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Abstract: Insect outbreaks affect forests, causing the deaths of trees and high economic loss. In this 

study, we explored the detection of European spruce bark beetle (Ips typographus, L.) outbreaks at 

the individual tree crown level using multispectral satellite images. Moreover, we explored the pos-

sibility of tracking the progression of the outbreak over time using multitemporal data. Sentinel-2 

data acquired during the summer of 2020 over a bark beetle–infested area in the Italian Alps were 

used for the mapping and tracking over time, while airborne lidar data were used to automatically 

detect the individual tree crowns and to classify tree species. Mapping and tracking of the outbreak 

were carried out using a support vector machine classifier with input vegetation indices extracted 

from the multispectral data. The results showed that it was possible to detect two stages of the out-

break (i.e., early, and late) with an overall accuracy of 83.4%. Moreover, we showed how it is tech-

nically possible to track the evolution of the outbreak in an almost bi-weekly period at the level of 

the individual tree crowns. The outcomes of this paper are useful from both a management and 

ecological perspective: it allows forest managers to map a bark beetle outbreak at different stages 

with a high spatial accuracy, and the maps describing the evolution of the outbreak could be used 

in further studies related to the behavior of bark beetles. 
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1. Introduction 

Forests are affected by outbreaks of several different species of insects at the global 

level, and such outbreaks usually result in the death of large numbers of trees [1]. In the 

last decades, most European forests have shown significant increasing trends in vulnera-

bility to insect outbreaks [2]. Climate change–related events such as warm and dry 

weather anomalies and windthrows may in fact accelerate insect development and impact 

on forest populations through a reduction in plant defense mechanisms [2]. The European 

spruce bark beetle (Ips typographus, L.) is one of the many species affecting forests and is 

mainly found in temperate and boreal regions of Central Europe, North America, Asia 

Minor and some parts of Africa [3–5]. In the case of Europe, it mainly affects Norway 

spruce (Picea abies (L.) Kast.) forests [1]. This insect alone caused annual losses of 14.5 mil-

lion m3 of wood between 2002 and 2010 in Central Europe [6]. The economic loss is mainly 

related to the fact that forest managers cannot chose what to cut, but they have to cut the 

trees attacked by bark beetles, not trees in optimal condition for wood production (i.e., 

not mature trees) [7]. Moreover, a large outbreak could increase timber availability in the 

market, thus reducing wood prices [7]. 
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Bark beetles receive their name because they reproduce in the inner bark of the tree, 

living on phloem tissues. European spruce bark beetles can spread quickly over large ar-

eas, and this ability is increased/triggered when various environmental factors such as 

windthrows, storms or drought damage kill trees [8]. Once the bark beetles locate a host 

and infest it, they could kill it in few weeks, though the first signs of infestation may not 

be visible. In the North American literature, bark beetle outbreaks are categorized by three 

different stages according to crown colour: (1) green attacks, where no apparent changes 

appear in the attacked trees; (2) red attacks, where the foliage of the attacked trees turns a 

reddish colour, and; (3) grey attacks, where the needle leaves shed off of the attacked tree 

[9,10]. The red- and grey-attacks are usually the easiest to detect due to the clear changes 

in the foliage [11]. Finding and eliminating the attacked trees on time is essential to avoid 

the spread of the infestation. 

One of the most common and reliable ways of detecting the presence of bark beetles 

is by performing extensive field visits. This requires a lot of effort and money, implying 

several field trips and qualified teams. Additionally, physical trips to the forests are spa-

tially limited [12–14]. Given the requirement of in situ observations, the probability of 

overlooking bark beetle outbreaks is high in large forest areas, and the task itself becomes 

challenging. Moreover, the detection of an attack at the early stage is not straightforward 

as the only way to determine this is to notice the small holes made by the insect in the 

trunk [12]. Therefore, an efficient and remote method is required that allows for easier 

and faster observation of large areas, with greater frequency and lower costs [1,10,15]. In 

this context, remote sensing data could be very effective, especially multispectral and hy-

perspectral data that are able to characterize the spectral signature of the trees [12]. The 

spectral signature of vegetation, in general, is determined by the different properties of 

the plant and the different phenological stages or conditions of vegetation can be moni-

tored by means of combined spectral information [14,16,17]. Indeed, stressed vegetation 

is subject to changes in its biochemical and biophysical properties, meaning changes in 

photosynthetic activities and/or phenological behaviour. Such changes are reflected in the 

reduction of leaf pigments and a decrease in water content, as expected from plant re-

quirements, thus changing the natural behaviour of the plant [18]. From a physical per-

spective, these changes can lead to modifications in the reflectance information from dif-

ferent spectral ranges such as the visible, NIR and SWIR, to name a few. This means that 

healthy and stressed forest areas could be separated by analysing the changes in different 

ranges of the spectrum. 

