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Abstract

In the last decades microwave remote sensing has proven its capability to provide
valuable information about the land surface. New sensor generations as e.g.
ENVISAT ASAR are capable to provide frequent imagery with an high information
content. To make use of these multiple imaging capabilities, sophisticated
parameter inversion and assimilation strategies have to be applied. A profound
understanding of the microwave interactions at the land surface is therefore
essential.

The objective of the presented work is the analysis and quantitative description of
the backscattering processes of vegetated areas by means of microwave
backscattering models. The effect of changing imaging geometries is investigated
and models for the description of bare soil and vegetation backscattering are
developed. Spatially distributed model parameterisation is realized by synergistic
coupling of the microwave scattering models with a physically based land surface
process model. This enables the simulation of realistic SAR images, based on bio-
and geophysical parameters.

The adequate preprocessing of the datasets is crucial for quantitative image
analysis. A stringent preprocessing and sophisticated terrain geocoding and
correction procedure is therefore suggested. It corrects the geometric and
radiometric distortions of the image products and is taken as the basis for further
analysis steps.

A problem in recently available microwave backscattering models is the inadequate
parameterisation of the surface roughness. It is shown, that the use of classical
roughness descriptors, as the rms height and autocorrelation length, will lead to
ambiguous model parameterisations. A new two parameter bare soil backscattering
model is therefore recommended to overcome this drawback. It is derived from
theoretical electromagnetic model simulations. The new bare soil surface scattering
model allows for the accurate description of the bare soil backscattering coefficients.
A new surface roughness parameter is introduced in this context, capable to
describe the surface roughness components, affecting the backscattering
coefficient. It is shown, that this parameter can be directly related to the intrinsic
fractal properties of the surface.




Spatially distributed information about the surface roughness is needed to derive
land surface parameters from SAR imagery. An algorithm for the derivation of the
new surface roughness parameter is therefore suggested. It is shown, that it can be
derived directly from multitemporal SAR imagery.

Starting from that point, the bare soil backscattering model is used to assess the
vegetation influence on the signal. By comparison of the residuals between
measured backscattering coefficients and those predicted by the bare soil
backscattering model, the vegetation influence on the signal can be quantified.
Significant difference between cereals (wheat and triticale) and maize is observed in
this context.

It is shown, that the vegetation influence on the signal can be directly derived from
alternating polarisation data for cereal fields. It is dependant on plant biophysical
variables as vegetation biomass and water content.

The backscattering behaviour of a maize stand is significantly different from that of
other cereals, due to its completely different density and shape of the plants. A
dihedral corner reflection between the soil and the stalk is identified as the major
source of backscattering from the vegetation. A semiempirical maize backscattering
model is suggested to quantify the influences of the canopy over the vegetation
period.

Thus, the different scattering contributions of the soil and vegetation components
are successfully separated. The combination of the bare soil and vegetation
backscattering models allows for the accurate prediction of the backscattering
coefficient for a wide range of surface conditions and variable incidence angles.

To enable the spatially distributed simulation of the SAR backscattering coefficient,
an interface to a process oriented land surface model is established, which provides
the necessary input variables for the backscattering model. Using this synergistic,
coupled modelling approach, a realistic simulation of SAR images becomes possible
based on land surface model output variables. It is shown, that this coupled
modelling approach leads to promising and accurate estimates of the backscattering
coefficients. The remaining residuals between simulated and measured backscatter
values are analysed to identify the sources of uncertainty in the model. A detailed
field based analysis of the simulation results revealed that imprecise soil moisture
predictions by the land surface model are a major source of uncertainty, which can
be related to imprecise soil texture distribution and soil hydrological properties.




The sensitivity of the backscattering coefficient to the soil moisture content of the
upper soil layer can be used to generate soil moisture maps from SAR imagery. An
algorithm for the inversion of soil moisture from the upper soil layer is suggested
and validated. It makes use of initial soil moisture values, provided by the land
surface process model. Soil moisture values are inverted by means of the coupled
land surface backscattering model. The retrieved soil moisture results have an RMSE
of 3.5 Vol %, which is comparable to the measurement accuracy of the reference
field data.

The developed models allow for the accurate prediction of the SAR backscattering
coefficient. The various soil and vegetation scattering contributions can be
separated. The direct interface to a physically based land surface process model
allows for the spatially distributed modelling of the backscattering coefficient and
the direct assimilation of remote sensing data into a land surface process model.

The developed models allow for the derivation of static and dynamic landsurface
parameters, as e.g. surface roughness, soil texture, soil moisture and biomass from
remote sensing data and their assimilation in process models. They are therefore
reliable tools, which can be used for sophisticated practice oriented problem
solutions in manifold manner in the earth and environmental sciences.




Zusammenfassung

Die Erkenntnisse der letzten Jahrzehnte haben gezeigt, dass sich aus Daten von
Mikrowellensensoren wertvolle Informationen Uber Eigenschaften und Prozesse der
Landoberflache ableiten lassen. Neue Sensoren, wie beispielsweise der ENVISAT
ASAR, ermdglichen die haufige Abdeckung und Beobachtung eines Gebietes. Damit
werden sie flr operationelle und insbesondere auch zeitkritische Anwendungen, wie
beispielsweise die Hochwasservorhersage interessant. Um dieses Potential nutzen
zu koénnen ist es notwendig, die Effekte der daraus resultierenden unterschiedlichen
Aufnahmegeometrien zu  kompensieren. Dazu sind  problemorientierte,
anspruchsvolle Lésungsansatze notwendig. Grundlage hierfir sind Erkenntnisse Uber
die Rulckstreumechanismen an der Landoberflache wunter verschiedenen
Aufnahmegeometrien.

Ein Schwerpunkt der vorliegenden Arbeit liegt in der Analyse und quantitativen
Beschreibung der Rickstreumechanismen  von offene Boden, sowie
vegetationsbestandenen  Flachen. Neue Ansdtze zur theoretischen und
semiempirischen Beschreibung des Radarruckstreukoeffizienten werden hierzu
entwickelt. Unterschiedlichste Aufnahmegeometrien finden dabei Bertcksichtigung.
Eine Grundvoraussetzung zur flachenhaften Modellierung der Radarrickstreuung ist
die flachige Bereitstellung der notwendigen Modelleingabeparameter. Dies wird
durch die Kopplung der Radarriickstreumodelle mit einem physikalisch basierten
Prozessmodell erreicht, welches die notwendigen bio- und geophysikalischen
Eingabeparameter flachig verteilt bereitstellen kann.

Unabdingbare Grundlage fir die quantitative Auswertung der SAR Daten ist eine
adaquate und genaue geometrische und radiometrische Vorprozessierung der
Datenséatze. Insbesondere den reliefbedingten geometrischen und radiometrischen
Einflissen auf das Bildprodukt muss hierbei Rechnung getragen werden. Ein
entsprechendes, anspruchsvolles  Korrekturverfahren zur  Eliminierung der
reliefbedingten Lagefehler sowie radiometrischen Unterschiede wurde daher auf
Basis eines vorhandenen Verfahrens weiterentwickelt. Es ist die Grundlage fir alle
weiteren quantitativen Auswertungen der Bilddaten.

Die Trennung des Bodens- und Vegetationssignals ist zum Verstandnis und zur
Modellierung der Riickstreuung von z.B. Ackerflachen, unabdingbar. Ein
Schwerpunkt der vorliegenden Arbeit bildet daher die Trennung dieser
unterschiedlichen Rickstreuanteile.
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Die korrekte Parametrisierung der Oberflachenrauhigkeit stellt bei den derzeit
verfugbaren theoretischen Rickstreumodellen eines der Hauptprobleme dar. Durch
den Vergleich mit Bilddaten wird gezeigt, dass die klassische Parametrisierung der
Rauhigkeit durch die RMS Hohe (vertikale Rauhigkeit), sowie die
Autokorrelationslange  (horizontale  Rauhigkeit) zu  unzureichenden  und
mehrdeutigen Modellparametrisierungen fuhren kann. Durch ein neu entwickeltes
Bodenrickstreumodell, welches lediglich zwei Eingabeparameter benétigt, kann
dieses Problem gelést werden. Das neue Bodenmodell erlaubt die genaue und
eindeutige Modellierung der Radarrtckstreuung auf Basis von
Landoberflachenparametern. In diesem Zusammenhang wird ein neuer Parameter
zur Beschreibung der Oberflachenrauhigkeit eingefuihrt. Es wird gezeigt, dass sich
dieser Parameter direkt auf die fraktalen Eigenschaften einer Oberflache
zuriickfuhren lasst. Ein  Verfahren zur flachendeckenden Ableitung dieses
Rauhigkeitsparameters wird entwickelt und validiert. Auf Basis multitemporaler SAR
Bilddaten, lassen sich somit flachenhafte Informationen uber die
Oberflachenrauhigkeit ~ von Bdden gewinnen. Die so  gewonnenen
Rauhigkeitsinformationen werden fir die weitere Verarbeitung der Daten und
Modellentwicklungen verwendet.

Durch einen Vergleich der Ergebnisse des entwickelten Bodenmodells und der
gemessenen Bilddaten, sowie der daraus resultierenden Residuen, kann der Einfluss
der Vegetation auf das Gesamtsignal quantifiziert werden. Hierbei wurden deutliche
Unterschiede zwischen Getreide- und Maisfeldern festgestellt.

Der Einfluss der Vegetation kann im Fall von Getreideflachen (Weizen und Tritikale)
direkt aus den Bilddaten abgeleitet werden. Durch die Verwendung verschiedener
Polarisationen ist es mdglich, diesen Effekt zu parametrisieren. Es wird aufgezeigt,
dass ein starker Zusammenhang zwischen den Polarisationsunterschieden und
pflanzenphysiologischen Parametern wie Biomasse und Wassergehalt bestehen.
Dies kann zur quantitativen Beschreibung der Vegetationsriickstreuung genutzt
werden.

Aufgrund der deutlich geringeren Bestandesdichte, sowie der unterschiedlichen
Pflanzengeometrie, ist die Rickstreuung von Maisbestanden anders, als jene von
Getreide. Der Einfluss der Vegetation lasst sich hier vor allem durch den starken
Einfluss der Interaktion zwischen dem Stangel der Maispflanze, sowie der
Bodenoberflache erklaren. Ein semiempirisches Ruckstreumodell wurde entwickelt,
um die Rickstreuung eines Maisbestandes im Laufe der phanologischen Entwicklung
adaquat beschreiben zu kénnen.

Die somit erfolgreiche Trennung und separate quantitative Beschreibung von
Boden- und Vegetationsanteilen ermdglicht durch die Kopplung beider
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Modellkomponenten die Simulation der Radarrickstreuung von
Vegetationsbestanden. Hierbei sind unterschiedlichste Aufnahmegeometrien, sowie
Oberflachenzustande denkbar.

Zur flachenverteilten Modellierung der Radarriickstreuung ist es notwendig, die fur
das Modell notwendigen Eingabeparameter flachig zur Verfugung zu stellen. Dies
wird durch die Kopplung mit einem physikalisch basierten Prozessmodell erreicht.
Dieses kann zeitlich und raumlich verteilte Eingabeparameter wie beispielsweise
Bodenfeuchte, Biomasse und Vegetationshdhe bereitstellen. Durch die synergetische
Nutzung von Prozess- und Ruckstreumodell, wird eine realistische Simulation von
SAR Bildern mdglich. Es wird gezeigt, dass die Simulationsergebnisse die vom
Satelliten tatsachlich gemessene Radarriickstreuung gut wiederspiegeln. Die
verbleibenden Residuen kénnen zur Detektion und Beschreibung von Fehlern und
Unzulanglichkeiten in den Modellen und Parameterdatensatzen verwendet werden.
Auf Basis einer feldbasierten Detailanalyse wird aufgezeigt, dass unzureichende
Bodenfeuchtesimulationen aus dem Prozessmodell eine wesentliche Fehlerquelle
darstellen kdnnen. Hierbei spielt vor allem die oft unzuléangliche Parametrisierung
der hydrologischen Bodeneigenschaften eine Rolle. Der beschrittene gekoppelte
Modellansatz bietet demnach Maoglichkeiten zur verbesserten flachenverteilten
Parametrisierung von Eigenschaften der Landoberflache.

Die Bodenfeuchte der obersten Bodenschicht hat einen wesentliche Einfluss auf die
Radarrtckstreuung, was zur Ableitung flachenverteilter Bodenfeuchteinformationen
aus SAR Daten verwendet werden kann. Unter Zuhilfenahme des entwickelten
gekoppelten Modellansatzes wird ein Verfahren zur Ableitung der Bodenfeuchte
vorgestellt. Dieses verwendet a priori Informationen des Prozessmodells Uber den
initialen Bodenfeuchtezustand. Der Vergleich mit Referenzmessungen ergab eine
Genauigkeit des Verfahren von 3.5 Vol. %.

Die in der vorliegenden Arbeit entwickelten Verfahren ermdglichen die genaue
Vorhersage des Radarrickstreukoeffizienten auf Basis  flachenverteilter
Eingabeparameter des Zustandes der Landoberflache. Hierbei kdnnen
unterschiedlichste Aufnahmegeometrien berlcksichtigt werden. Die verschiedenen
Einflisse der Boden- und Vegetationsanteile an der Radarrickstreuung kdnnen
dabei getrennt betrachtet werden. Die direkte Kopplung mit einem
Landoberflachenprozessmodell ermdglicht hierbei die flachige Modellierung und
direkte Assimilation von SAR Bilddaten. Die vorgestellten Modelle und
Invertierungsansatze ermoglichen die anspruchsvolle und praxisorientierte
Verwendung von Mikrowellendaten fiir unterschiedlichste Fragestellungen.
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Chapter 1
Introduction

A prerequisite for sustainable development and management of the limited natural
resources of the Earth are integrative analysis and monitoring tools and techniques.
Decision support systems are needed to provide necessary data about the global
environment and realistic future scenarios.

Recent Global Change research therefore focuses on the development of integrative
and interdisciplinary strategies to describe the complex linkages between man and
its natural environment (ENGELEN, 2000; MAUSER, 2003; LubwiG et al, 2003).
Geospatial datasets are mandatory input variables to such systems. Geospatial
datamining has therefore increasing significance in the fields of natural, and recently
social sciences.

Earth observation by means of remote sensing techniques has become a powerful
tool for the characterization and description of the biosphere system at regional and
global scales. It enables the spatially distributed, systematic monitoring of the
environment by means of various imaging and non imaging techniques, over a
broad range of the electromagnetic spectrum. It is therefore an ideal tool to provide
the necessary geospatial datasets.

The permanent, weather independent, monitoring capacities of microwave remote
sensing systems, underline their importance in this context. The high sensitivity of
the microwaves to key parameters of the land surface energy and water fluxes, as
e.g. vegetation biomass and soil moisture, make them an ideal monitoring
instrument in addition to sensors operating in other frequency ranges.

1.1 New sensors — new challenges

An increasing demand of these valuable datasets leads to the development of new
sensor systems with more sophisticated imaging capabilities. Recent operational
spaceborne SAR systems as e.g. ENVISAT ASAR and RADARSAT and forthcoming
systems as e.g. RADARSAT-Il or TerraSAR, allow frequent, multipolarised
observations of the Earth surface. Contrary to their predecessors, as e.g. the ERS
and JERS satellites, the new sensor generation is capable to acquire data under
different imaging geometries. This enables the frequent observation of an area of




New sensors — new challenges

interest, which is crucial for operational applications as e.g. flood forecasting or
disaster management. Figure 1.1 gives an overview about actual and forthcoming
spaceborne SAR systems and their temporal and spatial resolution capabilities,
compared to the user requirements in various fields of applications
(SCHRODER et al., 2004).
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Figure 1.1: Observation frequencies and spatial resolutions of recent and
forthcoming spaceborne SAR systems, compared to specific user
requirements.

A profound understanding of the interactions between the electromagnetic waves
and the land surface parameters is crucial for a quantitative analysis of these
datasets. Due to the different imaging geometries and highly variable surface
characteristics the interpretation of these multiple datasets becomes more
complicated than that of a system with a unique geometry.

Sophisticated models and analysis tools, applicable for various sensor types, are
therefore needed. The availability of validated electromagnetic models that describe
the interactions between the microwaves and natural surface characteristics is
critical to comprehend and exploit the dependence of the SAR signal to geophysical
parameters. They help to understand the complex mechanisms and simplify the
transfer of inversion procedures to global scales.

Adequate interfaces between remote sensing data and land surface process models,
describing the energy and mass fluxes at the atmosphere-biosphere boundary layer,
are needed to make use of these valuable geospatial datasets. The assimilation of
remote sensing products into physically based process models is therefore another
important topic in recent research (e.g. WALKER, WILGOOSE and KALMA, 2001;
CROSSON et al., 2002; BACH and MAUSER, 2003; BACH, MAUSER and SCHNEIDER, 2003).
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1.2 Scientific objectives and outline of the thesis

The launch of the ENVISAT platform in March 2002, started a new era in operational
microwave remote sensing. The onboard ASAR sensor enabled the acquisition of
new and challenging image datasets.

It is the objective of the present thesis to develop methods and strategies for the
understanding and wise use of this microwave SAR imagery for the description of
land surface processes. It is therefore situated at the linkage between theoretical
remote sensing sciences and the development of practical applications.

The microwave backscattering coefficient is the result of complex interactions
between electromagnetic waves and the land surface (Figure 1.2). It is dependant
on various sensor and intrinsic object specific parameters. Under different imaging
geometries, the interactions between the various constituents within a resolution
cell are different. To relate the object characteristics to the backscattering
coefficient, a separation of the different contributing scattering terms, as e.g. soill,
vegetation, topography is needed.

Recent theoretical backscattering models share the problem of an ambiguous model
parameterisation. Different surface roughness parameter combinations result in the
same backscattering coefficients. Especially for multiple geometries, this makes
parameter inversion much more difficult. Current theoretical vegetation scattering
models are often not practicable due to the necessity of large input parameter sets
and unsatisfactory prediction results, related to limited model accuracies.

NN N NN

Figure 1.2: Examples for the complex interactions between microwaves and
the land surface: a) specular, b) diffuse, c¢) corner reflection, d)
volume scattering
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The presented work therefore concentrates on the understanding, separation and
quantitative description of the various scatter contributors. A theoretical land
surface microwave backscattering model is suggested for bare soil and vegetated
areas. By means of a synergistic coupling approach with a land surface process
model, it enables the derivation of geophysical datasets from SAR imagery of
various imaging geometries.

After a brief introduction into the basic principles of microwave remote sensing in
Chapter 2, the important interactions of the electromagnetic waves with the land
surface parameters are described in Chapter 3. The state of art of the scientific
research in the field of backscatter modelling and inversion of bio- and geophysical
parameters from SAR imagery is summarized. The chapter concludes with the main
research needs and scientific objectives for the operational use of ENVISAT ASAR
data.

Sophisticated preprocessing steps are mandatory for the derivation of quantitative
information from SAR imagery. Especially the terrain influences on the geometrical
and radiometrical properties of the image data have to be compensated. A
sophisticated preprocessing chain, including a rigorous terrain geocoding approach,
is therefore introduced in Chapter 4.

Field measurements are necessary to calibrate and validate the information derived
from remote sensing data. The testsite and field campaign, carried out within this
work, is presented in Chapter 5.

A two parameter bare soil backscattering model, valid over a wide range of imaging
geometries and surface conditions, is proposed in Chapter 6. It enables the
unambiguous derivation of surface properties of bare soils. A new surface
roughness parameter is suggested in this context, which can be directly related to
intrinsic surface properties. A soil roughness inversion procedure, based on
multitemporal and multipolarised SAR imagery, is developed and validated.

Based on the bare soil backscatter model results, a vegetation model for agricultural
fields is developed and calibrated in Chapter 7. It allows the prediction of the
backscattering coefficient, based on bio- and geophysical input variables. The model
is applied to predict the backscattering coefficients of various agricultural fields.




Scientific objectives and outline of the thesis

For spatially distributed modelling, several input variables are needed for the
backscatter model parameterisation. These can be obtained from a land surface
process model. An interface between a physically based land surface process model
and the developed bare soil and vegetation backscattering model is proposed in
Chapter 8. 1t allows for the realistic simulation of SAR images and the spatially
distributed comparison with real image datasets. By using this interface, a direct
model based assimilation and derivation of land surface parameters from SAR
imagery becomes possible. The capabilities and accuracies are outlined, using the
example of soil moisture inversion.

The thesis concludes in Chapter 9 with a summary of the achievements and an
outlook for future remote sensing data use and assimilation strategies.




Chapter 2
SAR basics and imaging principles

The chapter gives a brief overview about the SAR technique and system inherent
properties which are important for an understanding of the interactions between the
imaging system and an object. The focus lies hereby on the properties of an active
SAR system in the microwave region of the electromagnetic spectrum, as it is
realized by the ENVISAT ASAR sensor used within this work. An amount of good
introductions to SAR imaging techniques can be found in the literature (e.g. BAMLER
and SCHATTLER, 1993; KLAUSING and HoLpp, 2000; OLMSTED, 1993; LEwIS and
HENDERSON, 1998). The introduction therefore concentrates on important features
for the presented investigation.

2.1 SAR principle

An air- or spaceborne synthetic aperture radar system scans the Earth surface in a
sidelooking manner as depicted in Figure 2.1. While the sensor is moving on its orbit
it transmits and receives electromagnetic pulses at the rate of the pulse repetition
frequency. The flight direction provides the azimuth and the perpendicular direction
the range coordinate. From each object, illuminated within the systems footprint, it
receives information at different times and from different pulses. By measuring the
travel time of a pulse between transmission and reception, the range distance of an
object can be determined.

Contrary to a real aperture radar (RAR), the received echoes from various pulses
are used within a SAR system to generate a synthetic antenna length
(synthetic aperture). By time integrating over different subapertures, the systems
spatial resolution can be significantly improved.

Hence a SAR system is an active system which illuminates the Earths surface with
an own source of electromagnetic waves. Being independent from external sources
of illumination makes it possible to operate the system day and night.
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Figure 2.1: SAR imaging principle

The atmosphere is almost transparent for microwaves. Contrary to the optical part
of the electromagnetic spectrum the influence of the atmosphere on the signal is
negligible. This should not mislead to the assumption that there is no influence of
the atmosphere. For several applications, e.g. weather radar, short microwaves are
used to detect heavy rain or hail. The phase of the electromagnetic wave is also
influenced by the atmospheric water content, which can even be used for inversion
approaches (HANSSEN et a/., 1999).

The commonly used frequency bands in the microwave region are given in
Table 2.1. Dependant on the sensor configuration of a SAR system, different
interactions of the electromagnetic wave with an object can be observed. This is
discussed in Chapter 3.

Table 2.1: Microwave frequency bands

FREQUENCY BAND WAVELENGTH [cM] FREQUENCY [GHZ]

K 0.8..24 40. ... 12.5
X 24 ..3.8 125...8.0
C 3.8...7.5 8.0...4.0
S 7.5..15.0 40..2.0
L 15.0 ... 30.0 20..1.0
P 30.0 ... 100.0 1.0..0.3
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Figure 2.2:  General SAR imaging geometry

2.2 SAR imaging model

2.2.1 Imaging model

The position of a SAR system on an orbit at time zis given by its Earth centred state

vector §(t). Assuming the imaging geometry given in Figure 2.2, the range distance

R,(t) to a target P can be calculated by

Ry =+/(S-P)-(S-P) (2.1)

As already mentioned, a SAR system receives the echoes of an object within
multiple pulses. The footprint of a system with a small beamwidth of 0.3 °
(e.g. ERS) gives a footprint on the Earth's surface of about 5km. At a pulse
repetition frequency of 1680 Hz, the beams footprint moves only ~4 m between the
pulses. This means that each object is seen more than 1000 times by the radar
(OLMSTEDT, 1993).

The coherently recorded echoes of an object have to be integrated during the
image formation process to estimate the objects position within the image plane.
For that the Doppler frequency shift /, can be calculated for each orbit position by

_ 2fo (VP _vs)ﬁs

f
°oc IR

2.2)

with the carrier frequency 7, and the target and sensor velocities V, and V; .
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The Doppler frequency is higher for objects approaching the sensor, than for
objects the sensor is moving away from. The point, where the object is
perpendicular to the sensors position, corresponds to the Zero-Doppler position. For
any given object the corresponding Zero-Doppler position can be calculated
iteratively using (2.1) and (2.2) (e.g. MEIER, FRElI and NUESCH, 1993; Low and
MAUSER, 2003).

2.2.2 SAR image properties

2.2.2.1 Local imaging geometry

The angle between the incident wave and the normal vector on the geoid is defined
as the incidence angle 6. It has a major influence on the radar backscatter. While 6
is defined for a flat Earth the local incidence angle 6; takes the local terrain slope
into account. It is defined as the angle between the incident ray and the local
surface normal. This is illustrated in Figure 2.3.
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Figure 2.3:  Global and local imaging geometries

2.2.2.2 Azimuth resolution

The geometric resolution of an imaging system determines the spatial extent of a
resolution cell on the Earth surface. The azimuth resolution p, of a SAR system is

the resolution of the system in flight direction, given as

Pa == (23)

2

where [ is the length of the physical antenna. Note, that p, is independent from

range distance. Theoretically the azimuth resolution is therefore not influenced by
the targets distance to the sensor.
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Near range
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Figure 2.4:  SAR azimuth resolution

This can be explained by the concept of the SAR, which integrates information
gathered within a certain time interval. For a physical antenna, the angular
beamwidth vy is directly proportional to the antenna size L and the wavelength 4 as
(OLMSTED, 1993)

/4 =L (2.4)

The corresponding footprint Le is a function of the range distance R as

_R

Leﬁ:7R L

(2.5)
For a synthetic aperture radar, L.+ corresponds to the distance, the target is within
the beam. For targets in near range this integration time is shorter than for targets
in far range, as can be seen from Figure 2.4. The effective angular beamwidth of a
SAR system is then given by

A

2.6
2L 4 (2-6)

}/eff=

which is similar to (2.4), except for the factor 2, which is caused by the different
collecting of phase shifts (MOREIRA, 1992). Using (2.5) the azimuth resolution can
then be calculated as

JR IR L
po=ygR=— =L == 2.7)
2L, ZALR 2

which is equal to (2.3).
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2.2.2.3 Range resolution

The range resolution of a SAR system depends on the pulse length 7z of the
transmitted signal. Two objects, illuminated by the same pulse, can not be
distinguished, whereas objects with a distance larger than the resolution cell can be
separated (Figure 2.5). The slant range resolution p, is given by

Cr

=" (2.8)

where c¢ is the speed of light. Assuming a flat Earth surface, the corresponding
ground range resolution pg for an incidence angle 0 is given by

ct
= 2.9
P 2sin(0) (29)
Thus, the geometric ground resolution is dependant on the incidence angle. In the
Far Range region, the resolution is better than in the Near Range of the footprint.
This is shown in Figure 2.5, where the points P; and P, can not be separated by the
SAR system whereas P; and P4, which have the same ground distance, can be

separated due to the better spatial resolution.

Depression - T = Pulse length
angle
Lo '
ang //
Ve
/2
R \
T
Near Range ' \—:Rgr:23m '—/ ,'\ Far Range
L A
20m 20m t

Figure 2.5: Range resolution of a SAR system: The ground range resolution is
increasing from Near to Far Range
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2.2.2.4 Relief distortions

Due to the side looking geometry of a SAR, the relief can induce significant
geometric and radiometric distortions to the image product. Scattering occurs from
sloping and faceted surfaces, which creates local distortions that depend on the
surface to beam orientation. As will be shown later in Chapter 4, these distortions
can be corrected using rigorous image processing techniques.

Figure 2.6 shows the slant and ground range planes for rugged terrain as seen by a
SAR system. Slopes, facing towards the sensor cause a displacement of the elevated
parts of the terrain towards the sensor. This foreshortening is the reason why
surfaces, directing towards the sensor, appear bright in SAR images. The energy of
many scatters is compressed within few image pixels. The extreme foreshortening,
where the signal from the top of a mountain reaches the sensor before that of the
base is named /ayover. Areas aspecting away from the sensor or lying behind the
top of a mountain are not illuminated. No backscatter return is therefore received
from that shadow region.

Image plane
S slant range geometry

Ground Range

S

Map
Foreshortening Layover Shadowing (terrain corrected)

Figure 2.6: Geometric and radiometric relief distortions

In along track direction, the radial velocity between the sensor and the target
changes with changing terrain height, which introduces an additional Doppler
frequency shift. For the ERS configuration, this terrain introduced shift causes a
misalignment of 110 m or 9 azimuth pixels for a height difference of 1000 m and
targets in the mid-latitudes (MEIER, FREI and NUESCH, 1993).

For slopes, facing the incident wavefront, a larger ground area contributes to the
returned signal of a slant range resolution cell, than for slopes lying in the opposite
direction. The slope and aspect of the scattering surface produces significant
changes of the scattering area among neighbouring resolution cells. The correction
of this effect is crucial. It is shown in Chapter 4 that it can be compensated in a
rigorous way.

12
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2.3 Radar equation and backscattering coefficient

The power, received at the antenna of a SAR system, is recorded and can be
processed to a two-dimensional image (e.g. BAMLER and SCHATTLER, 1993;
CURLANDER and MCDONOUGH, 1991; MOREIRA, 1992).

The received power is given by (ULABY et al., 1982; KLAUSING and HoLpP, 2000):

= 2 PG?
P, = j > . 5%A (2.10)
(472_)3 R4
|:_>R , P. = average received power, transmitted power
G = antenna gain
A = illuminated area
R = range distance
A = wavelength
c’ = backscattering coefficient

Equation (2.10) is known as the ragar equation. A derivation of the formula is given
in Appendix A. The target scattering characteristics are comprised by the
backscattering coefficient c°. It describes the ratio of the energy scattered by the
target compared to the energy scattered by a lambertian isotropical surface. The
relevant backscattering processes contributing to the backscattering coefficient are
described in Chapter 3. For distributed targets, c° is the normalized radar cross
section (RCS) of the scatterers within a resolution cell:

PN {ﬂz} (2.11)

A | m?

Thus for the derivation of o°, the scattering area must be known. As will be seen in
Chapter 4, the scattering area is strongly influenced by terrain undulations. During
the image generation procedure, the local terrain slopes are not known. Therefore
image products are not normalized to the ground surface. The normalization of the
grey values is done in the slant range geometry, which means that the unit area is
given by the azimuth and slant range resolution of the imaging system. Thus, the
image is directly proportional to the received power and is called a brightness
image. Contrary to the backscattering coefficient on the ground o°, it is abbreviated
by B° A third possibility exists, where the image is normalized to the area
perpendicular to the incident ray. In Figure 2.7 the three different possible
normalization methods are shown. The only backscattering coefficient, being
independent from the local imaging geometry is B°. This is the reason why SAR
image products are always delivered as B° images (LAUR et al, 1998;
SHEPARD, 2000; RosIcH and MEADOWS, 2004).

13
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Figure 2.7:  Definition of the backscattering coefficients o°, p°, y°

2.4 ENVISAT ASAR

The Advanced Synthetic Aperture Radar (ASAR) is the biggest instrument of the
payload, boarded on the ENVISAT platform. It was built to continue and extend
Earth observation using SAR. Figure 2.8 shows the ASAR antenna on board of the
satellite and in the laboratory. The deployed antenna has a size of about 10 meters.

S
> s
" t \\

£ s
g DA
ASAR antenna z

Figure 2.8: ASAR sensor onboard (left) and antenna in the laboratory (right);
(modified after ESA, 2002)

Based on the experience with ERS-1/2, several enhancements have been made for
ASAR. Most important is the replacement of a central power amplifier for the
antenna, by an active phase array antenna system with distributed elements. The
whole antenna consists of 320 independent Transmit/Receive (T/R) modules,
organized in 32 rows of 10 modules, which can be adjusted each individually
(RosIcH et al., 2003). As a result, the instrument can be used in a very flexible
manner. It allows different polarisation combinations, incidence angles and imaging
modes. Table 2.2 summarizes the main characteristics of the sensor. More detailed
technical information can be found in ESA (2002).

The innovative concept of the sensor allows for new acquisition modes with
different image content. The major improvements are presented next.

14
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Table 2.2: Main ASAR configuration parameters
PARAMETER ASAR CONFIGURATION
Orbit altitude ~799 km
Orbit inclination angle [°] 98.55
Incidence angle range* 14 — 45 °
Swath width* 58 — 109 km

Frequency / wavelength

Polarisation HH/VV/VH/HV
Calibration accuracy +0.5dB
Range sampling rate [MHz] 19.21

Pulse repetition frequency [Hz] * 1709 — 2067

5.331 GHz / 5.6224 ¢cm (C-band)

X dependant on the selected configuration

2.4.1 Selectable imaging modes and incidence angle

ENVISAT ASAR has different selectable imaging modes which can be chosen by the

user prior to the acquisition. Additionally the possibility to control the direction of

the antenna lobe allows for the acquisition of images with different incidence

angles.

flight direction

Figure 2.9:

ASAR imaging modes (modified after ESA, 2002)
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The different imaging modes of ASAR, shown in Figure 2.9, are (ESA, 2002):

Image Mode (IM)

VV or HH polarisation images from any of 7 selectable swaths. Swath width
between approximately 56 km (swath 7) and 100 km (swath 1) across track.
Spatial resolution of about 30 m (for precision product).

Alternating Polarisation (AP)

Two co-registered images per acquisition, from any of 7 selectable swaths.
HH/VV, HH/HV or VV/VH polarisation pairs possible. Spatial resolution of
approximately 30 m (for precision product).

Wide Swath (WM)

400 x 400 km2 wide swath image. Spatial resolution of approximately 150 m.
VV or HH polarisation. The image is acquired using the ScanSAR technique
where 5 subswaths form the whole image.

Global Monitoring Mode (GM)

same acquisition technique as for the wide swath mode, but with reduced
spatial resolution. Spatial resolution of approximately 1km. HH or VWV
polarisation

Wave Mode (WV)
A small imagette is acquired at regular intervals of 100 km along track. The
imagette can be positioned anywhere in an image mode swath. HH or VV
polarisation may be chosen. Imagettes are converted to wave spectra for
ocean monitoring.

The different imaging modes allow to use the sensor in a very flexible manner. It

can switch between the different modes within a few seconds. The main

achievements of these new imaging capabilities are:

frequent observations - the different swaths allow to observe an area of
interest from different orbit paths, which increases the observation
frequency. For areas in the mid-latitudes, coverages from two up to four
times a week are possible. The different ENVISAT ASAR swathes and their
properties are summarized in Appendix A.

Multi-incidence observations - The radar backscatter has an angular
dependency. The programmable incidence angles allow to chose the best
incidence angle for a certain application

16
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= Wide area coverage - For many applications it is important to cover a wide
area with an acceptable spatial resolution. In hydrological applications it can
be of interest to retrieve surface parameters (e.g. soil moisture, snow
covered area) for a whole watershed. The wide swath mode with an area
extent of 400 x 400 km2 is well suited for these needs, when the
corresponding loss in spatial resolution remains acceptable. It provides
homogeneous, temporal consistent datasets for large areas. Figure 2.10
shows an example of an WSM image in southern Germany.

Upper Danube catchment :
~76.653 Km2

Lake -
. constance

Figure 2.10: Example of a WSM image, covering the upper Danube watershed
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2.4.2 Dual polarisation

Imaging radars can transmit and receive differently polarised electromagnetic
waves. The electric field can be polarised horizontally (H) or vertically (V) with
respect to the incident wave on the surface. Each possible combination of
transmit/receive configuration is abbreviated by the H and V characters. The first
character corresponds to the transmit, the second to the receive polarisation
(e.g. VH stands for vertical transmit and horizontal receive). A SAR system with the
same transmit/receive combination (VV or HH) is a copolarised system, contrary to
the crosspolarised case (VH or HV).

