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Insects are one of the most significant agents causing landscape level disturbances in 

North American forests, and among them, spruce budworm (Choristoneura fumiferana; SBW) is 

the most destructive forest pest of northeastern Canada and U.S. The SBW occurrence, its 

damage extent and severity are highly dependent on characteristics of the forests and availability 

of the host species (spruce (Picea spp.) and balsam fir (Abies balsamea (L.) Mill.)). This study 

developed novel methodologies to detect and classify SBW defoliation and to map SBW host 

species using remote sensing techniques. Optical multispectral remote sensing satellite imagery 

presents a valuable data source for regional-scale mapping of forest composition as well as 

defoliation severity and can be effectively used for monitoring insect outbreaks. This study 

developed two separate models to map both the distribution and abundance of SBW host species 

as well as the severity of defoliation at 20 m spatial resolution utilizing Sentinel imagery. The 

two models were integrated to effectively monitor the SBW defoliation.  

 



 
 

For the detection and severity classification of SBW defoliation, we used Sentinel-2 

imagery and site variables (elevation, aspect, and slope) and compared the capabilities of various 

spectral vegetation indices (SVIs), in particular red-edge SVIs, to detect and classify SBW 

defoliation using Support Vector Machine (SVM) and Random Forest (RF) models. The study 

was carried out in the Northern part of New Brunswick, Canada. Results showed the superiority 

of RF in model building for defoliation detection and classification into three classes (non-

defoliated, light and moderate) with overall errors of 17% and 32%, respectively. The most 

important Sentinel-2 based variables for the best model were Inverted Red Edge Chlorophyll 

Index (IRECI), Enhanced Vegetation Index 7 (EVI7), Normalized Difference Infrared Index 11 

(NDII11), Modified Chlorophyll Absorption in Reflectance Index (MCARI), and Modified 

Simple Ratio (MSR). Elevation was the only site variable significant in the final model. The 

study concluded that red-edge SVIs were more effective variables for light defoliation detection 

compared to the traditional SVIs such as Normalized Difference Vegetation Index (NDVI) and 

EVI8. These findings can help improve the current remote-sensing based SBW defoliation 

detection techniques.   

For SBW host species classification, Sentinel-1 synthetic aperture radar (SAR) and multi-

spectral Sentinel-2 imagery were used in combination with several site variables (elevation, 

slope, aspect, topographic wetness index, soil types, projected climate site index for year 2030, 

and improved Biomass Growth Index (iBGI)). The study was carried out in the same location  

where the first study was conducted but extended to a larger area (northern parts of New 

Brunswick, Canada) using a total of 191 variables. We found Sentinel-2 time series in 

combination with single spectral bands and spectral vegetation indices (SVIs) promising to map 

SBW host species using a RF algorithm, with an overall accuracy (OA) of 71.34% and kappa 



 
 

coefficient (K) of 0.64. The use of Sentinel-1 SAR data alone with elevation showed a decent 

result (OA: 57.5 and K: 0.47). Furthermore, the combination of Sentinel-1, Sentinel-2 and 

elevation provided us with an OA of 72.3% and K of 0.65. The most important Sentinel-2 

variables for the best model were from the images of late spring and fall seasons including three 

single spectral bands and seven SVIs mostly from near-infrared, red-edge and shortwave-infrared 

regions. Prediction of spatially explicit SBW host species data is essential for identifying 

vulnerable forests, tracking the SBW defoliation and minimizing the forest loss as well as 

serving as a vital input for modelling and managing insect impacts at the landscape and regional 

scales.  
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CHAPTER 1 

 INTRODUCTION 

 

The general purpose of this thesis is to provide a solution for the detection and severity 

classification of eastern spruce budworm (Choristoneura fumiferana Clem.; SBW) defoliation 

and mapping its host species in northeastern forests of America. Technically, this thesis aims to 

identify the significant remote sensing and site variables and algorithms to map SBW defoliation 

extent and severity as well as its host tree species. When SBW outbreak occurs, it has the 

potential to invade a wide extent of the landscape and therefore assessing SBW induced damage 

at ground level is difficult and uneconomical. At the same time, updated data on SBW tree host 

species are essential for the prediction of hot spots and better validation of SBW defoliation data 

generated from methods other than field surveys. In this thesis, the intent is to develop novel 

remote sensing (RS) based techniques capable of detecting and classifying SBW defoliation at 

the landscape scale, along with mapping its host availability at a resolution fine enough to be 

used for forest management. To this end, the newly-launched Sentinel-2 satellite data were used 

for SBW defoliation detection and severity classification. A combination of Sentinel-1 and 

Sentinel-2 satellite imagery was also utilized to map the SBW host species. Other site variables 

such as elevation, slope, aspect, Topographic Wetness Index (TWI), soil types, projected climate 

site index for year 2030, and improved Biomass Growth Index (iBGI) were also employed to 

assist with the modeling.   

1.1 Background on Forest Pests and SBW Defoliation 

Natural disturbances such as wildfire, pest outbreaks, windthrow and ice storms are 

constantly changing forest ecosystems around the world and in particular North America. 
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Among these, insects and pest outbreaks are the leading forest disturbance agents in North 

American forests impacting about 20.4 million hectares of area (average annual basis) in the 

United States and causing an average annual economic cost of $1.5 billion (Dale et al., 2001). 

The changing climate and human disturbances on the environment also exacerbate the situation 

for forest resources (Dale et al., 2001). The pests and parasites in the forest not only alter tree 

growth and timber production but also undermine wildlife habitat (Bennetts et al., 1996). The 

introduction of pests is capable of disturbing the spatial distribution of the tree species (Dale et 

al., 1991). Among various forest pests, SBW is one of the prominent native pests responsible for 

the widespread landscape-scale changes in structure and composition of boreal forests in 

northeastern America (MacLean, 1984; Morin, 1998; Rahimzadeh-Bajgiran et al., 2018). 

The SBW is a native forest pest of eastern North America causing widespread tree 

mortality and loss of productivity in balsam fir (Abies balsamea (L.) Mill.) and spruce (Picea 

spp.) and the severity of damage during its periodic outbreaks is attributed to the availability of 

mature balsam fir (Blais, 1983). 

The history of SBW outbreak in southern Quebec (QC) and New Brunswick (NB) in 

Canada over the past 250 years as studied by Blais (1983) and over the last 400 years as 

reviewed by Boulanger et al. (2012) shows the interval between outbreaks has decreased after 

the 20th century. As per the studies aforementioned, the intervals fell from a range of 42-75 years 

(before the 20th century) to 19-34 years during the 20th century. Looking at the history of SBW 

infestations, six SBW outbreaks occurred in this region before 1983, among which all were 

severe except the 1949 outbreak (Blais, 1983). The dendrochronological study of five old-growth 

stands and 12 heritage buildings from Boulanger et al. (2012) over the past 400 years showed the 

potential occurrences of nine outbreaks, including three additional uncertain ones. The eruptions 
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were restricted to a small area before the 20th century, but after that, the outbreaks were more 

widespread and severe (Kettela, 1983). A study in eastern Canada in 1980 showed that the young 

balsam fir and spruce species attained a similar degree of mortality as that of mature stands 

which was higher when compared with the previous outbreaks (Blias 1981). Following the past 

trend of cyclic SBW attack, the recent outbreak has already started in 2006 in Quebec defoliating 

over nine million ha of the forest by the summer of 2019 (Ministère des Forêts de la Faune et des 

Parcs. 2019). Also, the defoliation is moving southwards from Quebec towards the northern part 

of NB and the state of Maine in the U.S.A. (MacLean et al., 2019).  

In addition to field surveys that are tedious and expensive to conduct, traditionally aerial 

surveys are used to detect and classify the severity of SBW defoliation at the landscape scale in 

North America. The overall accuracy of aerial surveys is variable based on the differences in 

mapping techniques in Canada and the U.S.A., which can range from a rather fine to coarse 

spatial resolutions (MacLean and MacKinnon, 1996; Hennigar et al., 2013). For the current 

outbreak starting in 2006 in the Quebec region, the aerial survey of defoliated forest area is 

continuously conducted on an annual basis by the Ministry of Forests, Fauna and Parks *-

(Ministère des Forêts de la Faune et des Parcs) (Huang, 2015). Aerial surveys have already been 

started in NB also for the detection of the current outbreak (MacLean et al., 2019). Given that the 

existing SBW population has not yet caused defoliation in Maine, ground monitoring is currently 

conducted using field surveys only. 

1.2 SBW Phenology and Defoliation Detection 

SBW life stages per year include egg, larva (with six larval instars: young larvae (L1 and 

L2) and old larvae (L3 to L6)), pupa, and adult (Figure 1.1).  In the case of eastern North 

America, SBW moths emerge from mid-July to early August, with no feeding of L1-L2 until 
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spring. From about early June to early July, larvae feed on the current-year shoots, if current-year 

shoots become depleted, the larvae will feed on older foliage (Royama, 1984). L5 and L6 instars 

of SBW consume about 95% of the host needles, while other larval instars consume less than 5% 

altogether (Miller, 1977). The SBW uses locations on various parts of trees like male flower 

cups, beneath buds and bark scales, amongst lichens or in bark crevices to hibernate in the form 

of tiny larvae, which emerge in spring as soon as the buds start to expand (Rose and Lindquist, 

1985). The larvae then begin attacking the fresh needles, unopened buds or when available, male 

flowers. Later they feed on the expanding buds, and as the new shoots grow, they spin a fine 

silk-like structure between shoots. The feeding pattern goes from first new needles and then to 

old needles, and if heavy, the scorched reddish appearance of foliage can be easily detectable 

using aerial survey (Rose and Lindquist, 1985). During the feeding season of SBW, the branches 

and canopy of the defoliated trees gain a distinct red color. While feeding on balsam fir-spruce 

leaves, SBW forms a web-like feeding tunnel around several of the terminal twigs and partially 

consumed needles become entrapped in this webbing, then dry, and turn a reddish color (Leckie 

et al., 1992).  
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Figure 1.1. SBW life cycle (Credit: Michel Cusson,    

http://rclevesque.ibis.ulaval.ca/en/home/research-area/begab-budworm-ecogenomics-

applications-and-biotechnology/). 

 

SBW larvae strongly prefer to feed only on the current-year foliage of balsam fir and 

spruce, and feed on older age-classes of foliage only if all current-year foliage is consumed 

(Royama 1984). Generally, we can see two categories of defoliation related to this pest, current-

year/annual defoliation and cumulative defoliation. Current-year defoliation is the amount of leaf 

damage occurring in a particular year, whereas cumulative defoliation is the result of multiple 

years of defoliation happening in an area. Current-year defoliation is estimated by determining 

the percentage of the current foliage age class that is consumed by SBW and is correlated with 

reddish discoloration of foliage. This provides information on the location and severity of 

defoliation and distribution of budworm populations in any year (Hall et al., 2016; Rahimzadeh-

Bajgiran et al., 2018). 
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The optimum visual window to detect and map current-year defoliation is short and 

persists only for about 2-3 weeks. This time period, as mentioned above, relates to the redness of 

the defoliated needles, which often fall because of rain and wind or become less pronounced in 

color after about two weeks (MacLean and MacKinnon, 1996). Therefore any survey should be 

conducted during this time frame before the needles dry and fall off. Generally, the estimation of 

current-year defoliation on a landscape level is performed using aerial sketch maps (ASMs). The 

accuracy of ASMs depend upon various factors like observer’s ability to recognize the 

defoliation severity and identify the location, timing of the surveys, weather conditions and 

nature of the defoliation (Kettela, 1982). The accuracy of the ASMs also can differ widely from 

person to person (Waters et al., 1958), and showed lower accuracy while detecting lower level 

defoliation than that of higher severity level (Taylor and MacLean, 2008). This technique also 

demands considerable human resource and is time-consuming (Huang, 2015). 

1.3 Satellite Remote Sensing Sensors for Vegetation Studies  

There is a wealth of both open source as well as commercial satellite remote sensing 

sensors such as passive optical multispectral/hyperspectral and active microwave sensors 

available to study vegetation characteristics and change detection. Landsat satellite series have a 

very long history of image availability from 1972 and have been used extensively for vegetation 

studies. These satellites fall into medium resolution optical multispectral systems making them 

very useful for vegetation studies at local and regional scales. The latest Landsat mission 

(Landsat 8) carrying Operational Land Imager and Thermal InfraRed Sensor provides data in 11 

regions of the electromagnetic spectrum (11 bands) including bands in visible, near-infrared, 

short wave infrared and thermal regions providing data with a spatial resolution ranging from 15-

100 m and a temporal resolution of 16 days. Moderate Resolution Imaging Spectroradiometer 
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(MODIS) is another passive optical multispectral satellite providing high temporal resolution (up 

to one to two days) but coarser spatial resolution (250 m-1000 m) data over 36 spectral bands 

(0.4µm-14.4µm). Among two MODIS satellites currently in space, MODIS-Terra was launched 

in 1999 while MODIS-Aqua was launched in 2002. Both Landsat and MODIS satellite imagery 

are free-of-charge and publicly available. Compared to Landsat, MODIS data are more suitable 

for landscape scale regional and global studies and have been used successfully for vegetation 

amount mapping and stress detection (Jones and Vaughan, 2010; Rahimzadeh-Bajgiran et al. 

