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CHAPTER 1 

 

Introduction  

This chapter is divided into five sections. Firstly, the general background is introduced 

on the topics of research status and methods (Section 1.1). Secondly, the soil moisture 

estimation methods were introduced, remote sensing applications for soil moisture 

(Section 1.2). Thirdly, about Mongolia and the current situation of climate and soil 

moisture (Section 1.3). Fourth, detailed information on the study area and hotspot area 

is presented and the reason why it has been chosen as the hotspot area (Section 1.4). 

Finally, the research questions and the dissertation outline will be discussed (Section 

1.5).  
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1.1 Background 

Although the surface soil moisture only constitutes 0.0012 % of all water available on 

earth (Shiklomanov 1993), it is distributed by rainfall into runoff and infiltration and 

one of the main drivers of the earth's water cycle (Figure 1—1). The soil moisture is 

also an essential component of the CO2 exchange on the land surface. Therefore, the 

knowledge on soil moisture influences for many studies such as ranging from the 

weather, climate and crop yield forecasts, water resource management, drought 

forecasts and ecosystem mapping to the ecosystem health (Hirschi, Viterbo, and 

Seneviratne 2006; Hirschi, Seneviratne, and Schär 2006; D. Zhang et al. 2015). The 

soil moisture (SM) is one of the most critical research parameters regarding the changes 

in hydrology, ecology, agriculture, climatology and the environment (Ren et al. 2019; 

L. Yang et al. 2019). Each plant species needs a different amount of soil moisture in 

order to absorb the water and nutrients efficiently and to stabilize the plant. 

 

Figure 1—1. Diagram of the water cycle (modified by the 

https://www.metoffice.gov.uk/) 

The soil moisture refers to the amount of water stored in the soil above the groundwater 

level. It is a significant environmental indicator controlling and regulating the 

interactions between the atmosphere and land surface (Arnold 1999; Robinson et al. 

https://www.metoffice.gov.uk/


Chapter 1 

3 

 

2008; Lin 2010). And the soil moisture is also one of the main factors in the 

infiltration/runoff dynamics. It is challenging, to define, it because other elements 

should be integrated such as vegetation, soil types and topography (Longobardi 2008). 

Relevant research regarding the multi-factor (i.e. precipitation, temperature, land cover 

and soil type) effects on the soil moisture variation are still rare, especially in the arid 

regions (Y. Wang et al. 2018). The soil moisture contents represent the water amount 

in the soil (usually described as a percentage). The soil moisture information is valuable 

in a wide range of governmental agencies and private companies dealing with the 

weather and climate, runoff potential and flood control, soil erosion and slope failure, 

reservoir management, geotechnical engineering and water quality (Arnold 1999). 

However, the soil variabilities and topographic and climatic conditions could 

significantly affect the soil moisture in a wide area. 

The soil moisture mainly depends on the balance of precipitation and the 

evapotranspiration, as well as on the winter soil freezing and snow melting 

(Nandintsetseg and Shinoda 2011). The precipitation functions as the main input for 

the water balance. It can directly influence the soil moisture; the temperature controls 

the evapotranspiration and affects the soil moisture indirectly (Stéfanon et al. 2014). 

The soil moisture directly influences the evaporation rate, groundwater recharge and 

runoff generation and it affects the climate largely (Ray et al. 2017). It can be measured 

or estimated in various ways such as through in situ measurements (using climate 

stations and ground measurements) or by indirect observations by means of satellite 

images (remote sensing). Water is an important soil component. During the warm 

season, the increase in temperature leads therefore to enhanced evaporation (and thus 

is affecting the soil moisture). The total soil moisture significantly decreases from the 

north to the south of Mongolia (E. Natsagdorj and Renchin 2010) due to the regions of 

Mongolian vegetation (Yunatov and Dashnyam 1979). There is also a need for more 

detailed weather forecasts for the days showing a sharp increase in dryness  

(E. Natsagdorj and Renchin 2010), according to the vegetation zones such as the high 

mountains, taiga, forest-steppe, steppe, desert steppe and desert. 

The Remote Sensing technology provides a powerful tool so as to estimate the soil 

moisture at several high spatial and temporal resolutions (H. Wang, Magagi, and Goita 

2017). An approach based on satellite and climate data is useful for the policy-makers 

so as to develop appropriate agricultural areas (Guoxin, Shibasaki, and Matsumura 
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2004; Anderson, Reynolds, and Gugerty 2017). In Mongolia, multispectral images (e.g. 

MODIS and Landsat) were usually applied for environmental studies. Generally, high-

resolution satellite data and microwave imagery are essential components in the natural 

resource management, rangeland production and crop monitoring. However, acquiring 

high resolution multispectral and microwave imagery is a big challenge for these 

applications because of the economic issues. It is the reason why limited research has 

been conducted using high-resolution satellite data or microwave data, especially in 

Mongolia. The latter needs facilities for satellite image processing and to monitor the 

spatial and temporal SM evolution, especially in the agricultural regions. Hence it is 

necessary to conduct further research in agricultural regions of Mongolia. 

The traditional soil moisture observations (Engman 1991), Time-Domain 

Reflectometry (TDR) (Clarke Topp and Reynolds 1998); neutron probes and  

gamma-ray scanners (providing indirect SM measurements) mainly include single-

point measurements or specific site measurements. The original soil moisture could be 

determined from the mass changes between the dry and wet soils. However, the in situ 

continuous observations are costly, and the regional sampling is time-consuming as 

they require repeated sampling observation points.  

The soil moisture is always an important factor in agriculture, certainly in the semi-arid 

and arid circumstances (Arnold 1999), especially in Mongolia. The arid and semi-arid 

region of Central Asia stretches across huge terrains of both Mongolia and China (Sofue 

et al. 2017). Therefore, the Mongolian climate is classified as a semi-arid to the arid 

climate and is characterized by a long-lasting cold winter, dry and hot summer, low 

precipitation and large temperature fluctuations between day and night and also 

between summer and winter (Nandintsetseg, Greene, and Goulden 2007). The number 

of sunny days (with an average of 260 days per year) is high (Leary et al. 2013). The 

growing season for the agricultural production in Mongolia only amounts to 95 – 110 

days, and because of the climatic conditions, it is unsuitable for the majority of the 

farming (Leary et al. 2013). The agricultural sector continues to focus heavily on the 

nomadic livestock, with 75 % of the area being pasture and only 3 % populated 

(Azzaya, Gantsetseg, and Munkhzul 2006). Research on the soil moisture methodology 

will be developed in the agricultural region of Mongolia and could provide valuable 

information for the decision-makers and farmers concerning their further actions and 
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could prove to be a source for agricultural management, planning and drought 

monitoring. 

1.2 Soil moisture and estimation methods   

The soil moisture is the amount of water in the space between the soil particles. The 

surface soil moisture includes the water in the upper 10 cm of the soil, whereas the root 

zone soil moisture contains the water that is available for plants. The water contents are 

used in a variety of scientific and technical fields and is expressed as a ratio of 0 (fully 

dry) to the value of the porosity of the materials to the saturation. Considerable progress 

was made in the first half of the twentieth century in the understanding of the soil 

moisture regime. Descriptions on the history of soil moisture science can be found in 

Taylor and Ashcroft (1972), Rode (1969), Rose (1966), Childs (1969) and others. As 

examples, Taylor and Ashcroft (1972) published a book entitled “Physical edaphology: 

the physics of irrigated and non-irrigated soils”, including scientifically written subjects 

on the soil physics, soil moisture and soils, irrigation etc. and Rode (1969) produced a 

scientific book entitled “Theory of Soil Moisture: Moisture properties of soils and 

movement of soil moisture”.   

The soil is the uppermost layer of the earth crust and supports all terrestrial life (Rattan 

and Manoj 2004). It is a major component of all terrestrial ecosystems and the most 

basic of all-natural resources. The soil is composed of mineral particles, organic matter 

and pore space, which is the void of space between the soil particles. The degree to 

which pore spaces are filled with water determines the soil moisture conditions (Figure 

1—2). If the pore spaces are completely filled, and water drains freely from the soil 

under the influence of gravity as "gravity water," then the soil is called saturated. As 

the water drains from the soil, some pores will be got filled with air and water vapour. 

When the pores no longer drain under the influence of gravity, the capillary tension of 

the water holds the water in place. Some of the larger pores will have drained, but most 

still contain water. At this point, the soil is said to be at field capacity (Rattan and Manoj 

2004; COMET program 2005). As the water continues to be removed from the soil 

through evapotranspiration, more pore space will lose water. As this process continues, 

only the tightly held water (next to the soil particles) remains. There is a point when the 

tension of the water to the soil particles becomes so tight that the water cannot be used 

by plant roots. This is called the "wilting point." (Figure 1—2). 
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Figure 1—2. Generalized soil moisture conditions (modified by COMET 

program 2005) 

The soil texture determines the amount of water held for different moisture conditions. 

The clay-type soils have very small mineral particles and very tiny pores. The sandy 

soils have larger mineral particles and thus larger pore spaces. Although it may seem 

counter-intuitive, smaller pore spaces in clay soil add up in a more considerable amount 

of space than in an equivalent volume of sandy soil. Clay, therefore, contains a higher 

percentage of soil water at field capacity compared to other soil texture types. Sandy 

soils, on the other hand, have larger mineral particles and a larger pore space but have 

a smaller percent of porosity and a corresponding lower percentage soil moisture at 

field capacity and wilting point as compared to clay. Concerning sandy textured soils, 

the soil becomes saturated at a much lower percentage of the soil moisture (COMET 

program 2005) (Figure 1—3). 

 

Figure 1—3. Soil moisture conditions for Various Soil Textures (modified by the 

(COMET program 2005)) 
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During rainfall or snow melting, two types of surface runoff occur. The infiltration 

excess overland flow occurs in soil that is not saturated. In this case, the soil could be 

dry, but the soil properties or land cover do not allow for infiltration to keep up with 

high rainfall or snow melting rates. The saturation excess overland flow takes place 

when the soil becomes saturated, and there is no longer space for water to infiltrate. It 

could happen even with soil that would typically allow for large amounts of infiltration 

in sub-saturated conditions (Figure 1—4).     

 

Figure 1—4. Types of surface runoff (modified by the (COMET program 2005)) 

The soil moisture measurement is essential to understand the soil behaviour, plant 

growth and numerous other physical soil processes (Rattan and Manoj 2004). It is 

useful for assessing the plant water requirements, irrigation planning and other 

properties and processes. The ratio of liquid water content is into the soil in the 

percentage of volume or weight and memory of previous rainfall. A substantial number 

of studies exist which describe the methods of soil moisture measurements (i.e. 

Robinson et al. 2008; Evett and Parkin 2005) and generally distinguish between the 

direct and indirect methods.  

1.2.1 Direct methods of the soil moisture estimation 

The direct methods are based on physical and chemical techniques of removing water 

from the soil, called the gravimetric method. It is the most accurate method to estimate 

the SM in gravimetric sampling (Engman 1991). However, this method is destructive 

and cannot be reproduced. According to this method, the soil samples are dried in order 

to calculate the moisture contents. The soil samples from the field are processed by 
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putting the sample for 24 - 48 hours in an oven at 105 °C to 110 °C in order to measure 

the mass (of the dry soil) (Reynolds 1970).  

𝑆𝑀𝐶 (%) =
𝑎 − 𝑏

𝑏
∗ 100 

(1-1) 

Consider the formula mentioned above, where a stand for the weight of the wet soil (g) 

and b represents the weight of the dry soil.  

Further soil processing methods are required so as to convert the gravimetric data (water 

mass per soil mass) into the volumetric values (water volume per soil volume). A 

comprehensive review of various SMC-methods has been published in (Verstraeten, 

Veroustraete, and Feyen 2008). Figure 1—5 shows the manner in which the soil 

samples are being collected from the field by means of a soil probe.    

 

Figure 1—5. Collecting samples from the field by means of a soil probe kit 

(Photo E. Batmunkh) 

The most advanced in situ equipment only measures the temporal variability on one 

particular location. In this study, we used a traditional method for the measurement of 

the soil moisture samples. The analytical error between the samples at one sampling 

point should not exceed 0,1 %. 

1.2.2 Indirect methods of the soil moisture estimation (Remote sensing) 

Many indirect methods already exist for the assessment of the soil moisture. For 

instance: neutron moisture metering, electrical conductance, Time-Domain 

Reflectometry (TDR), gamma scanner, thermal conductivity and remote sensing 

methods. The TDR, neutron and gamma scanners are typically used to measure the soil 



Chapter 1 

9 

 

moisture (D. Zhang and Zhou 2016). However, these methods are point-scaled and 

cannot be used as a proxy for the regional soil moisture.  

Microwave remote sensing: Based on the remote sensing data, indirect information on 

the soil properties could be gathered, providing an alternative tool to obtain quick 

estimates. Remote sensing techniques allow the observation of processes on the earth’s 

surface at various spatial and temporal scales. The observation of the sub-surface state 

variables (such as the soil moisture) is, however, not straightforward (Van Doninck 

2013). The four major remote sensing SM products available include the Advanced 

Microwave Scanning Radiometer – Earth observing system (AMSR-E) from the 

Japanese Aerospace Exploration Agency (JAXA), the Soil Moisture Ocean Salinity 

System (SMOS) from the European Space Agency (ESA), the Soil Moisture Active 

Passive (SMAP) from the National Aeronautics and Space Administration (NASA) and 

have a typical spatial resolution of approximately 40 km (Table 1—1). Such a low 

resolution could therefore only be used for the soil moisture monitoring on a global or 

regional scale (E. Natsagdorj et al. 2019). Figure 1—6 shows the launched satellites 

and data availability for the soil moisture analysis. Given the importance of SM, 

successful spatial and temporal assessments are difficult to obtain.  

 

Figure 1—6. Active and passive microwave sensors used for the soil moisture 

data sets (Source: http://www.esa-soilmoisture-cci.org/node/93) 

  

http://www.esa-soilmoisture-cci.org/node/93
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Table 1—1. Satellite soil moisture products  

Satellite data Available date Source Spatial resolution 

SMAP (Soil Moisture 

Active Passive)  

2015 – present  NASA  3, 9, 36 km  

AMSR-E (Advanced 

Microwave Scanning 

Radiometer-Earth 

Observing System) 

2001 – present  JAXA & NASA 12-56 km  

SMOS (Soil Moisture 

and Ocean Salinity) 

2011 – present  ESA 35-50 km  

SSM/I (Special Sensor 

Microwave/Imager)  

1987 – present  NOAA/NASA 20-60 km  

During recent years, remotely sensed data with the Synthetic Aperture Radar (SAR) 

and radiometer sensors had been used so as to develop different methodologies to obtain 

the soil moisture. The SAR allows the monitoring of the surface characteristics, such 

as the soil moisture at spatial resolutions to ten meters under almost all weather 

conditions (García et al. 2019). Changes in the dielectric properties of soil in different 

soil moisture contents are measured in terms of the emitted microwave energy 

(Schmugge et al. 1974; Njoku and Kong 1977). Recently, the European Space Agency 

(ESA) launched the Sentinel 1-6 operational satellites and the database corresponding 

to the period 2014. The Sentinel-1 satellites (a 10 meter spatial resolution) are equipped 

with C-band SAR instruments that provide data in dual or single polarizations with a 

12 days’ temporal resolution. The Sentinel-1 radar images made it possible to retrieve 

the surface soil moisture, which will penetrate 1-2 cm into the soil (Q. Gao et al. 2017; 

Peng and Loew 2017; García et al. 2019). However, it is highly influenced by the 

surface roughness and the vegetation conditions.  

The microwave remote sensing provides a better manner to capture the soil moisture 

on different spatial and temporal scales. The microwave techniques include the passive 

and active microwave approaches. The passive microwave radiometers record the 

naturally emitted radiation, while the active microwave sensors transmit 

electromagnetic waves and record the backscattered radiation (Jeu et al. 2008). The 

active and passive approaches offer various advantages because of their instrumental 
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characteristics (Kolassa, Reichle, and Draper 2017). The remote sensing of the soil 

moisture is most sensitive in the electromagnetic spectrum in the range of 1 to 5 GHz 

(6 cm – 30 cm wavelength) due to a maximum stretching of the dielectric effect of dry 

soil to water. In the range of 1.4 – 1.427 GHz (21 cm – 21.4 cm wavelength), the  

L-band is most sensitive to SM signals (Lewis 2019). With the rapid development of 

satellite remote sensing technology, methods that utilize the optical, thermal infrared 

and microwave remote sensing for estimating the soil moisture have been developed 

(D. Zhang and Zhou 2016). To be noted is that the microwave remote sensing with a 

low spatial resolution is unsuitable for a specific region and small-scale applications. 

However, thermal and optical infrared remote sensing approaches have been applied to 

estimate the soil moisture because of their ability to provide information at a higher 

resolution (Leng et al. 2017). 

Optical and Thermal remote sensing: Thermal infrared techniques are through 

modelling to get root-zone soil moisture (Crow, Kustas, and Prueger 2008). Optical 

(visible/near-infrared) is using solar radiation as a direct energy source, is a passive 

remote sensing method and is indirect to root-zone soil moisture. The reflectance of the 

dry and wet soils is different. In the dry soil, the radiant energy could be reflected from 

the surface of the dry soil (it penetrates the soil particles), where it could be absorbed 

or dispersed. The total reflectance of the dry soil is a function of specular reflectance 

and internal volume reflectance. In the wet soil, as the soil moisture increases, each soil 

particle could be encapsulated with a thin membrane of capillary water. The interstitial 

spaces could also be filled with water. The greater the amount of water in the soil, the 

greater the absorption of the incident energy and the lower the reflectance of the soil 

(Figure 1—7) (Condit 1970). In the thermal infrared radiation, changes in the surface 

soil temperature are due to differences in the soil moisture contents and could be 

monitored and related to the soil wetness (Cihlar, Sommerfeldt, and Paterson 1979). In 

the remote sensing community, the estimation of the soil moisture contents could 

usually be related to the volumetric water contents within a thin soil layer (i.e. top 5 cm 

of the topsoil profile) (Leng et al. 2019). 
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Figure 1—7. Reflectance of the dry (a) and wet (b) soil (Jensen 2006) 

Many approaches have been developed using multispectral remote sensing so as to 

estimate the soil moisture such as statistical approaches, modeling and data 

assimilation, etc. The Soil Moisture Index (SMI) is based on an empirical 

parameterization of the relationship between the Land Surface Temperature (LST) and 

Normalized Difference Vegetation Index (NDVI) (Y. Zeng, Feng, and Xiang 2004; 

Parida et al. 2008; Potić, Bugarski, and Matić-Varenica 2017). The relation between 

the LST and NDVI is based on the experimental parameterization for the soil moisture 

index. Multispectral satellite data (visible, NIR and TIRS) were utilized for the 

assessment of the LST and the production of vegetation index maps (Saha et al. 2018). 

Many types of vegetation indices have been derived from the optical bands which are 

used for the soil moisture estimation, especially the NDVI. NDVI is the simplest, most 

efficient and commonly used one (Huete et al. 1997). Tucker (1979) first suggested the 

NDVI in 1979 as an index of vegetation health and density. Through previous studies, 

various studies have been performed so as to analyze and improve the methods of the 

surface soil moisture estimation based on the LST/NDVI space and considering the 

influence of the clouds, topography, vegetation type, spatial heterogeneity, climatic 

parameters, scales and so on (Xia et al. 2019).  

The topography is the first order check, verification on the hydrological conditions’ 

spatial variation that affect the spatial distribution of the soil moisture (Sørensen, Zinko, 

and Seibert 2006). The Topographical Moisture Index (TWI) was developed by Beven 

and Kirkby (1979). The TWI has not been applied in this research, but topography data 

have been considered. The topography does not only influence the soil moisture, but it 

also indirectly affects the pH of the soil (Högberg et al. 1990; Giesler, Högberg, and 

Högberg 1998). The soil moisture and pH are essential variables for the influence 
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distribution (Giesler, Högberg, and Högberg 1998) and richness in species of vascular 

plants (Gough et al. 2000; Partel 2002; Zinko et al. 2005).   

As mentioned above, many researchers have intensively studied the determining factors 

for the soil moisture such as the meteorological variables, soil types, land cover and 

vegetation. A few studies considered the elevation, slope and land surface temperature 

to be applicable for the soil moisture estimation. Also, based on this research results of 

soil moisture forecasting will be contributed in Mongolia.  

1.3 About Mongolia and its current soil moisture situation  

Mongolia is a land-locked country located in Central Asia and bordered by Russia and 

China, expanding between the latitudes of 41°35′N - 52°09′N and the longitude of 

87°44′ E − 119°56′E with a total area of 1,565 million square kilometers  

(Figure 1—8). Mongolia has 73 % agricultural land, 0.5 % villages and other 

settlements, 0.35 % land under roads and networks, 9.2 % forest and forest resources, 

0.4 % water and water resources and 16.1 % land for specials needs (Otgonbayar et al. 

2017). Mongolia has six natural regions divided into the next vegetation types (Yunatov 

and Dashnyam 1979): the high mountains, taiga, forest-steppe, steppe, desert steppe, 

and desert zones (Figure 1—8).   

 

Figure 1—8. Location of Mongolia (Source: natural zone (Yunatov et al. 1979) 

and aimag boundary data from the Institute of Geography and Geo-ecology, 

Mongolian Academy of Science) 
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The Mongolian climate is highly continental with arid and semi-arid conditions 

(Nandintsetseg, Greene, and Goulden 2007) and has four distinct seasons,  

high-temperature fluctuations and little precipitation. The annual precipitation 

measures 300-400 mm in the taiga, high mountain and forest-steppe regions; 150-250 

mm in the steppe; 100-150 mm in the desert steppe and 50-100 mm in the desert (Gobi) 

region. About 85 % of the total precipitation falls from April to September, of which 

about 50-60 % falls during July and August (Batima et al. 2005). The mean annual 

temperature measures -8 °C (northern areas) and 6 °C (southern regions) (Leary et al. 

2013). Because of the majority of the Mongolian climate situation, its agricultural 

production is strongly limited by a short growing season (generally 80 to 100 days but 

varying from 70 to 130 days depending on the altitude and location), a low precipitation 

and a high evaporation (Leary et al. 2013). The importance of agriculture for the 

Mongolian economy and especially for the rural economy, makes a sustainable 

agricultural development a national priority. The agricultural sector provides income 

for 40 % of the population (Priess et al. 2015) and 14.5 percent of the Gross Domestic 

Product (GDP) from 2013 onwards. This makes it the third largest contributor to the 

GDP after retail (17.7 %) and mining (16.6 %) (Batzorigt 2014). Approximately 80 % 

of the total land area could be used for pastoral activities but less than 1 % is suitable 

for cultivation. The total size of arable land is estimated to be 12,000 km2, of which 

664,300 hectares is employed as cropland while 561,000 ha has been abandoned 

(Hofmann, Tuul, and Enkhtuya 2016). In the 1950s, Mongolia started land cultivation 

for the first time (Chuluunbaatar, Annor-Frempong, and Gombodorj 2017). Then the 

science-based agricultural production has been developing intensively in Mongolia 

(Gunguudorj 2009). Based on the agricultural production, there has been a demand to 

study the soil moisture estimation in 1959 (Erdenetsetseg 1996). As a result, one of the 

most significant sectors of the Mongolian economy is agriculture. Since the 1960s, 

agriculture has developed more intensively and widely. At present, Mongolia has 1.2 

million hectares of arable land that produce environmentally clean, friendly products 

(Azzaya, Gantsetseg, and Munkhzul 2006). In order to develop the agricultural 

production, a number of national and international programs project and in effect in 

Mongolia. Major national programs that contributed to the agricultural product growth 

significantly include the Atar-III Campaign for the crop production, subsidy programs 

for agricultural products, producers and investment programs to support the purchase 

of agricultural equipment etc. (Chuluunbaatar, Annor-Frempong, and Gombodorj 
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2017). One of the key issues of the national objectives to increase the food security 

(agricultural production) is whether it could be achieved sustainably, that is without 

negative consequences for the water and soil resources (Priess et al. 2015). In addition, 

the last decades have seen a degradation of soils in the cultivated areas. There is a need 

to estimate new suitable cropland areas (especially sub-provinces and bag 

(administrative subdivision)).    

The Mongolian steppe ecosystems play a crucial role in relieving the regional and even 

global climate variation through their interaction with the atmosphere (Yatagai and 

Yasunari 1995). Roughly, 124.3 million ha or 79 % of the land area is covered by 

grasslands and about 10 % is surrounded by forests or shrubland (Hilker et al. 2014). 

Soil moisture is the main source of natural water resources for agriculture and natural 

vegetation (Robock et al. 2000), especially in Mongolia. The latter usually does not 

inhibit the vegetation growth in spring. Thus, the spring precipitation is especially 

important to ensure pasture grass growth (Bolortsetseg 2002).   

In Mongolia, a few researchers already devoted their PhD study to the soil moisture, 

such as Erdenetsetseg (1996); Erdenebat (2004) and Enkhbat (2016). They only used 

climate station measurements on their selected study areas. Most soil moisture studies 

are related to the estimated vegetables and the conditions of the vegetable growth.  

Due to differences in geology and topography, we could distinguish six natural regions 

and specify the soil and vegetation distribution. Our study area is located in 1) mountain 

and taiga regions with cryomorphic taiga soils; 2) a mountain forest-steppe region with 

Chernozems, dark Kastanozems, dark-colored forest soils and derno taiga soils. Typical 

forest-steppe and steppe soil consist of chesnut soil and kastanozems (Tamura, Asano, 

and Jamsran 2013). The kastanozems soil is situated in arid regions such as southern 

and central Asia, northern Argentina, the western United States and Mexico (FAO 

2019). They are common in Mongolia, especially in the agricultural region. It consists 

of humus and is found in relatively dry climatic zones (200-400 mm) but could also be 

employed for irrigated agriculture and grazing.  

1.4 Study and hotspot area 

We selected two study areas, the first of which is situated in the north-central part of 

Mongolia (Figure 1—9) and the second is a smaller hotspot called Bornuur soum 

located in the Tuv province, the center of the above-mentioned region (Figure 1—10).  
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The north-central part of Mongolia.  This study area includes seven provinces (called 

“aimag”): Bulgan, Orkhon, Selenge, Darkhan-Uul, Tuv, Ulaanbaatar and the Khentii 

provinces, which are the main agricultural areas of Mongolia (Figure 1—9). The study 

area includes 80.9 % of the cropland of the total crop area in Mongolia 

(http://www.mofa.gov.mn/) (MFALI 2017).     

In the study area, the average temperature is lower than the south of Mongolia. The 

average temperatures in the study area range between 15 and 20 °C during the summer 

season. The total annual precipitation measures between 250 - 300 mm in the taiga and 

forest-steppe regions, 150 - 250 mm in the steppe regions. In summer, most rainfall 

occurs; about 85 % - 90 % of this rainfall is the primary source of the soil moisture (L. 

Natsagdorj and Batima 2003).  

 

Figure 1—9. The first study area (Central part of Mongolia) (46°00’N-51°00’N 

and 102°00’E–112°30’E) (processed by ASTER-GDEM) 

These study areas are located in a mountainous area which has elevations between 589 

and 2,788 meters above sea level. The highest peak is Asralt Khairkhan (2,800 m), part 

of the Khentii mountain situated in the Tuv province. There are many rivers in the study 

area (i.e. Orkhon; Selenge; Tuul; Kherlen; Onon etc.). The Orkhon river flows 1,124 

km from its source in the Khangai mountains to its mouth in the Selenge river. The 

Selenge river has a total length of 593 km with its mouth in the Baikal Lake in Russia. 

http://www.mofa.gov.mn/
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The Kherlen river descends in the southern slopes of the Khentii mountains. It has a 

total length of 1,090 km with its mouth situated in the Hulun Lake in China. The Tuul 

river flows over 704 km, from its source in the Khentii mountains to its mouth at the 

Orkhon river (Figure 1—9). In the study area, the water supply mainly comes from the 

precipitation, snow and ice melting water and rivers originating in the mountains. Water 

is the main source for the agricultural sector, especially for livestock and farmers and 

has a major influence in the economy and ecology. The soil moisture is an important 

part of the water resources and is strongly related to the agriculture and ecosystem. For 

that reason, a soil moisture study could be an essential support for the decision-makers 

by providing information on the soil moisture in order to manage the agricultural 

systems and water resources in a better way.   

Hotspot study area of Bornuur soum. Bornuur soum has an agriculturally based 

economy. It is located between E 48° - 49° and N 106° - 106°40’ and the average 

altitude measures 1,240 meters above sea level (Figure 1—10).  

 

Figure 1—10. Second study area: the Bornuur soum, Tuv province in Mongolia 

(processed by ASTER-GDEM) 

It is located 105 km north-west of Ulaanbaatar city (the capital city of Mongolia) and 

155 km north-west of Zuunmod town (center of the Tuv province). The Tuv province 

is surrounded by the Khangai and Khentii mountains of the north-western and north-
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eastern provinces of the aimag and influenced by the extreme climatic conditions of the 

Kherlen and Tuul river basin, which are natural zones of steppe and forest steppe. The 

soum has low rainfall, a relatively warm summer and low air humidity. 

1.5 Research objectives and dissertation outlines  

1.5.1 Research objectives and questions  

Understanding that soil moisture is essential for the current situation in Mongolian 

agriculture and new modeling (and methods) will be clarified in this dissertation. The 

research objectives are: (1) to estimate the long-term moisture index and to compare it 

to the soil moisture from climate stations and the Normalized Difference Vegetation 

Index (NDVI) for the growing season; (2) to develop a soil moisture model by means 

of a multi-regression analysis (based on the satellite images in agricultural regions of 

Mongolia); (3) to approach the optical satellite-based (LST & NDVI) soil moisture 

modelling and to monitor and predict an SM forecast; (4) to promote land suitability 

analysis using the multi-criteria analysis in the Bornuur soum of Mongolia. In order to 

achieve these objectives, the five following research questions should be answered.  

Question 1: How could the moisture index (MI) be used to monitor and correlate 

with the SM measured at the climate stations at different depths (0-10 and 0-50 

cm)? 

There exists a long history of assessing the moisture conditions through the relation of 

the precipitation towards the temperature or evapotranspiration (Thornthwaite 1948; 

UNESCO 1979; Stephen 2006; Vicente-Serrano, Beguería, and López-Moreno 2010; 

Gobena and Gan 2013). Surface temperatures, precipitation and vegetation cover, 

influence the relative soil moisture (Nemani et al. 1993; Sandholt, Rasmussen, and 

Andersen 2002). Previous studies have not investigated the correlation between the soil 

moisture and the moisture index for long-term analysis. The moisture index could be 

seen as a measure to define both the water requirement periods and quantities of water 

surplus, as well as the water deficit by comparing the precipitation and potential 

evapotranspiration. How does the moisture index correlate with the soil moisture at 

different depths? Does the moisture index have an effect on the soil moisture in the 

study area? Could the moisture index be used for Mongolian agriculture? Exploring the 

answers to these questions could provide in chapter 2.  
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Question 2: How does the moisture index affect vegetation for the growing season?   

