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Abstract

In this research, climate classification maps over the Korean Peninsula at 1 km resolution

were generated using the satellite-based climatic variables of monthly temperature and pre-

cipitation based on machine learning approaches. Random forest (RF), artificial neural net-

works (ANN), k-nearest neighbor (KNN), logistic regression (LR), and support vector

machines (SVM) were used to develop models. Training and validation of these models

were conducted using in-situ observations from the Korea Meteorological Administration

(KMA) from 2001 to 2016. The rule of the traditional Köppen-Geiger (K-G) climate classifica-

tion was used to classify climate regions. The input variables were land surface temperature

(LST) of the Moderate Resolution Imaging Spectroradiometer (MODIS), monthly precipita-

tion data from the Tropical Rainfall Measuring Mission (TRMM) 3B43 product, and the Digi-

tal Elevation Map (DEM) from the Shuttle Radar Topography Mission (SRTM). The overall

accuracy (OA) based on validation data from 2001 to 2016 for all models was high over

95%. DEM and minimum winter temperature were two distinct variables over the study area

with particularly high relative importance. ANN produced more realistic spatial distribution of

the classified climates despite having a slightly lower OA than the others. The accuracy of

the models using high altitudinal in-situ data of the Mountain Meteorology Observation Sys-

tem (MMOS) was also assessed. Although the data length of the MMOS data was relatively

short (2013 to 2017), it proved that the snowy, dry and cold winter and cool summer class

(Dwc) is widely located in the eastern coastal region of South Korea. Temporal shifting of cli-

mate was examined through a comparison of climate maps produced by period: from 1950

to 2000, from 1983 to 2000, and from 2001 to 2013. A shrinking trend of snow classes (D)

over the Korean Peninsula was clearly observed from the ANN-based climate classification

results. Shifting trends of climate with the decrease/increase of snow (D)/temperate (C)

classes were clearly shown in the maps produced using the proposed approaches, consis-

tent with the results from the reanalysis data of the Climatic Research Unit (CRU) and

Global Precipitation Climatology Centre (GPCC).
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Introduction

Similarity measures of climate between regions normally presented as climate classes are useful

for representing spatial environmental characteristics. The changes of climate class boundaries

detected by several sets of time-series data from different time periods can reflect climate

change [1]. There have been some approaches to regionalize climate areas according to the

similarity of regional climatic characteristics in precipitation and temperature schemes based

on rule- [2–3], clustering- [4], and machine learning-based classification [5–7].

The rule-based method of Köppen climate classification, which can cover terrestrial regions

from tropical to polar areas, has been continuously revised by trial and error since its first pub-

lication in 1936 [2–3,8–9]. In particular, the Köppen-Geiger (K-G) climate classification [8]

has been regularly used by researchers across a wide range of disciplines for the climatic

regionalization of environmental variables, as well as the assessment of the results of climate

models, such as the general circulation model (GCM) with multi-scenarios [10–11], hydrologi-

cal river discharge models [12], and regional climate models [13–14]. A modified version, the

Köppen-Trewartha (K-T) climate classification, has been developed with the additional delin-

eation of the high-land class in temperate climate types [3,15]. However, the spatial resolution

of the K-G climate classification map of 5 arc-minutes (~0.083 degrees) [16] is higher than that

of the most updated K-T reference of 0.5 degrees [15], and the K-G uses more recent periods

of climatic datasets compared to the K-T.

Hierarchical and non-hierarchical clustering-based methods, such as single-, average-,

complete-linkage, Ward’s method, and k-means clustering, have been developed for grouping

a set of objects using the concept of Euclidean distance and defining the climate characteristics

of groups. The suitability of a clustering method for climate classification is assessed by com-

paring the standard deviations within- and between-clusters [4,6].

The number of climate classification studies using different methods has increased in order to

avoid the subjectivity that comes from the rule-based method with human experts [7,17]. Some

machine learning models have the benefits of automated, hierarchical, and rule-based characteris-

tics of multivariate regression trees (MRT) [7]. Most notably, neural networks have the advantage

of handling non-linear relationships among variables through interconnected processing elements

[5]. Several machine learning methods in previous climate classification studies—self-organizing

map (SOM) in artificial neural network (ANN), decision trees (DT), and MRT—have been used

with multiple areas in Puerto Rico, the Carolinas, and even on a global scale, respectively [5–7].

The spatial resolutions of climate models are usually in a range of 50–100 km. Some studies

have reported limitations in identifying local climates using these models due to their coarse

spatial resolutions, especially in climatologically heterogeneous regions such as mountainous

areas including the Alps [9,18–19]. The existing studies have used several interpolation meth-

ods to generate higher resolution climate maps. However, due to the complex terrain and the

sparse distribution of meteorological data stations, there are uncertainties in East Asia which

cause the omission of detailed information when the climate variables are interpolated [20,21].

The Korean Peninsula has also mountainous and rugged terrain in terms of altitudes from the

remotely sensed digital elevation maps (DEM). The western and eastern parts of Korean Pen-

insula show the different variation of temperature clearly. However, such variation is hardly

documented in existing coarse resolution reanalysis data, or interpolated data, while it is

shown in MODIS LST (1km). In order to resolve uncertainties regarding the coarse resolu-

tions of input data, satellite-based data, higher resolution than the climatic variables data in

previous research, can be used as an alternative data source for producing relatively fine reso-

lution climate regions. Rhee et al. [6] developed a climate classification system using a machine

learning method with satellite-based variables for North and South Carolina, USA. The
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research successfully delineated local climates against the National Climatic Data Center

(NCDC) climate divisions in the Carolinas, and the quantitative analysis was conducted

through comparisons of between- and within-class variations.