ENVISAT ASAR is the first operational spaceborne sensor which provides a dual-
polarisation channel. In its alternating polarisation mode (AP mode), one of three
different channel combinations are possible:

= VW and HH
= HH and HV
= VW and VH

The different polarisation combinations contain different information about the
scattering processes and therefore allow to invert land surface parameters with less
degrees of freedom, which might simplify inversion strategies (ESA, 2002).

18



Chapter 3
Microwave interactions with
natural surfaces

Complex interactions take place between the incident electric field of a SAR system
and an object on the Earth’s surface. Along with the system related parameters, the
geometrical and electrical properties of the objects as well as the local imaging
geometry have an influence on the radar backscatter (Table 3.1). The
understanding of the interplay between the sensor and object parameters is
therefore needed for the retrieval of land surface parameters from SAR data.

Table 3.1: Fundamental system and target parameters influencing the radar
backscatter
SYSTEM PARAMETERS TARGET PARAMETERS
Wavelength or Frequency Surface Roughness
Polarisation Dielectric properties
Look angle Slope and orientation
Resolution

The chapter outlines the main backscattering mechanisms and their dependency on
the surface and sensor characteristics. After that, the state of art in land surface
parameter retrieval from SAR data is briefly summarized. The new imaging
capabilities of ENVISAT ASAR have implications on the inversion strategies to
retrieve land surface parameters. The challenges and potentials are discussed and a
strategy for the modelling of microwave land surface interactions is outlined.

19



Sensor parameters

3.1 Sensor parameters

3.1.1 Frequency / Wavelength

The selection of the operating frequency of a radar system is dependant on the
application. For example, the appearance of vegetation or soils changes with
changing frequency. Generally, lower frequencies are capable to penetrate deeper
into a medium. Figure 3.1 shows the differences in information content of various
frequencies. The same area was imaged with two frequencies (X- and P-Band). It
can be seen, that there is predominant structural information in the X-band image.
Field boundaries can be distinguished easily and the backscatter of the forest in the
image center is comparable to that of the agricultural areas.

In the P-band image on the other hand, field boundaries are not visible any more.
The forest appears very bright instead. The reason is, that the P-band is not
influenced by scatterers smaller than the wavelength such as leaves or stalks. It can
therefore penetrate into the forest canopy and the high backscatter results from
corner reflections between the trunks and the underlying surface.

In addition, technical considerations are a major constraint for the decision of the
frequency of a SAR system. The radar equation (2.10), implies, that larger antenna
sizes are needed for lower frequency systems, which is a major constraint for
spaceborne SAR systems.

X-Band
a) B b)
L-Band

&y,

W Sk P-Band
N

X-band P-band

Figure 3.1: Frequency dependant information content of a SAR image (a) and
schematic penetration depth for vegetation canopies (Low, 2000)
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Sensor parameters

3.1.2 Polarisation

The polarisation of an EM-wave is defined by the direction of its electric field vector.
Radar systems can have single, multiple or full polarised configurations. A single
polarised system records information only in one transmit/receive polarisation
combination, while a multiple system, as ENVISAT ASAR, has different possible
channel combinations. A fully polarimetric SAR system stores the full scattering
matrix which allows to reconstruct the depolarisations caused by a target. The
basics of polarimetry and its applications are e.g. discussed by VAN ZyL et al. (1987),
ZEBEKER et al. (1987) and BOERNER et al. (1998).

Depolarisation of the transmitted signal is primarily a consequence of
a) quasi specular reflection from corner reflectors,
b) multiple scattering from rough surfaces and
¢) multiple volume scattering.

Targets with a characteristic geometrical shape with regard to the incident
polarisation, influence the signal return significantly. Features having a linear
vertical shape, as e.g. a wheat field, have stronger influence on a VV polarised EM-
wave than a comparable HH-polarised field. The stalks of the plants behave like
small dipoles which influence the signal return.

The incorporation of multiple-polarisation radar datasets in the analysis of SAR
images raises the understanding of the signal/target interactions and can simplify
surface parameter retrieval.

Figure 3.2:  Definition of the polarisation vector
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3.1.3 Incidence angle

The definition of the local imaging geometry was given in section 2.2.2.1. It is
dependant on the sensor’s look angle and the target's local slope and aspect, with
regard to the incident wave. Local terrain slopes have significant influence on the
backscattering coefficient, making quantitative image analysis difficult. Therefore a
systematic correction of the terrain induced grey value changes has to be applied on
the image data. This prerequisite preprocessing steps are discussed in Chapter 4.

The interaction between the target and the EM-wave also depends on the incidence
angle. The sensitivity of the signal to surface roughness or the contribution of a
vegetation canopy to the signal increases with increasing incidence angle.

3.2 Object parameters

Several target parameters have an influence on the backscattering process. They
are directly interrelated with the sensor parameters. The returned signal from a
resolution cell is the sum of different backscatter contributions within that cell.

3.2.1 Surface roughness

Roughness is a very important target characteristic that influences the appearance
of a feature on radar images. Roughness in this context means the “smoothness” of
the target with respect to the wavelength and incidence angle (LEwis and
HENDERSON, 1998). Thus, the same surface has a different effective roughness in
different frequencies and under different incidence angles.

When a surface is smooth, the impinging energy is reflected away from the surface,
governed by Snell's law. As the roughness increases, the directional component of
the scattered energy becomes more diffuse. For a perfect lambertian surface, the
energy is scattered isotropically. The scattered component increases, while the
reflected component of the signal decreases (Figure 3.3).

Specular reflector

Reflected wave
Incident Mixed scatterer

wave \ \
> N
o1 02 Backscattered
\' Smooth surface component

@ l\ ® = [ (i G

o,

Diffused scatterer \

Slightly

rough surface Rough surface

Figure 3.3:  Specular reflection and diffuse scattering from a smooth (@),
medium rough (b) and very rough lambertian (c) surface
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In a first approximation, a surface can be treated as rough if it meets the Rayleigh
criterion (ULABY et al., 1982):

A
8cosd

h >

(3.1)

where # is the average height variation of the surface and A is the wavelength. For
natural surfaces, the Rayleigh criterion is often not strict enough because the
surfaces have roughness spectra similar to the wavelength, resulting in frequent
scattering. A more stringent criterion is therefore needed. ULABY ef al. (1982)
therefore propose the Fraunhofer criterion. It is defined as:

A
32cosd

h >

(3.2)

3.2.1.1 Surface roughness characterization

The description and derivation of surface roughness parameters is important for the
understanding of the backscattering mechanisms. They are needed as input
variables for theoretical electromagnetic models.

Commonly, the surface roughness is expressed in terms of the rms height s and
autocorrelation length | (DAVIDSON et al., 2000; DoBsoN and ULABY, 1998). The rms
height describes the vertical roughness of the surface as the deviation from the

average height h . It is defined as

(3.3)

The surface autocorrelation function is a measure of the degree of correlation
between the height h(x) and the height h(x+¢), where & is the displacement
factor. The horizontal roughness is expressed by the autocorrelation length |, which
is defined as the distance where the value of the autocorrelation function is less
than e (Figure 3.4). For a perfectly smooth surface | is «. To approximate the
shape of the autocorrelation function p(&) by theoretical functions, exponential or
gaussian distributions are commonly used. They are given as (DOBSON and
ULABY, 1998)

p(é) = exp(— f—jj Gaussian (3.4)

pé) = exp((— V2 |I£|J Exponential (3.5)
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Surface profile
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Figure 3.4: Derivation of rms height and autocorrelation length from surface
roughness profiles

Unfortunately, neither of these is capable to satisfactorily describe the shape of the
autocorrelation  function of natural surfaces. Several other theoretical
autocorrelation functions have therefore been proposed, trying to mediate between
the gaussian and exponential shape (FUNG, 1994; LI, SHI and CHEN, 2002; CHANZY,
MOLINEAUX and ZRIBI, 2003)

The roughness of a surface is commonly derived from one dimensional surface
profiles. These can be generated using simple mesh grids, needle-like profilers or
laser profilers. The derivation from high resolution elevation models is also possible
(ZriBI et al., 2000).

The derivation of roughness parameters from field measurements has shown that
their estimation can be difficult due to several reasons:

1) The autocorrelation length is not a measurable parameter. It is calculated
from the autocorrelation function. Its estimate is strongly influenced by the
profile length, used for the measurements (CHANZY, MOLINEAUX and
ZRIBI, 2003; MATTIA et al. 2003; DAVIDSON et al., 2000; OH and KAy, 1998).

2) Once the autocorrelation length has been defined for the characterization of
the surface roughness, it can only be used in combination with the definition
of the shape of the corresponding theoretical autocorrelation function (ACF).
The simple shapes of the ACF are an inaccurate, nevertheless necessary,
approximation to the true ACF estimates.
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3) One dimensional surface profiles can only characterize a small subset of
surface roughness characteristics. Many measurements in different directions
are needed to get an estimate of the surface roughness. This is especially
important for surfaces with characteristic linear macro scale variations as
e.g. potato fields.

4) Natural surfaces have different roughness frequency components. This has
to be taken into account when calculating the autocorrelation length.
CHANZzY, MALINEAUX and ZRIBI (2003) therefore propose a decomposition of
the roughness spectra in low and high frequency components.

5) Compared to the resolution cell of a SAR system, the measured profiles are
short and not absolutely a representative for the characteristic roughness
component affecting the backscattered signal.

To overcome these drawbacks and to come to a more realistic description of natural
surfaces, power spectral indices or self-affine fractal surfaces have been used for
the surface roughness characterization (DAVIDSON et al., 2000; Louis et al., 2003;
POWER and TuLLIS, 1995; ZRiBI et al., 2000).

3.2.2 Dielectric properties

The scattering and absorption of EM waves by a media is strongly dependant on its
dielectric properties. These are described by the complex dielectric constant which is
a measure for the polarisability of the media.

The complex permittivity ¢., often called the dielectric constant, is the principal

description of the medium’s response to the presence of an electric field. It is given
as (RANEY, 1998)

g =&—-je"=¢,(e'-j€") (3.6)

c

where g, = 8.85x107* [farad/m] is the permittivity of free space, ¢ is the absolute

and <, the re/ative dielectric constant. Both, ¢ and e, can be found in the
literature, but the distinction between the absolute and relative values are not
always reliable. The re/ative dielectric constant, representing an intrinsic property of
the media, is often cited in the literature simply as dielectric constant. To be
consistent with other publications (e.g. DOBSON and ULABY, 1998; ULABY et a/. 1982;
HALLIKAINEN et al., 1985), €, is also referred as dielectric constant within this work.

The real part of the dielectric constant €, defines the relative permittivity of the
media. It influences the wave propagation and depolarisation and defines the
amount of scattered energy. The polarisation of the molecules at the boundary layer
between two media produces a separation of the electrical charges.
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The force of this separation is expressed by e,". The imaginary part €,” is a measure
for the absorption properties of the media. It is common to express the loss
properties in terms of the loss tangent

tano = Er, (3.7)

Er

Most natural materials have dielectric constants ranging from 3 to 8 when dry, while
liquid water has a high dielectric constant due to its dipole character (TIPLER, 1994).
For frequencies below 5 GHz the dielectric constant of water is about 80. For higher
frequencies, it decreases but remains significantly larger than that of other natural
materials (MATZLER, 1987). Thus, the dielectric constant is strongly influenced by the
water content of the media. A high moisture content implies a high radar reflectivity
and a high signal return. Therefore the penetration depth of the EM-wave into a
media is inversely proportional to the water content. High moisture contents lead to
high reflection at the top of the surface, resulting in low penetration depths.
Subsurface contributions to the signal have therefore a higher probability under dry
conditions. The penetration depth D,, is defined as the depth, at with

I(Dpen)/I(O):e’l, where /(0) is the intensity of the transmitted wave at the

interface between two media. It is dependant on the radar wavelength and the local
incident vector. The intensity of the wave at a given depth is then given by

I(r)=1(0)-e“" (3.8)

where T is the vector of the incident field and a is the attenuation factor which is
defined as (RANEY, 1998):

a =277Z\/0.5\/1+tan25—0.5 (3.9)

Figure 3.5 shows the penetration depth for the ENVISAT ASAR sensor configuration
(C-band) for various surface moisture contents and incidence angles. For most
cases, the penetration depth is within the upper 1-2 centimetres. This uppermost
soil layer may have a significant different moisture content than the lower soil
layers.

26



Object parameters
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Figure 3.5: Penetration depth at 5.3 GHz for different incidence angles

3.2.2.1 Dielectric models

Natural surfaces, as soils or vegetation, consist of heterogeneous materials. In
contrast to pure media (e.g. water and ice) or electrolytic solutions, their dielectric
constant has to be calculated using dielectric mixture models. There are many
theoretical or semi-empirical models which describe the dielectric behaviour of
natural materials as a function of moisture content (e.g. WaANG, 1980;
DOBSON et al., 1985; HALLIKAINEN et a/. 1985; PEPLINSKI, ULABY and DOBSON, 1995;
SERBIN, OR and BLUMBERG, 2001). The most commonly used, in the field of remote
sensing, are the dielectric models of HALLIKAINEN ef a/. (1985) for soils and the Dual
Dispersion model of ULABY and EL-RAYES (1987) for vegetation. They describe the
dielectric constant as a function of the soil and vegetation volumetric water contents
as follows:

Soil (HALLIKAINEN et al., 1985)
e, =(a, +a,S +a,C)+ (b, +b,S +b,C)m, +(c, +¢,S +c,C)m? (3.10)

where m, is the volumetric soil moisture, S and C are the sand and clay textural
components of the soil in percent by weight and a, b, c¢, are empirically
determined model coefficients. The coefficients are given for the real and imaginary
part of €, .
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Vegetation (ULABY and EL-RAYES, 1987)

The Dual Dispersion model treats the dielectric constant of vegetation €, as the
additive mixture of a nondispersive residual component <, a free water component

€, and a bulk vegetation bound water component €, as
€,=€, tVq, €¢ +V, &, (3.11)

where v,, and v, are the volume fractions of the free water and bulk vegetation

bound water components respectively. The different components of (3.11) are given
by (3.12) — (3.17) as follows:

€,=1.7-0.74m_ +6.16m; (3.12)
V4, =M, (0.55m, —0.076) (3.13)
e, =a9+- 20 18 (3.14)
1+if /18 f
2
v, = 4.64m, (3.15)
L+ 7.36m; )
€,=2.9+ >5.0 (3.16)

1+(if /0.18)*°
o =const =1.27 (3.17)

where f denotes the frequency and m, the gravimetric moisture content of the

vegetation. The influence of the water content on the dielectric constant for 5.3 GHz
is shown in Figure 3.6 for both models.

soil moisture (5.3 GHz) Dual Dispersion model (5.3 GHz)
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Figure 3.6:  Dielectric constant for soils (left) and vegetation (right) as a
function of water content
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3.3 Modelling land surface backscattering

The availability of electromagnetic models which describe the complex interactions
between EM-waves and the object properties and their interrelationships is critical
for a better understanding of the scattering processes and the retrieval of
geophysical parameters. FUNG (1994) gives an overview about existing scattering
models and their wide field of applications. The main motivations for using
theoretical models are (FUNG, 1994):

1) assist data interpretation, by permitting the calculation of signal return,
dependant on biogeophysical object properties

2) study the signal sensitivity to biogeophysical or system parameters

3) provide an interpolation or extrapolation tool for filling gaps in existing
datasets

4) to simulate the signal by “forward modelling”, dependant on biophysical
parameters, leading to the inversion of those

5) to aid experimental design

While trying to build up such models and use them for practical applications one
particular difficulty is to provide an accurate and complete set of input variables,
describing the properties of the object. Furthermore, the validity of each model is
restricted to a limited range of each input parameter.

A brief overview about existing electromagnetic models, suitable for the description
of the microwave land surface interactions, is given in the following. All models use
the rms height, autocorrelation length and dielectric constant as input variables.

3.3.1 Theoretical surface scattering models

The complex geometry of bare soil surfaces has to be approximated by simpler
geometries to describe electromagnetic wave scattering. Each scattering model is
therefore constrained to a certain validity range of surface roughness.

If the surface irregularities are large compared to the wavelength, commonly
expressed by the wavenumber &k, the Kirchhoff approximation is applicable
(OH, SARABANDI and ULABY, 1992). Such a rough surface is characterized by a large
radius of curvature at each point of the surface. Various types of modifications and
improvements have been made to the Kirchhoff model. The most commonly used
are the geometric optics model (GOM) and the physical optics model (POM).
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Geometric optics model (GOM)
The geometric optics model (BECKMANN and SPizzICHINO, 1987), also known as the
Kirchhoff method under the stationary phase approximation, is based on the

assumption that aﬁh :afv at all incidence angles for rough surfaces. It is only

defined for the copolarised case. Thus an adequate parameterisation of the

depolarisation is missing because it is assumed that aﬁv = 0. Following DoBsoN and

ULABY (1998) this assumption is applicable up to an incidence angle of 60 °. For
higher incidence angles the backscattering coefficient is highly underestimated by
the GOM.

Physical optics model (POM)

The physical optics model is also known as the Kirchhoff approach under the scalar
approximation. It is defined for medium rough surfaces with an autocorrelation
length larger and a rms height smaller than the wavelength. Both copolarisations
can be sufficiently described. It shows good agreement with measured datasets up
to an incidence angle of 30 °. For higher incidence angles, the backscattering
coefficient is underestimated (DoBsON and ULABY, 1998).

Small Perturbation Model (SPM)

For smooth surfaces with only slight profile deviates from the mean height,
perturbation solutions can be used. The small perturbation model (RICE, 1951) is
defined for smooth surfaces, where the rms height is small compared to the
wavelength. The surface should have an isotropical character. Therefore the range
of validity is reduced and the model application is mainly restricted to longer
wavelengths in L- or P-band (DoBsoN and ULABY, 1998)

Integral Equation Model (1EM)

The validity ranges of the models introduced above are shown in Figure 3.7. It must
be noted that there remains a gap, especially for ks<2.0 and kl <6.0, where
none of the models is valid. The surface roughness of most natural surfaces is
situated within this region. This limits the applicability of the models introduced
above significantly. To overcome this problem, FUNG, LI and CHEN (1992) proposed a
model, namely the Integral Equation Model (IEM), which is valid over a wide range
of surface roughnesses, as can be seen from Figure 3.7. It is especially applicable to
model the backscattering behaviour of natural surfaces. The IEM is one of the most
popular backscattering models for Earth science applications, where it has proven its
capability to reproduce the backscattering coefficient of natural surfaces
(e.g. BINDLISH and BARROS, 2000; ZRriBl and DECHAMBRE, 2000; BAGHDADI et al., 2002;
WIGNERON et al., 1999; ZRiBI et al., 2003). A detailed model description of the IEM is
given in Chapter 6.
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Ranges of validity
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Figure 3.7:  Roughness validity ranges of electromagnetic models, dependant
on the frequency and surface rms height s and autocorrelation
length | (after OH et al., 1992; FUNG, LI and CHEN, 1992; DossoN and
ULABY, 1998)

3.3.2 Vegetation interactions

Attempts to describe the backscattering from vegetation covered areas have been
made since the late 1970s. They have evolved from the simple “cloud” model of
ATTEMA and ULABY (1978) over multilayered, multi-constituent models as the
Michigan MlIcrowave Canopy Scattering Model (MIMICS) proposed by
ULABY et al. (1990) or the radiative transfer model of KARAM et al. (1992). Recent
approaches become more sophisticated, using 3-dimensional parameterisations of
the canopy (FLOURY, 1999; MARTINEZ et al., 2000; DISNEY, SAICH and LEwis, 2003;
LEwIS et al., 2003). The different kinds of vegetation representations are shown in
Figure 3.8.

Attema and Ulaby Karamet al. Ewe and Chuah Floury (1999)
(1978) (1992) (2000)

Level of complexity and understanding

Figure 3.8: Different vegetation representations for electromagnetic modelling
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Despite the progress which has been made in understanding the complex

interactions between electromagnetic waves in the microwave region and the

vegetation and soil properties, the scattering models still represent a simplified

description of the underlying physical process. This has several reasons:

The backscattering coefficient of a resolution cell is the result of the
contributions of independent scatters which add incoherently to the returned
signal. The electromagnetic models describe this by randomly distributed
independent scatterers with specific scattering and attenuation properties.
These are summarized to calculate the final backscattering coefficient. The
independent scatterer assumption is valid, if the distance between the
scatterers is large compared to the wavelength. If the scatterers have a
distance within or below a wavelength, the single contributions add
coherently, resulting in positive or negative interference. In first order
radiative transfer models (e.g. KARAM et al, 1992) multiple scattering
between the different sources is often neglected.

As a consequence of the assumption of independent scatterers, the
attenuation by the vegetation canopy is often over- and the vegetation and
bare soil scattering terms are underestimated. This effect increases with
increasing incidence angle, which is a problem if the model should be used
for various imaging geometries.

Each scatterer has to be characterized by its location within the resolution
cell and its geometrical and dielectric properties. Commonly this is realized
by randomly distributing the scatterers within a volume and define their
dielectric properties. For more sophisticated 3D-models the exact position of
each scatterer has to be known, which leads to large and sophisticated
parameter sets, being not available for operational tasks.

Heterogeneities within the resolution cell can not be taken into account.

The scatterers are assumed to satisfy azimuthal symmetry which may not
correspond to natural appearance (e.g. sunflowers)

The geometric shape of the scatterers has to be approximated by simplified
geometric structures, such as needles, disks or cylinders for which the
extinction and polarisation properties can be calculated using
electromagnetic equations. The curvature of e.g. leaves is not taken into
account when using these simple geometries.
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Recently, electromagnetic models have been developed to overcome the drawback
of the independent scatterer assumption (MARLIANI et al., 2002; PICARD, LETOAN and
MATTIA, 2003; PIcCARD and LETOAN, 2002; LIN and SARABANDI, 1999;
COOKMARTIN et al., 2000). These coherent models preserve the phase information
and take into account interference of all scatterers within a resolution cell, defined
by their size, position and orientation. Nevertheless, they are still based on a
simplified description of the three-dimensional structure of the vegetation by a
discrete set of primitives.

To provide the necessary input parameters for the radiative transfer models a
coupling of vegetation growth models, based on the description of specific
physiological processes of plant growth, in combination with geometrical plant
vegetation models, as L-systems, is helpful (LINDENMAYER, 1975; PRUSINKIEWICZ and
LINDENMAYER, 1990; FOURNIER and ANDRIEU, 1999). While radiative transfer models
have been established in the optical domain for appropriate inversion of plant
parameters (BICHERON and LEROY, 1999; BACH ef al, 2000; WEIss et al.,, 2000;
ComBAL et al., 2002; BACH and MAUSER, 2003), they are seldomly used to understand
the microwave backscattering of vegetated surfaces. The main reasons are the
difficulties in model parameterisation and the limitations of the electromagnetic
models mentioned above. First approaches in this direction were made by
LEwIS et al. (2003) who coupled the coherent, Monte Carlo based backscattering
model of LI and SARABANDI (1999) with an L-system based geometrical and
physiological plant model (FOURNIER and ANDRIEU, 1999).

Thus empirical models are still often used for operational questions, where the
amount of required input parameters is limited. The obtained inversion accuracies
are not necessarily worse than those of theoretical models. The following section
summarizes the state of art of land surface parameter retrieval from SAR data with
a focus on the parameterisation of agricultural surfaces.

3.4 Retrieval of land surface parameters from SAR data

The retrieval of bio- and geophysical parameters from SAR imagery has been
subject to many investigations. During the mission of the European Remote Sensing
Satellite (ERS), manifold approaches have been developed to gather information
about the Earth surface from microwave remote sensing in different scientific
disciplines. Concerning the land surface, different groups of applications and
parameters can be distinguished. A subset of studies and parameters related to the
retrieval of land surface parameters from SAR data is given in Figure 3.9 and
Table 3.2 without any claim of completeness. A good summary of land surface
parameter retrievals can be found in HENDERSON and LEWIS (1998).
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Figure 3.9: Land surface parameters from SAR data

The new and flexible imaging capabilities of ENVISAT ASAR offer new potentials for
the retrieval of bio- and geophysical parameters from SAR data. The multiple
incidence angles allow for frequent observations of an area. The variable
polarisations help to gather multichannel information about objects and may
simplify inversion strategies, whereas the ENVISAT wide swath mode allows for the
acquisition of larger areas as e.g. mesoscale watersheds (~100.000 km?2).

One key parameter for the interactions between the solid Earth surface, vegetation
and the atmosphere is the soi/ moisture. 1t has an impact on the energy and water
fluxes at the boundary layer between the solid Earth and the atmosphere. Accurate
and spatially distributed estimates of the current soil moisture state near the land
surface are needed, to make this information available for modelling purposes in
Earth sciences and practical applications as e.g. flood forecasting. The possibility of
monitoring soil moisture patterns with help of SAR imagery has incited a large
number of studies dealing with its retrieval strategies.

For the derivation of soil moisture information in agricultural areas, the effect of the
vegetation cover on the backscattering coefficient has to be known to quantify its
influence in the soil moisture inversion process. On the other hand, the vegetation
contribution to the signal can also be used to gather information on plant
parameters. Thus both, soil moisture as well as plant properties, are important for
surface parameter inversion strategies in agricultural areas.

The previous section has summarized theoretical modelling approaches. In the
following an overview about the derivation of soil moisture and the knowledge of
scattering from vegetated surfaces is given.
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Table 3.2: Land surface parameters from SAR data

PARAMETER

SELECTED REFERENCES

Soil moisture

Soil roughness

Snow covered area

Snow water equivalent

Vegetation biomass

Vegetation height

Classifications

DuBoIS, VAN ZyL and ENGMAN (1995)
OH, SARABANDI and ULABY (1992)
ROMBACH and MAUSER (1997)
QUESNEY et al. (2000)

DAVIDSON et al. (2001)

ZRriBl and DeCHAMBRE (2002)

Low, LubwiG and MAUSER (2003a)

BENALLEGUE et al. (1995)

DuBoIS, VAN ZyL and ENGMAN (1995)
MaGAGI and Kerr (2001)

Le HEGARAT-MASCLE et al. (2003)

KOSKINEN, PULLIAINEN and HALLIKAINEN (1997)
STROZZI, WEGMULLER and MATZLER (1999)
NAGLER and RoTT (2000)

Low, LubwiG and MAUSER (2003)

PULLIAINEN and HALLIKAINEN (2001)
SHI and Dozier (2000a,b)

DOBSON et al. (1992)

RANSON and SuN (1994)

DoBsON et al. (1995)

SAATCHI and MOGHADDAM (1999)

KURVONEN, PULLIAINEN and HALLIKAINEN (1999)
RIEGLER (2000)

ULANDER, DAMMERT and HAGBERG (1995)
DAMMERT and AsSkNE (1998)

GABRIEL et al. (1999)

RIEGLER (2000)

SAATCHI, SOARES and ALVES (1996)
RIGNOT, SALAS and SKOLE (1997)
STROZzI et al. (1998)
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3.4.1 Soil moisture

An optimal SAR system configuration, applicable for the retrieval of soil moisture
patterns, would be a C-band SAR system with HH polarisation and steep incidence
angles between 7 and 20 ° (AUTRET, BERNARD UND VIDAL-MADJAR, 1989; DoBSON and
ULABY, 1998; BENALLEGUE et &/, 1995). Operational SAR systems all have shallower
incidence angles to improve the range resolution. Thus backscattering models and
inversion techniques have been developed, based on the available experimental, as
well as operational sensor systems. These include studies using scatterometer and
space- and airborne SAR systems with various configurations (DOBSON and
ULABY, 1998; ENGMAN and CHAUHAN, 1995). While most studies are dealing with the
retrieval of soil moisture for bare soil conditions, only a few studies investigated
vegetated areas, compensating the canopy effect on the signal using empirical or
theoretical approaches.

3.4.1.1 Bare soil models

An empirical surface scattering model and inversion technique was proposed by OH,
SARABANDI and ULABY (1992) based on multifrequency polarimetric scatterometer
data. The soil moisture was inverted with an RMSE of 4 Vol.%. The model was
simplified for rougher surface conditions (ks>1.5) by WEIMANN (1996) to make it
applicable to the ERS system configuration. The errors of the retrieved soil moisture
values ranged from 2.7 to 4.5 Vol.%.

DuBols, VAN ZyL and ENGMAN (1995) presented an empirical scattering model for
both copolarisations. It is valid for three frequencies (1.25, 4.75, 9.5 GHz) and can
easily be inverted to derive soil roughness and moisture from copolarised datasets.
The soil moisture was inverted with an accuracy of 3.5 Vol.%.

Based on numerical simulations of the backscattering coefficient for various soil
roughness and moisture conditions, DAVIDSON et a/. (2001) suggested a soil
moisture inversion algorithm for bare soil conditions. The most probable soil
moisture value is calculated, using the conditional probabilities of the backscattering
coefficients for defined surface roughness conditions.

A synergistic approach using ERS-AMI and ERS-scatterometer data was proposed by
ZRIBI et al. (2003). They used the multiincidence angle configuration to invert soil
moisture patterns for sparse vegetated or bare soils. The achieved accuracies are
within +4 Vol.%.
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3.4.1.2 Vegetation effect

The backscattering coefficient o° of a vegetated surface can be described as a
function of attenuated ground backscatter and vegetation, as well as vegetation
ground interactions as (TSANG, KONG and SHIN, 1985)

o’ =0¢-eF +oy +0y,. (3.18)

where os, o, and oy are the soil, vegetation and interaction terms respectively.

The soil signal is attenuated as function of the optical depth t which is expressed as
K. -h

s (3.19)

where «, is the extinction coefficient [np/m] and h is the canopy height.

Thus the vegetation contributes to the total signal by the attenuation of the
underlying soil layer and an intrinsic scattering term. A good summary of existing
theoretical and (semi)empirical vegetation backscattering models can be found in
BINDLISH and BARROSS (2001).

One of the most popular vegetation models is the CLOUD model of ATTEMA and
ULABY (1978), which treats the canopy as a cloud of small dipoles, randomly
distributed within a volume. It has been used successfully in numerous studies
(e.g. MAGAGI and KERR, 2001; MORAN et al, 1998; StoLz et al, 2000;
XU et al., 1996).

WIGNERON et al. (1999) used a combined bare soil surface scattering (FUNG, LI and
CHEN, 1992) and a radiative transfer model (KARAM et al., 1992) to investigate the
backscattering behaviour of soybeans. They were able to show, that there is a
stable relationship between the backscattering coefficient and the optical depth t as
well as between the vegetation water content and t. Hence it was possible to
replace the complex radiative transfer model by a simpler model and predict the
backscattering coefficient in dependency of the soil moisture and vegetation water
content.

Based on the work of TACONET et al. (1996), who stated that soil moisture can be
retrieved from wheat fields, a soil moisture index was proposed on the watershed
scale by QUESNEY et al. (2000) using ERS data. The vegetation contribution to the
signal is calculated, using the radiative transfer model of KARAM et a/. (1992). Using
a priori knowledge of the current state of the vegetation, the attenuation and
vegetation backscattering terms could be calculated and used to derive the soil
backscatter contribution. From that, the soil moisture could be retrieved, using
empirical relationships.
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The method was extended to other crop types and an operational inversion
methodology was suggested by LE HEGARAT-MASCLE ef a/. (2001; 2002). The
approach was tested for three catchments with rms errors between 1.7 and
7.4 Vol.%. On the watershed scale, soil roughness effects could be neglected. On
the other hand, the coarse spatial resolution doesn’t provide information about the
spatial distribution of the soil moisture patterns within the watershed, which is
crucial for e.g. predicting runoff generation (SCHULZ et a/., 2002).

An empirical soil moisture inversion algorithm for heterogeneous landscapes was
proposed by ROMBACH and MAUSER (1997). It is based on the empirical
compensation of the vegetation contributions on the signal. It assumes, that the
vegetation effect is constant after reaching a certain phenological state. Thus the
dielectric constant can be inverted from the backscattering coefficient and then be
compiled to soil moisture values, using existing dielectric models (see 3.2.2.1).

The model was developed for different crop types and grassland. It was successfully
applied in several studies (SCHNEIDER and OPPELT, 1998; BACH et al., 2000; BACH and
MAUSER, 2003; StoLz et. al, 2000; STRASSER, SCHNEIDER and MAUSER, 1999). LOw,
LubwiG and MAUSER (2003a) have shown, that it is also applicable to mesoscale SAR
imagery, using subscale land use information.

The sensitivity of the different models to soil moisture m, is shown in Figure 3.10.
The dielectric constant, which is needed as input parameter for most models, was
calculated from m, using (3.10) for a loamy sand. The gain of the relationship
between soil moisture and backscattering coefficient ranges from 0.25 to 0.4 for the
chosen models. The models for bare soil (DAVIDSON et al, 2001; ROMBACH and
MAUSER, 1997) have a lower gain than the other models, where the bare soil
backscatter was calculated, by eliminating the vegetation contribution from the total
signal. This might be interpreted as an indication, that the calculated bare soll
backscattering coefficients of those models still contain information about the
vegetation contribution to the signal. The different offsets of the functions may be
caused by slightly different imaging geometries and surface roughness conditions
between the studies.
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Figure 3.10: Relationship between volumetric soil moisture and bare soil
backscattering coefficient (as reported in the literature)

3.4.2 Scattering signatures of agricultural crops

Theoretical modelling approaches need a profound understanding of the intrinsic
scattering mechanisms of a medium. The models, described in section 3.3, were
mainly developed based on high resolution scatterometer observations or theoretical
solutions of the Maxwell equations with respect to the scattering problem of
vegetation canopies. Direct observations of the scattering within the canopy were
not available. To investigate the intrinsic scattering mechanisms of a canopy,
BROWN et a/. (2003) conducted high resolution imaging of a wheat canopy in an
indoor campaign. The radar cross section o was measured during the vegetation
period under different imaging geometries and with different frequencies.

Figure 3.11 shows an example for the measured backscattering behaviour of a
wheat stand in C-band for both copolarisations. The vertical distribution of the radar
cross section, which is the appropriate measure at very high resolutions, is shown
dependant on the incidence angle.

It can be seen, that most of the signal comes from the ground and the subsurface.
The main backscattering mechanism for wheat is the double bounce reflection
between the stalk of the plant and the underlying surface. Thus, soil ground
interactions play an essential role (MARLIANI et al., 2002).

The vegetation backscatter is lower than the soil contribution. It can be stated, that
the attenuation of the vegetation is higher for VV, where the signal from the ground
is less than that in HH. An incidence angle dependency can also be observed. As
expected, the vegetation contribution increases with increasing incidence angle,
whereas the soil signal is lower for shallower imaging geometry.
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Figure 3.11: Wheat canopy radar cross section in C-band for VV and HH
polarisation (after BROWN et a/., 2003)

These observations confirm, that the soil contributes significantly to the signal. The
backscatter differences between the polarisations contain information about the
vegetation structure and biomass. This can be exploited to estimate plant biomass
from the copolarisation ratio HH/VV. A strong relationship between plant properties
and the copol ratio was reported by MATTIA et a/. (2003).

3.4.3 Requirements and research needs

Theoretical models lead to a better knowledge of the backscattering mechanisms,
but they still fail to describe the temporal behaviour of the SAR backscattering
coefficient as a function of biophysical parameters in a satisfying manner. On the
other side, empirical models have proven their applicability to invert land surface
parameters from SAR data without a complex description of the soil and vegetation.

The research needs in the field of microwave remote sensing of the land surface are
after Brisco and BROWN (1998), the accurate ecological modelling of plant growth
and coupling of these models with microwave backscattering models, to gather
information on crop development, biophysical parameters and soil properties from
SAR imagery. To provide information for practical applications at short time scales,
the influence of different imaging geometries has to be compensated.