2012b).    

Satellite Pour l’Observation de la Terre (SPOT) is a French commercial optical 

multispectral satellite launched in 1986 and initially provided spectral bands at 20 m spatial 

resolution. The latest missions SPOT-6 and SPOT-7 were launched in 2012 and 2014, 

respectively. Both of these satellites provide data over five bands (one panchromatic and four 

multispectral bands at 1.5 m and 6 m spatial resolutions, respectively). The satellite has a 

temporal resolution of a single day. Other than this, several other very high-resolution 

multispectral data providing commercial satellites available are WorldView, Earth Resource 

Observation Satellite (EROS), RapidEye, QuickBird, IKONOS, etc. (Giri et al., 2013). 

Sentinel-2 is a newly introduced mission from European Space Agency (ESA) to collect 

optical imagery around the whole globe at a high spatial resolution of 10-60 m. It collects 

multispectral data over 13 regions of the electromagnetic spectrum including three new bands on 

vegetation red-edge region (desirable to detect vegetation changes). The system contains two 

twin satellites (Sentinel-2A launched in 2015, and Sentinel-2B launched in 2017) which help 

reduce the revisit time of the satellites to less than five days. The availability of Sentinel-2A and 
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2B data is viewed as an invaluable resource over other available remote sensing data sources due 

to its high resolution (spectral, spatial, and temporal) and free access (Grabska et al., 2019).   

In addition to optical sensors, synthetic aperture radar (SAR) active remote sensing 

system that employ the microwave spectral region have been identified as useful tools in 

vegetation studies (see Section 1.4). The data acquisition by SAR sensors is performed at 

different polarizations. Polarization is simply the geometric orientation of the electric field when 

an electromagnetic wave such as light propagates. If the electric field is oriented vertically 

perpendicular to the direction of wave propagation, it is said to be vertically (V) polarized. If it is 

oriented horizontally perpendicular, then it is horizontally (H) polarized (Damask, 2004).  

The Sentinel-1 is an active remote sensing satellite platform comprising of a set of two 

satellites, Sentinel-1A, and 1B were launched in 2014 and 2016, respectively and are 

continuously providing data at a spatial resolution down to 5 m and temporal resolution of less 

than 12 days (Barra et al., 2017). They are different than optical sensors like multispectral 

instrument of Sentinel-2 in the sense that they collect data throughout 24 hours, all-weather 

operational, and provide C-band (long wavelength of 5-8 cm) SAR data acquired in dual 

polarization mode (VH and VV amplitude bands) (Torres et al., 2012).  

1.4 Spectral Information for Sensing Vegetation Properties 

Spectral bands are the individual layers of data provided by the sensors over various 

regions of the electromagnetic spectrum. The number of spectral bands provided by different 

sensors differs from each other and can cover different ranges. Spectral vegetation indices (SVIs) 

are developed from mathematical operations between the available spectral bands of optical 

multispectral or hyperspectral data based on the relationships between different spectral bands. 

SVIs have been extensively used for various vegetation biophysical characteristics estimation 
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such as the amount of chlorophyll and water content and vegetation vigor (Jones and Vaughan, 

2010). The sensors onboard Landsat and MODIS satellites with fewer spectral bands are 

applicable for the derivation of traditional but widely used SVIs such as Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalized Vegetation 

Infrared Indices (NDIIs) (Townsend et al., 2012; Rahimzadeh-Bajgiran et al., 2018). The 

shortcomings of these traditional SVIs to monitor subtle changes in tree canopy can be overcome 

using Sentinel-2 images which allow us to calculate a number of red-edge SVIs (sensitive to 

minute vegetation changes) like Chlorophyll Red-Edge (ClRE), Inverted Red Edge Chlorophyll 

Index (IRECI), Modified Simple Ratio (MSR), Red-Edge NDVI, and many more (Majasalmi 

and Rautiainen, 2016; Hawrylo et al., 2018) as will be discussed in Chapters 2 and 3. The 

numerical values of SVIs vary, but for common normalized SVIs like NDVI and EVI range from 

-1 to +1. For NDVI, the index value of one is interpreted as a high vegetation amount while 

values under 0.1 are interpreted as non-vegetated features (Weier and Herring, 2000). 

The Sentinel-1 sensor sends the C-band signals to the earth surface and records the signal 

backscatter. Generally, there are five band frequencies, namely i) P-band, ii) L-band, iii) S-band, 

iv) C-band, and v) X-band where SAR operates and have been widely used in vegetation 

mapping. P, L, and S bands are greater in wavelength (~68 cm, ~23.9 cm, and ~9.1 cm 

respectively) than that of C-band (~5.6 cm) while X-band is even shorter in wavelength (~3.1 

cm) (Van Beijma et al., 2014; Main et al., 2016). The radar of Sentinel-1 is capable of 

transmitting the signals in both horizontal and vertical polarizations and then receiving them in 

both of those polarizations (European Space Agency, 2016). As SAR waves can penetrate inside 

canopy, they are capable of providing vegetation structural information and can improve the 
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estimation of vegetation parameters such as leaf area index and biomass when incorporated with 

optical data (Sano et al., 2005). 

1.5 Monitoring Pest-induced Defoliation using Optical Remote Sensing 

Forest pests control is a critical component of successful forest management (Silva et al., 

2013). Ground-based survey of defoliated forest stands is costly and sometimes unaffordable and 

might be impossible to do it at the landscape scale. In addition, the exact location and damage 

severity is essential for the preparation of health management plans of the host trees against the 

pests. Remote sensing techniques can provide invaluable information about forest health 

condition to the forest managers (Silva et al., 2013; Hall et al., 2016). Switching the currently 

practiced surveying/monitoring methods to remote sensing techniques, information can be 

summarized for a vast area into a few satellite-derived maps with a high temporal, spatial 

resolution, making it useful for monitoring landscape level disturbances such as SBW defoliation 

(Adelabu et al., 2012). Further, the availability of sufficient satellite image acquisition sensors 

with varying resolutions provides us with multi-scale and multi-stage monitoring of insect-pest 

borne forest hazards (Silva et al., 2013). The use of ASMs has a long history for the monitoring 

of pest-induced stresses in North American region, but it demands highly experienced observers 

and an aircraft from which the observer can record the defoliated areas from non-defoliated ones 

(Ciesla, 2000). This method is rather costly, human resource intensive and subjective. Also, 

adverse weather during the time of flight might undermine the quality of data obtained (Hall et 

al., 2016).  

Remote sensing technologies were thought to be very expensive, had technological 

incapabilities, difficulties in the use and interpretation of data, and were unable to exactly 

respond to the issues on forest health if we look back to the past endeavors (Peterson et al., 
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1999). Recently, a large body of remote sensing sensors and platforms have become available 

that can help us overcome the shortcomings related to the unavailability of optical remote 

sensing imagery and their costs (Kuenzer et al., 2014). Remote sensing technologies for 

defoliation detection have evolved with time from the availability of Landsat series (started from 

1972) with coarse temporal resolution to coarse spatial but high temporal resolution MODIS data 

(satellites launched in 1999 and 2002) to the availability of Sentinel-2 data (satellites launched in 

2015 and 2017) which provide both appropriate spatial and temporal resolutions. Together with 

these events, a large number of high-resolution private satellites like IKONOS (launched in 

1999), QuickBird (launched in 2001), and SPOT (started in 1986) were also added.  

Eklundh et al. (2009) used MODIS time-series data to map the defoliation caused by pine 

sawfly (Neodiprion sertifer) in Scots pine (Pinus sylvestris) stands and found that MODIS data 

are good for locating the damage but not for its quantification. Similarly, De Beurs and 

Townsend (2008) used MODIS-based SVIs to estimate the defoliation caused by gypsy moth 

(Lymantria dispar L.) and concluded that the data were useful to monitor defoliation in larger 

patches of forest (greater than 0.63 km2). SPOT images also have a long history of use in insect-

induced defoliation mapping. Ciesla et al. (1989) used the color composite of SPOT-1 images to 

map the defoliation caused by gypsy moth in south central Pennsylvania and western Maryland. 

They attributed gray and black coloration in the image to be defoliated areas. Among all the 

available sensors, the long history of the Landsat series contributes most in the field of pest 

damage evaluation (Hall et al., 2006; Townsend et al., 2012; Hall et al., 2016).  

Even though a variety of sensors is available, they all have their own advantages and 

disadvantages. Coarse-resolution sensors like that of MODIS are suitable to be used in large 

patches of continuous forests and do not perform well in fragmented forests (Eklundh et al., 
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2009). Although commercial satellites provide high-resolution data to be used even in 

fragmented areas, they are very costly and cannot be used for regional level monitoring (Jepsen 

et al., 2009). As a solution to the above-mentioned issues, Landsat series with a spatial resolution 

of 30 m and a swath width of 185 km are viewed as a data source for stand-level pest monitoring 

but again the temporal resolution of 16 days will be a hindrance to accurately detect pest induced 

changes over a tree canopy (Hall et al., 2016). Therefore, Sentinel-2 datasets (Sentinel-2A and -

2B) with a temporal resolution of fewer than five days, the spatial resolution of 10-60 m, a swath 

width of 290 km, and availability of three additional bands in the red-edge position offer desired 

improvements over Landsat series for insect and pest-related defoliation monitoring. The 

presence of three bands in the red-edge region of electromagnetic spectrum provided by 

Sentinel-2 data will be useful for the detection of the stress-induced spectral signature shift in 

vegetation and help us with early detection of forest damage (Silva et al., 2013).  

There is no universal method for detecting defoliation in the tree using remote sensing 

techniques (Tewkesbury et al., 2015). Both single-date and multiple-date images could be used 

for forest defoliation detection but the use of multiple-date imagery is more reliable (Hall et al., 

2016). A review of remote sensing techniques applied for change detection caused by insects by 

Hall et al. (2016) summarized current methods for defoliation detection into five methods: visual 

analysis, image algebra, classification, spectral mixture analysis, and time series analysis, among 

which image algebra (Hall et al., 2006) is the one used widely. Townsend et al. (2012) also used 

the difference between two images (pre-outbreak and post-outbreak) from different dates to 

quantify gypsy moth-induced defoliation. 

In the discipline of forest health and specifically defoliation detection, research on SBW 

defoliation monitoring utilizing images from space-borne satellites are very limited and to date, 
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no research has been conducted using Sentinel-2 imagery. However, the capability of Sentinel-2 

images in monitoring forest health have been suggested in several other studies (Brovkina et al., 

2017; Hawryło et al., 2018; Eschen et al., 2019). Rahimzadeh-Bajgiran et al. (2018) utilized 

Landsat imagery and SVIs for the successful detection and severity classification of annual SBW 

defoliation in Quebec and Maine. They further suggested the use of high-resolution Sentinel-2 

imagery for this purpose. Fan (2006) also reported the usefulness of multi-temporal Landsat 

images in the classification of cumulative SBW defoliation. Other than multispectral data, Huang 

(2015) used hyperspectral imagery (Hyperion data) to map the SBW defoliation in Quebec.  

1.6 Host Species Mapping using Optical and SAR Remote Sensing 

The application of remote sensing techniques for forest composition mapping has 

attracted a lot of attention in the research community. Research on species composition is 

emerging more after the launch of Sentinel-2 satellites, which provide finer spectral and spatial 

resolutions that were limiting other open access data such as those from Landsat and MODIS 

(Puletti et al., 2018). White et al. (1995) carried out an unsupervised classification of forest at 

Lassen Volcanic National Park in California into four classes (pine, fir, non-forest, and non-

vegetation) utilizing Landsat TM data with an accuracy of 73%. Species classification studies are 

also performed using high-resolution data from commercial satellites such as WorldView 

(Immitzer et al., 2012), RapidEye (Adelabu et al., 2013) and IKONOS (Carleer and Wolff, 

2004). 

SBW is strictly host specific and attack balsam fir and spruce species. Hence, the 

mapping of these species is vital to assess the vulnerability of the forest towards SBW attack. 

Among the few studies of SBW host species mapping using remote sensing, Morris and Bishop 

(1951) suggested the use of aerial photographs and ground data in combination for rapid rating 
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of forest vulnerability to SBW damage. Wolter et al. (2008) also utilized remote sensing 

techniques (Landsat imagery and derived SVIs) to map the distribution and abundance of SBW 

host species in northern Minnesota and Ontario. They used multi-temporal and multi-seasonal 

Landsat images for landscape-level outbreak modelling and found it to be effective even in the 

spatially heterogeneous forests. This study utilized a partial least square regression method to 

develop a model for host species mapping using 128 ground truth sample plots (basal area by 

species measured during the period of 2003-2004) and Landsat images (2000-2003). The model 

built was finally employed to predict the basal area for four forest components which were fir, 

spruce, deciduous and coniferous trees with R2 values of 0.64, 0.88, 0.86, and 0.86, respectively. 