The detection of bark beetle outbreaks by remote sensing differs according to the at-

tack stage. At the beginning of an attack, infested trees remain green, but internally they 

suffer from initial restrictions on the proper handling of water transportation. Given that 

there is almost no visual impact on the trees, this stage is difficult to detect, whereas the 

opposite happens in later stages, where there are clear changes in the colour and aspect of 

the trees. Because of this, most of the research found in the literature has focused attention 

on detecting the later stages of the attack, achieving acceptable results ranging from 70–

90% accuracy [19–25] by using a variety of optical remote sensing data. QuickBird data 

were used in order to classify mountain pine beetle attacks and the results were validated 

with independent field data in British Columbia [26]. In the same study area, EO-1 Hype-

rion data (the hyperspectral type) were used by exploiting moisture-based indices to iden-

tify forests attacked by bark beetles [27]. In the same way, several other studies have fo-

cused attention on using vegetation or spectral indices in order to increase the detection 

accuracy for infestations [14,21,28,29]. Given that infestation happens at the single-tree 

level, having a proper spatial resolution and relevant spectral ranges are of great im-

portance. In fact, most of the recent studies found in the literature focus their attention on 

Landsat or Sentinel-2 data [19,23,28,30,31]. More recently, it has been shown that using 

Sentinel-2-based indices is more effective (67%) than using Landsat-based indices (36%) 

[28]. Additionally, using the temporal variable is of great relevance in increasing the de-

tection accuracy, given that this helps to properly monitor the outbreak [24,30,32–37]. 
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In order to have proper monitoring of a bark beetle outbreak, both spatial and tem-

poral resolutions should be considered. It means that we need monitoring as close as pos-

sible to the tree level and temporal resolution of the images that allows tracking the spread 

of the bark beetles quickly. Indeed, with respect to studies done 20 years ago, nowadays 

lidar data over the forest areas that allows accurate detection of individual tree crowns 

are easily obtained. Moreover, the availability of satellite images at a weekly rate with a 

high spatial resolution is improved. Thus, in this paper we propose a study that explores 

the possibility of combining individual tree crown (ITCs) analyses using lidar data to-

gether with satellite multispectral Sentinel-2 data to map bark beetle infestations at the 

single-tree level. In particular, the focuses of this study are: (1) the detection of different 

stages (i.e., healthy, attacked—early stage, attacked—late stage) of the infestation at the 

ITC level; (2) the identification of the most useful spectral index to perform bark beetle 

detection; and (3) the mapping of the temporal evolution of the outbreak. To accomplish 

this, ITCs were automatically delineated on lidar data and then spectral indices extracted 

from Sentinel-2 images acquired from June to September (of a given year) were used in 

order to map and track the evolution of the bark beetle attack. 

2. Materials and Methods 

2.1. Materials 

2.1.1. Study Area and Field Data 

The study area is located in Northern Italy in the municipality of Pergine (Trento). It 

is represented by a small hill (about 10 ha, altitude range 450–570 m a.s.l.) mainly domi-

nated by Norway spruce (Picea abies (L.) Karst.). Inside the study area a windthrow event 

happened at the end of October 2018 [38], and the dead trees left on the ground generated 

an outbreak of European spruce bark beetles. The climate of the area is classified as tem-

perate oceanic according to the Worldwide Bioclimatic Classification System [39]. Regard-

ing the weather conditions in the months of June, July, August and September 2020 ana-

lysed in this study, the mean maximum temperature in that area was 16.2 °C, 20.1 °C, 18.7 

°C and 14.3 °C, respectively, compared to the mean maximum temperature for the period 

1930–2021, with mean maximum temperatures of 16.2 °C, 19.9 °C, 19.2 °C and 15.1 °C, 

respectively. Concerning precipitation, the monthly precipitation values, in mm, were 

108.0, 77.8, 189.4, and 35.0, respectively, compared to the mean monthly precipitation val-

ues for the period 1921–2021, which were106.5, 94.76, 95.65, and 91.27, respectively [40]. 

Field data collection was carried out between the last week of October and mid-No-

vember 2020: 565 trees were geolocated using a Lasertech TruePulse 360B (Laser Technol-

ogy, Inc., Centennial, CO, USA) starting from multiple base stations point localized with 

a precise GPS. Species and health status of each tree were collected in the field. The out-

break was localized mainly on the south-facing slope of the hill. In Figure 1, a representa-

tion of the trees measured in the field is shown, and in Table 1, a summary of the field 

data divided by species and health status is provided. The bark beetle infestation was 

divided into three categories: (1) healthy (H), trees with healthy status that did not show 

any sign in the trunk and crown of bark beetle infestation; (2) attacked—early stage (A1), 

trees that showed signs of attack at early stage, ranging from bark beetle holes in the trunk 

without any sign in the crown, to crowns starting to lose needles or with presence of yel-

low needles; and (3) attacked—late stage (A2), trees with totally yellow crowns or red or 

grey crowns. The species different from Picea abies (L.) Karst. were all aggregated into the 

class “other species” (OS). 
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Figure 1. In panel (A): field data position. Each dot represents a tree measured in the field. The 

grey area on the bottom-right part is an area where a windthrow event happened. The lines are 

the contour lines spaced by 5 m. In panel (B), the location of the study area (red dot) and of the 

Province of Trento (green area) in Italy. 

Table 1. Summary of the trees measured in the field. 

Species Health Status Number of Trees 

Picea abies (L.) Karst. 

