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Chapter 11
Remote Sensing Technologies for Assessing 
Climate-Smart Criteria in Mountain 
Forests

Chiara Torresan, Sebastiaan Luyssaert, Gianluca Filippa, 
Mohammad Imangholiloo, and Rachel Gaulton

Abstract  Monitoring forest responses to climate-smart forestry (CSF) is necessary 
to determine whether forest management is on track to contribute to the reduction 
and/or removal of greenhouse gas emissions and the development of resilient moun-
tain forests. A set of indicators to assess “the smartness” of forests has been previ-
ously identified by combining indicators for sustainable forest management with the 
ecosystem services. Here, we discuss the remote sensing technologies suitable to 
assess those indicators grouped in forest resources, health and vitality, productivity, 
biological diversity, and protective functions criteria. Forest cover, growing stock, 
abiotic, biotic, and human-induced forest damage, and tree composition indicators 
can be readily assessed by using established remote sensing techniques. The emerg-
ing areas of phenotyping will help track genetic resource indicators. No single exist-
ing sensor or platform is sufficient on its own to assess all the individual CSF 
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indicators, due to the need to balance fine-scale monitoring and satisfactory cover-
age at broad scales. The challenge of being successful in assessing the largest 
number and type of indicators (e.g., soil conditions) is likely to be best tackled 
through multimode and multifunctional sensors, increasingly coupled with new 
computational and analytical approaches, such as cloud computing, machine learn-
ing, and deep learning.

11.1  �Introduction

Climate-smart forestry (CSF), as defined by Bowditch et al. (2020), consists of for-
est management practices that should enable both forests and society to transform, 
adapt to, and mitigate climate-induced changes. This definition is not far from the 
European Forest Institute (EFI) interpretation. Indeed, in EFI’s vision, CSF is an 
approach built on practices and active forest management targeted at reducing and/
or removing greenhouse gas emissions to mitigate climate change, building resilient 
forests, and sustainably increasing forest productivity and incomes (Nabuurs et al. 
2017; Kauppi et al. 2018). The economic dimension in the EFI’s point of view sub-
stitutes the social dimension of CSF on which Bowditch et al. (2020) focused. These 
two dimensions do not exclude each other: practices to stimulate forest productivity 
should not conflict with forestry practices aimed at growing forests able to contrib-
ute to the well-being of the people.

To determine whether forest management is on track to meet the goals of forest 
adaptation and mitigation to climate change, monitoring the forest response to prac-
tices applied during years of climate-smart forest management is necessary. 
Bowditch et al. (2020) selected a set of indicators to assess “the smartness” of for-
ests, induced by forest management activities carried out in response to climate 
changes, by combining the pan-European indicators for sustainable forest manage-
ment (SFM) (FOREST EUROPE 2015) with the ecosystem services defined by the 
European Environment Agency in the Common International Classification of 
Ecosystem Services (CICES V5.1 2018, Haines-Young and Potschin 2018). The 
full list of indicators is reported in Chap. 2 of the book (Weatherall  et  al. 2021) 
together with their classification in core and peripheral groups according to their 
importance to assess the provision of forest ecosystem services.

Remote sensing, “as the practice of deriving information about the Earth’s land 
and water surfaces using images acquired from an overhead perspective, using elec-
tromagnetic radiation in one or more regions of the electromagnetic spectrum, 
reflected or emitted from the Earth’s surfaces” (Campbell and Wynne 2011), can 
contribute to quantifying CSF indicators. As a general consideration, the benefits of 
remote sensing to monitor the forests as a result of the application of CSF practices 
are related to full coverage of forested areas in a relatively short time, repeatability 
of measurements, and availability of data for remote or inaccessible terrestrial areas 
(Koch 2015). Remote sensing plays an important role in mountain forest monitor-
ing, i.e., forests at an elevation of 2500 m a.s.l. or higher, irrespective of the slope, 
or on land with an elevation of 300–2500  m and a slope with sharp changes in 
elevation within a short distance (Kapos et al. 2000). Because of their steep slopes 
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and often-extreme climates and weather events, mountain forests are fragile ecosys-
tems. Under a global change scenario, remote sensing technologies allow more 
complete spatial and temporal monitoring of climate-smart forests and forestry 
(e.g., to prevent and contrast illegal logging), including those in inaccessible moun-
tain environments. Mountains are often data-scarce regions due to their remoteness 
and the harsh environment: in these contexts, remote sensing may provide one of the 
few methods for assessing the state of dynamic changes occurring in mountain for-
ests (Weiss and Walsh 2009). Indeed, remote sensing overcomes the challenges of 
collecting field data in rugged terrain and the constraints imposed by the seasonality 
of access to many mountain environments. Generally, remote sensing in mountain 
areas is very similar to remote sensing elsewhere, but the complex topography com-
mon to mountainous regions, i.e., slope with sharp changes in elevation within a 
short distance, introduces several challenges unique to these environments (Weiss 
and Walsh 2009). Remote sensing products over mountain regions come with a 
larger measurement error than remote sensing products over flat terrain due to topo-
graphic effects (Li et al. 2014). In the case of satellite microwave radiometric data, 
for example, the error is particularly correlated to the mean values of the height and 
slope within the radiometric pixel, as well as to the standard deviation of the aspect 
and local incidence angle (Li et al. 2014). In optical images, corrections in prepro-
cessing are in general required to reduce the spectral biases due to the topographic 
features that led to aspect-dependent illumination and reflectance differences, shad-
owing, and geometric distortion (Weiss and Walsh 2009). In other remote sensing 
data, such as the radio detection and ranging (RADAR), topography can result in 
distortions, such as foreshortening and layover on slopes and in areas of shadow that 
are not measured.

When assessing the CSF indicators in mountain forests by remote sensing, we 
have to consider that the temporal scale of monitoring needs to be adjusted for dif-
ferent indicators to ensure early detection of change is possible. Specific focus 
should be put on those indicators sensitive to climate change. Forest-based climate 
change indicators should complement SFM indicators by capturing the effects of 
climate change on the forest environment and the forest sector (Lorente et al. 2018).

In this chapter, we briefly describe the key aspects of remote sensing techniques 
for monitoring the climate smartness of forests. Next, we consider the techniques 
suitable to quantify indicators of forest resources, health and vitality, productivity, 
biological diversity, and protection considering specific challenges in mountain 
regions. Finally, considerations on future developments to assess climate smartness 
criteria in mountain forests are provided.

11.2  �Remote Sensing of CSF Criteria in Mountain Forests: 
An Overview

Pan-European Criteria and Indicators (PECI) have proved to be a very helpful tool 
in providing solid information as the basis for the sustainable management of the 
forests in the pan-European region between policymakers, the private sector, and 
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civil society over the years (FOREST EUROPE 2015). The role of the CSF indica-
tors selected by Bowditch et al. (2020) is in line with the role of PECI.

The relevance of remote sensing in quantifying the CSF indicators is linked to 
the possibility to extract relevant variables from remotely sensed data. In some 
cases, it may be possible to make relevant direct measurements, but often remote 
sensing proxies can be used to represent indicator values (Ghaffarian et al. 2018). 
For example, from tree crown delineation processes applied to light detection and 
ranging (LiDAR) data, tree crowns can be segmented as well as tree height quanti-
fied, and, through allometric equations, the volume can be successively estimated. 
For these reasons, when using remote sensing data, it is important to identify the 
information to be derived from the data and the kind of product and information to 
be delivered as an expression of CSF indicator. Besides, the coverage of remote 
sensing data has to be investigated. While for satellite images, the coverage should 
be not a problem, in the case of LiDAR data, availability could be sparse in the area 
of interest, and the timing and frequency of data acquisition could differ among dif-
ferent areas. Despite their importance, terrestrial remote sensing techniques, such as 
terrestrial photogrammetry and terrestrial laser scanning (TLS), are not included in 
this chapter. The description of the development of TLS as a plot-scale measure-
ment tool can be found in Newnham et al. (2015), and the current state of the art in 
the utilization of close-range sensing in forest monitoring is summarized in 
Vastaranta et al. (2020). For the sake of clarity, in close-range sensing are included 
technologies, such as terrestrial and mobile laser scanning as well as unmanned 
aerial vehicles (UAV), which are mainly used for collecting detailed information 
from single trees, forest patches or small forested landscapes (Vastaranta et  al. 
2020). It is worth underlining here that, based on the current published scientific 
literature, the capacity to characterize changes in forest ecosystems using close-
range sensing has been recognized (Vastaranta et al. 2020) and, among close-range 
sensing techniques, terrestrial laser scanning should be viewed as a disruptive tech-
nology that requires a rethink of vegetation surveys and their application across a 
wide range of disciplines (Newnham et al. 2015). These technologies are potentially 
game-changing but outside the scope of this chapter. Here, we focus on the systems 
carried on spaceborne and airborne (both manned and unmanned) platforms.