Research shows that moisture index correlated positively with the vegetation growth 

(Piao 2005; Whitten 2009; Zhu et al. 2016). During the summer, an increase in 

temperature will influence heat stress in many plants, whereas a decrease in 

precipitation will reduce soil moisture which would reduce productivity and grazing 

pasture land (Whitten 2009). Most previous studies have been done during the growing 

season, which as from April to October. However, we will contribute data on moisture 

index from May to August using a combination of satellite and in situ data between 

2000 and 2013. During the period, 2001, 2002, 2007 and 2009 years were obtained by 

slight and severe drought in Mongolia (Dorjsuren, Liou, and Cheng 2016) and 

vegetation cover was examined low during these years (Nanzad et al. 2019). The 

vegetation production in the study area is linked to the monthly precipitation and 

moisture availability. How does the moisture index correlate with the NDVI? Is it a 

proxy for vegetation? These questions could be answered during this research.  

Question 3: How could we describe the integrated methodology for the SM 

through multispectral satellite data?  

Based on the optical and temporal infrared satellite images, many approaches have been 

developed by evaluating the correlations between the soil moisture and soil reflectivity 

or land surface temperature and vegetation growth. Combining visible and thermal 

infrared remote sensing data could provide more information to estimate the soil 

moisture than the single one (D. Zhang and Zhou 2016). Therefore, it is crucial to assess 

the manner in which multispectral satellite images should be combined so as to obtain 

highly accurate soil moisture data of Mongolia. Which kind of factors has an effect on 

the soil moisture in mountainous areas? How do they influence the soil moisture? 

Which factors have a high correlation with the soil moisture in Mongolia? Is the soil 

moisture model useful? The answers to these questions are still unclear, and therefore, 

we need to tackle these issues urgently.  

Question 4: How can NDVI and LST products be used to monitor soil moisture 

and predict it in Mongolia?     

Spatial distribution of soil moisture with high-resolution images in Mongolia has long 

been one of the essential issues in remote sensing and agricultural community. The LST 

and NDVI were positively correlated with the soil moisture in the previous study. Many 
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approaches have been developed to estimate soil moisture by means of LST and NDVI 

in different locations. However, their contributions remain unclear due to their complex 

interaction, especially in Mongolia. Clarifying the individual relations of LST and 

NDVI and soil moisture is vital for the agricultural management, water resources and 

drought monitoring. Previously, the soil moisture surveys have not employed 

multispectral remote sensing data in Mongolia. Only point-scaled measurements 

(meteorological stations and ground truth measurements) were used to estimate the soil 

moisture. How does the spatial distribution of soil moisture identify by the LST and 

NDVI? How can soil moisture time series data be estimated? How can be correlated 

between soil moisture and climate factors and crop yields in Mongolia? Exploring the 

answers to these questions could be clarified in chapter 4.    

Question 5: How could the multi-criteria analysis evaluate for the cropland 

suitability?  

The soil is a vital component of any ecosystem and is referred to as the pedosphere. 

Also, the soil plays a central role in the human ambition to sustain agricultural 

productivity (Rattan and Manoj 2004). Mongolian agriculture produces around 20 % of 

the total Gross Domestic Product (GDP). The agricultural sector contributes 14 % of 

the foreign currency revenues of Mongolia (Batzorigt 2014). In view of the government 

goals, a third crop rehabilitation campaign (national program) was (in 1959, 1976 and 

2008 etc.) held in Mongolia. The Bornuur soum made development strategy in the near 

future. Main goals of the strategic plan are to improve the economy due to farming 

activity and to produce natural products (http://bornuur.to.gov.mn/). There’s need to 

estimate agricultural land suitability analysis using multi-criteria based on crucial 

factors of the cropland. There are possibilities and advantages of using remote sensing 

techniques and geographic information systems in the Mongolian agricultural studies 

(Bayaraa and Tsolmon 2012). How does the soil moisture factor apply for the cropland 

suitability? Why is it crucial to estimate the cropland suitability in Mongolia? How 

many areas could be transformed into irrigated cropland in Mongolia? How are the soil 

types and texture in the study area? These questions will be clarified in chapter 5. In 

order to do so, a suitable crop database (for the agricultural sector) will ensure a greater 

reliability of the estimates and forecasts (which will help in the process of planning and 

policy-making). 

http://bornuur.to.gov.mn/
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1.6 Dissertation outline 

The research questions stated above are addressed in the following chapters of this 

dissertation. In Figure 1—11, the outline of the dissertation is demonstrated.  

Chapter 1 provides the research introduction; several chapters contribute to explain the 

primary objective. The estimation of the long-term soil moisture in the agricultural area 

will be found in Chapter 2, the integrated methodology for the soil moisture in Chapter 

3, Chapter 4 deals with the spatial distribution of soil moisture over Mongolia and 

Chapter 5 carried out with developed methodology for applications such as the 

approach estimation for the cropland suitability. Chapters 2 through 5 correspond to the 

published papers for publications in international peer-reviewed journals.  

 

Figure 1—11. Outline of the dissertation 

Chapter 2. Long-term moisture index’ estimation using satellite and climate data in the 

agricultural area of Mongolia  

Chapter 2, which was published in the “Geocarto International” of the Web of Science 

SCI journal (E. Natsagdorj et al. 2019). The paper has received more than 100 

downloads and four citations. This chapter estimates the long-term moisture index (MI) 

using satellite and climatic data in the agricultural area. The objectives of this chapter 

are: (1) to interpolate the precipitation data from climate stations by means of a 

Geographic Information System (GIS); (2) to rate the long-term MI; using MODIS (3) 

to correlate between the estimated MI and the soil moisture from climate stations at 

different depths, 0 – 10 cm and 0 – 50 cm; (4) to estimate the relation between the 

estimated MI and NDVI. The surface soil moisture estimation plays a main role in 

investigating the importance of the soil moisture in different applications, such as in 
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agriculture, hydrology, meteorology, forestry and natural disaster management 

(Hosseini and Saradjian 2011). Mongolia also needs facilities for satellite image 

processing and to monitor the long-term moisture analysis, especially in the agricultural 

region.  

Chapter 3. An integrated methodology for the soil moisture analysis using multispectral 

data in Mongolia 

This chapter, which was published as a paper in the “Geo-spatial Information Science” 

of the Web of Science SCI  journal (E. Natsagdorj et al. 2017). The paper has received 

more than 2,000 downloads and seven citations. This chapter determines the integrated 

methodology for soil moisture (using multispectral data) by means of the predicted soil 

moisture index (PSMI)). The innovative part of the research is to consider the elevation, 

slope and aspects with other environmental drivers in mountainous and agricultural 

regions for the soil moisture estimation. The elevation, slope and aspects have been 

applied for this methodology (which have not been considered yet in previous studies 

in Mongolia). Additionally, we created a new function for the soil moisture by means 

of the LST and NDVI for the time-series analysis. It will be one of the new contributions 

of this thesis.   

Chapter 4. Spatial distribution of soil moisture in Mongolia using SMAP and MODIS 

satellite data: A time series model (2010 - 2025)   

Chapter 4, which was published in the “Remote Sensing” of the Web of Science SCI 

journal (Natsagdorj et al. 2021). The paper has received more than 300 downloads and 

a citation. This chapter will study on the distribution of soil moisture and compared the 

monthly precipitation/temperature and crop yield from 2010 to 2020. In this chapter, 

Soil Moisture Active Passive (SMAP) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) data will be used, including the MOD13A2 Normalized 

Difference Vegetation Index (NDVI), MOD11A2 Land Surface Temperature (LST), 

and precipitation/temperature monthly data from the Climate Research Unit (CRU) 

from 2010 to 2020 over Mongolia. The soil moisture estimation approach and model in 

our study can serve as a valuable tool for confident and convenient observations of 

agricultural drought for decision-makers and farmers in Mongolia. 

Chapter 5. A GIS-based multi-criteria analysis on cropland suitability in Bornuur 

soum, Mongolia 
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This chapter was published in the “International Archive Photogrammetry, Remote 

Sensing, Spatial Information Science” of ISI Conference Proceedings Citation Index 

(CPCI) of the Web of Science and SCOPUS (Natsagdorj, et al. 2020). The paper has 

received more than 100 downloads. This chapter to estimate best suitable area for 

supporting crop production in Bornuur soum, using a GIS-based multi-criteria analysis 

(MCA) and remote sensing. In this chapter, the GIS-based spatial MCA among the 

Analytical Hierarchy Process (AHP) method will be employed. The approach will 

enhance each criterion which as soil, topography and vegetation. The opinions of 

agronomist experts and a literature review will help in identifying criteria (soil data, 

topography, water and vegetation data) that are necessary to determine areas suitable 

for crops. The crop suitability method implies significant decisions on different levels, 

and the result will be used for cropland management plan to make a decision. It is an 

integral role in agricultural management and land evaluation.  

Chapter 6 General discussion and conclusion that summarize and discuss the results 

of the former chapters and also mention important, potential subjects for possible 

potential future research.  
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CHAPTER 2 

Long-term moisture index estimation using satellite and 

climate data in agricultural area of Mongolia 

Modified from: Enkhjargal Natsagdorj, Tsolmon Renchin, Philippe De Maeyer, 

Chimgee Dari, Batchuluun Tseveen, (2019). Long-term soil moisture content 

estimation using satellite and climate data in agricultural area of Mongolia. Geocarto 

International. 34:7, 722-734 dio: 10.1080/10106049.2018.1434686 
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2.1 Introduction   

The global surface temperature has increased by 1.53 ºC during the period 1850-1900 

to 2006-2015 (IPCC 2019). Due to the global warming, the changes in the moisture 

conditions were predicted (that would occur in some areas, triggered by drought) (G. 

Wang 2005; X. Gao and Giorgi 2008; Zhu et al. 2016). The processes of water balance, 

soil moisture, surface heat and evapotranspiration are undeniably related (Li et al. 

2009). The Soil Moisture (SM) is driven by the climate, especially the precipitation and 

temperature (Feng and Liu 2015). The SM is a necessary component of the hydrological 

cycle (Hao et al. 2015) and plays a considerably important role in ecology and 

agriculture (Wen, Lu, and Li 2015). Several remote sensing vegetation indices are 

widely used to estimate the vegetation changes, e.g. the Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation 

Index (SAVI) and Modified Soil Adjusted Vegetation Index (MSAVI) (Purevdorj et al. 

1998; Sternberg et al. 2011; Hilker et al. 2014). The soil moisture has significantly 

decreased from north to south in Mongolia. We need to obtain more detailed weather 

forecasts during the warm season, indicating a sharp increase in dryness (E. Natsagdorj 

and Renchin 2010) according to the vegetation zones such as high mountains, taiga, 

forest-steppe, steppe, desert steppe and desert. The arid continental climate in Mongolia 

creates an extensive steppe area that embodies the primary source of forage for 

livestock, and the pastoral animal husbandry in the country’s primary agricultural sector 

(Nandintsetseg and Shinoda 2011). The northern part of Mongolia has taiga forest 

covers, which extend to Siberia in Russia. More than half of the annual precipitation is 

observed during the summer season (Sato, Kimura, and Kitoh 2007). The precipitation 

is low (mainly in the warm season between June and September); the largest grazing 

areas (steppe and mountain steppe and forest) receive between 200 and 300 mm 

annually; the desert steppe between 100 and 200 mm; the desert receives less than 100 

mm; only the northern zone possesses more than 300 mm. The majority of the 

precipitation amounts returns to the atmosphere through evapotranspiration; about 4 % 

infiltrates in the aquifer, and 6 % contributes to the surface flow (Suttie 2006).  

According to the weather observations, the land surface temperature has increased by  

2.14 ºC during the period 1940-2008 (Ministry of Environment 2014). During the 

growing season, the augmented temperature is leading to an enhanced evaporation (and 

is thus affecting the soil moisture). The average temperature in the warmest month is 
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15-20 °C in the north and 20-25 °C in the south of Mongolia. The summer continues 

lasts three months. The maximum summer air temperature might reach 35-39 °C in the 

north and 38-41 °C in the south (Battsetseg 2015).  

The soil moisture is one of the most critical environmental variables in view of the land 

surface climatology, hydrology and ecology. It mainly depends on the balance of the 

precipitation and evapotranspiration, as well as on the soil freezing and snow melting 

during winter (Nandintsetseg and Shinoda 2011). The moisture conditions are balanced 

between the precipitation and evapotranspiration (on the land surface), which are 

limiting factors affecting the plant growth and agricultural distribution under a certain 

temperature (Zheng 2000). It took a long time to evaluate the moisture conditions by 

the ratio of precipitation, temperature and evapotranspiration (Thornthwaite 1948; 

UNESCO 1979; UNEP 1992). A paper by Pei et al. (2009) demonstrated the manner in 

which remote sensing could help to extract the snow information from a region in 

northern Xinjiang, located south of the border with Mongolia.  

Global soil moisture products are available such as the Soil Moisture Ocean Salinity 

(SMOS) from the European Space Agency (ESA), Soil Moisture Active Passive 

(SMAP) from the National Aeronautics and Space Administration (NASA) and the 

Advanced Microwave Scanning Radiometer - Earth observing system (AMSR-E) from 

the Japanese Aerospace eXploration Agency (JAXA), etc. These products have a low 

resolution that could be applied for the global and regional scale soil moisture 

monitoring. This considerable variation is problematic for the products with a low 

spatial resolution (Wen, Lu, and Li 2015). Because of the importance of the SM, the 

execution of the spatial and temporal assessment seems to be complicated.  

In this chapter, the northern central part of Mongolia has been selected, which provides 

the main products for the agricultural sector (MFALI 2017). In this region, the soil 

moisture variability is mainly controlled by the precipitation during the growing season 

(Nandintsetseg and Shinoda 2014). This study could be (quickly and easily) applied so 

as to estimate the climate moisture contents in the region of interest.  

Therefore, a study on the moisture conditions in the northern and central part of 

Mongolia during 2000-2013 has been carried out (concerning the growing season). The 

objectives of the study include: (1) to interpolate the precipitation data from the climatic 

stations using the geographic information system (GIS); (2) to estimate the long-term 
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moisture index using the in-situ and MODIS data; (3) to correlate between the estimated 

moisture index and soil moisture from the climatic stations at different depths (0-10 cm 

and 0-50 cm); (4) to assess the relationship between the estimated moisture index and 

the NDVI (in addition to the correlation between the NDVI and the 

precipitation/temperature from the climatic stations). The surface soil moisture 

estimation plays a leading role in the investigation of the soil moisture importance in 

various applications, such as agriculture, hydrology, meteorology, forestry and natural 

disaster management (Hosseini and Saradjian 2011). Mongolia also needs satellite 

image processing and monitoring to perform a long-term moisture analysis (especially 

in the agricultural area).  

2.2 Study area  

The seven provinces (shown in Figure 1—9) were chosen and dealt with in this chapter. 

The study area is located in the mountainous area with elevations between 590 and 

2,800 m.  The study area has a lower average temperature than the southern region 

(represented in Mongolia). The average temperature ranges between 15 and 20 °C 

during the summer season. The total annual precipitation is situated between 250-300 

mm in the taiga and forest-steppe regions and 150-250 mm in the steppe regions. In 

summer, most rainfall would occur (about 85 % - 90 %); this rainfall forms the main 

source of the soil moisture (L. Natsagdorj and Batima 2003). The study area includes 

80.9 % of the cropland of the total crop area in Mongolia (http://www.mofa.gov.mn/) 

(MFALI 2017). The soil moisture in Mongolia is mainly influenced by the precipitation 

and evapotranspiration; it also depends on the soil type and texture.  

2.3 Dataset description 

2.3.1 Climatic data 

The climate station data (temperature, precipitation) were obtained from 38 climatic 

stations between 2000 and 2013 during May-August for the vegetation growing season. 

The precipitation (mm) and temperature (ºC) data have been acquired monthly (and on 

average) and are based on the daily observation data. There are only 6 stations are 

available for SM (noted with symbol (*)) and they had observations beneath 50-cm 

depths (Table 2—1) and thus the data for the 0-10 cm and 0-50 cm soil layers were 

analyzed. The soil moisture contents (obtained by gravimetric methodology) were 

acquired at 0-10 cm and a 0-50 cm depth with a monthly interval (7th, 17th and 27th day 

http://www.mofa.gov.mn/
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of each month) from May to August. The 50-cm soil layer includes the major rooting 

zone of the grasses that dominate most parts of the Mongolian steppe (Shinoda, 

Nachinshonhor, and Nemoto 2010). The 38 stations are widely spread over the study 

area. Figure 1—9 shows the location of the climate stations. The precipitation, 

temperature and soil moisture contents’ data were averaged over the monthly intervals 

from May to August. These climatic data were provided by the Information and 

Research Institute of Meteorology, Hydrology and Environment (IRIMHE) of 

Mongolia (http://www.icc.mn/) (IRIMHE 2016). The geographical locations, 

elevations and station names of the 38 stations are represented in Table 2—1.  

Table 2—1. Climate stations with information on the geographical location (* SM 

available stations). 

ID Aimag name Station name Longitude (°E) Latitude (°N) Elevation (m) 

1 Bulgan Gurvanbulag 103° 28' 52.02" 47° 44' 8.93" 1,095 

2 Bulgan Mogod  102° 58' 38.92" 48° 16' 24.77" 1,438 

3 Bulgan Selenge 103° 57' 48.19" 49° 26' 46.57" 794 

4 Bulgan Teshig 102° 36' 10.54" 49° 57' 52.63" 1,047 

5 Bulgan Khutag-Ondor 102° 41' 42.66" 49° 23' 28.85" 940 

6 Selenge Orkhontuul 104° 50' 23.6" 48° 49' 57.34" 847 

7 Selenge Orkhon 105° 24' 34.23" 49° 9' 28.94" 780 

8 Selenge Tsagaannuur 105° 25' 59.4" 50° 6' 50.5" 779 

9 Selenge Eroo 107° 17' 22.63" 49° 25' 50.61" 790 

10 Darkhan Shariin Gol 106° 26' 18.74" 49° 15' 10.68" 930 

11 Selenge Bayangol* 106° 6' 11.83" 48° 55' 39.2" 833 

12 Selenge Zuunkharaa 106° 27' 40.58" 48° 51' 43.18" 878 

13 Tuv Buren 105° 4' 11.09" 46° 55' 1.68" 1,286 

14 Tuv Bayan-Onjuul 105° 56' 19.5" 46° 53' 4.1" 1,386 

15 Khentii Darkhan 109° 24' 51.34" 46° 37' 0.08" 1,266 

16 Khentii Galshar 110° 51' 15.27" 46° 13' 16.21" 1,223 

17 Khentii Binder 110° 36' 37.54" 48° 36' 56.97" 1,044 

http://www.icc.mn/
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18 Khentii Dadal 111° 38' 0.9" 49° 1' 15.24" 951 

19 Khentii Bayan-Ovoo 112° 7' 5.31" 47° 46' 54.66" 916 

20 Tuv Lun 105° 15' 42.9" 47° 52' 14" 1,027 

21 Tuv Ugtaaltsaidam 105° 25' 22.98" 48° 15' 44.73" 1,157 

22 Tuv Bayanchandmani 106° 18' 11.9" 48° 13' 38.29" 1,298 

23 Ulaanbaatar Buyant Ukhaa 106° 38' 57.12" 48° 7' 35.3" 1,243 

24 Tuv Altanbulag 106° 25' 6.25" 47° 41' 46.27" 1,227 

25 Tuv Bayan 107° 33' 35.36" 47° 15' 8.45" 1,487 

26 Ulaanbaatar Nalaikh 107° 18' 20.17" 47° 45' 27.03" 1,421 

27 Ulaanbaatar Baganuur 108° 23' 48.83" 47° 45' 38.29" 1,344 

28 Ulaanbaatar Ikh surguuli 107° 10' 5.68" 47° 55' 52.29" 1,418 

29 Tuv Mongonmorit 108° 28' 44.5" 48° 12' 28.53" 1,439 

30 Tuv Jargalant 105° 52' 37.99" 48° 31' 24.86" 995 

31 Ulaanbaatar Bagakhangai 107° 31' 6.08" 47° 22' 50.5" 1,474 

32 Darkhan Salkhit* 105° 53' 6.12" 49° 16' 30.05" 718 

33 Orkhon Bayan-Ondor* 104° 8' 29.05" 49° 5' 42.42" 1,273 

34 Bulgan Bulgan* 103° 32' 26.83" 48° 48' 47.8" 1,209 

35 Selenge Sukhbaatar 106° 14' 6.5" 50° 14' 35.87" 695 

36 Tuv Zuun Mod* 106° 58' 7.01" 47° 42' 11.8" 1,533 

37 Khentii Undurkhaan* 110° 40' 5.73" 47° 19' 7.1" 1,026 

38 Ulaanbaatar Ulaanbaatar 106° 46' 35.58" 47° 55' 19.23" 1,331 

 

2.3.2 MODIS (Moderate Resolution Imaging Spectroradiometer) products 

MODIS has been applied during a fourteen-year (2000-2013) period so as to observe 

the dynamic range of the moisture contents during the growing season. MODIS has 

typical products, among which the MOD16 evapotranspiration product that is used to 

calculate the regional water and energy balance and the soil water status. J. Zhang et al. 

(2007) have applied a similar approach to detect anomalies through the MODIS land 
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products and a time series’ analysis. Accordingly, the monthly composite of the 1 km 

spatial resolution MOD16A3 and MOD16A2 (Mu, Zhao, and Running 2011; 2013) 

products from MODIS and the National Aeronautics and Space Administration 

(NASA) Earth Observing System (http://lpdaac.usgs.gov/) data were employed. These 

products are freely downloadable online.  

The MOD16A3 produces a monthly composite of the MODIS terrestrial 

evapotranspiration (ET) and potential evapotranspiration (PET) products. The ET and 

PET are commonly utilized as an indicator of the terrestrial water availability. The PET 

of the MODIS was a mosaic and has been projected using the ENVI-IDL 4.7 from 

HDF-EOS to GeoTIFF. It allows the projection from the MODIS Sinusoidal (SIN) grid 

to the Universal Transverse Mercator (UTM) zone 48N projection in the study analysis. 

Hosseini and Saradjian (2011) have demonstrated an excellent example of the manner 

in which the MODIS data could be applied for the soil moisture estimation.  

2.3.3 SPOT-VEGETATION (SPOT-VGT)  

The decade synthesis (SPOT-VGT) is computed from all the passes on each location 

acquired during the 10-day periods. These periods will be defined according to the legal 

calendar: from the 1st to the 10th, from the 11th to the 20th, from the 21st to the end of 

each month (F. Zhang, Wu, and Liu 2003). In this research, one applied the average for 

each month. The geometric correction for the SPOT-VGT was performed in the  

ENVI-IDL 4.7 and projected into the UTM zone 48N. The SPOT Vegetation dataset 

(used in this study) has been monthly averaged for the growing season from 2000 to 

2013.  

The NDVI is widely adopted to look into the status quo and the variation of the 

vegetation cover at a particular location. The Normalized Difference Vegetation Index 

(NDVI) was estimated by means of the following equation (2-1) (C.J Tucker 1979; C.J 

Tucker and Sellers 1986a):   

REDNIR

REDNIR
NDVI

+

−
=  

         

(2-1) 

, where RED is the visible light of the red wavelength (from 400-700 nm) and NIR 

demonstrate the intensity of the near-infrared wavelength (from 700-1,100 nm).  

http://lpdaac.usgs.gov/
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2.4 Methodology  

The seasonal contrast between the precipitation and evapotranspiration determines the 

soil moisture dynamics and thus the water availability for plant use (Hao et al. 2015). 

Remote sensing techniques deliver a powerful tool to estimate the soil moisture at 

several spatial and temporal resolutions (Jabbar, Guangdao, and Zhenfei 2004; H. 

Wang, Magagi, and Goita 2017).  

In this chapter, one used the PET (derived from MODIS) and climate data from the 

stations to estimate the long-term moisture index (spatial resolution of 1 km) of the 

growing season (in 2000-2013) in order to calculate the moisture index in the study area 

(equation 2-3) (Also see the research of Zhang et al. (2007)). The overall description of 

the study consists of three parts: (1) the interpolation of the precipitation from the 

climatic stations (equation 2-2); (2) the estimation of the long-term moisture index 

(equation 2-3); (3) the correlation between the estimated MI and soil moisture from the 

climate stations at different depths (equation (2-4); (4) the relation between the 

estimated MI and NDVI. Figure 2—1 shows a detailed flowchart of this chapter.  

 

Figure 2—1. Flowchart of this chapter 
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2.4.1 Kriging interpolation method  

The geostatistical analysis has been used as the main analytical tool to execute climatic 

and environmental factors’ and studies for relationships between soil moisture and 

environmental factors (Nyberg 1996; Western et al. 1999). The Kriging interpolation 

method (Oliver and Webster 1990; Yamamoto 2005; 2007) was applied through 

ArcGIS to obtain a spatial distribution of the precipitation. The Kriging interpolation 

assumes that the distance or direction between the sample points reflects a spatial 

correlation that could be used to clarify the surface variation. The Kriging method 

shows similarity with the IDW (Inverse Distance Weighted); it weighs the surrounding 

measured values to derive a prediction for an unmeasured location. The general formula 

for both interpolators is created as the weighed sum of the data, equation (2-2): 

                                             

(2-2) 

, where:  Z(si) = the measured value at the ith location  

λi = an unknown weight for the measured value at the ith location 

s0 = the predicted location 

N = the number of the measured values 

In the IDW, the weight λi solely depends on the distance to the predicted location 

(Oliver and Webster 1990). However, with the Kriging method, the weights are not 

only based on the distance between the measured points and the predicted location but 

also the overall spatial arrangement of the measured points. In order to use the spatial 

arrangement in the weights, the spatial autocorrelation must be quantified. Thus, in the 

ordinary Kriging method, the weight, λi, depends on a fitted model to the measured 

points, the distance to the predicted location and the spatial relation among the 

measured values around the predicted location.  

2.4.2 Estimation of the long-term moisture index (MI)  

The moisture index from this chapter was looked into by Thornthwaite (1948). This 

methodology estimates the moisture index using the precipitation and 

evapotranspiration data from the growing season as expressed by the following 

equation (2-3) (Thornthwaite 1948; UNESCO 1979; Stephen 2006).  
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𝑀𝐼 =
𝑃

𝑃𝐸𝑇(𝐷𝑎𝑦𝑠𝑃𝑒𝑟𝑀𝑜𝑛𝑡ℎ)
∗ 100%

                            
 (2-3) 

, where PET is the Potential EvapoTranspiration produced from the MOD16A2 and Р 

represents the total monthly precipitation in mm/day and r month. It represents a 

dimensionless index that ranges from -1 to 1. The MI is multiplied by 100 so as to create 

entire numbers (Grundstein 2009). The MI is determined by the percentage of the 

moisture contents. The distribution of the moist regions in the study area is based on 

this moisture index and shown in the representation of the changes in moisture contents 

for the growing season during 2000-2013 in the study area. Figure 2—2 (a-n) is 

demonstrated as the mean MI for May-August 2000-2013. The driest years are 2000 

(Figure 2—2a), 2002 (Figure 2—2c) and 2007 (Figure 2—2h), while the wettest years 

include 2012 (Figure 2—2m) and 2013 (Figure 2—2n).  
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Figure 2—2. Mean moisture index in the study area during the growing season 

(May - Aug) of 2000-2013  

From this methodology, the following argument was identified: If the precipitation (P) 

is high then moisture index (MI) will also be high and the potential evapotranspiration 

(PET) is high to MI below.    

(P ↑ = MI ↑; PET ↑ = MI ↓ either P ↓ = MI ↓; PET ↓ = MI ↑)  
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2.4.3 Pearson’s correlation for the MI validation 

The Pearson’s correlation (r) was applied for the comparison between the MI and soil 

moisture from the climate stations (equation 2-4). The equation of the coefficient of 

Pearson (r) is given in the following equation (2-4) (Sedgwick 2012): 

𝑟 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛

𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2√∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖

𝑛
𝑖

 
(2-4) 

, where Xi and Yi represent the individual derivations and measurements of the variables 

X and Y, respectively. 𝑋̅ and 𝑌̅ demonstrate the means of X and Y, respectively 

(Sedgwick 2012). The linear Pearson’s correlation (r) was determined on a monthly 

timescale (May-August) for the derived satellite and climatic data. Equation (2-4) was 

also utilized to investigate the relation between the estimated MI and NDVI. 

2.5 Data analysis  

The validation of the estimated moisture index from this chapter: In general, the 

estimated moisture index performed reasonably well (using satellite and climatic data). 

Figure 2—3a and Figure 2—3b describe the correlation between the estimated moisture 

index and the SM from the climate stations at a 0-10 cm and 0-50 cm depth.  

represents the correlations of the estimated MI with the vegetation and SM 

measurements from the climatic stations for the growing season (May-August). It 

indicates that the values of the correlation coefficient (r) amounted to 0.60 between the 

estimated MI and soil moisture at a 0-10 cm depth from the station that was statistically 

significant (p < 0.001) (Figure 2—3a) and the correlation coefficient (r) measured 0.38 

between the estimated MI and the soil moisture at a 0-50 cm depth from the statistically 

significant station (p < 0.01) (Figure 2—3b). In the growing season, the correlation 

between the estimated MI and SM (0-10 cm) from the climate stations was high in July 

(0.59) and August (0.84). Regarding the 0-50 cm depth, the correlation was lower than 

the 0-10 cm dept (Table 2—2 and Figure 2—3).   



Chapter 2 

 

37 

 

Table 2—2. The correlation among the estimated MI with different depths in soil 

moisture from the climate stations (in the study area) during the growing season 

in 2000–2013 

Months 
Number of 

stations 

Estimated MI vs Soil 

moisture (0 - 10 cm) 

Estimated MI vs Soil 

moisture (0 - 50 cm) 

May 6 0.50* 0.27 

June 6 0.33 0.04 

July 6 0.59** 0.41 

August 6 0.84*** 0.75** 

Significance level of the correlation coefficient (r): ***(p < 0.001), **(p < 0.01), * 

(p < 0.05), (p < 0.1) 

Figure 2—3. Scattered diagram between the SM measurements from the climate 

stations at different depths and the estimated MI for the growing season of 2000 

- 2013: (a) estimated MI and SM measurements from the climate stations at a 0 - 

10 cm depth, (b) estimated MI and SM measurements at a 0 - 50 cm depth 

Figure 2—4 shows the difference between the MI and soil moisture from the climate 

station at different depths (0–10 and 0–50 cm). The snow water (melting) roughly 

corresponds to an increase in SMC from October to April (6.9 mm) plus the estimated 

evapotranspiration during this period (4.2 mm) (Zhang, et al. 2008), this case was 

shown in May 2004 provided that the SM was higher than the moisture index since the 

snow water was not provided in this research.  

  

 
a)                                                                    b) 
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a)                      b) 

          

   c)          d)  

Figure 2—4. (a-d) Temporal variations of the estimated MI among different 

depths in soil moisture of the climate stations for 2000-2013. The SM of a 0-10 

cm depth (%: light blue bar), the SM of a 0-50 cm depth (%: dark blue bar), the 

estimated MI (%: red line): (a) in May; (b) June; (c) July and (d) August. 

The climate variables from the stations: The average temperature of the stations in the 

study area measured approximately 16 °C, the mean precipitation was 191 mm, and the 

average soil moisture amounted to 10.9 % during the growing season (2000-2013). 