H 86 

A1 94 

A2 222 

Betula pendula Roth H 4 

Carpinus betulus L. H 13 

Castanea sativa Mill. H 6 

Larix decidua Mill. H 84 

Pinus sylvestris L. H 23 

Populus tremula L. H 28 

Robinia pseudoacacia L. H 4 

Tilia platyphyllos Scop. H 1 

2.1.2. Remote Sensing Data 

For this study, we considered multispectral satellite data acquired by the Sentinel-2 

(S2) constellation and airborne lidar data. S2 is a two-satellite constellation (S2-A and S2-

B) managed by the European Space Agency (ESA) under the Copernicus programme, 

providing high spatial resolution optical imaging every 5 days. Each S2 multispectral im-

age is composed of 13 spectral bands at three different spatial resolutions (10 m, 20 m and 

60 m [41]), but only bands at 10 m and 20 m spatial resolution were used. Lidar data were 

acquired over the study area in summer 2015 by an Optech ALTM 3100EA (Teledyne 

Optech Inc., Vaughan, ON, Canada) sensor with a maximum scan angle of 21 degrees. 

The mean point density was 21.5 points per square meter for the first return. Up to four 

returns per pulse were measured. Even though lidar data was acquired 5 years earlier 

than the field data, the changes in the area, apart from the windthrow event site, were 

limited to natural forest growth. Thus, the data can be used for ITC detection in a reliable 

manner. 

All the available S2 cloud-free images between the 1 June 2020 and the 30 September 

2020 were downloaded from the ESA portal [42] in the L2A processing level for a total of 

32 images. The study area is covered by two S2 orbits, numbers 22 and 65. For the analysis 
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of this study we selected one image about every two weeks for a total of ten images. The 

time distance among the images varied from 10 to 15 days with a mean of 13.3 days.  

2.2. Methods 

In Figure 2, the architecture of the system used to detect and monitor the bark beetle 

attack is presented. In the following sections, each step is detailed. 

 

Figure 2. Architecture of the system used to detect bark beetle attack. 

2.2.1. Lidar Data Processing 

The elevation (Z) value of each lidar point was normalized with a digital terrain 

model (DTM) using the function normalize_height of the R package lidR [43]. The company 

that acquired the data provided the DTM. A calibration of the intensity value for each 

lidar point was performed in order to reduce the effect of the flying altitude and of the 

scan angle on it. We used the method of Yu et al. [44]: 

𝐼𝐶 = 𝐼 ∗ (
𝑅

𝑅𝑠
)

𝛼

, (1) 

where 𝐼𝐶 is the calibrated intensity, 𝐼 the raw intensity, 𝑅 is the sensor-to-target range 

and 𝑅𝑠 is the reference range or average flying height. Following the suggestions of Kor-

pela et al. [45], an exponential factor of 2.5 was used. This is performed because environ-

mental factors can be considered stable and the same acquisition conditions (parameters 

and instruments) were maintained during the survey [44]. 

The normalized lidar point cloud were used to delineate individual tree crowns 

(ITCs) by means of Dalponte and Coomes’ [46] algorithm implemented in the itcLiDAR 

function of the R library itcSegment. This algorithm is based on an adaptive local maxima 

filter and a region-growing method, and it has been successfully used in many previous 

studies [47–50]. The algorithm follows these steps: (1) generate a raster canopy height 

model (CHM) of spatial resolution defined by the user; (2) apply a Gaussian low-pass 

filter of fixed size of 3 × 3 pixels to the rasterized CHM in order to smooth the surface and 

to reduce the number of potential local maxima; (3) apply a moving window of variable 

size to the smoothed CHM in order to find a set of potential treetops (local maxima). The 

size of the window is an odd number proportional to the pixel value at the centre of the 

window. The range of the window size is user defined. The central pixel of the window is 

labelled as local maxima if its value is greater than all other values in the window while 

being greater than some minimum height above ground (usually fixed at 2 m); (4) itera-

tively analyse and add the pixels around each local maxima to the local maxima to create 

a region. A pixel is added to a specific region only if its vertical distance from the local 

maximum is less than a predefined percentage of the local maximum height and less than 

a predefined maximum difference. The process is repeated until no further pixels are 

added to any region; and (5) apply a 2D convex hull to the pixel coordinates of each region, 
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resulting in polygons that represent ITCs. For each delineated ITC, the mean intensity 

value of the first return points was computed. 

A link between delineated ITCs and the trees measured in the field was created by 

means of the method by Zhao et al. [51] that is based on Euclidean distance. As the height 

of the field trees was not available, only the X and Y directions were used in the compu-

tation of the distance. 

2.2.2. S2 Image Processing 

For each S2 image, only the bands at 10 and 20 m spatial resolution were selected, 

and they were all resampled at 10m with nearest neighbour resampling using the resample 

function of the R package raster [52]. From each image, a series of vegetation indices (VIs) 

were extracted (Table 2). The VIs were chosen based on the current literature. The extrac-

tion was carried out using the function spectralIndices of the R package RStoolbox [53]. 

Table 2. Vegetation indices extracted from each S2 image. 