11.3  �Remote Sensing of Climate Smartness According 
to the Forest Resources

11.3.1  �Defining Forest Resources in the Context 
of Climate Smartness

The area covered by forests is likely to change as the climate changes. There are 
also likely to be shifts in forest types due to changing temperatures and precipitation 
regimes. Forest area is expected to contract in the mountain and boreal regions and 
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to expand in the temperate zone (Lucier et  al. 2009; Wang et  al. 2019). Natural 
changes in climate that occurred in past geological eras have determined analogous 
changes in forest cover, but for the present era, it will be difficult to isolate climate 
change from the other factors that are affecting the range of forest area (Lucier et al. 
2009). Boreal forests are expected to move north due to climate change. Temperate 
forests are also expected to increase their area to the north but to a greater extent 
than boreal forests, which will reduce the total area of boreal forests (Burton 
et al. 2010).

Interactions among the impacts of climate change, land-use conversion, and 
unsustainable land-use practices are expected. Changes in water availability will be 
a key factor in the survival and growth of many forest species, although the response 
to prolonged droughts will vary among species and also among varieties of the same 
species (Lucier et al. 2009). Climate change will increase the risk of frequent and 
more intense fires, especially in areas where it leads to lower precipitation or longer 
dry periods, as in boreal forests (Burton et al. 2010), and forests in the Mediterranean 
and subtropical regions (Fischlin et al. 2009).

CSF is needed to increase the total forest area and avoid deforestation and to 
facilitate the use of wood products that store carbon and substitute emission-
intensive fossil and nonrenewable products and materials (Verkerk et  al. 2020). 
Deforestation and forest degradation account for about 12% of global anthropo-
genic carbon emissions, which is second only to fossil fuel combustion (Calders 
et al. 2020). Those emissions are partially compensated by forest growth, foresta-
tion, and the rebuilding of soil carbon pools following afforestation.

As forest resources are important for climate change mitigation, timely and accu-
rate information about their status is needed. Indeed, assessing forest resources 
means assessing their extent in terms of area and their distribution, the volume of 
standing trees, and the carbon stock in woody biomass and soil. As a consequence, 
the maintenance and the appropriate enhancement of forest resources and their con-
tribution to global carbon cycles are assessed by indicators that quantify the forest 
area, growing stock, carbon stock, and age structure and/or diameter distribution 
(FOREST EUROPE 2015).

11.3.2  �Appropriate Remote Sensing Methods 
for the Monitoring of Forest Resource Indicators

Advances in remote sensing technologies drive innovations in forest resource 
assessments and monitoring at varying scales. Data acquired with spaceborne and 
airborne platforms provide us with higher spatial resolution, more frequent cover-
age, and increased spectral information than was available previously (Calders et al. 
2020), allowing for frequent updates of forest  information layers. Optical space-
borne sensors represent a consolidated opportunity to augment traditional data 
sources for large-area and sample-based forest inventories, especially for inventory 
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updates (Falkowski et al. 2009). For example, Kempeneers et al. (2012) derived two 
pan-European forest maps and forest-type maps for the years 2000 and 2006 from 
MODIS medium-resolution, optical satellite imagery using an automatic processing 
technique. Knorn et al. (2009) produced a map of forest/non-forest cover of large 
areas in the Carpathian Mountains using chain classification of neighboring Landsat 
satellite images. High-resolution layers of tree cover density, dominant leaf type, 
and forest type are derived from semiautomatic classification algorithms applied on 
Sentinel-1 and Sentinel-2 images every 3 years (the first products were delivered in 
2006, the last in 2018). These products, representing the status and evolution of the 
forest surface, are used for the assessment of pan-European forest resources 
(Copernicus Emergency Management Service 2020). Tree cover mapping based on 
Sentinel-2 images demonstrated high thematic overall accuracy in Europe, i.e., up 
to 90% (Ottosen et al. 2020). Among those based on aerial platforms, LiDAR or 
airborne laser scanning (ALS), typically multiphoton LiDAR, has become an opera-
tional technology in mapping, and it is used for inventorying forests. The feasibility 
of using single-photon LiDAR (SPL) for land cover classification has been recently 
studied in North Europe (Matikainen et al. 2020). The application of algorithms to 
LiDAR data, most of them based on geometric characteristics of point clouds, 
including mathematical morphology, and adaptive and robust filtering, allows sepa-
rate vegetation points from ground points in a mountainous environment. The filter-
ing process is an essential step for the generation of the digital terrain model (DTM), 
and makes possible the estimation of canopy height and the production of the can-
opy height model (CHM). LiDAR data can also enhance the capability to discrimi-
nate forest areas in satellite images, for example, QuickBird imagery (Hilker et al. 
2008) and Sentinel-2 images (Fragoso-Campón et al. 2020), by fusion in the satel-
lite data of metrics concerning the height.

Growing stock, i.e., the stem volume of living trees, is a basic variable to assess 
forest resources, and it is used as a basis for estimating the amount of carbon accu-
mulated in living trees, thereby allowing for the assessment of harvesting possibili-
ties and risks of disturbance (FOREST EUROPE 2015). Using satellite images, 
Päivinen et al. (2009) produced broadleaf, coniferous, and total growing stock maps 
for the pan-European forest area by combining the NOAA-AVHRR imagery and 
statistics derived from national forest inventories of European countries. Gallaun 
et al. (2010) did the same using MODIS imagery. At a smaller scale, Mura et al. 
(2018) used Sentinel-2 imagery to estimate growing stock volume in two forest 
areas in Italy, and for comparison, they used Landsat 8 OLI and RapidEye images. 
Since the application of ALS in forestry, models trained with local inventory data 
have been widely applied for growing stock estimation (Næsset 1997; Maltamo 
et al. 2006; Dalponte et al. 2009; Corona et al. 2014). The inference of growing 
stock volume is carried out by regression models built to correlate values of LiDAR 
metrics to the values of the ground-truth volume. The metrics can be extracted from 
the raw (point or waveform) LiDAR data or from the CHM, at tree or plot level, 
following an individual tree crown (ITC) or an area-based approach (AB). Examples 
of metrics computable from the ALS point cloud data are aboveground elevation of 
highest return, height percentiles, coefficient of variation of return height, skewness 
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and kurtosis of returns height, non-ground percentage of total returns, etc. In the 
CHM, metrics, such as height per pixel, coefficient of variation of the height per 
pixel, or the sum of the heights of all the pixels in the plot, are calculated and used 
in the model building. The Geoscience Laser Altimeter System (GLAS) was a laser-
ranging instrument able to provide large footprint waveform LiDAR datasets for 
global observations of Earth, which was aboard ICESat from 2003 to 2009. GLAS 
data have been used to extract canopy height and map the growing stock at 1 km 
spatial resolution for Spanish forest areas in combination with ground forest 
inventory data (Sánchez-Ruiz et al. 2016).