Figure 2—5 shows the time series plots of the climate variables during the growing 

season. The total mean precipitation was situated between 137 mm (2002) and 263 mm 

(2013); the average temperature ranged from 15.06 °C (2003) to 17.68 °C (2007) and 

the soil moisture measured between 8.96 % (2007) and 13.30 % (2012) during the study 

period. Droughts occurred during the summers of 1999-2002 (Natsagdorj and Batima 

2003). Figure 2—5 shows the long-term climatic data in which the wettest years were 

2003, 2012 and 2013 and the driest years 2002, 2004 and 2007.  
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Figure 2—5. Time series of the climatic data regarding the temperature (°C), 

precipitation (mm) and soil moisture contents’ (%) averages during the growing 

season of 2000 - 2013. 

 

Figure 2—6. Scatter plot between the PET (mm/months) and temperature (oC): 

May (pink); June (green); July (blue) and August (red) 

Regarding the PET validation derived from MODIS, we could tell that the PET is 

positively correlated with the temperature from the climate stations. The determination 

coefficients amounted to 0.43 in August, 0.62 in July, 0.61 in June and 0.83 in May, 

respectively (Figure 2—6).    

The correlation between the NDVI and precipitation/temperature from the climate 

stations: The vegetation production in the study area is linked to the monthly 

0

50

100

150

200

250

300

0

2

4

6

8

10

12

14

16

18

20

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

P
re

ci
p

it
at

io
n

, 
m

m
 

T
em

p
er

at
u

re
, 

°C

S
o
il

 m
o
is

tu
re

 c
o
n

te
n

ts
, 
%

 

Precipitation (mm) Temperature (°C)

Soil moisture content (%) Linear (Soil moisture content (%))

150

160

170

180

190

200

210

220

230

240

250

5 7 9 11 13 15 17 19 21 23 25

P
E

T
 (

m
m

/m
o

n
th

)

T (oC)

Scatter plot (PET (mm/month) vs T (oC))

August July June May



Estimation of long-term moisture index  

40 

 

precipitation and moisture availability. One created a relation between the NDVI and 

estimated MI for the growing season of 2000-2013. The Mongolian steppe is one of the 

largest remaining grassland ecosystems in the world (T. Hilker, E. Natsagdorj and H. 

Richard, et al. 2014).  

In the research work of Hilker, et al. (2014), the NDVI was relatively stable or increased 

in some areas (in the northern part of the country). A decrease of up to 0.05 in the mean 

yearly NDVI took place in several southern provinces, especially in the most southern 

part of the country. Similar work and results have been obtained by Mushtak, Hu and 

Zhang (2012) in their research on the desertification of arable lands in the North 

Shaanxi area of China. A similar long-time series’ analysis of the NDVI data sets from 

1981 to 2001 was carried out on the precipitation by Zhang, et al. (2012), whose study 

covers the north-central part of Mongolia (which contains forested and steppe area). 

The NDVI in this area was more relatively stable or rose. The biomass below the ground 

appeared to affect the one situated aboveground at the initial vegetation growth (as 

detected by the NDVI) during spring. That signifies that the larger (or smaller) 

rootstock of the steppe plants produced during the wetter (or drier) growing season 

might be maintained in the frozen soil during winter and might provide a basis for the 

production of a larger (or smaller) aboveground biomass in spring (Banzragch and 

Masato 2011). Besides, the vegetation growth depends on the temperature, precipitation 

and moisture contents.  

     

a)                                                            b)  

Figure 2—7. The scatter plot between the NDVI and precipitation (mm) as 

shown in (a), temperature (oC) and shown in (b): the red circle is the confidence 

ellipse (confidence interval of 95 %) 

The correlation between the NDVI and the precipitation explains that the determination 

coefficient was 0.402, statistically significant (p < 0.0001). While the correlation 
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between the NDVI and temperature was 0.579, being statistically significant (p < 

0.0001) as well (Figure 2—7 and Table 2—3).  

Table 2—3. Correlation coefficient and p-values between the NDVI and 

precipitation/temperature from the climate stations for the growing season (May-

August) 

NDVI  P (mm) T (oC) 

Coefficients of determination 0.402 0.579 

Correlation matrix 0.634 0.761 

p-values < 0.0001 < 0.0001 

The Correlation between the MI and NDVI: Figure 2—8(a-b) shows the relation 

between the NDVI and MI: The correlation coefficient was 0.28 between the NDVI 

and MI of May; 0.37 in June; 0.55 in July and 0.42 in August (Table 2—4 and  

Figure 2—8a). The correlation coefficient measured 0.67 (p < 0.01) between the NDVI 

of July and the MI amount from May and June; 0.71 (p < 0.01) between the NDVI of 

July and the MI amount from May and July; 0.72 (p < 0.01) between the NDVI of 

August and the MI from May and August and 0.78 (p ≤ 0.001) between the NDVI of 

August and the MI amount from June and July (Table 2—5 and Figure 2—8b).  The  

95 % confidence interval is described by different colour ellipses for each month, e.g. 

the NDVI of July and the amount of MI from May and June (pink), NDVI of July and 

amount of MI from May and July (green), NDVI of August and amount of MI from 

May and August (blue) and the NDVI of August and amount of MI from June and July 

(red) as shown in Figure 2—8a.  

Table 2—4. Correlation coefficient and p-values between the MI and NDVI from 

May to August  

 May June July August  

R  0.28 0.37 0.55 0.42 

p-values  0.331 0.173 0.04 0.135 

 

Table 2—5. Correlation coefficient and p-values between the amount of MI (May-

Aug) and the highest growing months of the NDVI (July and August) 

Variables NDVI (Jul) p-value  Variables NDVI (Aug) p-value 

MI (May+Jun) 0.668 0.009 MI (May+Aug) 0.722 0.004 

MI (May+Jul) 0.711 0.004 MI (Jun+Jul) 0.788 0.001 

Values in bold are different from 0 with a significance level of alpha=0.05 
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The results of this analysis (Table 2—4) explain that the moisture index has a weak 

correlation with the NDVI for the growing season (May-August). However,  

Table 2—5 demonstrates that the amount of moisture index (May-August) has a slightly 

strong correlation with the NDVI of the highest growing months (July and August), 

which makes it a significant predictor of the vegetation growth (which strongly depends 

on the amounts of moisture index and precipitation of previous months).  

 

 

 

 

 

 

 

a) 

 

 

 

 

 

 

 

b) 

Figure 2—8. Scatter plots between the NDVI and estimated MI a) for each 

month; b) the correlation coefficients between the highest month of the NDVI 

(July and August) and the MI amount from May to August 

2.6 Results and discussion  

The research output provides the monthly moisture contents (MI), which comprise 

useful resource data on drought monitoring, irrigation, dust and pasture land 

degradation. The northern part of Mongolia has a high soil moisture due to the 
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precipitation (400 mm) and snow water from the high mountains, while the southern 

part of Mongolia shows a low soil moisture (due to the precipitation of 100 mm) 

(Nandintsetseg and Shinoda 2014). The spatial moisture maps demonstrate a significant 

increasing trend for the growing season from 2000 to 2013 (Figure 2—9).  

Though significant dust events occur every spring, limited research work has been 

carried out yet on the dust storm sources in southern Mongolia and northern China. The 

distribution of the number of dust storm days mainly happens in the south Gobi region, 

which borders China. The number of annual days with dust storms is less than five days 

in central and northern Khangai, Khuvsgul and the Khentei mountainous areas of 

Mongolia, 10-17 days in the western region of the Great Lakes, and 20-37 days for the 

desert and semi-desert areas of Mongolia (Tsolmon, Ochirkhuyag, and Sternberg 

2008). The moisture map could be considered as one of the main factors defining a dust 

storm. As the Mongolian grassland has been gradually decreasing (Hilker et al. 2014), 

drought has nevertheless been rising (Sternberg 2018). Our research on the MI is an 

essential factor to monitor the land degradation and droughts.  

This study demonstrates a correlation between the estimated MI and SM from the 

climate stations (also with the NDVI). In comparison, it is indicating a relationship 

between the NDVI and the precipitation/temperature from the climatic stations. From 

Figure 2—3a and Figure 2—3b, one could deduct a correlation between the estimated 

MI and SM (from the stations each month), which shows different results such as the 

correlation of the dry months (May-June) which was low and a high correlation of the 

wet months (July-August). This analysis confirms that in the arid region, the soil 

moisture deficit is mainly attributed to the limited precipitation and even a small 

increase in the total precipitation has substantial effects on the soil moisture (Y. Wang 

et al. 2018). The NDVI is significantly related to the precipitation and temperature 

(Figure 2—7). From the results, one could see that the vegetation growths inversely 

correlated with the MI and the precipitation in the dry months (and strongly correlated  

in the arid region during the wet months).  

The long-term MI was rated by means of the monthly PET and mean precipitation 

through the growing season (May-August) for the period 2000 - 2013. The highest soil 

moisture amounted to 65.3 % in 2013 and the lowest moisture was 7.11 % in 2000.  
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Figure 2—9 represents the mean MI from May to August during 2000-2013. For 

August, the mean MI was estimated the highest at 31.4 %, while the latter demonstrated 

the lowest amount (12.6 %) in May. From the results, one observed that the results of 

the driest (2000/2002/2004/2007) years matched with the research of Nandintsetseg and 

Shinoda (2011).   

 

Figure 2—9. The long-term MI (%) for the growing season during 2000-2013 

(May-August) 

The advantage of this study is that it proves useful to monitor various environmental 

issues. The national policy-makers will be able to utilize this information in order to 

create suitable agricultural areas. The long-term satellite-derived and climatic data were 

acquired for the period of May-August 2000-2013. The SM measurements from the 

climate stations (at different depths) were employed for the validation of the estimated 

MI. Then, one rated the relation between the estimated MI and NDVI during the study 

period. 

2.7 Conclusion  

The moisture index was developed for the northern central part of Mongolia, based on 

the PET from MODIS and the interpolated precipitation from the climate stations 

during the growing season of May-August, 2000-2013, which were combined by the 

in-situ and satellite data. Furthermore, the 14-year spring/summer data on the 

temperature, precipitation and soil moisture of the climate stations (from 38 climate 

stations) have been analyzed for each month during the growing season (May-August). 

The SM could reflect the precipitation, evapotranspiration, infiltration and runoff. It 

functions as a strong check-up on the water portioning between the atmosphere and 

0%

10%

20%

30%

40%

50%

60%

70%

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

es
ti

m
at

ed
 M

I,
 %

May June July August



Chapter 2 

 

45 

 

surface (E. Natsagdorj et al. 2017). From the MI estimation, one could deduct a high 

moisture in 2012 and 2013 and a rather low amount during 2000, 2002 and 2007. The 

results proved that the estimated MI and SM measurements from the climate stations 

correlated positively, while the estimated MI and NDVI connected well.  

While comparing the estimated MI with the SM from the climate stations (at different 

depths), positive correlations in the study area could be noticed during the growing 

season (2000-2013). For the depth of 0-10 cm, the correlation between the estimated 

MI and the soil moisture from the climate stations was 0.58 (Figure 2—3a) and for the 

depth of 0-50 cm, the correlation measured 0.38 (Figure 2—3b). It was statistically 

significant at both depths (p < 0.001) and (p < 0.01), respectively. A good relation is 

visible between the NDVI and estimated MI regarding the growing season of  

2000-2013 (Figure 2—8). From the results, one could conclude that the moisture 

contents from previous months are strongly affecting the vegetation growth of the next 

months. This fact proved evidence of the correlation between the MI amount (May to 

July) and the highest month in the NDVI, meaning that the previous month’s moisture 

contents affected the vegetation growth of the following month. However, the moisture 

index could not express enough SM and it is more suitable for drought monitoring and 

water balance studies.    

This research methodology is suitable for use in the agricultural regions and practical 

applications of droughts and desertification monitoring in Mongolia. The work of 

Hadeel, Jabbar, and Chen (2011) also demonstrates similar results on the detection of 

environmental degradation indicators. The long-term MI data will provide valuable 

information for the decision-makers and farmers concerning their further actions. A 

satellite and climatic data approach is useful for the policy-makers so as to develop 

suitable agricultural regions (Guoxin, Shibasaki, and Matsumura 2004) and (Anderson, 

Reynolds, and Gugerty 2017). The disadvantage of this research included that the data 

were obtained from the spring-summer season (slightly lacking inaccurate results). 

Therefore, further research will being describe separate seasons (spring and summer). 

Further research will deal with the moisture data, which have already proven to be a 

good data source for the agricultural management, planning and drought monitoring.   
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CHAPTER 3 
An integrated methodology for soil moisture analysis using 

multispectral data in Mongolia 

Modified from: Enkhjargal Natsagdorj, Tsolmon Renchin, Martin Kappas, Batchuluun 

Tseveen, Chimgee Dari, Oyunbileg Tsend and Ulam-Orgikh Duger (2017). An 

integrated methodology for soil moisture analysis using multispectral data in 

Mongolia. Geo-spatial Information Science. 20(1), 46-55 

dio:10.1080/10095020.2017.1307666.  
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3.1 Introduction  

The soil moisture (SM) represents a significant environmental indicator controlling and 

regulating the interaction between the atmosphere and the land surface (D. Zhang et al. 

2015). Besides, it is sensitive to climate change (Delworth, Manabe, and Stouffer 1993). 

Furthermore, the SM regulates the ratio of the runoff and infiltration and controls  

significant energy fluxes (Vivoni et al. 2007). Moreover, the SM also plays an essential 

role in the plant productivity and has a direct influence on the crop productivity (Saha 

et al. 2018). The SM distribution in the landscape (both spatial and temporal) is 

therefore a crucial variable for the climate system modeling. It embodies one of the 

most critical environmental variables concerning the land surface climatology, 

hydrology and ecology. Given the importance of the SM, its spatial and temporal 

assessment is difficult.  

The soil moisture affects the natural vegetation and increases agricultural production 

(Hillel 1998). However, many factors have an impact on the soil moisture, which 

namely the temperature, precipitation, evapotranspiration, soil types, texture, 

topographical conditions and vegetation (van den Hurk et al. 2012; Subin et al. 2013). 

Different soil characteristics might lead to soil moisture heterogeneity (Ismail 1991). 

The topographical conditions’ effect on the soil moisture is determined by the runoff 

and infiltration (Liu et al. 2019), and the vegetation cover could display the soil 

moisture balance (T. Yang et al. 2018). A steeper slope facilitates a more significant  

run–off and a lower residence time for rainwater, whereas gentle slopes have a lower 

run-off, allowing more time for greater soil infiltration by the rainwater (Lamchin et al. 

2017). Many soil studies only used the index, wetness index and point measurements 

from the station. For example, Mohamed and Kimura (2014) employed the normalized 

day-night surface temperature difference index (NTDI) with a moisture availability 

(ma) from the Mongolian Steppe during the growing season, and it showed a significant 

inverse exponential correlation with ma. This result indicates that the NTDI is useful as 

a surrogate of the moisture availability in the steppe fields of central Asia. Cornick, 

Djebbar, and Alan Dalgliesh (2003) developed the approach and compared the results 

with other methods (of selecting the moisture reference years) for hydrothermal 

simulation. These utilized the climate stations’ data for their model (Cornick, Djebbar, 

and Alan Dalgliesh 2003; Attorre et al. 2007). The latter determined the moisture index 

using the precipitation and potential evapotranspiration. The moisture index, related to 
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the potential amount of available precipitation, was the most important factor 

explaining the distribution of the Dracaena Cinnabari. The information on climate 

change and SM from a special sensor microwave/imager (SSM/I) was used for the 

African continent (Lu et al. 2013). They concluded that such information is useful in a 

climate change study but it is at a point scale and also only available at limited locations.  

The standard procedure for the SM assessment calibrations (against all other SM-

methods) includes the gravimetric method from the soil probes in the field. This 

standard procedure is typically a point measurement. Because of the local scale 

variations in the soil properties, terrain (slope, exposition) and vegetation cover, the 

derivation of representative SM-distributions at the field sites is very difficult. 

Furthermore, the field methods are labour intensive, expensive and sometimes hard to 

manage in the Mongolian landscape. The most accurate method to estimate the SM is 

gravimetric sampling, as already mentioned above. The soil sample from the field 

should be measured immediately by putting the sample for 24 to 48 h in drying in an 

oven at 105 °C in order to measure the mass of the dry soil. 

Further soil bulk densities are required to convert the gravimetric sampling (water mass 

per soil mass) into volumetric values (water volume per soil volume). A comprehensive 

review of various SMC methods is suggested (Verstraeten, Veroustraete, and Feyen 

2008). In contrast with previous remote sensing (RS) techniques (which are combined 

with additional GIS data) that are effective because of their spatially aggregated data 

assessments. By nature, the SM is a very heterogeneous variable, and it varies (on a 

small scale) in soil properties and drainage patterns. Therefore, information on the soil 

types, soil properties and terrains is essential. The satellite images cover relative large 

scale areas but in order to examine soil moisture that the presence of vegetation adding 

complexity to the interpretation.  

Remote sensing and GIS provide excellent tools to monitor the suitability for the 

development of agricultural land in Mongolia (Ghar et al. 2005). In particular, the soil 

moisture monitoring and mapping studies constituted efforts of large scale modeling at 

the required spatial and temporal scales in the active microwave remote sensing 

(Schmugge et al. 1974; Engman 1991; Jeu et al. 2008; Kolassa, Reichle, and Draper 

2017). Understanding the spatial and temporal variability of the moisture patterns is 

critically important for the food security in Mongolia and other regions in central Asia. 

For this reason, it is essential to investigate the SM and other suitable drivers for the 

development of agricultural lands in Mongolia. This chapter focused on the 
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establishment of a model (for the SM estimation) using optical satellites and ground 

truth data for the kastanozem soils (the kastanozem soil is the common soil type in 

Mongolia).  

Kastanozem accommodates dry grassland soils, among the lands’ short-grass steppe 

belt, located south of the Eurasian tall-grass steppe belt with Chernozem. The 

Kastanozem soils are potentially fertile soils; a periodic lack of soil moisture is the main 

obstacle for high yields. Small grains, irrigated food and vegetable crops are the 

principal crops grown (FAO of the United Nations 2015). The Kastanozem soil is 

widely distributed, which occupies half of the Mongolian territory (Avaadorj and 

Baasandorj 2003). However, the kastanozem soils experience problems due to wind 

and water erosion, especially on the fallow lands (FAO of the United Nations 2015). 

The Bornuur soum is one of the leading agricultural regions in Mongolia. Soum’s 

economy is directly dependent on its agricultural production (Hugjliin Ezed NGO 

2008). In this chapter, we will develop the soil moisture index, and we aim to specify 

the different factors related to the soil moisture. As mentioned above, we selected the 

kastanozem soil of Bornuur soum in this chapter, which is the ordinary soil type in 

Mongolia. Determining the soil moisture in the agricultural areas often takes time and 

money, especially in the cropland regions. Therefore, the estimation of SM using RS 

techniques is saving time and money. Recent soil moisture studies could be identified 

from the optical remote sensing techniques in a high spatial resolution such as the 

Landsat TM/ETM/OLI, Moderate-resolution Imaging Spectroradiometer (MODIS) 

images. 

Many researchers have studied the soil moisture mapping by the interaction between 

the land surface temperature (LST) and the vegetation index (VI). In other hands, the 

topographic data have been applied for flood study and soil erosion in order to estimate 

the SM conditions (Murphy, Ogilvie, and Arp 2009; Mason et al. 2016). Besides, the 

drought studies (based on the vegetation index) are the opposite research of the soil 

moisture studies, which means that the soil moisture plays a main role in the drought 

monitoring. The soil moisture conditions from the vegetation changes might be 

indicated by the vegetation indicator methods. However, these methods only consider 

the fact that the water stress is leading to reductions in the NDVI and do not account 

for other factors such as changes in temperature and precipitation (D. Zhang and Zhou 

2016). The LST and VI demonstrate extensive information (visible to thermal infrared 

sensors) that could reflect on the soil moisture conditions (F. Zhang et al. 2014). To the 
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best of our knowledge, no multiple factors (satellite-based) have been carried out 

already. 

Furthermore, various factors are relevant to research concerning the soil moisture such 

as the vegetation, land surface temperature, elevation, slope and aspects that have an 

effect on the soil moisture. In previous studies, multiple regression analyses have not 

been applied for the soil moisture estimation. The innovative part of our research aims 

to consider the elevation slope and the aspects with other environmental drivers in 

forested mountainous and agricultural areas for the soil moisture estimation. The 

elevation, slope and aspects were applied for this methodology (which have not been 

considered yet in previous studies). Hence it is essential to continue further research in 

the agricultural region. Mongolia needs the satellite image processing for SM 

monitoring. It will be useful for agriculture and pasturelands. This chapter explains that 

it is important to consider the elevation, slope and aspects for the SM in the 

mountainous regions. In this chapter, we will select the factors that affect the soil 

moisture and develop the predicted soil moisture index in the kastanozem soils and then 

to make a validation to the accurately developed model with satellite images and field 

measurements.    

3.2 Study area  

The study area is Bornuur soum from the central agricultural region in the Tuv province 

(48° - 49° E and 106° - 106° 40’ N) and is located in the forest-steppe zone. It is one of 

the best areas of Mongolia for growing irrigated vegetables, grain and forage crops, 

sunflower, oats and corn (Douglas et al. 2004). 

Four types of soils (cambisols, gleysols, kastanozems and leptosols) are dominant in 

Bornuur soum (Dorjgotov 2003). The kastanozem soil has been chosen in this study 

(Figure 3—1). The Mongolian horizontal zone is clearly represented in the central 

(comparatively plain) part of Mongolia, in which the area of kastanozem soils is divided 

into three subzones: dark kastanozem, kastanozem and light kastanozem (Dorjgotov 

2003). The Kastanozem soil is widely distributed, occupying  50 % of the kastanozem 

soils of the total area in Mongolia (Avaadorj and Baasandorj 2003) (Figure 3—1). The 

Mongolian chernozem is unsuitable for cultivation as opposed to the kastanozem. Most 

of the cultivated areas are occupied kastanozem soils in Mongolia (Bazarradnaa 2018).  

The study area has only one meteorological station (Bornuur station) in the center of 

soum. The Bornuur station collects the precipitation, air temperature and soil moisture. 
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The annual rainfall amounts to 250-350 mm. The minimum air temperature in January 

measures -30 °C, the maximum air temperature in July is +35 °C, and the average 

temperature is 15-20 °C (L. Natsagdorj and Batima 2003). The elevation of the study 

area is located 872-1,821 meter above sea level. The thematic soil map was modified 

from the Mongolian soil map of the Institute of Geo-ecology (IGG), the Mongolian 

Academy of Sciences (MAS)1 based on the soil classification of the Food and 

Agricultural Organization (FAO) (Ochirbat 2015) (Figure 3—1). The kastanozem soils 

from the study area were investigated in view of the soil moisture analysis.  

 

Figure 3—1. The geographical location of the study area. (Bornuur soum, Tuv 

province, Mongolia); (source: soil map was modified from the soil map of 

Mongolia of the IGG, MAS) 

3.3 Datasets  

3.3.1 Remote sensing data  

Many approaches have been developed by the relation between the surface temperature 

and the vegetation cover (Y. Zeng, Feng, and Xiang 2004; Hosseini and Saradjian 2011; 

F. Zhang et al. 2014; T. Yang et al. 2018). In this chapter, the Landsat and ASTER 

satellite images were combined for the enhancement of the soil moisture modeling.  

 
1 Institute of Geo-ecology, MAS (http://geo-eco.mn/) 

http://geo-eco.mn/
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Landsat ETM+ & OLI8 satellite data 

The Landsat 7 enhanced the thematic mapper (ETM) image (September 19, 2011, path 

132, row 26), the Landsat 8 operational land imager (OLI) and the thermal infrared 

sensor (TIRS) images (July 4 and August 21, 2015) downloaded from the USGS earth 

resource observation and science (EROS) center website and applied it for this chapter. 

The Landsat ETM+ has a strip. We used the Landsat gap-fill method so as to remove 

the strips (http://glovis.usgs.gov/).  

Table 3—1. Landsat ETM and OLI&TIRS spectral bands 2 

Landsat – 7 ЕТМ+ Bands (µm) Landsat – 8 OLI & TIRS Bands (µm) 

  30 m 

Coastal/Aerosol  

0.435-0.451 I band 

I band  30 m, Blue 0.441-0.514 30 m Blue 0.452-0.512 II band 

II band 30 m Green 0.519-0.601 30 m Green 0.533-0.590 III band 

III band 30 m Red  0.631-0.692 30 m Red 0.636-0.673 IV band 

IV band 30 m NIR 0.772-0.898 30 m NIR 0.851-0.879 V band 

V band 30 m SWIR 1.547-1.749 30 m SWIR  1.566-1.651 VI band 

VI band 60 m TIR  10.31-12.36 100 m TIR 10.60-11.19 X band 

100 m TIR 11.50-12.51 XI band 

VII band 30 m SWIR 2.064-2.345 30 m SWIR 2.107-2.294 VII band 

VIII 

band 

15 m 

Panchromatic   

0.515-0.896 15 m 

Panchromatic 

0.503-0.676 VIII band 

  30 m Cirrus 1.363-1.384 IX band 

The Landsat Enhanced Thematic Mapper Plus (ETM+) sensor is carried on the Landsat 

7 platform. The images consist of seven spectral bands with a spatial resolution of 30 

meters for the Bands 1-5 and 7. The resolution of Band 8 (panchromatic) measures 15 

meters. All bands could collect one of two gain settings (low or high) for the increased 

radiometric sensitivity and dynamic range, while Band 6 receives both the low and high 

gain (Bands 61 and 62, respectively) for all scenes. The approximate scene size is 170 

km north-south by 183 km east-west (106 mi by 114 mi). The Landsat 8 Operational 

Land Imager (OLI) and Thermal Infrared Sensor (TIRS) images consist of 9 spectral 

bands with a spatial resolution of 30 meters for the Bands 1 to 7 and 9. The ultra-blue 

Band 1 is useful for the coastal and aerosol studies. Band 9 is useful for the cirrus cloud 

 
2 Source: http://landsat.usgs.gov/band_designations_landsat_satellites.php  

http://glovis.usgs.gov/
http://landsat.usgs.gov/band_designations_landsat_satellites.php
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detection. The resolution for Band 8 (panchromatic) is 15 meter. The thermal bands 10 

and 11 are handy to provide more accurate surface temperatures and are collected at 

100 m. The approximate scene size is 170 km north-south by 183 km east-west (106 mi 

by 114 mi)2 (Table 3—1) (U.S. Geological Survey 2018).  

Additionally, in order to improve the satellite imagery and the impact of the 

atmospheric effects, we made an atmospheric correction to estimate the actual surface 

reflectance of each band. In this chapter, we applied visible blue, near-infrared and 

thermal bands of the Landsat images.    

ASTER satellite data  

We applied the advanced spaceborne thermal emission and reflection radiometer 

(ASTER) satellite, global digital elevation model (GDEM) data with a 30 meter 

resolution in order to develop the elevation, aspects and slope. The ASTER GDEM 

covers the land surface between 83 °N and 83 °S and is composed of 22,600 1°-by-1° 

tile. The ASTER GDEM is shaped into a GeoTIFF format with geographic lat/long 

coordinates and a one arc-second (30 m) grid of elevation postings. It is referenced to 

the WGS 84/EGM 96 geoids. The pre-production estimated accuracies for this global 

product amounted to 20 m with a 95 % confidence for the vertical data and 30 meters 

(95 % confidence) for the horizontal data (http://gdem.ersdac.jspacesystems.or.jp/).  

3.3.2 Ground truth data and meteorological data 

The SM data were collected during the field trips in Bornuur, a Tuv province using the 

traditional method. We took soil samples from a  0-50 cm depth (September 2011 and 

July-August, 2015) (Table 3—2), (Figure 3—1, all the corresponding soil types are 

kastanozem). The traditional method was developed as follows. Firstly, we collected 

the soil sample data and found out its weight. The next step was to dry the soil. The 

traditional methods allowed us to measure the moisture amount by means of dried soil 

samples (Equation (1-1)). Detailed information is provided in section 1.2.1.  

There is only one meteorological station which is named Bornuur (48°31’33” E, 

106°11’45” N). In this chapter, we applied the soil moisture from the station data for a 

comparison with the developed SM model and the ground truth measurements. The soil 

moisture has been obtained at the Bornuur station in 2001. The soil moisture contents 

(by gravimetric techniques) were acquired at a 0-20 cm depth (in a monthly interval) 

from July to September (2010-2015). However, the meteorological station did not 

http://gdem.ersdac.jspacesystems.or.jp/
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receive complete data as some information contained errors (and a lack of data) due to 

particular technical requirements and conditions. 

Table 3—2. Ground truth measurements (September 19-20, 2011) 

№ Latitude Longitude 
Acquired 

(MM/DD/YEAR) 
SM (%) SM (mm) 

1 48° 37' 43.68" 106° 9' 11.88" 9/20/2011 7.63 9.474 

2 48° 37' 45.12" 106° 9' 14.76" 9/20/2011 10.302 8.609 

3 48° 37' 46.56" 106° 9' 16.92" 9/20/2011 7.974 9.238 

4 48° 36' 52.56" 106° 6' 52.56" 9/20/2011 6.494 8.446 

5 48° 36' 50.4" 106° 6' 50.4" 9/20/2011 6.517 10.313 

6 48° 36' 52.56" 106° 6' 47.16" 9/20/2011 5.49 7.651 

7 48° 40' 49.08" 106° 16' 23.52" 9/19/2011 7.817 7.947 

8 48° 40' 49.8" 106° 16' 28.56" 9/19/2011 7.199 10.103 

9 48° 40' 50.16" 106° 16' 32.88" 9/19/2011 9.388 11.635 

10 48° 40' 44.4" 106° 16' 24.6" 9/19/2011 8.84 12.275 

11 48° 40' 45.48" 106° 16' 28.92" 9/19/2011 8.227 10.841 

12 48° 40' 45.84" 106° 16' 31.08" 9/19/2011 8.651 9.084 

13 48° 37' 43.79" 106° 9' 11.99" 9/19/2011 8.987 11.48 

14 48° 37' 45.3" 106° 9' 14.62" 9/19/2011 9.656 12.26 

15 48° 37' 46.7" 106° 9' 16.99" 9/19/2011 11.092 14.01 

16 48° 36' 52.7" 106° 6' 52.2" 9/19/2011 7.966 12.11 

17 48° 36' 54.9" 106° 6' 50.4" 9/19/2011 6.737 13.57 

18 48° 36' 52.6" 106° 6' 47.3" 9/19/2011 7.558 11.75 

19 48° 40' 20.28" 106° 15' 22.14" 9/19/2011 8.222 10.50 

20 48° 40' 19.85" 106° 15' 19.22" 9/19/2011 8.845 11.23 

21 48° 40' 19.09" 106° 15' 16.7" 9/19/2011 8.022 10.50 

22 48° 40' 21.54" 106° 15' 37.51" 9/19/2011 7.848 9.87 

23 48° 40' 22.8" 106° 15' 41.87" 9/19/2011 9.706 12.34 

24 48° 40' 23.27" 106° 15' 44.17" 9/19/2011 9.380 12.09 

25 48° 40' 39.72" 106° 15' 31.43" 9/19/2011 14.108 7.49 

26 48° 40' 41.2" 106° 15' 35.82" 9/19/2011 9.829 12.54 

27 48° 40' 42.35" 106° 16' 0.84" 9/19/2011 13.112 14.54 

28 48° 40' 49.12" 106° 16' 23.77" 9/19/2011 7.676 9.63 

29 48° 40' 49.15" 106° 16' 28.63" 9/19/2011 10.871 15.09 

30 48° 40' 50.77" 106° 16' 33.24" 9/19/2011 7.475 17.44 
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31 48° 40' 44.51" 106° 16' 24.96" 9/19/2011 5.819 11.44 

32 48° 40' 45.26" 106° 16' 28.7" 9/19/2011 6.960 10.85 

33 48° 40' 45.84" 106° 16' 31.15" 9/19/2011 8.232 13.57 

3.4 Methodology  

3.4.1 Integration method for the soil moisture analysis  

The equation (3-1) is used as an atmospheric correction for the images in this research 

(Chavez 1996). The atmospheric correction has been applied for the Landsat images in 

order to remove the effects of the atmosphere on the reflectance values of images. The 

atmospheric effects in optical remote sensing are essential and complex, dramatically 

changing the spectral nature of the radiation reaching the remote sensor (Liang, Li, and 

Wang 2012).  