Since Sentinel-2 data are comparatively newer, there has not been any study conducted 

on SBW host species mapping using these data; however, there is an abundance of studies using 

Sentinel-2 for tree species and agricultural crops classification (Immitzer et al., 2016; Karasiak et 

al., 2017; Nelson, 2017; Puletti et al., 2017; Persson et al., 2018; Grabska et al., 2019). Immitzer 

et al. (2016) obtained satisfactory results for tree species classification in central Europe with 

single-date Sentinel-2 imagery, but the use of multi-temporal Sentinel-2 images was suggested to 

perform better for discriminating the forest species in a heterogeneous setting to capture the 

phenological differences between different tree species which is a key for species discrimination 

(Puletti et al., 2017; Persson et al., 2018; Grabska et al., 2019). Further, the combination of SVIs 

with spectral bands was found to be very useful for distinguishing mixed forests from pure 

forests, and the model performance during species classification increased significantly with the 

inclusion of SVIs. Therefore it is highly recommended to use spectral bands in combination with 

SVIs over the use of individual bands alone (Puletti et al., 2017; Erinjery et al., 2018).   
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SAR images were previously used mainly for land-use classification (Kurosu et al., 1999; 

Kurosu et al., 2001; Li and Yeh, 2004). Researchers have shown interest and obtained promising 

results in using this technology in combination with multi-spectral imagery for the classification 

of individual tree species (Yu et al., 2018), vegetation types (Sano et al., 2005; Eringery et al., 

2018), monitoring of invasive species (Rajah et al., 2019), and habitat assessment (Schmidt et al., 

2018). Erinjery et al. (2018) used the combination of Sentinel-2 and Sentinel-1 SAR data to map 

the tropical rainforest of the Western Ghats and obtained an accuracy of up to 82% with a 

Random Forest (RF) model. Similarly, Sano et al. (2005) used optical imagery (Landsat-5 SVIs) 

with SAR (Japanese Earth Resources Satellite-1 (JERS-1)) images and attained an encouraging 

result with an accuracy of 84% while discriminating the Brazilian savanna vegetation. Schmidt et 

al. (2018) used the combination of Sentinel-2 optical imagery and Sentinel-1 SAR imagery to 

assess the habitat quality by mapping vegetation cover in Germany with an overall accuracy of 

up to 76% using Support Vector Machine (SVM). The increasing trend and success of using 

SAR imagery combined with optical imagery for vegetation studies inspired its application in the 

current study.  

1.7 Research Problem 

As reviewed in the literature, the occurrence of SBW is a cyclic phenomenon. History 

suggests periodic recurring outbreaks and resulting massive losses in the northeastern forests of 

America. The current practice of SBW defoliation monitoring using ASMs is not only costly but 

also time-consuming, human resource-intensive, and subjective. Remote sensing technology can 

significantly enhance or supplement ASM data for defoliation detection and severity mapping. 

However, Landsat data with the absence of red-edge bands are restricted to the derivation of very 

few conventional SVIs only and cannot provide us with the new pool of SVIs which are more 
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sensitive to slight changes in leaf pigment content, water content and other bio-physical 

parameters. Also, Landsat series have the temporal resolution of 16 days which makes the 

regular monitoring of forest health difficult. Therefore the use of new satellite data (Sentinel-2) 

is expected to bring better results in the field of SBW defoliation monitoring with higher spatial, 

spectral and temporal resolution than what can be obtained from Landsat. It is expected that light 

defoliation can be better detected using Sentinel-2 imagery. 

The occurrence of SBW outbreak and host species availability are interdependent upon 

each other, and it is essential to keep track of the abundance of host species to control SBW 

attack. It was challenging to map individual tree species with the other open-source satellite data 

such as MODIS and Landsat, and high-resolution commercial satellite data were costly and thus 

limited only to the small patches of forests. With the limited research in SBW host-species 

mapping and the unavailability of reliable host abundance information (with the prevalence of 

SBW attacks), it is challenging to predict the occurrence of the attack and act ahead of time to 

minimize the loss. Since the launch of Sentinel-2 satellites, researchers have been provided with 

a great opportunity to map tree species more effectively (having access to finer spatial and 

spectral information). In addition, the high temporal resolution of less than five days of Sentinel-

2 data ensures the availability of a greater number of cloud-free image time-series which is 

essential to capture the phenology differences between the tree species.  

1.8 Research Objectives 

To address the problems mentioned above, the specific objectives of our study are: 

 SBW defoliation detection and severity classification: 

 To assess the potential of Sentinel-2 derived SVIs, and spectral bands, especially red-

edge bands and SVIs for light SBW defoliation detection and severity classification. 
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 To investigate the usefulness of multi-year images over single-year imagery for both 

defoliation detection and host species classification. 

 To examine the usefulness of site variables (elevation, slope, aspect) for defoliation 

detection  

 To evaluate the performance of different non-parametric algorithms for SBW 

defoliation modeling and create the best model 

 SBW host species classification: 

 To investigate the effectiveness of Sentinel-1 and Sentinel-2 satellite imagery alone 

or in combination for SBW host species classification. 

 To examine the usefulness of site variables (elevation, slope, aspect, soil types, TWI, 

projected climate site index for year 2030 and iBGI) for host species classification.   

 To create a model for SBW host species mapping  

1.9 Thesis Structure and Overview of Each Chapter 

This thesis is divided into four chapters, as shown in Figure 1.2. Chapter 1 provides an 

introduction into the background of SBW and its outbreaks, traditional and remote sensing 

techniques for pest-induced defoliation detection with the focus on SBW defoliation detection, 

the importance of mapping SBW host species and the application of remote sensing for tree host 

species mapping. The presented information in this chapter provides a backgrounds of the 

research and methods used in Chapters 2 and 3. Chapters 2 and 3 are written in the format of a 

manuscript and could be read independently from other chapters. Due to this reason, there could 

be some information overlap among the chapters. Chapter 1 also summarizes the overall research 

problems and thesis objectives.  
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Chapter 2 focuses on the assessment of the capabilities of different Sentinel-2 based 

SVIs, single spectral bands and available site variables to build a robust model using RF and 

SVM algorithms for the detection and classification of SBW defoliation. The chapter deals with 

two approaches for defoliation detection and classification, namely single-year and multiple-year 

defoliation detection/classification. 

Chapter 3 investigates the potential of both Sentinel-1 and Sentinel-2 variables in 

discriminating the tree host species of SBW. Different models were created for Sentinel-1 

variables plus site variables and Sentinel-2 variables plus site variables. Also, all these variables 

were combined to evaluate their performance in a single integrated model.  

Finally, the last chapter integrates Chapters 2 and 3 and concludes the entire research 

results of this thesis. This chapter seeks to examine the usefulness of integration of defoliation 

detection and host species distribution results to monitor the SBW defoliation better and mitigate 

probable losses from the outbreak.  
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Figure 1.2. The structure of this thesis 
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CHAPTER 2 

 SENTINEL-2 BASED PREDICTION OF SPRUCE BUDWORM DEFOLIATION USING 

RED-EDGE SPECTRAL VEGETATION INDICES 

2.1 Introduction  

Insects and diseases are the most extensive disturbance agents in forests of Canada and 

the U.S., affecting millions of hectares per year (Tkacz et al., 2007). Insect and disease damage 

can cause defoliation at different scales from individual trees to landscapes, leading to mass 

mortalities depending on the type of host trees and their distribution (Brovkina et al., 2017). 

Accurate data on forest pest-induced damage extent and severity is essential for pest control and 

early intervention and consequently host tree protection. This information is also needed for pest 

risk prediction, a better estimation of economic impacts of outbreaks, quantifying wood supply 

losses, identifying changes in wildlife habitat, and revising strategic forest management plans.  

The eastern spruce budworm (Choristoneura fumiferana Clem.; SBW) is a native pest 

species of North America that causes widespread defoliation of balsam fir (Abies balsamea [L.] 

Mill.) and spruce (Picea spp.) trees (MacLean 1984). The pest erupts periodically approximately 

every three decades in spruce-fir forests, resulting in defoliation of millions of hectares 

(MacLean, 1980; MacLean and MacKinnon, 1996). The most recent severe eastern SBW 

outbreak began in Quebec in 2006 which defoliated over nine million ha of forestland by the 

summer of 2019 (Ministère des Forêts de la Faune et des Parcs., 2019) and is gradually moving 

towards New Brunswick (NB) and the state of Maine in the U.S.A. (MacLean et al., 2019).  

The mortality and severe growth reductions resulting from SBW outbreaks have 

motivated researchers to track and detect SBW defoliation and monitor its impacts on forest 

ecosystems (MacLean, 1984). Rather than continuing on the traditional reactive foliage 

protection using insecticides approach to keep trees alive, forest managers are currently testing 
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early intervention techniques to detect and suppress the SBW hot spots before substantial 

defoliation occurs (MacLean et al., 2019). For the early intervention technique, intensive and 

accurate landscape level monitoring of the forest and early detection of low-level SBW 

defoliation is desired but has been challenging to achieve (Rahimzadeh-Bajgiran et al., 2018). 

SBW larvae strongly prefer to feed on the current-year foliage of host trees but it is the 

repeated defoliation over several years that kills trees (MacLean, 1980). Therefore defoliation 

can be classified as both current year/annual defoliation (on the newest age-class of foliage) and 

cumulative defoliation on all age-classes of foliage. The focus of our study was on current year 

defoliation, which is applicable to an early intervention approach to control SBW related forest 

losses and can also serve as an input into decision support systems (MacLean et al., 2019). 

Generally the estimation of current year defoliation on a landscape level is performed using 

aerial surveys, with accuracies dependent on the observers’ ability to recognize the defoliation 

severity and identify the location, and also influenced by weather conditions. Also the accuracy 

of aerial surveys of SBW defoliation is subjective and it is difficult to discriminate nil (0-10%) 

from low (11-30%) defoliation classes (MacLean and Mackinnon, 1996).   

Since the year 2000, many remote sensing sensors and platforms have become available 

that can be used for pest management applications. Compared to aerial surveys, detection using 

satellite imagery may be less costly, less subjective and less laborious (Hall et al., 2016; 

Rahimzadeh-Bajgiran et al., 2018). Although the capability of the newly launched Sentinel-2A 

and -2B satellite imagery in monitoring forest health has been demonstrated in recent studies 

(Hawryło et al., 2018) for the detection of Scots pine (Pinus sylvestris L.) defoliation, no work 

has been published dealing with the applications of this sensor for SBW annual defoliation 

detection. Given the technical advantages of Sentinel-2 satellites over Landsat (higher spectral, 
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spatial and temporal resolution) they are expected to be more effective for mapping light 

defoliation. The objective of this research was to evaluate the performance of red-edge spectral 

vegetation indices (SVIs) derived from Sentinel-2 imagery for the detection and classification of 

lightly defoliated spruce-fir forests of northern NB.  

2.2 Materials and Methods 

2.2.1 Study Area and Field Data 

The study area is located in northern NB, Canada, where SBW defoliation started in 2014 

(MacLean et al., 2019). The forest consists of the elements of both northern boreal coniferous 

forests and deciduous forests from the south. The forest experiences a milder winter and cooler 

summer, although NB is a maritime province (Simmons et al., 1984). The primary host species 

found in the study area are white spruce (Picea glauca (Moench) Voss), black spruce (Picea 

mariana [Mill] BSP), red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea [L.] Mill.). 

Figure 2.1 shows the location of the study area in NB, Canada. 

Field data were collected during the SBW defoliation surveys of New Brunswick 

Department of Energy and Resource Development in 2018. The data were from a road-side 

survey, where each sample point was a sample of one mid-crown branch which are later assigned 

into broad defoliation classes. A total of 236 sample points divided into five defoliation classes 

(1=no-defoliation, 2= (1-5) % defoliation, 3= (6-30) % defoliation, 4= (31-70) % defoliation and 

5= >70% defoliation) were used for model training (2/3rd of samples) and validation (1/3rd of 

samples). Most of the samples were in Class 2 and 3 (132 and 54 samples, respectively) as the 

defoliation level was light in general. Classes 1, 4 and 5 comprised of three, 40, and seven 

samples, respectively.  
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Figure 2.1. The extent of the study area in NB, Canada. 