Carbon stock, i.e., the quantity of carbon in forest biomass, dead organic matter 
and soil, and harvested wood products, is linked to society’s efforts to mitigate cli-
mate change by reducing the net emissions of greenhouse gases to the atmosphere 
(FOREST EUROPE 2015). In the past, the use of satellite imagery to assess forest 
biomass, and consequently to estimate the carbon stock, was mainly based on the 
normalized difference vegetation index (NDVI, the index that quantifies vegetation 
by measuring the difference between near-infrared, which vegetation strongly 
reflects, and red light, which vegetation absorbs) datasets. For example, at regional 
scale, NDVI and enhanced vegetation index (EVI) extracted from MODIS images 
in combination with field data were used to model carbon stock in aboveground 
biomass of European beech forest in central Italy (Taghavi-Bayat et  al. 2012). 
Attempts to explore the spatiotemporal changes in carbon stock have been con-
ducted overlaying the vegetation maps of a region and NDVI datasets (Shi and Liu 
2017). It is worth underlining that NDVI is largely determined by canopy dynamics, 
which from an ecological point of view have very little to do with dead wood, litter, 
and soil carbon. In addition, Hasenauer et  al. (2017) highlighted that local daily 
climate data should be used, and stand density effects should be addressed to obtain 
realistic forest productivity estimates when using satellite imagery. Hence, these 
kinds of products should no longer be considered data products, but they have 
become model products. These shortcomings contributed to the BIOMASS Earth 
Explorer satellite of the European Space Agency (ESA) being selected to perform a 
global survey of Earth’s forests and see how they change, thanks to the data that will 
be used in carbon cycle calculations, over the course of BIOMASS’s 5-year mission 
set to start on 2022. With this launch, a fully polarimetric P-band synthetic aperture 
radar (SAR) will be available for the first time in space. Mutual gains will be made 
by combining BIOMASS data with data from other missions that will measure for-
est biomass, structure, height, and change, including the NASA Global Ecosystem 
Dynamics Investigation (GEDI) LiDAR after its launch in December 2018, and the 
NASA-ISRO NISAR L- and S-band SAR, due for launch in 2022 (Quegan et al. 
2019). Limitations of these missions have to be taken into consideration, for exam-
ple, in the case of GEDI, the fact that it samples about 4% of the Earth’s land surface 
between 51.6° N and S latitude (Dubayah et al. 2020). Airborne S-Band SAR data 
have been used to estimate forest aboveground biomass in temperate mixed forests 
of the UK (Ningthoujam et al. 2016), while integrated spaceborne SAR data from 
COSMO-SkyMed (X band) and ALOS PALSAR (L band) with field inventory have 
been used to estimate the forest aboveground carbon (AGC) stock by Sinha et al. 
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(2019). However, mapping biomass in mountain regions can be challenging as 
many regions include steep topography, making the use of RADAR data complex; 
for this, Mitchard et al. (2012) proposed to use a combination of terrain-corrected 
L-band RADAR data (ALOS PALSAR), spaceborne LiDAR data (ICESat GLAS), 
and ground-based data as a solution to this problem. Referring to ALS data, the 
most used approach for estimating carbon stocks is similar to that described for the 
estimation of the growing stock: it involves computing statistics from ALS point 
clouds for a specific pixel of forested land and relating these to carbon estimates 
obtained from field plots in a regression framework (Jucker et al. 2017). Currently, 
efforts are moving from this AB approach toward a tree-centric approach for inte-
grating tree-level ALS data into biomass monitoring programs. Two solutions are 
most commonly applied: the first is to use tree height and crown dimensions, com-
puted for a single tree after its segmentation, to predict diameters, allowing the 
biomass to be estimated using existing allometric equations (e.g., Dalponte and 
Coomes 2016); the second is to develop equations that estimate biomass directly 
from tree height and crown size, thus bypassing diameter altogether (Jucker 
et al. 2017).

Regarding the carbon in soils, Rasel et  al. (2017) explored the possibility of 
developing a model based on variables (i.e., elevation, forest type, and aboveground 
biomass) extracted from LiDAR data and WorldView-2 imagery to estimate soil 
carbon stocks. It is evident from this kind of approach that soil carbon content can-
not be measured directly by LiDAR data; hence, the problem is to understand how 
much modelling is acceptable to still consider its result an observational product.

With reference to the age structure indicator, information concerning the age-
class structure of forests, and for uneven-aged forests, their diameter distributions, 
is important for understanding the history of forests and their likely future develop-
ment, for assessing the harvesting potential, and for providing insights into biodi-
versity and recreation, which are generally more favorable in uneven-aged and old 
even-aged forests than in young even-aged forests (FOREST EUROPE 2015). It is 
known that the diameter of a tree can generally be modelled as a function of tree 
height or tree crown or measures related to stand structure (Filipescu et al. 2012) 
and derived from LiDAR data (Thomas et al. 2008; Salas et al. 2010; Bergseng et al. 
2015; Spriggs et al. 2017; Arias-Rodil et al. 2018). Recently, harvester-mounted and 
ALS data (Maltamo et al. 2019) as well as SPOT-5 satellite imagery and field sample 
data (Peuhkurinen et al. 2018) have been used to estimate stand-level stem diameter 
distribution. Forest types (i.e., pole-stage, young, adult, mature, and old-growth 
forests) have been predicted using classification trees from LiDAR data (Torresan 
et al. 2016). Global forest canopy height products have been derived from GLAS, 
revealing a global latitudinal gradient in canopy height, increasing toward the equa-
tor, as well as coarse forest disturbance patterns (Simard et al. 2011), and also from 
MODIS and GLAS data using image segmentation (Lefsky 2010). Global canopy 
cover distributions were analyzed using observations from GLAS (Tang et al. 2019), 
and it was discovered that the estimates were sensitive to canopy cover dynamics 
even over dense forests with cover exceeding 80% and were able to better 
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characterize biome-level gradients and canopy cover distributions than the existing 
products derived from conventional optical remote sensing.

ALS is a powerful source of data to compute the new indicators of climate smart-
ness defined by Bowditch et al. (2020) related to vertical and horizontal forest struc-
ture. The first experiences in the application of ALS data for the assessment of 
vertical and horizontal forest structure are attributable to Friedlaender and Koch 
(2000). Successively, vertical distribution of tree crowns in terms of layers has been 
analyzed and characterized by Zimble et al. (2003) using ALS-derived tree heights, 
which allowed detecting differences in the continuous nature of vertical structure 
forest and specifically allowed two classes of vertical forest structure to be distin-
guished. Vertical distribution has been derived in multi-story stands, stratifying the 
ALS point cloud to canopy layers and segmenting individual tree crowns within 
each layer using a DSM-based tree segmentation method (Hamraz et  al. 2017). 
Horizontal and vertical distribution of forest canopy has been derived using two 
point clouds from a UAV: one obtained by applying the Structure from Motion tech-
nique to digital photographs and the other one obtained from a LiDAR system 
(Wallace et al. 2016). Results indicate that both techniques are capable of providing 
information that can be used to describe canopy properties in areas of relatively low 
canopy closure. A comparison between waveform ALS data and discrete return 
ALS data, using TLS data as an independent validation, to describe the 3D structure 
of vegetation canopies (Anderson et al. 2015) highlighted that discrete return ALS 
data provide more biased and less consistent measurements of woodland canopy 
height than waveform ALS data. Besides, discrete return ALS data performed 
poorly in describing the canopy understory, compared to waveform data, but wave-
form ALS carried a higher data processing cost.

The slenderness coefficient, i.e., the ratio of tree total height to DBH, is a funda-
mental attribute for determining tree and stand stability (Vincent et al. 2012), but 
despite using very high-density LiDAR point cloud from aerial platforms, the stem 
is not sufficiently visible for accurate DBH extraction. This is only really feasible 
from ground-based LiDAR or photogrammetry data.

11.4  �Remote Sensing of Climate Smartness According 
to the Forest Health and Vitality

11.4.1  �Defining Health and Vitality in the Context 
of Climate Smartness

The state of health and vitality of a forest is determined by considering various fac-
tors, such as age, structure, composition, function, vigor, the presence of unusual 
levels of insects or disease, and resilience to disturbance. Climate change may have 
profound impacts on the health and vitality of the forests. In some cases, vitality 
may increase due to a combination of carbon dioxide fertilization and a more 
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favorable climate. However, in many cases, benefits of carbon dioxide increase on 
tree growth may be outweighed by increasing drought- and heat-induced tree 
mortality (Allen et al. 2010), and increasing temperatures can favor the growth of 
insect populations that are particularly detrimental to the health of forests composed 
of few tree species (Lucier et al. 2009), as in the case of alpine forests affected by 
the spruce bark beetle (Ips typographus L.). Longer harvesting periods, increased 
storm damage, and longer spore-production season seem to be the causes of the 
increase in infestations of root and bud rot by the fungus Heterobasidion parviporum 
Niemelä & Korhonen in coniferous forests in North Europe (Burton et al. 2010).