With the launch of ENVISAT ASAR, a sensor is available which can be used in a very
flexible manner. The various imaging modes and different swathes allow for
frequent observations of an area of interest. It is therefore especially interesting for
time critical applications and monitoring of rapid changing landsurface variables as
e.g. soil moisture patterns.
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Frequent observations can only be achieved, using different imaging geometries.
Backscattering and parameter inversion models have therefore to account for the
incidence angle effect on the soil and vegetation interactions with the
electromagnetic waves. The questions to be addressed in this context are:

- Which effects have different imaging geometries on the signal, and how can
these be described by models?

- How can the vegetation and soil backscatter contributions be separated for
different imaging geometries?

- How can bio- and geophysical data be inverted from multitemporal ENVISAT
ASAR data to provide frequent observations for time critical applications?

To make use of the spatially distributed informations of remote sensing data,
assimilation strategies have to be developed which allow for the quantitative
assimilation of remote sensing data into land surface process models. State
variables in the land surface process model may not be identical with those derived
from remote sensing data. For instance, the sensitivity of a SAR system to surface
soil moisture content is limited to the uppermost 2-5 centimetres (Figure 3.5), while
informations about the water content of the whole root zone (up to 250 cm) are
needed for water balance modelling. A direct linkage between models, describing
the interactions of electromagnetic waves with the land surface, and land surface
process models enable a consistent and physically based assimilation strategy. For
instance, the water fluxes within the root zone can be described using a multi layer
soil model within the land surface process model. The uppermost soil layer
corresponds to the sensitivity region of a SAR system and enables direct
comparisons between the simulated soil moisture values and observed
backscattering coefficients.

BAcH and MAUSER (2003) proposed to use the 4DDA (four dimensional data
assimilation) technique in this context to adjust parameters of the land surface
process model based on remote sensing data. A further question to be addressed is
therefore:

- How can ASAR derived products be assimilated in land surface process
models? How could an automated interface look like?

Empirical parameter inversion and backscattering models are difficult to calibrate in
this context. To develop an empirical soil moisture model for ASAR data, numerous
field measurements, combined with ASAR acquisitions would be needed. Even for a
minimal specification, the number of necessary measurements exceeds the
capabilities for ground based data acquisitions.
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Figure 3.12 images the case, in which a soil moisture model should be developed
for just one land use on only one field with the following constraints: Nine different
phenological stages of the plant should be taken into account. The model should be
valid for ten soil moisture classes, corresponding to an accuracy of ~5 Vol.% and
for six incidence angle classes with 5° each.

This simple example leads to a total number of 540 necessary samples for the
model calibration. To develop a generalized approach, even more fields and land
use classes would be necessary. This could only be achieved with intensive field
campaigns over several years.

# landuses 1 ~5Vol.%
# soil moisture
10
. 540 classes
# fields per

1 9 samples 60

needed 5 # incidence angle
classes

9 ~5°

landuse

# phenological
stages

[

Figure 3.12: Development of an empirical soil moisture model from ENVISAT
ASAR data: a minimal configuration

To overcome this problem, a combination of empirical with theoretical
backscattering models might be helpful. These can be calibrated, using a reduced
number of ground measurements, and then used for the generalized prediction of
the backscattering coefficient for various imaging geometries and ground conditions.
Together with a plant growth model, which can predict the plant and soil
parameters for each instant, the number of field measurements can be reduced
significantly. Such a model can also be used, to provide spatially distributed time
series of land surface parameters, needed as input variables for a backscattering
model.

3.4.4 Conceptual approach of the thesis

A model based approach was therefore chosen for this work to address the research
needs mentioned above with relevance for the derivation of soil and vegetation
parameters from ENVISAT ASAR data. A separation of the soil and vegetation
contributions to the signal is crucial in this context. A combination of a theoretical
bare soil, with a semiempirical vegetation backscattering model was chosen to
quantify and separate the different contributions to the signal. The approach and its
structure is shown in Figure 3.13. The thesis is mainly separated into two major
parts.
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The first deals with the derivation and calibration of soil and vegetation
backscattering models for various imaging geometries. The models are calibrated
and validated using ground measurements and image data. To reduce the number
of necessary model input parameters, a bare soil backscattering model is
recommended, which requires only two input parameters. This helps to simplify the
description of bare soil surfaces and allows the accurate prediction of the bare soil
backscatter. A vegetation backscattering model is then calibrated and validated,
using available ground measurements and SAR image data. The resulting forward
backscattering model allows for a precise prediction of the backscattering coefficient
of vegetated areas, based on bio- and geophysical variables.

The second part of the thesis transfers the developed backscattering models for
spatially distributed simulation of the backscattering coefficient in heterogeneous
areas. The necessary spatially distributed backscattering model input parameters
are provided as output of a physically based land surface process model. The
coupling of the backscattering and process models is realized by an appropriate
interface. This enables the spatially distributed prediction of the backscattering
coefficient based on bio- and geophysical parameters. This coupled model is used,
to derive land surface parameters from remote sensing data and assimilate it in the
same step into the land surface process model.
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Figure 3.13: Conceptual approach and structure of thesis
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Chapter 4
Remote sensing data

An overview about the ENVISAT ASAR data used in this work and the required
preprocessing steps is given in this chapter. The SAR images used are already
processed slant or ground range image products. The discussion of their generation
is beyond the scope of this work and the reader is referred to the literature. A good
introduction into the topic of SAR image formation is given e.g. by BAMLER and
SCHATTLER (1993), OLMSTED (1993), HENDERSON and LEwIS (1998) and CURLANDER
and McDONOUGH (1991).

The importance of a rigorous geometric and radiometric terrain correction is
emphasized and a sophisticated correction algorithm is presented. Figure 4.1 gives
an overview of the main processing steps, discussed in this chapter.

ASAR data
(Level1)

Header analysis

Geocoding:

; GCP
Data extraction Geometric database

and
Radiometric processing
Calibration
Speckle filtering

A 4

Derivation of o
Correction factors

J

Terrain corrected
Image product

Auxiliary
data

Figure 4.1: Flowchart of preprocessing steps for the generation of terrain
corrected SAR image products
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4.1 Header and data extraction

In addition to the recorded backscattering values, each image product contains
important information on the sensor configuration and image processing parameters
which were used to generate the image product. A subset of this header information
has to be extracted from the product, to be available for further processing steps. It
contains information about the actual sensor configuration and sensor position as
well as information on corrections applied to the image product.

The binary image data has to be extracted from the image product and converted to
an image processing software data format. The various ASAR image products are
stored in different formats. The format, used to generate the product, is specified in
the product header. ENVISAT ASAR alternating polarisation data (AP) for example,
are complex values, where the real and imaginary components are each stored as
SIGNED integer (16-bit). After the calculation of the pixel intensity value, the image
can be converted and used for further processing.

4.2 Radiometric calibration

4.2.1 ASAR image calibration

 can be derived

As discussed in Chapter 2, the radar backscattering coefficient o
from recorded intensity values, using the radar equation (2.10). For ENVISAT ASAR,
the procedures to derive the backscattering coefficient are given by ROSICH AND
MEeaDOwWs (2004). The relationship between the image pixel grey values (DN) and

the radar backscattering coefficient is given by
DN? = 5°.const =const-¢° -sin ™ 6 (4.1)
Ground range products

For ground range detected products, such as the wide swath image product, the
backscattering coefficient ¢° is calculated as

o DN?Z

o -sin(@) (4.2)

and from (4.1) B is derived as

_ DN?

K (4.3)

ﬂO

where 0 is the incidence angle and K the absolute calibration constant.
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Slant range products
For complex slant range products, the image intensity for each resolution cell can be
derived from the complex input data as follows:

DN? = m (4.4)

where | and Q represent the real and imaginary parts of the complex samples. The
backscattering coefficient is then given by

, DNz 1 R
R

=~ 5@ j -sin(8) (4.5)

Ref
with N=3 for image mode products and N=4 for alternating polarisation data. The
two-way antenna gain pattern G(®) changes with the look angle ®. The image
brightness value is then written as

N
o _DN? 1 (R
P =K G(0) (Rj (40

For each ASAR imaging mode, different antenna gain patterns are provided by the
European Space Agency (ESA). They are updated several times a year. Figure 4.2
shows recent antenna gain patterns for different ASAR imaging modes.

All ASAR image products used in this work were calibrated to p° values. The

0

backscattering coefficient o, representing the intrinsic scattering properties of a

ground range resolution cell, was obtained after the terrain geocoding process,
which is discussed in section 4.4.

ASAR image mode antenna gain pattern

— — — IS1

————— Is2

1S3
- — = 4
—————— IS5
-——— = %
—_——— 87

-20 -15 -10 5 0
two -way antenna gain [dB]

Figure 4.2: ASAR two-way antenna gain patterns for different swathes
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4.2.2 Radiometric Accuracy

The relative and absolute radiometric accuracies of the image products can be
derived from measurements over homogeneous distributed targets as rain forests
and by calibrating the image against external references. This is normally done, by
using man made objects with a well defined radar cross section, as corner reflectors
or transponders. The stability of the ASAR sensor is checked continuously in a
special calibration mode by several scientific groups. The actual radiometric
accuracy range for different imaging modes is given in Table 4.1.

Table 4.1: ASAR calibration accuracies

MoDE RADIOMETRIC REFERENCE
ACCURACY [dB]

Alternating polarisation 0.47 -0.51 Meapows and WRIGHT (2002)
Wide Swath 0.33-0.59 RosIcH (2002a)
Image mode 0.31-0.56 RosIcH (2002b)

4.2.3 Calibration problems

In the case of alternating polarisation data products, several SAR images were
acquired in the steep looking 1S1 mode. In this mode, calibration uncertainties,
resulting from inaccurately estimated antenna gain patterns were observed.
Figure 4.3 shows a calibrated IS1 image. The grey value undulations in the near
range region can clearly be detected.

After a recalibration of the antenna gain pattern by ESA, the problem was reduced,
but there were still remaining calibration errors, ranging up to several decibels.
Figure 4.3b shows the column statistics of an IS1 image after calibration with the
refined antenna gain pattern provided by ESA, still showing significant deviations in
the near range region.

To ensure that all backscattering coefficients, used within this work, are reliable, the
affected first 1400 image columns in near image were excluded from further
investigations.
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Figure 4.3: IS1 calibration problem: a) image example showing grey value
undulations in the near range region, b) image column statistics

after recalibration by new antenna gain pattern

4.3 Speckle Filtering

The resolution cell size of a SAR system is always much larger than the signal
wavelength and also significantly larger than the size of individual scatterers
contributing to the returned signal. Because of commonly random orientation of
different scatterers within a resolution cell, the contributions of each scatterer add
incoherently (random phase), giving a net backscattering coefficient with a random
distribution in the image plane (Figure 4.4). This phenomena is well known as

speckie.
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Speckle Filtering

Figure 4.4:  Scattering within a SAR system resolution cell

A reduction of the speckle effect is crucial for an adequate estimate of the
backscattering coefficient o°. Statistical estimates of the backscattering coefficient
can be improved, by averaging several samples. As a consequence, the spatial
resolution of the image is reduced. Several image processing and filtering
technigues have been developed to reduce the speckle, while preserving as much of
the spatial resolution of the image product as possible (LAws, 1980; Leg, 1981;
LEE, 1986; FROST et al., 1982; KLAUSING and HoLPP, 2000).

To obtain a reliable estimate of the backscattering coefficient, the speckle in the
ENVISAT ASAR data, used within this work, is reduced by applying a special speckle
filter to the slant range image and by a local adaptive spatial integration over
several image pixels during the geocoding process introduced in the following
section. Best results are obtained using a 7x7 Frost filter (FROST et a/., 1982). The
filtering process is applied to the slant range image before geocoding. Figure 4.5
shows the statistics for single look and speckle filtered images. It can clearly be
seen, that the exponentially distributed single look histogram converges to a
Rayleigh distribution due to speckle filtering. The filtered images make object
identification much easier compared to the single look image and result in reliable
estimates of the backscattering coefficient.
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Figure 4.5: Image statistics for single look and speckle filtered images: image

examples (above) and backscatter frequency distributions (below)

4.4 Precise terrain geocoding

Topography has a significant influence on the geometric and radiometric properties
of SAR images. Standard geocoded image products refer to a flat Earth ellipsoid and
do not take into account local terrain undulations (RosicH and MEADoOwS, 2004;
SMITH, 2003). Relative calibration accuracy on a flat Earth is below 1.0 dB
(LAUR et al. 1993; SRIVASTAVA et al., 1999; MEAaDOWS and RosIcH, 2003). In rugged
terrain, the changing local imaging geometry can result in backscatter changes up
to £ 5 dB (BEAUDOIN et al., 1995). This is unacceptable for quantitative analysis of
the image data, which is one of the main objectives of this work.

A sophisticated geocoding approach is therefore described in the following, to derive
relief independent backscatter values in roughed terrain. The algorithm was
developed by MAUSER (see RIEGLER and MAUSER, 1998) for ERS data and was
extended within this work to be applicable for multiple sensors and image data
products, including already geocoded products as e.g. wide swath images (LOwW and
MAUSER, 2003). The main objective is to eliminate relief induced geometric and
radiometric distortions, which have to be compensated to obtain images, only
containing information about the surface backscattering process. The presented
rigorous approach is applicable to single-look-complex, as well as to geocoded
image products. The method accounts for energy-preservation and compensates
the disturbing effects.
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4.4.1 Geocoding procedure

For precise terrain geocoding, a high resolution digital elevation model (DEM) and
additional information about the orbit of the sensor platform are needed. The orbit
informations are normally provided in terms of orbit state vectors in the image
product header or are available as separate orbit files. The orbit state vectors can
be provided in a Cartesian Inertial (ECI) or Earth Centred Fixed rotating (ECF)
reference frame, with respect to a geodetic datum (MONTENBRUCK and GILL, 2000;
SEEBER, 1989). The DEM is given in a defined projection with corresponding ellipsoid
and local geodetic datum. To relate each image pixel to the DEM, the imaging
geometry has to be reconstructed, using the Range-Doppler equation, given by
(2.1) and (2.2). Therefore a common reference system is required and geodetic
transformations have to be applied to the orbit vectors as well as to the DEM
coordinates. The reference system used in this work is the commonly used WGS84
system (NIMA, 2000).

Generally there are two possibilities to geocode an image pixel, namely forward and
backward geocoding (CURLANDER and McDONOUGH, 1991). In a forward geocoding
approach, the position of each image pixel on the Earth surface is calculated, using
the Range-Doppler equation separately. This is usually realized by using the Newton
iteration method (PRESS et al., 1992, HoLECz, 1993) which determines the location of
each pixel from the sensor’s perspective. The backward scheme is vice versa. Here,
the image pixel with the nearest range-doppler coordinate is calculated for each
DEM element. The main advantage is the significant reduction of necessary
calculation steps. The range-doppler equation has to be solved only for the number
of DEM elements and not for the whole amount of image pixels. For a standard
image product of ENVISAT ASAR, this reduces the number of necessary iterations
by a factor of approximately ten. The main processing steps consist of (Figure 4.6)

A.) transformation of coordinates to a common reference frame,
B.) performing adequate orbit integration

C.) iterative solution of the range Doppler equation to find appropriate
image pixel and DEM pairs.

D.) mapping of the image pixels on the DEM; including calculation of
local imaging geometry

E.) in cases of ground range products: reconstruction of the slant range
ground range mapping procedure.
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Figure 4.6: Backward geocoding scheme

4.4.1.1 Coordinate transformations

Both, DEM and sensor positions, have to be transformed to the WGS84 system, by
reprojecting the data. The main transformation steps, consist of:

1. Transformation of the map coordinates (E, N) to BENzING and KiMMIG (1989)

geographic coordinates (A, ) BUGAYEVSKIY and SNYDER
(1995)

2. Transformation of geographic coordinates (A, ¢) FREI, GRAF and MEIER
and height h to local Cartesian coordinates (1993)

3. Datum Shift correction to WGS84 datum for the NiMA (2000)
DEM as well as for the orbit state vectors. SCHWABISCH (1995)

The DEM and sensor coordinates are then given in a Cartesian Earth fixed
coordinate system with a common geodetic datum. This enables the calculation of
the look vector from the sensor to the target and the appropriate Doppler frequency
shift.
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4.4.1.2 Orbit Integration

The orbit state vectors, given in the image product header, are acquired at discrete
time intervals. For the estimation of the position of each image pixel on the Earth
surface, the exact sensor position and velocity vectors have to be known for each
azimuth time ¢ (slowtime). Therefore an orbit model being dependant on slowtime ¢
has to be built up which integrates the sensors position and velocity vectors. The
accuracy of the orbit measurements varies within a wide range, depending on the
sensor type and the quality of the orbit type used (RUFENACHT, PROULX and CEFOLA,
1997; ESA, 2004). The positioning accuracy can vary between a few centimetres
and several hundred meters. Lower order polynomials are often used to establish
the orbit model. For small images, 3™ order polynomials were found to be accurate
enough to describe the orbit (OLMSTED, 1993; RAGGAM et al.,, 1993). For ENVISAT
ASAR, this was also confirmed in this work.

A more sophisticated approach is the numerical integration of the differential
equations for position and velocity by a 4-th order Runge-Kutta method
(MONTENBRUCK and GILL, 2000; PRess et al, 1992). For each integration step, the
acceleration due to the changing gravity field of the Earths geoid is taken into
account, using the gravity force terms J,, J; and J, (SEEBER, 1989). This makes it
possible to predict the sensors orbit with an accuracy of a few meters. Especially for
sensors which have a low state vector frequency, the Runge-Kutta integration leads
to much better results than simpler approaches. The algorithm was implemented in
the geocoding procedure and can be used in addition to the simple polynomial
interpolation method.

Orbit correction

The set up orbit model describes the form of the orbit. Nevertheless, timing errors
can result in significant positioning errors in along and across track direction. The
orbit can be adjusted using ground control points (GCP) (e.g. RAGGAM, STROBL and
HUMMELBRUNNER, 1993; SMITH, 2003). The coordinates of a GCP are transformed to
image space, where they are compared to the position of the respective image
coordinates. A shift in terms of rows and columns can be transformed to time
differences in slow- and fasttime for along and across track direction respectively, as
shown in Figure 4.7. If the orbit is integrated accurately and the coordinate
transformations are performed strictly, one GCP is enough to correct the orbit. It
can be either chosen by user interaction or by automatic image coregistration
technigues using a reference image.

The estimated correction terms Ar and At, expressed in fast- and slowtime, can be
used to correct the orbit and calculate the new range and azimuth position of a pixel
in terms of image coordinates.
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Figure 4.7:  Orbit correction: From an observed shift of a GCP point in the
geocoded image, two correction terms for azimuth (At) and range
(Ar) can be calculated to adjust the orbit

4.4.1.3 Geometric rectification

To obtain the image coordinates for a given DEM element, the Range-Doppler
equation given by (2.1) and (2.2), is solved iteratively. For images, processed to
Zero-Doppler Shift, the zero Doppler position fpc is found, when

fD(i) < fpe < fD(i+l) (4.7)

where fpg is the Doppler frequency at pulse /i The pulse satisfying (4.7) is the
corresponding image line. The range resolution cell jis found, using the slant range
distance Rs from (2.1) by

. Ry —R,

J AR (4.8)

with the slant range distance to the first range pixel 7, and the slant range pixel
spacing A4R.

Geocoded image products, as precision images or ScanSAR images, acquired by
RADARSAT or ENVISAT ASAR are only available in ground range geometry. The
geocoding was performed using an n-th order slant range ground range polynomial
of the form

n
i=0

where R; is the ground range distance, /is the image column and 4G is the ground
range pixel spacing (ESA, 2002; Shepard, 2000). With the knowledge of the
polynomial coefficients c;, provided in the image header, the image column in the

ground range image can easily be found from the slant range distance As. Thus the
correct grey values can be extracted from the image product.
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4.4.1.4 Application and accuracies

Using the algorithm described above, the range distance and Zero Doppler position
can be calculated for each DEM element using the backward geocoding approach.
These are converted to image coordinates of the calibrated image. For ground
range images, the corresponding image column is found by applying the slant-
range-ground-range polynomial given by (4.9). The currently supported sensors,
image product types and geodetic reference systems are given in Table 4.2 and
Table 4.3.

Table 4.2: SAR sensors and image products, supported by the geocoding
software (v'v"=enhancements within this work)

SENSOR IMAGE PRODUCT SUPPORTED

ERS SLC v
PRI

Radarsat |ScanSAR Narrow vV
ScanSAR Wide 4
Standard Beam Path Image vV

ENVISAT | ImageMode 4
WideSwathMode 4
Alternate Polarisation v

Table 4.3: Ellipsoid and Geodetic datum combinations supported by the
Geocoding software (v'v'= enhancements within this work)

ELLIPSOID
DATUM HAYFORD
BESSEL WGS 84
INTERNATIONAL
ED 50 v
DHDN (Potsdam) vV
WGS 84 v
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Figure 4.8: DEM (left) and calculated local incidence angle (right) for southern
Germany. The imaging geometry is calculated for an ENVISAT
ASAR WSM image with ascending orbit

Additional information, such as the local incidence angle or regions of layover and
shadow can be calculated for each DEM cell. Figure 4.8 shows a DEM and a
calculated local incidence angle map for southern Germany. On the left side is the
upper Rhine valley with the Black Forest. The flat area in the lower mid image is
Lake Constance.

The geometric accuracy of the geocoded data products are validated, using
tiepoints or vectorized linear features as reference data. A vector dataset, digitised
from topographic maps with an accuracy of approximately 20 m was available for
the testsite of this study. Figure 4.9 shows an example of an image subset,
geocoded to 30 m with overlaid vector data. It can be seen, that the image fits very
well with the reference dataset.

Figure 4.9: Geocoded SAR image (30 m) with overlaid field boundaries
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GCP positioning accuracies (30m pixelspacing)
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Figure 4.10: Residuals of GCPs after geocoding; ENVISAT ASAR image, 30 m

For quantitative geocoding accuracy estimation, GCPs were chosen to calculate the
positioning residuals. Figure 4.10 shows a residuals plot of the GCP points. Detailed
results are given in Appendix B. The obtained geometric accuracy is better than the
resolution cell size of the DEM. With the help of more than one tiepoint for the orbit
correction, these results could still be improved (HELLwICH and EBNER, 2000;
SMITH, 2003).

4.4.2 Radiometric terrain correction

After an accurate description and reconstruction of the local SAR imaging geometry,
these informations can be used for a precise radiometric correction of the SAR
image.

Assuming a SAR system with a better spatial resolution than the DEM, the result of
the backward geocoding approach is the Zero-Doppler position, centred within the
DEM pixel. Adjacent image pixels also correspond to the same DEM element as
shown in Figure 4.11. They are found by mapping the image pixels to the closest
Zero-Doppler position. Care has to be taken, that each image pixel is assigned once
to a DEM pixel only.

To calculate the radar brightness for each DEM element, the corresponding image
pixels have to be integrated. The averaged radar brightness g is then given by

B- %H A, (4.10)

where k corresponds to an image position (i, j)e N .
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Figure 4.11: Radar brightness integration. Dark greyed pixels indicate
calculated Zero-doppler positions for each DEM cell element, while
light grey indicates all adjacent pixels corresponding to the same
surface scattering area

All n image pixels share the same Zero-Doppler coordinate on the ground. This
method guarantees that the integrated backscatter intensity, measured for each
pulse, is preserved throughout the geocoding process. This is essential for the
generation of geocoded products, which are comparable to the original SAR image
and is the basic requirement for a successful terrain correction.

To compensate for the changing scattering area, caused by rugged terrain, the
projection angle , proposed by ULANDER (1996), is calculated from the local
imaging geometry (Figure 4.12). It is more suitable for the correction of the
scattering area than other approaches, especially for steeper incidence angles
(DEDIEU et al., 2003). It is defined as the complementary angle to the smallest angle
between the surface normal and the image plane and can be derived from the SAR
systems look vector and local terrain slopes and aspects as

cos(W) = sin(8) cos(u) + cos(d) sin(u) sin(v) (4.11)

where @ is the local incidence angle, and v and v are the terrain slope and aspect,
within the defined coordinate system.
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Figure 4.12: Definition of the projection angle y (after ULANDER, 1996)

The terrain corrected radar backscattering coefficient o” is related to the radar
brightness as (ULANDER, 1996)

o’ = Bcosy (4.12)

Thus the output of the geocoding procedure is an backscatter image (c°) which
contains no terrain induced geometric and radiometric distortions.

4.4.2.1 Radiometric Accuracy

The effect of the radiometric terrain correction on a SAR image is shown in
Figure 4.13. An ENVISAT ASAR WSM image was geocoded with and without
radiometric terrain correction. As can be seen clearly, the relief induced brightness

changes are well corrected. The resulting image product has a "flat" appearance.

Figure 4.13: Image subsets of ENVISAT ASAR Wide Swath image showing the
South-Western part of Germany. The mountainous areas are the
Black Forest and Swabian Alb. (a) local incidence angle map, (b)
uncorrected, (c) corrected image
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To quantify the radiometric correction results, the mean backscattering coefficient
for the corrected and uncorrected case is calculated for each local incidence angle.
This is shown in Figure 4.14. The uncorrected data show a clear decrease of the
average backscatter with increasing local incidence angle, whereas the corrected
data remain almost constant over the incidence angle range, as is expected for a
large number of image pixels. A comparison of the histograms in Figure 4.14b,
calculated for the corrected and uncorrected images, shows the improvement
obtained by the correction procedure. The Rayleigh distributed intensity values of
the uncorrected image converges to a Gaussian distribution. The narrower
histogram is an indicator for a better radiometric accuracy, defined as the
separability of objects with different backscattering behaviours (HENDERSON and
LEwIS, 1998; KLAUSING and HoLpPp, 2000).
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Figure 4.14: Local incidence angle statistics (left) and global image statistics
(right) before and after terrain correction

4.5 ENVISAT ASAR datasets

The ENVISAT ASAR data, used within this work, were acquired in the year 2003.
Primarily it was planned to use datasets from the year 2002 on. The delayed launch
of ENVISAT and the unavailability of ENVISAT ASAR data during the commissioning
phase was the reason, that the first dataset over the testsite was acquired in late
autumn 2002 after the vegetation period. The image data for this work were
provided by ESA within two principal investigation projects dealing with the
derivation of biophysical parameters from ENVISAT ASAR data and their assimilation
into physically based landsurface process models'.

L ENVISAT principal investigation projects (Pl: Prof. Mauser, University of Munich, Germany):
#475: Improved surface soil moisture determination using ASAR dual-polarization data
#A477: Synergistic use of ENVISAT data to model land surface processes
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To be comparable with field measurements, high resolution SAR images are needed.
The alternating polarisation image products are best suited for the objectives of this
work. They provide information at a spatial scale of 30 m, which guarantees, that
most agricultural fields are covered by several image pixels. Additionally, multiple
polarisation acquisitions are possible. An overview about the processed image
datasets for the vegetation period 2003 is shown in Figure 4.15. Additional
information about the /n sity measured plant and soil parameters, which are
introduced in the next chapter, is included in the diagram.

Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov

O e e i o o B L B N N B /LA e e e e
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

DOY / YEAR 2003

Field campaign:

Cereals [l Maize M soil moisture ENVISAT ASAR Y

Figure 4.15: ENVISAT ASAR data coverage during the vegetation period 2003

The temporal coverage of the datasets is reasonable for this study. Two gaps, one
in May and the other in July can be observed. No image data were acquired over
the testsite during these periods. An example of a multitemporal and a dual-
polarisation image dataset of the testsite, is shown in Figure 4.16. The high
geometric quality of the multitemporal image datasets is a result of the rigorous
geocoding procedure. The multitemporal dataset contains much information about
the actual land use and land use dynamics of the area. Additional information about
the different scattering behaviour in the various polarisation channels can also be
observed. Examples of areas with a high copolarisation ratio (HH:VV),
corresponding to the bright red areas in Figure 4.16b, are mainly cereals with
vertical oriented stalks.
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Figure 4.16: Multitemporal HH polarised (left) and dual polarised (right) image
dataset of the Gilching testsite (Alpine Foreland, Germany)
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Chapter 5
Testsite and Field Measurements

Ground based measurements are essential for the calibration and validation of
remote sensing data products. They are used to validate the accuracy of existing
models and are essential for the adaptation or development of new models for new
sensor systems.

Within the scope of this work, field measurements of land surface parameters play
an essential role for the development of an inversion strategy for ENVISAT ASAR
data. Therefore, intense field campaigns were carried out to collect the necessary
ground truth data. In the following, the testsite, the investigated plant species and
measured parameters are presented.

5.1 Testsite Gilching

The testsite is located in Southern Germany, 25 km southwest of the Bavarian
Capital Munich, between the lakes “"Ammersee” in the West and the “Starnberger
See” in the East (Figure 5.1). It is a part of the alluvial plain of Munich, formed in
the last ice-age, fringing to the young moraine region of the Isar-Loisach glacier
(MEYNEN and SCHMITHUSEN, 1953; MICHLER, 1994).

The southern and western boundaries are delineated by the hills of the young
moraines. In the East, the boundary is given by remains of the older moraines of
the RiB Diluvium. In the North the testsite is limited by the town of Gilching. Its
location and boundaries are shown in Figure 5.1 and Table 5.1.

Table 5.1: Corner coordinates of the testsite Gilching
GEOGRAPHICAL GAUSS KRUGER (ZONE 4)
CORNER
LONGITUDE [°] LATITUDE [°] | EASTING [mM] NORTHING [m]
Upper left 11° 15 48° 8’ 444000 5333000
Lower right 11° 20’ 48° 2’ 450000 5322000
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Figure 5.1:  Location of the testsite and borders of natural landscape units

There are several reasons why this testsite was chosen for the field measurements:

The area is characterized by a large variability of land use in similar climate
condition. Different soil types occur within the testsite, which is important for
the examination of soil texture effects on the backscattering coefficient.

A practical reason is the accessibility of the testsite. It can be reached from
Munich within half an hour, which makes ground measurements very flexible
and cost effective.

Based on the experience from former projects (OPPELT, 2002), it was
possible to use the good relationships to the farmers to get the permission
to investigate the test fields.

An automatical agrarmeteorological weather station is situated nearby the
investigated test fields. It provides hourly measurements of precipitation,
temperature, air humidity, total radiation and soil temperature. This is a
main advantage for the investigations, because changes in soil moisture can
be directly related to measured precipitation with a minimum of spatial or
temporal interpolation errors.

The field campaign was embedded within a framework of different projects
conducted by the University of Munich. These included hyperspectral remote
sensing of agricultural areas (OPPELT and MAUSER, 2004) as well as the
interdisciplinary modelling of the water cycle by the GLOWA-DANUBE
framework (MAUSER and LubwiG, 2002; LubwiG et al., 2003) and the use of
remote sensing data in the InFerno® project (ScHuLz et al., 2002). The
testsite provided ideal prerequisites for the synergetic use of the sampled
data for the various projects.
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5.1.1 Characteristics

The testsite’s landscape was formed by the pleistocene ice-ages. Being located at
the boundary between the formerly glaciered regions of the young moraines and
the adjacent alluvial plains, it can be divided in two parts which can easily be
delineated regarding the topography.

The gravel alluvial plain of Munich covers the biggest part of the testsite. The relief
energy is low and the plain rises from 530 m in the North to 630 m in the South. In
the southern and eastern part, the moraines with height differences greater than
10 meters form the second part. The moraines result from the Wirm and Rif3
diluvium. A glacier spillway, surrounded by the moraines, is located in the centre of
the testsite (Figure 5.2).

The soil texture distribution shows a strong dependency on topography. Meanwhile
the alluvial plain and the spillway are dominated by paddy field soils, the moraines
are covered by silt and silty loam, sometimes influenced by damming wetness.

The main land uses within the area are forests, grassland, maize and cereals. Land
cover mappings in 2003 (see 5.2.3) resulted in 26 % of forests, 19 % of grassland
and 38 % of cropland. The distribution of the different crop types is dominated by
winter cereals. Generally, the forests are mostly situated on the top and hillslopes of
the moraines while the arable land is located on the soils of the alluvial plain with its
high agricultural potential. Thus the fraction of arable land increases northwards.
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Figure 5.2:  Soil texture map (left) and digital elevation model (right) of the
Gilching testsite
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Figure 5.3: Distribution of mean annual precipitation (after MICHLER, 1994)

Climate conditions

Following the climate classification of KOpPEN and GEIGER (1961), the testsite
belongs to the cool and ever moist climate (Cfb) of the mid-latitudes. The mean
annual temperature amounts to 7 — 8 °C (MICHLER, 1994; BAYFORKLIM, 1996), with
only slight spatial variations. The mean annual temperature amplitude is 14 — 16 K
(MICHLER, 1994). The precipitation distribution is mainly influenced by the
orographic convection at the Alps. As can be seen from Figure 5.3 the precipitation
increases southwards. The annual precipitation varies between 900 and 1100 mm
for the testsite. The maximum rainfall is reached during June and July.

5.1.2 Geographical information system

A geographical information system (GIS), with a spatial resolution of 30 m, was built
up from the available datasets. The Universal Transversal Mercator projection
(UTM zone 32), with the Hayford International ellipsoid and the European Datum
1950 served as cartographic reference system. The reason was that most data
available for the testsite were given in that projection. Another reason was that the
SAR geocoding software (see Chapter 4) at the beginning of this work only
supported geographic or UTM coordinates. The GIS consists of

= DEM: 30 m resolution

= Soil texture map

= Land cover map 2003 (see 5.2.3)

= Additional meteorological information
o DWD weather stations (3 times a day)
0 Agrometeorological stations (hourly)

= 17 ENVISAT ASAR alternating polarisation images
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5.2 Ground measurements

Ground measurements were carried out in the years 2002 and 2003, with the
objective to build up a reference database of plant and soil conditions during
ENVISAT ASAR acquisitions. Different land use types were investigated. In 2002
three crop, three maize and two fields of grassland were investigated. In 2003, the
campaign enclosed two crop, two maize and one rape field (see Table 5.2). An
overview of the test fields is given in Figure 5.4.

The variable imaging modes of the ASAR sensor need a careful planning of image
acquisition and field measurements. The satellite is programmed by the European
Space Agency (ESA) on user request. This was done for both investigation periods.
Due to the delayed launch of ENVISAT in March 2002 and to the following
commissioning phase, ESA was not able to guarantee the acquisition of user
requested datasets in 2002. In result, although several images were requested over
the vegetation period 2002, the first image acquired from the Gilching testsite is
from October 2002. Thus no image data is available for a comparison with field
measurements in 2002.

Table 5.2: Investigated test fields
YEAR  FIELD NUMBER NAME CROP TYPE Size [ha]
2002 1/02 Sturzer wheat winter wheat 5.2
2002 2/02 Sturzer grassland grassland 4.8
2002 3/02 Oberbrunn grassland ext. grassland 2.8
2002 4/02 Mitterwies wheat winter wheat 12.4
2002 5/02 DLR maize maize 1.0
2002 6/02 Wastian maize maize 1.4
2002 7/02 DLR wheat winter wheat 0.9
2002 8/02 St. Gilgen maize maize 1.0
2003 1/03 Stirzer triticale triticale 6.1
2003 2/03 Stirzer wheat winter wheat 5.3
2003 3/03 Stirzer rape rape 8.2
2003 4/03 Tiefenbrunn maize maize 15.4
2003 5/03 Argelsried maize maize 2.5
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Figure 5.4: Investigated test fields of the Gilching Testsite for 2002/2003 and
location of the agrarmeteorological weather stations

After the commissioning phase had finished in late autumn 2002, the image
acquisitions of the testsite became more regular. In the year 2003 it was expected
that the number of acquired images would increase. Therefore the field campaign
was concentrated on a smaller number of test fields, while increasing the sampling
frequency. At each confirmed acquisition by ESA, ground truth measurements were
carried out. A summary of the field measurements and derived backscattering
coefficients from the image data is given in Appendix E for each test field.