Index S2 Bands Reference 

CLRE—Red-Edge Band Chlorophyll Index 5, 7 [54] 

GEMI—Global Environmental Monitoring Index 4, 8 [55] 

GNDVI—Green Normalized Difference Vegetation Index 3, 8 [56] 

MCARI—Modified Chlorophyll Absorption Ratio Index 3, 4, 5 [57] 

MNDWI—Modified Normalized Difference Water Index 3, 11 [58] 

MSAVI—Modified Soil-Adjusted Vegetation Index 3, 8 [59] 

MSAVI2—Modified Soil-Adjusted Vegetation Index 2 3, 8 [59] 

MTCI—MERIS Terrestrial Chlorophyll Index 3, 5, 6 [60] 

NBRI—Normalized Burn Ratio Index 8, 12 [61] 

NDREI1—Normalized Difference Red Edge Index 1 6, 5 [62] 

NDREI2—Normalized Difference Red Edge Index 2 7, 5 [63] 

NDRS—Normalized Distance Red and SWIR 4, 12 [33] 

NDVI—Normalized Difference Vegetation Index 4, 8 [64] 

NDWI—Normalized Difference Water Index 8, 11 [65] 

NRVI—Normalized Ratio Vegetation Index 4, 8 [66] 

REIP—Red-Edge Inflection Point 4, 5, 6, 7 [67] 

SATVI—Soil-Adjusted Total Vegetation Index 3, 11, 12 [68] 

SAVI—Soil-Adjusted Vegetation Index 3, 8 [69] 

SLAVI—Specific Leaf Area Vegetation Index 3, 8, 11 [70] 

TVI—Transformed Vegetation Index 3, 8 [71] 

Afterwards the index values were normalized: for each index, the mean value at time 

𝑡  of that index for the ITCs that were healthy on the 30th September 2020 

(𝐼𝑛𝑑𝑒𝑥𝐻𝑒𝑎𝑙𝑡ℎ𝑦 09/30
𝑡 ) was subtracted from all the ITCs and the mean value of that index over 

the same ITCs in the last image of the time series (30 September 2020) (𝐼𝑛𝑑𝑒𝑥𝐻𝑒𝑎𝑙𝑡ℎ𝑦 09/30
09/30

) 

was added to all the ITCs: 

𝐼𝑛𝑑𝑒𝑥𝑁𝑜𝑟𝑚𝑡 = (𝐼𝑛𝑑𝑒𝑥𝑡 − 𝑚𝑒𝑎𝑛(𝐼𝑛𝑑𝑒𝑥𝐻𝑒𝑎𝑙𝑡ℎ𝑦 09/30
𝑡 )) + 𝑚𝑒𝑎𝑛(𝐼𝑛𝑑𝑒𝑥𝐻𝑒𝑎𝑙𝑡ℎ𝑦 09/30

09/30
), (2) 

where t ranges from the first to the last image of the time series. We used the last image 

of the time series (30 September 2020) as reference as it was the image closest to the field 

data collection. This normalization step was used to remove the effect of the phenology. 

This is very important in order to make images at different timings comparable, otherwise 

the standard SVM classifier cannot be used. In principle, this can be also be performed by 

considering a group of Norway spruce trees that were definitely healthy for the entire 

time series analysis outside the area investigated but inside the image. 
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For each of the delineated ITCs the weighted mean of each VI was extracted. The 

weighted mean was performed considering the percentage of cover that each ITC had 

over each VIs pixel at 10m resolution. In this way we obtained one value for each index 

for each image for each ITC (200 values: 20 indices for 10 images). 

2.2.3. Tree Species Classification and Bark Beetle Detection 

Tree species classification and bark beetle attack detection were carried out using a 

class-weighted support vector machine (wSVM) classifier [49]. SVM is a well-known clas-

sifier that has been widely used in many studies in forestry and ecology [49,72–74]. Here, 

we chose a class-weighted version as it is more suitable for imbalanced problems such as 

cases where not all the classes have the same number of samples. In particular, the only 

difference between a standard SVM and a class-weighted SVM is that a weight, different 

for each class, is added inside the optimization problem of the SVM. In particular, in this 

study we used a weight defined in this way: 

si =
max

𝑘=1,..,𝜳
(𝑁𝑘)

𝑁𝑖
, (3) 

where 𝑁𝑘 is the number of samples that belong to the k-th class. 

The feature used to train the wSVM in the tree species classification step was the 

mean lidar intensity of the first return points inside each ITC. We chose to use just this 

feature as from an initial analysis on the lidar intensity values it appeared that the Norway 

spruce trees were easily separable from the others. Since tree species classification is not 

the core of this paper, any other input feature could be used for this task. 

The features used to train the wSVM for bark beetle attack detection were the vege-

tation indices extracted from the S2 image from the 30th of September 2020. Among all 

the indices extracted, we considered 22 training configurations: (1) a wSVM trained using 

all the available indices, (2) a wSVM trained using a subset of indices selected using a 

feature selection method, and (3–22) a wSVM trained using each individual index sepa-

rately. In these last 20 configurations, the SVM was trained with only one input feature. 