The criterion of forest health and vitality addresses one of the main concerns of 
the European countries at the start of the pan-European process. This criterion 
includes indicators of soil conditions; forest damage by abiotic, biotic, and human-
induced agents; defoliation; deposition; and concentration of air pollutants on for-
ests (FOREST EUROPE 2015).

11.4.2  �Appropriate Remote Sensing Methods 
for the Monitoring of Health and Vitality Indicators

Indicators of soil conditions, defined in terms of carbon, water, and nutrient concen-
trations, are generally not directly measurable by remote sensing techniques in for-
est environments, as exposed soil is rarely visible. However, SAR and microwave 
radiometer systems using long wavelengths (e.g., L-Band) have been used to mea-
sure surface (0–5 cm depth) soil moisture under forest canopies, but modelling of 
the scattering and absorption effects of the canopy is required, and the effect of the 
litter layer and surface roughness must be considered. Root-zone soil moisture can 
be estimated by assimilation of such data into land-surface or hydrological models, 
but such approaches may be less successful in mountainous and densely forested 
areas (Pablos et al. 2018). A review of modelling the passive microwave signature 
from land surfaces can be found in Wigneron et al. (2017), and some assessment of 
accuracy over forested areas is provided in Vittucci et  al. (2016). The coarse 
resolution of passive microwave radiometer satellite missions, such as Soil Moisture 
Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP), largely limits 
their application to regional scales and above. The potential for the use of active 
RADAR for soil moisture retrieval has also been explored, with good agreement 
with ground measurements, using L- and P-band polarimetric airborne SAR in jack 
pine forest stands (Moghaddam et al. 2000), and for soil moisture variations retrieval 
from ERS SAR satellite data in a recently burned black spruce forest in Alaska 
(Kasischke et al. 2007).

Remote sensing can significantly contribute to measuring and monitoring forest 
damage from abiotic (e.g., drought, winter injury, wind storms, avalanche, landslide, 
fires, air pollution) and biotic  (insect pests, diseases) stresses, which influence key 
biophysical and biochemical parameters of the tree canopy and structure. 
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Large-scale, stand-replacing, disturbance events leading to significant loss of tree 
cover can be readily monitored with satellite or aerial imagery using change detection 
approaches. Over large areas, extensive satellite image time series, such as the Landsat 
archive, have been used to map tree cover loss, using methods such as the vegetation 
change tracker algorithm (Masek et al. 2013), and to capture both slowly evolving 
and abrupt changes in forest cover using LandTrendr – temporal segmentation algo-
rithm (Kennedy et al. 2010). IKONOS satellite imagery with Tasseled Cap transfor-
mation and edge enhancements have been tested for mapping of snow avalanche 
paths (Walsh et al. 2004) and RapidEye imagery for detecting windthrow damage 
based on pre- and post-storm object-based change detection (Einzmann et al. 2017). 
Remote sensing has also been widely applied in monitoring both active fires (using 
thermal sensors) and fire severity and in detecting fire scar (Szpakowski and Jensen 
2019). Although both stand-replacing disturbances and finer-scale abiotic or biotic 
forest damage and decline can be measured, attribution of the specific cause of 
observed stress or disturbance can frequently be more challenging. But it can poten-
tially be achieved through consideration of the spectral properties (e.g., dead and 
burnt materials resulting from fires; McDowell et al. 2015), temporal signatures and 
specific symptom progression (e.g., for pest or disease; Stone and Mohammed, 2017), 
and spatial patterns of disturbance. Regarding forest damage by human-induced 
agents, Kennedy et al. (2007) used distinctive temporal signatures in the progression 
of spectral properties before and after an event to identify the timing of disturbance 
events, such as clear-cuts and thinnings from a dense stack of Landsat TM images, 
and to attribute the type using a series of rules. Hilker et al. (2011) utilized spatial 
characteristics of disturbed patches (patch size, core area, and contiguity), along with 
the date of disturbance, to attribute disturbance types in Alberta, Canada, using a 
regression tree classification method, while Hermosilla et al. (2015) utilized spectral, 
temporal, and geometric metrics from Landsat time series to attribute disturbance as 
fire, harvesting, road, and non-stand-replacing changes with a 91.6% accuracy level. 
Baumann et  al. (2014) developed a method to separate windfall disturbance from 
clearcut forest harvesting activity using Landsat data, after Tasseled Cap transforma-
tion, obtaining classification accuracy over 75% for windfall areas and better results 
for larger disturbance patches. The classification was based on spectral differences 
between the disturbance types, such as lower brightness (due to shadows from 
remaining biomass) and higher wetness for the windfall areas. Often ancillary data, 
such as meteorological observations, information on known disturbance agents or 
events (e.g., storm paths, species ranges for hosts and pests, indices of fire risk), and 
additional field-based monitoring observations, are needed to reliably attribute or 
confirm causes, often through integration with modelling (McDowell et al. 2015).

To monitor changes in forest vitality and stress in individual trees, a range of 
biophysical and biochemical parameters can be estimated with remote sensing. 
These include defoliation, alterations in pigment concentrations, reduced photosyn-
thesis and light-use efficiency, changes in water relations and hydraulic transport, 
including leaf water content and evapotranspiration rates, and changes in leaf cell 
structure due to senescence or wilting. Detailed reviews of the use of remote sensing 
systems to detect such changes resulting from pests and disease (Chen and 
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Meentemeyer 2016) and die-off from abiotic stress, such as drought (Huang et al. 
2019), provide an in-depth insight into the capability of different sensor systems. 
Optical sensors are capable of detecting noticeable changes in foliar color due to 
changes in pigment concentrations or photosynthetic activity. A wide range of spec-
tral indices have been developed to estimate pigment concentrations (e.g., the carot-
enoid reflectance index; Gitelson et  al. 2002), light-use efficiency (LUE), or 
photosynthetic activity from multispectral or hyperspectral data, and a detailed 
summary of such methods in monitoring forest decline and disturbance can be 
found in Pontius et al. (2020). Widely used LUE indices, such as the photosynthetic 
reflectance index (PRI; Gamon et al. 1997) and chlorophyll/carotenoid index (CCI; 
Gamon et al. 2016), have allowed detection of water stress (Hernández-Clemente 
et al. 2011; Dotzler et al. 2015) and forest pests, e.g., Peña and Altmann (2009) use 
the PRI to detect aphid-induced stress in the Chilean Andes. Such methods require 
hyperspectral data, which can be costly and hard to acquire and can be sensitive to 
illumination conditions and canopy structure. Some early-stage pest and disease 
symptoms cannot be easily observed in the visible range but can be identified by 
sensors with the capacity to detect the near- and shortwave- infrared spectrum, 
where reflectance is strongly influenced by the structure of leaf mesophyll tissue 
and water content. A common example is the use of the NDVI, which can be sensi-
tive to defoliation and to changing chlorophyll levels but also prone to saturation at 
high values of leaf area index (LAI). Optical remote sensing has been extensively 
tested for the survey of damage by mountain pine beetle in the Canadian and 
American Rocky Mountains, ranging from visual interpretation of aerial photogra-
phy (e.g., Klein 1982) to the use of Landsat time series and spectral indices related 
to needle water content for automated mapping of red attack stages (e.g., Skakun 
et al. 2003). More recently, efforts have been made to detect early “green” attack 
stages of mountain pine beetle infestation, using hyperspectral data (e.g., Fassnacht 
et al. 2014) and with Mullen et al. (2018) using high-resolution WorldView-2 satel-
lite imagery to detect differences in spectral properties of individual tree crowns, 
especially in the near-infrared region. Other remote sensing methods attempt to 
measure changes in photosynthesis or plant functioning more directly. Thermal 
measurements are sensitive to changes in leaf temperature caused by reduced 
evapotranspiration as a result of stomatal closure following water stress. Such 
measurements have been used in the detection of red-band needle blight in pine 
from a UAV platform (Smigaj et al. 2019) but are highly sensitive to changes in 
meteorological conditions and time of acquisition. The ECOSTRESS instrument on 
the International Space Station aims to provide thermal-derived estimates of water 
stress over much larger extents. A wide range of optical spectral indices (e.g., short-
wave infrared-based normalized difference water index, Gao 1996, or moisture 
stress index, Hunt and Rock 1989) have been proposed to detect vegetation drought 
stress, but methods have also been proposed based on passive microwave sensors 
(e.g., estimation of relative water content based on vegetation optical depth, Rao 
et al. 2019) and solar-induced chlorophyll fluorescence (SIF) of leaves. SIF results 
from the emittance of light during photosynthetic activity and, therefore, allows for 
tracking of photosynthetic activity, phenology, and estimation of GPP, but it is 
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influenced by plant stress when excess light is present and LUE is low. SIF has been 
used to detect stress due to environmental conditions in forest environments (e.g., 
the Lägeren forest site in Switzerland, where an abrupt decrease in SIF was shown 
to relate to a heat wave and an aphid outbreak causing early leaf senescence, Paul-
Limoges et al. 2018) and has significant future potential with the expected 2022 
launch of the ESA FLEX Earth Explorer mission; however, such measurements are 
again influenced by the diurnal timing of acquisition and the species being observed.