））（Cos（

）-（

EdownTAUzTZEoTAUv

LhazeLsat
REF

+


=


                             

(3-1) 

, where REF represents the spectral reflectance of the surface;  

Lsat the satellite spectral radiance for the given spectral bands;  

Lhaze demonstrates the upwelling spectral radiance (path radiance), the value derived 

from the image using dark-object criteria; calculated by using the dark object criteria 

(the lowest value at the basis of the histogram slope from either the blue or green band); 

TAUv shows the atmospheric transmission along the path from the ground to the sensor, 

assumed to be 1 because of the nadir look angle;  

Eo is the solar spectral irradiance; TZ the solar zenith angle;  

TAUz stands for the atmospheric transmission along the path from the sun to the ground 

surface;  

Edown illustrates the down-welling spectral irradiance in the atmosphere (Chavez 

1996). The method scheme is shown in Figure 3—2.  

The moisture index (MI) was calculated using the Landsat ETM+ bands (1 and 4) and 

Landsat 8 OLI/TIRS bands (2 and 5) (Dupigny-Giroux and Lewis 1999). The equation 

(3-2) for the study area in the kastanozem soil is calculated as (Figure 3—3 a): 

NIR
MI

VisBlue
=

                                    

(3-2) 

, where NIR is the near-infrared channel (0.772 ~ 0.898 µm) and (0.851 ~ 0.879 µm);  

VisBlue represents the visible blue channels (0.441 ~ 0.514µm) and (0.452-0.512 µm). 
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The MI values are identified between 0 to 2.44 during September 2011, of which close 

to zero represents the bare and dry soil (and high values indicate more moisture). The 

MI values could  be classified as  higher than 2.44 (Dupigny-Giroux and Lewis 1999).     

 

Figure 3—2. Method scheme 

The red (RED) and NIR channels from the ETM were applied in the equation (3-3) for 

the NDVI calculation (Compton J. Tucker 1979; C.J Tucker and Sellers 1986b)  

(Figure 3—3 b): 

REDNIR

REDNIR
NDVI

+

−
=                                                    (3-3) 

, where NIR is the near-infrared channel (0.772 ~ 0.898 µm) and (0.851 ~ 0.879 µm); 

RED represents the visible red channels (0.631 ~ 0.692 µm) and (0.636 ~ 0.673 µm). 

The NDVI values are normalized to a range between -1 and 1, of which values over 0.1 

display the vegetation and values approaching to one show a highly vegetated area and 

forests. The negative values indicate water, bare soil, snow or ice surface (C.J Tucker 

and Sellers 1986). In this chapter, the NDVI values were calculated from -0.37 to 0.56 

in September 2011. The LST was calculated using the equation (3-4) by (Weng, Lu, 

and Schubring 2004) (Figure 3—3c): 

）（ln）T（ e
p

BT
wLST += B                                     (3-4) 

, where BT demonstrates the satellite brightness temperature (K);  

w shows the wavelength of the emitted radiance (11.5µm);  

p=h*c/s (1.438*10^–2 m K), h illustrates the Plank’s constant (6.626*10^–34 Js);  

s is the Boltzman constant (1.38*10^–23 J/K),  
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c demonstrates the light’s velocity (2.998*10^8m/s);  

e=0.004*Pv+0.986; Pv=(NDVI–NDVImin/NDVImax–NDVImin)
2 stands for the 

vegetation proportion. The LST is estimated from 6.9 to 13.34 °C during September 

2011.   

  

a)                                            b)                                         c) 

Figure 3—3. a) MI map from Landsat +ETM7; b) NDVI map from Landsat 

+ETM7; c) LST map from Landsat +ETM7 

   

a)                                            b)                                         c) 

Figure 3—4. (a) Elevation map, (b) Aspect, (c) Slope in the Bornuur soum; 

source: ASTER-SRTM 30 m resolution data. 

3.4.2 Multi-regression soil moisture model 

For the elevation, aspect and slope we used the ASTER satellite, GDEM data for a 30 

m resolution. Figure 3—4 illustrates the elevation, aspect and slope from a 30 m 

ASTER resolution in the kastanozem soil, Bornuur soum. 
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In order to develop a model for the SM estimation, we applied the regression analysis. 

The output from the analysis was compared to the ground truth data.  

Every plant needs a different soil moisture amount. A vegetation change could allow 

changes in the soil infiltration, field capacity and soil moisture effect. The LST 

indirectly affects the soil moisture through the evapotranspiration, while the soil 

moisture has an impact on the evapotranspiration (van den Hurk et al. 2012). Higher 

temperatures will increase the potential evapotranspiration and could possibly result in 

an increased drought occurrence, although the actual changes will be controlled by the 

available moisture from the precipitation (Saha et al., 2018). Topographical factors 

(elevation, aspect and slope) might affect the soil moisture through the infiltration and 

runoff surface. The southern and western parts of the study area  are characterized by 

rolling hills  (exceeding  7 % and some of these reach as high as 34  %). The central 

and northern parts of the study area are  characterized by undulating plains and low 

slopes (Figure 3—4c).    

We assume that the SM has been derived from satellites and that it depends on variables 

such as the LST, NDVI, elevation, aspect and slope. F represents the function of the 

dependent variables, as shown in equation (3-5).  

PSMI=F (NDVI, LST, Elevation, Aspect, Slope)  (3-5) 

 We selected therefore the multivariate regression analysis for this assumption. The 

multi-dimensional linear regression model could be described as: 

yi=β0+β1xi1+β2xi2+β3xi3+β4xi4+β5xi5                                      (3-6) 

, where yi is the observation variable; β0 the intercept, β1~β5 represent the coefficients; 

xi stands for the variables.   

Firstly, a collinearity test for all variables (NDVI, LST, elevation, aspect and slope) was 

performed and described in Table 3—3. B is the regression coefficient of the 

unstandardized coefficients, std.error illustrates the Standard error of the 

unstandardized coefficients, beta shows the beta coefficient of the standardized 

coefficients, t demonstrates the t-statistics for the coefficients, sig. stands for the 

significance of the collinearity. In order to develop the SM model, we utilized multiple 

regression analyses (Equation 3-6). The variance inflation factor (VIF) values are 

situated between 1 ~ 10, which shows that there is no multicollinearity for the 

regression model (Table 3—3). Also, the correlation analysis showed that there are no 
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strong correlations between the independent variables. The (independent) latter include 

the NDVI, LST, elevation, aspect and slope.  

Secondly, the multivariate regression analysis requires normal variables (based on the 

normality test). Figure 3— 5 presents the histogram of the residuals so as to demonstrate 

a histogram with a normal overlay of the residuals’ distribution. This gives us an 

indication on whether or not our sample could  predict a normal distribution in the soil 

moisture index. In a normal P-P plot, the distribution is considered to be normal to the 

extent that the plotted points match with the diagonal line (Figure 3— 5). In  this study, 

all the assumptions of the multiple linear regression analyses are tested and a model 

was built so as to predict the soil moisture index.      

 
a)                                                               b) 

Figure 3— 5. (a) Histogram and (b) P-P plot for the Normality test. 

Based on the assumption (Equation (3-5)), we developed a model to obtain the 

predicted soil moisture. Equation (3-7) was utilized for the set-up of the predicted SMI 

(PSMI): 

𝑃𝑆𝑀𝐼 = 0.542 + 1.183 ∗ 𝑁𝐷𝑉𝐼 + 0.022 ∗ 𝐿𝑆𝑇 − 0.0002 ∗ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

− 0.00001 ∗ Aspect − 0.004 ∗ Slope 

                 

(3-7) 
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Table 3—3. Result of the regression analysis  

Coefficients* 

Model 

Unstandardized  

Coefficients 

Standardized 

Coefficients 

t Sig. Collinearity 

Statistics 

β Std. 

Error 

β   Tolerance VIF 

(Constant) 0.542 0.225  2.407 0.053   

NDVI  1.183 0.226 0.348 5.238 0.002 0.682 1.466 

LST (0C) 0.022 0.004 0.728 5.953 0.001 0.201 4.965 

Elevation (m) -0.0002 0.000 –0.257 –1.647 0.151 0.124 8.097 

Aspect (0-3600) –0.00001 0.000 –0.005 –0.054 0.959 0.321 3.116 

Slope (%) –0.004 0.005 –0.073 –0.829 0.439 0.390 2.563 

*: Dependent variable: MI 

Model summary: R = 0.99; R2 = 0.982; Adjusted R2 = 0.967; Sig. F Change 0.000.  

From the model, the PSMI was positively depending on the NDVI and LST, negatively 

depending on the Elevation, Aspect and Slope. As shown in Table 3—3, the NDVI has 

the leading role of the model and the LST is less, others are slightly and inversely 

correlated. However, the model was tested on multicollinearity and multivariate 

normality. By testing whether or not these assumptions were assured by the data which 

should use the multiple regression analysis to build a model for the dependent and 

independent variables under consideration. Normally, the LST should be inversely 

proportional with the moisture index but our model has shown a positive proportion 

with the PSMI. 

3.5 Results of the analysis  

3.5.1 Soil moisture model (PSMI) results 

So as to validate the model, we chose 33 samples from Table 3—2, in which the ground 

truth for SM has been measured. The scatter plot of the PSMI from the model (and the 

SMI from satellites) is shown in Figure 3—6 with (R2 = 0.903) determining the 

kastanozem soil. The ground measurement data were compared with the PSMI from 

the model (R2 = 0.65) (Figure 3—7).  
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Figure 3—6. Relation of the SMI from the satellites and PSMI. 

We applied the equation (3-7) for the estimation of the kastanozem soil in Table 3—4. 

This output was compared with the ground truth data and showed a positive moisture 

relation. For the test model, the equation (3-7) was applied to the samples in Bornuur 

(Table 3—4), and we developed a soil moisture map (Figure 3—8). The results of the 

PSMI model were compared with the (traditional) SM ground measurement data in the 

Tuv province (R2 = 0.65). 

 

 

Figure 3—7. Relation of the ground soil moisture measurements and PSMI. 
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Table 3—4. Kastanozem soil’s measurements in Bornuur soum, 2011, September 

18-20. 

SM ground 

truth 

measurements 

(mm) 

SMI 

from 

satellites 

NDVI LST 

(°C) 

Elevation 

(m) 

Aspect 

(0-3600) 

Slope 

(%) 

PSMI 

9.474 0.95 0.03 31.19 1,072 285.95 4.77 0.99 

8.609 0.97 0.03 29.75 1,070 270.00 2.62 0.97 

9.238 1.00 0.04 29.75 1,071 270.00 1.97 0.98 

8.446 0.98 0.00 33.08 1,181 288.43 6.22 0.97 

10.313 0.98 0.01 33.08 1,188 285.95 4.77 0.99 

7.651 0.97 0.01 32.38 1,173 298.61 8.22 0.96 

7.947 1.15 –0.01 38.62 900 185.71 6.59 1.14 

10.103 1.12 –0.02 37.71 905 185.19 3.62 1.12 

11.635 1.12 –0.01 37.71 899 18.43 7.26 1.12 

12.275 1.28 0.10 38.39 900 263.66 2.97 1.28 

10.841 1.17 0.02 38.62 904 236.31 4.73 1.18 

9.084 1.15 0.00 37.94 904 243.43 2.93 1.15 

11.48 1.36 0.27 29.92 1,072 175.10 6.71 1.24 

12.26 1.49 0.31 29.92 1,070 175.10 4.20 1.30 

14.01 1.69 0.38 29.92 1,071 210.06 11.56 1.35 

12.11 1.80 0.43 29.98 1,194 55.89 13.56 1.37 

13.57 2.05 0.49 29.98 1,188 13.67 7.49 1.47 

11.75 2.03 0.45 29.98 1,173 58.40 11.61 1.42 

10.50 1.52 0.29 29.75 934 130.03 5.27 1.30 

11.23 1.25 0.16 33.08 935 147.70 9.43 1.20 

10.50 1.22 0.10 33.08 936 147.30 6.31 1.14 

9.87 1.28 0.20 32.38 930 73.30 3.56 1.26 

12.34 1.90 0.20 38.62 927 161.60 1.43 1.40 

12.09 1.32 0.18 29.92 930 158.90 0.00 1.20 

7.49 1.28 0.13 29.98 912 145.50 9.48 1.10 

12.54 1.22 0.14 29.98 918 171.50 3.54 1.13 

14.54 1.27 0.23 29.98 919 185.90 3.35 1.24 

9.63 1.50 0.28 29.75 900 63.43 27.57 1.21 

15.09 2.19 0.50 29.75 905 210.97 16.55 1.50 
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17.44 2.73 0.60 29.75 899 177.88 8.58 1.66 

11.44 1.38 0.21 33.08 905 24.77 8.07 1.27 

10.85 1.76 0.36 29.92 904 10.01 9.48 1.38 

13.57 2.07 0.46 29.98 904 8.13 21.56 1.45 

In previous studies, the soil moisture index values have been studied in many ways. For 

example, Carrão et al. (2016) have classified the SMI value in the following way (e.g. 

lower than -1.0 means dry and extremely dry; -1.0 to 1.0 nearly normal; 1 to 1.5 

moderately wet; 1.5 to 2.0 severely wet and higher than 2.0 extremely wet). 

Additionally, Hunt et al. (2009) and Haider and Adnan (2014) have studied the soil 

moisture index and the aridity index. In their study, the moisture index values have been 

examined in the wettest area and showed figures higher than one (and for the dry area 

lower than one), especially in the arid and semi-arid region.  

In this chapter, the PSMI values have estimated a range from 0 to exceeding 5. This 

signifies the following: 0 to 1 indicate the dry area; 1 to 1.5 values demonstrate 

moderate soil moisture and higher than 1.5 indicates high soil moisture, as explained in 

Figure 3—8. For further analysis, the PSMI was applied for the same study area during 

July and August 2015. Then, the results will be compared to the ground truth 

measurements and the meteorological stations. 
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Figure 3—8. Soil moisture map from the model on the kastanozem soil in 

September 2011. 

The output map concerning the kastanozem soil modeling is shown in Figure 3—8. The 

maximum value of the PSMI data is 1.56, the minimum amounts to 0.0. We divided the 

PSMI into 3 classes, which are low (0.0 ~ 1.0), moderate (1.1 ~ 1.5) and high (1.6 ~ 
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high). Also, we classified the ground truth measurements into three similar classes (low, 

moderate and high). We randomly overlaid our ground truth points on the map and 

made a validation. In Table 3—5, we presented the matrix evaluation for the validation. 

The PSMI results were compared with the ground truth measurements (Table 3—5). 

The PSMI results have been compared with the SM distribution model Erdenetsetseg 

(1996). The correlation coefficients respectively amounted to 69 % and 66 %. We also 

compared the predicted soil moisture index (PSMI) with the estimated MI (previous 

chapter, developed by Natsagdorj et al., 2018) from this study and noticed a good 

relation (r = 0.77).  

The positive results (Figure 3—6 and Figure 3—7) should be investigated further and 

need a more detailed analysis of the high-resolution satellite data.    

Table 3—5. Comparison of the developed model and ground measurements. 

 

Classes derived from the satellite data 

0~1.0 1.0~1.5 1.5 < Total 

Grand 

observed 

classes 

Low  5 2 0 7 

Moderate  4 16 3 23 

High  0 1 2 3 

Total 9 19 5 33 

Accuracy (%) 55.55 84.21 40.00 
 

Overall accuracy (%)    69.70 
 

 

3.5.2 Comparison between the meteorological station data and the PSMI  

The PSMI was developed based on the satellite images in September 2011. Further 

research, a developed PSMI model was applied to the same study area in July and 

August 2015, estimated from multiple variables (e.g., the NDVI, LST, Elevation, 

Aspect and Slope). The PSMI maps of July and August 2015, as shown in Figure 3—9 

(a, b). Furthermore, the PSMI (September 2011 and July/August 2015) was compared 

with the Bornuur climate station data (July to August 2010-2015). 
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a)                                                                             b) 

Figure 3—9. Soil moisture map from the model on the kastanozem soil: a) July 

2015; b) August 2015 

The Bornuur station is located in the central part of Bornuur soum, which is 

characterized as the area of kastanozem soil. Figure 3—10 shows the monthly SMC 

with 20-cm depths from 2010 to 2015 at the Bornuur station. During the obtained years, 

a low SMC was observed, i.e., 5.27 % in September 2011 and 9.68 % in July 2014. 

However, a high SMC was observed (22.54 %) in August 2012 and (20.59 %) (August) 

2015. In this chapter, the PSMI model has been applied during September 2011 and 

July/August 2015. From the trend of SMC, we could conclude that 5.27 % was observed 

in September 2011, 17.29 % in July 2015 and 20.59 % was found during August 2015.  

Table 3—6 displayed the comparison of the PSMI and climate station data, the ground 

truth measurements for each month of the applied model. The model was developed in 

the year showing the lowest soil moisture (September 2011). Then, the developed 

model was applied for July and August 2015, as shown in Figure 3—9. The comparison 

of the PSMI and SMC (from the station) has been demonstrated in Figure 3—11 (with 

the acquired date).     
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Figure 3—10. Bornuur meteorological station data (the red circle shows that the 

model was applied) 

Table 3—6. Comparison of the developed model and ground measurements 

Description 

Date 

satellite 

data  

Mean 

PSMI 

SM from 

the climate 

station, % 

Ground truth 

measurements, 

% (average of 

measurements) 

Acquired 

month of 

ground 

truth 

measureme

nts 

Correlation 

coefficients 

between the 

PSMI and 

ground truth 

data 

Model 

developed 

 Sep 18, 

2011 
0.77 5.2733 8.564561 

 Sep 19-20, 

2011 
0.81, 69.7% 

Model 

applied 

 July 4, 

2015 
1.02 17.2946    

Model 

applied 

 August 21, 

2015 
1.15 20.5867    

 

Figure 3—11. Comparison between the Bornuur meteorological station data and 

the PSMI in the kastanozem soil 
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3.6 Conclusion 

The SM is vital for Mongolian agricultural development. An SM analysis is needed in 

order to assist the dryland grain growers in making improved and informed decisions. 

Since less research has been carried out on dry land, the policy-makers were not able 

to make decisions for the crop growers in central agricultural areas (on a regional level). 

This research will aid the crop sector to develop the agricultural lands and to improve 

the crop quality so as to expand the Mongolian food demand. The SM monitoring will 

also provide useful insights for the pasture land management in other regions of 

Mongolia. The model, developed for this chapter, could also be applied with other 

satellite images which as Sentinel, SPOT and MODIS satellite etc. Only the forest-

steppe region has been considered for the analysis. This model could be applied in the 

same area of the kastanozem soil, using remote sensing methodologies. However, the 

accuracy of the model should carry out with numerous soil moisture samples.  

The SM modeling development will provide information for Mongolia’s agriculture 

and animal husbandries such as cropland, pastureland, vegetation growth and biomass. 

The national policy level will (be able to) use this information so as to develop suitable 

agricultural areas. The crop fields in this area are typical along the mountains, low 

mountains and hills, which have a certain relief. As there is no sufficient implemented 

soil protection in the region, this place might be affected by wind and water disasters. 

Our research model could be widely applied and utilized in the agricultural and 

environmental sectors (in similar areas). However, this model should be elaborated in 

order to apply other regions (in an accurate manner, using many soil moisture samples). 

Our model was established in an agricultural region in the central part of Mongolia. 

Foreign scientists mostly rate the SM through satellite data (with climate station data). 

This research innovation embraced the SM estimation using drivers (which include the 

vegetation, land surface temperature, elevation, aspects and slope in the kastanozem 

soil). Our research applied the elevation and slope drivers for the forested mountains 

and agricultural areas.  

In the future, we will apply the integrated model all over the Mongolian landscape. 

Since Mongolia disposes of six different landscapes, the SM monitoring is vital for the 

Mongolian agricultural development. A regional plan exists so as to develop the 

agricultural land(s) in the Mongolian forested mountainous areas. 
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CHAPTER 4 

Spatial distribution of soil moisture in Mongolia using SMAP and 

MODIS satellite data, its time series model (2010 - 2025)  

Modified from: Enkhjargal Natsagdorj, Tsolmon Renchin, Philippe De Maeyer, 

Bayanjargal Darkhijav (2021). Spatial distribution of soil moisture in Mongolia using 

SMAP and MODIS satellite data, its time series model (2010 - 2025). Remote Sensing, 

13(3), 347. DOI:https://doi.org/10.3390/rs13030347.  
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4.1 Introduction 

The soil moisture (SM) plays a vital role in the terrestrial water cycle and has been 

assessed in many field studies, e.g. in the water management, agricultural irrigation 

management, crop production, vegetation cover, drought and global climate change 

(Deryng et al. 2011; X. Gao et al. 2014; Park et al. 2017; X. Wang et al. 2018). In 

addition, the soil moisture indicates the groundwater conditions and links the exchange 

of water and energy between the atmosphere and land surface. There are many ways to 

estimate the soil moisture, including direct and indirect methods. The most accurate 

method is a direct measurement in the field (gravimetric method) to estimate the soil 

moisture by point measurements (E. Natsagdorj et al. 2017) but this is costly 

(Rahimzadeh-Bajgiran and Berg 2016). Therefore, remote sensing techniques have 

become popular for estimating the soil moisture on a regional scale due to the sensing 

ability of the regional SM with low-resolution images. Microwave remote sensing 

methods have been used on a global and regional scale to establish some models (D. 

Zhang and Zhou 2016; Peng and Loew 2017). To date, some highly advanced SM 

products have been developed e.g. the Soil Moisture Active Passive (SMAP) from the 

National Aeronautics and Space Administration (NASA), Soil Moisture Ocean Salinity 

(SMOS) and Climate Change Initiative (CCI) from the European Space Agency (ESA). 

In optical and thermal remote sensing, many researchers have established methods 

based on the relationships between the SM and soil reflection/soil temperature and 

vegetation cover(Jung et al. 2017; Hong et al. 2018; Vani, Pavan Kumar, and Ravibabu 

2019). Using a combined microwave and optical remote sensing data might provide 

more precise information on the soil moisture rather than estimation only based on data 

from one type of remote sensing. 

Remote sensing technology is a powerful method for the soil moisture monitoring 

on a regional level. Many studies have established that the SMAP products generate 

accurate in situ measurements and could be used in various fields of study such as 

agriculture, environmental monitoring and hydrology (Brocca et al. 2017). They have 

also been intensively validated by several studies over the past few years (Chan et al. 

2016; X. Zhang et al. 2017; F. Chen et al. 2017). For instance, Zeng et al. (J. Zeng et 

al. 2016) approved a SMAP product for the preliminary evaluation of the soil moisture 

compared to the in situ measurements from the three networks that cover different 

climatic and land surface conditions; moreover, the results show that the SMAP product 
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is in a good agreement with the in-situ measurements. However, it has a limited 

application to agricultural studies because the SMAP products only provide 3, 9 or 36 

km spatial resolution data on a global or regional scale. In this paper, we used the SMAP 

products at a spatial resolution of 9 km for the development of a soil moisture model 

by combining SMAP and optical/thermal satellite images. The combination of the 

optical/thermal and microwave remote sensing potentially expands the application 

possibilities (D. Zhang and Zhou 2016). 

In previous studies, various researchers have investigated and developed methods 

based on the Land Surface Temperature (LST) / Normalized Difference Vegetation 

Index (NDVI), in view of vegetation types and topography and climate parameters, 

among other factors (Lambin and Ehrlich 1996; Nemani and Running 1997; Jung et al. 

2017; Chae, Park, and Lee 2017; Saha et al. 2018). These approaches have mainly used 

reflectance to estimate the SM in visible/thermal infrared sensors. Dandridge et al. 

(Dandridge, Fang, and Lakshmi 2020) used the LST/NDVI data to obtain an enhanced 

spatial resolution of the soil moisture from SMAP at 9 km down to 1 km. Natsagdorj et 

al. (E. Natsagdorj et al. 2017) developed a model for the soil moisture by means of the 

multiple regression analysis and the model showed that the type of the soil moisture 

index (from the satellite measurements) depends on the LST, NDVI, elevation, slope 

and aspect. The results indicate a good correlation between the developed model and 

ground truth measurements in the sub provinces of Mongolia. The lack of field 

measurements for the SM makes it challenging to validate the remote sensing SM 

estimates in Mongolia, because the territory is so widespread (1,565 million square km). 

Due to the characteristics of the Mongolian climate, the agricultural production is 

strongly limited by a short growing season (generally 80 to 100 days but varies from 

70 to 130 days depending on the altitude and location), low precipitation, and high 

evaporation (Leary et al. 2013). The Mongolian steppe ecosystems are crucial for 

relieving the regional and even global climate variation through their interaction with 

the atmosphere (Yatagai and Yasunari 1995). Many studies have demonstrated that in 

Mongolia, due to the harsh continental climate and the distance from the sea, the 

processes of soil drying, desertification and degradation are intensifying due to the loss 

of vegetation and changes in soil moisture due to global warming. Therefore, to study 

the impact of climate change, there is an urgent need to consider the soil moisture as 

one of its indicators. Few studies of soil moisture have been conducted with point-scale 

measurements (Nandintsetseg and Shinoda 2011; Shinoda and Nandintsetseg 2011). In 
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Mongolia, SM distribution data with a higher resolution are needed for practical 

applications such as agricultural management, water management and flood and 

drought monitoring. Therefore, a time series analysis of the long-term soil moisture was 

conducted using the AutoRegressive Integrated Moving Average (ARIMA) model 

(Box, Jenkins, and Reinsel 2016). 

Few previous studies have examined the soil moisture and river flow forecasting 

(Singh, Kaur, and Kumar 2020); on the other hand, various reviews have addressed the 

drought monitoring (Mishra and Desai 2005; Han et al. 2010; Tian, Wang, and Khan 

2016; Karthika and Thirunavukkarasu 2017). The SM forecast data support farmers in 

organizing their resources for the crop production. The ARIMA model is commonly 

used in the time series models. There are many methods and criteria to rank and select 

the AutoRegressive (AR), Moving Average (MA) or ARIMA models for a given 

purpose. These models are suitable for limited data values and short-term forecasting 

(Singh, Kaur, and Kumar 2020). However, the main advantages of the ARIMA model 

forecasting are that it only requires time series data (Tian, Wang, and Khan 2016). In 

this chapter, we have used the ARIMA model to investigate the time series analysis of 

the soil moisture dynamics between 2010 and 2020, based on the SMAP and MODIS 

satellite images. This chapter focused on that so as to obtain a higher spatial resolution 

(1 km) soil moisture map than the SMAP (9 km) provided us with. Then, the SMAP 

data periods 2015-2020 were used in order to build a model. From the model, the 

spatially distributed monthly soil moisture data will contribute to the return back in time 

(2010-2020) and towards the future by means of the ARIMA model.     

The main objectives of this chapter are to estimate a monthly soil moisture 

distribution map and to build appropriate models to forecast future trends. Because of 

the stochastic nature of the monthly soil moisture, we used a time series analysis for the 

monthly soil moisture forecasting. A process is considered stationary if its statistical 

properties, such as the average and variance, do not change over time. A monthly soil 

moisture map was estimated from the remote sensing data developed in Mongolia. The 

modeling and prediction of the soil moisture were done through statistical methods 

based on ARIMA. In this chapter, the soil moisture modeling and forecasting were 

performed by means of the conventional method, the Box‒Jenkins time series model. 

The monthly soil moisture distribution map has not been considered yet in previous 

studies in Mongolia and is expected to be useful for agriculture, hydrology, and climate 

science. 
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4.2 Study Area and Data Preprocessing 

4.2.1. Study Area 

Mongolia is a landlocked country situated in Central Asia, bordered by Russia and 

China (Figure 1—8). The climate conditions and environment of Mongolia have been 

explained in Section 1.3. Mongolia has six vegetation zones, as previously mentioned  

(Yunatov 1979). Overall, Mongolia is a recognized, semi-arid and arid climate region 

characterized by a continental climate and vulnerable environment.     

4.2.2 Remote sensing data  

4.2.2.1 SMAP 

On 31 January 2015, NASA launched the SMAP, which has an initial L-band with 

both radar and radiometer data to assess the soil moisture (Entekhabi et al. 2010). The 

daily coverage started on 31 March, 2015 at a spatial resolution of 3–36 km. The 

average monthly SMAP data were obtained using the daily SMAP with a 9 km 

resolution. We have downloaded the daily SMAP L3 Radiometer Global Daily 9 km 

EASE-Grid Soil moisture data (SPL3SMP_E.003) through the Application for 

Extracting and Exploring Analysis Ready Samples (AppEEARS) between 2015 and 

2020 (O’Neill et al. 2019). The AppEEARS is a useful tool for a time series analysis in 

specific regions and on certain scales. It provides data by enabling users to download 

only the necessary information (geospatial datasets using spatial, temporal and 

band/layer parameters) from several federal archives 

(https://lpdaacsvc.cr.usgs.gov/appeears/). The downloaded images were preprocessed 

with the ENVI 5.3 and ArcGIS 10.3 software to obtain the monthly soil moisture data. 

4.2.2.2 MODIS 

We used the MODIS products during a 10-year period (2010–2020) to observe the 

dynamic range of the NDVI and LST. The authors Zhang et al. (J. Zhang et al. 2007) 

utilized a similar approach to detect anomalies using the MODIS land products via a 

time series analysis. Accordingly, the monthly composites of a 1 km spatial resolution 

MOD13A3 (Didan 2015) and MOD11A2 (Wan, Hook, and Hulley 2015) data from 

MODIS and the National Aeronautics and Space Administration (NASA) Earth 

Observing system (https://lpdaac.usgs.gov/product_search/) were applied. The MODIS 

vegetation indices (MOD13A3) version 6 data are provided monthly at a 1 km spatial 

resolution in the sinusoidal projection (Didan 2015). The MOD11A2 version 6 product 

https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaac.usgs.gov/product_search/
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provides an average eight-day-per-pixel Land Surface Temperature and Emissivity 

(LST&E) with a 1 km spatial resolution (Wan, Hook, and Hulley 2015). We calculated 

the eight-day LST as monthly averages by means of the product version 6 (MOD11A1). 

The Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) 

tool offers the vegetation and LST products of MODIS for long-term data (AppEEARS 

Team 2020). 