An SVM with only one input feature could be considered as a sort of thresholding algo-

rithm. Though this configuration does not exploit the full potential of an SVM, we found 

it more important to use the same classification algorithm in all the experiments. Feature 

selection was carried out using a wrapper method, using the sequential floating forward 

selection (SFFS) [75] method as the search strategy and a separability measure for the ac-

curacy of the wSVM classifier after a cross-validation on the training set. The SFFS method 

explores the possible combinations of features by testing each time the wSVM classifica-

tion on the pool of features considered. It starts from one features and it stops when the 

increase in accuracy is insignificant. The search strategy is moving both forward and back-

ward, as at each iteration, the selected features are reconsidered and, if unnecessary, they 

are discarded. This procedure was performed using the R library FSinR [76]. We chose 

this search strategy as it was successfully used in previous studies in the literature [49,72–

74]. The kernel function used in the wSVM was an RBF kernel. As in every SVM classifi-

cation, some parameters needed to be tuned: we tuned the cost parameter C and the RBF 

kernel parameter sigma. The tuning was performed using a grid search strategy of 400 

combinations of C and sigma parameters. 

2.2.4. Validation of the Classifications 

For both the tree species classification and the bark beetle attack detection, the vali-

dation was performed using a three-fold cross-validation procedure. The three folds were 

created by overlapping a spatial grid of 40 × 40 m to the study area. Each square of the 

grid was assigned to one of the three folds. Each ITC was assigned only to one square and 

all the ITCs inside a square were assigned to a fold. In this way, we ensured a spatial 

representation of the study area for each fold, reducing also the spatial correlation among 
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the ITCs. We used 40 m as it is double the size of the coarser resolution of the S2 bands 

considered in order to eliminate the possibility of having ITCs belonging to different folds 

overlapping the same S2 pixels. 

The classification results over the three folds were presented in terms of confusion 

matrix, overall accuracy (OA), balanced accuracy (BA), producer accuracy (PA) and user 

accuracy (UA). We also considered the BA as an overall metric defined as the average of 

the PAs, as the classification problem is unbalanced and thus analysing only the OA is not 

the optimal choice. The final map was validated with a confusion matrix and the corre-

sponding accuracies computed by matching the ITCs classified into four classes (OS, H, 

A1 and A2) with the field dataset. 

2.2.5. Multitemporal Tracking of the Bark Beetle Infestation 

Among all the bark beetle attack classification models, we chose the best one and we 

applied it to the 10 S2 images from the 2 June 2020 to the 30 September 2020. The wSVM 

model used was trained on the S2 image of the 30th of September 2020. The rationale for 

this step is to track the bark beetle infestation over time and to understand how it spreads 

in the forest. These maps were studied at two levels: (1) the differences among two con-

secutive maps were analysed in order to detect reasonable and unreasonable changes; and 

(2) the time behaviour of the infestation of each Norway spruce ITC was analysed in order 

to evaluate whether it was following a reasonable trend or not. Concerning the first one, 

the differences between two consecutive maps were analysed on the basis of some rules 

according to the type of change/transition that could actually happen between times 𝑡1 

and 𝑡2 [77,78], with 𝑡1 indicating the status of an ITC at time 1 and 𝑡2 the status of an ITC 

at time 2, where time 2 is the time period just after time 1. The changes/transitions consid-

ered are as follows: (1) reasonable change, when the infestation stage remains the same or 

moves forward (e.g., from H to A1) and (2) unreasonable change, when the infestation 

stage moves backward instead of forward (e.g., from A2 to H). In Table 3, the detailed set 

of rules and the types of changes are summarized. 

Table 3. Rules used to validate the multitemporal maps tracking the bark beetle infestation, where 

𝑡1 indicates the status of an ITC at time 1 and 𝑡2 the status of an ITC at time 2. 

Rule Type of change 

𝑡1 = H AND 𝑡2 = H 

𝑡1 = A1 AND 𝑡2 = A1 

𝑡1 = A2 AND 𝑡2 = A2 

𝑡1 = H AND 𝑡2 = A1 

𝑡1 = A1 AND 𝑡2 = A2 

𝑡1 = H AND 𝑡2 = A2 

Reasonable change 

𝑡1 = A1 AND 𝑡2 = H 

𝑡1 = A2 AND 𝑡2 = H 

𝑡1 = A2 AND 𝑡2 = A1 

Unreasonable change 

Regarding the time behaviour of each ITC, we considered seven possible reasonable 

situations: (1) an ITC is classified as H in all the 10 maps considered; (2) an ITC is classified 

as A1 in all the 10 maps considered; (3) an ITC is classified as A2 in all the 10 maps con-

sidered; (4) an ITC is classified for one or more consecutive maps as H, followed by one 

or more consecutive maps as A1; (5) an ITC is classified for one or more consecutive maps 

as H, followed by one or more consecutive maps as A2; (6) an ITC is classified for one or 

more consecutive maps as H, followed by one or more consecutive maps as A1, followed 

by one or more consecutive maps as A2; and (7) an ITC is classified for one or more con-

secutive maps as A1, followed by one or more consecutive maps as A2. 
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3. Results 

3.1. ITC Detection and Tree Species Classification 

Regarding the ITC detection, out of 565 trees measured in the field, 512 were matched 

with a delineated ITC, reaching a 90% detection rate. Among the matched ITCs, 368 were 

Norway spruce, while the remaining were other species. Concerning the status of the bark 

beetle outbreak, among the Norway spruce–matched ITCs we had 76 ITCs in class H, 87 

in class A1, and 205 in class A2. 

The tree species classification was obtained with an OA of 87.4% and a BA of 82.8%. 