Defoliation is a key indicator of forest decline and has been extensively moni-
tored using optical, LiDAR, and RADAR data at a range of scales from individual 
trees to landscape. For example, Olsson et al. (2016) use MODIS NDVI products to 
monitor insect outbreak-linked defoliation in a subalpine birch forest in Sweden, in 
near real time. Through the use of an NDVI time series, 74% of defoliation was 
detected where pixels comprised at least 50% birch forest cover, but with some sig-
nificant misclassification of undisturbed forest, depending on threshold selection. In 
contrast, Meng et al. (2018) map defoliation at the individual tree level, based on 
airborne hyperspectral imaging and LiDAR metrics. They show red-edge and near-
infrared wavelength regions to be sensitive to defoliation due to gypsy moth at the 
crown scale and demonstrate the superior capability of LiDAR structural and 
intensity metrics to predict leaf area. Meiforth et al. (2020) combine WorldView-2 
and LiDAR to detect dieback of New Zealand kauri trees, utilizing spectral indices, 
such as NDVI and red-green ratio. Including LiDAR structural metrics improved the 
correlation with graded stress levels but incurs significant additional expense, and 
steep terrain can cause spatial misalignment with optical data. However, the use of 
LiDAR to identify and segment individual tree crowns can often be important for the 
analysis of high-resolution optical data. Recent and next-generation satellite sensors, 
including Sentinel-2, WorldView-2 and WorldView-3, and GEDI, increase the 
capacity for monitoring of defoliation across larger spatial scales (Meng et al. 2018).

Pollution can also impact forest health, particularly air pollution from ground-
level ozone and excessive nitrogen or sulfur deposition. Remote sensing approaches, 
including near-infrared aerial photography, airborne hyperspectral systems, and sat-
ellite observations, have long been used to monitor forest decline attributed to pol-
lutants including acid rain. For example, Rock et al. (1988) showed a shift in the 
red-edge location of spruce and fir tree spectra to shorter wavelengths (a so-called 
blue shift) from airborne hyperspectral data in the presence of forest decline in the 
American and German mountain sites, believed to be due to pollutants including 
trace metals. Rees and Williams (1997) monitored the effects of air pollution on 
terrestrial ecosystems using Landsat-MSS images from 1978 to 1992, to study the 
impact of sulfur dioxide emissions on boreal forest, while Diem (2002) showed 
foliar injury related to ozone exposure could be detected from Landsat-MSS vegeta-
tion indices. However, the pollution-related decline is often compounded by other 
stress factors, including insect or disease outbreaks. Remote sensing also has an 
additional role to play in this area through monitoring of atmospheric conditions 
and pollutants, including nitrogen dioxide and sulfur dioxide (Martin 2008). For 
example, ground-level ozone formation can be studied from measurements of 
precursor compounds (e.g., formaldehyde and nitrogen dioxide) from satellite 
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observations by the ozone monitoring instrument onboard NASA’s Aura satellite 
(Jin et al. 2017).

11.5  �Remote Sensing of Climate Smartness According 
to the Forest Productivity

11.5.1  �Defining Forest Productivity in the Context 
of Climate Smartness

Forest productivity, i.e., the potential of a particular forest stand to produce aboveg-
round wood volume, is affected by climate change to differing extents, according to 
geographic area, species, stand composition, tree age, soil water retention capacity, 
and the interactions between these factors (Gao et al. 2019; Ammer 2019; Paquette 
et al. 2018). Some changes in productivity may be short term, and transitory and 
previous levels of productivity may be restored once carbon sinks become saturated 
(Hedin 2015) and water availability scarce. However, in areas where the water is not 
a limiting factor, there may be an initial increase in growth if there is less waterlog-
ging. Similar reactions have been noted for carbon dioxide (Ollinger et al. 2008) 
and nitrogen fertilization (LeBauer and Treseder 2008) and increased temperatures 
(Reich and Oleksyn 2008). While in most temperate areas, forest productivity has 
been found to increase with higher temperature, which is probably due to carbon 
dioxide fertilization, in tropical areas, the productivity declines when carbon diox-
ide saturation is reached (Hubau et al. 2020), probably due to water deficits over 
extended periods.

The indicators of productive functions of forests aim to assess the quantity and 
the values of the produced goods and marketed services, as well as to make sure that 
this productivity is sustainable, using multipurpose management (FOREST 
EUROPE 2015). The balance between net annual increment and annual felling is 
the indicator used to understand the forest’s potential for wood production and the 
conditions it provides for biodiversity, health, recreation, and other forest functions. 
The assessment of the quantity and market values of roundwood is important for 
wood supply, particularly for marginalized rural areas, where the wood energy chain 
has been suggested as a means to reactivate forest management and improve the 
value of forest stands (Vacchiano et al. 2018).

11.5.2  �Appropriate Remote Sensing Methods 
for the Monitoring of the Forest Productivity Indicators

Although remote sensing cannot itself directly measure indicators such as the bal-
ance between the net annual increment and annual felling of wood, or the quantity 
and market values of roundwood available for wood chain supply, or the proportion 
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of forest under a management plan, it is worth underlining that the computation of 
increment assumes the knowledge of the volume of standing trees, living or dead, 
which is the growing stock whose estimation using remote sensing was already 
considered in Sect. 11.3.2.