4.2.3 CRU and Meteorological Data 

The CRU TS (Climatic Research Unit gridded Time Series) data are broadly used 

in climate studies and are available at 0.5 × 0.5 degrees over the whole Earth surface. 

It provides a monthly land-based gridded high-resolution dataset from 1901. The CRU 

dataset is derived by the interpolation of monthly weather station observations of 

extensive networks. The database is updated annually (Harris et al. 2020). The CRU TS 

global data are freely downloadable and accessible online 

(https://crudata.uea.ac.uk/cru/data/). We have applied the CRU TS v4 to this chapter to 

obtain available temperature and precipitation data between 2010 and 2019. 

The meteorological station data were provided by the Information and Research 

Institute of Meteorology, Hydrology and Environment (IRIMHE) on the Mongolian 

website (http://tsag-agaar.gov.mn/). There are limited stations for soil moisture 

measurements in croplands in Mongolia. The soil moisture contents were acquired at 

depths of 0–20 cm and 0–50 cm at monthly intervals (the 7th, 17th and 27th day of each 

month) from April to September due to the seasonal conditions (E. Natsagdorj et al. 

2019). The soil moisture contents were averaged over the monthly intervals from May 

to August (2015–2020). The selected meteorological stations are shown in Table 4—1 

and the locations of the stations have been categorized into two vegetation zones. 

Table 4—1. Location of the agricultural meteorological stations of soil moisture. 

Aimag 

Name 

Station 

Name 

Vegetation 

Zones 
Latitude (°N) Longitude (°E) 

Elevati

on (m) 

Arkhangai Tuvshruulekh Forest steppe 47°23′12.9″ N 101°54′30.9″ E 1,619 

Khuvsgul Tarialan Forest steppe 49°36′32.98″ N 101°59′4.52″ E 1,218 

Selenge Tsagaannuur Forest steppe 50°6′37.83″ N 105°27′7.28″ E 786 

Selenge Eruu Forest steppe 49°44′56.52″ N 106°39′40.48″ E 673 

Selenge Baruunkharaa Forest steppe 48°54′47.21″ N 106°5′23.11″ E 811 

Selenge Orkhon Steppe 49°8′37.57″ N 105°24′8.44″ E 756 

Selenge Orkhontuul Steppe 48°50′7.6″ N 104°48′23.09″ E 831 

https://crudata.uea.ac.uk/cru/data/
http://tsag-agaar.gov.mn/
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Selenge Zuunkharaa Forest steppe 48°51′37.86″ N 106°26′35.31″ E 883 

Bulgan Ingettolgoi Forest steppe 49°27′33.8″ N 103°59′5.20″ E 763 

Bulgan Bulgan Forest steppe 48°49′5.39″ N 103°31′8.18″ E 1,221 

Dornod Onon Steppe 49°6′51.42″ N 112°39′29.35″ E 894 

Dornod Choibalsan Steppe 48°4′53.16″ N 114°32′16.21″ E 747 

Dornod Khalkhgol Steppe 47°37′48.86″ N 118°37′20.21″ E 987 

Uvs Baruunturuun Steppe 49°39′31.10″ N 94°24′14.62″ E 1,232 

Uvurkhang

ai 
Kharkhorin Forest steppe 47°11′40.99″ N 102°49′47.78″ E 1,480 

Tuv Erdenesant Steppe 47°20′0.35″ N 104°29′34.13″ E 1,364 

Tuv Ugtaal Steppe 48°15′29.19″ N 105°24′19.01″ E 1,161 

Tuv Jargalant Forest steppe 48°31′35.61″ N 105°52′50.67″ E 1,015 

Tuv 
Bayanchand

mani 
Forest steppe 48°13′37.57″ N 106°17′2.89″ E 1,255 

Tuv Bornuur Forest steppe 48°28′7.56″ N 106°15′37.16″ E 1,023 

Khentii Gurvanbayan Steppe 48°11′4.95″ N 110°19′22.03″ E 1,207 

Khentii Undurkhaan Steppe 47°18′29.62″ N 110°37′28.29″ E 1,035 

Sukhbaatar Baruun-Urt Steppe 46°40′21.92″ N 113°16′57.07″ E 981 

4.2.4 Crop Yield Statistical Data 

The soil moisture is one of the most important factors in the agricultural sector of 

Mongolia. The National Statistical Organization (NSO) website (http://nso.mn/) of 

Mongolia provides information on the crop yields in the sub-provinces every year. The 

NSO has been accumulating data on croplands and harvests collected by the agricultural 

enterprises and local farmers through the statistical departments and offices of each 

state. The crop yield information has been applied for the validation of the soil moisture 

distribution in Mongolia from 2010 to 2019. The total harvest includes the amount of 

potatoes, fodder crops, cereals, fruits, vegetables, etc. (in thousands of tons) and the 

crop yield information is averaged every year. The crop yield is shown as the amount 

of the agricultural production per unit area (from 1 hectare). The crop yield per hectare 

is estimated as the ratio of the total harvest to the total sown area (NSO 2020). 

4.3 Methodology 

In this chapter, the structure of the spatial distribution of the soil moisture and time 

series analysis (based on the SMAP and MODIS products) is provided in the flowchart 

of Figure 4—3. The first involved the data download and processing, e.g. by the SMAP 

satellite, NDVI and LST from the MODIS satellite. After the data processing, a multiple 
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linear regression model was developed. The prepared monthly soil moisture contents 

from the station, temperature/precipitation of the CRU data and yearly crop yield 

information from the NSO were applied for the validation of the estimated soil moisture 

in Mongolia. Finally, the time series analysis and forecasting model were used for the 

prediction of the estimated monthly soil moisture. 

 

Figure 4—1. Flowchart of the soil moisture distribution in Mongolia based on 

satellite images. 

4.3.1 Multiple Linear Regression—SM-MOD 

A multiple linear regression model has often been used in natural resource studies 

and involves the calculation of the dependent variable Y by applying a linear 

combination of the independent variables Xi. The linear regression form is shown in the 

following equation (Weisberg 2005): 

𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑚 ∗ 𝑋𝑚,𝑖

𝑛

𝑚=0

 (4-1) 

, where β0, βm (m > 0) are constant terms corresponding to the connection, the regression 

coefficients, and the model error, Xm,i show the corresponding variables, respectively. 

The input variables (Xi) describe the output variable (Yi) according to the results of the 

multiple regression model. Therefore, each input variable has different information, 

which means that all input variables should not be collinear. We used p-value statistics 

to estimate the significance of each variable for the variable selection input (Weisberg 

2005). The variance inflation factor (VIF) is applied so as to detect the collinearity (also 
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called multicollinearity) among the predictors in the regression models (Harrell 2001; 

Murray et al. 2012). The VIF values are situated between 1 and 10, which means that 

there is no multicollinearity for the regression model. After these analyses, a 

combination of p-value and VIF measures was used. Besides, the independent variables 

are normally distributed for the assumptions of the linear regression model.  

Table 4—2 shows the statistical variables computed from the  satellite images. 

Table 4—2. Statistical variables of the input, minimum (Min), maximum (Max), 

mean and standard deviation (SD). 

Variable Unit Min Max Mean SD 

SMAP (dependent) m3/m3 0.037 0.157 0.090 0.024 

LST (independent) Celsius −19.065 39.902 15.680 18.469 

NDVI (independent)  0.024 0.381 0.186 0.097 

4.3.2 ARIMA Model 

The Box‒Jenkins time series models are named after the statisticians George Box 

and Gwilym Jenkins (Box and Jenkins 1970). These models generate forecast values 

based on the statistical parameters of observed time series’ data and are applied in many 

fields. The Box‒Jenkins Autoregressive Integrated Moving Average (ARIMA) model 

is a combination of the Autoregressive (AR), Integrated (I) and Moving Average (MA) 

terms. The Box‒Jenkins model describes a wide class of models forecasting univariate 

time series that can be made stationary by applying transformations such as the 

differencing of non-stationary series one or more times so as to achieve stationarity 

(Box and Pierce 1970; Box, Jenkins, and MacGregor 1974). 

A seasonal ARIMA model is denoted by ARIMA (p, d, q), where p is the number 

of the autoregressive terms, q shows the number of the moving average terms and d 

represents the number of differences applied to the series (Rahman and Hasan 2017). 

The AR (p) model is defined as: 

𝑋𝑡 = 𝑐 + 𝜑1𝑋𝑡−1 + 𝜑2𝑋𝑡−2 + ⋯ + 𝜑𝑝𝑋𝑡−𝑝 + 𝑢𝑡 = 𝑐 + ∑ 𝜑𝑖𝑋𝑡−𝑖

𝑝

𝑖=1

+ 𝑢𝑡 (4-2) 

where φ1, φ2, …, φn illustrate the autoregressive coefficients, c is a constant, and ut 

demonstrates white noise. In the autoregressive model of order p, the value of the time 

series at t, Xt depends upon the previous p-values and random disturbance (the 

stochastic part). 
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The MA (p) model is defined as: 

𝑢𝑡 = 𝜃1𝑧𝑡−1 + 𝜃2𝑧𝑡−2 + ⋯ + 𝜃𝑞𝑧𝑡−𝑞 = 𝑧𝑡 + ∑ 𝜃𝑖𝑧𝑡−𝑖

𝑞

𝑖=1

 (4-3) 

, where θ1, θ2, …, θq denote the moving average coefficients and {zt} presents a white 

noise process with mean 0 and variance σ2. Combing the autoregressive and moving 

average models, we will get Equation (4-4): 

𝑥𝑡 = 𝑐 + 𝜑1𝑋𝑡−1 + 𝜑2𝑋𝑡−2 + ⋯ + 𝜑𝑝𝑋𝑡−𝑝 − 𝜃1𝑧𝑡−1 − 𝜃2𝑧𝑡−2 − ⋯ − 𝑧𝑡−𝑞 (4-4) 

, where xt denotes the dth difference of Xt. 

The latter defines the autoregressive moving average (ARIMA) process of p and q 

order and difference d or ARIMA (p, q) (Box, Jenkins, and Reinsel 2016). 

There are many methods and criteria to select the order of an AR, MA or ARIMA 

model. One of these is based on the so-called information criteria and computes the 

values of the Akaike’s information criterion (AIC) and the Bayesian information 

criterion (BIC) or Schwarz criterion, with preferred smaller values of AIC and BIC 

(Hyndman and Koehler 2006; Adnan et al. 2017). The most commonly used approach 

for checking the model’s adequacy is to examine the residuals by means of the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) graphs. If 

the selected model is appropriate, the residual graphs of the correlation functions should 

be white noise, indicating no remaining correlation. 

4.3.3 Model Validation 

The model has been performed to evaluate the next step. The Pearson’s correlation 

(r) (Sedgwick 2012) was applied for the comparison of the estimated soil moisture and 

the observed soil moisture and crop yield values. The coefficients of the Pearson’s 

correlation (r) are given in Equation (4-5): 

𝑟 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛

𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2√∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖

𝑛
𝑖

 
(4-5) 

, where Xi and Yi are the individual derivations and measurements of the variables X 

and Y, respectively. 𝑋̅ and 𝑌̅ denote the means of X and Y, respectively. The correlation 

coefficient (r) ranges between −1 and 1. If r is equal to zero, this means that there is no 
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linear association between the variables. If r is equal to 1, there is a perfect positive 

linear relationship between the variables and all sampled individuals would be exactly 

on the same straight line with a positive slope. If 0 < r < 1, this illustrates a positive 

linear trend but the sampled individuals would be scattered around this common trend 

line; the smaller the absolute r value, the less well the data could be characterized by a 

single linear relationship. If r is positive and the r values are close to 1, this describes a 

valuable relationship between the variables (Puth, Neuhäuser, and Ruxton 2014). 

Linear Pearson’s correlation (r) was determined on a monthly timescale (Sedgwick 

2012; E. Natsagdorj et al. 2019) for the satellite-derived and meteorological 

station/NSO data.  

4.4 Results 

4.4.1 SM-MOD—Multiple Linear Regression Model 

The equation (4-1)’s linear regression model was applied for the estimation of the 

soil moisture in Mongolia with a 1 km resolution. The multicollinearity tests for all 

variables (NDVI and LST) were determined in Table 4—3. The VIF values were lower 

than five, which shows that there was no multicollinearity for the regression model. 

Also, the histogram normality test has been checked by the Jarque-Bera test for the 

linear regression model. In this test, if the probability of Jarque-Bera was greater than 

0.05 or 5 %, we accepted the null hypothesis (which means that the residuals are 

normally distributed as shown by the histogram and p-p plot in Figure 4— 2).  

 

(a)                                                                 (b) 

Figure 4— 2. (a) histogram and (b) P-P plot for the Normality test  
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Table 4—3 summarizes the multiple linear regression model coefficients, p-values, 

standard error, t-statistics and VIF statistics. The monthly NDVI and LST explained 78 

% of the variation in soil moisture. The F-statistics were less than 0.05, which means 

that this model could be used for the soil moisture analysis. 

Table 4—3. Result of the linear regression model. 

Variable Coefficient Std. Error t-Statistics Prob. 

Collinearity 

Statistics 

Tolerance VIF 

Interception 0.043899 0.003721 11.79743 0.0000   

NDVI 0.288958 0.027357 10.56239 0.0000 0.300 3.336 

LST (Celsius) −0.000505 0.000144 −3.499165 0.0009 0.247 4.041 

R-squared 0.780878 
Adjusted R-

squared 
0.773322 

Mean 

dependent 

variable 

0.089744 

SD dependent 

variable 
0.023754 

SE of 

regression 
0.011310 

Akaike info. 

criterion 
−6.078392 

Prob (F-

statistics) 
0.000000    

In this chapter, we assumed that the SM is derived from the satellites and depends 

on the independent variables NDVI and LST, while SMAP is the dependent variable. 

From the assumption, a multiple regression model has been developed. Finally, the 

MLR model resulted in Equation (4-6): 

𝑆𝑀𝑀𝑂𝐷 = 0.044 + 0.289 ∗ 𝑁𝐷𝑉𝐼 − 0.00005 ∗ 𝐿𝑆𝑇 (4-6) 

, where SMMOD is the modelled soil moisture; the constant coefficients were estimated 

from Table 4—3. Figure 4—3 shows the graphs of the actual, fitted and residual values 

of linear regression. The figure suggests that in most of the studied months, the 

correlation between the real-life situation and the model was high. 

The soil moisture (SM-MOD) was calculated using Equation (4-6), with values in 

m3/m3. The lowest value 0 indicates dry areas and the highest value 0.35 m3/m3 

indicates wet areas. Figure 4—4 represents the spatial distribution of the monthly soil 

moisture in Mongolia. The monthly SM maps have been averaged by month between 

2010 and 2020. During the years 2010–2020, the winter has demonstrated the lowest 

soil moisture (November, December and January) and spring also had a low soil 

moisture (February, March and April). The summer showed a high soil moisture 

amount in May, June and July. However, autumn denoted the highest soil moisture in 
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August, September and October (Figure 4—4). Apparently, an increased soil moisture 

is observed in the northern part, which contains taiga, forest-steppe and steppe zones, 

while the low soil moisture is restricted to the southern part of Mongolia, which is 

mostly characterized by the desert steppe and desert vegetation. 
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Figure 4—3. Actual, fitted and residual values of the multiple regression model. 

 

Figure 4—4. Spatial distribution of the soil moisture contents from the 

model (SMMOD) (averaged monthly from 2010 to 2020). 
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4.4.2 Comparison between the MLR Model and SMC from the Meteorological 

Stations 

In general, the estimation of the soil moisture from the model was reasonably 

accurate, as confirmed by applying satellite images. Figure 4—5(a–d) describes the 

correlation between SMAP and SM-MOD with the SMC from the meteorological 

stations at a 0–20 and 0–50 cm depth. Table 4—4 shows the correlations of the SMAP 

and SM-MOD with the SMC from the meteorological stations at different depths.  

Table 4—4. Correlation between the (a) SMAP and (b) SM-MOD with the SMC 

from the meteorological stations at different depths from May to August 2015–

2020. 

(a) 
SMAP (m3/m3) 

SMC/0–20 

cm/(m3/m3) 

SMC/0–50 

cm/(m3/m3) 

p-values (Pearson) <0.0001 0.005 

Coefficients of determination (Pearson) 0.078 0.087 

Correlation (Pearson) 0.279 ** 0.181 ** 

 RMSE 0.094 0.098 

 Bias 0.0016 0.0021 

 Confidence intervals (95%) (0.194, 0.359) (0.094, 0.266) 

(b) 
SM-MOD (m3/m3) 

SMC/0–20 

cm/(m3/m3) 

SMC/0–50 

cm/(m3/m3) 

p-values (Pearson) <0.0001 0.005 

Coefficients of determination (Pearson) 0.037 0.016 

 Correlation (Pearson) 0.191 ** 0.126 ** 

 RMSE 0.090 0.091 

 Bias 0.0016 0.0020 

 Confidence intervals (95%) (0.104, 0.276) (0.038, 0.213) 

** Correlation is significant at the 0.01 level (2-tailed). 

The correlation coefficients (r) between the SMAP and SMC from the 

meteorological stations were 0.279 (Figure 4—5a) and 0.181 (Figure 4—5b) at a 0-20 

and 0–50 cm depth, respectively. This was statistically significant, with root mean 

square error (RMSE) values of 0.094 m3/m3 and 0.098 m3/m3, as shown in   

Table 4—4a. Table 4—4b indicates that the values of the correlation coefficients (r) 

measured 0.191 between the SM-MOD and SMC at a 0–20 cm depth from the 

meteorological stations, which was statistically significant, with an RMSE of 0.090 



Chapter 4 

 

85 

 

m3/m3 (p < 0.0001; Figure 4—5c), and 0.126 between the SM-MOD and SMC at a  

0–50 cm depth from the meteorological stations, which was also statistically 

significant, with an RMSE of 0.091 m3/m3 (p < 0.005; Figure 4—5d). The confidence 

intervals of 95 % were situated between the SM-MOD and SMC at a 0–20 cm depth 

from the meteorological stations from 0.104 to 0.276 and with the SMC at a 0–50 cm 

from the meteorological stations from 0.038 to 0.213. 

 

(a) (b) 

 
(c) (d) 

Figure 4—5. Scatter diagram of the SMAP and SM-MOD with SM 

measurements from the meteorological stations for different depths from May to 

August 2015–2020 in the study area: (a) SMAP and SMC from the 

meteorological stations at a 0–20 cm depth; (b) SMAP and SMC from the 

meteorological stations at a 0–50 cm depth; (c) SM-MOD and SMC from the 

meteorological stations at a 0–20 cm depth; (d) SM-MOD and SMC from the 

meteorological stations at a 0–50 cm depth. 

4.4.3. Comparison between the SM-MOD and CRU Data 

We also examined the trends of the monthly precipitation and temperature from 

the CRU data. Figure 4—6 displays the time series of the monthly precipitation, 

temperature and SM-MOD in Mongolia from 2010 to 2020. The highest precipitation 

was observed during July 2018 and the highest SM-MOD value was noticed in August 

2018. From the comparison, we could see that when the precipitation was high, the 
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following month’s soil moisture was also high, which means that the soil moisture 

directly depends on the precipitation in Mongolia. In addition, the soil moisture has 

been slightly increasing in Mongolia (by 0.97 % over 20 years).   

 

Figure 4—6. Comparison between the monthly precipitation (mm), temperature 

(°C), and SM-MOD (m3/m3) in Mongolia from January 2010 to December 2019. 

Figure 4—7a–c describes the correlation between the SM-MOD and the 

temperature and precipitation. Table 4—5 shows the correlations of the SM-MOD with 

the temperature and precipitation from the CRU data in Mongolia. It indicates that the 

values of the correlation coefficients (r) were 0.802 between the SM-MOD and 

temperature, which was statistically significant (p < 0.0001; Figure 4—7b) and 0.826 

between SM-MOD and precipitation, which was also statistically significant  

(p < 0.0001; Figure 4—7c). The confidence intervals of 95 % were measured (between 

SM-MOD from the model and the monthly temperature): from 0.728 to 0.858 and with 

a monthly precipitation from 0.759 to 0.876. 

Table 4—5. Correlation among the monthly SM-MOD with the monthly 

temperature (°C) and monthly precipitation (mm) from the CRU data between 

2010 and 2020. 

Variables SM-MOD (m3/m3) Temperature, °C Precipitation, mm 

Confidence intervals (95%)/lower 

bound 
1 0.728 0.759 

Confidence intervals (95%)/upper 

bound 
1 0.858 0.876 

Correlation matrix (Pearson) 1 0.802 0.826 

p-values (Pearson) 0 <0.0001 <0.0001 

Bias 0 0.025 0.026 

Values in bold are different from 0, with a significance level alpha = 0.05. 
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(a) (b) (c) 

Figure 4—7. Scatter diagram of the monthly SM-MOD (m3/m3), monthly 

temperature (°C) and monthly precipitation (mm) in the study area from 2010 to 

2020: (a) SM-MOD and SM-MOD; (b) SM-MOD and temperature (°C) and (c) 

SM-MOD and precipitation (mm). 

4.4.4 Comparison between the SM-MOD and Crop Yield 

We considered the crop yield information of every year to correlate with  

the SM-MOD from the model. The National Statistical Organization (NSO) has 

provided every province’s crop yield information since 2010. Figure 4—8 shows the 

trends of the averaged SM-MOD from May to September 2010–2019 and the observed 

total crop yield data for each year (2010–2019). 

In order to apply the model to the utilization, we examined the relationship between 

the SM-MOD and crop yield in Mongolia. The results show that there is a significant 

trend (visible) in the SM-MOD. It was statistically significantly (p < 0.003) correlated 

with the crop yield, with r = 0.835 (Table 4— 6 and Figure 4—8). 

 

  

(a) (b) 

Figure 4—8. Comparison of the SM-MOD and crop yield information: (a) yearly 

crop yield (ton/ha) and averaged SM-MOD from May to September (2010–

2019); (b) scatter diagram of the SM-MOD and crop yield information. 
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Table 4— 6. Correlation between the averaged SM-MOD from May to September 

2010–2019 and the yearly crop yield from NSO for 2010–2019. 

Variables SM-MOD (m3/m3) Crop Yield (ton/ha) 

Coefficients of determination (Pearson) 1 0.697 

Correlation matrix (Pearson) 1 0.835 

p-values (Pearson) 0 0.003 

Bias 0 -0.005 

Values in bold are different from 0, with a significance level alpha = 0.05. 

4.4.5 ARIMA Model of Soil Moisture 

We selected the most appropriate model for the time series from the possible 

models. We selected our model using these criteria: firstly, the most significant 

coefficients; secondly, the lowest volatility; thirdly, the highest adjusted R-squared; and 

lastly, the lowest Akaike’s Information Criterion (AIC) / Schwarz Information 

Criterion (SIC). Since the theory behind the ARMA estimation is based on stationary 

time series, we firstly used the transformation based on a logarithm and we considered 

the first difference of the soil moisture time series. According to the unit root test, the 

differenced series are stationary (series), so we applied the plots of the ACF and PACF 

to identify the structure of the model. The plots and statistical tests illustrated that the 

ARIMA (12, 1, 12) model was suitable for the log time series of the soil moisture. The 

estimation results and the actual, fitted residual graphs of the model are shown in Table 

4—7 and Figure 4—9, respectively. The residual diagnostics’ tests suggest that the 

estimation residuals are white noise. The final results indicate the good performance of 

the model and we could say that about 82 % of the soil moisture variability was 

predicted by the selected model (Table 4—7). 

The selected model is written as follows: 

𝑑(𝑋𝑡) = 0.0006 + 0.9993𝑋𝑡−12 + 0.0006𝑋𝑡−1 − 0.95𝑧𝑡−12 (4-7) 

or, equivalently, as 

𝑋𝑡 = 0.0006 + 0.9993𝑋𝑡−12 + 0.0006𝑋𝑡−1 − 0.95𝑧𝑡−12 (4-8) 

, where 𝑋𝑡 is the log value of the soil moisture at time 𝑡 and 𝑧𝑡 the error term at time 𝑡. 

The above mentioned model shows that the soil moisture at time 𝑡 depends on the 

value of the soil moisture of previous months and also on the error terms of 12 months 

ago. 
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Table 4—7. Results of the time series’ analysis for the soil moisture. 

Dependent Variable: DLOG (SM-MOD) Method: Least Square 

Sample: 2010M02–2020M05 Included Observations: 124 

Failure to Improve Objective (Non-zero Gradients) after 90 Iterations 

Coefficient Covariance Computed Using Outer Product of Gradients 

Variable Coefficient Std. Error t-Statistics Prob. 

C 0.000560 0.116782 0.004795 0.9962 

AR (12) 0.999321 0.000118 8501.412 0.0000 

AR (1) 0.000625 0.000160 3.899161 0.0002 

MA (12) −0.950003 0.020568 −46.18744 0.0000 

SIGMASQ 0.003390 0.000392 8.655254 0.0000 

R-squared 0.822436 Mean dependent variable 0.002194 

Adjusted R-squared 0.816468 SD dependent variable 0.138724 

SE of regression 0.059430 Akaike info. criterion −2.485006 

Sum squared residuals 0.420300 Schwarz criterion −2.371285 

Log likelihood 159.0703 Hannan‒Quinn criterion −2.438809 

F-statistic 137.7955 
Durbin‒Watson statistic 2.030050 

Prob (F-statistic) 0.000000 

The Partial AutoCorrelation (PAC) measures the correlation between the 

observations that are p periods apart after controlling the correlations at intermediate 

lags (i.e. lags less than p). The correlogram of the residuals is flat, which indicates that 

the information has been captured (Figure 4—9). A flat correlogram of the residuals is 

ideal. Therefore, the forecast will be based on this model. 
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Figure 4—9. Correlogram of residuals squared of the autocorrelation function 

(ACF) and partial autocorrelation function (PACF). 

One of the main purposes of the ARMA and ARIMA models is to provide short-

term forecasts. Hence, we have predicted the soil moisture values using the selected 

model from 2020 to 2025. Figure 4—10 shows the forecasting results for the soil 

moisture from 2020 to 2025 with a 95 % confidence interval, which is the range within 

(which) the actual dependent value should fall a given percentage of the time (the level 

of confidence). For the forecasting, the root mean squared error was 0.002 and the bias 

proportion 0.044. Figure 4—11 compares the actual soil moisture and the soil moisture 

forecasting (in m3/m3) from January to May 2020. The prediction from February and 

April is almost the same as for the actual soil moisture, although there were slight 

deviations when predicting March and May. Overall, the model demonstrated an 

accurate forecast of the soil moisture. 
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The essence of an appropriate ARIMA model is to forecast the future trends of the 

series. Hence, we utilized the past information of the soil moisture series (itself). The 

forecast was based on the final selected model, ARIMA (12, 1, 12).  
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Figure 4—10. Soil moisture forecasting from the ARIMA model (m3/m3). 
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Figure 4—11. Comparison graph of the real soil moisture and soil moisture 

forecast. 

The forecasting values of the soil moisture are given in Figure 4—12, with the 

kernel density of the values on the y axis. 
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Figure 4—12. Predicting the soil moisture trend until December 2025. 

4.5 Discussion 

In the present study, we used a linear regression model to estimate the spatial 

distribution of the soil moisture in Mongolia by considering the satellite images (SMAP 

and MODIS). We estimated the monthly (January–December) soil moisture in 

Mongolia during the period 2010–2020. The SM model performance was validated by 

a comparison with the SMC from the agricultural meteorological stations, with data on 

precipitation, temperature, crop yield, etc. The correlation has shown that the model 

(SM-MOD) gives accurate information on the soil moisture for each month. Moreover, 

the present model has the advantage of recognizing the soil moisture spatial distribution 

with a high spatial resolution (1 km); this is the first time such information has been 

gathered for Mongolia. Therefore, we have established the ARIMA model for soil 

moisture forecasting based on estimated soil moisture between 2010 and 2020. The 

results provide the monthly spatial distribution of the soil moisture, which contains 

valuable data for use in numerous contexts, including the agricultural management, 

drought monitoring, assessment of climate change, flooding and in determining the 

pasture and land degradation. The land degradation in central Mongolia is mostly 

caused by overgrazing; however, changes in the summertime precipitation have also 

occurred (Hilker et al. 2014). The Mongolian grassland has been decreasing and 

droughts are still increasing (Sternberg 2018). Our research on the time series’ analysis 

for the monthly SM-MOD forecasting is vital for the monitoring of the land degradation 

and drought. 
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The outcomes of the correlation coefficients are low because of the limited 

available data in the agricultural meteorological stations. However, the correlation was 

statistically significant at p < 0.0001 (0–20 cm) and p < 0.005 (0–50 cm), respectively 

between the SM-MOD and SMC from the meteorological stations at different depths. 

From Figure 4—7, we could see that the previous month’s precipitation directly 

impacted the soil moisture during the growing season (June–September). The 

correlation between the SM-MOD and temperature had correlation coefficients (r) of 

0.80 (statistically significant at p < 0.0001) and 0.83 (statistically significant at  

p < 0.0001). However, the SM-MOD compared with the crop yield for each year (2010–

2019) demonstrated a correlation coefficient (r) of 0.84. 

Therefore, the time series’ analysis for the monthly soil moisture forecasting was 

developed based on the established ARIMA model. From the study, we selected the 

ARIMA (12, 1, 12) model, which was most suitable for the SM-MOD time series, for 

the prediction, in which the values of the soil moisture (SM-MOD) have been predicted 

from 2020 to 2025 (using the selected model). The forecasting results are shown with 

a 95 % confidence interval. The time series SM-MOD data will provide valuable 

information for the decision-makers and researchers. The SM-MOD time series and 

forecasting data are good data sources for the long-term agricultural management, 

planning, climate change and drought monitoring. 

In terms of applications, this multiple linear regression model is a practical tool for 

a reliable and timely drought monitoring; thus, the advantage of this research lies in 

providing valuable information for the decision-makers and farmers. In further studies, 

we will investigate the seasonal soil moisture in different vegetation zones (using this 

method along with the field measurements). 

4.6 Conclusions 

The soil moisture is an essential factor for the agricultural lands in Mongolia. The 

model applied in this paper is suitable for use in the agricultural areas and has 

interesting applications for the agricultural management (irrigation, pasture and 

hayfield yield) and drought monitoring in Mongolia. A time series’ analysis is one of 

the main tools for analyzing and predicting future trends of the soil moisture. Most 

former studies have examined the soil moisture by comparing it with climatic factors 

that were analyzed based on the correlation analysis and multilinear regression (D. 

Zhang and Zhou 2016; Y. Wang et al. 2018; Xia et al. 2019). The LST/NDVI 
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combination method proves to be a robust method to estimate the SM; this combination 

is easy to operate and has a strong physical basis (D. Zhang and Zhou 2016). 

In general, the model’s performance in determining the soil moisture was 

practically assessed by means of satellite images. This study took Mongolia as the study 

area, dividing it into six vegetation zones. The linear regression method was applied in 

the soil moisture estimation using SMAP and MODIS satellite images. From the model, 

the spatial distribution of the soil moisture has been developed monthly from 2010 to 

2020. The soil moisture was high in the north, while a low soil moisture was observed 

in southern Mongolia, especially during the warm season. Then, the output maps were 

compared with the soil moisture contents from the agricultural meteorological stations 

and the precipitation/temperature from the CRU data. The results show that the 

estimated soil moisture was statistically significantly correlated with the actual soil 

moisture contents reported by the stations. Moreover, the estimated soil moisture (SM-

MOD), when compared with the crop yield, showed a high correlation, though there is 

a need for more accurate, detailed ground-measured data. Finally, we have performed 

a time series’ analysis of the soil moisture from 2010 to 2020 and predicted the soil 

moisture in this study area until 2025. Overall, the developed SM model and time 

series’ method could be applied to investigate the changes in the soil moisture in 

Mongolia, so it is reasonable to use these in agriculture, hydrology and climate science. 