Moreover, the finer climate zonation using satellite-based data can give opportunities to

explain the details of climate change on a regional scale. The simulation of the shifting of cli-

mate classes is one of the main topics in research on the use of the K-G climate classification

[1,16,22–23]. In the western US, the disappearance of the alpine tundra climatic type between

both durations 1901–1930 and 1987–2006 was discussed in context with the increase of the

mean temperature of the warmest month in each elevation [22]. Updating climate zones pro-

vides basic and important information for understanding the current stage of climate change.

Consequently, remote sensing data are suitable to document the seamless spatiotemporal

changes of climatic variables, although they are relatively new and do not cover the historical

period of time (e.g., 1950–1970). In addition, one of the merits of using remote sensing data

for climate classification is that climate zones in inaccessible areas such as North Korea due to

political issues could be delineated using basic meteorological variables with good quality. The

Korea Meteorological Administration (KMA) has collected and managed strictly the climatic

data of North Korea, which can be used to calibrate and validate climate classification models.

This study adopted supervised machine learning techniques for classification using K-G

classes as reference data to train the satellite-derived seamless grid data for enabling effective

visualization of climate classes. Sathiaraj et al.[24] used unsupervised clustering methods such

as k-means and a balanced iterative reducing and clustering using hierarchies (BIRCH) for cli-

mate classification. They pointed out that it is challenging to compare and discuss directly

between clustering results and K-G climate maps. They [24] also showed some discrepancies

in climate classification results when different periods of input variables were selected such as

monthly, annual, and threshold exceeding frequency (TEF). The k-means clustering result

with TEF was the case showing higher consistency than the other variables because the thresh-

olds in the K-G method were originally derived by extreme climate cases. Furthermore, there

are difficulties in choosing optimal parameters for unsupervised clustering such as the number

of seeds, and the class settings regarding how many stations must be included in one class (i.e.,

they chose 3 stations as minimum for one class). On the other hand, Rhee et al. [6] compared

unsupervised and supervised models for climate zone classification. More reliable results were

found in the supervised machine learning method when compared to clustering results [6].

In this study, satellite-based data with relatively high resolution are used as input data for

empirical modeling with machine learning approaches in order to resolve the uncertainties

induced by coarse resolution of the existing climate maps. The objectives of this research are

to 1) classify the climate regions over the Korean Peninsula using satellite-based data at 1 km

of spatial resolution by machine learning methods and a statistical modeling method, 2) com-

pare the accuracy of the satellite-based climate classification during the 16 years between

2001–2016 with the most recent high resolution global digital map of the rule-based K-G cli-

mate classification [16,25], and 3) discuss the trends of climate zone shifting. This study sug-

gests a robust guideline to generate a climate distribution map using satellite-based

temperature and precipitation data.

Materials and methods

Study area

In this study, the climate zones of the Korean Peninsula including North and South Korea

were classified. The Korean Peninsula is located in the range of 33.11–43.01˚N latitude and

124.18–131.87˚E longitude (Fig 1). The annual average accumulated precipitation and annual

Machine learning-based delineation of high resolution climate regions
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average temperature for the study area is 1113.7 mm/yr and 10.52˚C/yr, respectively, referring

to the meteorological data of KMA during 30 years from 1981 to 2010. The area is normally

under the westerly wind; seasonally blowing northwesterly wind from high latitudinal land

and southwesterly wind from low latitudinal ocean make the coldest and hottest temperatures

in Aug and Jan, respectively. The study area has four distinct seasons, featuring a strong and

short rainy season from May to Jun called as “Changma”. Mountainous regions constitute

70% of the terrestrial area according to DEM (Fig 1). As the terrain in the Korean Peninsula is

complex and rugged, altitudes drastically differ by administrative district and the patches of

land cover are relatively small [26].

Data

Satellite data. The three kinds of satellite data, the Moderate Resolution Imaging Spectro-

radiometer (MODIS) MOD11A2 V006 Land Surface Temperature (LST), the Tropical Rainfall

Measuring Mission (TRMM) 3B43 v7 monthly precipitation, and the Shuttle Radar Topogra-

phy Mission (SRTM) DEM data, were used for classifying climate zones over the Korean Pen-

insula. LST was obtained from MODIS on Terra which provides a variety of outputs including

land and ocean at 10:30 and 22:30 local time. LST was used instead of air temperature in this

study because many researchers have used the LST to estimate the air temperature [27–31]. In

this study, the relationship between MODIS LST and in-situ air temperature showed a good

agreement, resulting in a correlation coefficient (R) of 0.91 and a slope of 1.02, which confirms

the effectiveness of using LST as a surrogate variable to air temperature. Monthly information

was obtained by converting the MOD11A2 LST considering the number of days. TRMM pro-

vides 3B43 monthly precipitation data with 0.25 degree resolution. The product was obtained

from the Goddard Earth Sciences Data and Information Center (GES DISC; https://disc.gsfc.

nasa.gov/datasets) and resampled to 1km, the same as LST, using a bilinear method. SRTM on

Fig 1. The study area, the Korean Peninsula, including North and South Korea. The Shuttle Radar Topography

Mission (SRTM) 30m digital elevation map (DEM; downloaded from http://eros.usgs.gov/elevation-products) is used

as a background image.

https://doi.org/10.1371/journal.pone.0223362.g001
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the Space Shuttle mission Endeavour STS-9 has C-band Spaceborne Imaging Radar and X-

band Synthetic Aperture Radar (X-SAR), and provides DEM data which are produced through

the SAR interferometric process. It is provided at 30m and 90m spatial resolution from Eleva-

tion Products site of the United States Geological Survey (USGS) (http://eros.usgs.gov/

elevation-products). In this study, the 90m resolution was converted to 1km resolution

through bilinear resampling for co-locating with LST.