5.2.1 Investigated land use types

The investigations, made in this work, were focused on maize, wheat and triticale.
They are the most important crop types in the study area. A brief summary of the
needs and properties of the different crop types is given in the following.

5.2.1.1 Wheat (7riticum aestivum)

Wheat is the most important cultivated crop in the world. The cultivated area
(=33 % of all agricultural area), as well as the production (—~30 % of total
production) is larger than for rice or maize (ZIMMERMANN, 1998) . The reason is the
high yield potential and the ability to adapt to different climate conditions.
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Wheat is an annual, mostly non-aristated spiky grass. The two main groups are
winter and summer wheat. They differ in their frost resistance. Winter wheat is
typically sowed between 1% and 20™ of October in the most regions in the mid-
latitudes, while summer wheat is sown as early as possible in spring
(ZIMMERMANN, 1998).

The cultivated area is mainly limited by the local climate conditions. Best yields are
obtained in regions with mild winters and warm summers. The mean average
annual temperature should exceed 7.5 °C (StoLz, 1998). The plant is nevertheless
capable to suffer longer periods with temperatures below 0 °C. For the germination
wheat needs a stimulus of daily temperatures below 5 °C for several weeks
(ZIMMERMANN, 1998).

The water storage capacity of the soil is a very important factor for the yield
income. Nutritious soils with a good drainage and a large available water storage
capacity are more suitable. After DERMIRCAN (1995), 50-60 % of the used water
comes from the upper 30 cm of the soil. Another 20-25 % are withdrawn from the
next 30 cm. The storage capacity of the upper soil layer is therefore more important
for wheat growth than regular precipitation. High precipitation rates limit the
cultivation. The annual precipitation should not exceed 1000 mm. Especially during
anthesis (mid of June — begin of July for the testsite), the precipitation should not
exceed 35-40 mm, otherwise yield is reduced (SToLz, 1998).

5.2.1.2 Triticale (7riticosecale Wittmack)

Triticale represents a new kind of cereal, which was developed in the course of the
last hundred years. It is an hybrid of wheat (7riticurm) as male plant and rye
(Secale) as female. It combines the yield capacity of wheat with the frost resistance,
undemanding nature and disease resistance of rye. Triticale mediates between the
needs of rye and wheat. While rye is best suited for sandy soils, triticale yields
better than wheat on soils with a medium water storage capacity. For soils with a
high water storage capacity, wheat and triticale yields are comparable. Thus it is
suitable for a wider range of climate and soil conditions. This explains why the
cultivated area increases while that for other crops as wheat, rye or barley
stagnates or decreases (DOLESCHEL, 1998). Triticale is mainly used as fodder corn.
The typical sowing dates are between 25™ of September and 10" of October.

5.2.1.3 Maize (Zea mays)

Concerning the cultivated area, maize is the third important crop in Germany.
Worldwide it takes the second place behind wheat. Maize is a tropical plant,
belonging to the family of grasses (Graminaceae). Due to its tropical origin, it is
sensitive to low temperatures. Especially late frost in spring is unfavourable for its
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development. During the vegetation period it needs mean daily temperatures above
13.5 °C (EDER, 1998; StoLz, 1998). For germination the soil temperatures must not
drop below 9-10 °C. While maize is undemanding concerning the amount of
precipitation, it is sensitive to the precipitation distribution. During anthesis
approximately 150 mm are needed (EDER, 1998).

Production is possible on all well drained soils. Damming wetness can be a limiting
factor when the soil is too dense. Especially in cooler regions, maize grows better on
soils with balanced temperature conditions. The major uptake of soil water
originates from the uppermost 1 m which contains most of the plant roots.

In the region, maize can be differentiated between grain and silage maize. After
EDER (1998), only 2 % of the production in Germany in 1994/96 were used for grain
production. The rest was cultivated as silage maize for fodder production.

5.2.2 Field database

The objective of the field campaign was the sampling of ground data, suitable for
the validation and calibration of remote sensing models. The sampling of the plant
parameters was carried out weekly, while soil moisture measurements were
performed during ENVISAT ASAR acquisitions. A time interval of a week is enough
to guarantee that the plant biophysical parameters can be interpolated sufficiently
between two sampling dates to ensure the reconstruction of the plant development
for each sensor pass (DERMIRCAN, 1995; OPPELT, 2002). Due to the high variability of
the soil moisture, the volumetric moisture content was measured for each ENVISAT
ASAR acquisition.

Three sampling points were selected along a diagonal across each test field
(Figure 5.5). This was done to reduce measurement errors and to get a measure of
the variance within the field. The position of each sampling point was determined by
GPS measurements.

Strzer
Triticale 2003

Figure 5.5:  Sampling points within a test field
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The plant and soil parameters, discussed below, were taken at each sampling point.
The plant samples were either taken from 25 cm of one grain row or three plants

for maize respectively. Once in the vegetation period, the row distance and the

plants per meter were estimated to calculate the plant parameters for 1 m2, which

is the unit area. A direct sampling of one square meter was not possible, due to

limiting facilities in the laboratory and unacceptable yield loss for the farmers. In the

following the different plant and soil parameters are described.

5.2.2.1 Plant Parameters

The following plant parameters were measured regularly during the field campaign:

Plant height

Phenological
status

The aboveground crop height was measured for the shoot and /eaf
separately. The shoot corresponds to the maximum height of the
plant above the ground, whereas the leaf height is given by the
height of the uppermost leaf.

The phenological development of the plants was recorded using
the EUCARPIA (EC) code for cereals and maize (ZADOKS, CHANG
and KoNzak, 1974). The different growth stages are represented
by a two digit decimal number. The principal growth stages are
characterized by the first and the continuous growth of the plants
within these stages by the second digit. The digit code for the
principal stages is given in Table 5.3.

Table 5.3: EC principal growth stages

CoDE DESCRIPTION

Germination

Seeding growth

Tillering

Stem-elongation

Booting

Inflorescence emergence
Anthesis

Milk development

Dough develoment

© 00 N oo o B~ Ww N B+ O

Ripening
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Biomass

LAI

Photographs

The freshly harvested plants were separated in the laboratory into
their different components (stalk, leaf, fruit). These were weighted
on a dial balance and then dried in desiccators at 105 °C for
20 hours. The dry probes were weighted again.

Thus, the wet and dry biomass were measured for each
component. The biomass per m2 was then calculated using the
known row distance and sampling length or the number of plants
per meter for maize respectively.

The leaf area index (LAI) was measured in a non destructive way
using the LI-COR LAI2000 sensor (LICOR, 1991; WELLES and
NORMAN, 1991). Using the gap fraction analysis, the attenuation of
the sunlight by a vegetation canopy can be estimated and related
to the LAI. Systematic analyses of destructive LAl measurements
and LI-COR LAI2000 results have shown good agreement and
hence allow for fast and non destructive measurements in
equivalent quality (HOLZHAUSER, 2002).

Photographs were taken for each stand, to record the current
phenological development and stand conditions. Especially at the
beginning of the vegetation period the photographs contain
valuable information about the areal fraction covered by the plant.
A general overview picture and detailed photographs were taken
from each stand to gather information about the internal structure.

5.2.2.2 Soil moisture

The volumetric soil moisture was measured, using the time-domain-reflectrometry

technigue (TDR) which has developed into a reliable method for soil water content
determination (BRANDELIK and HUBNER, 1996; MoJiD, WYSEURE and RoOse, 1997;
JONES, WRAIGHT and OR, 2002). It is based on the measurement of the travel time of

an electromagnetic pulse in the media, which is then related to its relative dielectric

constant €, by (FUNDINGER and KOHLER, 1992)

(5.1)
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where ¢ is the speed of light in vacuum, c¢ the speed of the electromagnetic pulse
and p the magnetic permeability. If the length of the probe and cables are known,

the travel time can be used to invert <, .

The volumetric soil moisture m, can then be calculated from €, using the commonly

used formula of Topp, DAVIS and ANNAN (1980):
m, =-0.053+0.29 ¢, -5.5-107* €? +4.3.10° &° (5.2)

The probe used in the field measurements was an IMKO-Trime system, which
allows measurements with accuracies of 1-2 Vol.% (FUNDINGER and KOHLER, 1992).

A major drawback is, that the measurement result is only representative for a very
small soil volume (<dm3). This makes it sensitive to small-scale soil water content
variations (e.g. macropores, air gaps due to TDR insertion) within this volume
(FERRE, RUDOLPH and KACHANOSKI, 1996).

Thus, there is a scale gap, between the TDR measurements on the ground and the
resolution cell size of a remote sensing system. Two dimensional measurement
technigues as ground penetrating radar (GPR) are capable to solve this problem. A
good overview and comparison of both techniques is given in HUISMAN et al. (2003)
and HuUISMAN (2002). Nevertheless, the GPR technique is not applicable on
agricultural fields. Frequent measurements would lead to intolerable yield losses for
the farmers. Therefore other strategies have to be applied. The experience has
shown, that using multiple TDR sampling points within a field provides good results
when comparing remote sensing data with /7 situ soil moisture measurements
(RoMBACH and MAUSER, 1997; DuBoIS, VAN ZyL and ENGMAN, 1995; SCHNEIDER and
OPPELT, 1998; MOEREMANS and DAUTREBANDE, 2000; LE HEGARAT-MASCLE et al., 2002).
Thus the TDR measurements are a practicable and cost effective measurement
technique, applicable on agricultural fields.

The soil moisture was measured three times at each sampling point. The probe was
plunged vertically into the soil bulk and horizontally in a depth of 2 cm. Hence, the
moisture content within the possible range of the probe (—=12 cm) can be estimated
by the vertical and that within the penetration depth of the electromagnetic waves
by the horizontal measurement. For each field a total of 18 (9 vertical, 9 horizontal)
soil moisture values were collected at each date. To get an appropriate field average
for the vertical and horizontal measurements, the median of each sampling point
was calculated and the three median values were then averaged. This ensures, that
extreme values don't effect the averaged soil moisture value.
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5.2.3 Land cover mapping

The land cover of the whole test area was mapped on the field scale during the
vegetation period. The mapping was done in June before harvesting, where the
different land covers could be distinguished easily. A complete list of differentiated
land cover classes is given in Appendix C. The resulting land cover map and the
fractions of the various land covers are shown in Figure 5.6.

Landuse Gilching 2003
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Figure 5.7:  Location of the climate stations near the Gilching testsite

5.2.4 Additional information

5.2.4.1 Meteorological data

Meteorological datasets are mandatory input parameters for hydrological models.
Combined with the physiogeographical conditions, they are responsible for the
evapotranspiration process on the land surface and the growth of vegetation.
Meteorological data are needed in the context of this work to estimate whether it
was raining during or prior to an ENVISAT ASAR image acquisition and as input
parameter for the land surface process model used in Chapter 8.

Two meteorological measurement networks exist in and around the test area. The
first is the agrometeorological network, which hourly records various meteorological
parameters. The data is available free of charge via the word wide web
(STMLF, 2004). One station (Gut Huell) is situated nearby the test fields. The
second network is operated by the German Weather Service (DWD). It provides
different meteorological variables which are measured three times a day. The
network of climate stations of both networks, surrounding the test area is shown in
Figure 5.7. Table 5.4 lists the meteorological parameters of both networks as
needed for this study.

Table 5.4: Meteorological variables measured by DWD and AGRO network

PARAMETER STMLF DWD PROCESS MODEL INPUT VARIABLE
Precipitation v v v
Air temperature (2m) v 4 v
Air humidity v v
Wind speed v v
v v

Cloud coverage
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Figure 5.8:  Monthly precipitation distribution for year 2003 (Gut Huell) and a
long term period (Maisach Gerlinden, 1983-2003)

Climatic conditions during the investigation period

The year 2003 was the warmest year ever recorded in Germany since the start of
systematic meteorological observations. The spring was dominated by stable high-
pressure weather, resulting in below average precipitation. After a dry and warm
first half, May ended with plentiful rainfall. Starting from June the course of the
weather showed an extremely dry and hot summer (GIETL, 2004). A stable high-
pressure belt lead to very warm and dry conditions with low precipitation and high
evapotranspiration rates. The deviation of the monthly temperatures from the
average value was several Kelvin from June to August (Figure 5.8). As can be seen
in Figure 5.8, the precipitation in the testsite was even higher than the average
value. This was caused by several isolated thunderstorms. Generally, the high
temperatures and low rainfall persisted until the end of September, followed by
plentiful rainfall in October. The low precipitation rates on the one side and the high
evapotranspiration rates on the other side lead to a decrease of the available water
surplus in the test area from 400-600 mm to 0-100 mm (DWD, 2004). The climatic
conditions of the test area for a long term period (1983-2003), as well as for 2003
are summarized in Table 5.5.

Table 5.5: Climatic conditions of the testsite for a long term period (1983-
2003, Maisach-Gerlinden) and the investigation period (Gut Huell),
(STMLF, 2004; DWD, 2004)

PARAMETER 1983-2003 GuT HUELL 2003
Precipitation [mm)] 910 728
Month of precipitation minimum JAN FEB
Month of precipitation maximum JUN / JUL JUN
Mean temperature [°C] 8.0 8.8
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Chapter 6
Bare soil backscatter modelling

As discussed in Chapter 3, the Integral Equation Model (IEM), proposed by FUNG, LI
and CHEN (1992) is one of the most common theoretical models for predicting the
backscattering coefficient of rough surfaces. Contrary to other surface models it is
applicable to a wide range of roughness scales. Within this work it is used to
parameterise bare soil backscattering.

After a brief description of the IEM and its sensitivity to surface parameters, the
theoretical model results are compared with ENVISAT ASAR observations. It is
shown, that realistic backscattering values can only be obtained through an
empirical model calibration. To overcome this drawback, a simplified bare soil model
is derived from IEM simulations, which reduces the number of necessary input
parameters. The model is used to derive surface roughness information from
multitemporal ENVISAT ASAR data.

6.1 The Integral Equation Model (1EM)

The theoretical formulation and derivation of the IEM is described by
FUNG, LI and CHEN (1992), as well as by FUNG (1994). The model description is
summarized in the following, in the way it was implemented for the simulations
within this work.

6.1.1 Model description

The single scattering term of the IEM is given for a polarisation combination p, g by
(FUNG, 1994)

K2 e onlvn | W"(=2K,,0)
where
e KI[F(—k,0)+ F o (K,,0)]
n n -2s5°k; z X X
| 0g = (2k,)" f o721 + =5 = (6.2)

2
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with k: wavenumber k=27/4,=1.1cm™ for C-Band
s: rms height [cm]
0: local incidence angle
k, =kcos(6,)
k, =ksin(é,)

W"(...) is the Fourier transform of the n-th power of the surface autocorrelation

function p(x,1). It is defined by
w" :jp”(x,l)e’i”’xdx (6.3)

For efficient computing it is necessary to minimize the number of iterations n.
FUNG (1994) gives a formula for the calculation of the number of necessary iteration
steps nmax. FOr n > npa the backscattering coefficient saturates. The number of
necessary iterations varies between 2 and 50, depending on the soil roughness
(FUNG, 1994).

The Kirchhoff field coefficients f,;, and the sum of the complementary field
coefficients Fyq are given for the like polarised case as (FUNG, 1994)

-2R
hh = . (6.4)
cos(@)
_ 2R, 65)
Y cos(d) :
L2 2 2 )
P ok 0) + Fy (K,.0) = - 25N OQFR)T g 1) aar & =SIn" 0= pa, Cos” 6
cos(6) U, u’ cos’ @
(6.6)
.2 2 Cain2 g )
Fo (K 0)+ Fy (k, 0) = — 2SN OUFRIT (g 1), e & =sIn"O¢, cos' 0
cos(6) &, €’ cos’ @
(6.7)

The Fresnel power reflection coefficients R, and R, are given by

— f— i 2
R _ 1, COS(0) —+/ 1, €, —sin“ O 6.8)

" U, COS(H)+\/;1r €, —sin’@

RS cos(d) —+/ u, €, —sin’ @ 6.9)

" €, cos(6’)+\/yr e, —sin’@
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where €, is the relative dielectric constant and p, the magnetic permeability

(K = const = 1.0 for most natural medias). Thus the surface is characterized by its
roughness components rms height s and autocorrelation length | and the shape of
the autocorrelation function (ACF), as well as its dielectrical properties given by €, .

6.1.2 Roughness parameterisation

As shown by FUNG (1994), the shape of the applied ACF strongly influences the
model results. Standard models for the ACF, used for the description of natural
surfaces, have a gaussian, exponential or modified exponential form (FUNG, 1994;
DAVIDSON et al. 2000; WEIMANN, 1996; ULABY et al., 1982).

None of these theoretical models are capable to sufficiently describe the complex
roughness statistics of natural surfaces. It implies that the surface can be
characterized for a unique spatial scale whose vertical and horizontal properties are
represented by the rms height and autocorrelation length. A main problem is the
inaccurate estimate of the autocorrelation length in field measurements (see 3.2.1).
Because it is not a direct measurable parameter as the rms height, it has to be
calculated from the roughness profiles (e.g. DAVIDSON ef &/, 2000; OH and
KAy, 1998; BAGHDADI et al., 2002).

Despite the problems of an accurate statistical description of natural surfaces,
empirical observations have shown, that best backscatter simulation results are
achieved, using an exponential ACF (OH and KAy, 1998; DAVIDSON et al., 2000;
BAGHDADI et al., 2002). For that reason, the exponential ACF is used for the further
investigations.

Figure 6.1 shows experimentally measured ACFs and theoretical gaussian and
exponential ACFs. The experimental ACFs were derived using a laser profiler
system. The shown ACFs are based on 25 individual 1 m profiles which were
averaged after calculating the individual autocorrelation function. It can be seen
clearly, that the exponential ACF fits best to the experimental dataset.
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1.0 —— Experimental: R 1m 1.0 |— Experimental: H‘E—{m
=+« Exponentiak R 1m | -+ - Exponential: H2 1m
08 N\ ~ —Gaussian: R 1m 08 {= — Qaussian: H2 1m B
w 06 w 06
Q ]
< 04 < 04
02 02
X L L L] — i 00
00 0 1 2 3 4 5 0 2 4 8
Lag (cm) Lag (cm)
1.0 " Expermental Hi 1m]| 1.0 [~ Experimental: P 1m|
N + =+ Exponential: H1 1m | \\ - .« - .Exponential: P 1m :
08 \ == Gaussian: H1 im & (= = Gaussian: P1m |
L L
(@] Q
< <

0.0 . ‘ ~

@ |
EL
o
()]

0 2 4 6 16 15 20 s
Lag (cm) Lag (cm)

Figure 6.1: Fit between experimental and theoretical autocorrelation functions
for different surface roughness (DAVIDSON et a/., 2000)

Figure 6.2 shows IEM simulation results assuming a gaussian and an exponential
autocorrelation function. The differences can amount up to several tens of decibels.
It becomes clear that the gaussian model is much more sensitive to incidence angle
effects. Because of the high dynamic range of the backscattering coefficient,
associated with the surface roughness, it is desirable to accurately estimate the
roughness terms, for modelling the SAR backscattering coefficient.

Effect of ACF on IEM simulations
DC=20,L=20
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Figure 6.2: IEM simulations for differently shaped surface correlation
functions: dielectric constant=20, autocorrelation length=20cm;
GAUSS=gaussian, EXP=exponential autocorrelation function
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6.1.3 Sensitivity of the 1EM

The sensitivity of the IEM to different model input parameters is analysed in the
following. These are the incidence angle, dielectric constant and the surface
roughness.

6.1.3.1 Dielectric constant

Figure 6.3 shows the sensitivity of the backscattering coefficient for different rms
heights s and a constant autocorrelation length / of 20 cm, with regard to the
dielectric constant <,. A high sensitivity can be observed for low dielectric
constants. For €, greater than 20, which corresponds to a soil moisture content of
approximately 40 Vol.%, the backscattering coefficient saturates. Further it can be
seen, that the surface roughness has no significant influence on the sensitivity of
the signal to <, .

IEM sensitivity on dielectrical constant
L=20, ACF=EXP
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Figure 6.3: IEM sensitivity on dielectric constant depending on rms height s;

autocorrelation length: 20cm, exponential ACF

6.1.3.2 Surface roughness

The surface roughness has a strong influence on the IEM results. The incidence
angle dependency of the backscattering coefficient is shown in Figure 6.4 for two
different rms heights and diverse autocorrelation lengths. In the case of the smooth
surface (s=0.65), the backscattering coefficient decreases with increasing
incidence angle. A larger autocorrelation length results in a decrease of the
backscattering coefficient.
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Figure 6.4:  Sensitivity of the 1EM to surface roughness parameters for two rms
heights and different autocorrelation lengths |I; dielectric
constant: 20, exponential autocorrelation function

An increase of the vertical surface roughness (s =1.73) decreases the angular
sensitivity, as scattering towards the sensor increases (see also Figure 3.3). In the
case of short autocorrelation lengths, the angular behaviour of the backscattering
coefficient is even inverted to that of a smoother surface. The rougher surface is not
satisfying the Rayleigh criteria, i.g. the surface is not smooth compared to the
wavelength.

The surface roughness is the key parameter, having the strongest effect on the
model results. The sensitivity analysis revealed that a reliable estimate of the
autocorrelation length is critical, due to the high sensitivity of the model to that
input parameter. Different combinations of rms height and autocorrelation length
are capable to produce the same backscattering values, which is contradictory to a
physically surface. To overcome this equifinality problem (BEVEN, 2001), it is
desirable to find a physically based surface description, which is capable to predict a
backscattering value as a function of surface properties in an unambiguous manner.
This is discussed in the next section.

6.2 Empirical calibration of the IEM

Recent advances in using electromagnetic models for describing the surface
scattering problem show that differences between modelled and measured
backscattering values mainly result in an inaccurate surface roughness
parameterisation of the model and not in a failure of the model itself
(e.g. Louis et al., 2003; LE HEGARAT-MASCALE et al., 2003; BAGHDADI et al., 2002;
ZR1BI and DECHAMBRE, 2002). The accurate estimation of the ACF is crucial in this
context.
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Experimental results, using different measurement techniques for the surface
roughness, show clearly, that the estimated autocorrelation length depends strongly
on the spatial scales which are considered in the ground measurements (DAVIDSON
et al., 2000; BAGHDADI et al., 2000; MATTIA et al., 2003). OH and KAy (1998) have
shown in a theoretical study, that for short roughness profiles, the rms height can
be estimated with an accuracy better than 15 %, meanwhile the error of the
autocorrelation length exceeds 50 %o.

Recently two approaches exist to overcome this drawback. Theoretical
methodologies are dealing with a multiscale description of complex soil surfaces,
decomposing them into higher and lower frequency terms (Louls et al., 2003;
CHANzY, MOLINEAUX and ZRiBI, 2003; LETOAN and DAVIDSON, 1998).

An empirical approach was proposed by BAGHDADI et a/. (2002). Assuming that the
autocorrelation length is the main source of modelling error, they propose an
empirical calibration of the IEM. It is based on the idea, that an optimal
autocorrelation length L, exists, which minimizes the difference between the
simulated and measured backscattering coefficients. Based on ERS and RADARSAT
datasets with different incidence angles, BAGHDADI et al (2002) showed strong
correlations between the rms height and L,,, which are dependant on the incidence
angle (Figure 6.5).

RMS height vs. opt. ACL (after BAGHDADI et al, 2002)
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Figure 6.5: Optimal autocorrelation length as a function of rms surface height,
estimated by BAGHDADI et al. (2002) for the ERS and Radarsat (RSI)
satellites and different incidence angles (INC)
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6.2.1 Application to ENVISAT ASAR observations
A similar approach is used for ENVISAT ASAR data to verify, whether the model
proposed by BAGHDADI et al. (2002) is transferable on ASAR datasets.

6.2.1.1 Approach

Based on the available ground and SAR measurements the analysis using ENVISAT
ASAR alternating polarisation data, is carried out as follows (Figure 6.6):

1. simulation of backscattering values by theoretical electromagnetic models
2. comparison of observed and simulated backscattering values
3. exclusion of simulations with a simulation error above a defined threshold

4. analysis of the remaining datasets

Field measurements: 2
-Soil moisture | s B
-Soil texture o
-Plant geometry T
-Plant water content l [ ENVISAT ASAR
A
— . _ %y - Measured
Dielectrical models: @ (FUNG, 19%4)
HALLIKAINEN etal. (1985) Radiative transfer model
ULABY & EL-RAYES (1987) (KARAM etal., 1992)

‘ l
Model parameters:
-Dielectrical constant G%p-simulated L

-RMS height —
-Autocorrelation length @

-Incidence angle

Figure 6.6: IEM empirical calibration procedure for ENVISAT alternating
polarisation data based on theoretical backscatter simulations

6.2.1.2 Simulation of theoretical backscattering values

The investigation is made for a winter wheat field (#2/03) for four dates in spring
2003, when the vegetation cover of the field was still sparse. Photographs of the
field on DOY 101 and DOY 127 are shown in Figure 6.7. The sensor respective
overflights used are listed in Table 6.1. It is emphasized that the images have
significant different imaging geometries.
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DOY 101 [ait e & | | pov 127

Figure 6.7:  Photograph of Sturzer wheat (field #02) on DOY 101 and DOY 127

To take into account a possible vegetation effect on the backscattering coefficient,
the IEM was coupled with the radiative transfer model of KARAM et al. (1992)%,
which can be used in this context because the leaves are rather small at this
phenological stage and no vertical oriented stalk has to be taken into account.

The plant geometrical and dielectrical properties and the soil moisture values are
derived directly from the field measurements. The dielectric constant of the plant is
calculated using the Dual-Dispersion model from ULABY and EL-RAYES (1987). The
soil dielectric constant is derived from the soil moisture measurements and soil
texture information using the model of HALLIKAINEN et a/. (1985).

It is assumed that the measured plant and soil parameters are a good
approximation for the expected value. To care for the variability of these
parameters within the SAR systems resolution cell, numerous parameterisations are
realized, by adding noise to each input variable. The noise is added by means of a
predefined probability density function (PDF). The PDFs used for the transformation
of each parameter are also listed in Table 6.1.

The parameter space of the unknown surface roughness parameters s and | is
sampled within a wide range of possible input values based on literature data
(DAVIDSON et al., 2000; MATTIA et al., 2003; DAVIDSON et al., 2003).

! The model was provided by Dr. Karam which is gratefully acknowledged
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TABLE 6.1: IEM SIMULATION DATASETS
PARAMETER DOY 101 DOY 114 DOY 121  DOY 127 T§£§nj
0 39.0 29.8 44.0 32.7 -
SAR & -11.3 -8.0 -13.7 -14.2 -
% -11.8 -8.0 -12.8 -13.1 -
€ 14.0+4.0 12.242.5 13.3+4.0 6.7+1.5 G

r

Soil  yms height [cm] 03..50 03..50 0.3..50 0.3..5.0 LU

ACL [cm] 2.0..200 2.0..20.0 20..20.0 2.0..20.0 LU

#-plants 233+10 233+10 233+10 233+10

Height [cm] 7.3t1.0  12.4+1.0  155+1.0 31.3.+1.0

#-leaf 4..10 4..10 4..10 4..10 LU
Jant Leaf Length [nm]  120+10 125+10 130+10 200+10 G

Stalk Dia. [mm] 4.0+1.0 4.0+1.0 4.0+1.0 4.0+1.0 G

€'Leat’ 30.0£1.0  30.0+1.0  30.041.0  30.0£1.0 G

€'stalk 30.041.0  30.0+1.0  30.041.0  30.0£1.0 G

Transformations: G=Gaussian, LU=Log Uniform

The data range is given for each parameter. For gaussian distributed parameters, the values of the mean and
standard deviation of the distribution are given

*The imaginary part of the DC can be numerically related to the real part. Therefore, only the real part is sufficient
to parameterise the complex dielectric constant

6.2.1.3 Comparison of observed and simulated backscattering values

For each observation date, a number of 20.000 random model simulation parameter
sets are generated. Using the coupled bare soil and radiative transfer (RT) model,

the same number of simulated backscattering coefficients &gp are obtained, where

the subscript pp stands for one of the two copolarisations. The simulation results

are then compared to the observed backscattering values O'gp.

The RMSE between observed and modelled SAR backscatter is computed for each
date separately using the different polarisations by

RMSE = \/ (ot =60 ;(03“ ~60) (6.10)
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A threshold is applied to the RMSE to exclude all data above the threshold from
further investigations. The threshold is set to 1 dB to account for inaccuracies
caused by calibration and model errors. Thus, the remaining datasets all result in
nearly the same backscattering coefficient.

6.2.1.4 Analysis

Relationships between the rms height and autocorrelation length exist for these
remaining datasets. An example for DOY 101 is shown in Figure 6.8. It can clearly
be seen, that the samples form two populations, which correspond to very smooth
(A) and rough surfaces (B).

RMS height vs. ACL (DOY 101)
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Figure 6.8: Relationship between rms height s and optimal autocorrelation
length | for backscattering values with RMSE < 1 dB (DOY 101)

The autocorrelation length can be described as a function of the rms height, which
is consistent with the observations of BAGHDADI et a/. (2002). Thus there exists an
optimal autocorrelation length Lgy Wwhich results in reliable backscattering
coefficients.

Roughness measurements of the test field showed, that the rms height is below
1 cm, which would correspond to the smooth surface samples (A). Nevertheless, the
rougher samples (B), are within the same range as the data used by
BAGHDADI et al. (2002). To be comparable with this the work, the following analysis
is made for this roughness region. To separate both groups, a roughness parameter
Z, is defined as (ZRIBI and DECHAMBRE, 2002)

2= (6.11)
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Histogram of Z-values for DOY 101, INC=39°
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Figure 6.9:  Frequency distribution of Z-values for DOY 101

The frequency distribution of the Z-value, shown in Figure 6.9, signifies that the
smooth and rough surfaces can be separated easily using a threshold of Z=0.3.

At all observation dates, this bimodal behaviour is observed. Numerical solutions for
smooth and rough surface characterizations are found by comparison with the
measured backscattering coefficients and can be separated using the threshold for
the Z-value. The Z-value frequency distributions of all observation dates are listed in
Appendix D.

For each date, the relationship between s and | is estimated, by fitting an
exponential least square line to the datasets with Z>0.3 by

| =y, +ae” (6.12)

Figure 6.10 shows the obtained relationships together with the estimates of
BAGHDADI et al. (2002). It can be seen, that the results show a good concurrence
with the ERS and RADARSAT observations. The relationships have a similar shape
and show a dependency on the incidence angle. For low incidence angles, the
sensitivity of the optimised autocorrelation length L., on rms height variations is
high. With increasing incidence angle, this sensitivity decreases significantly. The
estimated model parameters and diagrams for each date are given in Appendix D.
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RMS height vs. opt. ACL
30

A ERS, WV, INC=23°
o RSI, HH, INC=39
25 o RSI, HH, INC=47°
--------------- APS, HH/VV, INC=29°
—-—:—'—  APS, HH/VV, INC=32°
— — —  APS, HH/VV, INC=39°
20 [ —————— APS, HH/VV, INC=44° A

opt. autocorrelation length [cm]
P
(%))
T

05 1.0 15 20 25 3.0 35 4.0

RMS height [cm]

Figure 6.10: rms height, L relationships derived from BAGHDADI et al. (2002),
(symbols) and ENVISAT ASAR (APS) observations (/ines)

6.2.2 Results

Comparisons of simulated backscattering coefficients and SAR image datasets
revealed strong relationships between the rms height and an optimised
autocorrelation length. It denotes that the vertical and horizontal surface roughness
components, affecting the backscattering coefficient, are strongly correlated for
natural surfaces. This is contradictory to field measurements of surface roughness,
where no, or only weak relationships were found between these two parameters. As
already discussed, this can be caused by inadequate estimation of the
autocorrelation length in the field measurements (see 3.2.1).

The estimated relationships are similar for different SAR systems and polarisations.
An incidence angle dependency is observable. As a consequence, varying surface
roughness parameterisations are required for different incidence angles, which is
contradictory to a physically stationary surface. This leads to the central question
whether there exists a “universal” surface roughness characterization with a
physical meaning, capable to produce realistic backscattering values using the IEM.
The model itself would then be reducible to a two parameter surface scattering
model.
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6.3 Derivation of a simplified bare soil model

A two parameter surface scattering model can be expressed by two functions. One
is related to the surface roughness and the other to the dielectric properties. It can
generally be formulated for the copolarised case as

oo =A@,sr) Ty’ (6.13)

The surface roughness sr is represented by the function A, which depends on the
incidence angle. The dielectric properties of the surface are represented by the
surface reflectivity I'y at normal incidence angle, which is scaled by an empirical
parameter b (HU et al., 2003; RAMNATH et al., 2003).

IEM simulation results over a wide parameter space are used in the following to
calibrate a two parameter backscattering model, similar to (6.13) with a negligible
error. It is then generalized to an incidence angle independent form to obtain a
unique surface roughness parameterisation (Figure 6.11).

6.3.1 IEM simulation runs

The IEM simulations are conducted for HH and VV polarisation using the ENVISAT
ASAR frequency of 5.33 GHz (C-band). The other simulation parameters are chosen
to represent a realistic dynamic range. The parameter sets, used for the simulation
runs are given in Table 6.2.

Model parameters:
-Incidence angle
-Dielectrical constant
-Surface roughness (s,l)
Incidence angle
# normalization

IEM

Parameter estimation s
B() e
AG)-T

o A®)
pp el MXZ‘ > Surface roughness

B parameter A,

Figure 6.11: Derivation of a simplified bare soil backscattering model: Based on
a wide parameter space, theoretical IEM simulations are reduced to
a two parameter backscattering model, resulting in an incidence
angle independent model parameterisation
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Table 6.2: IEM simulation parameters
PARAMETER UNIT START STOP  #-INTERVALS
Incidence angle: 0 DEG 5.0 45.0 20
Frequency: f GHz 533 5.33 -
RMS height S cm 0.5 5.0 20
Autocorrelation length | cm 0.5 20.0 20
Dielectric constant € - 5.0 50.0 20

A database of all possible parameter combinations is created, resulting in a total
number of 160.000 combinations. For each parameter set, the backscattering

coefficients O'gp are modelled using the IEM. Results, based on parameter values

outside the validity range of the IEM, are not taken into account. In addition, the
Fresnel reflectivities in nadir I, are calculated as (ULABY et al., 1982; FUNG, 1994)

r __1_\/5 (6.14)

"1+ \E,
After a simple transformation, (6.13) can be linearized as

o, (dB) =10log,, (A) +10blog,, (T) (6.15)

The empirical parameters A(&s,I) and b(6) are determined using a simple linear
regression approach. For each combination of roughness parameters and incidence
angle, the A and B parameters are estimated. The backscattering coefficient is then
recalculated, using the simplified scattering model (SSM), given by (6.13), which is
parameterised with the obtained A and B values, and then compared with the
results, achieved directly from the IEM simulations. Figure 6.12 shows the frequency
distributions of the remaining modelling errors. The SSM results are nearly identical
to the IEM simulations. The remaining error is negligible compared to the typical
SAR calibration errors of approximately 0.5 dB.
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Error between IEM and simplified scattering model
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Figure 6.12: Frequency distribution of the modelling error between IEM and the
simplified scattering model

6.3.2 Incidence angle normalization

The fitted A and B parameters show a strong incidence angle dependency. Both
change rapidly with increasing incidence angle, which means, that different model
parameter values are necessary for different angles. This is consistent with the
observations in section 6.2. For a unique description of the surface roughness, a
normalization procedure is necessary to consider influences of different imaging
geometries.