However, this linear regression model should be elaborated to suit each vegetation zone 

or eco-climate regions in the applied study area.  
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CHAPTER 5 
 A GIS-based multicriteria analysis on cropland suitability 

in Bornuur soum, Mongolia   

Modified from: Enkhjargal Natsagdorj, Tsolmon Renchin, Philippe De Maeyer, Rudi 

Goossens, Tim Van de Voorde, Bayanjargal Darkhijav (2020). A GIS-based 

multicriteria analysis on cropland suitability in Bornuur soum, Mongolia. International 

Archive Photogrammetry, Remote Sensing, Spatial Information Science. XLIII-B4-2020, 149–

156, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-149-2020  
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5.1 Introduction 

Agriculture is an essential economic sector in Mongolia, contributing to more than  

20 % of the annual GDP and representing 14 % of the currency revenues (FAO 2011). 

Mongolia’s agro-ecosystems are incredibly vulnerable; due to global climate change, 

which is expected to result in higher temperatures and increased evaporation (Batima 

et al. 2005; Angerer et al. 2008). These weed covered lands induce land degradation 

and desertification. As a result, land degradation directly influenced by agricultural 

products (Gantumur et al. 2018). When they could be reclaimed, an enormous potential 

would improve the agro-production in the country (MFALI 2017). At present, the total 

size of the arable land is estimated to be 1.2 million hectares, of which 664,300 ha is 

used as cropland while 561,000 ha has been abandoned (Hofmann, Tuul, and Enkhtuya 

2016). However, determining which land is the most suitable for agricultural 

development is essential to enhance food safety and also to stop the later food crises 

(Pederson et al. 2013). In Mongolia, in order to improve the agro-production and to 

provide food security, croplands should be enhanced in areas in which they thrive the 

most. 

The Mongolian agricultural regions are located in the northern central part of Mongolia, 

which is characterized by a mountainous and forested area. The Mongolian government 

has been continuously increasing its expenditures for agricultural development by 

initiating programs to reclaim abandoned agricultural lands, to create favourable 

economic conditions, to increase production and to ensure food safety (e.g. Atar 3) 

(Hofmann, Tuul, and Enkhtuya 2016). The agricultural products, especially potato and 

wheat, slightly rose as a result of the national government program. But the dominant 

vegetables’ import was increased by 11.7 times, such as 5,438.4 tons in 1995 and it 

expanded to 64,107 tons in 2016. Besides, 96 % - 99 % of which came originated from 

China (Otgonbayar et al. 2017). However, without the total consumption of vegetables 

(excluding potatoes), around 45 % have been imported (Statistical Information System 

2016). That means that the Mongolian food security strongly depends on the 

neighbouring countries. Mongolia needs to develop its agricultural sector in agricultural 

management, especially primary crop production. 

At present, a widely used GIS application makes the land assessments more flexible, 

with scientific analysis (G Pan and Pan 2012). The Geographic Information Systems 

(GIS) is most suited to handle broad extensive data on a multiple (spatial, temporal and 
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scale) from different sources for cost-effective and productive analysis over time (Y. 

Chen, Yu, and Khan 2010). Therefore, there is an increasing interest in the corporation 

of the GIS capacity in MCA processes. The Multi-Criteria Analysis (MCA) is one of 

the usual valuable approaches concerning land use, environmental planning and 

agricultural management, too (Perveen et al. 2007; Quan et al. 2007; Y. Chen, Yu, and 

Khan 2010; Kamau, Kuria, and Gachari 2015; Otgonbayar et al. 2017). It is the 

operational instrument for supporting decision-making issues through various criteria 

(Grima, Singh, and Smetschka 2018; Zabihi et al. 2019).  

The Analytical Hierarchy Process (AHP) is a multi-criteria analysis method that is 

applied with GIS, which determines the weights toward the selected criteria. AHP 

method has progressed via (Saaty 1980) has been employed in GIS-based MCA (Carver 

1991; Marinoni 2004; G Pan and Pan 2012; Dragićević, Lai, and Balram 2014; 

Montgomery et al. 2016; Memarbashi et al. 2017). The latter commonly utilized in 

land-use suitability (Akinci, Özalp, and Turgut 2013; Kamau, Kuria, and Gachari 2015; 

Otgonbayar et al. 2017; Zabihi et al. 2019). Pan and Pan (2012) applied a GIS-based 

cropland suitability analysis using natural and socio-economic factors to provide insight 

into the adaptation of measures to the local conditions regarding the crop layout and 

farming systems. The GIS-based multi-criteria analysis is widely used in the land 

suitability analyses from many countries. However, the application of the method in a 

cropland suitability analysis has not been performed in small Mongolian areas (such as 

sub-provinces), as proven, from the available literature.  

The study provides to support the land manager and agronomists, including the regions’ 

estimation based on the significant criterion that was promoted through the FAO (Food 

and Agricultural Organization) and adjusted at the farmers. This chapter provides over 

the determination of the cropland suitability area by means of a GIS-based AHP tool of 

Bornuur soum to identify the crop production suitability classes. The purpose of this 

chapter is to estimate cropland suitability that could support the crop production in 

Bornuur soum in the best possible way by means of multi-criteria analysis (MCA): (1) 

to identify the influencing criteria for new croplands in Bornuur soum based on a 

literature review and to specify the classes of the criteria based on the structure of the 

Food and Agricultural Organization (FAO); (2) to develop a cropland suitability map 

and to conduct an accuracy assessment with the field measurements from Bornuur 

soum. There are few studies have been carried out in Mongolia using multicriteria 
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analysis for different purposes, such as a land suitability evaluation (Otgonbayar et al. 

2017; Purevtseren and Indraa 2018) and desertification/land degradation (Lamchin et 

al. 2017). In this chapter, it is employing the AHP tool through approach the cropland 

suitability over Bornuur soum that will be considered in this article.  

Sustainable land-use planning is an essential condition that the evaluation of land 

suitability analysis surround and their suitability for a designed application concerning 

the grouping of certain land areas (Sarkar, Ghosh, and Banik 2014a). For land crop 

suitability, some cognitive factors should be carried out which as moisture, digital 

elevation model, vegetation cover and effect of topography (Forkuo and Nketia 2011). 

Several types of research has been done on the land suitability analysis based on GIS, 

e.g. (Quan et al. 2007; Perveen et al. 2007; Y. Chen, Yu, and Khan 2010; G Pan and 

Pan 2012; Kamau, Kuria, and Gachari 2015; Otgonbayar et al. 2017); Sarkar et al. 2014; 

etc. In this article, our approach is demonstrated by means of a GIS-based multi-criteria 

study to a cropland suitability estimation in Bornuur soum, Mongolia.  

5.2 Study area  

The Mongolian agriculture is divided into five regions: Tuv, Khangai, West, East and 

Gobi. The total agricultural area of Mongolia measures 1,269,498 ha (65 % of which is 

situated in Tuv, 11 % in Khangai, 10 % in the West, 14.07 % in the East and 0.03 % in 

the Gobi region) (MFALI 2017). Therefore, we selected a study area from the most 

critical agricultural part in Mongolia, the Tuv region. Bornuur soum (second-level 

administrative subdivision) possesses an agriculturally based economy. Bornuur is 

located between E 48°- 49° and N 106° - 106° 40’ and the average altitude is 872-1,821 

meter above sea mean level (E. Natsagdorj et al. 2017). Bornuur soum has a total land 

area of 114,483.21 ha and is located in the central agricultural zone of Mongolia 

(Hugjliin Ezed NGO 2008). It is situated in a convenient climatic region, including 

healthy rich soil. Bornuur soum has four soil types: Cambisols, Gleysols, Kastanozems 

and Leptosols (Figure 5—1). Before the 1990s, the soum was the central part of the 

Mongolian agriculture. Agriculture was a significant employer and prominent in all 

sectors of the soum (Sandmann 2010).  
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Figure 5—1. The Bornuur soum’s soil map, Tuv province, Mongolia (E 48° - 49° 

and N 106° - 106° 40’) 

5.3 Data collection and preparation 

Crop suitability study was utilized within this research that obtained the following 

sources. From literature about crop production in Mongolia, we selected vegetable areas 

that contain many factors such as the soil parameters (soil type, soil texture, soil pH and 

soil humus), elevation, slope, vegetation, water supply, etc. (FAO 1976; Kamau, Kuria, 

and Gachari 2015; Otgonbayar et al. 2017). The soil data and a cropland cadastral map 

were collected from the Land Administration and Management, Geodesy and 

Cartography (LAMGaC) of Mongolia (Figure 5—1).  

The soil thematic map on a 1:50,000 scale (provided by LAMGaC) was reprocessed 

using ArcGIS 10.3.1 to provide thematic data and then further converted into a raster 

layer. The four parameters include the soil texture, soil humus, soil pH and soil type 

were selected. Bornuur soum has a suitable soil type for the cropland with the FAO 

structure (FAO 1976) of the land suitability criteria. Thematic maps were acquired for 

each of the factors in Bornuur soum.  
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Figure 5—2. Cropland cadastral and field data of the Bornuur soum 

A field survey has been carried out archive data in Bornuur soum during 1998 – 2015. 

However, some field samples (36) have been collected during the field trips in  

July-August, 2015, with the agronomists of Bornuur soum, Tuv province. The entire 

146 samples have been used from the archive and field trip in this study (Figure 5—2). 

The soum has extensive records of cropland and pasture land use, in digitally and on 

paper. Based on an expert’s knowledge and archive notes, the field measurements were 

classified into a cropland suitability rate (Table 5—1). The archive notes include 
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information on soil and vegetation such as the organic matter, soil texture, soil moisture, 

soil pH, etc. Additionally, the vegetable products of the archive data were used for a 

suitability classification. The suitability classes were made by local agronomists and 

specialists. For example, the damaged area (soil erosion, bare land) has been classified 

for the unsuitable. The soil texture (heavy clay), soil pH (7.8-8.5) and vegetation types 

(Artemisia frigida, Artimisia adamsii and Potentilla bifurca, etc.) are chosen as 

marginal suitable (52 samples). The soil texture (sand), soil humus (2-3 %), soil pH  

(7.5-7.8) and vegetation types (herb grass) are seen as moderate suitable (71 samples). 

The soil texture (light clay, mid-siltstone), soil humus (more than 3 %) and current 

croplands are considered to be highly suitable (21 samples) (Table 5—1). Concerning 

the data validation, the field samples will be utilized in the result section.   

The questionnaire was collected from 24 farmers and experts, who have been working 

in their field long-term. 18 of them possess a small-scaled farm which measures less 

than 10 hectare and the farmers especially grow potato, wheat and vegetables. 6 farmers 

have a big-scaled farm (exceeding 10 hectare) and the farmers/companies cultivate 

wheat, potato and fodder crops.    

Table 5—1. The field data classification into suitability classes (based on the soil 

and vegetation archive data) 

Field 

samples   

Highly 

unsuitable  

Unsuitable Moderate suitable   Highly suitable  

Classes  S1 S2 S3 S4 

Criteria  damaged 

area (bare 

land) 

Soil texture (heavy clay), 

soil pH (7.8-8.5) and 

vegetation types 

(Artemisia frigida, 

Artimisia adamsii and 

Potentilla bifurca, etc.) 

Soil texture (sand), 

soil humus (2-3%), 

soil pH (7.5-7.8) and 

vegetation types 

(herb grass) 

Soil texture (light 

clay, mid-siltstone), 

soil humus (more 

than 3%) and current 

croplands 

146
 

2 52 71 21 

Note: Artemisia frigida, Artimisia adamsii and Potentilla bifurca etc: the prevalence of these plants 

is the sign of land degradation (Bulgamaa et al. 2018).  

In this chapter, we used Landsat OLI8 and ASTER satellite images. More detailed 

information can be seen in Section 1.3.1 and 1.3.4. In order to obtain the slope and 

elevation data from the advanced spaceborne thermal emission and reflection 

(ASTER), the satellite global digital elevation model (GDEM) data were used with a 

30-meter resolution. The Landsat 8 operational land imager (OLI) with 30-meter 

resolution data (path 132, row 26) was used for the estimation regarding the Normalized 
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Difference Moisture Index (NDMI) and Normalized Difference Vegetation Index 

(NDVI) between July / August (2014-2019) for this research. Table 5—2 described a 

data list that we applied for the benefit of this research. 

Table 5—2. Used data 

Data type  Data description  Data source   

Soil data  Soil pH, soil humus, soil 

texture, soil type 

Land Administration and 

Management, Geodesy and 

Cartography (LAMGaC) 

Digital Elevation Model  Aster GDEM V2 2011, the 

resolution is 30m 

U.S Geological Survey 

(USGS) and Earth Remote Sensing 

Data Analysis Centre (ERSDAC) 

Normalized Difference 

Vegetation Index (NDVI);  

Normalized Difference 

Moisture Index (NDMI) 

NDVI=(NIR-Red)/(NIR+Red) 

 

NDMI=(NIR-

MIR)/(NIR+MIR) 

Landsat TM/OLI satellite images 

between 2014 and 2019  

(McDonald et al. 1998; Jin,  Sader, 

2005; Woodcock et al. 1994) 

Cropland cadastral map  Current cadastral survey Land Administration and 

Management, Geodesy and 

Cartography (LAMGaC)  

Field survey  146 samples collected using a 

handheld GPS, Accuracy 1-5 

m  

Field survey and agronomist 

expert’s (1998-2015) archive 

information  

Questionnaire  The questionnaire was 

prepared that are related to 

the crop suitability criterion  

Collected from the local farmers 

and experts  

(24 local farmers and experts) 

5.4 Methodology and analysis 

The multi-criteria analysis method (based on GIS) was applied to determine the 

cropland suitability. Based on our literature review, only a few scientific studies have 

been performed on land suitability evaluation in Mongolia (Otgonbayar et al. 2017; 

Purevtseren and Indraa 2018). Although no reviews are available on the physical 

planning of croplands in the small regions of Mongolia using the spatial multicriteria 

analysis method. The process adopted for the crop suitability of the study area has 

executed the methodology illustrated in Figure 5—3. This latter illustrates the 

employed method in this chapter. 
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Figure 5—3. Flowchart methodology of the cropland suitability. FAO: Food and 

Agricultural Organization; AHP: Analytical Hierarchy Process; CR: 

Consistency Ratio 

5.4.1 Selection of the suitability criteria  

In the study area, the most important economic sector is agriculture, especially the crop 

sector. A literature review of various references and consultation of local agronomist 

experts helped to identify the necessary criteria (soil texture, soil type, soil pH, soil 

humus, elevation (altitude), slope, vegetation and moisture) in order to estimate suitable 

areas for crop production. Suitability classes were made set up on formation from the 

FAO land suitability analysis and ranging from highly suitable, moderately suitable and 

unsuitable to highly unsuitable in Bornuur soum, Mongolia. These classes were 

estimated according to the FAO guideline, literature review and agronomist expert’s 

opinions (Table 5—3).  

5.4.2 MCA for assigning the weight to each criterion  

The Analytical Hierarchy Process (AHP) is a standard mathematical method introduced 

by (Saaty 1977) that is used when analyzing complex decision problems (Saaty 1977; 

1990). The AHP, pairwise comparison matrix estimates the weights of each criterion 

(wi). 

Pairwise comparison matrixes involve the comparison of all possible pairs of criteria in 

order to estimate which of them are from a higher priority. Saaty (1980) suggests a scale 
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from 1 to 9 in which value 1 indicates that the criteria are equally essential and value 9 

means that the considered criterion is superior to the other criteria (Table 5—4).   

The crop suitability classes were assigned score 9, 7, 5 and 3, respectively. The classes 

with higher scores are highly suitable for crop production and by applying these scores, 

the estimated suitability classes and all thematic maps were reclassified.   

Table 5—3. Criteria for the cropland suitability based on the experts and the FAO 

(1984) for the structure in Bornuur soum 

Factor/Criterion Highly suitable  Moderately 

suitable  

Unsuitable  Highly 

unsuitable  

Soil texture (class) Light clay & 

mid-siltstone  

Sand  Heavy clay  Clay  

Soil type  Kastanozems, Gleysols, Gambisols and Leptosols   

Soil pH  5.5 – 7.5  5.2-5.5  

7.5-7.8 

4.5-5.2 

7.8-8.5 

8.5< 

4.5> 

Soil humus (%) 3 < 2.0 – 3.0 1.0 - 2.0 1 > 

Elevation (meter) 1,500 > 1,500 – 2,000 2,000 – 3,500 3500 < 

Slope (degrees) 0 - 6 6 - 9 9 - 12 12 < 

NDVI (index) 0.35 < 0.25 - 0.35  0.15 – 0.25 0.15 > 

NDMI (index) 0.35 < 0.25 - 0.35  0.15 – 0.25 0.15 > 

Table 5—4. Scale concerning pairwise correlation (Saaty 1990; Saaty and Vargas 

2013; Burnside, Smith, and Waite 2002) 

Numerical 

expression 

Comparative importance Suitability rating 

1 Equal importance  Unsuitable 

3 Moderately importance of one factor 

covering another  

Marginal suitable 

5 The strong or crucial importance  Moderate suitable 

7 Extreme importance  Highly suitable 

9 Extremely importance 

2, 4, 6, 8 Moderate values 

 

  



Chapter 5 

 

105 

 

5.4.3 Weighted linear combination (WLC) estimation of the criteria  

We rated all criterion set up on the information from the literature review and the local 

experts.  

In order to estimate the related criteria weight, the AHP method has been applied to 

compute every criterion weight. A pairwise comparison matrix (PWCM) held taken 

using information from the literature review and the local experts concerning 

determining the value of weights regarding each related criterion through another. In 

AHP method, a consistency index intervenes in the Consistency Ratio (CR), has been 

applied to designate the possibility that matrix judgements obtained a randomly created 

by means of equation (5-1) (Hossain et al. 2013):  

                           
CI

CR
RI

=  
 (5-1) 

, where RI is mean of the resulting consistency index depending on the quantity of the 

matrix, given by Saaty (Hossain et al. 2013; Sanare and Ganawa 2015).  

The CR index represents the consistency of the PWCM. If the CR exceeds 0.1, that 

weighting rate is unacceptable and if the ratio value is lower than 0.1, that weighting 

rate means acceptable (Hossain et al. 2013). The Consistency Index (CI) is described 

in equation (5-2):  

  max

1

m n
CI

n

−
=

−
  

(5-2) 

, where CI stands for the Consistency Index, mmax the maximum own value and n 

represents the matrix order.   

After estimating the weights of the values of the criteria using the AHP tool, all criteria 

maps have been overlaid applying the cropland suitability (equation 5-3). Cropland 

suitability map could be calculated from the Weighted Linear Combination (WLC) of 

criteria used by the equation (5-3). The WLC method is one of the most commonly used 

in GIS-MCA (Malczewski 2000).  

*i i iCS w c=  (5-3) 
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, where CS represents the final cropland suitability value, wi shows the weight of 

criterion i and ci demonstrates the standardized criterion score i (Gorsevski, Jankowski, 

and Gessler 2006).  

The weights of seven criterion and ranks represent in Table 5—5, according to the 

literature review and local experts’ interviews. We have estimated CR = 0.094 and this 

shows that the judgement has a reasonable consistency. The wi is the weight value for 

each criterion and normalizes the amount of the sections facing unity while ∑wi = 1 

(Helmut et al. 2013).  

Table 5—5. Defined ranking and weights of the criteria 

Id  Name of the criteria Ranking  Weight 

1 Soil texture (ST) 2 0.193 

2 Soil pH (pH) 7 0.223 

3 Soil humus (SH) 1 0.132 

4 Elevation (E) 5 0.158 

5 Slope (Sl) 4 0.106 

6 NDMI (NDMI) 6 0.109 

7 NDVI (NDVI) 3 0.078 

Consistency ratio (CR): 0.094 

5.4.4 Accuracy assessment  

The confusion matrix can provide different measures of accuracy. For the accuracy 

assessment of the cropland suitability map, the confusion matrix has been used. A 

confusion matrix is usually applied as a quantitative method of characterizing image 

classification accuracy. It is a table that shows the connection between the output map 

and the field measurements (Story and Congalton 1986).  

5.5 Results and discussion 

In order to obtain the weighted linear combination of different criteria for the cropland 

suitability in Bornuur soum, seven criteria images were overlaid applying the cropland 

suitability (equation 5-4).  

CS = wi * ST + wi * pH + wi * SH + wi * E + wi * Sl + wi * NDVI + wi 

* NDMI           

(5-4) 
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, where: CS - Cropland Suitability, wi = j; ∑ wi = 1.0, a weighted index for influencing 

criterion, ST - Soil Texture, pH - Soil PH, SH - Soil Humus, Sl - Slope, E - Elevation, 

NDVI - Normalized Difference Vegetation Index, NDMI - Normalized Difference 

Moisture Index    

In this chapter, a multi-criteria analysis was applied to Bornuur soum using an ArcGIS 

weighted overlay tool. In the suitability analysis, weights measure the influence of the 

considered suitability criteria (Helmut et al. 2013), which are shown in Table 5—3. 

Multi-criteria analysis was created mentioning the following equations (5-5). The tool 

works with multiple raster inputs, representing several criteria. In this suitability model, 

the output values from the approach could range from unsuitable to highly suitable. The 

wi stands for the weighted indexes (Table 5—5) for each criterion on cropland 

suitability in Bornuur soum. Thus, the weighted linear combination of criteria through 

equation (5-5) has been estimated.   

CS = 0.19 * ST + 0.22 * pH + 0.13 * SH + 0.16 * E + 0.11 * Sl + 0.08 * 

NDVI + 0.11 * NDMI      

(5-5) 

In the present case, the cropland suitability classes consisting of four ranges applied in 

this study adjusted the FAO system (FAO 1976). They are specified as: highly suitable, 

moderately suitable, marginal suitable and not suitable. Seven criteria (soil texture, soil 

pH, soil humus, elevation, slope, NDVI and NDMI) were chosen based on the study 

objective and in particular the data availability. The soil thematic data were converted 

into raster layers and prepared in ArcGIS. The elevation and slope were produced from 

DEM. The NDVI and NDMI were calculated from the Landsat satellite images with a 

30 m resolution during 2014-2019. All selected criteria were classified into 4 classes as 

an integer raster displaying different cropland suitability set up on the origin rates in 

Table 5—3. The results of this chapter provide all criteria, as shown in Figure 5—4.  

The best suitable areas for cropland signify indicated within green colour and unsuitable 

areas occur in red (Figure 5—4). Given the validation, we applied a confusion matrix 

evaluation between the output maps regarding the cropland suitability and field data.  

The output maps for the crop suitability apply several criteria such as the soil texture, 

pH, soil humus, elevation, slope, NDMI and NDVI. The soil type criteria were not 

applied for the criteria on cropland suitability in the study area. Soum has suitable soil 

types for the cropland that are maintained in the FAO structure of the land suitability 
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criteria (FAO 1976). The output map for suitability described four classes with the 

relative suitability for cropland. These classes are explained as follows: unsuitable in 

red, marginal suitable in light yellow, moderate suitable in light green and highly 

suitable in dark green (Figure 5—5). The output map from the cropland suitability area 

approach is demonstrated in Figure 5—5.  

 

Figure 5—4. Criteria maps for the cropland suitability which as classified via 

table 3. 
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In order to make validations, the output map from the approach was compared with the 

crop cadastral map from the Agency for Land Administration and Management, 

Geodesy and Cartography and the field data from the field survey, respectively. Firstly, 

the cropland cadastral map overlapped the output suitability map. Currently, there are 

259 croplands in Bornuur soum in total. Around 95 % of the croplands are located in 

the highly suitable and moderate suitable part of the output map of suitability.  

The result of the cropland suitability analysis reveals that 46.12 % is highly suitable for 

cropland, 34.68 % is moderate suitable, 13.64 % unsuitable and 5.56 % highly 

unsuitable (Figure 5—5).  

Additionally, the questionnaires data related to the cropland suitability criteria were 

collected from the local farmers and experts. During the study, we gathered several 

questionnaires from the local farmers and experts (24 respondents) during 2019. The 

questionnaire was prepared as a patch and selection test that included twelve questions 

which are related to the criteria on crop suitability (Figure 5—6). 

The questionnaire was prepared for the local farmers and the questions based on a 

classification of criteria. The latter comprised questions about soil parameters (soil pH, 

soil texture, soil type, soil moisture), slope and elevation made on the form  

(Figure 5—6). The result reveals that 74.2 % proves highly suitable for cropland, 19.2 

% is moderate suitable, 1.67 % marginal suitable and 5.0 % is not necessary  

(Table 5—6). 

The field data were classified into four levels (Table 5—1), the same as for the crop 

suitability output map in the study area. The output crop suitability map was sufficiently 

accurate for field data. Then, a validation was made by means of the confusion matrix 

evaluation. A strong relation (71.23 %) is noticeable between the output map of 

suitability and the field survey (Table 5—7). The overall accuracy compared with the 

field data measures 71.23 % of the pixels that are identically classified for both datasets. 

The most representative and complied proof was the kappa coefficient of 0.56, which 

describes a moderate agreement within the output crop suitability and the field data.   
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Figure 5—5. The output map of the cropland suitability in Bornuur soum 
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Figure 5—6. Questionnaire form (in Mongolian) 

Table 5—6. Results of the questionnaire 

Question pH STY STE SM Sl E 

High suitable 14 22 12 - 21 20 

Moderate 10 - 9 - - 4 

Unsuitable - - 2 - - - 

Highly unsuitable - - - - - - 

Not necessary  2 1 - 3 - 

Note: pH – soil pH, STY- soil type, STE-soil texture, SM-soil moisture, Sl-slope, E- elevation  
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Table 5—7. Confusion matrix and accuracy estimates for the cropland suitability 

map. 
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Highly  

unsuitable 
6 2   8 0.25 75.0 

Unsuitable 1 17 7 8 33 0.48 51.5 

Moderate 

suitable 
 1 28 9 38 0.26 73.7 

Highly 

suitable 
  14 53 67 0.21 79.1 

Sum 7 20 49 70 146  

Omission 0.14 0.15 0.43 0.32  

User's accuracy 

(%) 
85.71 85.00 57.14 67.92  

Overall accuracy: 71.23 %; Kappa coefficient: 0.56 

5.6 Conclusion  

A GIS-based multicriteria analysis has recently been put to use for an agricultural land 

suitability evaluation. The newly created area selection provided by means of the multi-

criteria analysis method shows unbeaten future prospects in that direction, especially 

for the small provinces. These methods will allow a more precise, rapid and low-priced 

environmental and agricultural management activity.  

Recent agricultural studies have maintained the developing approach for the cropland 

suitability rating by means of the multi-criteria evaluation method. Mongolia also needs 

satellite image processing for the cropland studies, as it is valuable for agricultural and 

land management.  

In Bornuur soum, as all soil types are suitable for cropland. We selected other criteria 

such as soil parameters, topography, vegetation and moisture index in this chapter. The 

multi-criteria analysis was applied for the cropland suitability approach based on GIS 

in Bornuur soum. GIS has proven to be an effective, operational tool for complex 

evaluation processes of cropland suitability (G Pan and Pan 2012). From this chapter, 

we executed an estimation of the cropland suitability approach, using GIS in the 

agricultural area in Mongolia.  
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Our study evaluated the cropland extent in Bornuur soum, investigating the cropland 

suitability map based upon various criteria before-mentioned that vegetation, soil 

parameters, moisture and topography. The results shown in the output map are 

reasonable. The agreement with the crop cadastral map amounts to approximately  

95 %, from the questionnaire 74 % of the respondents chose the highly suitable answer 

while 71 % of the field data (Table 5—7), respectively. The conducted cropland 

suitability maps confirmed that 46.12 % is highly suitable for cropland, 34.68 % 

moderate suitable, 13.64 % is marginal suitable and 5.56 % unsuitable (Figure 5—5). 

The decision methods that are handled in the land-use evaluation problems cannot be 

randomly selected without appropriate justification (Dujmovic, Tré, and Dragicevic 

2009; Y. Chen, Yu, and Khan 2010; Zabihi et al. 2019). In this chapter, a multi-criteria 

analysis has been established in an agricultural region in the central part of Mongolia. 

The innovation of this research was meant to develop suitable cropland regions, which 

utilized both satellite images and GIS. The study employed the elevation and slope 

factors for the forested mountainous and agricultural areas. It can be applied to various 

regions and environments. The additional factors should also be considered. The 

approach could function as an advantageous indicator so as to take further agricultural 

management decisions and to advise the regional decision-makers. The advantages of 

this approach are to allow researchers to determine new, suitable agricultural regions in 

various areas.  

The result of this chapter could be used for the soum government in order to advise 

local farmers in suitable areas. In terms of practical application, this approach proves 

to be a useful tool to obtain reliable and reasonable agricultural studies, thereby 

providing valuable information for the decision-makers and farmers. In the future, this 

study could be referred to map the land suitability of other soums and over the country 

with further and more processed parameters. The cropland suitability databases in the 

agricultural sector will ensure the essential reliability of the estimates and forecasts, 

which will undoubtedly be helpful in the process of planning and policy-making. 
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CHAPTER 6 
General discussion and conclusion    

This chapter includes two main sections as the general discussion (section 6.1) and 

general conclusion (section 6.2). Section 6.1.1 addresses the summary and discussion 

of research questions. Then, the critical reflections of each chapter are mentioned in 

section 6.1.2. In section 6.1.3, the recommendations for future work are proposed. In 

section 6.2, the main findings of this dissertation and future research work are 

concluded in this chapter. 
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6.1 General discussion  

6.1.1 Summary and discussion of the research questions  

The Mongolian ecological systems are vulnerable; agricultural lands (1.11 million 

square kilometers covering 71.6 % of the territory) are being destroyed at an increasing 

pace, which results in the expansion of the Gobi desert (UNDRR 2019). Also, the 

Mongolian climate is highly continental, which includes the arid and semi-arid regions. 

The research on soil moisture could be useful for the agricultural management and 

climate change impact. In this dissertation, we have contributed to the soil moisture 

mapping of Mongolia in a different way: firstly, we studied the moisture index for the 

long-term use of remote sensing and meteorological data; secondly, we developed the 

soil moisture index by a linear regression analysis based on satellite images; thirdly, the 

Mongolian soil moisture map was created by the MODIS NDVI and LST images, then 

determined the soil moisture prediction until 2025. Lastly, the estimation of the 

cropland suitability using MCA could be helpful for the rural agricultural planning. 

Based on this dissertation's focus, remotely sensed data were carried out on this research 

rather than the direct SM methods (gravimetric and volumetric), the RS methods are 

powerful tools to monitor the regional SM within the spatial and temporal variations. 

Following the general objectives, five research questions were considered.  

Question 1: How could the moisture index (MI) be used to monitor and correlate with 

the SM measured at the climate stations at different depths (0-10 and 0-50 cm)? 

