to decipher Bob’s messages. Bob
would have to avoid revealing his keyset to the attacker if he requests them in a message apparently from
Alice.

9. Appendix. Recovery of an Original Message in Double Eneryption

Assume the sender encrypts his entire message, first with the keys zo and F, then with the keys z}
and F'. An attacker enters the final encrypted message at a point n and tries to decode and obtain the
subsequent original message. Here we shall change the subscript "n” o ”1” for simplicity.

The first encryption encoded the nth symbol in the message by z1 = Fzo(l. — zo) and the second
encryption encoded the new nth symbol by 2{ = F'zg(1. — zf,). Assuming the attacker was so clever as to
deduce f = F'z{(1. — zf) and [Mz]] = [Mz}] + [Mz], he could deduce the correct message symbol
according to (3).

However, he could not continue this process to generate correct [Mz4], [Mz%],. .. and recover successive
symbols of the original message. The reason is that the double encryption was done with four variables—
zo, F, 2, and F’, whereas the attacker has only zjj and F” at his disposal. He cannot continue to generate
original message symbols with so few parameters.
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1. Abstract

The Method of Moments code SuperNEC has been
modified to find characteristic modes from the impedance
matrix. The effect of asymmetry of the matrix on the
accuracy and convergence of the characteristic mode
currents was investigated. Good results were obtained on a
straight wire, but those for complex structures were highly
dependant on the numerical methods used, and did not
converge with fine segmentation. These results are
considered inaccurate, and further work on the
implementation is required. The completed program will
be used to design a dual-mode NVIS and low-angle HF
antenna.

2. Introduction

Goals

The objectives of this study are to extend the SuperNEC
engine to allow calculation of characteristic mode currents
and verify the calculation method. The program can then
be used to design a “smart” wire HF antenna with multiple
patterns selected by switched loading, for NVIS as well as
long-range applications.

Background

The theory of characteristic modes has been used
successfully for a while to analyse the scattering and
radiation properties of conducting bodies [2] [3]. The
theory has been developed by Garbacz [4] to allow modes
to be defined on conducting bodies of arbitrary shape.

Characteristic modes are defined as an orthogonal set of
currents on the conducting body that, when weighted
correctly, define the currents on the body due to any
particular excitation. Harrington and Mautz in [2] show
that for small objects only a few modes are needed to
completely characterise the currents on the object, and
hence the far fields due to the currents.

In [3] they show how the characteristic mode currents on
an arbitrary wire object can be found by taking

eigenvectors of the Method-of-Moments (MOM)

impedance matrix.

Calculation of Characteristic Modes

The currents on a siructure due to a particular excitation
can be found by solving the matrix equation for a set of
currents that renders the tangential electric field zero on all
but the excited wire segments (equation 1). This is the
conventional MOM solution for the currents.

[z]1]=[E] )

[Z] is the impedance matrix, where Z;; is the electric field
induced on segment i due to a test current on segment j.

In a similar way, the eigenvectors of the impedance matrix
yield solutions for current that satisfy the same condition,
but are independent of excitation. The matrix equation can
be written as that for general eigenvectors, as in equation
2, or in a form in which the currents may be seen more
directly, as in equation 3 [1], where I, is the n® mode
current vector, [Z]=[R+jX] and [ is the identity matrix.

Z-,)0,=0 @
[X]11, = A,[R]1, 6)

The significance of the characteristic mode currents found
from a particular eigenvector can be found from the
associated eigenvalues.

1
8, = ; @
"0+ 4,)
The significances are normalised and expressed in dB
down on the first mode significance.

It should be noted that the actual magnitude of the currents
found has no bearing on the significance of the mode,
since if I is an eigenvector of [Z) then so is k-I, where k is
a scalar. The reported magnitude is simply a result of the
eigenvector normalisation performed by the algorithm
used.

Practical Calenlation

According to Austin and Murray [1] the eigenvectors only
represent the characteristic mode currents if the impedance
matrix [Z] is symmetrical. This requires the use of a
Galerkin Moment Method in the generation of the matrix,
the method used in the MiniNEC code. Harrington and
Mautz [3] relax this condition to some extent, saying that
is sufficient to average the off-diagonal elements of a
matrix obtained by another method, to achieve symmetry,
before the eigenvectors are found. SuperNEC uses pulse
basis functions to compute the impedance matrix, and it
would be advantageous to be able to calculate
characteristic modes directly from this.
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3. Extensions to SuperNEC Maximum Asymmalry = 17.5575%

SuperNEC is an object-orientated C++ Method-of-
Moments program, with the basic theory the same as that

of NEC2. It has a comprehensive MATLAB interface for 1w
creating structures and viewing the results of simulations.
This is an ideal platform for experimentation with [
electromagnetic calculations, as it is easily modified and
extended. The program offers a choice of basis functions »
for representing currents on the wire segments: the
standard NEC2 basis function of sine, cosine and constant %

currents, or a pulse basis function [5].

The SuperNEC engine was modified to calculate the
eigenvectors and eigenvalues of the impedance matrix. The R S T
actual eigenvector/eigenvalue calculation is done by the
public domain package LAPACK. The requested
characteristic mode currents are sorted by significance and
written to the output file.

The currents on the structure are found from the
eigenvectors, and these currents can then be used to solve
for radiation patterns or npear fields in the normal way.
Currently, if the modified SuperNEC is asked to find
radiation patterns or near fields, it finds them for each of
the requested modes.

Figure 1 - Matrix asymmetry for full basis functions

Maximum Asymmetry = 0,03354%

4. Investigations

Several structures were simulated in order to confirm the
validity of the code, the numerical methods used, and the
effects of errors introduced by the single-precision
variables used throughout SuperNEC.

Matrix Asymmetry

Th