6.3.2.1 b-parameter

As shown in Figure 6.13, the b-parameter strongly depends on the incidence angle,
yet diametrically for the two polarisations. For VV, the b-parameter increases with
increasing incidence angle, while it decreases for HH polarisation.

b-parameter angular behaviour
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Figure 6.13: b-parameter angular behaviour for HH and VV polarisation
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Table 6.3: B-parameter model coefficients

PoL a; a, as R2

VW  2.039E-4 -1.601E-3 1.0080 0.97
HH -1.357E-4 -1.874E-4 1.0009 1.0

The angular dependency can be described by a polynomial of the form
b=a0’+a,0+a, (6.16)

The estimated coefficients a; and the coefficients of determination are listed in
Table 6.3.

6.3.2.2 A-parameter

To normalize the incidence angle effect on the A-parameter, the relationship to a
reference angle can be used as shown in Figure 6.14. Since it is the intention to
create a model, being independent of the imaging geometry, the normalization is
done for the nadir position (INC=0°).

A normalization can be achieved, by taking the decade logarithm of the A-
parameters and then approximating the resulting relationship by a 2" order
polynomial for each incidence angle. Thus, the A-parameter for any given 6 can be
calculated as

A(@) —10%7C log(A(0)}+c5[log(A(0) (617)

A-parameter normalization
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Figure 6.14: A-parameter normalization: The roughness parameter A is
normalized for each incidence angle to Ay, corresponding to the
nadir position
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The coefficients ci(#) for each polarisation, as well as the coefficients of
determination are listed in Appendix D. The coefficient of determination for the
polynomial fit always exceeds 0.9. For steep incidence angles, which are closer to
the nadir, the normalization by the 2" order polynomial is better than for larger
angles.

The remaining surface roughness parameter A;=A(0) is independent from the
imaging geometry. It can thus be used to describe a constant surface roughness
property in a way, that the simulated backscattering coefficients using (6.13) are
consistent with IEM results.

6.3.3 Forward model

It has been shown, that IEM results can be approximated with a simplified surface
scattering model by separating the surface roughness influence from the dielectrical
properties. The estimated model parameters have shown a strong angular
dependency. By normalizing the model parameters to the nadir geometry, an
incidence angle independent parameterisation can be derived.

Using (6.13) - (6.17), the final backscattering model is given as

oS —10%(0)+¢2(0)log(Ag )c5(9)log(Ay ) .[1_ Er (6.18)

1+\/2

The backscattering coefficient can then be calculated for a given incidence angle,

:|(a102+a249+a3)

using the surface roughness term A, and the dielectric constant e, of the media.

6.3.3.1 Model accuracy

To assess the influence of uncertainty induced by the normalization procedure, an
error analysis is conducted. For discrete combinations of rms height and
autocorrelation length the A, parameters are taken from a look up table
(Figure 6.15). The backscattering coefficients are then calculated by the IEM and
SSM for a given combination of incidence angle, dielectric constant and surface
roughness, using the simulation parameters given in Table 6.4.

Table 6.4: Validation parameter set

PARAMETER START STOP  INCREMENT
Incidence angle [DEG] 4 5.0 45.0 5.0
RMS height [cm] S 0.75 2.75 0.25
Autocorrelation length [cm] | 1.5 20.5 1.0
Dielectric constant €, 5.0 50.0 5.0
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RMS height Surface roughness
Autocorrelation length } > Lut parametger

Dielectric constant
Incidence angle

A VvV Y

IEM SSM

(IEM) (SSM)
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Figure 6.15: Procedure for the analysis of deviations between IEM and SSM
surface backscattering models, based on common input datasets

The residuals between both model results are then calculated and analysed.
Figure 6.16 shows the frequency distribution of the deviation between IEM and SSM
results. The mean deviation for both polarisations is less than 0.1 dB. Comparing
both polarisations, it can be seen, that the difference between IEM and SSM is
slightly higher for HH polarisation. The distributions doesn’'t reveal systematic
deviations. An amount of 95 % of the values are within the interval of +1 dB for VV
polarisation and 90 % for HH respectively. For 85 % and 60 % of the simulations,
the deviations are smaller than 0.5 dB for VV and HH polarisation respectively. Thus
it can be stated that the backscattering coefficients of the IEM are reproduced by
the SSM with an accuracy comparable to the image calibration accuracy (see 4.2.2).

Deviation of SSM from IEM simulations
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Figure 6.16: Frequency distributions of the deviations between SSM and IEM
modelling results
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Model deviation angular behaviour
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Figure 6.17: Incidence angle dependency of the residuals between IEM and SSM

To verify whether the deviations have an angular dependency, their frequency
distributions are calculated for various incidence angle classes. The influence of the
incidence angle on the model accuracy is not significant for VV polarisation, as
shown in Figure 6.17. The mean and variance of the model deviation is stable over
the whole incidence angle range. For HH polarisation an error progression of
approximately 0.25 dB can be observed for larger incidence angles. Nevertheless,
these deviations are within the confidence interval of the image calibration range.

6.3.4 Sensitivity analysis

A sensitivity analysis of the SSM is conducted to estimate the models sensitivity to
the surface roughness parameter A,, the dielectric constant and incidence angle.

6.3.4.1 Surface roughness and incidence angle

With increasing incidence angle, the backscattering coefficient decreases. For low
values of A, the relationship is nearly linear. With increasing A, — corresponding to
smoother surfaces - it develops an exponential shape and becomes steeper, as
shown in Figure 6.18. The given example was calculated for different roughness
parameterisations and a dielectric constant €.=20. It can be seen, that the

sensitivity to surface roughness increases with increasing incidence angle which is
consistent with the literature (e.g. LEwIS and HENDERSON, 1998; ULABY et a/., 1982)
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Figure 6.18: SSM incidence angle and surface roughness (Ag) sensitivity
(dielectric constant=20)

6.3.4.2 Model sensitivity on soil moisture

Figure 6.19 shows the backscattering coefficient as a function of the moisture
content for different surface roughnesses, It gives an impression of the dynamic
range of o°.

For dry soils, the sensitivity of the model to changes of the moisture content is very
high. With increasing moisture content, the sensitivity diminishes and reaches
saturation above approximately 40 Vol.%.

The incidence angle dependency of the model sensitivity on soil moisture depends
only on the b-parameter, which ranges from 0.8 to 1.0 for HH and from 1.0 to 1.5
for VV polarisation (Figure 6.13). Thus only a small influence of the incidence angle
on the soil moisture sensitivity can be observed (Figure 6.20)

Sensitivity on soil moisture, INC=23°, sandy loam
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Figure 6.19: SSM model sensitivity on soil moisture for different surface
roughness parameters A (incidence angle: 23°)
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Figure 6.20: Incidence angle dependency of SSM soil moisture sensitivity
(constant surface roughness)

6.3.5 Relating A, to classical roughness parameters

As a result of the model derivation and incidence angle normalization process a look
up table can be generated, relating the roughness parameter A, to the classical
surface roughness descriptors, rms height and autocorrelation length. As can be
seen in Figure 6.21, there exists a strong relationship between the rms height and
autocorrelation length for the same A, parameter. This is consistent with the results
of section 6.2, where different combinations of rms height and autocorrelation
length were also found to result in same backscattering coefficients.

A0 vs. RMS height/ACL combinations

autocorrelation length [cm]

1.0 1.2 14 1.6 1.8 2.0 2.2 24
RMS height [cm]

Figure 6.21: Relationship between A, and classical surface roughness
parameters rms height and autocorrelation length
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Relationship between A, and Z-parameter
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Figure 6.22: Relationship between the roughness parameters Ag and z

The exponential relationship between rms height and autocorrelation length,
addresses the question, whether a unique parameter can be derived from both,
which is related to the estimated Aq value.

Using the Z-parameter, suggested by ZRriBl and DECHAMBRE (2002) as given in (6.11)
a strong relationship (R2=0.99) between the Z-parameter and Aq can be shown by

log(A,) = a log(z)+b (6.19)
where a =-2.2116 and b =-0.955 (Figure 6.22).

Thus, the empirically estimated A, can be related to the classical surface roughness
parameters using the Z-parameter, which corresponds to the variance of the
surface, normalized by the autocorrelation length.

6.4 Fractal surface parameters for backscatter modelling

The adequate description of randomly rough surfaces is crucial to obtain reliable
backscattering model results. As shown in the previous section, the classical
parameters rms height and autocorrelation length can be reduced to a normalized
roughness parameter A,. This parameter can be treated as an effective model
parameter which integrates different surface roughness properties. To relate Aq to
surface characteristics an understanding of its physical meaning is needed.

Fractal geometry has become an efficient method for the mathematical description
of complex irregular and fragmented objects as they often occur in nature
(MANDELBROT, 1983). It has been used successfully for numerous different
applications on a wide range of scales.
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It has been shown that it is also well suited for the description of rough surfaces
(BROWN, 1995; ZRIBI et al., 2000; DAVIDSON et al., 2000) and that fractal surface
parameters  can be used for theoretical backscattering models
(FRANCESCHETTI et al., 2000).

A theoretical approach is presented in the following to relate the surface roughness
parameter A, to fractal properties of the surface. It is based on synthetically
modelled fractal like surfaces.

6.4.1 Fractals

Literature provides several good introductions to the nature of fractal geometry and
the derivation of the fractal dimension D as well as the synthetic generation of
fractal objects and landscapes (e.g. PEITGEN and SAUPE, 1988; MANDELBROT, 1983;
FALCONER, 1990; BARTON and LA POINTE, 1995). Therefore only some definitions,
necessary for the understanding of the following are given here, which are mainly
compiled from PEITGEN and SAUPE (1988).

One of the central concepts of fractal geometry is the property of se/f-similarity and
scaling invariance of an object.

A D-dimensional self similar object can be divided into N smaller copies of itself
using the downscaling factor

1
or N=— (6.20)

1
N r

as shown in Figure 6.23. Conversely, given a self similar object of N parts scaled by

r=

a ratio r, its fractal or similarity dimension is given by

log(N
p = 109(N) (6.21)
1
log(-)
r
} } } 1-D N parts scaled by ratio r=1/N
2-D N parts scaled by ratio r=1/N%/2
A A
3-D N parts scaled by ratio r=1/N%/3

Figure 6.23: Definition of the fractal dimension D for exact self-similar objects
and different Euclidian dimensions (after PEITGEN and SAUPE, 1988)
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Figure 6.24: Recursive replacement procedure for generating the von Koch
snowflake curve (left) and the snowflake for one, two and five
iteration steps.

The fractal dimension, unlike the more familiar Euclidian dimension, doesn’'t need to
be an integer value. An illustrative example of self similar objects is the von Koch
snowflake curve, which can be generated using a simple recursive procedure. It is
shown in Figure 6.24. As D increases, the resulting curves progress from being line-
like to filling much of the plane. The fractal dimension, thus, provides a quantitative
measure of the wiggliness of the curves.

6.4.2 Randomly rough self-affine fractal surfaces

Natural rough surfaces show a different scaling behaviour than self-similar objects.
The variance of a single valued function z(x), representing e.g. a roughness profile,
is typically related to the scale the function is sampled at. It normally follows the
scaling law
Az o AX" with Az=12z,-2,
(6.22)
AX =X, =X
where the parameter H in the range 0 < H < 1 is a scaling parameter, also known as
the Hurst exponent. It relates the variance of a function to its scale. Objects
satisfying (6.22) are not exactly self-similar, but they remain statistically se/f-affine.
Self-affine functions can be described using fractional Brownian motion models
(fBm). In addition to (6.22) it is required, that the phase spectra of the function is
random (PEITGEN and SAUPE, 1988).

It can be shown that the Hurst exponent of one dimensional functions is related to
the fractal dimension by

D=2-H (6.23)
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Power spectral density function for self-affine fractal
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Figure 6.25: Power spectral density function of a self-affine fractal surface

Randomly rough natural surfaces, e.g. soils, can be commonly characterized by self-
affine fractals, since they obey to the scaling law given by (6.22). Comparisons of
natural roughness spectra have shown, that the power spectral density function P(f)
of natural surfaces follows the scaling law

P(f) = C% (6.24)

where ¢ is a proportionality constant, f denotes the spatial frequency and B is the
spectral exponent. Figure 6.25 shows an example of the power spectral density for
a rough surface. The spectral exponent g is defined by the gain of the linear least
square fit.

The relationship between g and the fractal dimension D is given by (SAUPE, 1988)

_5-F
D= (6.25)

6.4.2.1 Generation of randomly rough surfaces

A number of algorithms have been described, which permit the generation of
random fractal like surfaces. These include the migpoint displacement technique
and simulations based on the Weijerstrass function or spectral synthesis methods
(SAuUPE, 1988). The spectral synthesis method is suitable for the fast generation of
long surface profiles as needed to be comparable with SAR system resolution cells.
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As the power spectral density is defined as the square of the absolute value of the
Fourier coefficients ay, it follows from (6.24) that a self-affine random like fractal
surface simply has to satisfy the condition

<h$>w?% (6.26)

where <> denotes the ensemble average. The surface generation then simply

comprises of randomly chosen coefficients satisfying (6.26) and the computing of
the inverse Fourier transform to obtain the surface function z(Xx).

Under the assumption of random, gaussian distributed height values, an algorithm
for the surface generation by spectral synthesis has the following form (TURCOTTE
and HUANG, 1995; SAUPE, 1988):

1. Generation of gaussian distributed random values for each frequency
component, resulting in a white noise gaussian sequence

2. Taking the Fourier transform of the sequence

3. The resulting Fourier coefficients are filtered by multiplying with a factor of
f-p2

4. A random phase value with unique distribution (white noise) is assigned to
the filtered coefficients

5. The inverse Fourier transform of the sequence is taken, giving the surface

z(x)

6. To remove edge effects (periodicities), due to the sampling theorem, only
the central portion of the series is retained.

W ACF Autocorrelation length

random surface N Fourier
generation . transform
Surface profile

a, 2
A | kI .
fa)
[7e]
SA
Simulation parameters 2 Bp>D
-Fractal dimension NG
-Scaling parameter T
-RMS height \ ™
-Profile length P(%)

Ao Log(f)

Figure 6.26: Generation of random fractal surfaces for surface roughness
characterization
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6.4.3 Modelling roughness characteristics by simulated
surfaces

Randomly rough fractal surfaces are generated using the algorithm introduced
above (Figure 6.26) in the following. The fractal surface properties are derived from
the synthetically generated profiles and are empirically related to the surface
roughness parameter Ao.

Different roughness states of the surface are realized, by using different values for
the fractal dimension D which is directly related to the spectral exponent S by
(6.25), and by using different values for the proportionality constant c in (6.24). The
vertical variances are parameterised using the rms height s. The simulation input
parameters are given in Table 6.5. Surfaces are generated for different profile
length. Due to the addition of random noise during the surface generation process,
the fractal dimension of the resulting surface profile is slightly different from the
input fractal dimension. The fractal dimension of the simulated profile is therefore
estimated by fitting a regression line, similar to Figure 6.25, to the power spectrum
of the surface. Thus, the fractal dimension, as well as the power spectrum of the
lower cut off frequency A, given by the intersect between the regression line and
the ordinate, can be estimated. The lower cut off frequency corresponds to the
spatial frequency, where the wavelength of the surface is equal to the profile
length. The surface autocorrelation function is calculated using the correlation
theorem, which enables the fast calculation of autocorrelation functions based on
Fourier coefficients (PRess et al, 1992). To be comparable with the surface
backscattering model, only surfaces in the validity range of the IEM are used for
further analysis.

Table 6.5: Fractal surface simulation parameters
PARAMETER START SToP INCREMENT
Fractal Dimension D 1.0 2.0 0.1
Proportionality constant C 0.1 100.0 5.0
RMS height s [cm] 0.1 3.0 0.25
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Relationship between fractals parameters and Z-value
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Figure 6.27: Relationship between fractal surface parameters and Z-values:
A) rough, B) smooth surfaces

6.4.3.1 Relating fractal parameters to backscattering model variables

The analysis of the simulation results show a strong relationship (R2=0.98) between
the ratio of the power spectrum of the lower cut off frequency P(4,), divided by the
fractal Dimension D, and the Z-parameter (6.11), with d and e being regression
coefficients, as

P8 _ g tog(e) e (6.27)

The relationship is found to be dependant on the profile length which is used to
simulate the surface profile (Figure 6.27). High values of P(4,)/D correspond to
rather rough surfaces with high vertical variances and vice versa.

The regression coefficients and coefficients of determination for different sample
sizes are summarized in Table 6.6. To be comparable with the resolution cell size of
a SAR system, longer profiles are preferable.

Using (6.27), the surface roughness parameter A, can be related to the fractal
parameters by

P(h)

D (6.28)

log(4,)= 4

where A and B can easily be derived from (6.19) and (6.27) as A =a/d and
B=b—(ae)/d.
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Table 6.6: Model parameters for Eq. (6.27)

COEFFICIENTS

# SAMPLES R=2
d e
2048 0.5992 1.8437 0.88
4096 0.5502 2.0502 0.93
8192 0.5203 2.2436 0.98

With (6.28), the surface roughness parameter Ao, needed for the backscatter
modelling using the SSM, can be directly derived from field measurements using
high resolution sampled surface profiles. By calculating the power spectral density of
the profile, P(4y) and D can be determined. Longer surface profiles (several meters),
sampled with a high horizontal sampling frequency would be desirable for this issue.
Using existing laser profile measurement databases (e.g. DAVIDSON et a/., 2000) it
should be possible to investigate the accuracies of the approach proposed above, to
derive Aq values directly from field measurements.

The theoretical results denote that the suggested surface roughness parameter Ag
has a physical meaning. The relationship to fractal surface characteristics enables
the derivation of A, from field measurements without any need of describing the
surface roughness by means of theoretical functions, as it is the case for the
autocorrelation length (see 3.2.1.1). Surface roughness can therefore be described
by a single parameter, incorporating the vertical and horizontal variances. The Ag
parameter is an applicable variable, integrating the influences of the entire
roughness spectrum.

6.5 Derivation of surface roughness from ASAR data

The roughness of each resolution cell has to be known for spatially distributed
modelling of the backscattering coefficient. This can be achieved by inversion of
roughness information from image data itself. In the following, an algorithm is
suggested to invert the roughness parameter A, from multitemporal ENVISAT ASAR
imagery.

6.5.1 Approach

The SSM only needs the two input parameters A, and €, for modelling the HH and

VV backscattering coefficient. The two polarisations are not independent variables.
Especially for bare soils, they are very similar as shown in Figure 6.28 where the
backscattering coefficients of an image subset are plotted for both copolarisations.
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Correlation between VV and HH polarization
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Figure 6.28: Example for the correlation between HH and VV polarisation

Thus, an unambiguous estimate of the surface roughness cannot be retrieved from

monotemporal datasets due to the need of at least two independent variables.

As shown in Figure 6.18, the models sensitivity to roughness increases with

increasing incidence angles. Using multitemporal images with different imaging

geometries, an estimation of the surface roughness state should be possible under

the assumption that it remains constant between the different image acquisitions.

6.5.2 Soil roughness inversion

The different imaging capabilities of ENVISAT ASAR can be used to develop a

surface roughness inversion strategy by means of multitemporal datasets, under the

following limitating assumptions:

the surface roughness remains constant for the whole set of images, used
for the roughness inversion. Land use practice, as well as weathering effects
on the roughness have to be taken into account.

the dielectric constant of each acquisition is unknown, yet within a defined
validity range

the multitemporal images are acquired under different imaging geometries
vegetation effects on the signal are negligible or can be parameterised

calibration errors and model uncertainties are considered when comparing
modelled and measured backscattering coefficients.

Under these restrictions one can derive the most probable surface roughness state

from multitemporal image interpretation. Figure 6.29 sketches the proposed

inversion scheme.
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Figure 6.29: Multitemporal soil roughness inversion scheme, based on image
data and theoretical backscatter modelling

For n available SAR images, the imaging parameters of a pixel are given by the

vectors o,,, 0., and 6 . The matrix of all possible combinations of the roughness

w !

parameter Ag and the dielectric constant €, is denoted as M. The surface scattering

r

solutions Xyy and Xyy are found, using the SSM model given by (6.18), as
L, =SSM(@,M) (6.29)

The residuals matrix between simulated and measured backscattering values is
calculated independently for each acquisition date ¢ as

()= 07+ sG] 650)

The subset of probable solutions r is found, by applying a threshold T on the
residuals matrix.

reR:R<T (6.31)

A threshold of 1 dB was found suitable in this context to take model and calibration
uncertainties into account. It corresponds to the SSM model and image data
uncertainties.

By summarizing all valid solutions r(t), consisting of different roughness and
dielectric properties for each acquisition date, the frequency distribution /(A t) of
each roughness parameter set can be tabulated. It encloses all valid solutions for
the same roughness state.
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Under the assumption that each solution has the same a priori probability, the
probability for a certain roughness A, is given by

Sh(A D
P(A) = HT (6.32)

where m is the total number of valid solutions. The roughness parameter Aq, for a
given surface, can then simply be estimated as the most probable solution

of p(Ay).

6.5.2.1 Model Validation

A validation of the roughness inversion scheme for bare soils can only be achieved,
where the roughness is not changing during the acquisition period. To prove the
model performance for a large number of images and image combinations, the soil
has to be bare over the entire period. Therefore a reference target was chosen
which meets this condition. It is situated in the northern part of the test site, close
to Munich’s suburbs, near Freiham (Figure 6.31). It is an open gravel covered
remediation site, where the soil layer has been removed due to contamination. The
surface is characterized by high roughness variability, which is caused by the gravel
cover and a larger scale periodical surface structure which is oriented northwards.
The dielectric constant is expected to be stable on a low level, due to lacking water
storage capacity.

The roughness state of the area is constant and vegetation cover can be neglected
as can be seen from Figure 6.30. Thus an inversion algorithm of surface roughness

is expected to provide constant roughness values over the year.

Figure 6.30: Overview (left) and detailed view (right) of the roughness
reference field near Freiham
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mean backscatter

[l mean backscatter
. mean annual variation
. standard deviation

Figure 6.31: Location of the roughness reference target near Freiham (red),
mean backscatter image (upper) and composite image of mean
backscatter, mean annual variation and standard deviation
(below). Reproduction of orthophoto with courtesy of the Bavarian
Geodetic Survey (#1700/04)

The area is surrounded by agricultural areas and lies adjacent to the towns of
Neuaubing and Grafelfing (see Figure 6.31). An analysis of the available ENVISAT
ASAR datasets confirms the significantly lower backscattering variation of the test
field as compared to the surrounding agricultural fields. This analysis is done
without any compensation of incidence angle effects. The mean backscattering
coefficient, the standard deviation and the mean annual variation (mva), according
to QUEGAN et al. (2000), defined for N images with intensities /, are calculated for
the whole image stack given in Table 6.7 using (6.33).

i=1 j>i il

mva =10Iog{ﬁ§2 R“} with R; = max{:—i;%} (6.33)

The results are shown in Figure 6.31. Expectedly, the test field is characterized by a
lower annual backscatter variation than the surrounding agricultural fields.

To prove the hypothesis that the roughness of the test field remains constant over
different acquisitions and to prove the reproducibility of the roughness inversion
scheme, a multitemporal validation strategy is applied. The inversion model is
assumed to perform well, if it is capable to invert the same surface roughness state
from different SAR images and image combinations. A total number of six different
image combinations, as given in Table 6.7, is used to confirm this assumption. The
different image combinations are used to invert the roughness parameter A, using
the model proposed above.
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Table 6.7: SAR image combinations used for roughness validation
(x=used images)

DATE DOY INCIDENCE COMBINATION #
ANGLE [°]
H#1 H#2 #H3 #H4 #H5 #H6

10.03.2003 69 44.9 X X X
27.03.2003 86 44.0 X X X
02.04.2003 92 19.5 X X X
07.05.2003 127 32.4 X X X
05.06.2003 156 44.1 X X X
11.06.2003 162 32.5 X X X
17.06.2003 168 33.7 X X X
30.06.2003 181 23.4 X X X
20.08.2003 232 19.5 X X X
24.09.2003 267 19.5 X X

The most probable surface roughness is calculated for each image combination
using the surface roughness inversion scheme introduced above. The results, shown
in Figure 6.32, indicate that the surface roughness is reproduced well and in a
constant manner by the inversion model. For all image combinations considered,
covering a wide range of imaging geometries, the surface parameter Ay, converges
to a rather low value of approximately 11.0, which corresponds to a rough surface.

Roughness reference field Freiham

[N
o

[N
N
T
1

mean: 10.9

=

o
T
1

Roughness parameter A,
-]
T
|

1 2 3 4 5 6
combination #

Figure 6.32: Surface roughness inversion results for the Freiham reference field,
using different image combinations
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Thus the roughness inversion model has proven its applicability to perform
consistently for a constant rough surface over a wide range of imaging geometries
and their combinations.

The surface roughness of the whole test site was estimated, using a multitemporal
image datasets from spring 2003, where the soils were still bare. The roughness
state for each image pixel was determined in that manner. The mean A, value was
calculated for each investigated test field to obtain a single roughness value per
field (see Appendix E). It should be noted, that the A, of the test fields are higher
than that for the reference target in Freiham, which corresponds to a smoother
surface. This is consistent with the field measurements. The calculated A, values,
therefore seem to be good descriptors for the roughness state of the test fields.

6.5.3 Bare soil backscatter modelling

To validate the SSM bare soil backscattering model, the backscattering coefficient of
the test fields is simulated, based on the roughness information derived from the
image data and the /n sitv measured soil moisture values, while it is still bare. A
total number of four alternating polarisation images are considered for wheat and
triticale. The maize field is not analysed due to lack of field measurements within
this period.

The model predictions of the SSM are promising. The backscattering coefficients are
simulated well for both polarisations as can be seen from Figure 6.33. The RMSE
between the modelled and measured values is 1.6 and 1.7 dB for HH and VV
polarisation respectively and the coefficients of determination exceed 0.85
(Table 6.8). Detailed simulation results are given in Appendix D.

Bare soil simulation results

A w
u] HH
—— — both polarizations:
-4 y = 1.0566x + 0.8626, R?=0.85

AN D§>
N\

modelled sigma nought[dB]
\
u]
1

1 1 1 1 1 1 1 1
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

measured sigma nought [dB]

Figure 6.33: Bare soil backscatter simulation results
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Table 6.8: Bare soil prediction accuracies

POLARISATION LINEAR REGRESSION® R2 RMSE [dB] MEAN ERROR [dB]
GAIN OFFSET

HH 1.1525 1.2390 0.89 1.6 1.4

wW 0.9449 0.3639 0.85 1.7 1.4

HH & VWV 1.0566 0.8626 0.85 1.7 1.4

(x) the dependant variable is the modelled backscattering coefficient

6.6 Achievements

A new bare soil backscatter model was developed and calibrated based on IEM
simulations. It has been shown, that classical model parameterisations, using the
rms height and autocorrelation length lead to ambiguous surface roughness
characterizations when comparing simulated data with measured backscattering
coefficients of various imaging geometries.

Starting from that point, a simplified bare soil backscattering model was derived,
which allows for the normalization of the surface roughness to the effective
roughness parameter Ay, integrating the roughness components affecting the
backscattering coefficient. It has been shown on a theoretical basis, that this
parameter can be related to fractal surface properties. The parameter allows for the
unique and unambiguous description of surface roughness of a physically stationary
surface.

An algorithm was proposed to retrieve Ao, by means of multitemporal SAR imagery.
The applicability of the roughness inversion approach was proven, using a reference
field with constant surface roughness. It enables the derivation of spatially
distributed roughness information as needed for backscatter modelling. Due to the
option to derive the necessary A, parameter directly from the image data,
uncertainties of the models and image data can be reduced.

Using the spatially distributed roughness information and the available /n s/itu soil
moisture measurements, the backscatter of bare soil fields was predicted by means
of the developed backscattering model. The comparison with image data shows
promising prediction results.

The presented model assists to overcome the problem of parameterisation
ambiguities and allows for the derivation of surface properties. It reduces the
number of necessary model parameters, which might simplify inversion strategies. It
is valid for the entire validity range of the IEM and is the basis for a sophisticated
analysis and description of microwave interactions with the land surface.
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Chapter 7
Vegetation backscattering model

An adequate parameterisation of the vegetation influence on the backscattering
signal is mandatory for the modelling of the backscattering coefficient over the
vegetation period. Different imaging geometries have to be taken into account in
this context, to make use of the multiple imaging capabilities of ENVISAT ASAR.

A semi empirical vegetation backscattering model for cereals and maize, valid for a
wide range of incidence angles, is proposed in this chapter, using a dual polarisation
approach. It is shown, that the model parameters are directly related to plant
biophysical variables.

As discussed in Chapter 3, the backscattering coefficient of a vegetated area can be

decomposed in soil and vegetation, as well as soil-vegetation interaction terms as
o’ =0l-eF+o)+oy,s (7.1)

The bare soil backscatter contribution ag can be modelled using the simplified bare

soil scattering model (SSM), derived in Chapter 6. The remaining residuals between
a measured backscattering value and a predicted bare soil backscattering
coefficient, will be a function of the vegetation’s influence on the signal. This

vegetation contribution, given by the direct vegetation scattering term 0\9, the
attenuation of the ground as a function of the optical depth z and the soil ground

interactions a\‘,),s , varies for different imaging and plant geometries.

The changing imaging geometry has a major influence on the signal as can be seen
in Figure 7.1, where the temporal development of the backscattering coefficient of a
wheat field is shown exemplary. Over the entire vegetation period, the backscatter
is inversely proportional to the incidence angle (e.g. DOY 156-181). This main
mechanism is superposed by the plant development and changing surface soil
moisture contents.

114



Achievements

Wheat 2003
or 50
2%
E \ /ﬁ\ 1 40
4 F \ —
o ‘ O]
T 6f \ﬁ\ | — 128
3 °f f\ A Fa B ﬁ’ﬁ’// S
£ £ \\ // ~ //@ S 420 €
@ -10 F \ \\ [ o Y I IS
9 . V \ / [ S 8
§ 12 % — = —d N 110 %
Q-14F e - o
E 3]
[ ———— yw |10 £
-16 [ -
) Harvesting — 8 -— HH
asf Vegetation effect ——o—— INC |
20t

80 100 120 140 160 180 200 220 240 260 280 300

DOY 2003

Figure 7.1: Temporal dynamics of the measured backscattering coefficient of a
wheat field

It can also be observed, that the temporal development of the backscattering
coefficient differs for different polarisations. VV is lower than the HH backscattering
coefficient, which is caused by the stronger attenuation effects of the canopy, due
to the vertically oriented stalks of the wheat plants.

The incidence angle effect is stronger for HH than for VV polarisation during the
vegetation period, as can be observed on DOY 155-181. A similar incidence angle
dependency is also observable for bare soils (e.g. before DOY 120) indicating that
soil contributions have a major influence on the HH backscattering coefficient of
vegetated areas.

First attempts to parameterise the canopy backscatter using the theoretical radiative
transfer model of KARAM et al. (1992) failed due to a strong overestimation of the
canopy attenuation (see 3.3.2). The large number of dielectric cylinders, necessary
for the description of a wheat stand in the RT-model, and their independent
treatment by the scattering model, lead to an highly overestimated attenuation
value, resulting in unrealistically low backscattering coefficients.

Therefore a semi empirical approach is developed to describe the vegetation’s
influence on the signal. The method is based on the theoretical modelling of the

bare soil backscatter contribution 0'2 using the SSM, given by (6.18). The
necessary soil moisture information is taken from ground measurements. The

roughness of each test field is derived from the spatially distributed roughness map,
derived in Chapter 6. The remaining residuals Ac between the measured

backscattering coefficient c° and the simulated bare soil backscatter o are
analysed and empirically related to the imaging geometry and vegetation

parameters. This enables the derivation and calibration of species specific
vegetation backscattering models (Figure 7.2).
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Figure 7.2: Estimation of the vegetation effect on the SAR backscattering
coefficient and development of specific canopy scattering models

Two different approaches are chosen for cereals (wheat and triticale) and maize
stands. The distinction in these two groups is founded on the completely different
shapes and sizes of the plants with respect to the radar wavelength. Different
interactions of the electromagnetic wave with the canopy are therefore expected.
Due to the similar shape of the wheat and triticale plants these two species are
analysed together.

All available image datasets until harvesting are used for the investigations. The
datasets show high dynamics of the backscattering coefficient and were acquired
under different imaging geometries (Figure 7.1). The range of incidence angles
covers nearly the whole ENVISAT ASAR swath width from 15 to 45°. Surface
roughness is assumed to be constant over the vegetation period. The backscattering
coefficients were derived from the image data by averaging all image pixels within a
test field.

An overview about the available database for the analysis is given in Figure 4.15.
Detailed information about the images and measured soil and plant parameters can
be found in Appendix E.

7.1 Cereals

Empirical models have been successfully applied to compensate the vegetation
contributions to the backscattering coefficient of vegetated areas (e.g. ROMBACH and
MAUSER, 1997; ATTEMA and ULABY, 1978) without the need to decompose the direct
scattering and attenuation terms in (7.1).
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The distinct, polarisation dependant vegetation interactions can be expressed in
terms of the copolarisation ratio CP, defined as

(7.2)

This ratio is mainly influenced by the different attenuation and scattering properties
of the canopy for different polarisations. The attenuation of the electromagnetic
field by the vertically oriented stalks has a major influence for wheat. High values of
the CP therefore indicate a strong attenuation of the signal in VV polarisation and
vice versa. Thus, the copol ratio may be treated as a measure of the extinction
properties of the plants which can be directly derived from the image data. As
reported by MATTIA et al/. (2003), a strong relationship exists between the copol
ratio and the vegetation biomass.

7.1.1 Copol normalization

The interactions of the electromagnetic wave with the plant compartments are also
dependant on the path of radiation through the canopy. The length of the path p is
a function of the canopy height h and the incidence angle 6 as

D= h
cos(6)

(7.3)

The copol ratio CP is an ambiguous variable. The same copol ratio can be observed
under different conditions, as shown in Figure 7.3. If a low vegetation cover is
illuminated by a shallow electromagnetic incident field, the radiation path through
the canopy is quite large, resulting in strong interactions with the canopy. The
power of the returned signal is indicated by the size of the arrows in Figure 7.3. The
same value of CP can also be observed, if the vegetation cover is higher and the
incident ray has a smaller incidence angle.

Shallow incidence angle Steep incidence angle

S S

Vegetation
height

Figure 7.3:  Effect of vegetation height and local imaging geometry on the
COPOL ratio (thickness of arrows indicate scattered power)
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Thus the path through the vegetation remains the same. Under the assumption of
the same extinction and scattering properties, the copol ratio can therefore not be
used to characterize the extinction properties of a vegetation cover in an
unambiguous, incidence angle independent, manner.

If the vegetation height h and the incidence angle are known, CP can be
normalized to get a normalized copol ratio CPy defined as

CP _ CP-cos(6)

CP, =
N p h

(7.4)
This parameter contains information about the intrinsic scattering and attenuation
properties of the canopy, as observed by the SAR system. It is independent of the
imaging geometry and therefore allows for the multitemporal analysis and
comparison of different ENVISAT ASAR images.

7.1.2 Relating plant properties to CPy

It should be possible to relate this parameter to plant specific variables which affect
the microwave interactions. Figure 7.4 shows the relationship of the CPy to the dry
biomass and absolute water content of the plants. For both species, wheat and
triticale, a strong relationship exists for both variables, following an exponential
decline.

