1,279 research outputs found

    Mapping a European spruce bark beetle outbreak using sentinel-2 remote sensing data

    Get PDF
    Insect outbreaks affect forests, causing the deaths of trees and high economic loss. In this study, we explored the detection of European spruce bark beetle (Ips typographus, L.) outbreaks at the individual tree crown level using multispectral satellite images. Moreover, we explored the possibility of tracking the progression of the outbreak over time using multitemporal data. Sentinel-2 data acquired during the summer of 2020 over a bark beetle–infested area in the Italian Alps were used for the mapping and tracking over time, while airborne lidar data were used to automatically detect the individual tree crowns and to classify tree species. Mapping and tracking of the outbreak were carried out using a support vector machine classifier with input vegetation indices extracted from the multispectral data. The results showed that it was possible to detect two stages of the outbreak (i.e., early, and late) with an overall accuracy of 83.4%. Moreover, we showed how it is technically possible to track the evolution of the outbreak in an almost bi-weekly period at the level of the individual tree crowns. The outcomes of this paper are useful from both a management and ecological perspective: it allows forest managers to map a bark beetle outbreak at different stages with a high spatial accuracy, and the maps describing the evolution of the outbreak could be used in further studies related to the behavior of bark beetle

    Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass

    Get PDF
    This Special Issue (SI), entitled "Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass”, resulted from 13 peer-reviewed papers dedicated to Forestry and Biomass mapping, characterization and accounting. The papers' authors presented improvements in Remote Sensing processing techniques on satellite images, drone-acquired images and LiDAR images, both aerial and terrestrial. Regarding the images’ classification models, all authors presented supervised methods, such as Random Forest, complemented by GIS routines and biophysical variables measured on the field, which were properly georeferenced. The achieved results enable the statement that remote imagery could be successfully used as a data source for regression analysis and formulation and, in this way, used in forestry actions such as canopy structure analysis and mapping, or to estimate biomass. This collection of papers, presented in the form of a book, brings together 13 articles covering various forest issues and issues in forest biomass calculation, constituting an important work manual for those who use mixed GIS and RS techniques

    Multi-Decadal Changes in Mangrove Extent, Age and Species in the Red River Estuaries of Viet Nam

    Get PDF
    This research investigated the performance of four different machine learning supervised image classifiers: artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machine (SVM) using SPOT-7 and Sentinel-1 images to classify mangrove age and species in 2019 in a Red River estuary, typical of others found in northern Viet Nam. The four classifiers were chosen because they are considered to have high accuracy, however, their use in mangrove age and species classifications has thus far been limited. A time-series of Landsat images from 1975 to 2019 was used to map mangrove extent changes using the unsupervised classification method of iterative self-organizing data analysis technique (ISODATA) and a comparison with accuracy of K-means classification, which found that mangrove extent has increased, despite a fall in the 1980s, indicating the success of mangrove plantation and forest protection efforts by local people in the study area. To evaluate the supervised image classifiers, 183 in situ training plots were assessed, 70% of them were used to train the supervised algorithms, with 30% of them employed to validate the results. In order to improve mangrove species separations, Gram–Schmidt and principal component analysis image fusion techniques were applied to generate better quality images. All supervised and unsupervised (2019) results of mangrove age, species, and extent were mapped and accuracy was evaluated. Confusion matrices were calculated showing that the classified layers agreed with the ground-truth data where most producer and user accuracies were greater than 80%. The overall accuracy and Kappa coefficients (around 0.9) indicated that the image classifications were very good. The test showed that SVM was the most accurate, followed by DT, ANN, and RF in this case study. The changes in mangrove extent identified in this study and the methods tested for using remotely sensed data will be valuable to monitoring and evaluation assessments of mangrove plantation projects

    Spruce Budworm Defoliation Detection and Host Species Mapping Using Sentinel Satellite Imagery

    Get PDF
    Insects are one of the most significant agents causing landscape level disturbances in North American forests, and among them, spruce budworm (Choristoneura fumiferana; SBW) is the most destructive forest pest of northeastern Canada and U.S. The SBW occurrence, its damage extent and severity are highly dependent on characteristics of the forests and availability of the host species (spruce (Picea spp.) and balsam fir (Abies balsamea (L.) Mill.)). This study developed novel methodologies to detect and classify SBW defoliation and to map SBW host species using remote sensing techniques. Optical multispectral remote sensing satellite imagery presents a valuable data source for regional-scale mapping of forest composition as well as defoliation severity and can be effectively used for monitoring insect outbreaks. This study developed two separate models to map both the distribution and abundance of SBW host species as well as the severity of defoliation at 20 m spatial resolution utilizing Sentinel imagery. The two models were integrated to effectively monitor the SBW defoliation. For the detection and severity classification of SBW defoliation, we used Sentinel-2 imagery and site variables (elevation, aspect, and slope) and compared the capabilities of various spectral vegetation indices (SVIs), in particular red-edge SVIs, to detect and classify SBW defoliation using Support Vector Machine (SVM) and Random Forest (RF) models. The study was carried out in the Northern part of New Brunswick, Canada. Results showed the superiority of RF in model building for defoliation detection and classification into three classes (non-defoliated, light and moderate) with overall errors of 17% and 32%, respectively. The most important Sentinel-2 based variables for the best model were Inverted Red Edge Chlorophyll Index (IRECI), Enhanced Vegetation Index 7 (EVI7), Normalized Difference Infrared Index 11 (NDII11), Modified Chlorophyll Absorption in Reflectance Index (MCARI), and Modified Simple Ratio (MSR). Elevation was the only site variable significant in the final model. The study concluded that red-edge SVIs were more effective variables for light defoliation detection compared to the traditional SVIs such as Normalized Difference Vegetation Index (NDVI) and EVI8. These findings can help improve the current remote-sensing based SBW defoliation detection techniques. For SBW host species classification, Sentinel-1 synthetic aperture radar (SAR) and multi-spectral Sentinel-2 imagery were used in combination with several site variables (elevation, slope, aspect, topographic wetness index, soil types, projected climate site index for year 2030, and improved Biomass Growth Index (iBGI)). The study was carried out in the same location where the first study was conducted but extended to a larger area (northern parts of New Brunswick, Canada) using a total of 191 variables. We found Sentinel-2 time series in combination with single spectral bands and spectral vegetation indices (SVIs) promising to map SBW host species using a RF algorithm, with an overall accuracy (OA) of 71.34% and kappa coefficient (K) of 0.64. The use of Sentinel-1 SAR data alone with elevation showed a decent result (OA: 57.5 and K: 0.47). Furthermore, the combination of Sentinel-1, Sentinel-2 and elevation provided us with an OA of 72.3% and K of 0.65. The most important Sentinel-2 variables for the best model were from the images of late spring and fall seasons including three single spectral bands and seven SVIs mostly from near-infrared, red-edge and shortwave-infrared regions. Prediction of spatially explicit SBW host species data is essential for identifying vulnerable forests, tracking the SBW defoliation and minimizing the forest loss as well as serving as a vital input for modelling and managing insect impacts at the landscape and regional scales