Ground meteorological data. In order to develop climate classification models over the

Korean Peninsula, ground meteorological data including the Automated Synoptic Observing

System (ASOS) and Automated Weather System (AWS) data were obtained from KMA

(https://data.kma.go.kr). The data from 2001 to 2016 at 82 stations were used. Data before

2001 were excluded in this study since they were collected from a much smaller number of

stations.

The Mountain Meteorology Observation System (MMOS) data have been provided by the

National Institute of Forest Science (NIFoS, http://mw.nifos.go.kr). The 15 MMOS stations’

data from 2013 to 2017 were used in this study only in the validation analysis for mountainous

areas due to the short period of data collection.

Ancillary data. K-G climate classification maps were developed by a rule-based method

for classifying climate zones using 50-year air temperature and precipitation reanalysis data.

They have been provided as 30 arc-minute (0.5 degree resolution) world maps of KÖPPEN--

GEIGER climate classification (http://koeppen-geiger.vu-wien.ac.at/present.htm). There are

also mid and high resolution digital maps (10- and 5 arc-minute (~0.17- and 0.083 degree res-

olution)) obtained by applying the downscaling method introduced by Ruble et al. [16], and

using reanalysis data from 1986 to 2010. In this study, we used four digital maps for compari-

son: two 0.5 degree resolution K-G maps as well as mid and high resolution maps.

Reanalysis data from the Climatic Research Unit Time-Series (CRU TS) 4.01 and Global

Precipitation Climatology Centre (GPCC) V7 were used in the K-G climate classification

[25,32]. CRU TS 4.01 is produced using angular-distance weighting (ADW) interpolation and

provided at 0.5 degree spatial resolution from 1901 to 2016 on the CRU website (https://

crudata.uea.ac.uk/cru/data/hrg) [33]. GPCC has been widely used in climate research because

it considers the largest number of contributing ground observations [34–35]. For this study,

GPCC V7 precipitation data at 0.5 degree spatial resolution from 1983 to 2013 were obtained

from the Deutscher Wetterdienst (DWD) (https://opendata.dwd.de/). The K-G climate classi-

fication maps based on monthly air temperature from CRU and precipitation from GPCC

were derived and used for comparisons.

Methods

Fig 2 summarizes how this study was conducted. Firstly, monthly LST and precipitation data

from the satellites were used for calculating the following input variables: annual mean LST

(T_ann), annual total precipitation (P_ann), and highest and lowest monthly temperature as

well as precipitation values for summer and winter (T/P_smax, T/P_smin, T/P_wmax and T/

P_wmin). According to the period of ground observations, all satellite data collected from

2001 to 2016 were used for climate classification. Secondly, climate classification classes of 82

stations were calculated using the K-G climate classification formula based on specific thresh-

olds of temperature and precipitation (Table 1). Each station had one class considering climate

information from 2001 to 2016. Thirdly, samples were extracted around each station point as

the samples for each target class (Table 2). For example, some samples were extracted within a

5×5 window around each station pixel in cases where there were only few stations for certain

target classes (e.g., Dwc), while some samples were extracted by an edge of around 3×3 pixels
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in cases where there were a good number of stations for certain target classes (e.g., Cwa and

Dwa) (Table 2). A total of 11 input variables including DEM and the station-based climate

class as the target variable were used to develop machine learning-based climate classification

models.

Fig 2. The process flow diagram of the proposed approach for developing climate classification models over the Korean Peninsula.

https://doi.org/10.1371/journal.pone.0223362.g002

Table 1. Summary of the K-G formula [25].

Location of character Type Description Criterion

First C Warm temperate climate -3˚C < Tmin < +18˚C

D Snow climate Tmin� -3˚C

Second s With dry summer Psmin < Pwmin, Pwmax > 3Psmin and Psmin < 40mm

w With dry winter Pwmin < Psmin and Psmax > 10Pwmin

f Fully humid Neither s nor w

Third a Hot summer Tmax � 22˚C

b Warm summer Not a and at least 4Tmon� 10˚C

c Cool summer and cold winter Not b and Tmin > -38˚C

d Extremely continental Like c but Tmin� -38˚C

https://doi.org/10.1371/journal.pone.0223362.t001
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We obtained the following four climate classes over the Korean Peninsula by applying in-
situ air temperature and precipitation data from meteorological stations to the K-G formula:

warm temperate climate with fully humid and hot summer (Cfa), warm temperate climate

with dry winter and hot summer (Cwa), snowy climate with dry winter and hot summer

(Dwa), and snow climate with dry cold winter and cool summer (Dwc). In order to apply

machine learning approaches, the samples were divided into calibration (80%, 257 samples)

and validation (20%, 68 samples) and, notably, both datasets were not overlapped. The sizes of

input and output data were 257×12 (the number of oversampled stations×the number of input

variables) and 257×1 (the number of oversampled stations×climate class) for calibration,

respectively. Similarly, the sizes of input and output data were 68×11 and 68×1 for validation,

respectively. In order to produce climate zone maps with a size of 1001×1526, 11 input vari-

ables were fed into the five models with the size of (1001×1526×11).

Machine learning approaches. Machine learning-based modeling has been adopted in

many remote sensing applications for both classification and regression [36–44]. In this study,

five machine learning approaches—random forest (RF), artificial neural networks (ANN), k-

nearest neighbors (KNN), logistic regression (LR), and support vector machines (SVM)—were

used for classifying climate zones over the Korean Peninsula.