High values of CPy indicate low interaction and low CPy values occur when the
biomass is large and interaction terms are strong. The relationship saturates at a
dry biomass of approximately 1000 g/m=2.

Various models are tested to describe the relationship between the plant variables
and the CPy. Best results are obtained by taking the decade logarithm of both, the
CPy as well as the biomass or water content values, and fitting a straight line to
these datasets. Thus the CPy value is related to the plant parameters as

log(CP,) =alog(P)+b (7.5)

where P [g/m?] is the dry biomass or absolute water content. Models for each
species (wheat and triticale), as well as for the combined dataset are calibrated. The
combined model predictions are shown in Figure 7.4 together with the measured
values. The regression parameters and coefficients of determination for the various
models are given in Table 7.1.
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Figure 7.4: Relationship between normalized copol ratio and vegetation
parameters dry biomass (left) and absolute water content (right)

Table 7.1: Coefficients determining the relationship between CPy and plant
biophysical variables using Eq. (7.5)

MODEL LINEAR REGRESSION?! R2
a b

Dry biomass wheat -0.4344 1.6048 0.88
triticale -0.5125 1.6758 0.86

combined -0.4722 1.6397 0.84

Water content wheat -0.4301 1.7997 0.88
triticale -0.5511 1.9842 0.91

combined -0.4780 1.8622 0.84

*Linear regression of the form log10(CPN)=a log10(x)-+b,
where X is the plant water content [g/mZ2] or the dry biomass [g/mZ2]

As expected, the different species interact very similar with the electromagnetic
waves. The relationships between the observed CPy values and the plant
parameters are therefore comparable. The use of both datasets results in a model
with a coefficient of determination of 0.84, the coefficients of determination of the
species specific models are slightly higher.

The fact, that the copol ratio can be directly related to plant biophysical variables
indicates, that it can be used to parameterise the vegetation influence on the signal,
using this information from the image data itself. It might also be used to invert
vegetation biomass or water content with help of dual polarised image datasets. A
priori information about the vegetation height is needed in this context to estimate
the normalized copol ratio.
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7.1.3 Vegetation model calibration

To predict the influence of the vegetation on the backscattering coefficient,
expressed in terms of CPy, the residuals between modelled bare soil backscatter
and observed backscattering coefficients can be used.

Making use of the available field measurements, the bare soil backscatter can be

calculated using the SSM. The remaining Ao between the measured values af,l

and the bare soil predictions & is defined as

AO-pp(dB)zo-S (AO'Er)_UM (76)

where pp denotes the polarisation. The residuals are calculated for each dataset
from available ground measurements (see 5.2) and SAR imagery. The derived

relationships between Ao, and the normalized copol ratio CPy, are shown in

Figure 7.5.

10

VV: vegetation effect

T
[¢]
A

wheat
titicale

HH: vegetation effect

o wheat
A titicale

Regression lines
[| — — titicale:
y=0.6341x-4.7689, R?=0.78 7
AL ———" wheat -
y=0.4028x-4.0825, R?=0.93 —
all samples: A
y=0.4779x-4.2888, R?=0.78

deviation: SSM - measured [dB]
N
o
o
deviation: SSM - measured [dB]
N

| | | | | | | | | | h
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
normalized copol ratio normalized copol ratio

Figure 7.5: Bare soil model residuals for VV (left) and HH (right) polarisation,

related to the normalized copol ratio

The backscatter residuals have no significant relationship to the normalized copol
ratio for VV polarisation. Strong relationships exist for HH polarisation on the other
hand. This denotes, that strong in W
polarisation, resulting in a signal, where no significant information about the
vegetations influence can be extracted from the backscatter residuals.

interactions and attenuations occur

In HH polarisation, the backscattering coefficient is underestimated for most cases.
The negative residuals, correspond to samples with high vegetation biomass,
signifying that the canopy adds an additional scattering term to the total signal.
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The residuals Ao, can be described as a function of CPy as

Ao, =0.6341CP, —-4.7689 R’ =0.78 Triticale
Ao, =0.4028 CP, —4.0825 R?=0.93 Wheat (7.7)
Ao, =04779CP, —4.2888 R?=0.78 Wheat & Triticale

The results denote that cereals can be modelled as a volume filled with random
scatterers with predefined scattering and attenuation properties. Exact information
about the geometrical shape of the individual scatterers is not needed. The
empirical relationship between the CPy and the backscatter residuals, enables the
quantitative description of the vegetation influence on the signal. Additional a priori
information about the vegetation height is needed in this context. The information
about the intrinsic scattering and extinction properties of the canopy is contained in
the image datasets and can be parameterised with help of the normalized copol
ratio. This can be used to predict the vegetation backscatter contributions.

The strong relationship of the CPy to plant biophysical variables enables the
derivation of plant information from image data, as well as the synthetic modelling
of the vegetation backscatter, based on biophysical datasets.

7.1.4 Modelling cereal vegetation backscatter

The backscattering coefficient of cereals can be estimated with help of the bare soil
model results and the vegetation scattering submodel. This forward scattering
model, given by (6.18) and (7.2) — (7.7), can be used to predict the backscattering
coefficient of cereals in HH and VV polarisation, based on available ground
measurements. To validate the model performance and accuracy, the backscatter of
the test fields is simulated during the vegetation period. To asses the quality of the
model for practical applications, two different scenarios are used for the simulations
(Figure 7.6). Both approaches use the same image data and ground measurements,
but differ in the estimation of the vegetation influence on the signal.

A.) It is assumed that land surface parameters should be derived from available
dual-polarisation SAR imagery. Thus the vegetation influence on the signal
can be estimated directly from the /mage data itself with help of the
normalized copol ratio CPy. A priori vegetation height information is required
for this approach. The bare soil backscatter is simulated, based on the
available roughness and soil moisture information. The a priori informations
are obtained from ground measurements. In practice, one would be
interested in the derivation of these parameters.
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Figure 7.6: Final combined SAR backscattering model and accuracy
assessment scheme

A method for the inversion of soil moisture values by means of the
suggested scattering model, will be given later in Chapter 8. A comparison of
the plant specific models for wheat and triticale, as well as the combined
vegetation model, given by (7.7), is made in this analysis.

B.) The second scenario is the simulation of a SAR image, based on available
bio- and geophysical input parameters. Thus, no image data is used to
parameterise the vegetation influence on the signal, which is estimated
using the relationships between the plant variables and the CPy, given by
(7.5). The vegetation contribution to the signal is calculated, using the
specific formulas, given in (7.7). Together with the results of scenario A,
these backscatter predictions can be used to assess the backscatter model
accuracy and the additional uncertainties introduced by the conversion of
plant parameters to the CPy,

The backscattering coefficient is simulated for each available dataset using this
coupled bare soil and vegetation model. The simulation results for both scenarios
are shown in Figure 7.7 and Figure 7.8. The modelling error is assessed by
calculating the mean and root mean square error of the datasets and by fitting a
linear regression line to the samples, for which the modelled backscatter is treated
as the dependant variable. This is done for each model, polarisation and plant
species. The obtained parameters and accuracies are given in Table 7.2 and
Table 7.3.
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Figure 7.7: Modelled vs. measured backscattering coefficients for cereals,
using species specific and combined models for wheat and triticale,
using copol information from image data (scenario A)
Table 7.2: Model prediction accuracies for plant specific and combined models
(scenario A)
TYPE POLARISATION  MODEL LINEAR FIT' R2 RMSE (Ao
[dB] [dB]
GAIN OFFSET
Wheat HH Specific 1.1142 1.161 0.99 0.4 0.3
Combined 1.0934 0.7427 0.97 0.6 0.4
wW Specific 1.069 0.7976  0.98 0.4 0.3
Combined 1.0001 -0.2054 0.97 0.6 0.4
Triticale HH Specific 1.1015 1.0125 0.92 1.1 0.9
Combined 1.081 1.0409 0.89 1.2 1.0
wW Specific 1.0717 0.7708 0.91 1.1 0.9
Combined 1.1011 1.3188 0.90 1.2 1.0

" Linear regression: the modelled backscattering coefficient is the dependant variable

™ mean absolute error
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Figure 7.8:

Modelled vs. measured backscatter for cereals, using the biomass

and water content model for the parameterisation of the CPy
(scenario B), circles denote datasets with low vegetation heights

Table 7.3: Model prediction accuracies using only plant biophysical
parameters as input variables (scenario B)
TYPE POLARISATION  MODEL LINEAR FIT R2 RMSE (Ao)"
[dB]  [dB]
GAIN OFFSET
Wheat HH Biomass 1.3506 3.6467 0.99 1.0 0.8
Wat. 1.3563 3.6683 0.98 1.1 0.8
Cont.
A% Biomass 1.5251 6.1987 0.90 2.2 1.80
Wat. 15015 59381 0.89 2.2 1.78
Cont.
Triticale HH Biomass 1.3016 3.2039 0.89 15 1.74
Wat. 1.3106 3.1109 0.92 14 1.57
Cont.
A% Biomass 1.4199 51725 0.8 2.1 2.68
Wat. 1.3569 4.1206 0.82 2.1 2.28
Cont.

" Linear regression: the modelled backscattering coefficient is the dependant variable; ™ mean absolute error
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The species specific models provide slightly better results than the combined model
for wheat and triticale. The triticale model is generally less accurate than the wheat
model. Especially the RMSE is higher for triticale than for wheat. The major reason
is the weaker correlation between the normalized copol ratio and the vegetation
influence on the signal given by (7.7).

It is obvious, when comparing both simulation scenarios, that the relationship
between measured and modelled backscatter has a higher gain when no image data
is used to parameterise the vegetation extinction and scattering properties.
Responsible for this overestimation are mainly two image datasets recorded in early
spring (DOY 86 & 92) when vegetation cover is still sparse. This leads to an
overestimation of the vegetation effect on the signal. If these two samples are
excluded from the analysis, the gain of the relationship between measured and
modelled backscatter reduces significantly.

All simulation results show a strong correlation between measured and predicted
backscattering coefficients. The root mean square errors range from 0.4 up to
2.2 dB. The corresponding coefficients of determination range from 0.8 up to 0.99.
The HH backscattering coefficient is generally better reproduced than the VV
polarised one. This is obviously related to the calibration of the model for the HH
polarisation. The VV backscatter is derived from the HH simulation results, using
(7.2). Additional uncertainties are introduced in this processing step, resulting in a
less accurate estimate of the VV polarisation. This is particularly evident when the
copol ratio is calculated from plant biophysical variables, instead of using the
available copol information from the image datasets.

The proposed cereal backscattering model shows promising simulation results.
Using dual polarisation image datasets, the vegetation influence on the signal can
be directly estimated from the image data, resulting in excellent prediction
accuracies. The modelling error increases, when vegetation influence on the signal
is only parameterised by plant biophysical variables. For low vegetation heights, the
vegetation effect on the signal can be overestimated. Nevertheless, this approach
also results in reliable backscatter estimates.

The suggested model is valid for a wide range of incidence angles. The separation
of the vegetation and ground scattering terms simplifies the transferability of the
model to agricultural fields with different soil moisture or roughness conditions. The
similarity of the wheat and triticale samples indicates, that the backscattering
behaviour of these species is similar due to their similar physiological shape. It is
therefore expected, that the model can be transferred to other cereals with an
appropriate shape, as e.g. barley.
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7.2 Maize

Maize plants have a significantly different size and shape than other crops. The stalk
of a maize plant is much larger than that of e.g. wheat. This affects the interactions
with the electromagnetic wave. In case of a C-band SAR system, the stalk diameter
is comparable to the wavelength. Therefore strong interactions of the
electromagnetic wave with the different parts of the maize canopy and especially
with the stalk are expected. A further difference between maize and other crops is
the smaller number of plants, typically varying between 8 and 12 per square meter.

In the following, a maize backscattering model for multiple imaging geometries is
recommended. Two maize fields were investigated in the year 2003 during the field
campaign. Unfortunately, it turned out during image analysis, that the maize field in
Argelsried (#05/2003) was too small to be clearly detectable in the image dataset.
The maize backscattering model is therefore calibrated, using only the maize test
field in Tiefenbrunn (#04/2003), where pure pixels are available for the analysis. A
total of six image datasets, ranging from June to August are used for the
investigation (see Appendix E). This limited database complicates the derivation of a
maize backscattering model. The construction of such a model is limited to the
existing measurements. A semiempirical model calibration is therefore presented
and validated for only one test field. It will be shown later on in Chapter 8, that the
suggested procedure is transferable to other maize fields.

Based on the analysis of the residuals between bare soil backscatter predictions and
the measured maize backscatter (A), the major vegetation scattering mechanism is
identified (Figure 7.9). To allow for the transferability of the model to various
imaging geometries and plant conditions the effect of this scattering mechanism is
analysed using a theoretical radiative transfer model (B).
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Figure 7.9: Development and calibration of a maize backscattering model
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The RT-model results are used for the qualitative description of the backscattering
mechanisms as a function of incidence angle and vegetation height. An
overestimation of the attenuation effect on the simulated signal prohibits the
guantitative interpretation of the theoretical model results (see 3.3). The maize
backscattering model is therefore calibrated empirically, based on the existing image
datasets (C) and ground measurements, resulting in a quantitative maize
backscattering model.

Maize signatures

The temporal development of the backscattering coefficient of maize (Figure 7.10)
is rather different from that of cereals (see Figure 7.1). A strong, inversely
proportional, angular dependency can also be observed here. Except for DOY 226,
where a small difference between HH and VV polarisation can be detected, no
significant polarisation dependency of the backscattering coefficient can be found.
This contradicts to the wheat case. The backscatter of maize has a lower dynamic
range than that of a wheat field. The backscatter varies typically between —10 and
-8 dB during the development of the maize canopy.

Therefore, no information about the vegetations influence on the signal can be
extracted from the copol ratio, as it was done for the cereal model. Hence, a
different vegetation backscattering model is needed for maize.
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Figure 7.10: Temporal dynamics of the backscattering coefficient of maize
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Residuals analysis

Using the bare soil backscattering model and available ground measurements, the
residuals between the measured and modelled maize backscatter can be calculated
similar to that for cereals, using (7.6).

As can be seen from Figure 7.11, the residuals are not dependant on plant
parameters, while a strong angular dependency can be observed for both
polarisations. The influence of the canopy properties on the recorded signal
therefore have to depend on an incidence angle influenced scattering mechanism.
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Figure 7.11: Maize residuals as a function of dry biomass (left) and incidence
angle (right) for both polarisations

7.2.1 Theoretical modelling of maize-ground interactions

The observed negative residuals denote that the canopy mainly contributes to the
signal by a strong angular dependant scattering term. A maize stand can be
characterized by a two layer medium, where the upper layer mainly consists of
leaves and the lower one of stalks (Figure 7.12).

| X LN by - g
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Figure 7.12: Maize stand geometry and dihedral scattering at the stalk
(modified after BALLESTER-BERMAN, LOPEZ-SANCHEZ and GUASCH, 2004)
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Measurements of the backscatter of a maize stand in the laboratory show, that the
main vegetation influences are an attenuation of the signal in the upper layer and a
dihedral type corner reflection at the lower canopy layer (BALLESTER-BERMAN, LOPEZ-
SANCHEZ and GUASCH, 2004). This interaction between ground and stalk has a strong
angular component and results in strong backscattering intensities, because the
electromagnetic wave is reflected directly to the sensor. The observed backscatter
residuals, which also show a strong angular dependency, may result from this
dihedral corner reflection mechanism.

To verify this hypothesis, the angular dependency of the stalk-ground
backscattering coefficient is examined, using a theoretical backscattering model. To
investigate only the vegetation ground interactions of the stalk, the maize stand is
simulated by vertically oriented cylinders, representing the stalks (Figure 7.13).
Leaves are completely neglected in this representation. The dielectric constant of
the stalk is kept constant at a typical plant water content of 0.8.

= A

=

Figure 7.13: Representation of a maize stand by dielectric cylinders for the
theoretical radiative transfer model

The lower plant density of the maize canopy results in fewer dielectric cylinders,
required for the description of the canopy, as it is the case for e.g. wheat. As
discussed in section 3.3, the radiative transfer model (RT) of KARAM et al. (1992)
uses the independent scatterer assumption, which results in an overestimated
vegetation attenuation by the model. Especially for VV polarisation, the vertically
oriented stalks result in strong simulated attenuation values. As the vegetation-
ground interactions are less influenced by this attenuation, the model can be used
to analyse the angular dependency of the scattering term. It is expected, that the
model gives reliable qualitative results for the scattering mechanism and its
relationship to different model input parameters. It is not expected to provide
correct quantitative backscattering values.
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Using the radiative transfer model of KARAM et al (1992), the backscattering
contributions of soil, vegetation and vegetation-ground interactions are simulated
for different soil roughness values, soil moistures, vegetation heights and incidence
angles as given in Table 7.4.

Table 7.4: Maize radiative transfer model input parameters
VARIABLE UNIT START STOP INCREMENT
Roughness parameter A log(Ap) 0.1 2.0 0.1
Soil dielectric constant - 5.0 30.0 2.0
Vegetation height cm 10.0 200.0 20.0
Vegetation dielectric constant - 31.0-j10.0
Incidence angle DEG 15.0 45.0 5.0

A total number of 46625 simulation results are obtained from this parameter set.
The contribution of each backscattering term (soil, vegetation-ground and
vegetation), is then calculated for each result.

Expectedly the major source of backscattering results from the interaction of the
electromagnetic wave with the stalk and the ground. Figure 7.14 shows the
frequency distribution of the stalk-ground interaction portions. For 70 % of the
simulations, the fraction of the stalk-ground interaction term exceeds 50 % of the
total signal.
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Figure 7.14: Cumulative frequency distribution of the stalk-ground interaction
term contributions to the total signal
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The simulated angular behaviour of the dihedral like stalk-ground scattering
mechanism is shown in Figure 7.15 for different vegetation heights. It can be seen,
that an increasing vegetation height results in an higher angular sensitivity of the
signal. It can also be seen, that the modelled stalk-ground interactions show a
similar angular behaviour as the calculated residuals from the image data, which is
an indication, that this mechanism can be used to characterize the residuals.
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Figure 7.15: Simulated stalk/ground interactions for different vegetation
heights (lines) and measured backscatter residuals (symbol)

Due to the sparse vegetation density of maize canopies, bare soil contributions have
a large influence on the signal at low canopy heights. As the plants grow, the
fraction of bare soil contribution decreases, while the stalk-ground interaction term
becomes relatively more important as shown in Figure 7.16. The contribution of the
interaction term to the total signal increases with increasing vegetation height. The
fraction a of the vegetation ground interaction is calculated as

a= m (7.8)

0
(o}

The radiative transfer model results show a difference between both copolarisations.
For the VV polarised case, the fraction o is dependant on the vegetation height as
well as on the incidence angle. For HH polarisation, only the vegetation height has a
major influence. The reason is, that the attenuation of the vertically oriented stalks,
being dependant on the incidence angle, is predicted to be large for VV polarisation.
Therefore, the soil contribution is strongly attenuated, resulting in a higher fraction
of the interaction term, which is not the case for HH polarisation. As shown in
Figure 7.11, no significant differences can be observed between both polarisations.
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Fraction of vegetation-ground interactions
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Figure 7.16: Fraction of stalk/ground interactions, dependant on vegetation
height and incidence angle for both copolarisations

The fact, that the simulated VV backscatter behaviour differs from the observed
denotes that the VV estimates are not very trustworthy. This is emphasized by the
fact, that the VV backscattering coefficients show unrealistically low backscattering
values below —20 dB. The simulated soil and total backscattering coefficients of the
HH polarisation are found to be more reliable instead. The influence of the
overestimated attenuation have a lower effect on these simulation results. The
following analysis will therefore focus only on the HH polarisation case.

7.2.2 A backscattering model for maize canopies

The simulation results indicate, that the major influence on backscattering from a
maize stand results from a dihedral type corner reflection between the stalk of the
maize plant and the ground. The contribution of this scattering term is dependant

on the vegetation height.
Thus, the backscattering coefficient of a maize stand can be described as a function
of a direct bare soil component oy, the stalk-ground interaction o, ,; and by the

attenuation and scattering properties of the plant itself. It is assumed that these can

be expressed in terms of the optical depth t and that interactions between leaves
and the ground are negligible.
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Figure 7.17: Fraction of stalk-ground interaction backscatter as a function of
vegetation height

The theoretical model results denote, that the fraction of the stalk-ground
interaction term o increases with increasing vegetation height. The backscattering
coefficient of a maize stand can thus be described as

o :(1—05)02 +aa\9,G +& (7.9)
where ¢ is a negligible residual term incorporating the leaf-ground interactions.

The fraction of the vegetation-ground interaction can be expressed as a function of
the plant height h [cm] as (Figure 7.17)
b -1
h
a=a-|1+ P (7.10)

0

The model coefficients are a=98.5269, hy=54.9611 and b=-2.6976. The coefficient
of determination for the fit is R2=0.99.

If the soil moisture and soil surface roughness is known, the bare soil backscattering
coefficient ag can be obtained from SSM results. The vegetation ground interaction
term oy ,. can be derived from the theoretical radiative transfer model results.
These show a strong relationship between o,, and the attenuated bare soil

backscattering coefficient, which can be described as

oy,c[dB]=m10 Iog(ag e‘2’)+ Yo (7.11)
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Figure 7.18: Relationship between attenuated bare soil backscatter and
vegetation ground interactions for different vegetation heights

As shown in Figure 7.18, the gain m remains constant for different vegetation
heights, while the offset y, shows a dependency on the vegetation height. The
reason is an increased modelled optical depth t with increasing vegetation height.
As stated before, the radiative transfer model is expected to produce reliable results
about the scattering mechanisms, but not about the correct magnitude of the
signal. Therefore m and y, can not be taken from the theoretical model results. They
have to be calibrated empirically, using available field measurements and image
datasets.

The extinction properties of the plants are mainly a function of their water content.
The optical depth t can be described as (JACKSON and SCHMUGGE, 1991)

T= hK, ,  Where K, =VWC -b (7.12)
cos(8)

where h is the vegetation height and K. is the extinction coefficient, which can be
expressed in terms of the vegetation water content (VWC) and an empirical
parameter b. For maize, the b-parameter varies between 0.13 and 0.2 (JACKSON and
SCHMUGGE, 1991). Using (7.9) and (7.11), the total backscattering coefficient can be
written as

c’=(1-a)ol+a (age'zr)m Y, (7.13)

The parameters m and y, can be calibrated, based on available ground
measurements. To relate the VWC to the optical depth, a b-parameter of 0.2 was
found to be suitable. Using the in situ measured soil moisture and roughness
information as well as the vegetation height and plant water content, the
backscattering coefficient is simulated using (7.13) for all available image datasets.
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A calibration of m and y, is possible by comparing the retrieved backscattering
coefficients to the corresponding measured values. After a nonlinear minimization of
the deviations between measured and modelled backscattering coefficients, the
model parameters are determined as m=0.23 and y,= -5.5 dB. Figure 7.19 shows
the final simulation results compared to the measured values.

As can be seen, the model predicts the measured backscattering values very well.
The RMSE is 0.46 dB and the coefficient of determination is 0.81.

Maize simulation results
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Figure 7.19: Maize model backscatter simulation results compared to measured
backscattering values

Validity range

The validity range of the proposed model is restricted to the used simulation
parameter sets given by Table 7.4. These cover most of the possible natural
roughness and dielectric conditions. The model was calibrated only for HH
polarisation, because the radiative transfer model results were contradictory to the
observed VV polarisation signatures.

The primary assumption of the model is the dominance of the stalk-ground
interaction. It is dependant on the fraction of bare soil and can be described as a
function of vegetation height. The effect of the leaves on the signal can be reduced
to an attenuation within the upper layer of the canopy. Recently published
measurements of maize stands in the laboratory underline the dominance of this
scattering mechanism (BALLESTER-BERMAN, LOPEZ-SANCHEZ and GUASCH, 2004).

7.3 Results

Two different canopy backscattering models were suggested for agricultural crops.
Due to the different geometrical shapes and stand densities, the backscattering
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mechanisms within maize stands are different from those of cereals. The
backscatter differences for the polarisations can be used to parameterise the
extinction and scattering influences of the canopy for wheat and triticale. The
derived normalized copol ratio is strongly correlated to plant biophysical variables.

A dihedral corner reflection was identified as the major source of backscattering for
maize. This is consistent with recently published polarimetric measurements of a
maize stand in the laboratory. A model was proposed, weighting the different
backscatter contributions as a function of the vegetation height. The model was
calibrated using available ground measurements.

Both vegetation backscattering models make use of the bare soil backscatter
simulation results of the simplified scattering model, suggested in Chapter 6. The
vegetation and soil contributions were separated successfully by means of this
model. Due to the reduced number of only two necessary input parameters, the
bare soil model allows for an unambiguous estimate of the backscattering
coefficient, which can not be achieved with classical approaches. This enables the
accurate simulation of the backscattering coefficients of vegetated areas. Contrary
to existing vegetation scattering models, the recommended approach is valid for a
wide range of imaging geometries and takes into account the changing vegetation
influence on the signal over the vegetation period.

Like all calibrated models, the proposed combined vegetation and bare soil
backscattering model is formally restricted to the range of the calibration datasets,
used for the calibration. The year 2003 was dominated by a hot summer. The
measured soil moisture values are therefore mainly from the lower part of the
potential soil moisture range. Due to the successful separation of the bare soil and
vegetation contributions, the backscattering model is expected to be valid also over
a wider range of input parameters. Contrary to empirical models, the use of a
theoretical bare soil model enables the transferability of the procedure to higher soil
moisture values.

Both vegetation models need a priori information about the vegetation height. The
maize model needs additional information about the plant vegetation water content.

For spatially distributed modelling, these initial variables have to be available for
each resolution cell, which is a sophisticated task. Land surface process models can
be used in this context to provide the necessary input parameters as spatial
datasets for the backscattering model. The coupling of such a land surface process
model to the presented microwave backscattering model is the subject of the
following chapter.
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Chapter 8
Coupled modelling of land surface
microwave backscattering

Land surface process models are widely used to describe energy and mass fluxes at
the Earth surface at various scales. They play a decisive role in regional and global
aspects of climate change research and are used in manifold manner to simulate
and predict processes at the land surface.

An adequate spatially distributed parameterisation of those models is crucial to
obtain reliable simulation results, but yet is often difficult to achieve due to lack of
appropriate input datasets. Remote sensing data is used in this context to describe
static and dynamic land surface variables, as e.g. land use, soil moisture, snow
cover, leaf area index (LAl) or topography (e.g. SToLz, 1998; Low, LubwiG and
MAUSER, 2003; RABUS et a/., 2003). It is therefore a useful tool to provide necessary
input parameters to land surface process models and to validate their simulation
results.

Coupling of a land surface process model with remote sensing models, as e.g. those
introduced in the previous chapters, enables the generation of synthetic remote
sensing images. By comparison with real image data, this approach allows for the
adjustment and spatially distributed recalibration of the land surface process model
parameterisation, until best coincidence between simulated and real image data is
achieved. The image data therefore enables to reduce the uncertainties within the
land surface process model parameterisation and leads to an improved description
of the land surface state.

It has been shown, that such a combined modelling can be used to enhance
process model results and to improve the environmental monitoring and
management capabilities (BACH, VERHOEF and SCHNEIDER, 2000; BacH and
MAUSER, 2003; BACH, MAUSER and SCHNEIDER, 2003).

The development of an appropriate interface between land surface and remote
sensing models is needed in this context. The land surface process model has the
function to provide quantitative spatio-temporal series of land surface parameters as
e.g. vegetation height, biomass and soil moisture for heterogeneous areas, which
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can not be achieved by ground measurements. These are used to parameterise a
remote sensing model to obtain synthetic images.

Such a coupled approach might also be useful for an improved derivation of land
surface parameters from remote sensing datasets. Due to the direct linkage
between remote sensing and land surface models, the image data is assimilated to
the process model without any need of inversion models. The current state of land
surface variables is simply given by the process model results, using this additional
information.

The chapter deals with the spatially distributed modelling of the SAR backscattering
coefficient and the derivation of land surface parameters from SAR imagery. Based
on the backscattering models, developed in the previous chapters, a linkage
between those and a physically based land surface process model is established.
After a brief description and validation of the land surface process model, the SAR
backscattering coefficients are simulated on the point scale, based on parameter
sets provided by the process model. The adequacy of the coupling approach and
the accuracy of the results are assessed and the method is transferred to spatially
distributed predictions of the backscattering coefficient. The resulting spatially
distributed backscatter values are compared to real ENVISAT ASAR image datasets.
A quantitative analysis of the deviations between the simulation results and
measured values is carried out and discussed.

The coupled modelling approach is used to derive spatially distributed land surface
parameters from SAR imagery. The parameter inversion capabilities are
demonstrated and validated for the example of soil moisture.

8.1 Promet-V

8.1.1 Model description

The process-oriented land surface model PROMET-V (PROcess-oriented Multiscale
Environmental and Vegetation model) was developed to simulate plant growth,
water and nitrogen fluxes. It was developed on the basis of PROMET (MAUSER and
SCHADLICH, 1998) by SCHNEIDER (1999). A brief introduction and examples for
assimilation of remote sensing data in PROMET-V can be found in SCHNEIDER (2003).
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Processing and Handling of Input Data
Time = Start Time,End Time, Time Step
Space = First Pixel, Last Pixel

Temperare PROMET-V Kernel Model r—
adiation

== [ Radiati
photosynthetic | Plant Type )———— Hurtll"?dlig1
Efficiency Vv ¢ Wind

matter
(C.N)

i
|
|
| i
| Development <
= —
= | g e -
|
e : Photo- Phenology r//v
Q| | Lomes > === : y_4A o
© : Leaf | Y T [T TTTTT
=1 | St
U) ] : o Water Uptake by
o) S | Root Roots
(D < Infiltration
0 I o/ D S S R = A
2 (s g —
= ) ~< |
=}
—————————————— —— - .
8 | [Fees A Tl <
_ [ -7
()] Ll

o
S

(- - 7
— SollWalerContent‘// //
A
d s
- S ‘ ’
3 L/
s
s
¥
Hydrolysis } } Capillary Rise

e Fertilization, Sowing Date, Sowing Density, Cutting Date of Meadows, etc...
Processing and Handling of Output Data

Next Pixel
Next Timestep

Buiyoea1-N

Figure 8.1:  Coupling of land surface processes in PROMET-V (SCHNEIDER, 2003)

PROMET-V consists of five coupled sub-models, shown in different colours in
Figure 8.1, which describe the flow of water in the soil-plant-atmosphere system,
plant growth, nitrogen formation and transport, soil temperature and agricultural
management practice. The various submodels are described in detail in the referred
literature and are therefore not discussed here.

Currently, PROMET-V supports the plant growth simulation of cereals, corn,
meadows and forest canopies. The different plant growth models are described in
the literature (JONES and KINIRY, 1986; MOHREN, 1987; SHEEHY and JOHNSON, 1988;
HoDGES and RITCHIE, 1991; Torp and DOYLE, 1996; MENZEL, 2000). The hydrological
model calculates the evapotranspiration, using the Penman-Monteith equation
(MAUSER and ScHADLICH, 1998; LubwiG, 2000) and the soil water balance by using a
multilayered soil water model, based on the Philips infiltration model (PHILIP, 1960),
combined with a cascade approach (SCHNEIDER, 1999).

The nitrogen model considers all major nitrogen transformations and the nitrogen
transport in the soil (GobwIN and SINGH, 1998) and plant matter (LEMAIRE and
GASTAL, 1997). The soil temperature model is mainly based on
WILLIAMS et al. (1989) and plays an essential role for the parameterisation of the
soil microbial activity and the infiltration capacity in case of frozen soils.
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PROMET-V was designed to allow for the spatially distributed modelling of land
surface processes. Based on spatially distributed input datasets, it calculates time
series of land surface parameters as shown in Figure 8.2. Its raster structure makes
it suitable for comparison and coupling with remote sensing data products.

It has been shown, that the model can provide reliable input data series for remote
sensing models, and that it can be wused for assimilation strategies
(SCHNEIDER, 2003; BACH, VERHOEF and SCHNEIDER, 2000; BAcH and MAUSER, 2003;
BACH, MAUSER and SCHNEIDER, 2003).

Remote Sensing Data: Digital Maps: Meteorological
- Land Use - Soil Map Measurements:
" - Shortwave Radiation -DT™ - Temperature - Rel. Humidity
= - NDVI - Catchment boundary - Precipitation - Cloud Cover
@ - Wind Velocity
g o
: 0
o
) o go
5 o o
>
o o
[= o
= / Q
s . .
< GIS-Shell (processing of input data)
a2
(&)
o ©
£ £ Kernel Model
8 ] Hydrology Model O
[<B] E‘ Plant Growth Model —
S Nitrogen Model (@p)
a8 g Soil Temperature Model
g — Management Model
S g
9_: § GIS-Shell (processing of output data)
© >
<}
(72}
g ‘
Output
Hydrology: Plant Parameters:  Nitrogen: Meteorological Maps:
- Soil moisture - Biomass - NO;-Content - Temperature
- Evapotranspiration - Leaf Area Index - N- Leaching - Precipitation

e, | |

Validation of model results

Figure 8.2: PROMET-V model structure: Time series of spatially distributed
land surface variables are generated based on spatial and punctual
input datasets (SCHNEIDER, 2003)
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8.1.2 Model interfaces

The land surface process model output variables as e.g. soil moisture are not
necessarily applicable as such for the backscattering model where the dielectric
constant is needed instead of the volumetric soil moisture. Therefore a functional
interface has to be defined which derives appropriate input parameters for the
backscattering model from regular PROMET-V outputs. Figure 8.3 shows the process
model output variables and the relationship to the backscattering model input
parameters.

While the vegetation height and dry biomass can be used directly, the dielectric
constant and plant water content have to be estimated by means of specific
submodels.

The dielectric constant is derived from the volumetric soil moisture content, using
soil texture information and the dielectric model of HALLIKAINEN ef a/. (1985), given
by (3.10). Only the soil moisture of the upper soil layer (5 cm) is taken into account,
corresponding approximately to the maximum penetration depth of the
electromagnetic waves in C-band.

Plant water content and Wet biomass

The amount of vegetation bound water is essential for the determination of the
normalized copol ratio, using the water content model for cereals and an estimation
of the extinction properties of the maize stands.

SAR image
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Figure 8.3: Definition of an interface between the land surface and
backscattering models to generate spatio-temporal series of
simulated backscattering coefficients
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TABLE 8.1: PLANT WATER MODEL PARAMETERS

LAND USE a b c R=2

Cereals 0.6606 0.079 0.30 0.67
Maize 1.261 -0.5437 0.48 0.86

Plant water content can be derived from PROMET-V output variables using the total
and green LAIl. BACH et al. (2000a) derived the vegetation water content VWC as a
function of a LAl-index as

LAl ey = LA o +C - (LAT o — LAl ) (8.1)

index green

where the parameter ¢ is species specific. The plant water content can then be
derived using a simple linear regression of the form

VWC [kg/m?] =alAl, . +b (8.2)

index

The gain a and offset 6 as well as the estimated coefficients of determination are
given in Table 8.1. The wet biomass Bio,, of the stand can easily be calculated

using the dry matter biomass Bio which is provided by the process model, and

Dry 1

VWC as

Bio, = Bio,,, +VWC (8.3)

Dry

The simulated wet biomass values are further compared to ground measurements
in the next section to assess the accuracy of the estimated absolute water content.