Net primary production (NPP) can be considered an indicator of productivity, 
quantifiable using remote sensing data (e.g., Coops 2015): according to this 
approach, top-of-atmosphere measurements of solar radiance from satellite obser-
vation are used to estimate the incoming photosynthetically active radiation (PAR), 
and, successively, LUE modelling techniques are used to estimate the gross primary 
production (GPP) and the NPP. It appears clear that PAR can be measured and thus 
GPP can be estimated, but going from GPP to NPP requires that radiation is mod-
elled or makes assumptions regarding LUE, which depend on field observations. 
Besides, the application of these models at a higher level of detail requires the avail-
ability of high spatial and temporal resolution maps of a series of model drivers 
(e.g., meteorology, land use) frequently unavailable for mountain areas (Yang et al. 
2020). Furthermore, there are few good and complete GPP observations globally, 
and NPP estimates are typically multi-year averages and cannot be better than field 
observations (Šímová and Storch 2017). Even the amount of foliage of stands, mea-
sured as the LAI, is a key indicator of forest productivity, principally due to its 
importance for photosynthesis, transpiration, evapotranspiration, and, in turn, 
GPP. Remote sensing estimation of LAI has been undertaken using several 
approaches reported in Coops (2015), but LAI measurements based on light absorp-
tion have been shown to saturate for values bigger than 4 (Waring et  al. 2010); 
therefore, this aspect limits the value of this product. Remote sensing estimates of 
LAI and fraction of absorbed PAR can be integrated into process-based forest 
growth models, such as 3-PG SPATIAL, to model productivity at stand to regional 
scales and growth variables such as site index (SI), the most common means for 
quantifying forest stand-level potential productivity, and to estimate impacts of cli-
mate change on future productivity (Coops et al. 2011). LAI estimates are routinely 
available from MODIS satellite data and have become widely used since their 
release in 2000 (De Kauwe et al. 2011). SI has been compared with GPP estimates 
obtained from 3-PG SPATIAL using climate variables and MODIS (Weiskittel et al. 
2011). Results indicated that a nonparametric model with two climate-related pre-
dictor variables explained over 68% and 76% of the variation in SI and GPP, respec-
tively. The relationship between GPP and SI was limited (determination coefficient 
of 36–56%), while the relationship between GPP and climate (determination coef-
ficient of 76–91%) was stronger than the one between SI and climate (determination 
coefficient of 68–78%).

In terms of harvesting activity, Smith and Askne (2001) used ERS SAR inter-
ferograms over 3 years to detect clearcut areas of a minimum size of 0.4 ha in north-
ern Sweden. Saksa et  al. (2003) compared the applicability of Landsat satellite 
imagery and high-altitude panchromatic aerial orthophotos using digital change 
detection methods in detecting clearcut areas in a boreal forest. MODIS images 
were used by Bucha and Stibig (2008) for the detection and monitoring of forest 
clearcuts in the boreal forest in north-west  Russia, while Lambert et  al. (2015) 
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proposed the usage of MODIS NDVI time series in south-western Massif Central 
Mountains in France to detect clearfelling. Panagiotidis et al. (2019) detected fallen 
logs from high-resolution UAV images at plot level (i.e., 2500 m2 plot size) in flat 
topographic conditions and open canopy cover.

Climatic changes affect the treeline location, causing shifts, and identification 
and quantification of treeline dynamics are critical. An approach for the identifica-
tion of shifts in the treeline altitudes for a period of four decades based on NDVI, 
land surface temperature (LST) data, air temperature data, and forest stand maps has 
been developed for the mountain forest of Cehennemdere in Turkey, showing a 
geographical expansion of the treeline in both the highest altitudes and the lowest 
altitudes (Arekhi et  al. 2018). The integration of in situ dendrometric data with 
analyses from dendrochronological samples, high-resolution 3D UAV photos, and 
new satellite images has been found a solution to study the dynamics and underly-
ing causal mechanisms of any treeline movement and growth changes in mountain 
forests located in Central and East Asia (Cazzolla Gatti et al. 2019).

11.6  �Remote Sensing of Climate Smartness According 
to the Forest Biological Diversity

11.6.1  �Defining Forest Biological Diversity in the Context 
of Climate Smartness

Different species have individual climatic ranges, in which they remain competitive 
with other plant species, can adapt to environmental change, and respond to 
increased insect attacks, disease, and adverse environmental conditions and anthro-
pogenic influences. Some species will adapt better than others to changing condi-
tions, which will lead to changes in the composition of forests, instead of geographic 
shifts in forest types (Breshears et al. 2008). In general, tree species are likely to 
move to higher latitudes or altitudes due to global warming (Rosenzweig et  al. 
2007; Breshears et al. 2008).

Climate change drives phenological changes, i.e., changes in seasonal timing of 
life-history events, in many tree species observed in phenological gardens (Seppälä 
et al. 2009). A phenological garden contains a selection of species and a selection of 
clonal strains among each species. In order to minimize non-climatic influences on 
plant development, a network of phenological gardens with the same species and 
the same clones should be set up as to constitute a network of plants. The observers 
at the gardens have detailed, illustrated instructions that describe exactly the pheno-
phases to be reported. Phenological gardens, therefore, assure a maximum of exact 
observations with controlled internal plant conditions. An adjacent meteorological 
station is essential for later correlations among the results from a phenological gar-
den and for possible physiological modelling (Schnelle and Volkert 1974). The 
highest number of changes and the most significant changes were noted in 
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phenological gardens located at higher latitudes (Seppälä et  al. 2009). There is 
evidence that part of this phenological change, such as dates of spring bud break and 
flowering, which can affect productivity and carbon sequestration potential, and 
autumnal foliar coloration, may be due to increasing atmospheric carbon dioxide 
concentrations as well as warming (Seppälä et al. 2009).

Biodiversity remains an important topic for forest policy and management in 
Europe (FOREST EUROPE 2015). Forest biological diversity criterion encom-
passes indicators referring to tree species composition, introduced tree species, and 
threatened forest species. It also includes indicators that quantify the area of forests 
by the class of naturalness and fragmentation, protected forests, forests for the con-
servation and utilization of tree genetic resources, seed production, and new forests. 
The average volume of deadwood, both standing and lying, is also an indicator of 
biological diversity.

11.6.2  �Appropriate Remote Sensing Methods 
for the Monitoring of Biological Diversity Indicators

The assessment of biological diversity can benefit from the availability of different 
sources of remotely sensed data and from the opportunities for automated forest 
interpretation at the tree level, i.e., the possibility to delineate and classify tree spe-
cies. Whatever approach is used for tree detection, crown area delineation, and spe-
cies classification, remote sensing offers strong potentiality for the assessment of 
tree species composition and introduced tree species. Various experiences of tree 
crown detection, delineation, and species classification had applied digital aerial 
images (e.g., Brandtberg 2002; Haara and Haarala 2002; Erikson 2004; Korpela 
2004), but LiDAR represents the most effective source of data for detecting and 
delineating trees (e.g., Heinzel and Koch 2012; Maltamo et al. 2009). The integra-
tion of ALS data with aerial high-resolution multispectral or hyperspectral images 
has been tested for tree crown delineation and tree species classification (e.g., Zarea 
and Mohammadzadeh 2016; Dalponte et al. 2019; Weinstein et al. 2019) as well as 
the integration of ALS data with high-resolution aerial near-infrared images 
(Persson and Holmgren 2004). Satellite imagery, e.g., high spatial resolution 8-Band 
WorldView-2 and 5-band RapidEye, has proven to be valid in species classification 
(Immitzer et al. 2012).

There are many studies that have modelled patterns in spectral diversity and spe-
cies richness, paralleling those of biochemical diversity, demonstrating a linkage 
between the taxonomic and remotely sensed properties of forest canopies (e.g., 
Asner et al. 2009; Warren et al. 2014; Roth et al. 2015). The approach, ushered in 
Asner and Martin (2008) and called “spectranomics,” resulting from the combina-
tion of science and technology, emerged from aspects of established remote sensing 
research with new ideas to causally link the biochemistry, spectroscopy, taxonomy, 
and community ecology of canopies. A review of the history of remote sensing 
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approaches for biodiversity estimation, specifically focused on relating spectral 
diversity to biodiversity at different scales, with the summarization of the pros and 
cons of different methods in remote sensing of plant biodiversity can be found in 
Wang and Gamon (2018). The step from individual trees to the area of forest classi-
fied by the number of tree species occurring or to the area of forest land dominated 
by introduced tree species is quite short.

Despite progress in tree crown delineation and species classification, the quanti-
fication of indicators, such as the number of threatened forest species, classified 
according to the International Union for Conservation of Nature (IUCN) Red List 
categories in relation to the total number of forest species, could be challenging. 
Indeed, although the application of techniques – such as support vector machines 
and Gaussian maximum likelihood with leave-one-out-covariance algorithm classi-
fiers – in hyperspectral imaging and LiDAR data allows classifying classes of spe-
cies (Dalponte et al. 2008), the classification of all single species contained in the 
IUCN Red List categories is not yet operationally applied as in the case of species 
categories.