2.2.2 Remote Sensing Data Selection, and Pre-processing 

To detect SBW annual defoliation using remotely sensed imagery, information on SBW 

phenology is essential. SBW has six larval instars (L1 through L6) before it pupates. During 

feeding, SBW larvae forms a web-like feeding tunnel around several terminal twigs and partially 

consumed needles become entrapped in this webbing, then dry, and turn a reddish color (Leckie 

et al., 1992). In 2018 in our study area, peak SBW L5 occurred at mid-June, peak L6 occurred in 

late June, peak pupae occurred around July10, and peak redness of the forest due to defoliation 

occurred between peak L6 and peak pupae. L5 and L6 instars of SBW consume about 95% of the 

host needles while other larval instars consume less than 5% altogether (Miller, 1977). 
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Therefore, six images dated June 26 and July 21 2018 and July 1st 2016 (two images per date) 

were selected to represent before and after defoliation conditions in 2018 and conditions two 

years before. Cloud-free Sentinel-2 Level 1C Top-Of-Atmosphere reflectance products (L1C-

TOA) were collected from https://earthexplorer.usgs.gov/. Using Sentinel-2 SNAP toolbox the 

L1C-TOA imagery were converted to L2A surface reflectance products.  

2.2.3 Defoliation Detection Approaches 

SVIs have been used in previous remote sensing research to detect and estimate pest-

induced defoliation and damage using Landsat and MODIS imagery (Townsend et al., 2012; 

Hall et al., 2016). Recently the use of a combination of SVIs for SBW defoliation detection was 

suggested by Rahimzadeh-Bajgiran et al. (2018). Additionally, the potential use of red-edge 

SVIs has been suggested instead of traditional SVIs for pest-induced defoliation detection (Hall 

et al., 2016). Sentinel-2 data enable mapping defoliation using similar spectral bands to those of 

Landsat; however, they have several advantages including i) higher spatial (10-20 m) resolution, 

ii) greater temporal (at least five days with A and B satellites combined) resolution, and iii) three 

additional spectral bands in the red-edge region. A total of 29 predictor variables were used to 

build detection and classification models using Random Forest (RF) and Support Vector 

Machine (SVM) algorithms with nine single spectral bands and 20 SVIs using L2A products at 

20 m resolution (Table 2.1). In addition, elevation data were also used as a site variable for 

modeling based on Chen et al. (2020 in Review) and Chen et al. (2018). 
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Table 2.1. Sentinel-2 derived predictor variables used for the development of defoliation 

detection and classification models. 

Acronym (Band/SVIs)*  Formula Reference 

b2: Blue (490 nm) 

b3: Green (560 nm) 

b4: Red (665 nm) 

b5: Red-Edge (705nm) 

b6: Red-Edge (740nm) 

b7: Red-Edge (783 nm) 

b8a: NIR (865 nm) 

b11: SWIR (1610 nm) 

b12: SWIR (2190 nm) 

------ ------ 

WDRVI ((0.01×b7)-b4)/((0.01×b7+b4)+ ((1-

0.01)/(1+0.01))) 

(Majasalmi and 

Rautiainen, 2016) 

S2REP 705+35× ((((b7+b4)/2)-b5)/(b6-b5)) (Guyot and Baret, 1988) 

NDVI (b8a-b4)/(b8a+b4) (Rouse et al., 1974)  

NDVI45 (b5 - b4)/(b5 + b4) (Delegido et al., 2011) 

NDVI65 (b6 - b5)/(b6 + b5) (Gitelson and Merzlyak, 

1994) 

MTCI (b6-b5)/(b5-b4) (Dash and Curran, 2007) 

MSR ((b7/b4)-1)/√((b7/b4)+1) (Chen, 1996) 

IRECI  (b7-b4) × (b6/b5) (Clevers et al., 2000) 

GNDVI (b8a-b3)/(b8a+b3) (Gitelson et al., 1996)  

EVI8  2.5× (b8a-b4)/(1+b8a+6×b4-7.5×b2) (Huete et al., 2002) 

EVI7  2.5× (b7-b4)/(1+b7+6×b4-7.5×b2) (Majasalmi and 

Rautiainen, 2016) 

ClRE (b7/b5)-1 (Gitelson et al., 2003) 

NDII11  (b8a-b11)/(b8a+b11) (Hardisky et al., 1983)  

NDII12  (b8a-b12)/(b8a+b12) (Key et al., 2002)  

ARI1  (1/b3)-(1/b5) (Gitelson et al., 2001)  

ARI2 (b8a/b3)-(b8a/b5) 

CRI1 (1/b2)-(1/b3) (Gitelson et al., 2002)  

 CRI2 (1/b2)-(1/b5) 

MCARI 1-((0.2) × (b5-b3)/(b5-b4)) (Hawrylo et al., 2018)  

Red-Edge NDVI (b8a-b6)/(b8a+b6) (Gitelson and Merzlyak, 

1994) 

*: NIR: Near Infrared, SWIR: Shortwave Infrared, WDRVI: Wide Dynamic Range 

Vegetation Index, S2REP: Sentinel-2 Red Edge Position, NDVI: Normalized Difference 

Vegetation Index, MTCI: MERIS Terrestrial Chlorophyll Index, MSR: Modified Simple Ratio, 

IRECI: Inverted Red Edge Chlorophyll Index, GNDVI: Green NDVI, EVI: Enhanced Vegetation 

Index, ClRE: Chlorophyll Red Edge, NDII: Normalized Difference Infrared Index, ARI: 

Anthocyanin Reflectance Index, CRI: Carotenoid Reflectance Index, MCARI: Modified 

Chlorophyll Absorption in Reflectance Index 
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We used RF and SVM as classifiers because of their encouraging results in several 

remote sensing and insect- forest disturbance studies (Pal, 2005; Hawryło et al., 2018; 

Rahimzadeh-Bajgiran et al., 2018). Red edge SVIs were used to estimate the chlorophyll content 

in leaves (Gitelson and Merzlyak, 1994; Rahimzadeh-Bajgiran et al., 2012a), carotenoid and 

anthocyanin indices to estimate the stress pigments in plants (Gitelson et al., 2002), near-infrared 

(NIR) indices to measure leaf structure and amount, and short wave infrared (SWIR) indices to 

assess leaf water content (Townsend et al., 2012; Rahimzadeh-Bajgiran et al., 2018). 

The RF is based on an ensemble decision tree (Pal, 2005) while the SVM (Lin, 2004) is 

based on the principle of maximization of the margin between the classes using training data by 

finding a hyperplane that separates the groups best from each other. Defoliation can be detected 

by estimating changes in reflectance in defoliated forest stands compared with their pre-

defoliation condition (Townsend et al., 2012; Rahimzadeh-Bajgiran et al., 2018). Defoliation 

detection for this study was conducted using two approaches: i) evaluating the change occurring 

in a single year, assuming the forest before the onset of activity of SBW as the healthy state and 

the forest after being defoliated as the defoliated state (here June 26 2018 as healthy state and 

July 21 2018 as defoliated); and ii) using the change occurring over multiple years where the 

year before the outbreak was taken as healthy year and the year after the outbreak was taken as 

defoliated year (here July 1st 2016 as healthy state and July 21 2018 as defoliated). 

2.3 Results 

2.3.1 SBW Defoliation Detection and Classification at 20 m using RF and SVM  

Figure 2.2 shows the errors for five single-year defoliation detection model formulations 

using RF to discriminate between defoliated and non-defoliated (less than 5%) states. The five 

model formulations included all 29 variables, only the 20 SVIs, the best 10 variables, the best 5 
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variables, and the best five variables plus elevation. The combination of the best five variables 

(EVI7, MCARI, IRECI, NDII11 and MSR, respectively based on mean decrease in accuracy 

(MDA) score) reduced the model out-of-bag (OOB) error to 20%, while the inclusion of 

elevation further decreased the OOB error to 17% (Figure 2.2). The best model formulation did 

not include any individual Sentinel-2 bands.  

The detected defoliation was then classified into three classes of non-defoliated (0%-5%), 

light (6%-30%) and moderate (31%-70%) because of the unavailability of sufficient training data 

for severely defoliated plots. Figure 2.3 shows the performance of five model formulations, 

where the combination of the best five variables (EVI7, MCARI, IRECI, NDII11 and MSR, 

respectively) showed the best performance. The OOB error for the best model for classifying 

defoliation into non-defoliated, light, and moderate classes was 42%, while the inclusion of 

elevation decreased the OOB error to 32%. Class-wise errors of the model were 16%, 52%, and 

39% for no defoliation, light, and moderate classes, respectively after the inclusion of the 

elevation (Figure 2.3). For both defoliation detection and classification, elevation ranked third 

most important variable after EVI7 and MCARI based on MDA scores. It should be noted that 

misclassifications mainly occurred between neighboring classes where light defoliation 

overlapped medium and no defoliation equally, and medium defoliation was misclassified with 

light defoliation.   

For multiple-year defoliation detection and classification, the best combination was found 

to be ARI1, NDII11, EVI7, IRECI, MSR plus elevation which resulted in a total OOB error of 

21% with an error of 20% for detection of defoliated pixels and 22% for detection of non-

defoliated pixels. For classification, the combination of ARI1, NDII11, EVI7, IRECI, MSR and 

elevation was the best with 33% total OOB error (non-defoliated pixels 19%, light defoliated 
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pixels 52% and, moderately defoliated pixels 36%). These results were similar to single-year 

results with the single-year approach slightly outperforming the multiple-year approach.  

The SVM was also applied for different combinations of predictors similar to Figures 3 

and 4 for both defoliation detection, and classification using single- and multiple-year 

approaches and was found to be slightly less robust than the RF models in detecting and 

classifying defoliation. The best Sentinel-2 variable combination for single-year defoliation 

detection was IRECI, ARI1, MCARI, MSR and EVI7, whereas for multiple-year it was NDII11, 

EVI7, MSR, NDVI45 and Red-Edge NDVI. 

Figure 2.4 shows defoliation maps produced using the best RF model and the single-year 

approach. In the total study area of 475,888 ha, the predicted areas for non-defoliated, light and 

moderate were 311,182 ha, 26,892 ha, and 137,814 ha, respectively. In agreement with the 

ground sample points in Figure 2.4c, the amount of defoliation was found to be more in the 

northern and central parts of the study area. 

 

Figure 2.2. Error comparison of the best detection models (RF model at 20 m for single-year 

defoliation). Here, the band combinations are Model 1 (M1, all 29 variables), M2 (only 20 SVIs), 

M3 (best 10 variables), M4 (best 5 variables: EVI7, MCARI, IRECI, NDII11 and MSR) and M5 

(EVI7, MCARI, IRECI, NDII11, MSR and elevation). 
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Figure 2.3. Comparison of the performance of various variable combinations for defoliation 

classification for the best models (RF model at 20m for single-year defoliation). Here, the band 

combinations are Model 1 (M1, all 29 variables), M2 (only 20 SVIs), M3 (best 10 variables), M4 

(best 5 variables: IRECI+EVI7+NDVI45+MCARI+MSR), and M5 (IRECI+EVI7+NDVI45+ 

MCARI+ MSR+ Elevation). Here, the defoliation ranges for “No-defoliation (nil)”, “Light” and 

“Moderate” are 0%-5%, 6%-30% and 31%-70%, respectively. 

 

 

Figure 2.4. (a). Defoliation detection prediction map of only host species using the best RF 

model for single-year approach at 20 m. (b). Defoliation classification prediction map using RF. 

(c). Location and severity level of ground truth SBW defoliation. 
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Figure 2.5 shows the defoliation classification map (single-year 20m) extracted out for mature 

and immature host species (white spruce, red spruce, black spruce, balsam fir, mixed balsam fir-

spruce, and host species mixed with non-host species) for a subset of the study area (118,414 ha) 

using forest composition data available on GeoNB (http://www.snb.ca/geonb1/e/index-E.asp). 

According to (MacLean, 1980) higher vulnerability occurs in mature host species while it is 

comparatively lower in immature ones. The estimated area for no defoliation, light and moderate 

classes were 15,925 ha, 3,286 ha, and 12,441 ha, respectively for young stands while 44,703 ha, 

7,747 ha, and 34,312 ha, respectively for mature stands. The stands are considered mature if 

older than approximately 40 years. Our observation implied the presence of high defoliation in 

mature stands which could be supported to some extent by the study of MacLean (1980). 

 

Figure 2.5. SBW defoliation as a function of the maturity of host species using RF single-year 

model (central coordinates of the image: 47.69°N, 66.74°W). 

 

2.3.2 Model Validation for Single-year and Multiple-year Defoliation Detection and 

Classification 

The post-classification and model validation results for both single- and multiple-year 

defoliation detection and classification approaches using RF and SVM were calculated, and are 

presented in Table 2.2 (detection models) and Table 2.3 (classification models). Using the RF 
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defoliation detection model, the overall accuracy (OA) and kappa coefficient (K) were 86% and 

0.73 for the single-year approach and, 78% and 0.57 for multiple-year, respectively. Similarly, 

the SVM model gave overall accuracy and kappa coefficient of 80% and 0.58 for the single-year 

approach and 78% and 0.55 for multiple-year, respectively. This shows both RF and SVM 

models and change detection approaches used to detect defoliation had good performances with 

the single-year approach using RF model outperforming others. 