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion

    Operationalization of Remote Sensing Solutions for Sustainable Forest Management

    Get PDF
    The great potential of remote sensing technologies for operational use in sustainable forest management is addressed in this book, which is the reprint of papers published in the Remote Sensing Special Issue “Operationalization of Remote Sensing Solutions for Sustainable Forest Management”. The studies come from three continents and cover multiple remote sensing systems (including terrestrial mobile laser scanning, unmanned aerial vehicles, airborne laser scanning, and satellite data acquisition) and a diversity of data processing algorithms, with a focus on machine learning approaches. The focus of the studies ranges from identification and characterization of individual trees to deriving national- or even continental-level forest attributes and maps. There are studies carefully describing exercises on the case study level, and there are also studies introducing new methodologies for transdisciplinary remote sensing applications. Even though most of the authors look forward to continuing their research, nearly all studies introduced are ready for operational use or have already been implemented in practical forestry

    Exploring the Use of Sentinel-2 Data to Monitor Heterogeneous Effects of Contextual Drought and Heatwaves on Mediterranean Forests

    Get PDF
    The use of satellite data to detect forest areas impacted by extreme events, such as droughts, heatwaves, or fires is largely documented, however, the use of these data to identify the heterogeneity of the forests’ response to determine fine scale spatially irregular damage is less explored. This paper evaluates the health status of forests in southern Italy affected by adverse climate conditions during the hot and dry summer of 2017, using Sentinel-2 images (10m) and in situ data. Our analysis shows that the post-event—NDVI (Normalized Difference Vegetation Index) decrease, observed in five experimental sites, well accounts for the heterogeneity of the local response to the climate event evaluated in situ through the Mannerucci and the Raunkiaer methods. As a result, Sentinel-2 data can be effectively integrated with biological information from field surveys to introduce continuity in the estimation of climate change impacts even in very heterogeneous areas whose details could not be captured by lower resolution observations. This integration appears to be a successful strategy in the study of the relationships between the climate and forests from a dynamical perspective

    Predicting forest cover in distinct ecosystems: the potential of multi-source sentinel-1 and -2 data fusion

    Get PDF
    The fusion of microwave and optical data sets is expected to provide great potential for the derivation of forest cover around the globe. As Sentinel-1 and Sentinel-2 are now both operating in twin mode, they can provide an unprecedented data source to build dense spatial and temporal high-resolution time series across a variety of wavelengths. This study investigates (i) the ability of the individual sensors and (ii) their joint potential to delineate forest cover for study sites in two highly varied landscapes located in Germany (temperate dense mixed forests) and South Africa (open savanna woody vegetation and forest plantations). We used multi-temporal Sentinel-1 and single time steps of Sentinel-2 data in combination to derive accurate forest/non-forest (FNF) information via machine-learning classifiers. The forest classification accuracies were 90.9% and 93.2% for South Africa and Thuringia, respectively, estimated while using autocorrelation corrected spatial cross-validation (CV) for the fused data set. Sentinel-1 only classifications provided the lowest overall accuracy of 87.5%, while Sentinel-2 based classifications led to higher accuracies of 91.9%. Sentinel-2 short-wave infrared (SWIR) channels, biophysical parameters (Leaf Area Index (LAI), and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)) and the lower spectrum of the Sentinel-1 synthetic aperture radar (SAR) time series were found to be most distinctive in the detection of forest cover. In contrast to homogenous forests sites, Sentinel-1 time series information improved forest cover predictions in open savanna-like environments with heterogeneous regional features. The presented approach proved to be robust and it displayed the benefit of fusing optical and SAR data at high spatial resolution

    Mapping and Monitoring Forest Cover

    Get PDF
    This book is a compilation of six papers that provide some valuable information about mapping and monitoring forest cover using remotely sensed imagery. Examples include mapping large areas of forest, evaluating forest change over time, combining remotely sensed imagery with ground inventory information, and mapping forest characteristics from very high spatial resolution data. Together, these results demonstrate effective techniques for effectively learning more about our very important forest resources
    • …
    corecore