1,096 research outputs found

    Advances in Remote Sensing-based Disaster Monitoring and Assessment

    Get PDF
    Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Scaling Effect of Fused ASTER-MODIS Land Surface Temperature in an Urban Environment

    Get PDF
    There is limited research in land surface temperatures (LST) simulation using image fusion techniques, especially studies addressing the downscaling effect of LST image fusion. LST simulation and associated downscaling effect can potentially benefit the thermal studies requiring both high spatial and temporal resolutions. This study simulated LSTs based on observed Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) LST imagery with Spatial and Temporal Adaptive Reflectance Fusion Model, and investigated the downscaling effect of LST image fusion at 15, 30, 60, 90, 120, 250, 500, and 1000 m spatial resolutions. The study area partially covered the City of Los Angeles, California, USA, and surrounding areas. The reference images (observed ASTER and MODIS LST imagery) were acquired on 04/03/2007 and 07/01/2007, with simulated LSTs produced for 4/28/2007. Three image resampling methods (Cubic Convolution, Bilinear Interpolation, and Nearest Neighbor) were used during the downscaling and upscaling processes, and the resulting LST simulations were compared. Results indicated that the observed ASTER LST and simulated ASTER LST images (date 04/28/2007, spatial resolution 90 m) had high agreement in terms of spatial variations and basic statistics based on a comparison between the observed and simulated ASTER LST maps. Urban developed lands possessed higher LSTs with lighter tones and mountainous areas showed dark tones with lower LSTs. The Cubic Convolution and Bilinear Interpolation resampling methods yielded better results over Nearest Neighbor resampling method across the scales from 15 to 1000 m. The simulated LSTs with image fusion can be used as valuable inputs in heat related studies that require frequent LST measurements with fine spatial resolutions, e.g., seasonal movements of urban heat islands, monthly energy budget assessment, and temperature-driven epidemiology. The observation of scale-independency of the proposed image fusion method can facilitate with image selections of LST studies at various locations

    Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches

    Get PDF
    In this research, climate classification maps over the Korean Peninsula at 1 km resolution were generated using the satellite-based climatic variables of monthly temperature and precipitation based on machine learning approaches. Random forest (RF), artificial neural networks (ANN), k-nearest neighbor (KNN), logistic regression (LR), and support vector machines (SVM) were used to develop models. Training and validation of these models were conducted using in-situ observations from the Korea Meteorological Administration (KMA) from 2001 to 2016. The rule of the traditional Koppen-Geiger (K-G) climate classification was used to classify climate regions. The input variables were land surface temperature (LST) of the Moderate Resolution Imaging Spectroradiometer (MODIS), monthly precipitation data from the Tropical Rainfall Measuring Mission (TRMM) 3B43 product, and the Digital Elevation Map (DEM) from the Shuttle Radar Topography Mission (SRTM). The overall accuracy (OA) based on validation data from 2001 to 2016 for all models was high over 95%. DEM and minimum winter temperature were two distinct variables over the study area with particularly high relative importance. ANN produced more realistic spatial distribution of the classified climates despite having a slightly lower OA than the others. The accuracy of the models using high altitudinal in-situ data of the Mountain Meteorology Observation System (MMOS) was also assessed. Although the data length of the MMOS data was relatively short (2013 to 2017), it proved that the snowy, dry and cold winter and cool summer class (Dwc) is widely located in the eastern coastal region of South Korea. Temporal shifting of climate was examined through a comparison of climate maps produced by period: from 1950 to 2000, from 1983 to 2000, and from 2001 to 2013. A shrinking trend of snow classes (D) over the Korean Peninsula was clearly observed from the ANN-based climate classification results. Shifting trends of climate with the decrease/increase of snow (D)/temperate (C) classes were clearly shown in the maps produced using the proposed approaches, consistent with the results from the reanalysis data of the Climatic Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC)

    A physics-constrained machine learning method for mapping gapless land surface temperature