 For single-year classification, overall accuracy and kappa coefficient for RF method 

were 71% and 0.49, respectively and for multiple-year classification, they were 63% (OA) and 

0.41 (K). For single-year classification, overall accuracy and kappa coefficient for SVM method 

were 65% and 0.40, respectively and for multiple-year classification, they were 51% (OA) and 

0.19 (K). 

Table 2.2. Confusion matrix and accuracy estimation (%) of the detection models. PA is the 

producer's accuracy, and UA is the user's accuracy. Bold values are % correct classes. 

Detection models 

 

RF single-year 

 No Defoliation Defoliation PA (%) UA (%) 

No Defoliation 84 10 84 91 

Defoliation 16 90 90 
82 

 

Overall accuracy:86%  and kappa coefficient:0.73 

SVM single-year 

 No Defoliation Defoliation PA (%) UA (%) 

No Defoliation 92 35 92 77 

Defoliation 08 65 65 
87 

 

Overall accuracy: 80% and kappa coefficient:0.58 

RF multiple-year 

 No Defoliation Defoliation PA (%) UA (%) 

No Defoliation 82 24 82 70 

Defoliation 18 76 76 
86 

 

Overall accuracy: 78%  and kappa coefficient:0.57 

SVM multiple- 

Year 

 No Defoliation Defoliation PA (%) UA (%) 

No Defoliation 71 16 84 75 

Defoliation 29 84 71 81 

Overall accuracy: 78%  and kappa coefficient:0.55 
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Table 2.3. Confusion matrix and accuracy estimation (%) of the classification models. PA is the 

producer's accuracy, and UA is the user's accuracy. Bold values are % correct classes. 

Classification models 

 

RF single-year 
No 

Defoliation 

Light 

Defoliation 

Moderate 

Defoliation 

PA (%) UA (%) 

No Defoliation 92 38 17 92 82 

Light Defoliation 8 25 25 25 29 

Moderate Defoliation 0 37 58 58 70 

 

Overall accuracy:71% and kappa coefficient:0.49 

SVM single-year 
No 

Defoliation 

Light 

Defoliation 

Moderate 

Defoliation 

PA (%) UA (%) 

No Defoliation 90 30 11 90 83 

Light Defoliation 0 10 22 10 33 

Moderate Defoliation 10 60 67 67 43 

 

Overall accuracy:65% and kappa coefficient:0.40 

RF multiple-year 
No 

Defoliation 

Light 

Defoliation 

Moderate 

Defoliation 

PA (%) UA (%) 

No Defoliation 80 20 57 80 71 

Light Defoliation 16 50 14 50 67 

Moderate Defoliation 4 30 29 29 22 

 

Overall accuracy:63% and kappa coefficient:0.41 

SVM-multiple-year 
No 

Defoliation 

Light 

Defoliation 

Moderate 

Defoliation 

PA (%) UA (%) 

No Defoliation 88 71 17 88 56 

Light Defoliation 8 15 25 25 63 

Moderate Defoliation 4 14 58 14 20 

 

Overall accuracy:51% and kappa coefficient:0.19 

 

2.4 Discussion 

Sentinel-2 data were evaluated for SBW defoliation detection and classification in a 

lightly defoliated study area. We found that the suggested model can effectively detect light 

defoliation but classification was not as accurate as detection. Among SVIs, except NDII, which 

is known to be a good index for pest induced defoliation detection (Townsend et al., 2012), all of 

the best indices were red-edge SVIs suggesting that these SVIs may generally outperform 
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traditional ones such as NDVI and EVI. Among the best SVIs identified in this study, the 

performances of EVI and NDII11 are in agreement with previous results (Rahimzadeh-Bajgiran 

et al., 2018) where the best SVIs used to detect and classify SBW defoliation in Quebec using 

Landsat 5 imagery were EVI, NDVI, and NDMI. However, in this study, EVI7 (red-edge EVI) 

outperformed EVI8 used in (Rahimzadeh-Bajgiran et al., 2018). We also found the anthocyanin 

based index ARI1 a robust index to detect SBW defoliation which is also in accordance with the 

findings of a research estimating the defoliation of Scots pine (Pinus sylvestris L.) stands in 

Poland (Hawryło et al., 2018).   

Several hyperspectral as well as multispectral image based studies on forest health 

decline have found that red-edge indices are very sensitive to even a small amount of chlorophyll 

content change in the leaf surface of mixed coniferous forest (Hall et al., 2016) as well as spruce 

decline (Brovkina et al., 2017). Our research also showed that the majority of the important 

vegetation indices to detect defoliation (IRECI, EVI7, MCARI, ARI1, and MSR) are red-edge 

vegetation indices. These results are similar to those of Clevers and Kooistra (2011). Several 

simulation studies have also been conducted to show the importance of the red edge region of 

Sentinel-2 in determining the chlorophyll content of the canopy (Delegido et al., 2011; 

Majasalmi and Rautiainen, 2016) and found that these SVIs are robust for estimating canopy 

chlorophyll level. These results could be used to justify our findings by relating the defoliation 

and canopy to chlorophyll decline. In all of the single-year and multiple-year defoliation 

detection and classification approaches in our study, MSR and IRECI played a pivotal role. 

Literature also mentions IRECI is the best index for the estimation of canopy chlorophyll and 

MSR is one of the strongest indices to determine leaf area index (Frampton et al., 2013). 

Although some studies have indicated better performance of GNDVI as compared to NDVI 
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(Gitelson et al., 1996; Hawryło et al., 2018) this was not observed in our study as well as by 

Rahimzadeh-Bajgiran et al. (2018). 

For SBW defoliation classification, the inclusion of elevation in the model increased the 

accuracy for non-defoliated class by 4%, light defoliated class by 11%, and moderately 

defoliated class by 23%. The importance of elevation information in SBW defoliation observed 

here is corroborated by previous studies (Chen et al., 2018; Chen et al., 2020 in review). 

Comparing our results with the results from aerial sketch mapping of MacLean and 

Mackinnon (1996), the similar issue for the difficulty in distinguishing between non-defoliated 

and light defoliated has been seen here. Still, the per cent defoliation range we used for no 

defoliation is rather narrower (0%-5%) and the combination of non-defoliated with defoliated 

classes into a single class gave us an overall accuracy of 86%.  

The comparison of accuracies between different machine learning models for the 

detection and classification of defoliated pixels showed both machine learning models used (RF 

and SVM) were generally similar in terms of performance, as also found by (Pal, 2005) and 

(Hawryło et al., 2018) but RF performed slightly better than SVM in our case. In other fields, RF 

has often been found to outperform SVM when it comes to multi-class classification (Statnikov 

et al., 2008).  

2.5 Conclusion  

As a solution for the drawbacks of previous studies where satellite (e.g. Landsat) spatial 

and spectral resolutions were the main limitations for light defoliation detection over dense forest 

cover, Sentinel-2 imagery was evaluated and found to be effective using the suggested variables 

and models. We found that the classification of light defoliation is still challenging mainly 

because of the differentiation of lightly defoliated pixels from non-defoliated ones at lower 
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defoliation levels. From a practical standpoint, current year SBW defoliation classification is the 

most valuable information for forest pest early intervention strategies. Any remote sensing 

studies attempting to estimate current year defoliation that are not timed precisely with the 

approximate 2-week red stage SBW defoliation are actually assessing cumulative multi-year 

defoliation which is of less significance. In our study, we used the exact time span for defoliation 

assessment leading to high detection accuracies but comparatively lower classification 

accuracies. Given the scattered nature of early defoliation stages in the study area and lack of 

landscape-scale field and aerial data, Sentinel-2 red edge SVIs can be beneficial to map light and 

scattered defoliation and provide a basis for subsequent year evaluations. We expect that our 

suggested method could be applicable for other pest- or pathogen-induced defoliation assessment 

where early stage distribution of affected trees is of interest.       
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CHAPTER 3 

SPRUCE BUDWORM HOST SPECIES DISTRIBUTION AND ABUNDANCE MAPPING 

USING SENTINEL-1 AND SENTINEL-2 SATELLITE TIME SERIES 

3.1 Introduction 

Spruce budworm (Choristoneura fumiferana Clem; SBW) has been the primary forest 

disturbance agent in Northeastern forests of the United States and Canada over the past centuries 

(Kettela, 1983; MacLean et al., 2019). The last SBW outbreak in these regions from 1967 to 

1993 caused the defoliation of over 50 million ha of forests (Kettela, 1983; MacLean et al., 

2019) with high rates of tree growth losses and increased mortality (Chen et al, 2017a, b). A new 

SBW outbreak began in 2006 in Quebec and in 2015 in New Brunswick (NB) in Canada, and is 

currently moving toward neighboring locations in Canada and the U.S.A. 

This host-specific pest selectively attacks spruce (Picea spp.) and balsam fir (Abies 

balsamea (L.) Mill.) and therefore its damage extent and severity is primarily attributed to the 

abundance and distribution of these species (Blais, 1983; MacLean and Piene, 1995; Wolter et 

al., 2008). Susceptibility (amount of defoliation) among host species is highest for balsam fir, 

followed by white spruce (Picea glauca (Moench) Voss), red spruce (Picea rubens Sarg.), and 

black spruce (Picea mariana (Mill.) (Hennigar et al., 2008). Vulnerability (severity of growth 

reduction and mortality level) is highest for mature balsam fir followed by mature spruce, 

immature balsam fir and immature spruce (MacLean, 1980). Mortality of forest stands during 

SBW attack is highly influenced by species composition (hosts and non-hosts availability) and 

defoliation level of balsam fir in mixedwood and hardwood stands is less than in pure host stands 

(Su et al. 1996; Zhang et al., 2018). The widespread, periodic outbreaks of this pest not only 

differentially kill the individual species, but also alter the structure and function of forests 

(Fleming et al., 2002). Up-to-date and accurate tree host species maps are required for 
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monitoring and any early intervention activities (MacLean et al., 2019; Johns et al., 2020) and in 

addition they provide important insights into the patterns, cycle, severity, and impact of large-

scale insect disturbances like SBW (Bouchard et al., 2006; Wolter and Townsend, 2011).  

Over the past few decades, remote sensing techniques have been flourishing in forest 

composition mapping using different platforms including optical multispectral satellite imagery 

such as Landsat (Schmitt et al., 1996; Wolter et al., 2008; Thapa et al., 2020) and Sentinel-2 

(Immitzer et al., 2016; Grabska et al., 2019). Most studies on tree species classification using 

satellite multispectral imagery have been conducted using individual spectral bands (Immitzer et 

al., 2016; Persson et al., 2018; Grabska et al., 2019) and few have combined spectral vegetation 

indices (SVIs) and spectral bands (Wolter et al., 2008; Puletti et al., 2017). Results from previous 

research show that the inclusion of SVIs improved the performance of the classification over the 

use of spectral bands alone (Wolter et al., 2008; Puletti et al., 2017). Tree species classification 

using Sentinel-2 imagery has resulted in promising outcomes from single-date images (Immitzer 

et al., 2016), however, classification using multi-temporal imagery (time series) generally 

outperformed those using single-date data (Persson et al., 2018; Grabska et al., 2019).  

Several studies have used synthetic aperture radar (SAR) and optical multispectral 

imagery in combination for invasive species monitoring (Rajah et al., 2019), vegetation type 

classification (Sano et al., 2005; Eringery et al., 2018), individual tree classification (Yu et al., 

2018), and habitat assessment (Schmidt et al., 2018). SAR images alone have also been used for 

forest classification (Ranson and Sun, 1994; Rignot et al., 1994). Most studies found improved 

classification results when SAR was combined with optical multispectral imagery (Sano et al., 

2005; Wolter and Townsend, 2011; Yu et al., 2018; Erinjery et al., 2018; Schmidt et al., 2018). 
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Studies on SBW host species mapping using remote sensing data are limited (Wolter et 

al., 2008; Legaard et al., 2020). In addition, review of the literature indicated that a combination 

of Sentinel-1 SAR and Sentinel-2 multispectral imagery has mainly been used for vegetation 

cover type mapping rather than forest composition classification and studies generally used 

single spectral bands and traditional SVIs such as Normalized Difference Vegetation Index 

(NDVI) (Immitzer et al., 2016; Eringery et al., 2018). The technical advantages of recently-

launched Sentinel-2A and -2B satellites over similar non-commercial satellites like Landsat 

(higher spectral, spatial and temporal resolutions and additional spectral bands in the red-edge 

regions), make them attractive for forest composition mapping. Sentinel-1 SAR images not only 

can provide spectral information from a different perspective, but also may serve as an 

alternative for the cloudy or unavailable images from Sentinel-2.  