Question 2: How does the moisture index affect vegetation for the growing season?   

Question 3: How could we describe the integrated methodology for the SM through 

multispectral satellite data?  

Question 4: How can NDVI and LST products be used to monitor soil moisture and 

predict it in Mongolia?    

Question 5: How could the multi-criteria analysis evaluate for the cropland suitability?  

These five research questions were rephrased and answered in Chapter 2 to 5. An 

overview of the research objectives, employed methods and findings are given in Table 

6—1. This table aids to understand the links between the research objectives and 

research questions and the manner in which these are presented in each chapter.    
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Table 6—1. Overview of the main contents of this dissertation 

Chapter RQ Objectives Employed 

methods 

Main results  

Chapter 2: Long-

term soil moisture 

index estimation 

using satellite and 

climate data in the 

agricultural area of 

Mongolia 

Q1 

and 

Q2 

- to interpolate the precipitation data from the 

climate stations; 

- to estimate the long-term moisture index using 

the in-situ and MODIS data;  

- to correlate between the estimated moisture 

index and soil moisture contents from the 

climate stations at different depths, 0 - 10 cm 

and 0 - 50 cm;  

- to assess the relationship between the estimated 

moisture index and NDVI. 

 

- Kriging method 

- Moisture Index 

(Thornthwaite 

and Matter 

1955) 

- Pearson’s 

correlation 

- The MI was mapped in the study area. The wettest 

years were 2012 and 2013 while the driest years 

were 2000 and 2002.  

- The moisture index correlated with the SM from the 

climate station that shows high figures in wet 

months, besides the dry months were low.  

- The vegetation growth inversely correlated with the 

MI in the dry months while it strongly correlated 

during the wet months in the arid region.  

- The amount of MI (May-August) had a slightly 

strong correlation with the NDVI of the highest 

growing months (July-August), which means that 

the amount of the moisture contents and 

precipitation could predict the vegetation growth.   

Chapter 3: An 

integrated 

methodology for 

soil moisture 

analysis using 

multispectral data 

in Mongolia 

Q3 - To select the factors that might affect the soil 

moisture in the kastanozem soil; 

- To develop an integrated methodology using 

the multi-regression model; 

- To make a validation to the accurately 

developed model with satellite images and field 

measurements.  

- Multi-regression 

model   

- The NDVI, LST, Elevation, Aspect and Slope were 

selected for the factors that might affect the soil 

moisture.  

- The predicted soil moisture index (PSMI) was 

developed using the multi-regression model on the  

kastanozem soil in Bornuur soum.  

- A validation between the PSMI and field 

measurements was made in September 2011 (r = 

0.81) 

- The MI (chapter 2) was compared with the PSMI, 

noticing a good relation (r=0.77).  
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Chapter 4:  

Spatial distribution 

of soil moisture in 

Mongolia using 

SMAP and 

MODIS satellite 

data: A time series 

model (2010 - 

2025)   

Q4 - To estimate a monthly soil moisture 

distribution map (SM-MOD);   

- To compare the soil moisture distribution, 

precipitation/temperature and crop yield;  

- To build appropriate models to forecast future 

trends.  

- Multiple linear 

regression (SM-

MOD) 

- ARIMA model 

- Pearson’s 

correlation  

- The increased soil moisture is observed in the 

northern part, which is taiga, forest-steppe, and 

steppe zones, while a low soil moisture is restricted 

to the southern part of Mongolia, which is mostly 

desert steppe and desert zones.  

- From the results, the SM strongly depends on the 

precipitation in Mongolia (Figure 4.6) (r=0.83 with 

p<0.0001). The correlation between the SM-MOD 

and crop yield that was statistically significant 

(p<0.003) and the correlation coefficient was 0.84.   

- We selected the ARIMA(12, 1, 12) model which 

was more suitable for a soil moisture time series 

analysis from 2010 to 2020.  

- We have predicted the values of the soil moisture 

from 2020 to 2025.  

Chapter 5: A GIS-

based multi-

criteria analysis on 

cropland 

suitability in 

Bornuur soum, 

Mongolia 

 

Q5 - To select criteria 

- To estimate the best suitable area for supporting 

the crop production in Bornuur soum; 

- To use a GIS-based multi-criteria analysis 

(MCA) and remote sensing.  

- Multicriteria 

analysis (MCA) 

- Weighted linear 

combination 

(WLC)  

- Confusion 

matrix  

- The seven criteria (soil texture, soil pH, soil humus, 

elevation, slope, NDVI and NDMI) were chosen.  

- From the results, the cropland suitability analysis 

reveals that 46.12 % is highly suitable for cropland, 

34.68 % is moderate suitable, 13.64 % unsuitable 

and 5.56 % highly unsuitable.  

- A strong relation (71.23 %) is noticeable between 

the output map of suitability and the field survey.  

- From the results of a questionnaire we could 

conclude that 74.2 % proves highly suitable for 

cropland, 19.2 % is moderate suitable, 1.67 % 

unsuitable and 5.0 % is not necessary.   
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Question 1: How could the moisture index (MI) be used to monitor and correlate with 

the SM measured at the climate stations at different depths (0-10 and 0-50 cm)? 

The changes in the moisture condition (which would occur in some areas) were 

predicted, triggered by drought due to the global warming (G. Wang 2005; X. Gao and 

Giorgi 2008; Zhu et al. 2016). The processes of the water balance, soil moisture, surface 

heat and evapotranspiration are gently related (Li et al. 2009). The Thornthwaite 

moisture index is useful as an indicator of the supply water in an area relative to the 

demand under the prevailing climatic conditions (Willmott and Feddema 1992). The 

moisture index is applied in a wide variety of climatic studies that can be derived from 

commonly available data such as the temperature and precipitation and proves thus  

suitable for long term studies (Grundstein 2009). The MI has been used to describe the 

distribution of the vegetation, soils and climate (Mather 1978). Nyamtseren et al. 

(Nyamtseren, Feng, and Deo 2018) investigated the temporal trends of the moisture 

index during 1961-2015 based on the temperature and precipitation from 70 climate 

stations in Mongolia. From this study, the moisture index and aridity indexes could 

more effectively represent climate types of Mongolia. 

In Mongolia, the impact of global warming is challenged even now, and the temperature 

has increased by 2.07 °C compared to the mean (Dagvadorj, Batjargal, and Natsagdorj 

2014). Extreme and continued droughts have taken place in Mongolia due to the impact 

of climate change (Batima et al. 2005). In previous studies, we saw that the years 2001, 

2002, 2005, 2007 and 2009 were significantly affected by slight to severe droughts in 

Mongolia (Dorjsuren, Liou, and Cheng 2016; Chang et al. 2017; Nanzad et al. 2019). 

However, the driest years were 2001, 2002, 2004 and 2007 in the northern central part 

of Mongolia. Moreover, the results of the moisture index could be considered as 

drought impacts.       

The moisture index has been utilized with the observations of the climate stations from 

former studies. In this research, the moisture was higher in the northern part of the study 

area, which includes the taiga and forested zones (for seven provinces). That proves 

that the forested area holds more soil moisture than the unforested area such as the 

steppe and desert steppe zones. How does the moisture index correlate with the soil 

moisture from the climate stations? In order to answer this question, we contributed to 

the moisture index map for the agricultural region of Mongolia by means of the 
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Thornthwaite method. The correlation between the moisture index and soil moisture 

from the climate station at different depths with 0-10 cm (r=0.60) and 0-50 cm (r=0.38). 

The moisture had increased during the growing season 2000 to 2013. The result shows 

that the moisture index (employed to investigate the manner in which the surface 

moisture has changed) modified in the study area during these 14 years. However,  Zhu 

et al. (Zhu et al. 2016) investigated the variations of the Thornthwaite moisture index 

in the Hengduan mountains of China that correlated with the MI and soil relative 

moisture contents using the climate stations data. This correlation was positive in 

spring, summer and autumn but negative during winter. Furthermore, the impact of the 

changes in the moisture index, especially the decrease, could extend drought and 

desertification (Tabari et al. 2014). It suggests that the moisture index changes could be 

illustrate conditions of drought and desertification.      

Question 2: How does the moisture index affect vegetation for the growing season?   

The NDVI provides spatially continuous data on the vegetation cover and has been used 

for a comparison with the moisture index to obtain information on the manner in which 

the moisture index affects the vegetation growth during the growing season. Zhu et al 

(Zhu et al. 2016) studied the Thornthwaite moisture index. From the results, we could 

conclude that an increase in precipitation and a decrease of evaporation, leading to a 

rise of the moisture index. The MI has a strong correlation with the vegetation coverage 

as the correlation between the NDVI and MI was positive in spring and summer but 

negative during autumn and winter (Zhu et al. 2016). The overall increase in 

temperature will cause heat stress in many plants and the reduced precipitation (during 

the summer months) will result in a reduced soil moisture availability during the 

growing season (which would likely reduce the productivity and cause problems for the 

grazing animals) (Whitten 2009). In this study, the moisture index slightly high 

correlated with the NDVI (0.42-0.55) during the wettest (July and August) months and 

demonstrated a low correlation (0.28-0.37) during the dry months (May and June). 

However, the MI amount (May-August) has a strong correlation with the NDVI of the 

highest vegetation months (July and August) (i.e. the correlation coefficient was 0.71 

(p < 0.01) between the NDVI of July and the MI amount from May and July; 0.72 (p < 

0.01) between the NDVI of August and the MI from May and August and 0.78 (p ≤ 

0.001) between the NDVI of August and the MI amount from June and July).  Besides, 
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the relationship between the rainy season (May-October) NDVI and the MI was 

correlated (R2=0.61, p<0.001) in China (Piao 2005).  

Our study area included taiga, forest-steppe and steppe vegetation zones. Bao et al. (Bao 

et al. 2015) has examined the vegetation dynamics in Mongolia and their response to 

climate change in the vegetation zones. From the meadow steppe to the typical steppe 

and then to the desert steppe, the moisture index decreased for all growing‐season 

months, with the largest differences visible in July and August. Therefore, the 

relationship between the monthly NDVI and precipitation became stronger as the 

moisture index declined from the meadow steppe to the typical steppe and then to the 

desert steppe, particularly in July and August because the largest difference in the 

moisture index occurred in July and August. However, the negative impact of the 

temperature on the meadow steppe vegetation growth in July and August was still more 

significant in Mongolia (Bao et al. 2015). Nanzad et al. (Nanzad et al. 2019) recognized 

that the years affected less by drought were 2011, 2012 and 2013 with 79 % - 87 % of 

the total area identified as in normal and wet conditions. The wettest years were 

recorded in 2012 and 2013. This could be a measurement for the drought conditions 

using the moisture index while the predictor of the vegetation growth strongly depends 

on the previous months of the moisture index amount and precipitation, especially in 

the arid and semi-arid region.     

Question 3: How could we describe the integrated methodology for the SM through 

multispectral satellite data?  

Many methodologies already exist to estimate the soil moisture using remote sensing 

data. We found the predicted soil moisture index (PSMI) based on the factors (NDVI, 

LST, Elevation, Aspect and Slope) that could influence the soil moisture in the 

kastanozem soil. Then, we compared this with the ground truth measurements; the 

correlation amounted to r=0.81. The PSMI values have estimated a range from 0 to 

exceeding 3.0, which signifies that a value of 0 is dry and a value of more than 1 

indicates a wet area. However, the spatial distribution of the surface soil moisture 

indexes identified that the values indicated 0 to 1, which means that the value 0 was dry 

and the value 1 denoted the wet area. Thus, it is suggested that the estimated SMI could 

be used to understand the drought severity and the variability in the soil moisture (Xia 

et al. 2019; Lee, Jung, and Kim 2019). Jung et al. (Jung et al. 2017) have compared the 
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SMI and standardized precipitation index (SPI) in the northern part of South Korea. 

The SPI was determined from the automatic climate stations that indicate the drought 

level (Angelidis et al. 2012; Asadi Zarch, Sivakumar, and Sharma 2015). The coupling 

with the SPI and SMI might be utilized as a meteorological drought index in the forested 

area and the agricultural drought index in the cultivation area (Jung et al. 2017). The 

above mentioned studies applied the MODIS LST/NDVI and meteorological stations’ 

data. Besides, the PSMI was estimated using drivers (vegetation, land surface 

temperature, elevation, aspects and slope in the kastanozem soil) in the forested and 

cultivated area, so it could also be applied for the drought monitoring. Overall, in order 

to improve the accuracy between the predicted soil moisture index and the ground truth 

measurements, the temporal and spatial scales should be the same. So, the PSMI should 

be enhanced in other soil types and vegetation zones (in future studies).             

Question 4: How can NDVI and LST products be used to monitor soil moisture and 

predict it in Mongolia?    

The soil moisture is an important factor for the agricultural land in Mongolia and there 

is a need for an actual spatial soil moisture distribution with a low spatial resolution 

since it has a widespread territory (1,565-million-kilometer square). We found a model 

to estimate the monthly spatial distribution of the soil moisture in Mongolia using 

SMAP and MODIS. Many investigations have confirmed that the LST and NDVI 

products could provide an estimation of the soil moisture. The NDVI and LST from the 

optical/thermal remote sensing data have been widely utilized for the estimation of the 

soil moisture (Hosseini and Saradjian 2011; F. Zhang et al. 2014; E. Natsagdorj et al. 

2017; Saha et al. 2018; Xia et al. 2019). These studies have examined the soil moisture 

by comparing it with the climate variables (which are based on the correlation and 

multi-linear regression analysis). The integration methods of LST and NDVI might  

demonstrate to be vital methods so as to estimate the soil moisture, which is easy to 

operate and has a strong physical basis (D. Zhang and Zhou 2016). In addition, we have 

contributed to the spatial soil moisture distribution map and made a time series analysis 

of Mongolia between 2010 and 2020. The highest soil moisture occurred from June to 

September, while the lowest (soil moisture) was obtained during the winter months and 

from March to April and October. Hence, the cold season climate with a low 

evapotranspiration and strong soil freezing rather prolongs the decay time scale of the 
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autumn soil moisture anomalies in the cold, arid climate of Mongolia (Nandintsetseg 

and Shinoda 2014).  

In Mongolia, the available soil moisture measured about 30 % of the soil field capacity 

during the warm season, while in the desert zone the available soil moisture was close 

to the wilting point throughout the year (Nandintsetseg and Shinoda 2011). In addition, 

our model has illustrated the monthly soil moisture in Mongolia from 2010 to 2020. 

The soil moisture was high in the north and a low soil moisture was noticed in southern 

Mongolia. Then, the output soil moisture map was compared with the soil moisture 

measurements from the meteorological stations and the precipitation/temperature from 

the CRU data. Moreover, the crop yield data were compared to the output of the soil 

moisture. We have investigated a time series analysis of the soil moisture between 2010 

to 2020, therefore the predicted soil moisture until 2025. Overall, the developed SM 

model and time series method could both be used to investigate the changes in the soil 

moisture in Mongolia. However, this linear regression model should be adapted to suit 

each vegetation zone in the applied study area. Significantly, the soil moisture 

prediction would enhance the action on the agricultural and water management to 

qualify the water resource utilization and to reduce the inefficient costs for farmers, etc. 

Question 5: How could the multi-criteria analysis evaluate for the cropland suitability?  

Agriculture is one of the most critical sectors of the Mongolian economy. Mongolia 

needs to improve the local agricultural management based on scientific research. A 

multi-criteria analysis (MCA) is one of the useful, valuable approaches for the land use, 

environmental planning and agricultural management (Y. Chen, Yu, and Khan 2010; 

Perveen et al. 2007; Kamau, Kuria, and Gachari 2015; Otgonbayar et al. 2017; Quan et 

al. 2007). How could the multi-criteria analysis evaluate the cropland suitability? In 

order to answer this question, we stipulated the objectives of this research were: firstly, 

to identify the influencing criteria for new croplands in Bornuur soum based on a 

literature review and to specify the classes of the criteria based on the structure of the 

Food and Agricultural Organization (FAO); secondly, to develop a cropland suitability 

map and to conduct an accuracy assessment on the field measurements from Bornuur 

soum.  

In Bornuur soum, seven criteria were selected for the multi-criteria analysis, which are 

the soil texture, pH, humus, elevation, slope, normalized difference moisture index and 
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normalized difference vegetation index. The cropland suitability analysis examined that 

46.12% is highly suitable for cropland, 34.68% moderate suitable, 13.64% unsuitable 

and 5.56 % highly unsuitable. However, Mongolia has 10.1% of the territory that is 

highly suitable, 14% suitable, 15.5% moderately suitable, 16.3% unsuitable, 12.9% 

highly unsuitable for cropland, with 31.2% as the constraint area (Otgonbayar et al. 

2017). Our study area included the highly suitable and suitable area of Otgonbayar et 

al. (2017) research. The finding ‘new area for cropland suitability using the MCA 

method’ shows excellent prospects, especially in the small provinces. The MCA 

methods allow a more accurate, rapid and low-priced environmental and agricultural 

management activity. Forkuo et al. (2011) suggested that the land crop suitability 

analysis should consider the following factors: humidity, digital terrain models, land 

use, vegetation cover, geology and influence of the topography. In the present study, 

we considered most of the factors that were mentioned above. The cropland suitability 

method could even be improved if the crop mapping model is updated for the 

production of many crops and the model has been extended so as to cover the region 

(Forkuo et al 2011). In terms of practical application, these methods prove that it is a 

useful tool to examine, supplying reasonable agricultural studies, thereby contributing 

to relevant information for the local decision-makers and farmers.  

Overall, throughout the dissertation, the NDVI has been used for the validation (chapter 

2), a proxy for the SM variability (chapter 3 & 4) and to define the cropland suitability 

area. The vegetation indices are extremely sensitive to water stress; that is why it is 

common to use in the drought monitoring. Many studies have been performed and the 

proposed drought indices based on the vegetation indicators, especially the NDVI, are 

widely applied to detect the drought conditions based on the vegetation health and 

greenness conditions (Nanzad et al. 2019; D. Zhang and Zhou 2016). But it is sensitive 

to darker and wet soil conditions. However, the soil moisture conditions from the 

vegetation changes could be indicated by the vegetation indicator methods. These 

methods only consider the fact that water stress leads to reductions in the NDVI and do 

not account for other factors such as the temperature and precipitation. Therefore, the 

combination of the NDVI and LST has been considered in this dissertation and has a 

strong physical basis (easy to operate). 
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6.1.2 Critical reflections 

This dissertation contributed to a study on soil moisture mapping (regional and small 

area) and by comparing the ground SM, vegetation and crop yields, soil moisture 

prediction trends were made regarding Mongolia. Also, a cropland suitability analysis 

using the MCA methods was performed in Bornuur soum. Some critical facts are 

presented regarding the data, methodology and results of each chapter.  

Chapter 2: In this chapter, the moisture index was developed using satellite and 

meteorological data for the northern central part of Mongolia during the growing season 

(May-August, 2000-2013). All data were processed with a 1 km spatial resolution that 

correlated the MI with the SM from the meteorological stations and the correlation 

coefficient measured 0.58 at a 0-10 cm depth and 0.38 at a 0-50 cm depth. There are 

only six meteorological soil moisture stations that used to validate the moisture index 

data, which is the main limitation. However, the moisture index could not express the 

adequate soil moisture. Besides, the moisture index is more suitable for drought 

monitoring and water balance studies.  

Chapter 3: In this chapter, the multi-regression method was applied to estimate the soil 

moisture index in kastanozem soil from multiple variables (e.g. the NDVI, LST, 

Elevation, Aspect and Slope), which affects the soil moisture. These variables were 

selected, determined from the satellite images. The PSMI was developed based on only 

33 samples, which is a small number for the study area. Further studies have to collect 

many samples in order to make a more accurate model. There is only one climate station 

in the study area. Hence, we made ground truth measurements in September 2011 and 

July-August 2015. However, the ground truth measurements were time-consuming and 

money, besides we cannot measure the daily and monthly ground truth data in the study 

area. So, there is a need to improve the long-term ground measurement technology and 

to obtain information from the farmers, etc. In this chapter, we did not provide the soil 

parameters (e.g. soil texture, soil humus, pH), further studies still need to be included. 

Optical remote sensing methods have some limitations for the soil moisture which are 

the vegetation interference, a poor temporal resolution, atmospheric and night effects.      

Chapter 4: In this chapter, we used the linear regression method for estimating the 

spatial distribution of the soil moisture in Mongolia by considering satellite images 

(SMAP and MODIS). The advantages of this study in the soil moisture analysis are the 
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following: an acceptable spatial resolution; a broad coverage; free satellite images; the 

possibility for the data to be improved with ground/field measurements. The limitations 

of the satellite images are that we used the land cover dependence and the validation of 

the results is tough without field data or meteorological station data. For the validation, 

we applied the agricultural station data, precipitation, temperature and crop yield 

information. But the soil moisture in situ data from the agricultural stations were limited 

in Mongolia, i.e. 23 stations which are located in the forest-steppe and steppe vegetation 

zones. However, the developed SM model and time series method could be used to 

investigate the changes in the soil moisture in Mongolia, so it is reasonable to use these 

in agriculture, hydrology and climate science. Nevertheless, this linear regression 

model should be adapted to suit each vegetation zone in the applied study area. It 

represents other interesting research on the soil moisture for future study.  

Chapter 5: In this chapter, the multi-criteria analysis (MCA) and weighted linear 

combination (WLC) were used for the cropland suitability and the confusion matrix 

was applied for the validation. The MCA is widely used for the suitability analysis of 

the environment, land and agricultural studies. For the validation, we collected some 

questionnaires from the farmers and local experts. During the questionnaire, most local 

farmers noted that they do not irrigate their fields, especially for wheat and potato. 

Because local farmers cultivate wheat and potato in large fields, so they rely on natural 

irrigation. That means there is a need for more accurate information on the soil moisture 

and valuable land use planning in this study area. This cropland suitability analysis is 

essential for the land use planning in Bornuur soum.   

6.1.3 Recommendations for future work  

Some work deserves to be made in the future (based on this dissertation). In this section, 

we are trying to clarify which future actions are being proposed on the following topics.  

a) Future work for datasets 

The Remote sensing data have conducted the model for the soil moisture analysis. We 

examined the soil moisture estimationin different ways (e.g. firstly, the estimated 

moisture index using satellite and in-situ data; secondly, a developed model to estimate 

the predicted soil moisture index based on the Landsat and ASTER satellite images; 

thirdly, the monthly spatial soil moisture distribution based on SMAP and MODIS, 
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which has been executed in Mongolia for the first time). In future work, we would 

suggest soil parameters and other reasonable factors on soil moisture to be considered. 

We will use synthetic aperture radar (SAR) images for the soil moisture in an 

agricultural region in future work. Especially, the C-band Sentinel-1 (A&B) SAR data 

are freely downloadable, a frequent review and large geographical coverage that 

includes continuous data on the next decades from the Copernicus program of ESA. 

They revealed that the Sentinal-1 (S-1) has advanced observational capabilities to SAR 

derived near surface soil moisture products at a low resolution under the project 

Exploit-S-1 (http://exploit-s-1.ba.issia.cnr.it). The advantages of the Sentinal-1 is a 

highly accurate soil moisture and a high spatial and temporal resolution (D. Zhang and 

Zhou 2016). Besides, we will collect more field data, even do some observations, as on 

the precipitation, soil texture and soil water infiltration, etc. although it might be time-

consuming and requires much money.    

b) Future work for the model development 

In view of further model development, it is better to consider the season and vegetation 

zones. We developed a model for the soil moisture analysis using multispectral data. 

This dissertation investigated the performance of the model (PSMI) based on satellite 

images versus those using ground truth measurements. In future work, we will add 

variables such as the soil texture, SAR data analysis to develop our model. We will try 

to combine the multispectral and SAR images so as to develop the soil moisture 

modelling. Also, high resolution multispectral satellite images (SPOT constellation, 

Sentinel-2 etc.) might be applied on this model in order to develop the fields.   

c) Future work on the research topic  

The Mongolian agriculture needs more detailed research on pastureland, cropland, 

hayfields etc. From the arable lands, 561,000 ha area was abandoned, there should be a 

re-use of these lands into pasture or croplands. Future research will focus on these 

arable lands and the hayfield area. In the Mongolian case, the difficulty is to find the 

right SAR images for the agricultural region. Thanks to the SAR images, it would be 

possible to use the soil moisture estimation for the small areas (field survey and 

cropland), especially the Sentinel-1 A&B SAR data. Our future study will focus on an 

integrated data analysis for the soil moisture, which will utilize multispectral and SAR 

images. Besides, further studies will investigate the seasonal soil moisture in different 

http://exploit-s-1.ba.issia.cnr.it/
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vegetation zones. Moreover, we will describe the manner in which climate change  

influences in the agricultural regions of Mongolia.  

6.2 General conclusion  

This dissertation discussed the soil moisture analysis in the agricultural region of 

Mongolia. The soil moisture is one of the essential variables of the water cycle and 

plays a vital role in the agriculture, water management, land (drought) and vegetation 

cover change as well as climate change studies. In order to estimate the soil moisture 

using remote sensing images that are reasonable and possible, we firstly estimated the  

combined data (as climate and satellite data) and then we developed a model for the 

soil moisture (and made a validation) in Bornuur soum, Tuv province, Mongolia. 

Through all chapters, multispectral data were used based on freely accessible 

information (connected with the soil moisture analysis).  

Firstly, we have assessed the moisture index using satellite and climate data in the 

agricultural region of Mongolia (based on the potential evapotranspiration from 

MODIS and the interpolated precipitation from the meteorological stations during the 

growing season from May to August 2000-2013). The northern part of Mongolia 

consists of taiga and forest-steppe regions, which possess half of the annual 

precipitation observations during the summer season. The precipitation is an important 

variable for the soil moisture, that means that the SM variability is controlled by the 

precipitation during the growing season. Furthermore, the growing season (regarding 

14 years’ meteorological data) was involves a precipitation acquisition (total mean 

precipitation) between 137 mm (2002) and 263 mm (2013), while the average 

temperature ranged from 15.06 °C (2003) – 17.68 °C (2007) and the soil moisture 

measured between 8.96 % (2007) and 13.30 % (2012), respectively. From the results 

of the moisture index, we noticed that the driest years were (observed in) 2000-2002, 

2004 and 2007. Natsagdorj and Batima (2003) concluded that from 1999 to 2002 

droughts occurred in Mongolia during summer. We tried to identify the manner in 

which the moisture index could represent the soil moisture (by their relationship). The 

moisture index was compared with the SM from the meteorological stations at different 

depths and showed positive correlations in the study area (which was 0.58 at a 0-10 cm 

depth and 0.38 at a 0-50 cm depth; statistically significant). Besides, a high correlation 

was seen in the high vegetation cover (July and August) and a low correlation in the 
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low vegetation cover (May and June) between the moisture index and in-situ soil 

moisture. However, former studies have demonstrated that the moisture index should 

rather be utilized for drought and water balance studies (than the soil moisture).     

Secondly, the moisture index correlated with the NDVI during the growing season 

2000-2013. The correlation between the moisture index and NDVI for each month 

(May-August) was examined as weak correlation coefficients (r) from 0.28 to 0.55. 

However, the amount of the moisture index (May-August) correlated with the NDVI of 

the highest vegetation months (July and August), a strong correlation was obtained as 

a range of correlation coefficients from 0.67 to 0.79. Besides, this significant predictor 

of vegetation growth strongly depends on the previous months of the moisture index 

amount. This moisture index is suitable for use in the agricultural areas and also for 

practical applications on desertification, land degradation monitoring, agricultural 

management and drought monitoring. Mongolia also needs a high-resolution satellite 

image processing for the SM analysis.  

Thirdly, we developed a model for the SM estimation in a small agricultural area 

(Bornuur soum) in Mongolia. The Bornuur soum is located in a favourable climatic 

region with good, fertile soil and is the most important agricultural region of Mongolia. 

Then, we focused on the development of an estimation model SM (PSMI) through 

satellite and ground truth measurements. The PSMI was developed from the regression 

analysis, which was used for satellite images in September 2011. The result of the PSMI 

was compared with the ground truth SM measurements’ data in Bornuur soum, Tuv 

province, Mongolia. For the validation, we compared the PSMI with the ground truth 

SM measurements; the correlation was 0.66. The model was also applied for July and 

August 2015. The estimated predicted soil moisture index values range from 0.0 to 

exceeding 3.0 in the kastanozem soil, which signifies that the values lower than 1.0 are 

dry and higher than 1.0 indicating wet areas. During the observed years (2011 and 

2015), a low soil moisture (5.27 %) was observed in September 2011 and a high soil 

moisture (20.59 %) was noticed during August 2015 (from the meteorological station 

data). Besides, the predicted soil moisture index mean value (0.77) was obtained in 

September 2011 and 1.15 in August 2015. We applied the matrix evaluation for the 

validation and the correlation coefficient amounted to 69.7 %. The model should be 

improved concerning the soil parameters in further studies (for the estimated cropland 

suitability area as well as for the Bornuur soum of Mongolia). In addition, the PSMI 
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could be applied for different satellites such as the Sentinel-2, SPOT XS with high-

resolution satellites (which are distributed from the ESA).   

Fourthly, the spatial distribution of the soil moisture (with high-resolution images in 

Mongolia) has been one of the essential issues in remote sensing and the agricultural 

community for a long time. Therefore, we obtained the distribution of the soil moisture 

and we have compared the monthly precipitation/temperature and crop yield from 2010 

to 2020. The Soil Moisture Active Passive (SMAP) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) data were employed, including the MOD13A2 

Normalized Difference Vegetation Index (NDVI), MOD11A2 Land Surface 

Temperature (LST) and precipitation/temperature monthly data from the Climate 

Research Unit (CRU) in Mongolia from 2010 to 2020. Multiple linear regression 

methods have previously been used for the soil moisture estimation and the 

Autoregressive Integrated Moving Arima (ARIMA) model was utilized for the soil 

moisture forecasting. The results show that the correlation was statistically significant 

between SM-MOD and SMC from the meteorological stations at different depths (p < 

0.0001 at 0–20 cm and p < 0.005 at 0–50 cm). The correlation between the SM-MOD 

and temperature, as represented by the correlation coefficient (r), was 0.80 and was 

considered statistically significant (p < 0.0001). However, when the SM-MOD was 

compared with the crop yield for each year (2010–2019), the correlation coefficient (r) 

measured 0.84. The ARIMA (12, 1, 12) model was selected for the soil moisture time 

series analysis when predicting the soil moisture from 2020 to 2025. The soil moisture 

was low in the south and a high soil moisture was observed in northern Mongolia during 

the warm season. The soil moisture will be slightly increasing during the study years 

(2010-2025). In our study, the soil moisture estimation approach and model might serve 

as a valuable tool for confident and convenient observations of agricultural droughts 

for the decision-makers and farmers in Mongolia. 