    Full text link
    More accurate, spatio-temporally, and physically consistent LST estimation has been a main interest in Earth system research. Developing physics-driven mechanism models and data-driven machine learning (ML) models are two major paradigms for gapless LST estimation, which have their respective advantages and disadvantages. In this paper, a physics-constrained ML model, which combines the strengths in the mechanism model and ML model, is proposed to generate gapless LST with physical meanings and high accuracy. The hybrid model employs ML as the primary architecture, under which the input variable physical constraints are incorporated to enhance the interpretability and extrapolation ability of the model. Specifically, the light gradient-boosting machine (LGBM) model, which uses only remote sensing data as input, serves as the pure ML model. Physical constraints (PCs) are coupled by further incorporating key Community Land Model (CLM) forcing data (cause) and CLM simulation data (effect) as inputs into the LGBM model. This integration forms the PC-LGBM model, which incorporates surface energy balance (SEB) constraints underlying the data in CLM-LST modeling within a biophysical framework. Compared with a pure physical method and pure ML methods, the PC-LGBM model improves the prediction accuracy and physical interpretability of LST. It also demonstrates a good extrapolation ability for the responses to extreme weather cases, suggesting that the PC-LGBM model enables not only empirical learning from data but also rationally derived from theory. The proposed method represents an innovative way to map accurate and physically interpretable gapless LST, and could provide insights to accelerate knowledge discovery in land surface processes and data mining in geographical parameter estimation

    Soil moisture analysis using remotely sensed data in the agricultural region of Mongolia

    Get PDF

    Sources of Atmospheric Fine Particles and Adsorbed Polycyclic Aromatic Hydrocarbons in Syracuse, New York

    Get PDF
    Land surface temperature (LST) images from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor have been widely utilized across scientific disciplines for a variety of purposes. The goal of this dissertation was to utilize MODIS LST for three spatial modeling applications within the conterminous United States (CONUS). These topics broadly encompassed agriculture and human health. The first manuscript compared the performance of all methods previously used to interpolate missing values in 8-day MODIS LST images. At low cloud cover (\u3c30%), the Spline spatial method outperformed all of the temporal and spatiotemporal methods by a wide margin, with median absolute errors (MAEs) ranging from 0.2°C-0.6°C. However, the Weiss spatiotemporal method generally performed best at greater cloud cover, with MAEs ranging from 0.3°C-1.2°C. Considering the distribution of cloud contamination and difficulty of implementing Weiss, using Spline under all conditions for simplicity would be sufficient. The second manuscript compared the corn yield predictive capability across the US Corn Belt of a novel killing degree day metric (LST KDD), computed with daily MODIS LST, and a traditional air temperature-based metric (Tair KDD). LST KDD was capable of predicting annual corn yield with considerably less error than Tair KDD (R2 /RMSE of 0.65/15.3 Bu/Acre vs. 0.56/17.2 Bu/Acre). The superior performance can be attributed to LST’s ability to better reflect evaporative cooling and water stress. Moreover, these findings suggest that long-term yield projections based on Tair and precipitation alone will contain error, especially for years of extreme drought. Finally, the third manuscript assessed the extent to which daily maximum heat index (HI) across the CONUS can be estimated by MODIS multispectral imagery in conjunction with land cover, topographic, and locational factors. The derived model was capable of estimating HI in 2012 with an acceptable level of error (R 2 = 0.83, RMSE = 4.4°F). LST and water vapor (WV) were, by far, the most important variables for estimation. Expanding this analytical framework to a more extensive study area (both temporally and spatially) would further validate these findings. Moreover, identifying an appropriate interpolation and downscaling approach for daily MODIS imagery would substantially increase the utility of the corn yield and HI models

    Assessment of Drought in Grasslands: Spatio – Temporal Analyses of Soil Moisture and Extreme Climate Effects in Southwestern Mongolia