RF is an ensemble approach based on the Classification and regression trees (CART). It

overcomes the limitation of CART such as sensitivity to the training sample and the overfitting

problem by aggregating multiple independent trees [45]. RF consists of a variety of classifiers

as “trees” which have the same probability distributions from a random selection of training

data and input variables through bootstrapping. All trees are aggregated as majority voting for

classification or as average for regression. RF provides the relative local importance of input

variables which can be obtained as a percentage of the increased mean square error (MSE)

through the out-of-bag (OOB) estimate [46–51]. The larger the percentage of increase in the

MSE, the more contribution the variable makes to the model compared to others. It should be

noted that such importance provided by RF is local, not global though [52–54]. RF package of

R-3.6.1 statistic software (http://www.r-project.org) was used with default settings except for

the number of trees.

ANN, grounded on the human biological system, is a powerful empirical algorithm for

solving nonlinear multivariate problems [55–57]. The basic structural unit is “neuron”, which

organizes ANN layers: the input layer, hidden layer(s) and output layer in a typical multi-layer

feedforward backpropagation network. All neurons of one layer are connected to the neurons

of an adjacent layer using connection weights and biases [58–59]. The training data enter into

the input layer as neurons and are multiplied by connection weights and then added/sub-

tracted by biases. The calculated neurons are applied to a transfer function in order to form

Table 2. Summary of the reference samples for each target class. The samples were selectively extracted within a window for a station pixel (i.e., pixels in red and light

orange color).

Classes

Cfa Cwa Dwa Dwc

The number of stations 13 37 35 5

The sampling method

The number of samples 74 118 123 52

https://doi.org/10.1371/journal.pone.0223362.t002
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the neurons of hidden layers. Neurons of output layers are formed in the same way. This pro-

cess is forward propagation. The error between predicted and true values is fed into updating

connection weights and biases through backpropagation. In this study, the “patternnet” func-

tion in Matlab R2018a was used for developing the ANN model, which consists of hidden

Sizes (structures), trainFcn (learning algorithm) and perfromFcn (loss function). All parame-

ters were selected through many tests with various combinations. ANN structure was orga-

nized as one input layer, two hidden layers, and one output layer, where two hidden layers

have five and three neurons, respectively. Levenberg-Marquardt (LM) backpropagation was

selected as the learning algorithm (called as “trainlm”), which determines the correct combina-

tion as minimizing a combination squared errors and weights [60] when updating the weights

and biases. Mean squared error (mse) was used for the loss function and default values were

used for other parameters (e.g., “tansig” was used for activation function). The best perfor-

mance was obtained at 25 epochs when the minimum gradient reached.

KNN is one of the widely used nonparametric classification and instance-based approaches,

which is based on distance of k nearest sample points (pixels) from an unknown sample point

(pixel) [61–65]. It is important to determine the number of nearest points (k). It is sensitive to

noise points (overfitting) when k is too small. On the other hand, it can underfit if the k is too

large [66]. In this study, the k is optimized by using the “ficknn” function in Matlab R2018a,

which automatically finds the number of k and the method of distance measure. The mahala-

nobis method and one for k were obtained through the optimization.

LR uses the probability of each class to determine the final class for a pixel. In this study, the

multinomial logistic regression function (“mnrfit”) in Matlab R2018a was used for developing

one of the climate classification models. It uses an iteratively weighted least squared algorithm

to find the maximum likelihood estimates [67–68]. For each class, there are coefficients equal

to the number of predictors and interception for calculating probability of each class.

As the last method, SVM was used because not only it has been widely applied in remote

sensing based classification, but also it has an advantage in working well with the limited num-

ber of training data [69–73]. To classify classes, it uses hyperplanes generated by a kernel func-

tion. The “fitcsvm” function in Matlab R2018a was used for optimizing the parameters

including the kernel function, iteration limit, kernel scale and optimizer for each class. In this

study, the polynomial kernel function was used for “Cfa”, “Cwa”, and “Dwa” classes with the

polynomial orders of 3, 4, and 3, respectively, and the linear kernel function was used for

“Dwc” class. Other parameters were set as 1 for the kernel scale, grid search for the optimizer

and 10,000 for the iteration limit.

Comparison of model performance with existing climate maps. Three existing climate

classification maps were used for comparisons: one map developed by Kottek et al. [25],

another map developed by Ruble et al. [16], and a third map calculated by using reanalysis

data and machine learning-based models. Kottek et al. [25] used CRU air temperature and

GPCC precipitation from 1950 to 2000, which were also used in Rubel et al. [16] as input data

for downscaling. The third map was calculated using CRU air temperature and GPCC precipi-

tation through the K-G formula (Table 1) from 2001 to 2013 (due to the limitation of the

GPCC period). The use of the existing climate maps is not only to compare with the proposed

models for the years from 2001 to 2013, but also to examine climate class change over time

divided by two periods (i.e., 2001–2007, 2008–2013).

Results and discussion

Fig 3 presents the value ranges of input variables using the calibration data set for each target

class. Despite using LST instead of air temperature, the value ranges of LST show similar

Machine learning-based delineation of high resolution climate regions
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characteristics to those of air temperature according to the K-G formula (Table 1). The Dwc

class showed a significant difference in all input variables when compared to the other classes,

especially to DEM. When compared with the climate classes that have different first characters

of the climate classification (i.e., “C” and “D”), minimum LST and maximum/minimum pre-

cipitation for winter (T_wmin, P_wmax and P_wmin) had differences in value ranges consis-

tent with the K-G formula (T min term). When compared with the climate classes that have

different second characters of “w” and “f”, the precipitation variables showed larger differences

than LST, which is also consistent with the K-G formula (terms of maximum/minimum pre-

cipitation for winter and summer). For example, the minimum precipitation for summer of

Cfa had relatively high values compared to Cwa, which is similar to the condition of the “f”

class in the K-G formula (Table 1). Unlike the K-G formula, not only LST but also precipita-

tion had clear differences when compared to the climate classes that have a different third

character (“a” and “c”).