8.2 Plant growth model results for the year 2003

The land surface process model is used to simulate the hydrological and plant
growth processes for the vegetation period in 2003, where ENVISAT ASAR images
are available. During the research for this work the meteorological records of the
DWD network (see 5.2.4.1), needed as model input to PROMET-V, were only
available until DOY 181 (30.06.2003). Therefore PROMET-V simulation results are
only calculated until this date and the comparisons with image data are made for
this period. Wheat and triticale were harvested in the mid of July. Thus almost the
entire vegetation period is covered for cereals. Maize was harvested at the end of
September but the first field measurements are available at DOY 168 (17.06.2003).
Thus, only the first part of the growing period is taken into account for the coupled
modelling (Figure 8.4).
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Figure 8.4: Available image datasets and ground measurements of the Gilching
testsite usable for coupled modelling

8.2.1 Model parameterisation

To parameterise the process model for each land use, different model
parameterisations are necessary. The soil is parameterised using five soil layers with
different depths (5,15,40,90,200 cm) and equal soil texture. The static parameters
as e.g. elevation, aspect, slope and soil texture are taken from the geographical
information system (see 5.1.2). The agricultural management data are mainly taken
from the literature (HYDRO AGRI, 1993; BAYERISCHE LANDESANSTALT FUR BODENKUNDE
UND PFLANZENBAU, 1997).

As yet, simulations can only be made for the supported land use types as cereals,
corn, meadows and forests. Other crop types, as rape or legumes, are not yet
supported due to a lack of a sufficiently accurate plant parameterisation. The model
simulations started in autumn 2002 and ended with the availability of the
meteorological input data (DOY 181). To assess the quality of the PROMET-V
outputs, point scale comparisons to field measurements are conducted and
discussed in the following.

8.2.2 Wheat results

The PROMET-V results of vegetation height, biomass, LAl and soil moisture are
shown in Figure 8.5 for wheat. The plant development is well reproduced by the
process model. The calculated wet and dry biomass are realistic. This indicates, that
the derivation of vegetation water content based on LAl simulations, as given by
(8.2), performs well. The soil moisture dynamics as well as the ground
measurements, with their respective standard deviations, are given in Figure 8.5d.
The modelled soil moisture of the upper soil layer (5 cm) is comparable to the field
measurements after DOY 130. Before that date, a systematic underestimation of the
volumetric water content can be detected. The reason is a delayed modelling of
snow melt, indicated by the soil moisture peak at DOY 70.
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Figure 8.5: Comparisons between measured and simulated soil moisture and
plant variables for Wheat 2003

The snow melt is modelled with a delay of around 10 days, compared to synoptic
snow observations, producing significant modelled runoff. This water is no longer
available in the soil layers. The measured soil moisture values indicate, that more
water was bound in the soil column after the snow melt event, than is predicted by
the model. The generally good description of the soil and plant parameters by
PROMET-V (Figure 8.5) makes it a valuable tool for the spatially distributed
prediction of wheat growth and soil conditions, as needed for the suggested
backscatter model.

8.2.3 Triticale results

The model results for the triticale field (#01/2003) are comparable to those of the
wheat field (Figure 8.6). The vegetation height and biomass development is well
reproduced. The LAI is overestimated at higher values. A reason might be the fact,
that the plant specific growth parameters for triticale, which control the assimilation
of the leaves, have to be adjusted for the triticale test field. As can be seen in
Figure 8.6b this doesn't affect the calculated wet biomass values. An
underestimation of the soil moisture values can also be observed before DOY 130.
The reasons have already been described for the case of wheat. After that date, the
modelled soil moisture values fit even better to the field measurements than in the
case of the wheat field.
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Figure 8.6: Comparisons between measured and simulated soil moisture and
plant variables for Triticale 2003

8.2.4 Maize results

The ground measurements of the maize field started at DOY 170. This means, that
there is only a short overlap between the field campaign data and the PROMET-V
simulations, shown in Figure 8.7. It can be seen, that the modelled vegetation
height is higher than the measured one, indicating a significantly faster simulated
growth than in reality. Different model parameterisations were not capable to
minimize this effect. Only a later seeding date in the model would lead to simulated
vegetation heights being comparable with the in situ measurements. Due to the fact
that the simulated seeding at DOY 135 is already to late compared to the actual
seeding date in mid April (DOY 107, personal communication by the farmer), the
model was not forced to fit with the ground measurements.

The biomass development however agrees well with the measured values. The
simulation of the wet biomass provides good estimates of this parameter, using the
approach given in section 8.1.2. The soil moisture measurements also show a good
agreement with the simulations. The results of the short overlapping period
between ground measurements and model predictions indicate, that PROMET-V is
capable to generate applicable input datasets for the maize backscattering model.
The effect of the overestimated vegetation height will have to be taken into account
when analysing the backscattering model results.
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Figure 8.7: Measured and modelled plant and soil parameters for Maize
Tiefenbrunn 2003

8.3 Field based coupled backscatter modelling

It has been shown, that the land surface process model can be used to provide
reliable estimates of the soil and plant conditions. These can be used to derive
spatially distributed input parameter sets for the backscattering model. Using these
parameter sets the backscattering coefficient can be simulated for the entire
vegetation period, based on PROMET-V results.

In the following section, coupled simulations of the backscattering coefficients are
conducted. The results are first compared with measured SAR backscattering
coefficients on the point scale, which means that field averaged values are used.
The approach is then transferred to spatially distributed predictions of the
backscattering coefficient within fields. The results are compared to real image
datasets.

8.3.1 Cereals

Based on the modelled plant biophysical parameters and soil moisture values
provided by PROMET-V, the HH and VV backscattering coefficients of the wheat and
triticale fields are simulated using the biomass and the water content model, given
by (7.5). The VV polarised backscatter is obtained using (7.2) and (7.4).
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A comparison between simulated and measured backscattering coefficients is shown
for both modelling approaches in Figure 8.8. The relationships between the
measured and simulated backscattering coefficients are calculated for each test field
and modelling approach. The respective linear regression coefficients and
coefficients of determination are given in Table 8.2.

The predicted backscattering coefficients show good agreement with the measured
ENVISAT ASAR measurements for the biomass and water content model in both
polarisations. The gain of the linear fit between measured and modelled backscatter
ranges from 0.9 to 1.1 with an offset between —1.0 and 3.0 dB. The coefficients of
determination range from 0.6 to 0.9. Worst results are obtained for the test fields,
using the water content model for the VV polarised case, which is the result of two
overestimated extreme values, indicated by the blue circles in Figure 8.8
(DOY 86 & 92). At the same time the modelled HH backscatter shows good
agreement with the measurements, the backscattering coefficient for VV is
overestimated. The reason is the low vegetation height, resulting in a low value for
the copol ratio and therefore an overestimated calculation of the VV backscatter,
using (7.2) and (7.4).

The model accuracies are of the same order as those, obtained from the
parameterisation based on ground measurements (see Figure 7.8 and Table 7.3).
Due to the sensitivity of the modelled VV polarised backscatter on the canopy
height, the application of the water content model is restricted to larger vegetation
heights.

No significant differences between the biomass and the water content approach can
be observed for HH polarisation. Nevertheless, the biomass model is expected to be
less sensitive to errors in the input datasets. While the water content approach uses
two LAl simulations (green and total, see 8.1.2) and the dry biomass as input
variables, the biomass model is only based on the simulated dry matter content.
Uncertainties in the biomass estimates will therefore have an influence on both
backscattering model variants, while errors in the LAl predictions will only have an
effect on the water content model. The biomass model is therefore expected to be
more robust to input parameter uncertainties.
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Figure 8.8:

Coupled backscatter simulation results for wheat and triticale,
based on PROMET-V data, using the biomass and water content
model (blue circles: DOY 86 and 92)

Table 8.2: Relationship between modelled and measured backscattering
coefficients using PROMET-V
TyPE POLARIS.  MODEL LINEAR FIT R2 RMSE (Ao
[dB] [dB]
GAIN OFFSET
Wheat HH Biomass 0.9980 -0.4178 0.81 1.4 1.0
Wat. Cont. 0.9555 0.1997 0.84 1.1 1.0
Y Biomass 0.9269 -1.0302 0.58 2.3 1.9
Wat. Cont. 1.1265 3.0304 0.64 2.9 2.2
Triticale HH Biomass 0.9897 0.1138 0.96 0.9 0.8
Wat. Cont. 0.9044 0.2639 0.92 15 1.4
wW Biomass 0.8941 -0.8307 0.71 1.8 1.7
Wat. Cont. 0.8909 1.7161 0.66 3.5 3.0

predicted backscattering coefficient is the dependant variable
"mean deviation
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8.3.2 Maize

For the verification of the maize model, only those image datasets can be used, for
which PROMET-V simulation results are available. The simulation ended at DOY 181.
Thus a total of four image datasets can be used for the analysis.

The field based output of PROMET-V is used to simulate the SAR backscattering
coefficient, using the maize backscattering model suggested in the previous chapter.
The results are shown in Figure 8.9.

Maize Tiefenbrunn (PROMET-V point simulation results)
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Figure 8.9:  Coupled maize model prediction results

For this limited dataset the simulation results show good agreement with the
measured values. The root mean square error is 0.37 dB. Care has to be taken,
when interpretating these results. As has been shown in the previous section, the
vegetation height is significantly overestimated by PROMET-V, which must result in
an overestimated fraction of the stalk ground interaction term o using (7.10) and
should therefore lead to an overestimated backscattering coefficient. The higher
vegetation height also results in a higher optical depth t using (7.12) which partially
compensates this effect. Thus the simulated backscattering values show good
agreement with the measured values, but are based on an inaccurate model
parameterisation. The consequences for spatially distributed backscatter modelling
have therefore to be assessed using different test fields. This will be done in
section 8.4.
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8.3.3 Results

The results on the point scale indicate, that the PROMET-V model can be used in
combination with the defined interface as input data source for the backscattering
model, to produce reliable estimates of the SAR backscattering coefficients. The
vegetation models for cereals and maize were calibrated for the HH polarisation
(see 7.1.3 and 7.2.2). Best results are therefore expected for this polarisation type.
By using the relationships between the imaging geometry, vegetation height and
normalized copol ratio, the VV backscattering coefficient can be estimated for
cereals. For low vegetation heights, the VV backscatter is overestimated as has
been discussed in section 7.1.4.

Based on the results of this section, the coupled approach is applied for spatially
distributed modelling of the backscattering coefficient in the next section.

8.4 Spatially distributed backscatter modelling

Using the spatially distributed time series of land surface variables provided by
PROMET-V, a synthetic SAR image can be generated for each model time step. The
needed static input variables are a land use and soil texture map and the distributed
surface roughness information derived in Chapter 6.

Using the coupled backscattering model, the backscattering coefficient can be
simulated for wheat, triticale and maize for any imaging geometry. For each
available ENVISAT ASAR image, covering the testsite, a corresponding synthetic
SAR image is simulated. This allows to

- assess the accuracies of the modelling approach
- transfer the suggested backscattering models to other fields,
- assess the reliability of the spatially distributed PROMET-V predictions.

Comparisons between the observed and predicted backscattering coefficients can be
analysed on a field scale or by direct comparison of each resolution cell. The
deviations between modelled and measured backscattering coefficients and their
temporal development may be used to derive land surface parameters from SAR
images and help to assimilate this information directly to the land surface process
model. Different sources of uncertainty, influencing the final coupled model
accuracy, can be identified in this context.
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8.4.1 Sources of uncertainty

It is obvious that each modelling process has a remaining level of uncertainties,
resulting in residuals between predicted and observed variables. In the case of the
coupled backscattering model, proposed in this chapter, the sources of uncertainty
can be allocated as follows:

Spatial datasets

The basis to all spatial modelling approaches is an accurate geographical
information system. It is needed for the land surface process model as well as for
the backscatter simulations. Until now, it is difficult to obtain reliable information
about the spatial distribution of soi/ texture. Nevertheless, soil texture is a key
parameter in the modelling process. It is used to estimate the volumetric water
content of the top soil layer and is also necessary for the conversion of soil moisture
to the dielectric constant.

The roughness map, derived in Chapter 6 was calculated with the best available
datasets, under the assumption, that no change in surface roughness and
vegetation cover occurred between the observations. The promising results,
obtained with the derived A, values (see 6.5), indicate that this dataset is a reliable
estimate of the surface roughness components affecting the backscatter.
Nevertheless, an uncertainty remains about the correct roughness estimate for each
pixel.

The climatic data is known to have measurements errors. Especially the
measurement of precipitation is difficult and the error can exceed 20 % if significant
wind drift occurs. It has to be interpolated from point measurements to precipitation
fields, which is a source of additional error.

Land surface process model (PROMET-V)

Each model is a simplification of the real physical processes. It has been shown,
that PROMET-V is capable to provide reliable results for the description of plant
growth when comparing it to ground measurements. Nevertheless some major
simplifications need to be addressed. The model output variables are aggregated to
daily values'. This can lead to deviations between the SAR observed soil moisture
values and those simulated by PROMET-V, especially in case of rainfall after the
sensor pass on the same day.

! Generally, the model allows for the generation of output variables for any given temporal
resolution (e.g. each hour). This leads to huge datasets which are difficult to handle. As a
compromise, daily model output was chosen for the investigations.
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Model Interface

The interface, used for the translation of PROMET-V variables to the backscattering
model is also a source of uncertainty. Soil moisture has to be converted to the
dielectric constant using an empirical dielectric model (see 3.2.2).

The vegetation water content is derived using an empirical relationship between the
VWC and the LAI. This relationship, given by (8.2), determines 86 % and 67 % of
the variance for maize and cereals respectively. Thus the rest of the variance
remains unexplained by the model.

Backscattering model

The bare soil backscattering mode/ suggested in Chapter 6 is based on theoretical
simulation results, using the Integral Equation Model (IEM). It is therefore limited to
the validity range and accuracy of the IEM. Additional uncertainties result from the
incidence angle normalization procedure. As discussed in section 6.3.3, these
deviations are below 1 dB.

The calibration of the vegetation backscattering models is based on ground
measurements taken from the test fields, which also have a limited accuracy. The
sampling concept, using three sample points per field, is an approximation to the
true variability within a test field. The heterogeneities within the field, as observed
by the SAR sensor can not be measured appropriately. The backscattering
coefficient of a test field is obtained by averaging various image pixels. Thus, the
backscattering value, used for the model calibration is an averaged value with a
related backscatter variance.

SAR image data

The SAR image datasets must also be considered a possible source of uncertainty.
All used image datasets were preprocessed using the best available geometric and
radiometric correction methods. Datasets, which didn't seem to be trustworthy,
were not used for the investigations (e.g. I1S1 calibration problem, see 4.2.3). The
geometric distortion of the data is expected to be below one resolution cell.
Nevertheless, misalignments can occur, resulting in deviations — especially, when
comparing modelled and simulated data on a pixel by pixel basis. The radiometric
accuracy of the sensor is reported in the literature (see 4.2.2) and lies between 0.5
and 1.0 dB.

Beyond these uncertainties, the coupling approach has already proven its
applicability on the point scale and is applied for the generation of spatio-temporal
series of the backscattering coefficient next.
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8.4.2 Modelling approach

For all available SAR images, a corresponding simulated backscatter image is
generated. As discussed in section 8.2, the soil moisture simulations of PROMET-V
didn’t correspond well with the field measurements until DOY 130. To investigate
the effect on the SAR simulation results, the first image, considered for the
simulations was recorded on DOY 92 (2.4.2003). A total of nine images, given in
Table 8.3, are used for the analysis.

The backscattering coefficient is calculated for all supported field crops, namely
wheat, triticale and maize, using daily aggregated output data of PROMET-V. To
reduce the uncertainties introduced by the backscattering model, the simulations
are carried out using the dry biomass for the parameterisation of the vegetation
scattering properties of cereals. Since the maize model is only valid for HH
polarisation and the cereal vegetation scattering model also provided more reliable
results for the HH polarisation, all simulations are done for this polarisation.

Table 8.3: ENVISAT ASAR images used for coupled backscatter modelling

DATE DOY DIRECTION INCIDENCE ANGLE [°]
02.04.2003 92 ASC 18.9
11.04.2003 101 ASC 39.2
24.04.2003 114 ASC 29.9
01.05.2003 121 DESC 43.0
07.05.2003 127 DESC 32.7
05.06.2003 156 DESC 43.0
11.06.2003 162 DESC 32.8
17.06.2003 168 ASC 33.2
20.06.2003 171 ASC 39.3

8.4.3 Simulation results

The simulated SAR images can be directly compared to real SAR imagery. Only
those pixels containing information in the SAR image and at the same time
information on the land surface simulation results, are used for the comparison. An
example of a simulated SAR scene is given in Figure 8.10. The complete detailed
simulations results are given in Appendix F. The fields with available simulation
results, corresponding to wheat, triticale and maize, are extracted from the original
image dataset for better comparability. It can be seen, that the backscattering
coefficients have the same magnitude and even similar features can be observed in
both datasets.
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SAR image Simulation result

SAR image & Mask

Low backscatter high

Figure 8.10: Simulated and observed SAR image (05.06.2003, DOY156); the
original image is masked to simplify comparisons with the
modelling results (an enlarged Figure can be found in Appendix F)
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Figure 8.11: Example of simulated (left) and real (right) SAR image at Gut Huell

A more detailed example, covering the area around the test fields at Gut Huell is
given in Figure 8.11. The simulation results show several voids, which result from
invalid simulation parameters or backscattering model results. These occur when no
vegetation height is provided by PROMET-V or a VWC value is calculated using
(8.1), which is less than zero.
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The accuracy of the simulated backscattering coefficients is assed by correlating
simulated and measured backscattering coefficients and by analysing the residuals.
This is done for all dates on a pixel by pixel basis without any filtering applied to the
datasets, which is the most sophisticated approach. Figure 8.12 shows the pixelwise
correlation of the simulated and measured backscattering values and the frequency
distribution of the residuals for all images used for the investigation. Positive
residuals indicate an overestimation of the backscattering coefficient by the model
and vice versa.
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Figure 8.12: Pixelwise analysis of the simulation accuracy for all dates and land
cover types: (A) correlation between simulated and measured
backscattering coefficient (bars indicate the 25% and 75%
percentiles); (B) Frequency distribution of backscatter residuals

It can be seen, that the backscattering coefficients are generally well predicted by
the backscatter model. The gain of the regression line is almost unity. The residuals
are normally distributed with an average of 0.5 dB. The residuals have a standard
deviation of 2.8 dB. Around 70% of all values are within the interval of +2 dB. It can
be seen from Figure 8.12a, that the variances are rather similar for the backscatter
range, corresponding typically to agricultural fields (-18 ... -6 dB, see also
e.g. Figure 7.1)

This indicates, that the model generally provides good estimates of the
backscattering coefficient. The simulated input parameters, provided by PROMET-V,
have lower dynamics within an agricultural field than in reality. The reason is that
the land surface model input parameters as e.g. soil texture are rather
homogeneous over larger areas. In reality, the microscale variations of solil
hydrological properties are more heterogeneous. Due to similar other input
variables, as e.g. temperature and precipitation fields, the land surface model
predictions have a lower spatial variance than in reality.
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This can lead to deviations of the simulated backscattering coefficient. The typical
standard deviation of the observed backscatter, within agricultural fields, ranges
between one and two decibels, dependant on the size of the field, which is
comparable to the standard deviations of the observed residuals. The deviations
between simulated and observed backscattering coefficients might be used to
enhance land surface model parameterisation. This will be discussed later in
section 8.4.4.

The frequency distributions of the residuals of individual observation dates are given
in Appendix F. All show a similar gaussian frequency distribution with standard
deviations between 1.5 and 2.9 decibels. Figure 8.13 gives an overview of the
temporal characteristics of the residuals for each simulated scene.

Scene based backscatter residues
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Figure 8.13: Scene based backscatter residuals (pixelwise comparison): median
(squares), mean values (diamonds), 25 %, 75 % percentiles (bars)

The figure shows for each image date the median value and corresponding 25 %
and 75 % percentiles of the backscatter residuals. These are calculated on a pixel
by pixel basis. Each sample corresponds to more than 3000 image pixels from
heterogeneous fields and soils. It can be seen, that the variance of the residuals is
almost equal for all dates. A temporal development of the residuals can be
observed. These can be partly interpretated as the result of an imprecise soil
moisture prediction of PROMET-V. It is underestimated on DOY 114 and DOY 121,
as was already mentioned in section 8.2, resulting in an underestimation in the
simulated backscattering coefficient (see e.g. Figure 8.5). The high positive residual
on DOY 92 can be explained by rain during and after the sensor pass.
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Field based analysis

To investigate the transferability of the method to other fields and to discriminate
the sources of deviation between modelled and measured backscattering
coefficients, a more detailed, field based analysis is carried out. To get a general
impression about the possible deviations, the average backscattering coefficient is
calculated for all wheat, triticale and maize fields larger than 1.5 ha (more than
20 image pixels). The results are shown in Figure 8.14 for each date. It can be
seen, that the backscattering model predictions generally show good agreement
with the measured values. The gain of the regression line is almost unity. The mean
deviation is 0.9 dB with a corresponding standard deviation of 2.0 dB and a rms
error of 2.2 dB. The deviations are not systematic, but show differences between
the observation dates. Low deviations can e.g. be observed at DOY 101, while there
are larger residuals at e.g. DOY 168. This may be explained by a temporally
changing model input parameter which affects the variability between different
fields of the same land use.
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Figure 8.14: Comparison between modelled and measured field averages

To examine this effect, the backscattering behaviour of different fields of the same
crop type are analysed. Four test fields are therefore selected within the test area
for cereals and maize respectively. Additionally the backscattering variability of the
investigated test fields, used for the model calibration, namely the wheat and
triticale fields at Gut Huell and the maize field at T7iefenbrunn, are analysed. The
locations of the fields are shown in Figure 8.15 together with the corresponding soll
texture map. Each field has a unique identification number.
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Figure 8.15. Location of the test fields, used for detailed investigations and
corresponding soil texture map; red: cereals, yellow: maize; see
also Figure 5.2

Cereals

The statistics of the backscattering coefficients are extracted from the modelled and
measured image datasets for each field. A comparison between the modelling result
and measured values for the cereal test fields at Gut Huell is given in Figure 8.16.
To account for the intra field variability, the median value, as well as the 25% and
75% percentiles are calculated, which are represented by the boxes. The total data
range is represented by the whiskers in the diagram.
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Figure 8.16: Modelled and measured backscatter variability for wheat and
triticale test fields at Gut Huell (investigation fields)
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The intra field variability and magnitude of the data is well reproduced by the
backscattering model. Higher deviations can be observed on the 2™ of April and the
7" of May. The triticale field shows slightly higher deviations of the modelled
the wheat field

backscattering coefficient than it can be observed for

(e.g. on 11.06.2003).

The extracted statistic for the other cereal test fields is shown in Figure 8.17 in the
same way. The dynamic range of the measured backscatter is also well reproduced
for these fields. Field #92 shows best agreement between measured values and
modelling results. All test fields show an underestimated modelling result on 1* of
May. The fields #95, #97 and #99 all show an overestimated modelled
backscattering coefficient on 11" and 17™ of June, while field #92 also agrees well
with the measured values on these dates.
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Figure 8.17: Intra field backscatter variability for selected cereal test fields
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Maize

The reference maize field in Tiefenbrunn, used for the calibration of the maize
backscattering model, has shown good agreement of the backscattering coefficients
on the point scale (see 8.2.4). It is therefore expected to have similar accuracies
when spatially distributed modelling is performed. This is confirmed by the field
statistics shown in Figure 8.18.
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Figure 8.18: Backscatter comparisons for maize field Tiefenbrunn

Compared to the wheat and triticale field, the measured backscattering coefficients
have a lower dynamic range. The variability between the different observation
dates, as well as the intra field variability is lower than in nature which is the result
of a higher optical depth, simulated by the model. The generally good
correspondence of the expected values is an indication for the functionality of the
defined PROMET-V interface, despite the problem of overestimated height values.

The maize model was calibrated, using only a single test field. Therefore, it is of
special interest, whether the maize backscattering model also provides reliable
results on other maize fields. The backscattering statistics of the four other selected
maize fields, shown in Figure 8.15, is given in Figure 8.19.

A good agreement between modelled and measured SAR backscatter can be stated.
The simulated backscatter values show a lower variability than the measured ones,
which is in agreement with the observations made on the calibration test field at
Tiefenbrunn. A systematic deviation can be observed for field #445, where the
modelled backscattering coefficients are overestimated on all dates. No significant
differences can be found for the fields #447 and #449. For field #451, an
underestimation of the backscattering coefficient can be observed for the 17" and
20™ of June.
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Figure 8.19: Backscattering statistics of selected maize fields

8.4.4 Discussion

It has been shown, that the coupled modelling approach provides reliable results in
most cases. The analyses were made on a pixel-by-pixel basis, which is the most
sophisticated approach, because even small geometric distortions have an influence
on the results.

The good performance of the model for most of the pixels and also most of the test
fields is an indication, that the used surface roughness map (see 6.5) is of high
quality. The backscattering model and model interfaces are well suited to provide
reliable results. It has been shown, that certain systematic deviations of the
backscattering coefficient can be observed on the field scale for cereals, as well as
for maize.

These may be the result of imprecise input parameters to the backscattering model.
The fact, that a systematic over- or underestimation of the backscattering
coefficient can only be observed on certain dates, leads to the assumption that a
temporally variable input parameter might be the major source of uncertainty.
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A seasonal parameter, with a sustainable effect on the simulation results is soil
moisture. Soil moisture values of the upper soil layer (5 cm), provided by the land
surface model, are used for the backscatter simulations. Soil texture has a strong
influence on the simulated volumetric moisture content in this context. As a result
the soil texture map is clearly visible in the simulated soil moisture values, as shown
in Figure 8.20.

I sandy loam
W 1oamy silt
M heavyloam

Modelled soil moisture I Soil texture map
low high

Figure 8.20: Dependency of simulated soil moisture (left) on soil texture (right)

Beyond this direct effect on the simulation results of the land surface model, the soil
texture is also used to relate the volumetric moisture content of the soil to its
dielectric properties (see 3.2.2), which can result in significantly different simulated
backscattering coefficients for the same soil moisture value.

It is remarkable, that the test fields with higher model deviations (e.g., #95, #97,
#445), have soils with a higher clay content, while those with only slight differences
are situated on more porous soils. The fact, that the wheat fields #95, #97 and #99
all show overestimated simulation results after a short rain period (see Figure 8.13)
denotes that the soil moisture dynamics is not well reproduced by the land surface
model. The soil moisture dynamics of the upper soil layer, corresponding to the
sensitivity range of the SAR system, seems to have higher dynamics than that
simulated by the land surface model. Currently, all soil layers in the land surface
model are parameterised in the same way with the same soil texture. Due to
missing additional soil information this is a main drawback.
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Some deviations as e.g. for maize field #451 on 17" and 20™ of June can not be
explained by means of imprecise soil moisture predictions (see Figure 8.19). These
deviations remain unexplained. No precipitation event or other model uncertainties
could be identified for this field. The fact, that the backscattering coefficient is
simulated accurately for the first two dates and then shows a systematic deviation
which can not be explained by model uncertainties, reveals that other influences
might also have to be considered as e.g. land use practice by the farmer.

The fact, that the soil moisture dynamic is observable with SAR imagery and that it
can be detected by the modelled backscatter residuals, may help to provide
information about the soil hydrological properties and soil moisture content. Latter is
shown in the following section.

8.5 Soil moisture inversion using coupled modelling

It has been shown, that the proposed forward backscattering model provides good
results for point as well as for spatially distributed modelling. The differences
between the simulation results and observed SAR backscatter might be used to
derive land surface parameters directly from the SAR images. In the following, the
derivation of soil moisture from ENVISAT ASAR data is investigated, using the
coupled modelling approach. The results are compared to /n situ soil moisture
measurements of the field campaign.

8.5.1 Approach

To derive soil moisture from ENVISAT ASAR alternating polarisation datasets, a
simple iterative inversion strategy can be used. The backscattering models need
informations about the soil moisture state and vegetation parameters. If vegetation
parameters are provided by a land surface process model, the soil moisture is the
only remaining unknown variable. Using the coupled modelling approach, discussed
in the previous sections, the such generated synthetic SAR images can be compared
with ENVISAT ASAR observations. By changing the soil moisture value, until best
coincidence between measured and simulated backscattering coefficients is
achieved, the soil moisture of the upper soil layer can be determined.

The amount of soil water is unknown for each image acquisition, while the
extinction properties of the canopy can be determined for cereals from the image

data, using the copol ratio o}, :oy, (see 7.1). In the case of maize, additional

information about the vegetation water content is needed.

The investigated soil moisture value m, is restricted to a certain predefined soil
moisture range Am,. Theoretically it can range between the wilting point and
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saturation. If a prioriinformation about an initial soil moisture value m;y; is available,
as e.g. from PROMET-V simulation results, this can be used to restrict the range of
possible valid solutions to improve the inversion accuracy.

The backscattering coefficient is simulated for distinct soil moisture values within
the predefined validity range, with and without initial soil moisture information. By
minimizing the error E between the simulated and measured backscattering

coefficients &7, and oy, , an estimate of m, becomes possible. The best solution

is found if it satisfies the condition

E(m,) =min{6%, —o% |} with |m, —m,|<am, = f(ae,) 8.4)

where A e, is the possible range of the dielectric constant. The result of this

inversion strategy is the soil moisture value which corresponds to the smallest
backscatter deviation.

8.5.2 Derivation of soil moisture from ENVISAT ASAR
alternating polarisation data

To derive soil moisture from the image data, PROMET-V results are used to
parameterise the vegetation height and water content. The soil moisture is then
derived twice from the image datasets. Once, no a priori information about the
actual soil moisture conditions is provided to the algorithm. All possible soil moisture
solutions between the wilting point and saturation are possible (simple approach).
The second inversion uses the soil moisture information of PROMET-V as an initial
estimate of the true value which is then converted to the dielectric constant. A
predefined validity range of e, £30% is allowed for possible inversion solutions

(a priori approach)'. The possible range of +30% is chosen to allow for a validity
range, which guarantees, that the initial soil moisture value has an effect on the
inversion results, without being too restrictive.

The soil moisture, calculated for each image pixel, is then derived by minimizing the
error between simulated and measured backscattering coefficient. Only the soll
moisture values within the predefined validity range are considered. The inversion
approach is validated using the same image datasets as in the previous section.
Table 8.4 gives an overview about the image datasets and availability of soil
moisture ground measurements.

! example: if the dielectric constant of the initial soil moisture value is 20.0, the dielectric
constant of the solution can range from 14.0 to 26.0
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TABLE 8.4: SAR IMAGES USED FOR SOIL MOISTURE INVERSION
DATE DOY REFERENCE SOIL MOISTURE AVAILABLE
Tritcale Wheat Maize
02.04.2003 92 v 4
11.04.2003 101 v v
24.04.2003 114 v v
01.05.2003 121 v v
07.05.2003 127
05.06.2003 156 v
11.06.2003 162 v v
17.06.2003 168 v 4 4
20.06.2003 171 v v v
8.5.3 Results

An example of the derived soil moisture maps is shown in Figure 8.21 for both
approaches. It can be seen, that the two maps differ significantly. The simple
inversion approach leads to highly variable inversion results, corresponding to the
solution with the smallest simulation error. The SM values cover the whole possible
soil moisture range. Using the a priori information of the land surface model, the
spatial distribution of the soil moisture values is less variable. Neighbouring image
pixels show similar inversion results.

A detailed view of the area around Gut Huell, where the test fields are situated, is
given in Figure 8.22. It shows a truecolor representation of an aerial hyperspectral
image of the area, acquired by the AVIS sensor (MAUSER and OPPELT, 2001) with a
spatial resolution of four meters and the soil moisture inversion results of the same
area. The AVIS image shows a bright structure in the investigated triticale field,
corresponding to an area with coarser grain size distribution of the soil particles.
The same structure can also be observed in the inverted soil moisture image, where
lower soil moisture values are detected from the SAR image. Thus, information
about the underlying soil is visible in the inverted soil moisture maps.
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Figure 8.21: Soil moisture map (20.06.2003): simple approach (left) and a priori
approach, using inital soil moisture values (right); enlarged version
can be found in Appendix F

soil moisture Vol.%

Figure 8.22: Detailed soil moisture result of 20™ of June 2003 (right), compared
to an aerial AVIS image (left) around Gut Huell (16" of April 2003)

To assess the accuracy of the soil moisture inversion results using the simp/e and
the a priori approach, comparisons with in situ measured soil moisture values are
conducted. To take into account the intra field variability of the soil moisture values,
the histograms of their distributions are calculated for each field. Figure 8.23 shows
an example of the soil moisture frequency distribution for both inversion strategies.
Additional information about the initial soil moisture value, as well as the results of
the TDR field measurements are shown. The width of the ground measured soil
moisture value bars indicates the standard deviation of the samples, resulting from
the three sampling points within each test field.
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Figure 8.23: Soil moisture frequency distributions for cereal fields on DOY 171.
white: simple, light grey: a priori inversion approach; dark grey:
initial soil moisture value, width of the in situ measured soil
moisture value indicate the measured standard deviation

It can be seen, that the results of the simple inversion approach have a frequency
distribution, which covers the entire possible soil moisture range. The distribution of
the a priori approach has an unimodal shape with a more accentuated modal value.

The a priori approach shows good agreement with the measured soil moisture
values for the wheat field. The inversion results for the triticale field show larger
deviations from the measured soil moisture values. It can be seen, that the inverted
soil moisture of the a priori approach is overestimated by the algorithm. The reason
is the highly overestimated initial soil moisture value provided by PROMET-V. Due to
the restricted possible soil moisture range, used within the a priori method, the
inversion procedure wasn't able to invert the soil moisture correctly. It converged to
the lower boundary of the possible soil moisture data range. The overestimated soil
moisture prediction by PROMET-V may again be a result of the imprecise
parameterisation of the soil hydrologic conductivity of the upper soil layer (see 8.4.4
and Figure 8.15).

The histograms of the other fields and dates are given in Appendix F. They all show
a similar behaviour. The modal value of the a priori approach generally agrees
better with the measured soil moisture values of the upper soil layer. On some
dates, higher deviations, similar to the example shown in Figure 8.23, are
observable, which are the result of an overestimated initial soil moisture value.

To quantify the obtained soil moisture inversion accuracy, a direct comparison
between the observed and measured soil moisture values is made. Due to the
asymmetrical frequency distributions of the soil moisture values, the median value is
expected to be the best discriminator for the expected value (LOzAN and
KauscH, 1998). Figure 8.24 shows the median value of the inverted soil moisture for
all test fields and observation dates, compared to the in situ measured soil moisture
values.
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Comparisons are made for the vertical TDR samples, as well as for the horizontal
measurements, made in 2 cm depthl. The detailed values are tabulated in
Appendix F.

Distinct difference between both inversion approaches have been observed by
comparison of the soil moisture histograms. The a priori approach provided more
accurate inversion results. This difference is reduced, when the median value is
used for the expected value of the whole field.
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Figure 8.24: Soil moisture inversion results; a) simple approach b) a priori
approach

! Note, that the inverted soil moisture values are shown on the abscissae for better
readability of the diagram.

168



Soil moisture inversion using coupled modelling

Table 8.5: Relationship between inverted and in situ measured soil moisture
values

METHOD TDR VERTICAL TDR 2cm

Gain / offset R=2 RMSE Gain / offset R2 RMSE
[Vol.9%%6] [Vol.9%6]

simple 0.6020 / 13.756 0.39 7.4 0.2686 / 13.295 0.12 5.5
a priori 1.1722 / 4.362 0.25 8.5 0.8302/ 3.526 0.33 3.5

A positive correlation between measured and derived soil moisture values can be
observed for both approaches. The vertical /7 s/itu soil moisture measurements have
higher values than the inversion results. This indicates, that the SAR sensors
penetration depth is smaller than the sampling depth of the vertical TDR probe
(=120 mm). Thus for the examples shown, the underlying soil has a higher
moisture content than the uppermost centimetres, which is confirmed by the
comparison of the measured 2 cm and vertical TDR probes.