In this study, we used the combined time-series of Sentinel-1 SAR, several Sentinel-2 

spectral bands and SVIs in particular red-edge and narrow-band SVIs, as well as site variables as 

a novel approach to map SBW host and non-host tree species in northern NB, Canada. The 

specific objectives were 1) to evaluate the capability of Sentinel-1 SAR and Sentinel-2 optical 

multispectral imagery alone or in combination for SBW host species classification, 2) to 

investigate the effectiveness of the inclusion of site variables with satellite imagery for SBW host 

species mapping, and 3) to produce fine-scale maps of SBW host species abundance that show 

their current spatial distributions. 

3.2 Materials and Methods 

3.2.1 Study Area 

The study area is located in the northern part of NB in Canada (Figure 3.1). The study 

area consists of the boreal forests in the northern part and Canadian Acadian forests in the south 
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consisting of the elements of both of the forest types. The public forest of NB consists of a 

variety of hardwood and softwood species, but the balsam fir and spruce (SBW host species) 

comprise 55% of the forest volume (Erdle and Ward, 2008). Tree species in the study area 

include balsam fir, white spruce, red spruce, black spruce, and along with non-host species 

including red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech 

(Fagus grandifolia), yellow birch (Betula alleghaniensis Britton), paper birch (Betula Papyrifera 

Marsh.), trembling aspen (Populus tremuloides Michx.), and white cedar (Thuja occidentalis). 

The study area selected is mostly a part of the Canadian Acadian Forest Region (Rowe, 1972).  

 

Figure 3.1. The extent of the study area and location of sample plots in NB, Canada. 
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3.2.2 Field Data 

The field data were collected by the New Brunswick Department of Natural Resources 

and Energy Development (NBRED) under a continuous land inventory program. The inventory 

was conducted between 2016-2018 with a sample plot size of 400 m2 and GPS accuracy of 10 

cm (NBRED, 2015). We used a total of 349 samples with most plots being balsam fir or spruce 

dominant. Plots were classified into species classes based on percent basal area of species. A 

threshold of >70% combined basal area of the tree species present in a plot with mixed species 

was used to assign it to one of five classes: balsam fir (BF; 53 plots, 15%), balsam fir and 

broadleaved (BF-BL; 83 plots, 24%), BF and Spruce (BF-SP; 64 plots, 18%), broadleaved 

species (BL; 114 plots, 33%), and spruce (SP; 35 plots, 10%). The class BF-SP had more white 

and red spruce than black spruce, while SP had more black spruce. These classifications were 

based on prior research on species vulnerability to SBW (Hennigar et al., 2008) and observed 

distributions of the host species within the available data. 

3.2.3 Remote Sensing Data Collection and Pre-processing 

A total of 12 Sentinel-2A and -2B Level 1C Top-Of-Atmosphere (L1C-TOA) reflectance 

products (two scenes per date) from early June to early November were collected to represent the 

year-round phenology of the trees (https://earthexplorer.usgs.gov/). All leaf-on imagery was 

collected from June-September 2018. As cloud-free imagery was not available for fall 2018, two 

images from the years 2017 and 2019 were used instead (Table 3.1). Sentinel-2 L1C-TOA 

products were converted to L2A surface reflectance products at 20 m spatial resolution using the 

Sentinel Application Platform (SNAP) application with the Sen2Cor plugin before further 

processing. 
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Table 3.1. Remote sensing data used for this study. 

 

Sensor  Imagery date Resolution Tile numbers/Absolute 

orbit number 

Multispectral 

instrument 

(Sentinel-2) 

June 6, 2018 

Resampled to 

20 m 

 

T19UFP and T19TFN 

July 19, 2018 

September 7, 2018 

September 27, 2018 

October 9, 2019 

November 8, 2017 

C-band SAR 

(Sentinel-1) 

May 11, 2018 

Resampled to 

20 m 

 

021863 

June 4, 2018 022213 

July 22, 2018 022913 

September 20, 2018 023788 

November 7, 2018 024488 

 

We obtained five tiles of Sentinel-1 Level 1 ground range detected (GRD) products from 

https://asf.alaska.edu/ for May to November 2018 (Table 3.1). SAR images for two polarizations 

(Vertical-Horizontal (VH) and Vertical-Vertical (VV)) were acquired using the Interferometric 

Wide (IW) Swath mode with a swath width of 250 km and 20 m × 5 m spatial resolution.  

Preprocessing of Sentinel-1 data was done using the SNAP tool in several steps: i) orbit file 

application to SAR images; ii) radiometric calibration; iii) speckle filter application; iv) terrain 

correction; and v) conversion of unit-less backscatter coefficient to decibel (Filipponi, 2019). All 

SAR images were resampled to 20 m. 

3.2.4 Classification Algorithm and Variables 

We used the Random Forest (RF) algorithm (Breiman, 2001) to develop a host species 

classification model because of promising results from previous research (Immitzer et al., 2016; 

Puletti et al., 2017; Persson et al., 2018; Grabska et al., 2019). RF is a non-parametric machine 

learning algorithm (an ensemble of decision trees) which makes the classification decision based 

on the votes from the trees grown using bootstrap samples of the data (Breiman, 2001). We used 
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the Caret package (Williams et al., 2015) in R to build, run and evaluate the RF model, with ten-

fold cross-validation to assess model validity. The method splits the whole dataset into 10 parts, 

and each time nine parts are used for training the model and the rest for testing. Finally, the 

model averages the accuracy for all the iterations, which is the overall accuracy (OA) of the 

model.  

RF was run with three datasets: i) Sentinel-1 and site variables; ii) Sentinel-2 and site 

variables; and iii) Sentinel-1, Sentinel-2 and site variables. For the predictor variables using 

Sentinel-2 satellite data, we used a combination of nine spectral bands (b2: Blue (490 nm), b3: 

Green (560 nm), b4: Red (665 nm), b5: Red-Edge (705nm), b6: Red-Edge (740 nm), b7: Red-

Edge (783 nm), b8a: NIR (865 nm), b11: SWIR (1610 nm), b12: SWIR (2190 nm) and 20 SVIs 

including red-edge SVIs (Gitelson et al. 2002; Rahimzadeh-Bajgiran et al., 2012; Majasalmi and 

Rautiainen 2016, Bhattarai et al., 2020) and near infrared and shortwave infrared indices 

(Rahimzadeh-Bajgiran et al. 2018). Table 3.2 summarizes the Sentinel-2 based SVIs, for six 

different dates, resulting in a total of 174 optical variables. For Sentinel-1 SAR data, two 

variables (VV and VH polarizations) from five dates (a total of 10 SAR variables) were used. 

 Seven site variables including elevation, slope, aspect, soil types, Topographic Wetness 

Index (TWI), projected climate site index for year 2030 and improved Biomass Growth Index 

(iBGI; a potential site productivity measure) shown in Table 3.3, were used together with the 

satellite data. All site variables in raster format were resampled to 20 m spatial resolution.  

We used the VSURF (Genuer et al., 2015) R-package to select the best variables from the 

available set of variables using the RF algorithm. Tree species of plots were grouped into five 

classes: BF, BF-BL, BF-SP, BL, and SP. The final model achieving the highest accuracy was 

used to create a host-species composition map at 20 m resolution.  
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Table 3.2. Sentinel-2 based SVIs used for the classification of SBW host species. 

 

Acronym (SVIs)* Formula Reference 

WDRVI ((0.01×b7)-b4)/((0.01×b7+b4)+ ((1-0.01) / 

(1+0.01))) 

(Majasalmi and 

Rautiainen, 2016) 

S2REP 705+35× (((b7+b4)/2-b5)/(b6-b5)) (Guyot and Baret, 1988) 

NDVI (b8a-b4)/(b8a+b4) (Rouse et al., 1974) 

NDVI45 (b5 - b4)/(b5 + b4) (Delegido et al., 2011) 

NDVI65 (b6 - b5)/(b6 + b5) (Gitelson and Merzlyak, 

1994) 

MTCI (b6-b5)/(b5-b4) (Dash and Curran, 2007) 

MSR ((b7/b4)-1)/√((b7/b4)+1) (Chen, 1996) 

IRECI  (b7-b4) × (b6/b5) (Clevers et al., 2000) 

GNDVI (b8a-b3)/(b8a+b3) (Gitelson et al., 1996)  

EVI8  2.5× (b8a-b4)/(1+b8a+6×b4-7.5×b2) (Huete et al., 2002) 

EVI7  2.5× (b7-b4)/(1+b7+6×b4-7.5×b2) (Majasalmi and 

Rautiainen, 2016) 

ClRE (b7/b5)-1 (Gitelson et al., 2003) 

NDII11   (b8a-b11)/(b8a+b11) (Hardisky et al., 1983)  

NDII12  (b8a-b12)/(b8a+b12) (Key et al., 2002)  

ARI1  (1/b3)-(1/b5) (Gitelson et al., 2001)  

ARI2 (b8a/b3)-(b8a/b5) 

CRI1 (1/b2)-(1/b3) (Gitelson et al., 2002)  

 CRI2 (1/b2)-(1/b5) 

MCARI 1-((0.2) × (b5-b3)/(b5-b4)) (Daughtry et al., 2000)  

Red-Edge NDVI (b8a-b6)/(b8a+b6) (Gitelson and Merzlyak, 

1994) 

    *: NIR: Near Infrared, SWIR: Shortwave Infrared, WDRVI: Wide Dynamic Range Vegetation 

Index, S2REP: Sentinel-2 Red Edge Position, NDVI: Normalized Difference Vegetation Index, 

MTCI: MERIS Terrestrial Chlorophyll Index, MSR: Modified Simple Ratio, IRECI: Inverted 

Red Edge Chlorophyll Index, GNDVI: Green NDVI, EVI: Enhanced Vegetation Index, ClRE: 

Chlorophyll Red Edge, NDII: Normalized Difference Infrared Index, ARI: Anthocyanin 

Reflectance Index, CRI: Carotenoid Reflectance Index, MCARI: Modified Chlorophyll 

Absorption in Reflectance Index 

 

3.2.5 Balancing the Size of the Classes 

Real-world datasets are prone to non-uniform class distributions, which tend to distort the 

performance of a classifier (Kurczab et al., 2014; Chaudhary et al., 2016) therefore balancing the 

sample size within classes significantly increases the accuracy of the model developed. Although 

the class-size balancing is often performed manually in the field of environmental and natural 
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sciences before training the model (He et al., 2019), there are several automated methods for 

balancing sample sizes. We balanced sample sizes of the imbalanced classes in our data using 

upSample and downSample functions available in R. The R-package SMOTE (Chawla et al., 

2002) was used for this purpose which creates synthetic points to oversample the minority class 

while it randomly removes the observations from the majority class as per the arguments 

provided. Although this algorithm was created for binary classification, it can also be applied for 

multiple classes (Agrawal et al., 2015). 

 

Table 3.3. Site variables used for the study. 

 

Variables 

 

Resolution Reference/data provider 

Elevation 30m resampled to 20 m SRTM 30m void filled data 

Slope 30m resampled to 20 m SRTM 30m void filled data 

Aspect 30m resampled to 20 m SRTM 30m void filled data 

Soil types Vector  Hennigar et al. (2017)  
Topographic wetness index 

(TWI) 

30 m resampled to 20 m Hennigar et al. (2017) 

Projected climate site index 

(2030) 

1 km resampled to 20 m Jiang et al. (2015) 

improved Biomass Growth 

Index (iBGI) 

20 m Rahimzadeh-Bajgiran et al. 

(2020) 

*SRTM: Shuttle Radar Topography Mission 

 

3.3 Results 

3.3.1 Importance of Variables for Classification  

 Among the two SAR polarizations, VH had higher importance than VV polarization in 

the model. Among the 10 variables used from five different dates, the top Sentinel-1 variables 

were from May 11, 2018 (VH) and November 7, 2018 (VH). Figure 3.2a presents the rankings of 

the 10 most important variables for the model with Sentinel-1 and site variables. The addition of 

site variables did not yield marked differences in this model, except for elevation, TWI, and 
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iBGI. When evaluated with only four variables from the best dates, namely May 11 and 

November 7, 2018 (VH_11_7, VV_11_7, VH_05_11 and VV_05_11) with elevation, the model 

produced a similar accuracy as the one containing 10 variables. Given the similar importance of 

specific dates (Figure 3.2), only four SAR variables from May 11 and November 7, 2018, were 

used in the final model (Table 3.4).  

Using Sentinel-2 and site variables, the 10 most influential variables included three variables 

from June 6, 2018 (b8a, b12, and IRECI), two variables from July 19, 2018 (ARI2 and b3), and 

the remaining five variables from October 9, 2019 (ClRE, MCARI, MSR, ARI1, and NDVI65) 

(Figure 3.2b). While all top SVIs were among red-edge SVIs, no traditional SVIs such as NDVI 

or EVI8 were found to be among top variables. Variables from other dates (September 7, 2018, 

September 27, 2018, and November 11, 2017) did not provide significant contributions to the 

final species classification model developed. Site variables were not among the top 10 variables 

and did not contribute to the performance of the model. 