The amount and variability of deadwood in a forest stand are important indica-
tors of forest biodiversity because deadwood provides critical habitat for thousands 
of species in forests (Bater et al. 2009; Sandström et al. 2019). The current situation 
and new perspectives of remote sensing application for deadwood identification and 
characterization have been summarised by Marchi et al. (2018a, b). Infrared aerial 
photos are suitable for mapping and quantifying single standing dead trees, i.e., 
snags (Bütler et al. 2004; Bütler and Schlaepfer 2004). The identification of stand-
ing deadwood using LiDAR data has started to be addressed around 10 years ago, 
due to the increase in high-quality and high-density data availability, as well as the 
availability of segmentation methods required to work directly with the point cloud. 
The moderate capacity of LiDAR remote sensing to estimate the distribution of 
standing dead tree classes in forest stands has been demonstrated (correlation coef-
ficient of 0.61; Bater et al. 2009), as well as the good capacity of high-spatial resolu-
tion aerial photos taken from a UAV to survey fallen trees in deciduous broadleaved 
forests (trees with a diameter bigger than 30 cm or longer than 10 m were identified 
with a rate equal to 80%, but many trees that were narrower or shorter were missed; 
Inoue et al. 2014). In general, failure in identifying snags, logs, and stumps may be 
due to the similarity of fallen trees to trunks and branches of standing trees or mask-
ing by standing trees. The noise near the soil also affects the detection performance 
of the trees lying in the ground.

Indicators of regeneration, naturalness, landscape patterns, protected forests, and 
genetic resources are related to a landscape scale of analysis instead of a single-tree 
scale, and they can be assessed using approaches of classification applied to remote 
sensing data, both to produce maps or to obtain statistics. The emitted and/or 
reflected radiance from the canopy of the regenerated forest, which is related to the 
biophysical properties of the vegetation, such as leaf and wood biomass, can be used 
to identify the forest regenerative stage after, for example, a clearance (Lucas et al. 
2000) or wildfire (Morresi et al. 2019) using satellite imagery. Multispectral aerial 
images in the green, red, and near-infrared spectral bandwidths have been used to 
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monitor regenerating forests using an automated tree detection-delineation algo-
rithm by Pouliot et al. (2005). Sentinel-2 imagery with ALS data was integrated for 
inventorying regeneration stands by the estimation of sapling density (Landry et al. 
2020). The application of optical UAV-based imagery for the inventory of natural 
regeneration in post-disturbed forests has been tested by Röder et al. (2018). The 
assessment of the status of forest regeneration using aerial photogrammetry and 
UAV was carried out by Goodbody et al. (2018). Moreover, young and advanced 
regenerating forests were studied using UAV-based hyperspectral imagery and pho-
togrammetric point clouds (Imangholiloo et al. 2019) and multispectral ALS data 
(Imangholiloo et al. 2020), both under leaf-off and leaf-on conditions in boreal for-
ests. Similarly, UAV data have been applied for regeneration assessments in seed-
ling stands (Puliti et al. 2019; Castilla et al. 2020; Green and Burkhart, 2020).

Landsat satellite images constitute a major data source for spatial patterns of 
fragmentation that allow disturbances in protected areas to be identified (Nagendra 
et  al. 2013). In particular, multitemporal Landsat data resulted in valid satellite 
imagery to analyze patterns of forest fragmentation by the extraction of landscape 
metrics, which convey significant information on biophysical changes associated 
with forest fragmentation at broad scales (Fuller 2001). ALS and SAR data, espe-
cially when used synergistically with optical data, allow the detection of changes in 
the three-dimensional structure of forests, facilitating their classification in different 
classes of naturalness (Hirschmugl et al. 2007).

Protected forests to conserve biodiversity are a land-use and not a land cover 
category because the protection of an area is given by the humans according to the 
use they want to do and by the law. For this reason, remote sensing can be used for 
mapping large intact forest areas or adjusting the boundaries of areas already pro-
tected or detecting major changes in land cover within protected areas. This aspect 
is relevant to underpin the development of a general strategy for nature conservation 
at the global and regional scales (Willis 2015). For example, Potapov et al. (2008) 
introduced a new approach for mapping large intact forest landscapes using existing 
fine-scale maps and global coverage of high-spatial resolution satellite imagery. 
Gillespie and Willis (2015) reviewed advances and limitations in spaceborne remote 
sensing that can be applied to all terrestrial protected areas around the world for 
baseline vegetation mapping, land cover classifications, invasive species, and degra-
dation identification, monitoring forest ecosystems and land cover dynamics using 
time series data.

The same consideration can be made for the areas managed for conservation and 
utilization of forest tree genetic resources or managed for seed production, which 
are land-use rather than land cover categories that require additional data, to which 
remote sensing can potentially contribute. Indeed, remote sensing cannot do geno-
typing, but it can contribute to phenotyping, therefore providing indicators of 
genetic resilience, e.g., variations in stress responses. This is an emerging area for 
remote sensing. Most of the studies have been carried out in tree nurseries, experi-
mental plots, or crop trees rather than in the field. For example, Ludovisi et  al. 
(2017) used thermal imaging acquired by UAV for high-throughput field phenotyping 
of black poplar response to drought, enabling highly precise and efficient, 
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nondestructive screening of genotype performance in large plots. Phenotyping of 
individual trees in situ in planted forests helping to track genetic performance was 
conducted by Dungey et al. (2018). But there have been “phenotyping platforms,” 
which involve the phenotyping of whole forests eventually down to the individual 
tree level, proposed for whole-forest phenotyping to better quantify the key drivers 
of forest productivity to inform and optimize future breeding and deployment pro-
grams (Dungey 2016). Improved UAV-based measurements of tree health (fluores-
cence, canopy temperature, structure traits from LiDAR, etc.) could have much 
potential for linking genetic and phenotypic traits in terms of stress responses to 
climate change.

11.7  �Remote Sensing of Climate Smartness According 
to the Forest Protective Function

11.7.1  �Defining Forest Protective Function in the Context 
of Climate Smartness

The contribution of forests to water and soil protection has long been recognized. 
Forests can play a vital role in preventing soil erosion and protecting water supplies 
(FOREST EUROPE 2015). In addition, a wide variety of man-made infrastructure 
relies on the protection provided by forests. Such protective functions are mostly 
found in mountainous areas or areas subject to extreme climatic conditions. The 
importance of forests with protective functions has increased in the last decades due 
to settlement pressure, climate change, and the high vulnerability of society in 
mountain regions (Bauerhansl et al. 2010). However, foresters and hydrologists still 
debate the nature of the influence that forests have on water regulation. Climate 
change may make the role of forests in water regulation and soil protection more 
important, but the capacity of forests to fulfill this role may also be affected. 
Reductions in rainy season flows and increases in dry season flows are of little value 
when total annual rainfall is low and significant quantities of water are lost through 
evapotranspiration and are consumed by forests. Unmanaged forests supply high 
levels of climate regulation and erosion regulation, while best practice management 
slightly improves water regulation (Seidl et al. 2019).

In this context, information on the spatial distribution of protective forests desig-
nated to prevent soil erosion, preserve water resources, protect infrastructure, and 
manage natural resources against natural hazards (i.e., avalanche, snow gliding, 
rockfall, landslide, flood, water erosion, wind erosion, karstification) becomes 
essential.
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11.7.2  �Appropriate Remote Sensing Methods 
for the Monitoring of Protective Function Indicators

To assess the forest protective function against natural hazards, model simulations 
are often used. Variables used in the models range from topographic features (e.g., 
altitude, slope and slope gradient, orientation to wind and orientation to the sun, 
aspect, plan curvature) to forest characteristics (e.g., crown cover, stem per hectare, 
gap width) to individual tree features (e.g., tree species, tree diameter, and height) 
(Bigot et al. 2009). In this context, remote sensing techniques are an indispensable 
supplement of data, which can be integrated with inventory field data for the identi-
fication of protective effects on large areas (Bauerhansl et al. 2010), having in mind 
that the protective function strongly depends on small-scale local conditions, such 
as terrain and stand characteristics (Teich and Bebi 2009).