The coefficients of determination are rather small for the linear regressions between
inverted and measured soil moisture values (Table 8.5). Nevertheless, the inversion
results are almost all within +5 Vol.% of the expected value, and therefore within
the intra field variability of the /7 situ soil moisture measurements. Best results, with
an RMSE of 3.5 Vol.% are obtained for the inversions of the a priori approach,
compared to the soil moisture measurements of the upper 2 cm. This accuracy is
comparable to results reported in the literature (see 3.4.1).

Due to the dry period in 2003, most of the soil moisture values are within the lower
part of the possible soil moisture spectrum. The model can therefore not be
validated for higher soil moisture values. Due to the separate soil and vegetation
backscattering models, it is expected, that the method is transferable also to higher
soil moisture values, which would not have been possible with a simple empirical
model.

The results show, that spatially distributed soil moisture maps can be generated by
applying the proposed inversion scheme. Additional information about the initial soil
moisture content of the upper soil layer can help to improve the inversion results.
This becomes more obvious when the histograms of the derived soil moisture
results are directly compared to the /n situ soil moisture measurements. The spatial
patterns of the a priori results are more reliable. Adjacent image pixels have similar
soil moisture values, while extremely different solutions can be observed, if no initial
information is used. Deviations between observed and inverted values result not
only from the uncertainties of the inversion model, but also from the intra field
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variability and the difficulty to transfer the point measurements of a TDR probe to
the resolution cell size of a SAR system. Thus, the validation of the inversion
accuracy becomes difficult, if the soil moisture shows low dynamics, as it is the case
in 2003, and if the inversion results scatter within the natural variability of the
investigated parameter.

A drawback of the recommended a priori inversion algorithm is the dependency on
the quality of the initial soil moisture value. Due to the fact, that the inverted soil
moisture is restricted to a predefined range, a false initial value can lead to
unsatisfactory inversion results even if the SAR image contains the correct
information about the soil moisture condition.

The current algorithm only minimizes the deviation between the modelled and
measured backscattering coefficient by changing the soil moisture value within a
predefined range. The result is the best estimate within the interval. By taking into
account additional information about uncertainties of the model input variables,
such as vegetation height, biomass and soil moisture, and also by adequate
weighting of the resulting backscattering residuals, the possible range of valid soil
moisture solutions might be dynamically adjusted for each image pixel during the
inversion procedure. The outcome of such an approach would be the probability
density function for the soil moisture values of each pixel. Thus, not the best, but
the most probable soil moisture value would be inverted by such an approach,
which might help to minimize the errors introduced by an inaccurate initial soil
moisture value.
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Chapter 9

Conclusions - Towards an
Improved  synergistic  spatio-
temporal characterization of land
surface variables from remote
sensing data

The preceeding chapters have shown, that valuable information about the state of
the land surface can be derived from microwave remote sensing data. Sensors with
multiple imaging capabilities, as e.g. ENVISAT ASAR, are the basis for frequent and
accurate monitoring of the environment. It was the intent of this thesis to develop
suitable procedures for the understanding of these complex multiple image datasets
and their practical utilization.

Therefore sophisticated methods have been developed to investigate the different
challenging microwave land surface interactions, caused by the multiple imaging
geometries and polarisations.

A modelling approach, linking a microwave backscattering model with a process
oriented land surface model was found to be suited for this undertaking. It makes
use of the spatio-temporal parameter simulation capabilities of the land surface
model, and uses the backscattering model for the simulation of synthetic SAR
images which can then directly be compared to measured image data.

A careful preprocessing of the image datasets is mandatory for the quantitative
analysis of SAR imagery. A sophisticated image processing and geocoding procedure
was therefore developed for ENVISAT ASAR images. It corrects the terrain induced
geometric and radiometric distortions of the image data on a high level of accuracy.
It is therefore a main building block for any further quantitative analysis steps.
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The understanding and separation of the different scattering terms is crucial for an
accurate modelling of the backscattering coefficient, and finally also for the stable
derivation of land surface parameters from SAR imagery with multiple imaging
geometries. One of the major achievements is the successful implementation of a
generalized microwave backscattering model of the land surface. It combines the
bare soil and vegetation contributions and is valid over the vegetation period and
for a wide range of imaging geometries, including all swathes of the ENVISAT ASAR
sensor.

A new bare soil backscattering model was proposed in this context. Based on the
results of a theoretical electromagnetic scattering model, it has been shown, that
the bare soil backscatter can be predicted, using a simple two parameter approach,
which only needs information about the dielectric and roughness properties of the
surface. It has been useful to overcome the drawback of an ambiguous surface
roughness characterization of classical theoretical bare soil backscattering models. A
new surface roughness parameter was developed for this purpose which integrates
the surface roughness components affecting the backscattering coefficient into a
single variable. It has been shown on a theoretical basis, that it can be directly
related to the intrinsic fractal properties of the surface which enables its derivation
from field measurements.

Starting from that point, a model for the spatially distributed derivation of surface
roughness was proposed and successfully applied. It makes use of the different
scattering behaviours of natural surfaces under different imaging geometries. The
roughness inversion model was validated for a reference target of constant
roughness. It was then used, to derive a spatially distributed surface roughness
map for the testsite.

The accuracy of the bare soil backscattering model was assessed, using field
measurements of surface soil moisture and the automatically derived roughness
information. The RMSE was 1.6 and 1.7 dB for HH and VV polarisation respectively.

The residuals between the bare soil backscattering coefficient and measured SAR
observations were analysed to assess the vegetation influences on the signal by
using available ground truth datasets. It has been found, that the intrinsic scattering
mechanisms of cereals (wheat, triticale) and maize are different. Therefore two
different vegetation backscattering models were developed. For stands with small,
but dense plants (e.g. a wheat field), the effect of the canopy on the signal can be
parameterised by a random volume with a predefined height. It has been shown,
that the vegetation influence on the signal can be directly derived from

172



Summary and Outlook

multipolarised image datasets, using the ratio of the two copolarisations, which can
be related to plant biophysical variables as the dry biomass or water content. Two
scenarios were compared in this context. For once, the image data was directly
used to parameterise the vegetation influence on the signal. The second approach
used plant biophysical variables for the compensation of this effect. Best results
were obtained, using the information from the image data itself.

The different shape of maize plants results in a different scattering mechanism. A
dihedral corner reflection at the stalk of the maize plants was identified as the major
factor influencing the vegetation contribution to the signal. The angular behaviour
of this scattering mechanism could be parameterised by means of a theoretical
radiative transfer model. The amount of bare soil and stalk ground interaction
contributions to the signal can be described as a function of the vegetation height.
The maize scattering model was calibrated using available ground measurements.

The necessary backscattering model input parameters, as e.g. vegetation height,
can be provided by a process oriented land surface model, which simulates plant
biophysical variables as well as the soil moisture conditions from given
environmental and meteorological data. To be comparable with spatial remote
sensing datasets, time series of spatially distributed land surface variables are
needed in this context. The used land surface model PROMET-V was suited for this
undertaking.

An interface was implemented in order to couple the land surface process and the
combined backscattering model. The coupled land surface backscattering model was
used to predict the signal return of the land surface, based on the simulation results
of the plant and soil conditions.

The promising results, obtained at the point scale with this coupled approach,
enabled the transfer of the approach to a spatially distributed simulation of SAR
images. The comparison of these synthetic backscattering images with ENVISAT
ASAR observations revealed an overall good performance of the modelling approach
for the different ENVISAT ASAR swathes. Nevertheless, deviations exist between the
measured and observed backscattering coefficients. A detailed field based analysis
indicated, that a major source of uncertainty results from imprecise soil moisture
predictions by the land surface model, which is mainly due to inadequate soil
parameterisations.

The interface between the land surface model and microwave backscattering model
allows for an easy iterative inversion of surface parameters from SAR imagery. A
simple approach for the derivations of the soil moisture of the upper soil layer has
been proposed.
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It turned out, that the use of initial soil moisture values, provided by the land
surface model, lead to more consistent inversion results, than a simpler approach,
which does not make use of a priori information. Problems can occur, if the initial
soil moisture value is significantly different from the expected one. Then the a priori
approach could fail, due to a restricted possible parameter range.

9.1 Outlook

The correct parameterisation of the soil hydrological properties is crucial in this
context. Accurate and detailed information about the soil texture and conductivity is
normally not available for larger areas. Therefore large soil moisture modelling
uncertainties are introduced by inaccurate soil texture maps. At present no better
maps are available. A correct parameterisation of the soil texture, especially for the
uppermost centimetres, is crucial to obtain reliable backscattering results. Thus,
time series of the residuals between the modelled and measured backscattering
values contain valuable information about the hydrological properties of the soils. A
multitemporal analysis of these backscattering residuals would enable the derivation
of spatially distributed soil property maps by means of SAR imagery. The coupled
modelling approach could therefore help to characterize the spatio-temporal
dynamics of the soil hydrological processes. By adapting the land surface model
parameters within a predefined validity range, they could be adjusted until best
agreement between modelled and simulated values is achieved.

It is remarkable, that subsurface soil conditions seem to influence the image data.
Figure 9.1 shows a times series of SAR images around Gut Huell. One field (#101)
is situated at flat terrain, while the other two fields (#105, 389) are situated at the
glacial moraine (see 5.1). It can be seen that the marked fields have similar
backscattering coefficients on the 27" of March. The images of the 2" and the 11"
of April were acquired during and shortly after a precipitation event. The image,
acquired on April 2", during the raining event, shows very similar backscattering
coefficients of the fields. This changes on the image acquired after the precipitation
event (11™ April). The fields, which have a similar vegetation cover on all dates,
now show different backscattering behaviours. The fields on the moraine (#105,
389) appear brighter than the other one. From field measurements it is known, that
the soils on the moraine are influenced by damming wetness, while the soils on the
flat glacial spillway dry out faster. Thus, the damming of the underlying soil layer
has a significant influence on the soil moisture of the uppermost few centimetres,
which can be seen in the image data. This might be used to enhance the soil
parameterisation for soil layers below the penetration depth of the microwaves, by
applying an adequate soil process model.
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Figure 9.1: Temporal development of the SAR backscattering coefficient
during two precipitation events

The suggested modelling approach and developed procedures therefore provide a
suitable tool for a process model supported analysis of remote sensing data. Much
information is contained within the image data and especially in the residuals
between measured and modelled backscattering values. The spatial variability of the
plant conditions, as e.g. plant density, variable heights and biomass, has not yet
been incorporated in the analysis. The land surface model uses fixed plant densities
for the simulations. These can be inverted from optical remote sensing data, using a
similar coupled approach with a radiative transfer model for the optical domain
(e.g. BACH, VERHOEF and SCHNEIDER, 2000; BACH and MAUSER, 2003). By synergistic
use of optical and microwave remote sensing data, the backscattering model
parameterisation might still be improved.
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The developed models enable the derivation of surface roughness and surface
moisture information from the image data. By means of multitemporal analysis, they
might be used to enhance the spatially distributed description of static soil
parameters. Informations about the vegetation biomass and water content can be
derived for cereals by means of the copol ratio.

The direct linkage to a land surface process model enables the assimilation of the
remote sensing information into that model and helps to improve the description of
the highly dynamic nature of the processes at the land surface. Due to the validity
of the developed models for a wide range of incidence angles, they allow for a
systematic and frequent monitoring. This might help to improve our knowledge and
understanding, as well as our management capabilities of the limited natural
resources.

The presented thesis is therefore a contribution towards a sophisticated operational
use of remote sensing data. The author hopes, that this work will have a meaningful
contribution to this topic.
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A.1: The radar equation

Derivation of the Radar Equation

In the following the formula for the radar equation is derived. It is mainly based on
the expositions of LEwIS and HENDERSON (1998) and KLAUSING and HoLPpP (2000).

The power density in a distance Ry from an isotropical point energy source is
proportional to the transmitted energy Py and the surface of the surrounding
sphere. It is given by

2

Power Density = h (A.1)
47R;

However, a side looking SAR system has a directional antenna characteristic with a
given antenna gain pattern for transmission Gr. The power density at a target is
then given by

2
T

. P.G
Power Density at Target = ——L (A.2)
47R

The energy intercepted by the target is proportional to its receiving area As. A part
of the energy is absorbed and the rest is scattered. A fraction of the scattered
power has a directional component towards the receiver of the imaging system.
Usually all these target characteristics are combined into a single parameter called
the radar cross section (RCS) sigma (o). The power reradiated towards the receiver
is then

2

. P.G
Power — Receiver = —1——_ o (A.3)
47R;

Only a part of the scattered power is reaching the sensor. It is also dependant on
the distance R towards the sensor. The power at the receiver is then given as

Power at Receiver = PT—GTZU L 5 (A.4)
4rR; | 472R;

The total received power Pr depends on the size of the antenna array Ag.
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Total received Power = PTGT2 o LZ A, (A.5)
47R? | 47R?

Equation (A.5) is the radar equation. Assuming a monostatic radar with the same
antenna size and transmit and receive characteristics as well as the same range
distance, it can be simplified. It is introduced that

G

AR:AT:A:E’ (AG)
Rr=Rr=R
GT=GR=G
This gives
PG4
- G “

In order to maintain independence of the signal and target, the RCS is redefined as
radar scattering per unit area (c°). The total cross section of an area A becomes

o=0c’A (A.8)
So the final and commonly used form of the radar equation is obtained as

P.G*2?
P =—"1"" (5°A A.9
R (471)3R4( ) (A.9)
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A.2 ENVISAT ASAR

ENVISAT ASAR offers different programmable swathes. Each swath has different
imaging properties. They differ in the incidence angle range and therefore also in
the spatial resolution and swath width. The following table summarizes the swath
properties:

Table A.1: ASAR image swathes (ESA, 2002)

ASAR SWATHES SWATH WIDTH [KM] NEAR RANGE FAR RANGE
INCIDENCE ANGLE INCIDENCE ANGLE
I1S1 108.4 - 109.0 141 -14.4 22.2-22.3
1S2 107.1 - 107.7 18.4 - 18.7 26.1-26.2
1S3 83.9 -84.3 25.6-25.9 31.1-31.3
1S4 90.1 - 90.6 30.6 - 30.9 36.1-36.2
1S5 65.7 - 66.0 35.5-35.8 39.2-39.4
1S6 72.3-72.7 38.8-39.1 42.6 - 42.8
I1S7 57.8 - 58.0 42.2 -42.6 45.1-45.3
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B.1 SAR Geocoding

Table B.1: Positioning accuracy for an ENVISAT ASAR AP image
(30m resolution)
GCP # IMAGE MAP AEAST [M] ANORTH [M]
EASTING [M] NORTHING [M] EASTING [M] NORTHING [M]

1 657661.24 5326365.64 657679.83 5326397.85 18.59 32.21
2 658649.53 5327119.67 658611.23 5327129.67 -38.30 10.00
3 656585.11 5323635.05 656596.36 5323641.67 11.25 6.63
4 656775.45 5319857.60 656767.44 5319868.56 -8.01 10.96
5 656768.13 5318115.29 656748.43 5318081.79 -19.70 -33.50
6 656804.73 5317185.57 656814.96 5317178.90 10.23 -6.67
7 657580.72 5314264.64 657594.29 5314289.66 13.58 25.03
8 659242.04 5312490.67 659235.23 5312495.10 -6.80 4.43
9 660727.67 5318718.92 660717.57 5318735.28 -10.10 16.36
10 659927.71 5319244.61 659912.65 5319237.37 -15.07 -7.24
11 662761.85 5320535.97 662733.88 5320544.38 -27.98 8.41
12 663081.84 5321907.33 663060.63 5321915.15 -21.21 7.82
13 670624.31 5306422.41 670599.85 5306438.22 -24.45 15.81
14 672327.08 5303388.28 672297.37 5303393.84 -29.70 5.56
15 671687.11 5302188.34 671675.75 5302166.52 -11.36 -21.82
16 674109.84 5299319.92 674114.44 5299337.32 4.60 17.40
17 671104.28 5309456.54 671093.97 5309466.66 -10.31 10.12
Mean -9.69 5.97
STDV 16.64 16.05
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Table C.1: Land cover code table 2003 402 pasture
CODE GROUP LAND USE CLASS 403 pasture
100 undifferentiated 407 Golf course
101 Winter wheat 500 undifferentiated
102 Summer wheat 501 deciduous
103 rye 502 coniferous
forest
104 Winter barley 503 mixed
105 Summer barley 505 Logging area
106 oat 601 Bog with trees
107 triticale 701 water
108 Arable land Corn maize 800 Gravel pit
109 Fodder maize 900 Sealed area (undiff.)
201 beans 910 Residental (undiff)
202 rape 911 Compact residental area
206 potatoes .
912 Residental area
others
300 Not cultivated .
913 building
301 Fallow land .
921 highway
302 Legumes .
922 Main street
303 Sun flowers
923 street
320 other horticulture
924 path
321 horticulture flowers
1000 unclassified
322 strawberries
400 grassland undifferentiated
401 grassland
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D.1 Empirical soil model calibration

Z-parameter frequency distributions

The following diagrams show the frequency distributions of the Z-values for different
acquisition dates. The Z-parameter is given by

As can be seen, the threshold of 0.3 is applicable to all image datasets for the
separation of smooth and rough surfaces. It can be seen, that the separability of the
two classes reduces with steeper incidence angle (DOY 114), which can be
interpretated as lower roughness sensitivity of the signal.

Histogram of Z-values for DOY 101, INC=39° Histogram of Z-values for DOY 114, INC=29°
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RMS height versus optimal autocorrelation length

The results of the fit between the RMS height and optimal autocorrelation length is

shown in the following Figures. The model parameters for each data are given in

Table D.1. Clearly can be seen, the different behaviour of the relationship as

function of incidence angle.

Table D.1:
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D.2 Bare soil backscattering model

A-parameter incidence angle normalization

The following tables list the estimated regression parameters for the A-parameter

incidence angle normalization. The used model has the following form:

Table D.2:

A(H) —104+ log(A(0))+c5 Iog(A(O)z)

Regression coefficients for A-parameter normalization: VV

polarization

INC RMSE Ci Cc2 C3 R?

5 0.03410 4.91337E-03 9.08956E-01 -6.42901E-02 1.00
7.5 0.05180 2.13543E-03 8.29693E-01 -1.11958E-01 1.00
10 0.06070 -4.07657E-03 7.58254E-01 -1.49072E-01 0.99
125 0.06400 -1.19141E-02 6.92473E-01 -1.78437E-01 0.99
15 0.06350 -2.02854E-02 6.31102E-01 -2.01826E-01 0.99
175 0.06060 -2.85634E-02 5.73231E-01 -2.20259E-01 0.99
20 0.05590 -3.65675E-02 5.18056E-01 -2.34378E-01 0.99
22.5 0.05030 -4.39773E-02 4.65269E-01 -2.44867E-01 0.99
25 0.04450 -5.06332E-02 4.14243E-01 -2.52014E-01 0.99
27.5 0.03930 -5.65005E-02 3.64779E-01 -2.56137E-01 0.99
30 0.03580 -6.16389E-02 3.16617E-01 -2.57447E-01 0.99
325 0.03480 -6.59133E-02 2.69363E-01 -2.56070E-01 0.99
35 0.03680 -6.94096E-02 2.22964E-01 -2.52186E-01 0.99
375 0.04110 -7.21300E-02 1.77332E-01 -2.45974E-01 0.98
40 0.04700 -7.40510E-02 1.32234E-01 -2.37453E-01 0.97
425 0.05330 -7.51741E-02 8.75872E-02 -2.26888E-01 0.95
45 0.05960 -7.53641E-02 4.34222E-02 -2.14537E-01 0.93
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Table D.3:

Regression coefficients for A-parameter normalization: HH

polarization

INC RMSE c1 c2 Cc3 R?

5 0.03460  2.16644E-03  9.06563E-01  -6.47393E-02 1.00
7.5 0.05380  -4.17534E-03  8.24658E-01  -1.13008E-01 0.99
10 0.06480 -1.45378E-02  7.50173E-01  -1.50890E-01 0.99

12.5 0.07110 -2.67871E-02  6.81080E-01  -1.81424E-01 0.99
15 0.07440  -3.99824E-02  6.15962E-01  -2.06317E-01 0.98
17.5 0.07590  -5.36186E-02  5.53830E-01  -2.26639E-01 0.98
20 0.07620  -6.71747E-02  4.94039E-01  -2.43251E-01 0.98
22.5 0.07610  -8.06957E-02  4.35880E-01  -2.56645E-01 0.97
25 0.07590  -9.41513E-02  3.79017E-01  -2.67226E-01 0.97
27.5 0.07610  -1.07586E-01  3.23065E-01  -2.75293E-01 0.96
30 0.07660  -1.21134E-01  2.67785E-01  -2.81085E-01 0.95
32.5 0.07800  -1.35048E-01  2.12837E-01  -2.84744E-01 0.95
35 0.08010  -1.49531E-01  1.58236E-01  -2.86436E-01 0.94
37.5 0.08290  -1.64790E-01  1.03732E-01  -2.86221E-01 0.93
40 0.08640  -1.81224E-01  4.93340E-02  -2.84190E-01 0.92
42.5 0.09060  -1.99145E-01  -4.96904E-03  -2.80489E-01 0.92
45 0.09530  -2.18842E-01  -5.91810E-02  -2.75225E-01 0.91
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Appendix D: Bare soil model

Bare soil backscatter simulation results

The following table lists the bare soil backscattering coefficients of the test fields, as
measured by the sensor and modelled by the SSM model.

Table D.4: Bare soil simulation results, compared to measured data
FIELD DOY INCIDENCE MEASURED [dB] SIMULATED [dB] A [dB]
ANGLE

W HH wW HH VW  HH
Triticale 86 44.3 -15.5 -15.7 -12.8 -15.5 26 02
Wheat 86 44.3 -14.1 -14.3 -12.6 -15.0 15 07
Wheat 92 18.9 5.1 5.7 -3.2 -3.6 1.9 20
Triticale 92 18.9 5.2 -5.3 2.3 -2.8 29 24
Triticale 101 39.2 -11.4 -12.2 -11.1 -13.3 03 11
Wheat 101 39.2 -11.3 -11.8 -11.1 -13.0 02 12
Wheat 114 29.9 -8.0 -8.0 -8.5 -9.6 06 15
Triticale 114 29.9 7.3 7.5 -8.9 -10.0 17 25
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Appendix E: Vegetation model

Appendix E: Vegetation model

E.1 Image data and Ground measurements

vy wv
End of PROM ET-V simulations

AAd Yv vy VYVY vvw

Jan Feb Mrz Apr Mai Jun Jul Aug Sep Okt Nov

| LI I LI A N N B B S A B B B B A B B S B B B B B B B m A B B By B A B B B B B B S B B B B |

0O 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
DOY / YEAR 2003

Field campaign:
Cereals [ Maize [ soil moisture ENVISAT ASAR ¥

Ground measurements

The following diagrams give an overview about the measured plant and soil
parameters of the field campaign for each test field. The land surface model results
are included into the plots, until the availability of meteorological input data.
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Appendix E: Vegetation model

Triticale Stiirzer (Field #1/2003)
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Appendix E: Vegetation model

Wheat Stiirzer (Field #2/2003)

soil moisture: Wheat 2003

Vegetation height: Wheat 2003 50 e 120
120 LA LSS LA AR LS AR LR RAARS AR RAAAS AR AR AR LSS RN AR
—— PROMET-V SM
Bl oo E| 45 F > f 110
110 o g::;‘ b O meas. SM with STDV
100 £| — pROMET.V 0 E 40 F EEE precipitation Huell 4 100
ety |9
— 90F 4. 1 35 F 390
1 A = —_
§ wf Ty Ewp g
-
= ol . 18 I 3
5 S5t fif 70 2
Q 60F E 5 k]
< 22¢ Jeo =
S 5f 3 RZ] =
8 g 15 F {50 &
8 40f 1 = [
9 5 10F J40 2
2 30 e & a
> 5E 330
20 E
ok E 0F 420
g bl b L0 b L L f2
bebnbinbiedebiebindindendieediededendie b d il PR IVOROOORY OOR VOO NOOPIO 0 A P LU T OO
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
DOY 2003 DOY 2003
LAI: Wheat 2003 Biomass: Wheat 2003
6.0 T T T T T T T T, 5000 LR R SN A S A S AR SRS AR AR AARA LARSS AR RS AARAS
3 4500 F Dry biomass: PROMET-V - 3
N measured
E| 4000 f| — — Wet biomass: PROMET-V ]
a5k 1 o measured o o
3500 F ]
40F E
-
iy E ]
T 35F % 1 £ 3000
E ~
X 30F ] D 2500 F q
E [%3
= 25F 3 g 2000 | E|
<
4 20F q o E ]
& 1500
15F q
1000 F ]
10F 1
500 F 1
05 1
00F ] of ]
| FUUPY TR 1UUR U FUVIN FUVIN FUUOY IR PV PUVYY DUUUR TR PO FUY POV POV bdverduedvendieidiendiediendiideendiidoenbinedoend i ol
50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
DOY 2003 DOY 2003

A-13



Appendix E: Vegetation model

Maize Tiefenbrunn (Field #5/2003)
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Appendix E: Vegetation model

Vegetation model input datasets

The following tables summarize the datasets used for the calibration and validation
of the vegetation backscattering model. The field specific measured and simulated
backscattering coefficients and the additional ground truth informations are given.
The datasets end with harvesting, due to the then changing surface roughness
conditions.

The necessary surface roughness parameters for the testfields were derived, using
the roughness inversion algorithm in Chapter 6.

The following roughness parameters Aq were used for the simulations:
Tritcale: 46.5
Wheat: 40.6

Maize Tiefenbrunn: 36.0

All backscattering coefficients are given in decibels.

Table E.1 Vegetation model parameters and results: Maize

Maize Tiefenbrunn (#4/2003)

SAR Soil Vegetation MOd?I results
Bare soil Total
Date DOY . Dry
INC W HH cPatio| sM  DC | heightiem] “EBO mio [ W HH w hH
[g/m?]
[g/m?]
07.0303 66| 39.0 -10.3 -10.4 1.0[no SM
100303 69| 44.4 -10.7 -11.1 0.9]no SM
270303 86| 444 113 -113 1.0[no sM
020403 92186 60 -65 0.9{no sm
11,0403 101)39.0 -122 -12.1 1.0[no sM
240403 114300 59 58 1.0[no SM
010503 121|444 110 111 1.0[no sM
07.0503 127329 -84 85 1.0[no sM
05.06.03 156|445 -102 -10.1 1.0no sm
110603 162330 88 9.0 09fnosm - : . A
17.0603 168[329 91 -88 11| 264 141 833 9190 1016 -89 -100 - -86
200603 171390 93 88 11| 170 77 980 15000 2100|-131 -140 - 9.7
300603 181225 86 -84 10[nosm - 1500 27000 4000| - - .
140803 226 445 -11.9 -10.4 14| 104 44 1930 37780 13740| 174 -172 - -103
170803 229 - - - . 110 47 2000 34000 13000| - - - -
200803 232|186 -80 7.7 11l 127 54 1810 31860 12550| 6.3 -64 - 7.4
230803 235261 94 -89 11l 10 a7 1800 25000 12000|-10.7 -106 - -84
260803 238|187 85 7.7 12| 100 42 1800 25000 11900| 7.7 77 - 77
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Appendix E:

Vegetation model

Table E.2 Vegetation model parameters and results: Cereals
TRITICALE (#1/2003)
. . Model results
SAR Soil Vegetation ;
Bare soil Total
Date DOY : ;
INC W HH  CPratio | SM  DC | heightlem;  \VetBio- - DyBio ]y e
[g/m?] [g/m?]
07.03.03 66| 392 71 81 0.8[no sm - - - - - - -
10.03.03 69| 446 -105 -11.8 0.7|no sm - - - - - - -
27.03.03 86| 443 -155 -157 09| 261 121 78 76.6 253| -128 -155 -151 -153
02.04.03 92| 189 52 53 10| 381 211 96 165.1 607 23 28 32 32
110403 101 392 -114 -122 08| 323 164 100 128.0 31| <111 133 -11.3 -121
240403 114] 209 73 75 09| 274 130 170 337.0 803 -89 -100 78 81
010503  121] 442 -142 -128 14 227 100 320 1172.0 2400| -136 -159 -145 -13.1
070503  127] 328 -142 -128 1.4[no SM - 440 11160 2360| - - - -
050603  156] 430 -11.6 -11.9 0.9]no sm - 1100 4129.0 10850 - - - -
110603  162| 329 -107 -88 15| 247 112 108.0 4643.0 15110 -103 -114 95 -76
170603  168| 332 -110 87 17| 255 117 100.0 5000.0 19000 -101 -112 99 -76
200603  171] 392 -107 88 16| 204 87 104.0 5000.0 19000| -133 -147 -129 -109
300603 181 228 93 78 1.4[no SM - 105.0 - - - - - -
HARVESTING
I
WHEAT (#2/2003)
SAR Soil Vegetation Bare gﬁld el result:mal
Date DOY : :
INO W HH CPratio | SM  DC | height[cm] WetBio.  DryBio. | v yy W h
[g/m?] [g/m?]
07.03.03 66 392 72 76 09 nosm - - - - - - -
10.03.03 69| 446 82 -95 07 nosm - - - - - - -
27.03.03 86| 443 -141 -143 10| 255 117 78 484 143| -126 -150 -143 -145
02.04.03 92| 189 51 57 09| 281 135 6.0 93.7 28] 32 36 53 59
110403  101] 392 -11.3 -118 09| 207 146 7.3 154.4 404] <111 -130 127 -132
240403 114] 299 80 80 10| 279 133 15.6 538.4 1104 85 96 78 7.9
010503  121] 442 -137 -128 12 221 97 21.0 814.9 1646 -133 -154 -140 -131
070503  127] 327 -142 -131 13 nosm - 310 1257.0 2539 - - - -
050603  156] 443 -140 -124 14] 184 77 780 3867.0 7850| -144 -159 -139 -12.3
110603  162| 328 -123 80 271 241 109 91.0 4710.0 12717 -100 110 -121 7.9
170603  168| 332 -129 -84 28] 241 109 93.0 5000.0 12500 -100 -11.0 -123 -7.9
200603  171] 393 -128 -102 18] 219 96 95.0 5000.0 12500| -125 -139 -130 -103
300603 181 228 -102 82 16| nosm - 94.0 4800.0 17000[ - - - -

HARVESTING
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Appendix E: Vegetation model

E.2 Vegetation model calibration

Relating plant biophysical parameters to image parameters

The following Figures show the estimated relationships between the plant

biophysical variables and the normalized copol ratio.

Relationship water content and CPN Relationship between biomass and CPN

14 14
A triticale A triticale
12 ~_ © O wheat 1 12r O wheat
~ Regressions Regressions
Lor o A\Q\@ — — wheat 1 Lor — — wheat 1
I ——— titicale ———- titicale
08 F A \Qa\ combined |- 08 combined |-
\\\\\ (e}
= S0~ =
£ o6f 0 £ o6r
o SO o
T o4l SN @ D o4t o
o - NN o -
NN RN
02f SNoRo N 02F e,
S QN AN i\
00} o J 00k SN
~ N
02 Ay 1 -0.2 S
04 . . . . . 04 . . . . . .
10 15 2.0 25 30 35 4.0 05 10 15 20 25 3.0 35 4.0
log(absolute water content [g/m?]) log(dry biomass [g/m?])
Table E.3: Coefficients determining the relationship between CPN and plant

biophysical variables using Eq. (7.5)

MODEL LINEAR REGRESSION® R2
a b
Dry biomass wheat -0.4344 1.6048 0.88
triticale -0.5125 1.6758 0.86
combined -0.4722 1.6397 0.84
Water content wheat -0.4301 1.7997 0.88
triticale -0.5511 1.9842 0.91
combined -0.4780 1.8622 0.84

*Linear regression of the form log10(CPN)=a log10(x)-+b,
where x is the plant water content [g/m?2] or the dry biomass [g/mZ2]
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Appendix F: Coupled modelling

Appendix F: Coupled modelling

F.1 Spatially distributed modelling results

Spatially distributed predictions of the SAR backscattering coefficients are the result
of the coupled modelling approach. Time series of the backscattering coefficient can
be simulated based on bio- and geophysical input variables. The following maps
show the predicted backscattering coefficients, compared to the ENVISAT ASAR
image datasets.

For better comparability, the ASAR images were masked. Only the relevant landuse
classes, supported by the backscattering model (wheat, triticale and maize) are
shown. Simulated data is only available for those pixels with a vegetation height
greater than zero. Due to the later development of the maize, the backscatter for
maize fields is not simulated for the images in spring.
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Coupled modelling

Appendix F:

An overview of the location and relevant land use classes (greyed) is given in the

following figure:
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Appendix F: Coupled modelling

Histograms of the backscatter residuals

The following histograms show the deviations between measured and simulated
backscattering coefficients for the land use classes wheat, triticale and maize for the

entire test area. The backscatter residues were estimated on a pixel by pixel basis.
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Appendix F: Coupled modelling

F.2 Soil moisture inversion

Inverted soil moisture maps

The following maps show the spatially distributed inversion results of the soil
moisture of the upper soil layer. The maps were derived, using the simple and a
priori inversion strategies.

The inversion results are only available for fields with the supported land uses,
namely wheat, triticale and maize, where a vegetation height was existing.
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Appendix F: Coupled modelling

Soil moisture frequency distributions

The following diagrams show the frequency distributions of the soil moisture values
for the test fields. Different soil moisture values are shown as follows:

- white: inverted using the simple inversion approach

- light grey: inverted with a priori information

- dark grey: initial soil moisture values, provided by the landsurface model

The /n situ soil moisture measurement results for 2 cm sampling depth and vertical
probe are also given. The space between the corresponding lines is equal to twice
the standard deviation estimated from the ground measurements. It shows the
inner field variance of the measured soil moisture values.
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Field based soil moisture inversion results

The following table shows the in situ measured, field based averaged, soil moisture
values, compared to the inverted soil moisture values, using the two inversion
approaches. The values for the inversion results are field based median values, as
discussed in the appropriate section.

DATE FIELD IN SITU MEASUREMENTS INVERSION RESULTS
TDR VERTICAL TDR 2cMm SIMPLE A PRIORI
02.04.03 Triticale 38.1 27.7 25.0 23.0
11.04.03 Triticale 32.3 19.1 25.0 20.0
24.04.03 Triticale 27.4 13.3 25.0 18.0
01.05.03 Triticale 22.7 19.0 19.0 15.0
07.05.03 Triticale - - 8.0 15.0
05.06.03 Triticale - - 17.0 18.0
11.06.03 Triticale 24.7 13.9 17.0 18.0
17.06.03 Triticale 25.5 215 17.0 20.0
20.06.03" Triticale 20.4 14.1 38.5 30.0
02.04.03 Wheat 28.1 22.1 21.0 22.0
11.04.03 Wheat 29.7 22.0 32.0 20.0
24.04.03 Wheat 27.9 15.7 21.0 15.0
01.05.03 Wheat 22.1 16.9 17.0 15.0
07.05.03 Wheat - - 8.0 11.0
05.06.03 Wheat 18.4 15.0 13.0 15.0
11.06.03 Wheat 24.1 21.9 21.0 18.0
17.06.03 Wheat 24.1 22.9 17.0 16.5
20.06.03 Wheat 21.9 15.3 21.0 18.0
17.06.03 Maize 26.4 18.3 10.0 17.0
20.06.03 Maize 17.0 13.1 15.0 20.0

! not used in final analysis, due to strong soil moisture overestimation by PROMET-V
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