Combining Sentinel-1, Sentinel-2 and site variables, the 10 most influential variables 

were those identified in the Sentinel-2 model. None of the variables from Sentinel-1 SAR 

images, or site variables were among the top 10 important variables of the final model (Figure 

3.2c). 

Sentinel-1 mean backscatter intensity values for the five species classification classes are 

summarized in Figure 3.3. The spectral overlaps among the classes were more prominent in the 

May image than in the November image, and the backscatter separability was better in the VH 

amplitude band than in the VV band. As expected, the backscatter signature of the BL class was 

distinct from the other classes, especially using the VH band. Also, the backscatter values for the 
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BL class were higher in leaf-off conditions (November image) than during leaf-on conditions 

(May image) for both bands. 

The Sentinel-2 mean spectral signatures for the five species classes over the three best 

dates (26 June, 19 July, and 9 October, 2018) were calculated and are presented in Figure 3.4. 

The reflectance values of the BL and BF-BL classes were higher than that of the pure coniferous 

classes mostly in the red-edge, NIR and SWIR regions, indicating good separability and potential 

for host species classification.  

The mean spectral signatures also indicated that the BL class had a conspicuously 

different signature than that of other classes, while there were spectral overlaps between the BF, 

BF-SP, and SP classes. Reflectance of the BL class decreased towards the end of the fall season, 

while the other classes were similar in reflectance over time, as expected.    
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Figure 3.2. Importance ranking of the model variables from the Variable Selection Using 

Random Forest (VSURF) algorithm for the three different formulations based on the mean 

decrease in node purity: with a) Sentinel-1 and site variables, b) Sentinel-2 and site variables, 

and c) Sentinel-1, Sentinel-2 and site variables combined. Variable abbreviations follow the rule, 

name of the variable_acquisition month_day (see Table 3.2 and Table 3.3 for the further 

information).  

 

 

 

Figure 3.3. Sentinel-1 mean backscatter intensity values for VV and VH bands of the five 

classification classes over two extreme dates (leaf-on and leaf-off) for 2018. The tree species 
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classes were: i) balsam fir (BF); ii) balsam fir and broadleaved species (BF-BL); iii) balsam fir 

and spruce species mixed (BF-SP); iv) all broadleaved species (BL); and v) spruce species (SP).  

 

 

Figure 3.4. Sentinel-2 mean spectral signatures of five host tree species classes over three dates 

in 2018 (26 June and 19 July) and 2019 (9 October). The classes were: i) balsam fir (BF); ii) 

balsam fir and broadleaved species (BF-BL); iii) balsam fir and spruce species mixed (BF-SP); 

iv) all broadleaved species (BL); and v) spruce species (SP).   

3.3.2 Classification Results and Model Validation  

The overall accuracy (OA) and kappa coefficient (K) of the model built using Sentinel-1 

images alone were 54% and 0.47, respectively, and including elevation increased the OA to 

57.5% (Figure 3.2a). The addition of iBGI variable could not improve the model further. Using 

only the four variables from the best dates (May 11 and November 7, 2018) (VH_11_7, 

VV_11_7, VH_05_11 and VV_05_11) and elevation, the model still produced a similar accuracy 

(OA: 56% and K: 0.45). Therefore, only those variables were used in the next steps of the 

analysis (Table 3.4). Analyzing the confusion matrix (Table 3.4), the class-wise misclassification 

was more apparent among the host species (BF, BF-SP, SP) than between the host and non-host 

species. The performance of the model for the BL class was also low, indicating that Sentinel-1 

variables were not very good at differentiating broadleaved species from balsam fir and spruce.  

The OA and K obtained from the model based on Sentinel-2 data (Figure 3.2b) were 71% 

and 0.64 (Table 3.4). The class-wise confusion was prominent between the BF and SP classes, 

and other classes where BF is mixed (BF-BL and BF-SP). Also the BF-SP class was confused 
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with the BF and SP classes. In addition, confusion was also evident between the BL and BF-BL 

classes, however, the confusion between conifers and broadleaved species was minimal.  

The combination of Sentinel-1, Sentinel-2 and site variables did not add much 

explanatory power to the model built with the Sentinel-2 variables alone (Figure 3.2b vs 3.2c). 

The inclusion of all 10 Sentinel-1 SAR variables with the top 10 Sentinel-2 variables (Figure 

3.2a and 3.2c) improved the model performance by approximately 1% (OA: 72.2% and K: 0.646; 

Table 3.4). Reducing the number of SAR variables to only the two best variables from May and 

November images (VH-05-11 and VH-11-07) and elevation resulted in an OA of 72.3% and a K 

of 0.65 (Table 3.4).  

Table 3.4. Confusion matrix and accuracy estimation (%) of the species classification models. 

PA is the producer's accuracy, and UA is the user's accuracy. Bold values are % correct classes. 

 Species BF BF-BL BF-SP BL SP PA 

(%) 

UA 

(%) 

Sentinel-1 and 

elevation 

BF 56 8 11 8 9 56 56 

BF-BL 12 60 11 12 15 60 58 

BF-SP 6 5 45  10 6 45 57 

BL 10 17 18 58 12 58 53 

SP 16 10 15 12 58 58 55 

Overall accuracy: 56% and kappa coefficient: 0.45 

Sentinel-2 

BF 61 6 18 0 6 61 63 

BF-BL 11 76 3 15 5 76 72 

BF-SP 17 2 58 0 13 58 61 

BL 2 14 0 81 1 81 83 

SP 9 2 21 4 75 75 73 

Overall accuracy: 71.3% and kappa coefficient: 0.64 

Sentinel-1,  

Sentinel-2 and 

elevation 

BF 71 6 12 3 4 71 71 

BF-BL 8 66 5 13 2 66 65 

BF-SP 11 6 61 0 14 61 63 

BL 0 16 0 80 0 80 88 

SP 10 6 22 4 80 80 70 

Overall accuracy: 72.3% and kappa coefficient: 0.65 

 

The evaluation of performances of the three approaches illustrates that the model based 

on only Sentinel-2 optical bands and associated SVIs was the best for the SBW host species 
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classification, based on its simplicity and similar accuracy with the combined Sentinel-1 and 

Sentinel-2 model. The model with Sentinel-1 SAR and elevation performed considerably poorer 

than that with Sentinel-2 variables.  

The resulting host species distribution maps are shown at two scales in Figure 3.5. Figure 

3.5a was produced using the four best variables from Sentinel-1 SAR and elevation whereas 

Figure 3.5b shows the map produced using 10 best optical variables from Sentinel-2. Based on 

the map produced from Sentinel-2 model, of the total area of 810,500 ha, 11% was BF, 36% was 

BF-BL, 17% was BF-SP, 15% was BL and 20% was SP. Therefore most of the study area (over 

80%) was susceptible to SBW defoliation from the view point of foliage availability. 
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Figure 3.5. Host species distribution map at 20 m resolution using the RF model, (a) Sentinel-1 

SAR images plus elevation, and (b) Sentinel-2 image variables. Maps (c), (d), and (e) are a 

subset of the study area extracted from map (a), (b), and Google Earth respectively (central 
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coordinates of the subsets are 47.15°N, and 66.66°W). White pixels are the clouds, water bodies, 

built-up areas and recent harvests. 

3.4 Discussion 

The individual application, as well as the integration of multispectral Sentinel-2 and 

Sentinel-1 SAR data with site variables, are novel approaches to construct a model for mapping 

SBW host tree species. Multispectral satellite sensors such as Landsat have been applied in 

various research works for mapping individual tree species or species groups. A combined 

application of satellite imagery and ancillary data is believed to result in more reliable outputs 

(Wolter et al., 1995; Wolter and Townsend, 2011). Our results showed only a marginal 

improvement in the performance of the classification model built with the integration of 

Sentinel-1, Sentinel- 2 and site variables compared to the performance of the model based on 

only Sentinel-2 variables (OA: 72.3% and K: 0.65 vs. OA: 71.3%, and K: 0.64). Sano et al. 

(2005) reported good performance of combined use of Japanese Earth Resources Satellite-1 

(JERS-1) SAR and Landsat TM images for the discrimination of savannah vegetation ranging 

from grasslands to forests; however, they used L-Band SAR data. Moreover, their focus was on 

the discrimination of land cover not species composition within each land cover. Other similar 

studies also suggested the benefit of integrating SAR with optical multispectral images for 

vegetation classifications (Li et al., 2012; Erinjery et al., 2018; Schmidt et al., 2018; Yu et al., 

2018). Although improvements were marginal in our study, the addition of Sentinel-1 variables 

did not deteriorate our model like it did in the study conducted by Rajah et al. (2019) for the 

detection and mapping of invasive species.  

The inability of Sentinel-1 SAR variables to significantly improve the model with 

Sentinel-2 optical variables can also be attributed to the C-band wavelength, which cannot 

discriminate the subtle phenological changes in vegetation (due to lower canopy penetration 
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capability). The weakness with C-band could be improved using X-band (shorter wavelength 

SAR with higher canopy penetration capability) as suggested by Rajah et al. (2019), as the 

backscatter magnitude of SAR is dependent on its band frequency (Patel et al., 2006; Srivastava 

et al., 2009). In addition, the presence of heterogeneous species and their vertical structure 

affects the backscatter of SAR signals (Duguay et al., 2015), which is the case in our study as 

well. Li et al. (2012) also noted the incapability of C-band SAR images for the finer 

classification of vegetation in their attempt to classify different land cover types in northern 

Brazil.  

The performance of the host species classification model using Sentinel-1 SAR variables 

alone was relatively satisfactory, but poorer than that of the model with Sentinel-2 variables. 

Among the two polarizations of Sentinel-1 SAR images, VH was better than VV in terms of its 

contribution to the model performance. The C-band SAR, especially at dual-polarization (VH in 

our case), is scattered by the foliage and branches of the upper canopy and has low crown 

penetration capacity, which makes it effective for coniferous and deciduous tree differentiation 

(Rignot et al., 1994). Rignot et al. (1994) used C, L, and P-band SAR (L and P bands are longer 

wavelength bands than C-band) to map parts of the Alaskan boreal forest and also concluded that 

HV (VH in our case) was the most useful polarization at all frequencies.  

The inclusion of site variables did not improve the Sentinel-2 model, except for the TWI, 

and iBGI which marginally increased model performance. The species class accuracies from the 

Sentinel-2 model were 61% for BF, 76% for BF-BL, 58% for BF-SP, 81% for BL, and 75% for 

SP. High confusion was evident between the SP and BF species, while BL and SP species were 

better separable from other classes. Despite the confusion among the host species, our model is 

very efficient in separating non-host species from host species. Optical properties of the leaves 
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(interaction of electromagnetic waves and the leaf surface) for different tree species are unique 

and mostly dependent upon the photosynthetic as well as non-photosynthetic pigments available 

in the leaves, leaf water content and structure (external structure plus the orientation of 

mesophyll cells), leaf area index, leaf angle distribution and other factors (Ustin et al., 2009). 

The chemical and structural changes in BL tree canopy are significantly different than those of 

coniferous tree species over a year, which explains the accurate differentiation between them. 

However, both BF and SP species have needles and cone-like crown shapes creating difficulty in 

their separation. The crown shape and density of black spruce (cylindrical and open crown) is 

slightly different than that of white spruce (conical and dense), but the crown characteristics of 

white spruce resembles that of balsam fir (Honer, 1971). 

The good performance of Sentinel-2 time series for the classification of SBW host 

species is in agreement with the prior studies utilizing Landsat time series (Wolter et al. 2008). 

However, Wolter et al. (2008) classified the host species into only two classes, BF and white 

spruce with an overall R2 of 0.64, and 0.88, respectively. In contrast, our study classified the 

SBW host species into four categories, pure BF and SP (black spruce dominant), but also BF-SP 

(BF mixed with white and red spruce and BF-BL classes. The species classes we used are more 

consistent with SBW vulnerability and the available ground-based field data as there were rather 

limited pure stands.  

Using multi-temporal images for modelling, we concluded that the late spring image 

(May or early June images) is an essential variable for the SBW host species discrimination. 

Similar results were found by Persson et al. (2018) and Grabska et al. (2019) for mapping forest 

species. Wolter and Townsend (2011) mapped the relative basal area of 12 forest species in 

northern Minnesota using multi-sensor data fusion, including commercial and non-commercial 
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optical (Landsat, and SPOT-5) and SAR (C-band Radarsat-1 and Phased Array type L-band 

(PALSAR)) satellite data and suggested the use of combined SAR (C-band Radarsat-1 and L-

band PALSAR) and optical (Landsat and SPOT) data to achieve the highest accuracies (R2=0.78, 

0.80, and 0.93 for BF, white spruce, and black spruce, respectively).  