Climate classification based on spatially distributed data

Table 3 shows the accuracy assessment results of the climate classification maps derived by

Kottek et al. (Table 3 (a)) [25], Rubel et al. (Table 3 (b)—(d) [16], CRU and GPCC (Table 3

(e)) and the proposed models (Table 3 (f) and (j)) using the validation data set. While there

was no significant difference of accuracy between different periods (i.e., (a), (b), and (e)), there

was a difference between different spatial resolutions (i.e., (b)—(d)). The proposed models

show the best level of accuracy as shown in Table 3, with 100% and 97.06% for validation of RF

(f), KNN and SVM (h and i), respectively. Accuracies of ANN and LR were 95.6%. All of the

proposed models in this study showed higher performance than the existing models in the

accuracy of climate zone classification. The reason that the existing models ((a)–(e)) have

lower accuracy is possibly due to the coarse spatial resolution and uncertainty of reanalysis

data. The difference in monthly air temperature and precipitation were about 1.6˚C and

50mm respectively over the Korean Peninsula. Most notably, it is difficult to apply the K-G for-

mula directly to the reanalysis data since the air temperature difference is above 2˚C and pre-

cipitation difference is above 50mm due to the non-matched stations between reanalysis data

and in-situ observation-based climate classes (i.e., 22 stations). The proposed models, on the

other hand, did not have such a problem in applying the reanalysis data to the simple thresh-

olds because they were developed using machine learning approaches targeting in-situ data.

Fig 4 shows relative variable importance for observing an overall trend; each climate class is

shown in terms of mean decrease accuracy (MDA), which is a widely used measure for regres-

sion as well as classification in RF [74–78]. As observed in the differences of the value ranges of

input variables for each class in Fig 3, the minimum LST for winter (T_wmin) was the most

contributing variable in the RF model (Fig 4, red boxes). It is consistent with the fact that air

temperature plays an important role in classifying either warm temperature or a snow climate

in the K-G formula (Table 1). Except for T_wmin, precipitation terms had a larger relative

importance than temperature terms, because the difference in the range of precipitation values

of the four classes was remarkable when compared to temperature variables in Fig 3. For

example, T_smax did not show a significant difference in each class (Fig 3) and all classes

showed low importance (Fig 4). The reason why DEM has the highest MDA is because the

Dwc class has a range that is significantly different from other classes (i.e., high altitude (Fig 4,

Dwc station)).

The distribution of climate classification over the Korean Peninsula is described from the

outputs of previous studies (Fig 5A–5E) and this study (Fig 5F–5J). All maps (including grids

and circles) have similar distributions as warm temperate climates over the southern area of
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Fig 3. The value ranges of input variables using the calibration data for each target class. Input variables are annual

mean LST (T_ann), annual total precipitation (P_ann), and highest and lowest monthly LST and precipitation values

for summer and winter (T/P_smax, T/P_smin, T/P_wmax and T/P_wmin), and DEM.

https://doi.org/10.1371/journal.pone.0223362.g003

Table 3. Accuracy of climate classifications by model based on the validation data.

Model (a) (b) (c) (d) (e)

Kottek et al.

(0.5˚)

Rubel et al.

(0.5˚)

Rubel et al.

(0.17˚)

Rubel et al.

(0.08˚)

CRU&GPCC

(0.5˚)

Accuracy (%) 58.82 57.35 69.11 69.11 55.88

Model (f) (g) (h) (i) (j)

RF.

(0.01˚)

ANN

(0.01˚)

KNN

(0.01˚)

LR

(0.01˚)

SVM

(0.01˚)

Accuracy (%) 100 95.6 97.06 95.6 97.06

https://doi.org/10.1371/journal.pone.0223362.t003
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the Korean Peninsula, and snow climates over the northern area and areas of high elevation

(refer to DEM distribution in Fig 1). Fig 5A is based on the Kottek et al. [25] map, which used

CRU air temperature and GPCC precipitation from 1950 to 2000 while Fig 5B is based on the

data from 1983 to 2010. Some changes are observed depending on the applied period; the area

of Cfa on the coast decreased in size while the area of Cwa inland increased over time. How-

ever, there are some non-matched stations on both 5a and 5b, especially on the coastal line

and in relatively high elevation areas, due to the error in the climatic data as mentioned in

Fig 4. The relative importance (%) of input variables (annual mean LST (T_ann), annual total precipitation

(P_ann), and highest and lowest monthly LST and precipitation values for summer and winter (T/P_smax, T/

P_smin, T/P_wmax and T/P_wmin), and DEM) using random forest (RF).

https://doi.org/10.1371/journal.pone.0223362.g004
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Table 3 (1.6˚C and 50 mm/month of errors from in-situ data). The discrepancies between the

gridded climate variables and in-situ measurements in highly elevated regions are known to be

larger than those in flat regions [79]. Usually, the large biases of climatic data in highly elevated

regions and coastal regions are challenging issues for accurate interpolation because of the rel-

atively sparse distributions of weather stations to be used in distance-weighted methods [80].