Overall, the results were good, providing PAs and UAs over 70%. The confusion matrix 

for the best combination of wSVM parameters over the three folds is shown in Table 4, 

along with the PAs and UAs. 

Table 4. Confusion matrix for the best combination of wSVM parameters over the 3-fold cross 

validation. Numbers in bold are the diagonal of the matrix. 

 Norway Spruce Other Species UAs (%) 

Norway spruce 91 33 73.4 

Other species 32 358 91.8 

PAs (%) 74.0 91.6  

3.2. Bark Beetle Detection 

Balanced accuracies obtained using the wSVM with the threefold cross-validation for 

the bark beetle attack classification, from the image from the 30th of September 2020, are 

shown in Figure 3. Using the subset of indices obtained using the feature selection algo-

rithm (FS model), we obtained the highest balanced accuracy (BA = 72.9%; OA = 73.6%). 

The feature selection algorithm selected eight indices for the classification: CLRE, GNDVI, 

NBRI, NDREI2, NDVI, NRVI, REIP and SLAVI. The second best result in terms of BA was 

obtained using the CLRE index (BA = 71.3%; OA = 72.3%), while the model using all the 

available indices was the fourth best (BA = 68.5%; OA = 70.1%). Considering the FS model 

(the one with the subset of indices), we obtained PAs of 76.3% (H class), 66.7% (A1 class) 

and 75.6% (A2 class) and UAs of 65.9% (H class), 53.2% (A1 class) and 90.6% (A2 class). 

The confusion matrices for the abovementioned three models (FS, CLRE and all) are 

shown in Table 5. 

Table 5. Confusion matrices for the best wSVM model using a selection of the indices performed 

with the feature selection (FS), the one using the best individual index (CLRE), and all the availa-

ble indices (All) over the 3-fold cross validation. Numbers in bold are the diagonal of the matrix. 

 FS CLRE All 

 H A1 A2 UAs (%) H A1 A2 UAs (%) H A1 A2 UAs (%) 

H 58 18 12 65.9 53 23 2 67.9 61 35 12 56.5 

A1 13 58 38 53.2 20 61 51 46.2 13 42 35 46.7 

A2 5 11 155 90.6 3 3 152 96.2 2 10 158 92.9 

PAs (%) 76.3 66.7 75.6  69.7 70.1 74.1  80.3 46.7 92.9  
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Figure 3. Balanced accuracy obtained with the 3-fold cross-validation for the bark beetle attack 

classification considering all the indices (“All”), the ones selected by the feature selection algo-

rithm (“FS”), and each index independently. 

3.3. Mapping Bark Beetle Presence and Tracking it in Time 

Using the wSVM model based on the features selected by the feature selection method, 

we generated a map of the area for the 30 September 2020 (Figure 4). We chose the model 

based on a subset of features (FS model) as it was the one providing the highest BA. This 

map was based on four classes (i.e., H, A1, A2, OS) as the map is the combination of both 

the tree species classification and the bark beetle classification processes. The OA of the final 

map was 79.2% and the balanced accuracy was 77.6%. In Table 6, the confusion matrix is 

shown. 

Table 6. Confusion matrix for the map of the 30 September 2020, considering both species and 

bark beetle attack classifications. Numbers in bold are the diagonal of the matrix. 

 H A1 A2 OS UAs (%) 

H 57 10 2 13 69.5 

A1 5 67 14 5 75.3 

A2 1 7 176 18 87.1 

OS 13 3 13 89 75.4 

PAs (%) 75.0 77.0 85.9 72.4  
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Figure 4. Classification map at ITC level for the S2 image of the 30 September 2020 obtained with 

the wSVM classifier. The grey area on the bottom-right part is an area where a windthrow event 

happened. The lines are the altitude contour lines, spaced by 5 m. 

Using the same model, we classified all the 10 S2 images considered in order to gen-

erate maps that track the evolution of the infestation (Figure 5). As explained in the meth-

ods section, the exploration of the multitemporal maps was performed at two levels. Con-

cerning the comparisons among two consecutive maps, they were analysed on the basis 

of reasonable and unreasonable changes in time. As it can be seen in Table 7, the reason-

able change detection rate is, on average, 88%, with a maximum of 91.3% between the 

maps of the 12 and 22 June 2020. Regarding the analysis of the entire time series, 72.1% of 

the ITCs showed a behaviour that could be considered reasonable according to the rules 

explained in Section 2.2.4, 16.9% of the ITCs showed an unreasonable behaviour, while 

11.1% of the ITCs showed an unreasonable behaviour but only because one map (out of 

ten) was wrong. 

Table 7. Results of the comparisons of contiguous couples of multitemporal maps. 

Maps Compared (𝒕𝟏, 𝒕𝟐) Reasonable (%) Unreasonable (%) 

2 June, 12 June 89.0 11.0 

12 June, 22 June 91.3 8.7 

22 June, 7 July 88.2 11.8 

7th July, 22 July 86.6 13.4 

22 July, 6 August 86.0 14.0 

6 August, 19 August 88.9 11.1 

19 August, 3 September 89.8 10.2 

3 September, 15 September 85.0 15.0 

15 September, 30 September 87.2 12.8 

Average 88.0 12.0 
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Figure 5. Bark beetle attack mapping obtained from wSVM classification of each S2 image. The 

grey area on the bottom-right part is an area where a windthrow event happened. 