Fifthly, Land degradation has been increasing in the Mongolian cropland region, 

especially in the cultivated areas. The country has challenges to identify new croplands 

with sufficient capacity for cultivation, especially for the local decision-makers. GIS 

applications could tremendously help science by making land assessments. This part 

estimated the best suitable area for supporting the crop production in Bornuur soum, 

using a GIS-based multi-criteria analysis (MCA) and remote sensing. The MCA and 

AHP tools play an essential role in the multi-criteria analysis. Therefore, the results of 
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these methods enable the choice of an appropriate cultivation area in Bornuur soum, 

Tuv province. The approach was enhanced for each criterion such as the soil, 

topography and vegetation. The opinions of the agronomists (experts) and a literature 

review helped to identify the criteria (soil data, topography, water and vegetation data) 

that are necessary to determine the suitable crop areas. The output was reasonable: the 

detailed cropland suitability maps indicate that 46.12 % is highly suitable for cropland, 

34.68 % is moderate suitable, 13.64 % unsuitable and 5.56 % is highly unsuitable. The 

comparison (with the crop cadastral map) amounts to approximately 95 %, from the 

questionnaire: 74 % of the respondents chose the highly suitable answer while 71% of 

the field data, respectively. Correspondingly, the mapped locations (for a newly created 

crop production area) matched (95 %) with the current location of the agricultural 

cropland areas in Bornuur soum. The crop suitability method implies significant 

decisions on different levels and the result will be used for a cropland management plan 

(in order to make a decisions). It has an integral role in the agricultural management 

and land evaluation. Future research should develop this method further by including 

socio-economic (potential citizens for agriculture, current crop growth, water resources, 

etc.) and environmental variables (rainfall, vegetation types, permafrost distribution, 

etc.) so as to obtain specific results. However, the latter could also be applied for a 

single crop type (mainly barley, wheat and potato) in Mongolia. 
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Appendix     

This chapter contains detailed information on the soil types and ground truth points in 

the hotspot study area (Bornuur soum).  
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A.1 Soil types  

There are four types of soils included in the Bornuur soum, Tuv province, Mongolia. 

There are Cambisols, Gleysols histic, Kastanozems arenic and Leptosols umbric. The 

table 7.1 shows the information of the soil types collected from the Food and 

Agriculture Organization (FAO).  Table 7.2 has shown ground truth measurements of 

2015 in the Bornuur soum, Mongolia.  

Appendix table 1. The soil types information of the hotspot study area  

Soil types Information  

Cambisol Cambisols are characterized by the absence of a layer of accumulated clay, 

humus, soluble salts, or iron and aluminum oxides. They differ from un-

weathered parent material in their aggregate structure, color, clay content, 

carbonate content, or other properties that give some evidence of soil-

forming processes. Because of their favorable aggregate structure and high 

content of weatherable minerals, they usually can be exploited for 

agriculture subject to the limitations of terrain and climate. Cambisols are 

the second most extensive soil group on Earth, occupying 12 percent of 

the total continental land area—mainly in boreal polar regions, in 

landscapes with high rates of erosion, and in regions of parent material 

resistant to clay movement. They are not common in humid tropical 

climates. 

In order for a soil to qualify as a Cambisol, the texture of the subsurface 

horizons must be sandy loam or finer, with at least 8 percent clay by mass 

and a thickness of 15 cm (6 inches) or more. These soils naturally form on 

medium to fine-textured parent materials under any climatic, topographic, 

and vegetative-cover conditions. They differ from Leptosols and Regosols 

by their greater depth and finer texture and are often found in conjunction 

with Luvisols.  

Gleysols Gleysols are formed under waterlogged conditions produced by rising 

groundwater. In the tropics and subtropics they are cultivated for rice or, 

after drainage, for field crops and trees. Gleysols found in the polar regions 

(Alaska and Arctic Asia; about half of all Gleysols) are frozen at shallow 

depth and are used only by wildlife. These soils occupy about 5.7 percent 

of the continental land area on Earth. 

https://www.britannica.com/science/soil/Soil-classification#ref214853
https://www.britannica.com/science/soil/Soil-classification#ref214853
https://www.britannica.com/science/clay-geology
https://www.britannica.com/science/humus-soil-component
https://www.merriam-webster.com/dictionary/aggregate
https://www.britannica.com/science/climate-meteorology
https://www.britannica.com/place/Earth
https://www.britannica.com/science/erosion-geology
https://www.britannica.com/science/horizon-soil
https://www.britannica.com/science/loam
https://www.britannica.com/science/Leptosol
https://www.britannica.com/science/Regosol
https://www.britannica.com/science/Luvisol
https://www.britannica.com/science/groundwater
https://www.merriam-webster.com/dictionary/cultivated
https://www.britannica.com/plant/rice
https://www.britannica.com/topic/drainage
https://www.britannica.com/place/Earth
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Gleysols are technically characterized by both chemical and visual 

evidence of iron reduction. Subsequent downward translocation 

(migration) of the reduced iron in the soil profile is associated with gray 

or blue colours in subsurface horizons (layers). Wherever oxidation of 

translocated iron has occurred (in fissures and cracks that may dry out), 

red, yellow, or brown mottles may be seen. Gleysols are related to the 

Entisol and Inceptisol orders of the U.S. Soil Taxonomy, wherever the 

latter occur under waterlogged conditions sufficient to produce visual 

evidence of iron reduction.  

Kastanozems Kastanozems are humus-rich soils that were originally covered with early-

maturing native grassland vegetation, which produces a characteristic 

brown surface layer. They are found in relatively dry climatic zones (200–

400 mm [8–16 inches] of rainfall per year), usually bordering arid regions 

such as southern and central Asia, northern Argentina, the western United 

States, and Mexico. Kastanozems are principally used for irrigated 

agriculture and grazing.  

Kastanozems have relatively high levels of available calcium ions bound 

to soil particles. These and other nutrient ions move downward with 

percolating water to form layers of accumulated calcium carbonate or 

gypsum. Kastanozems are related to the soils in the Mollisol order of the 

U.S. Soil Taxonomy that form in semiarid regions under relatively sparse 

grasses and shrubs. Related FAO soil groups originating in a steppe 

environment are Chernozems and Phaeozems. 

Leptosols Leptosols are soils with a very shallow profile depth (indicating little 

influence of soil-forming processes), and they often contain large amounts 

of gravel. They typically remain under natural vegetation, being especially 

susceptible to erosion, desiccation, or waterlogging, depending on climate 

and topography. Leptosols are approximately equally distributed among 

high mountain areas, deserts, and boreal or polar regions, where soil 

formation is limited by severe climatic conditions.  

Because of continual wind or water erosion or shallow depth to hard 

bedrock, Leptosols show little or none of the horizonation, or layering, 

characteristic of other soils. Leptosols are related to the soils in the Entisol 

order of the U.S. Soil Taxonomy that are found in high mountains, deserts, 

or boreal and polar regions of the world.  

https://www.britannica.com/science/horizon-soil
https://www.merriam-webster.com/dictionary/fissures
https://www.britannica.com/science/Entisol
https://www.britannica.com/science/Inceptisol
https://www.merriam-webster.com/dictionary/Taxonomy
https://www.britannica.com/science/humus-soil-component
https://www.merriam-webster.com/dictionary/percolating
https://www.britannica.com/science/Mollisol
https://www.merriam-webster.com/dictionary/Taxonomy
https://www.merriam-webster.com/dictionary/environment
https://www.britannica.com/science/Chernozem-FAO-soil-group
https://www.britannica.com/science/Phaeozem
https://www.britannica.com/science/gravel
https://www.britannica.com/science/erosion-geology
https://www.merriam-webster.com/dictionary/topography
https://www.britannica.com/science/Entisol
https://www.merriam-webster.com/dictionary/Taxonomy
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A.2 Translation of questionnaire  

Questionnaire from agricultural experts and farmers  

1. How much is the ideal of soil pH?  

a. 5,6-9,0     b. Lower than 5,5   c.  Higher than 9 

2. How much percent of soil humus is suitable?  

a. Lower than 2      b. Higher than 2   c.  Not necessary   

3. What kind of soil is most suitable for cultivation?  

.......................................................................................................................................... 

4. Which soil texture is the most suitable for cultivation?  

a. Clay     b.  Sand   c.  .................................... 

5. How much soil moisture is the most suitable?     

..........................................................................................................................................  

6. What is the ideal slope of the ground?   

a. Smooth or 0-9 degrees      b.  Higher than 9 degrees c.  Not necessary   

7. Where should the cropland be placed in direct sunlight? 

a. Direct sunlight       b. In shadow   c.  Not necessary  

8. How is the elevation should be?   

a. Low       b. High    c.  Not necessary 

9. Where is the most suitable location for the farm from the river? 

a. 0,5-2 km      b. Far than 2   c.  Not necessary   

10. What other factors do you think are needed for farming? Please write if you have 

additional information. / When writing additional information, please write in 

numerical data! / 

.......................................................................................................................................... 

11. How is the field irrigated?  

.......................................................................................................................................... 

12. Any difficulties doing cultivation.   
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A.3 Ground truth data 

Appendix table 2. Part of ground truth data in Bornuur soum /July – August 2015/  

id Latitude Longitude Elevation, m Acquired date 
Field 

information 

1 48°39'19.54"N 106°13'3.36"E 986 7/20/2015 suitable 

2 48°38'59.32"N 106°12'12.08"E 1003 7/20/2015 suitable 

3 48°41'27.87"N 106°12'55.40"E - 7/20/2015 not suitable 

4 48°40'12.70"N 106°13'40.31"E 956 7/20/2015 moderate 

5 48°39'37.01"N 106°11'48.70"E 1013 7/20/2015 suitable 

6 48°39'17.41"N 106° 9'25.94"E 1158 7/20/2015 suitable 

7 48°39'12.00"N 106°10'27.01"E 1046 7/20/2015 most suitable 

8 48°39'34.40"N 106°10'44.08"E 1055 7/20/2015 most suitable 

9 48°41'27.19"N 106°13'51.36"E - 7/20/2015 not suitable 

10 48°39'28.56"N 106°14'17.46"E 1131 7/20/2015 slightly 

11 48°38'11.79"N 106°17'22.73"E 912 7/20/2015 most suitable 

12 48°37'52.50"N 106°17'10.92"E 916 7/20/2015 suitable 

13 48°37'27.96"N 106°14'47.07"E 1012 7/20/2015 suitable 

14 48°38'44.79"N 106°19'12.13"E 919 7/21/2015 suitable 

15 48°37'40.50"N 106°14'6.06"E 1059 7/21/2015 slightly 

16 48°38'43.99"N 106°13'21.35"E 1030 7/21/2015 suitable 

17 48°37'27.93"N 106°11'18.62"E 1132 7/21/2015 slightly 

18 48°37'19.26"N 106°11'46.98"E 1129 7/21/2015 slightly 

19 48°36'55.71"N 106°12'2.23"E 1201 7/21/2015 moderate 

20 48°36'39.86"N 106°11'54.85"E 1195 7/21/2015 slightly 

21 48°36'34.16"N 106°12'22.55"E 1201 7/21/2015 slightly 

22 48°37'8.34"N 106°13'8.65"E 1160 7/21/2015 slightly 

23 48°37'20.75"N 106°14'29.46"E 1035 7/21/2015 slightly 

24 48°37'28.65"N 106°15'21.86"E 960 7/21/2015 suitable 

25 48°37'15.81"N 106°17'0.00"E 920 7/21/2015 most suitable 

26 48°37'54.18"N 106°18'12.76"E 915 7/22/2015 suitable 

27 48°37'57.31"N 106°19'2.84"E 927 7/22/2015 suitable 

28 48°37'6.72"N 106°18'35.00"E 953 7/22/2015 suitable 

29 48°36'58.46"N 106°17'28.58"E 922 7/22/2015 suitable 

30 48°36'36.51"N 106°17'26.35"E 949 7/22/2015 suitable 

31 48°36'37.94"N 106°18'10.58"E 939 7/22/2015 suitable 

32 48°36'34.98"N 106°18'42.57"E 1022 7/22/2015 slightly 

33 48°36'13.71"N 106°18'0.59"E 947 7/22/2015 most suitable 

34 48°35'47.79"N 106°17'44.76"E 1009 7/26/2015 slightly 

35 48°35'27.80"N 106°18'3.74"E 1068 7/26/2015 slightly 

36 48°35'23.86"N 106°20'27.38"E 978 7/26/2015 suitable 

37 48°35'4.46"N 106°18'46.88"E 999 7/26/2015 suitable 

38 48°34'56.50"N 106°19'53.51"E 974 7/26/2015 suitable 

39 48°34'9.95"N 106°19'11.20"E 994 7/26/2015 most suitable 

40 48°33'47.02"N 106°20'15.18"E 1154 7/26/2015 slightly 
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41 48°33'29.45"N 106°19'51.29"E 1117 7/26/2015 slightly 

42 48°32'24.95"N 106°18'55.07"E 994 7/26/2015 most suitable 

43 48°31'51.40"N 106°17'52.03"E 983 7/29/2015 suitable 

44 48°31'50.01"N 106°19'10.16"E 1067 7/29/2015 most suitable 

45 48°30'56.18"N 106°18'11.25"E 1132 7/29/2015 slightly 

46 48°31'11.84"N 106°17'2.73"E 1066 7/29/2015 slightly 

47 48°31'38.28"N 106°16'37.92"E 968 7/29/2015 suitable 

48 48°30'34.61"N 106°16'43.72"E 989 7/29/2015 suitable 

49 48°30'24.21"N 106°17'15.86"E 1082 7/29/2015 slightly 

50 48°30'15.78"N 106°17'52.21"E 1071 7/29/2015 suitable 

51 48°29'59.51"N 106°16'20.90"E 983 7/29/2015 suitable 

52 48°29'46.88"N 106°16'46.75"E 1051 7/29/2015 slightly 

53 48°29'19.09"N 106°17'0.87"E 1007 7/29/2015 suitable 

54 48°29'7.05"N 106°17'49.41"E 1119 7/29/2015 slightly 

55 48°29'4.42"N 106°18'27.85"E 1282 7/29/2015 slightly 

56 48°29'7.56"N 106°19'4.10"E 1273 7/29/2015 slightly 

57 48°28'57.48"N 106°19'20.55"E 1234 7/29/2015 moderate 

58 48°28'29.57"N 106°19'30.41"E 1207 8/2/2015 slightly 

59 48°28'21.56"N 106°20'4.78"E 1132 8/2/2015 suitable 

60 48°28'16.90"N 106°21'9.20"E 1147 8/2/2015 slightly 

61 48°28'2.09"N 106°21'55.16"E 1139 8/2/2015 most suitable 

62 48°27'40.39"N 106°22'39.66"E 1074 8/2/2015 suitable 

63 48°28'12.22"N 106°23'41.13"E 1086 8/2/2015 suitable 

64 48°28'37.29"N 106°23'14.94"E 1258 8/2/2015 slightly 

65 48°28'44.59"N 106°23'49.35"E 1117 8/2/2015 most suitable 

66 48°29'26.02"N 106°23'42.07"E 1234 8/2/2015 slightly 

67 48°29'11.27"N 106°24'37.39"E 1110 8/2/2015 suitable 

68 48°29'18.37"N 106°25'16.76"E 1205 8/2/2015 slightly 

69 48°28'57.16"N 106°25'25.20"E 1220 8/2/2015 slightly 

70 48°28'29.14"N 106°25'19.29"E 1195 8/2/2015 moderate 

71 48°28'5.28"N 106°25'34.47"E 1149 8/2/2015 suitable 

72 48°27'46.89"N 106°24'53.59"E 1107 8/3/2015 suitable 

73 48°27'18.62"N 106°24'18.75"E 1144 8/3/2015 suitable 

74 48°26'43.63"N 106°24'7.62"E 1133 8/3/2015 suitable 

75 48°26'52.49"N 106°23'9.37"E 1215 8/3/2015 slightly 

76 48°26'40.00"N 106°21'42.57"E 1172 8/3/2015 moderate 

77 48°26'31.98"N 106°20'42.35"E 1107 8/3/2015 slightly 

78 48°26'31.65"N 106°19'46.83"E 1083 8/3/2015 slightly 

79 48°26'9.05"N 106°18'51.93"E 1211 8/3/2015 slightly 

80 48°26'31.07"N 106°18'2.04"E 1036 8/3/2015 suitable 

81 48°24'59.09"N 106°17'57.73"E 1294 8/3/2015 slightly 

82 48°25'7.56"N 106°17'16.66"E 1237 8/3/2015 slightly 
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SUMMARY 

The soil moisture (SM) is one of the essential variables of the water cycle and plays a 

vital role in agriculture, water management, land (drought) and vegetation cover change 

as well as climate change studies. A soil moisture study is vital for agricultural 

applications such as water resources, pasture growth, hayfield, cropland management 

and productivity, etc. Mongolia is located in the semi-arid and arid climate regions in 

Central Asia. The country has four distinct seasons, large temperature fluctuations and 

little precipitation. However, the soil moisture in Mongolia is mainly influenced by the 

precipitation and evapotranspiration. There is only 5.5 % irrigated cropland of the total 

cropland area in Mongolia. That means the irrigated system practically does not exist 

for the agricultural lands in Mongolia. Also, there is a need to describe new cropland 

areas based on a scientific approach. The local farmers and decision-makers need soil 

moisture information for the regional and small areas. Besides, the soil moisture 

estimation approach and model from this study could serve as a valuable tool for 

confident and convenient observations of agricultural droughts for the decision-makers 

and farmers in Mongolia. Therefore, we should develop a methodology for the soil 

moisture estimation using remote sensing data, which are practical for application on 

the spatial and temporal scales. The remote sensing techniques provide us with an 

excellent possibility for the development of models and approaches. 

Concentrating on the soil moisture in Mongolia, this dissertation tried to estimate the 

soil moisture in different ways with the following purposes: (1) to calculate the moisture 

index using a combination of in-situ and satellite images and to compare these to the 

in-situ SM and NDVI (normalized difference vegetation index); (2) to develop the soil 

moisture index based on multispectral satellite data in kastanozem soil and to compare 

this with the in-situ measurements; (3) to estimate and predict the soil moisture using a 

combination of SMAP (soil moisture active passive) and NDVI/LST (land surface 

temperature) data and to correlate with the crop yield and climate data; (4) to determine 

the cropland suitability area by means of a GIS-based methodology and to validate with 

the in-situ measurements and local experts’/farmers’ opinion. According to the 

objectives, the main conclusions could be expressed as follows:  

(1) The Mongolian north-central part contains 80.9 % of the croplands of total crop 

area. The moisture index has been determined by a combination of in-situ and satellite 
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images that can be used for drought monitoring, water resources and agricultural 

management. The interpolated in-situ precipitation and potential evapotranspiration 

data were applied to this research. The moisture index was compared with the soil 

moisture contents from the meteorological station at different depths and had positive 

correlations in the study area for the growing season. The results represented a low 

correlation in dry months, while a high correlation was noticed during the wet months. 

Also, the moisture index correlated with the vegetation cover for each month (May-

August). There were good correlations between these and the correlation coefficients 

ranged from 0.67 to 0.79. Besides, the moisture contents of previous months affected 

the vegetation growth of the following months. Overall, the monthly spatial moisture 

index could be used for the water resources and agricultural management, besides the 

practical applications for drought and desertification monitoring, especially the 

agricultural drought monitoring. There is a need for high spatial resolution soil moisture 

data in Mongolia.  

(2) In Mongolia, the kastanozem soil is widely distributed (50 % of the total area) and 

most of the cultivated areas are occupied in the kastanozem soils of Mongolia. 

Therefore, we developed a model called PSMI (predicted soil moisture index) for the 

estimation of the soil moisture using multispectral data (Landsat TM, ETM+ and OLI) 

with a 30 meter resolution in the small agricultural region. The correlation between the 

PSMI from the model and the SMI from the satellite measured 0.90 for the kastanozem 

soil. The ground truth measurement data were compared with the PSMI from the model 

and the correlation coefficient was 0.65. In addition, we compared the predicted soil 

moisture index (PSMI) with the moisture index (MI) and detected a good relation 

(r=0.77). The development of the SM modelling will provide information for 

Mongolia’s agriculture and animal husbandry (like cropland, pastureland, vegetation 

growth and biomass). Besides, the PSMI model could be estimated by the Sentinel and 

SPOT XS as high-resolution images. The national policy level will be able to use this 

information in order to develop suitable agricultural areas.  

(3) Many studies have investigated and developed methods for the estimation of the 

soil moisture based on satellite images but the spatial distribution of the soil moisture 

has not yet been considered in previous studies on Mongolia. Therefore, we have 

acquired the distribution of the soil moisture and related the monthly 

precipitation/temperature and crop yield from 2010 to 2020. The spatial distribution of 
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the soil moisture was estimated by means of the multiple regression model from the 

Soil Moisture Active Passive (SMAP) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) including the MOD13A2 Normalized Difference 

Vegetation Index (NDVI) and MOD11A2 Land Surface Temperature (LST). The 

output has been compared with the monthly in-situ soil moisture, 

temperature/precipitation and yearly crop yield from 2010 to 2020. The correlation 

coefficients were good and statistically significant between the monthly estimated soil 

moisture and monthly in-situ soil moisture, temperature/precipitation and yearly crop 

yield data, respectively. Therefore, the ARIMA model has been applied for the soil 

moisture forecasting from 2020 to 2025. Besides, during this period, the soil moisture 

was slightly increasing in Mongolia. The model could be estimated from other satellite 

images.  

(4) The Mongolian cropland only covers 1 % of the entire territory and around 45 % of 

the total consumption of vegetables (excluding potatoes) is imported from neighbouring 

countries. Therefore, there is a need to determine the cropland suitability areas based 

on scientific knowledge in order to enhance the crop production. Bornuur soum was 

selected to assess the cropland suitability, which is located in the central agricultural 

region of Mongolia. The cropland suitability approach was created based on various 

criteria, which include vegetation, soil parameters, moisture and topography. Then, the 

result was compared with the crop cadastral map, field survey and questionnaire 

respondents from the experts and farmers. The output data were matched with the crop 

cadastral map (around 95 %), with the questionnaire of the respondents 74 % and 71 % 

of the field data, respectively. The represented results in the output map are reasonable 

and could be applied for the soum government to advise the local farmers and land 

management. This approach could be developed by considering the additional factors 

because of the location and climate effect.  

This dissertation developed the SM modelling in the agricultural region of Mongolia, 

which has produced different methodologies and one practical study maintained. The 

soil moisture model will provide information for the agriculture and animal husbandry 

such as cropland, pastureland, vegetation growth and biomass. In addition, the national 

policy level will be able to use this information so as to develop suitable agricultural 

areas and it might also be applied for the regional agricultural plan in Mongolia. 
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Samenvatting (Dutch summary) 

Bodemvocht (SM) is een van de essentiële variabelen van de watercyclus. Het speelt 

een vitale rol in landbouw, waterbeheer, verandering van land (droogte) en 

vegetatiebedekking, en klimaatveranderingsstudies. Onderzoek naar de 

bodemvochtigheid is van vitaal belang voor landbouwtoepassingen zoals 

watervoorraden, de groei van weilanden, hooiland, akkerbeheer en productiviteit, enz. 

Mongolië ligt in semi-aride en aride klimaatgebieden in Centraal-Azië. Het land heeft 

vier duidelijke seizoenen, grote temperatuurschommelingen en weinig neerslag. De 

bodemvochtigheid in Mongolië wordt echter hoofdzakelijk beïnvloed door neerslag en 

evapotranspiratie. Slechts 5,5 % van het totale landbouwareaal in Mongolië is 

geïrrigeerd. Dat betekent dat het geïrrigeerde systeem niet veel landbouwgrond in 

Mongolië beslaat. Ook is er behoefte aan een beschrijving van nieuwe 

akkerbouwgebieden op basis van een wetenschappelijke benadering. Lokale boeren en 

beleidsmakers hebben informatie nodig over de bodemvochtigheid op regionaal en 

kleiner gebieden. Bovendien kunnen de aanpak en het model voor 

bodemvochtschatting in onze studie dienen als een waardevol instrument voor 

betrouwbare en handige waarnemingen van droogte in de landbouw voor 

besluitvormers en boeren in Mongolië. Daarom is er een nood om een methodologie te 

ontwikkelen voor de schatting van bodemvocht met behulp van teledetectiegegevens 

die praktisch toepasbaar is op ruimtelijke en temporele schalen. De 

teledetectietechnieken bieden ons een uitstekende mogelijkheid voor de ontwikkeling 

van modellen en benaderingen. 

In dit proefschrift, dat zich concentreert op de bodemvochtigheid in Mongolië, is 

geprobeerd de bodemvochtigheid op verschillende manieren in te schatten met de 

volgende doelen (1) de vochtigheidsindex berekenen met behulp van een combinatie 

van in-situ- en satellietbeelden en vergelijken met de in-situ SM en NDVI (Normalized 

Difference Vegetation Index); (2) een bodemvochtigheidsindex ontwikkelen op basis 

van multispectrale satellietgegevens in kastanozembodems en vergelijken met in-situ-

metingen; (3) het bodemvocht schatten en voorspellen met behulp van een combinatie 

van SMAP (Soil Moisture Active Passive) - en NDVI/LST-gegevens en correleren met 

gewasopbrengst- en klimaatgegevens; (4) het geschiktheidsgebied voor akkerland 

bepalen met behulp van een GIS-gebaseerde methodologie en valideren met de in-situ-
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metingen en de mening van plaatselijke deskundigen/boeren. Overeenkomstig de 

doelstellingen kunnen de belangrijkste conclusies als volgt worden geformuleerd:  

(1) Het noord-centrale deel van Mongolië omvat 80,9 % van het totale gewasareaal. 

De vochtigheidsindex is bepaald door een combinatie van in-situ- en satellietbeelden 

die kunnen worden gebruikt voor droogtebewaking, waterhuishouding en 

landbouwbeheer. De geïnterpoleerde in-situ neerslag- en potentiële 

evapotranspiratiegegevens werden toegepast op dit onderzoek. De vochtigheidsindex 

werd vergeleken met het bodemvochtgehalte van het meteorologisch station op 

verschillende diepten en vertoonde positieve correlaties over het hele studiegebied voor 

het groeiseizoen. De resultaten vertoonden een lage correlatie in de droge maanden, 

terwijl de hoge correlatie zich in de natte maanden voordeed. Ook correleerde de 

vochtigheidsindex met de vegetatiebedekking voor elke maand (mei-augustus). Er 

waren goede correlaties tussen beide, en de correlatiecoëfficiënten lagen tussen 0,67 en 

0,79. Bovendien had het vochtgehalte van de voorgaande maanden invloed op de 

vegetatiegroei in de volgende maanden. Over het geheel genomen kan de maandelijkse 

ruimtelijke vochtigheidsindex worden gebruikt voor waterbeheer en landbouwbeheer, 

naast praktische toepassingen van droogte- en woestijnvormingsmonitoring, vooral 

droogtemonitoring in de landbouw. Er is behoefte aan bodemvochtgegevens met een 

hoge ruimtelijke resolutie in Mongolië.  

(2) In Mongolië zijn kastanozembodems wijdverspreid, bijna 50% van het totale 

gebied, en de meeste van de bebouwde gebieden bevinden zich op de 

kastanozembodems van Mongolië. Daarom hebben we een model ontwikkeld met de 

naam PSMI (Predicted Soil Moisture Index) voor de schatting van bodemvocht met 

behulp van multispectrale gegevens (Landsat TM, ETM+ en OLI) met een resolutie van 

30 meter in de kleine landbouwregio. De correlatie tussen de PSMI van het model en 

de SMI van de satelliet was 0,90 voor kastanozems bodem. De meetgegevens van de 

grondwaarheid werden vergeleken met de PSMI van het model, en de 

correlatiecoëfficiënt was 0,65. Bovendien vergeleken we de voorspelde 

bodemvochtigheidsindex (PSMI) met de vochtigheidsindex (MI) en vonden een goede 

relatie (r=0,77). De ontwikkeling van het SM-model zal informatie opleveren voor de 

landbouw en veeteelt in Mongolië (zoals akkerland, weiland, vegetatiegroei en 

biomassa). Bovendien kan het PSMI-model worden geschat aan de hand van Sentinel- 

en SPOT XS-beelden, die een hoge resolutie hebben. Het nationale beleidsniveau zal 
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in staat zijn om deze informatie te gebruiken om geschikte landbouwgebieden te 

ontwikkelen.  

(3) Er zijn veel studies die methoden hebben onderzocht en ontwikkeld voor het 

schatten van bodemvocht op basis van satellietbeelden, maar de ruimtelijke verdeling 

van bodemvocht is in eerdere studies in Mongolië nog niet in aanmerking genomen. 

Daarom hebben we de verdeling van het bodemvocht bepaald en de maandelijkse 

neerslag/temperatuur en gewasopbrengst van 2010 tot 2020 met elkaar in verband 

gebracht. De ruimtelijke verdeling van het bodemvocht werd geschat met behulp van 

een meervoudig regressiemodel op basis van de Soil Moisture Active Passive (SMAP) 

en de Moderate Resolution Imaging Spectroradiometer (MODIS), waaronder de 

MOD13A2 Normalized Difference Vegetation Index (NDVI) en MOD11A2 Land 

Surface Temperature (LST). De output werd vergeleken met de maandelijkse in-situ 

bodemvochtigheid, temperatuur/precipitatie en jaarlijkse gewasopbrengst van 2010 tot 

2020. De correlatiecoëfficiënten waren goed en statistisch significant tussen de 

maandelijkse geschatte bodemvochtigheid en de maandelijkse in-situ 

bodemvochtigheid, temperatuur/precipitatie en jaarlijkse gewasopbrengstgegevens, 

respectievelijk. Daarom is het ARIMA-model toegepast voor 

bodemvochtvoorspellingen van 2020 tot 2025. Bovendien is het bodemvocht in 

Mongolië in deze periode licht gestegen. Het model kan worden geschat op basis van 

andere satellietbeelden. 

(4) Het akkerland in Mongolië beslaat slechts 1% van het gehele grondgebied en 

ongeveer 45% van de totale consumptie van groenten (met uitzondering van 

aardappelen) wordt ingevoerd uit de buurlanden. Daarom is het nodig om op basis van 

wetenschappelijke kennis geschiktheidszones voor akkerland te bepalen om de 

akkerbouwproductie te verbeteren. Voor de beoordeling van de geschiktheid van 

akkerland werd Bornuur soum gekozen, gelegen in de centrale landbouwregio van 

Mongolië. De geschiktheidsbenadering voor akkerland werd opgesteld op basis van 

verschillende criteria, zoals vegetatie, temperatuur van het landoppervlak, 

bodemparameters, vochtigheid en topografie. Vervolgens werd het resultaat vergeleken 

met de kadastrale kaart van de gewassen, veldonderzoek en de vragenlijsten die door 

deskundigen en boeren werden ingevuld. De outputgegevens kwamen voor ongeveer 

95% overeen met de kadastrale kaart van de gewassen, voor 74% van de vragenlijst van 

de respondenten en 71% van de veldgegevens. De resultaten in de outputkaart zijn 

redelijk en kunnen worden toegepast door de soumregering om de plaatselijke boeren 
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en het landbeheer te adviseren. Deze aanpak kan worden ontwikkeld rekening houdend 

met extra factoren als gevolg van de locatie en het klimaat effect.  

Dit proefschrift heeft een SM-modellering ontwikkeld in de landbouwregio van 

Mongolië. Het bodemvochtmodel zal informatie opleveren voor landbouw en veeteelt, 

zoals akkerland, weiland, vegetatiegroei en biomassa. Bovendien zal het nationale 

beleidsniveau deze informatie kunnen gebruiken om geschikte landbouwgebieden te 

ontwikkelen en kan het worden gebruikt voor het regionale landbouwplan in Mongolië. 
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