Maps with finer spatial resolutions (Fig 5C and 5D) show more matching classes between the

Fig 5. Reference data from in-situ weather stations of Automated Surface Observing System (ASOS) and Automatic

Weather System (AWS) with circle symbols on the climate classification maps derived by (a) Kottek et al. [25], (b-d)

Rubel et al. [16], (e) the calculation based on the CRU temperature and GPCC precipitation, (f) random forest, (g)

artificial neural network, (h) k-nearest neighbors, (i) logistic regression, and (j) support vector machine models.

https://doi.org/10.1371/journal.pone.0223362.g005
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pixels and stations both on the east coast and in the southern inland than the maps with

coarser resolutions (Fig 5A and 5B).

In order to compare the maps produced by the proposed models with those from previous

studies, we classified climate regions using CRU air temperature and GPCC precipitation data

based on Table 1 (Fig 5E). Although the spatial distribution of Fig 5E is consistent with previ-

ous studies, Cwa pixels in South Korea are classified as Dwa. Results from the proposed models

(Fig 5F–5J) have similar distributions to results from the other models (from Fig 5A–5E). For

example, the distributions of warm temperature (C) and snow (D) climates are similar in the

coastal area. The effects of complex terrain also appear well in the results from the proposed

models, for example near the central region of South Korea with Dfx and Dwx classes. How-

ever, the results from RF, KNN, and SVM (Fig 5F, 5H and 5J), and those from ANN and LR

(Fig 5G and 5I) yielded somewhat different distributions of classes, especially for Cfa and Dwc.

Although the accuracy of RF is 100% using the validation data set, the results showed larger

differences from surrounding pixels and the elevation effect was not captured well. On the

other hand, the climate regions from ANN were well distributed including coastal lines and

the elevation effect was well reflected, through visual inspection of the results. The LR model

following ANN well detected the hot and warm summer distributions between west and east

of South Korea along the high altitudinal area. It is known that supervised-machine learning

classifiers tend to be confused, particularly in the case of mixed classes that share a similar vari-

ability of features [58,81–83]. The accuracy may vary depending on the type of the model used

[84]. RF showed more confusion than ANN, resulting in merged large areas where similar clas-

ses are located (Fig 5F and 5G). For example, if there are boundaries between Cfa and Cwa or

between Dwa and Dwc, RF tends to be biased towards more widely (dominantly) distributed

classes, Cwa or Dwa, respectively. In other words, ANN delineated the spatial representative-

ness of climate regions well in comparison to the references from in-situ stations and DEM.

ANN showed better performance than RF in terms of the spatial distribution of climate classes.

Furthermore, KNN and SVM results showed some warm classes (Cwa) in the coastal area of

North Korea. In particular, the map of KNN model has salt-and-pepper noise in some areas

because of small k-value (k = 1) [62, 66]. Since there are no stations where exactly overlap with

grids, the accuracy should be discussed by using ancillary data such as MMOS.

Evaluation of climate classification based on MMOS

For a further analysis focusing on mountainous areas in South Korea, MMOS data from 2013

to 2017 were applied to the classification maps (Fig 6). One issue is the non-existence of snow

and fully humid classes of Dfa and Dfb from in-situ observations of KMA ASOS used in this

study, since those classes are included in Kottek et al. [25] and Rubel et al. [16]. Denser but

shorter-term in-situ reference data (2013–2017) from MMOS stations were used to examine

whether or not the high altitudinal mountainous area shows Dfa/Dfb classes (Fig 6). However,

neither Dfa nor Dfb appeared from the rule-based K-G calculation based on MMOS. Although

the training data used for proposed models (Fig 6D–6H) were from a different data source

(i.e., ASOS), the results show similar patterns with those of the MMOS references (triangular

symbols) in the locations of the boundary lines of the climate zones. The accuracy in percent

when the spatial distributions of climate classes were validated by 15 MMOS station data is

shown in Table 4. The ANN model produced the best performance (57.14%) while the coarser

resolution maps had much lower accuracy (10.71–3.57%). The range of accuracies of the other

models showed slightly higher than the existing maps (32.14–10.71%). Interestingly, the result

of Rubel et al. [16] at 0.08 degree resolution was less accurate than that at 0.17 degree resolu-

tion. One of the possible reasons is that the interpolation used in Rubel et al. [16] to generate
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different scales of climate maps was not sufficient to explain the climate distribution in eastern

Korea at 0.08 degree spatial resolution. Original temperature and precipitation data from CRU

and GPCC respectively in Rubel et al. [16] have coarse resolution before resampling. They

thus used DEM and the lapse rate of temperature decrease for modifying the climatic variables

considering the topographic effect using the Global 30 arc-second elevation (GTOPO30) of

the U.S. Geological Survey (USGS). It seems that data at 0.5 degree resolution could be effec-

tively resampled to 0.17 degree resolution (Table 4). However, the accuracy of the climate map

Fig 6. Short-term (2013–2017) evaluation of Köppen-Geiger climate classification using in-situ data from

Mountain Meteorology Observation System (MMOS) stations with triangular symbols on the climate maps which

are derived by a) Kottek et al. [25], b) and c) Rubel et al. [16], and d) random forest, e) artificial neural network, f)

k-nearest neighbors, g) logistic regression, and h) support vector machine models.

https://doi.org/10.1371/journal.pone.0223362.g006
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at 0.08 degree resolution (Table 4) showed no improvement when compared to the map at

slightly coarser 0.17 degree resolution.

The relief of the eastern Korea mountainous Taebaeksan Range is a typical steep region that

faces a number of landslide events [85–86]. The topographical effect to climatic variables, espe-

cially wind speed, is clearly shown by classifying geomorphological characteristics into pass,

peak, and ridge in Gangwon Province of the eastern Korea [87]. Rubel et al. [16] also men-

tioned the possible existence of a source of uncertainty due to local effects, including the rain

shadow, especially in the Alps region. Hence, we carefully analyzed the differences in spatial

distributions with the valid data set measured over mountainous areas (i.e., MMOS). The most

current in-situ data (i.e., MMOS) shows a decrease of areas of Cfa (Fig 6). The trend of decreas-

ing Cfa is reflected in the shifting of climate zones (Fig 5) as well.