4. Discussion 

Detecting the earliest stages of bark beetle outbreaks is, without doubt, of great rele-

vance since it allows for decision makers to act and stop the propagation of the infestation 

on time. In fact, some studies have been carried out in the literature with the goal of de-

tecting early stage attacks from different approaches: classification, index analysis, bi-tem-

poral data and yearly analysis and early detection [14,28,30,33,79]. Even though these 

studies were able to detect early stage attacks, their accuracy varied a lot and was sensor-

dependent in the sense that they required working with a very high spatial resolution 

(VHR). Obtaining access to VHR data is not free and thus lowers the possibility of actually 

detecting the bark beetle outbreak. 

In this paper, we explored the possibility of combing lidar and S2 data for the detec-

tion of the different stages of the outbreak (i.e., early and late) as well as for tracking the 

evolution of the outbreak in time. Firstly, we showed that by combining S2 data with ITCs 

delineated on lidar data, it is possible to have very spatially detailed maps. Such maps are 

intended to provide more accurate information for forest management purposes. Sec-

ondly, we evaluated the performance of several spectral indices (among which were the 
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most used in the literature for bark beetle detection) to detect the early stage of the infes-

tation, and we identified the best one in terms of balanced accuracy. Lastly, we presented 

a strategy to track the infestation over time by introducing a set of rules that allow us to 

check the veracity of the detection, even without reference data. From an ecological point 

of view, this opens the path to further studies related to the behaviour of bark beetles and 

the dynamics of how they spread in a forest. 

4.1. Infestation Detection at ITCs Level 

Norway spruce trees are the ones mainly affected by bark beetle insects and should 

therefore be classified beforehand. For this paper, such classification was performed using 

only lidar data, obtaining an OA of 87.4%, BA of 82.8% and a PA for the Norway spruce 

trees of 74.0%. The classification for bark beetle detection provided an OA of 73.6% and a 

BA of 72.9%, with a PA for the early stage attack (A1) of 66.7%. Combining the Norway 

spruce classification with that for the bark beetle, we obtained a map that, with all the 

available field data, reached an OA of 79.2%, a BA of 77.6% and a PA for the early stage 

attack (A1) of 77.0%. Such a PA value for the early attack stage is relevant for two main 

reasons: (1) we are mapping tree information using S2 data, for which the spatial resolu-

tion is larger than actual ITC size; and (2) knowing the location of the early stage attack 

can help to remove or reduce the propagation of the infestation in time. The combination 

of the two classifications helped to reduce false alarms present in areas where bark beetle 

infestation could not happen, thereby improving the final map. 

4.2. Identification of the Most Robust Spectral Index 

An important part that has been widely addressed in literature is the proper selection 

of spectral indices to be used [21,28,29]. Here we selected the indices using a sub-optimal 

search strategy (the SFFS one) that allowed us a good trade off among execution time and 

the quality of the selected indices in terms of information provided for class separability. 

Nevertheless, we are sure that the selected indices provide accurate information about the 

trees’ states due to the spectral bands used to derive them (other than the high accuracy 

obtained). Most of them make use of a NIR, SWIR and/or Red Edge band. Such bands 

have been found in the literature [18] to be suitable for studying stressed or healthy trees 

or forest areas. While indices such as the NDREI2 and the NDRS have been reported as 

the best in the literature for detecting the different stages of bark beetle infestation, it was 

found that NDREI1 performs nearly equally to the CLRE and NDREI2 indices (see Figure 3 

for more details), with a BA of 69.1% vs. 71.3% and 70.5%, respectively. In contrast, NDRS 

performed among the five worst indices with a BA of only 55.2%. A further analysis, by 

combining several indices, was also performed that allowed us to identify eight indices as 

the best ones for performing the detection task, with a balanced accuracy of 72.9%. Combin-

ing all indices in Table 2 offered the fifth best performance with a BA of 68.5%, allowing 

us to see how sensor- and location-dependent this analysis can be. It was also possible to 

prove the relevance of performing a detailed analysis of the most frequently used indices 

according to specific needs. 

4.3. Detection of Early Stage Attack 

The detection of the early stage attack was performed with a machine learning ap-

proach and by combining both species classification and the bark beetle infestation itself. 

While a formal comparison to other state-of-the-art methods is not offered in this paper, 

it is important to recall that other studies can be found in the literature that have addressed 

early stage–attack detection analysis [14,28,30,33,79], though from different perspectives. 

Huo et al. [33] and Bárta et al. [14] have exploited the S2 time series, covering the period 

April–October of 2018 and 2019, in order to detect stressed trees (a tree can be stressed for 

several reasons and not only because of the presence of bark beetles) that could lead to the 

early detection of bark beetle infestations but cannot guarantee the actual detection of an 
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early stage attack itself. Huo et al. [33] proposed a new vegetation index called the Nor-

malized Distance Red and SWIR (NDRS) that allowed them to detect stressed trees, with 

accuracies ranging from 82 to 86%. Bárta et al. [14] made use of several indices, in partic-

ular the well-known tasseled cap ones, in order to monitor the evolution of healthy and 

infected trees during a year and perform early detection of bark beetle infestation with an 

accuracy of 78%. These two studies are the most recent ones available in the literature; yet, 

multitemporal information is not used as a tool to track or detect infestation evolution but 

to detect stressed trees. Observed trees can be stressed for several reasons and not only 

due to the presence of bark beetle insects. Therefore, detecting the early stage of the attack 

itself is more crucial and can better help to prevent the spread of infestation, without cut-

ting off actual healthy trees. 