    Get PDF
    Soil moisture plays an essential key role in the assessment of hydrological and meteorological droughts that may affect a wide area of the natural grassland and the groundwater resource. The surface soil moisture distribution as a function of time and space is highly relevant for hydrological, ecological, and agricultural applications, especially in water-limited or drought-prone regions. However, gauging soil moisture is challenging because of its high variability. While point-scale in-situ measurements are scarce, the remote sensing tools remain the only practical means to obtain regional and global-scale soil moisture estimates. A Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission ever designed to gauge the Earth’s surface soil moisture (SM) at the near-daily time scales. This work aims to evaluate the spatial and temporal patterns of SMOS soil moisture, determine the effect of the climate extremes on the vegetation growth cycle, and demonstrate the feasibility of using our drought model (GDI) the Gobi Drought Index. The GDI is based on the combination of SMOS soil moisture and several products from the MODIS satellite. We used this index for hydro-meteorological drought monitoring in Southwestern Mongolia. Firstly, we validated bias-corrected SMOS soil moisture for Mongolia by the in-situ soil moisture observations 2000 to 2015. Validation shows satisfactory results for assessing drought and water-stress conditions in the grasslands of Mongolia. The correlation analysis between SMOS and Normalized Difference Vegetation Index (NDVI) index in the various ecosystems shows a high correlation between the bias-corrected, monthly-averaged SMOS and NDVI data (R2 > 0.81). Further analysis of the SMOS and in situ SM data revealed a good match between spatial SM distribution and the rainfall events over Southwestern Mongolia. For example, during dry 2015, SM was decreased by approximately 30% across the forest-steppe and steppe areas. We also notice that both NDVI and rainfall can be used as indicators for grassland monitoring in Mongolia. The second part of this research, analyzed several dzud (specific type of climate winter disaster) events (2000, 2001, 2002, and 2010) related to drought, to comprehend the spatial and temporal variability of vegetation conditions in the Gobi region of Mongolia. We determined how these extreme climatic events affect vegetation cover and local grazing conditions using the seasonal aridity index (aAIZ), NDVI, and livestock mortality data. The NDVI is used as an indicator of vegetation activity and growth. Its spatial and temporal pattern is expected to reflect the changes in surface vegetation density and status induced by water-deficit conditions. The Gobi steppe areas showed the highest degree of vulnerability to climate, with a drastic decline of grassland in arid areas. We found that under certain dzud conditions, rapid regeneration of vegetation can occur. A thick snow layer acting as a water reservoir combined with high livestock losses can lead to an increase of the maximum August NDVI. The snowy winters can cause a 10 to 20-day early peak in NDVI and the following increase in vegetation growth. However, during a year with dry winter conditions, the vegetation growth phase begins later due to water deficiency and the entire year has a weaker vegetation growth. Generally, livestock loss and the reduction of grazing pressure was played a crucial role in vegetation recovery after extreme climatic events in Mongolia. At the last stage of our study, we develop an integrated Gobi drought index (GDI), derived from SMOS and LST, PET, and NDVI MODIS products. GDI can incorporate both, the meteorological and soil moisture drought patterns and sufficiently well represent overall drought conditions in the arid lands. Specifically, the monthly GDI and 1-month standardized precipitation index SPI showed significant correlations. Both of them are useful for drought monitoring in semi-arid lands. But, the SPI requires in situ data that are sparse, while the GDI is free from the meteorological network restriction. Consequently, we compared the GDI with other drought indices (VSWI, NDDI, NDWI, and in-situ SM). Comparison of these drought indices with the GDI allowed assessing the droughts’ behavior from different angles and quantified better their intensity. The GDI maps at fine-scale (< 1km) permit extending the applicability of our drought model to regional and local studies. These maps were generated from 2000 to 2018 across Southwestern Mongolia. Fine-scale GDI drought maps are currently limited to the whole territory for Mongolia but the algorithm is dynamic and can be transported to any region. The GDI drought index can be served as a useful tool for prevention services to detect extremely dry soil and vegetation conditions posing a risk of drought and groundwater resource depletion. It was able to detect the drought events that were underestimated by the National Drought Watch System in Mongolia. In summary, with the help of satellite, climatological, and geophysical data, the integrated GDI can be beneficial for vegetation drought stress characterization and can be a useful tool to monitor the effectiveness of pasture land restoration management practices for Mongolian livelihoods. The future application of the GDI can be extended to monitor potential impacts on water resources and agriculture in Mongolia, which have been impacted by long periods of drought
    • 

    corecore