The most important spectral variables for our model were anthocyanin indices (ARI1 and 

ARI2), red-edge indices (MSR, NDVI65, IRECI, ClRE and MCARI), NIR (b8a) and SWIR 

(b12) bands. SWIR, NIR, and red-edge bands and related indices have previously been used to 

predict leaf area index, canopy chlorophyll content and vegetation structure (Zhao et al., 2007; 

Majasalmi and Rautiainen 2016) successfully but not for tree species classification. Anthocyanin 

content can be taken as an indicator of leaf senescence in many plant species (Gitelson et al., 

2001). The anthocyanin based indices’ attaining high importance in our model can be attributed 

to the presence of both deciduous (leaf pigmentation during fall) and evergreen tree species in 

our study area. NIR, SWIR, and red-edge Sentinel-2 bands and SVIs were important in 

discriminating bramble (Rubus cuneifolius) (an invasive species) from surrounding vegetation 

using Sentinel-2 and Sentinel-1 SAR imagery in South Africa (Rajah et al., 2019). The 

importance of SWIR bands in SBW host mapping was also reported by Wolter et al. (2008), and 

the importance of red-edge and SWIR bands in tree species classification was noted by Immitzer 

et al. (2016) and Persson et al. (2018). Based on our research, red-edge SVIs are more effective 

than single spectral bands (including red-edge ones) and traditional SVIs for tree species 

classification.    

Given the limited number of the studies on the SBW host species mapping using satellite 

imagery, the current study utilizing the latest and high-resolution open-source satellite data adds 

a useful contribution to facilitate future SBW monitoring. Our product can be used in 
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combination with LiDAR-based forest inventory data available for the study area as the latter do 

not provide accurate species identification information. The reliability of the model and the final 

host-composition map relies on the use of dense time-series images, red-edge SVIs (very 

sensitive to vegetation changes), the accuracy of the ground truth data, and a robust classification 

algorithm (RF). We used accurate ground dataset (~10 cm GPS accuracy), Sentinel-2 satellite 

time-series and 20 SVIs to produce a SBW host composition map at a resolution of 20 m. 

Further, this study also provided an alternative model derived from Sentinel-1 C-band SAR 

variables and elevation to produce a map of SBW host species with decent accuracy.  

3.5 Conclusion 

We compared models to classify SBW host species in NB, Canada, using Sentinel-1 and 

Sentinel-2 (alone and in combination), and seven site variables (elevation, slope, aspect, soil 

types, TWI, climate site index, and iBGI). The model derived from Sentinel-2 multi-temporal 

images using single spectral bands and SVIs outperformed other combinations. As anticipated, 

both Sentinel-1 and Sentinel-2 images acquired during the late spring and fall seasons were the 

key elements of our prediction models. The incorporation of Sentinel-1 SAR time-series with 

Sentinel-2 images did not markedly improve on the Sentinel-2 model. 

Among the variables used in our study, the green, NIR and SWIR spectral bands and 

SVIs in particular red-edge SVIs were superior to other Sentinel-2 variables for tree species 

classification. Using Sentinel-1 SAR data, VH polarization was better for tree species 

discrimination than VV. The fine resolution and improved sensor properties of the new Sentinel-

1 and Sentinel-2 satellites provide good capability for ground feature mapping and vegetation 

discrimination. Our results showed that Sentinel-2 multispectral data were better for tree species 

classification than Sentinel-1 SAR data.  
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CHAPTER 4 

 INTEGRATION, CONCLUSIONS AND RECOMMENDATIONS 

 

In general, this study mapped spruce budworm (SBW) defoliation to provide some tools 

to help mitigate the probable loss of the commercially important spruce-fir forest. In this chapter, 

we incorporated the SBW host distribution map we produced from Sentinel-2 data in Chapter 3 

with a SBW defoliation detection map derived from the best model (single-year RF) to see how 

the distribution of SBW defoliation is associated with the host availability. The previous chapters 

provided us with an opportunity to integrate the findings from them to compare the activity of 

SBW with host availability where study areas overlap keeping the fact in mind that SBW 

defoliation is also influenced by several other factors like SBW population density, host 

phenology, foliage characteristics, physical environment, etc. (Hennigar et al., 2008). Moreover 

the insect population depends upon the outbreak spread and insecticide treatments in recent years 

(MacLean et al., 2019). Further, we summarize our study and provide some recommendations in 

this section. 

4.1 Integration of SBW Defoliation and Host Distribution Mapping 

In Chapter 2, we compared the capabilities of available spectral bands and associated 

SVIs from Sentinel-2 satellite (20 SVIs and nine spectral bands) to detect and classify SBW 

defoliation. We selected five best variables from 29 available variables as remote sensing (RS) 

variables. From the site variables under consideration, only elevation contributed to improving 

the model significantly among others. We then combined five best RS variables obtained (EVI7, 

MCARI, IRECI, NDII11 and MSR for both defoliation detection and classification) and one site 

variable (elevation) to build the best model for defoliation detection and classification. The best 
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RS variables obtained to construct the model emphasize the importance of red-edge SVIs in 

identifying subtle changes in tree canopy structure and pigment content of the leaves due to 

SBW defoliation. The model further underlines the strong dependency of SBW defoliation on 

elevation (increased the classification model performance by 10%). Among the two machine 

learning algorithms (random forest (RF), and support vector machine (SVM)), and defoliation 

detection approaches (single-year, and multi-year) utilized for building detection and 

classification models in Chapter 2, single-year RF classification model performed better (at least 

more than 8%) than rest of the models. Consequently, it was considered for the production of 

defoliation detection and severity classification map. As the final product of Chapter 2, we 

produced a SBW defoliation severity map (Figure 4.1b) which demonstrates the concentration of 

SBW defoliation on the northern and central parts of New Brunswick (NB) for the year of 2018. 

The defoliation result obtained from Chapter 2 is the current-year defoliation and a function of 

outbreak spread from Quebec and heavy insecticide treatment under the early intervention 

strategy (EIS) program. Observing the pattern and severity of the defoliation, it is apparent that 

the severity of the attack is comparatively lower towards the southern part indicating that the 

defoliation has not yet progressed to these areas. 

Likewise, in Chapter 3, we examined the performance of optical multispectral Sentinel-2 

and Sentinel-1 SAR time series plus several site variables in discriminating the individual SBW 

host species among themselves and from the non-host species. We obtained similar results to 

those found to Chapter 2 indicating the superiority of SVIs compared to single spectral bands in 

building the model to map SBW host species distribution. The findings from Chapter 3 also 

revealed the influential performance of Sentinel-2 based time-series and red-edge SVIs in 

differentiating minor dissimilarities and pigment content on the canopies of different tree 
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species. The evaluation of different models built for species classification using Sentinel-1 SAR, 

Sentinel-2 optical multispectral and available site variables demonstrated the superior 

performance of the model (from the practical point of view) built with Sentinel-2 based variables 

alone. To compare with SBW defoliation map (Figure 4.1b), we presented a SBW host species 

distribution map derived from our best model for the same area in Figure 4.1a. The host species 

distribution map shows that balsam fir is widespread over the study area either in pure form or in 

combination with other species. The pure spruce is distributed more towards the south while 

broadleaved species are more common in the northern and southwestern part. Pure balsam fir is 

also seen more towards the southern part of the study area. Overall, the host species are available 

all over the study area in the form of pure stands or mixed stands.  

Chapter 2 not only devised a model to detect and classify SBW defoliation but also 

provided us with an understanding of the pattern and severity of defoliation from a geographical 

perspective. The defoliation is evident mostly in the northern and central part of the study area. 

On the other hand, Chapter 3 assisted us to associate the severity and pattern of defoliation with 

the abundance of the host species in the same area. Evaluating the final products from Chapter 2 

and Chapter 3, defoliation severity map and host species distribution map respectively (Figure 

4.1), it is apparent that the SBW defoliation is following the distribution pattern of the host 

species. Among the host species, balsam fir is much more susceptible to SBW defoliation as 

compared to spruce species (Hennigar et al., 2008) which is evident in Figure 4.1 as well. 

However, the southern part of the study area, despite the presence of host species seems 

undefoliated. The low defoliation in southern part might be a result of the EIS program in NB 

from 2014 to 2018. MacLean et al. (2018) show the highest area of forest in northern New 

Brunswick (199,696 ha) being treated with insecticides or pheromone as compared to previous 
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years which might have controlled the SBW population in the hotspots and prevented them from 

spreading. Therefore, the combination of these two chapters helps us to verify the degree of 

impact laid by the distribution and abundance of primary host species on the severity of the SBW 

defoliation.  

Comparing the two maps in Figure 4.1, we can notice the defoliation occurring in the 

areas with higher amount of fir trees supporting the findings from Hennigar et al. (2008) and 

Sainte-Marie et al. (2015) about host priority of SBW (balsam fir being the first priority host of 

SBW). Evaluating the defoliation severity across the four host classes (BF, BF-BL, BF-SP and 

SP) it is observed that most of the areas are not defoliated yet. Of the total balsam fir area, the 

percentage coverage of “No defoliation”, “Light” and “Moderate” were 70%, 5% and 25%, 

respectively. Similarly the percentage coverage for “No defoliation”, “Light” and “Moderate” for 

“balsam fir and broadleaved”, “balsam fir and spruce”, and “spruce” were (55.5%, 7.5% and 

37%), (69%, 5.5% and 25.5%), and (87%, 4%, and 7%), respectively. Figure 4.2 demonstrates 

the SBW defoliation taking place in various classes of host species on varying severity levels.  
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Figure 4.1. (a). The SBW host species composition map using RF model from Sentinel-2 

variables at 20 m. (b). SBW defoliation severity classification map using single-year RF model at 

20 m.   
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Figure 4.2. Defoliation by host species classes across various severity classes, (a). No 

defoliation, (b). Light defoliation, and (c). Moderate defoliation. 

4.2 Conclusion and Recommendations 

SBW defoliation is a recurring phenomenon in Northeastern forests of the United States 

and Canada, and its prevention is crucial from both economic and ecological points of view. The 

conventional way of sketching the defoliated area from an aircraft seems comparatively 

uneconomic and tedious considering the current rise of cost-effective high-resolution satellite 

sensors. Although there is considerable potential for using remote sensing to address forest 

health issues, it is still in its evolving stage of development and requires further research; 

however, the outcomes of ongoing research are still promising.  

The accuracy of remote sensing techniques not only relies upon the sensor capabilities 

but also is influenced by the extent to which the ground truth data are associated with the sensor 

information (the accuracy of field data). Therefore, the use of accurate ground sampling 

techniques coherent with the particular sensor specifications is strongly recommended prior to 
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the implementation of remote sensing techniques for ecological studies. Particularly, for SBW 

defoliation, current-year defoliation classification is crucial for the early intervention strategies 

from a practical viewpoint. Therefore the ground survey, as well as the satellite data collection, 

should be timed within the two-week window during which current-year SBW defoliation can be 

detected. Using optical multispectral satellite data cloud contamination has always been a 

challenge, but the high temporal resolution of the twin Sentinel-2 satellites will provide better 

quality data for SBW defoliation detection.   

The detection and classification of light SBW defoliation is still challenging even with 

the use of high-resolution satellite images like Sentinel-2 at 20 m spatial resolution. In these 

circumstances there exists a high probability of confusion between light and non-defoliated 

pixels when defoliation is scattered in small patches. The combined use of suggested models to 

produce annual SBW defoliation and recent host species maps could be of great value for 

assisting the monitoring of SBW defoliation along with traditional monitoring methods. The 

proposed technique operates with low cost and human resource requirement as compared to 

using conventional methods like aerial sketch mapping, which demand a considerable amount of 

human resources and money.   

Given the heterogeneous composition of the forest in our study area, the distinct 

phenology of different tree species is an essential phenomenon to capture for differentiating 

those species using remote sensing techniques. Hence, we used and suggest a time series (both 

leaf off and leaf on images) of satellite images for species differentiation over using a single-date 

image. Further, red-edge bands and red-edge SVIs are influential in picking the subtle changes in 

tree canopy structure and pigment content and play a vital role both in the detection of SBW 

defoliation and discrimination of SBW host species. The new red-edge indices, which we can 
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derive from the Sentinel-2 data are much more dominant and sensitive towards the subtle 

changes in vegetation pigments and canopy structure than conventional SVIs like NDVI. 

Therefore we suggest the utilization of valuable open source Sentinel-2 data for similar studies 

on forest health and tree species mapping. Finally, it is commendable to acquire adequate 

information on the distribution of SBW host species to reinforce the monitoring of SBW 

defoliation because they are strictly host-specific and attack the spruce and balsam fir species 

only.  

The two sources of satellite data (Sentinel-1 and Sentinel-2) used in our study proved 

useful for SBW host species classification and could be used individually to model the 

distribution of tree species. However, their combined use did not augment the accuracy of the 

model considerably as expected and is not recommended for similar future endeavors at least 

using the same satellite data preprocessing techniques approached in this study. Similarly, for 

SBW defoliation severity classification, Sentinel-2 imagery and derived SVIs were invaluable 

resources for our work and should be explored more in future research.  
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