In terms of a spatial resolution, the maps with 0.17 and 0.08 degree spatial resolution

showed slightly different distributions: 1) The finer resolution map produced more Cfa class

areas, 2) scattered pixels with “D” classes were found within the Cwa area, and 3) details of

changes of climate zones showed similar pattern to DEM. The most well-matched climate map

with the MMOS in-situ reference data is the result of ANN at 0.01 degree spatial resolution

(Fig 6D). However, the unrealistic pattern of Dwa scattered within the Cwa area still remains

as a limitation of the proposed models due to the relatively small number of training samples

to cover the entire study area. It might be due to the possible overfitting of the ANN model

with a complex structure, trained even with outliers [88].

Climate zone shifting

Climate maps were derived by several different time-series of data for describing climate zone

shifting over time; the decadal changes can be found in Fig 7. It should be noted that ten years

of data may not be sufficient for determining climate zones. However, they can roughly display

a changing trend in climate zones over time. Three maps (Fig 7A–7C, 7E and 7F) were gener-

ated by the rule-based K-G method according to the conditions in Table 1. Fig 7D, 7G and 7H

depict the result of the ANN model that has relatively good performance in mountainous areas

in this study by training satellite-based meteorological data targeting in-situ observations. All

maps were zonally averaged using a zonal mean function in ArcGIS for administrative districts

of South and North Korea. For temperate climates (“C”), high and low humidity of the winter

season determines Cfa and Cwa, respectively. In addition, the shrinking trend of Cfa in the

western part of the study area is well documented from 1950–2000 to 1983–2000.

The changing trend from Cfa to Cwa is stronger between the rule-based map (Fig 7B) and

the ANN map (Fig 7D) than between the two rule-based maps for the period of 1983–2000

(Fig 7B) and 2001–2013 (Fig 7C). The difference between Cfa and Cwa is in the second letter;

“f” is for fully humid and “w” is for dry winter. If precipitation (P) is concentrated in summer

and the amount is the tenfold of winter P, the second letter of the climate class should be “w”.

Since the “C” classes appeared in coastal regions, the shrinking trend in Cfa areas means that

the humidity of the south-west and south-east coastal regions of the study area is decreasing.

Table 4. Accuracy of climate classification on Mountain Meteorology Observation System (MMOS) stations.

Model Kottek et al.

(0.5˚)

Rubel et al.

(0.5˚)

Rubel et al.

(0.17˚)

Rubel et al.

(0.08˚)

Accuracy (%) 3.57 7.14 14.29 10.71

Model RF

(0.01˚)

ANN

(0.01˚)

KNN

(0.01˚)

LR

(0.01˚)

SVM

(0.01˚)

Accuracy (%) 10.71 57.14 14.29 32.14 10.71

https://doi.org/10.1371/journal.pone.0223362.t004
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The smallest area of Cfa was found in Fig 7D, which used satellite-based data as input. More-

over, many districts showed changes to the dry winter class while temperature in summer was

still classified as hot summer. This might be due to the discrepancy between the TRMM

monthly precipitation data and the KMA in-situ data; the RMSE and R2 between the two

sources were 52.88 (mm/month) and 0.84, respectively.

In terms of the shifting of cold climate zones, the southern borderline of Dfa moved north-

ward and its area shrank. The decreasing pattern of the “D” classes is also found in an existing

study using the Trewartha climate classification [89]. In Yun et al. [89], the boundary lines of

subtropical climate in present, near-future, and future cases also moved northward. The shift-

ing of “D” over time might be related to the effect of global warming on the increment of tem-

perature in the Korean Peninsula. Snow climates denoted as “D” are located along the

mountainous areas with high elevation (Figs 1 and 7). Although the ANN model in this study

Fig 7. Zonal mean maps of Köppen-Geiger climate classification based on administrative districts of Korean Peninsula. (a)

Reference map of Kottek et al. [25] for 1960–2000. Climate classifications using CRU temperature and GPCC precipitation (b) for 1983–

2000, and (c) for 2001–2013. (d) climate classification using satellite-based land surface temperature and precipitation with the ANN

approach. (e)-(h) Short-term changes from 2001–2007 and 2008–2013 using CRU and GPCC, and using satellite-based data with ANN,

respectively.

https://doi.org/10.1371/journal.pone.0223362.g007
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was trained using in-situ references of four classes without Dfa, Dfb, and Dwb, the distribution

of the cold class (Dwc) is well matched with the high altitude areas of DEM (Fig 1).

Changed areas from Dfb to Dwb can be found in the comparison of the maps using data

from 1983–2000 to 2001–2013 in Fig 7. The trend that the fully humid class decreases is clearly

shown, not only in cold (“D”) but also in temperate (“C”) classes. Humidity, which is described

using precipitation in the K-G climate classification, would also be affected by temperature.

The disappearing pattern of “D” classes is also clearly described in the global present and

future climate classification maps at 1-km resolution comparing two periods from 1980 to

2016 and from 2071 to 2100 in Beck et al. [90]. Moreover, the high uncertainty, which remains

around the coastal regions of the Korean Peninsula, was found in their analysis of confidence

levels (%) derived from 12 kinds of different combinations of climate datasets. This implies

that the results of climate classification strongly depend on the input datasets used for classify-

ing climate because the number of stations, the durations of obtained datasets, and the resolu-

tion for interpolation are different. Furthermore, the discrepancy in the results of the

confidence levels when various combinations of input datasets were used in [90] was relatively

high in Korea. In that sense, the high accuracy of climate classification methods proposed in

this study, which is trained and validated by intensively obtained in-situ observation data, can

contribute to provide new insight on a region that has thus far suffered from a lack of confi-

dent climate classification.