4.4. Attack Evolution Monitoring 

Looking at the temporal classification maps shown in Figure 5, it is clear how per-

forming an analysis over a more complete and regular time series can allow the tracking 

of the bark beetle outbreak’s evolution. Even though there is no field data collected for 

each of the different maps, it is clear how, starting from a classification map obtained with 

actual field data for the last month and then going back in time, it is possible to actually 

track the evolution of the bark beetle infestation. In fact, the image corresponding to the 

30th of September already shows a clear and close result to that of the actual field data for 

October 2020 (see Figure 1). On the other hand, knowing the location of the windthrow 

event (as well as any other possible event happening in the study area) helps to under-

stand where the infestation originated from or whether there was any accelerating process 

for the infestation. By June 2020, the bark beetle attack had already gone out of control 

since nearly two years had passed since the windthrow event, showing clear signs of an 

attack in the late stage. Such cases, together with the knowledge about the study area/re-

gion, allow us to qualitatively corroborate the truthfulness of our results. In order to per-

form a sort of quantitative analysis without the availability of the ground truth for every 

single date, the set of rules in Table 3 was introduced. These rules take inspiration from 

land cover map updates, where reliable change rules allow understanding, as compared 

with knowing whether those from a new class are possible or not after a certain time [80]. 

Such is the case for the H, A1 and A2 stages that can only happen in this same direction 

and not in the opposite one. Since we have the ground truth for the last acquisition date, 

we can track the evolution of the different stages by checking the defined rules in order to 

evaluate the multitemporal accuracy detection. Table 7 summarizes the results for all the 

cases, where the reasonable prediction varies from 85.0 to 91.3%. A final check was made 

by studying the time behaviour according to seven possible steadiness situations. In this 

case, it was found that nearly 72.1% of the ITCs kept a reasonable trend across the studied 

period, with only 16.8% of ITCs showing some major errors. Of particular interest are the 

11.1%of ITCs that presented an error only on one of the dates. This means that we are 

facing cases of weak false alarms that could be easily corrected by means of this same 

strategy (by checking these samples with the established rules and changing the classifi-

cation value to a logical one). Nevertheless, we preferred to keep the original data in order 

to show the possible readers the high accuracy achieved by the proposed approach. Such 

results allow us to further prove the reliability of the proposed approach as well as to 

show how it is possible to accurately track the attack’s evolution in time. In this way, it is 

not only possible to detect the attack in an early stage in an accurate way but possibly to 

track it in images acquired after the field data collection. This last part is concluded from 

the temporal distribution of the analysed images. It is important to note that the monitor-

ing analysis could not be carried out just the day after a windthrow event happens. This 

is because it takes some time for bark beetles to start attacking the affected trees and thus 

spread to other healthy trees. 
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4.5. Limitations 

While the presented approach is promising and able to produce reliable and useful 

results, limitations exist that arise from the spatial resolution itself. Working with Sentinel-

2 data means we are working at 10m × 10m pixels. Such an area could cover more than a 

single tree, especially if considering young trees that are just starting to grow. Indeed, it 

was found that 55.4% of the ITCs had VI values not duplicated with other ITCs, whereas 

44.6% of the ITCs had duplicated values. Looking at the sizes of such trees, it is immedi-

ately visible that duplicated ones are generally trees with smaller crowns compared to 

non-duplicated ones. This means that our method is able to properly monitor large trees, 

while it has problems monitoring smaller ones. Yet, the presented results show that the 

proposed method is able to accurately map bark beetle outbreaks at a low cost. 

5. Conclusions 

In this study we showed that it is possible to accurately detect a bark beetle attack in 

early and late stages at the ITCs level using multispectral satellite data by means of a ma-

chine learning classification approach. Furthermore, we also showed that the use of mul-

titemporal data allows tracking of the evolution of the bark beetle infestation with a bi-

weekly resolution. The possibility of monitoring the outbreak using freely available S2 

data is extremely important as it allows an almost real-time mapping (not at an economi-

cal cost) and consequently rapid interventions. Additionally, maps at ITC level (extracted 

by lidar data that nowadays are available by public administrations in many countries) 

allow a spatially detailed map of the outbreak evolution and a punctual intervention by 

forest managers. Indeed, from a management point of view, the possibility to detect the 

attack at an early stage is very important as it allows planning the harvesting in order to 

stop the attack and minimize economic losses. 

As future developments, it would be interesting to make use of sensors with higher 

spatial resolution, such as Dove/Planet constellation, in order to perform a more detailed 

ITCs analysis. Even though the oldest generation of Dove/Planet does not come with a red 

edge band, which in this study and many others emerged to be quite relevant in the proper 

detection of bark beetle attack stages, the newest generation (since 2019) does come with 

such information [81]. Thus, working with higher spatial resolution sensors would allow 

for further studying the impact of multitemporal information on bark beetle infestation 

monitoring. 
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