Fig 7 documents the temporal shifting of climate characteristics at a small (6 years) scale.

Regardless of modeling methods used, the changes of detailed climate characteristics in 6 years

were found in the southern part of the Peninsula. As the climate is determined by several

decadal periods [91], it is hard to say that the change in the classification maps is the change of

climate. However, the climate similarity is different between the warm temperate and snow cli-

mates (Table 5). The area where D classes were converted to C classes using ANN between the

periods 2001–2007 and 2008–2013 was 10.1% (14,008km2). In contrast, the area converted

from C to D classes was 36.97% (51,290km2) of all changed areas.

In the perspective of the humidity, the areas converted from Cfa to Cwa and vice versa were

5.72% (7,931km2) and 14.73% (20,440km2), respectively, from 2001–2007 to 2008–2013.

Larger area was converted from dry (w) to humid (f) than from f to w during the periods. The

areas converted from w to f, and from f to w were mainly distributed in the southern and

northern parts, respectively (Fig 7). There are previous studies about decadal changes in cli-

mates regarding the summer precipitation and humidity [92, 93]. In particular, the summer

precipitation was revealed to increase in terms of amount and intensity from 1973 to 2005 in

South Korea [92]. As an example of the regional changes of climate regarding humidity, the

decadal changes in the boundary of humid and semi-arid regions were explicitly depicted in

China [93]. Our result of climate shifting for 12 years also showed changes in areas, which

might correspond to those phenomena in East Asia [92,93]. In the summer temperature

scheme, the areas converted from Dwc to Dwa and vice versa were 2.97% (4,122km2) and

29.5% (40,935km2), respectively. There were clear trends from dry to humid and cool to hot

Table 5. The numbers of pixels in the climate classes shifted from 2001–2007 to 2008–2013 using the ANN model.

ANN from 2008 to 2013

ANN from 2001 to 2007 Cfa Cwa Dwa Dwc

Cfa 7931 10487 1186

Cwa 20440 36911 2706

Dwa 1166 40935

Dwc 452 12390 4122

https://doi.org/10.1371/journal.pone.0223362.t005
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summers between 2001–2007 and 2008–2013. The results imply:1) the southern boundary of

D class moved towards the northern area of Korean Peninsula for long-term change (1983–

2013), 2) the northern and the mountainous parts of Korean Peninsula could be cooler and

more humid than before for short-term change (between 2001–2007 and 2008–2013) since

those areas were converted to D and w from C and f in terms of temperature and humidity

schemes, respectively. It should be noted that longer temporal accumulation of data is crucial

for the delineation of climate in global scale since short-term averages are changeable and

unstable when compared to long-term averages [91].

Past studies agree with that the climate zone in term of temperature is shifting to warmer [32,

94, 95]. Rubel et al. [32] simulated global climate using the GCM and K-G method in both peri-

ods 1901–1925 and 2076–2100, and found that most countries in mid-latitudes including Korean

Peninsula would become warmer. Although the changes in all climate zones were not clear from

their results due to the coarse resolution (50km), the trend of climate zone shifting from D to C

was clearly identified [32]. Furthermore, the effect of shifting to warmer classes is becoming rapid

especially in mountainous area from the analysis of vegetation habitat and glacial coverage [16,

94]. Our results in the long-term change (from 1983–2000 to 2001–2013) of climate zone also

show a warming trend, which is consistent with global climate shifting simulations.

Conclusions

In this study, fine spatial resolution (1km) climate classification maps were developed using

machine learning approaches (ANN, KNN, RF, LR, and SVM) targeting in-situ data over the

Korean Peninsula. This study proves not only the applicability of machine learning approaches,

but also the usability of satellite-based precipitation data and surface temperature data for classi-

fying climate zones. Both precipitation and temperature showed a distinct range of variations

by climate class. In particular, the input variables (i.e., P_smin and T_wmin) that are prioritized

in the K-G formula showed large differences of variations by class and high variable importance.

Including the machine learning based maps, all climate classification maps have similar distri-

bution of snow climates (northern area) and warm temperate climates (southern area). The

maps produced using the proposed models showed better accuracy when compared to the exist-

ing maps. In particular, the ANN result showed better performance than KNN, LR, RF, and

SVM when considering the spatial distribution of in-situ observations (i.e., ASOS, AWS and

MMOS) and elevation data. Long-term time-series analysis based on the ANN results showed

the decrease in snow climate areas (D) and increase in warm temperate climate areas (C) in the

Korean Peninsula. Short-term time-series showed an inconsistent result when compared to the

long-term results. However, conspicuous changes in climate classes were confirmed from the

short-term analysis. The proposed methods can be used as a robust guideline to generate cli-

mate classification by applying satellite-based temperature and precipitation data.

However, there are some limitations, including the relatively small number of samples and

the short coverage period of MMOS data, which deserve for future research. The number of

climate class types and samples can increase through extending the study area to cover more

of East Asia. In addition, additional input data, such as soil moisture, evapotranspiration and

landcover may improve the performance of the proposed approaches for climate classification

in the future work.
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S1 Dataset. Calibration and validation data used to develop machine learning models (the

first row is variable names) and input variables for generating maps from 2001 to 2016.
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S1 Model. Model files developed in this study: artificial neural network, k-nearest neigh-

bors, logistic regression, random forest, and support vector machine.
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