Since the 2000s, Bebi et al. (2001) and Teich and Bebi (2009) used aerial photo-
graphs for assessing structures in mountain forests (e.g., canopy density, crown clo-
sure, trees in clusters) as a basis for investigating the forests’ protective function. 
Dorren et al. (2006) assessed protection forest structure with ALS in mountain ter-
rain, and, according to their results, ALS provides excellent input data for 3D natu-
ral hazard simulation models, even in steep terrain. Monnet et al. (2010) assessed 
the potential of ALS for estimating stand parameters required as input data for rock-
fall simulation models or more generally for quantifying the rockfall protection 
function of forests. In the case of falling rocks, the topography determines its occur-
rence, the direction, as well as the velocity of a falling rock; therefore, DEM is the 
most relevant dataset for simulation studies (Dorren et al. 2004). Maroschek et al. 
(2015) combined remote sensing data (i.e., a LiDAR-based normalized crown 
model and a volume map) and inventories to generate realistic fine-grained forest 
landscapes with single-tree level information as input to the spatially explicit hybrid 
model used to assess the protective effect of the vegetation. Brožová et al. (2020) 
determined forest parameters for avalanche simulation using remote sensing data, 
specifically photogrammetry-based vegetation height model and LiDAR-based veg-
etation height model.

Hydrological models are commonly used to study both the flow and the quality 
of water. Forest cover, tree height, LAI, and sky view factor are the four main struc-
tural parameters used by hydrological models of forests (Varhola and Coops 2013). 
Varhola and Coops (2013) estimated these four watershed-level distributed forest 
structure metrics using LiDAR and Landsat data. They found a high correlation 
between forest spectral indices and structural metrics, and they successfully mod-
elled the four metrics by Landsa-LiDAR calibrations. Satellite-derived land cover 
data, as well as data on snow cover, LAI, evapotranspiration, and surface soil mois-
ture, are widely integrated into catchment and regional- and global-scale hydrologi-
cal modelling (Xu et  al. 2014). Concerning the role of forest in preventing soil 
erosion, de Asis and Omasa (2007) estimated vegetation parameters for modelling 
soil erosion using Landsat ETM data in a linear spectral mixture analysis at a catch-
ment scale.
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11.8  �Remote Sensing of Climate Smartness According 
to Socioeconomic Function

The impacts of climate change on the forest sector will increase in strength, but they 
will vary in space and over time, depending on the geographical region and the crop 
type (Viccaro et al. 2019). According to the expected future scenarios for Europe, in 
the Mediterranean area, there will be a reduction of the forest capital, caused by a 
reduced water supply, while in the North of Europe, there will be an expansion of 
forests, both in terms of surface and species and an extended growing season due to 
more favorable soil temperature and moisture conditions and the higher supply of 
carbon dioxide for photosynthesis (Viccaro et  al. 2019). The expected global 
increase in wood production together with provisional and local increased avail-
ability of wood in the market due to windstorms could lead to lower prices, which 
would benefit consumers. However, lower prices and regionally differentiated 
impacts on productivity will have varying effects on incomes and employment 
derived from timber.

The socioeconomic function criterion assesses the economic value of forests 
(FOREST EUROPE 2015); indicators related to wood consumption, trade in wood 
(i.e., import and export), and the share of wood energy in total primary energy sup-
ply are contemplated together with accessibility for recreation (i.e., right of access, 
provision of facilities, and intensity of use). The first three indicators are not directly 
measurable with remote sensing techniques as wood consumption cannot be esti-
mated from areas felled due to the international market in timber. But, where trees 
are grown specifically for a local market, e.g., as a biomass energy crop such as 
short rotation willow, remote sensing can potentially provide input layers for field 
trial scale analyses and modelling (Castaño-Díaz et  al. 2017). The last indicator 
refers to the right to access the forests for recreational purposes, which is related to 
the forest holdings: remote sensing technique cannot support the assessment of this 
indicator.

11.9  �Conclusion

The potentiality of the remote sensing as a source of data for the assessment of 
climate-smart criteria and indicators in mountain forests has been demonstrated for 
many of the indicators examined in the above sections. Indicators of forest resources, 
such as the spatial extent of forest cover that can be used to assess the spatial dynam-
ics of that cover, can be monitored using data from optical sensors, which may 
provide information on the amount of foliage and its biochemical properties, with 
optical wavelengths both absorbed and scattered by leaves, needles, and branches 
that make up a forest canopy. Vegetation indices extracted from optical satellite 
imagery have been used to model carbon stock in aboveground biomass for many 
years. More recently, the capacity emerged to assess the 3D forest structure, using 
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data acquired from LiDAR and SAR sensors, due to the ability of the waves to pen-
etrate through the canopy and backscatter from branches and stems and so to pro-
vide a geometrical description of the forest. LiDAR allows the estimation of the 
volume of living trees and of carbon stock by models that assume relationships 
between growing and carbon stock and LiDAR-derived canopy metrics. The mea-
surements provided by optical and radar sensors are different due to divergences in 
wavelength, imaging geometry, and technical implementation, but, when combined, 
they can be complementary when the sensitivity to individual 3D forest structure 
components is considered. This combination of sensors and observation platforms 
holds a lot of promise for the future.

Indicators of health and vitality can be monitored using data from sensors able to 
acquire plant reflectance in the visible to shortwave-infrared regions, which provide 
information in the biochemical properties of foliage and plant fluorescence, which 
are indicative of the capacity and functioning of the photosynthetic apparatus. 
Through multisensor data and consideration of spatial and temporal patterns of 
changes, abiotic and biotic causes of disturbance or stress can be identified.

The specific indicators of productive function, such as increment and felling and 
roundwood, are not directly measurable. NPP, as an indicator globally considered 
an expression of forest productivity, is modelled using optical satellite imagery data. 
These models have been successfully used on a global and continental scale to esti-
mate daily and annual NPP from satellite data with low ground resolutions, but the 
availability of maps at high level of detail related to model drivers, such as precipita-
tion, temperature, and land use, is required to produce accurate estimation through 
these models. Indicators of the productive function of forest can be quantified using 
data acquired with microwave sensors that can provide information on woody 
biomass.

Indicators of biological diversity criterion, such as tree composition, deadwood, 
etc., can be assessed with optical, LiDAR, RADAR, and SAR.  Although 
hyperspectral holds a lot of promise, few applications, using its full potential, have 
so far emerged. Spectral diversity is also increasingly considered as a measure of 
biodiversity at a range of scales, but tree species mapping over large area is not still 
an operational procedure mostly due to costs and limited extent of airborne 
hyperspectral.

LiDAR provides the most suitable data to be inputted in models that quantify the 
protective function of forests against, for example, rockfall. Data extracted from 
optical satellite imagery can also be used to assess the effect of natural disturbances 
on the functionality of direct protection forests.

In the context of an increasing amount of remote sensing data generated by mul-
tiple airborne and spaceborne platforms, integrated multisensor frameworks will be 
required to move beyond the state of the art in forest monitoring (Lehmann et al. 
2015). This kind of approach allows balancing the needs for fine-scale monitoring 
of distribution patterns and satisfactory coverage at broad scales (He et al. 2019). 
For example, with specific reference to the assessment of the forest health and vital-
ity, Lausch et al. (2018) underline that it is becoming evident that no existing moni-
toring approach, technique, model, or platform is sufficient on its own to monitor, 
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model, forecast, or assess forest health and its resilience. Hence, a multisource for-
est health monitoring network for the twenty-first century, which couples different 
monitoring approaches, is a viable strategy that has to be supported. In addition to 
multisensor and multiplatform approaches, recently, a significant amount of work 
has been carried out in the field of multimode sensors and multifunctional sensors 
(Majumder et al. 2019). Such approaches are increasingly coupled with new com-
putational and analytical approaches, such as cloud computing, machine learning, 
and deep learning, able to handle big datasets and diverse data sources. From this 
perspective, monitoring the effects of climate-smart forest management interven-
tions requires smart deployment and the use of remote sensing technologies, which 
can open up new opportunities in the assessment of the capabilities of the forests to 
transform, adapt to, and mitigate climate-induced changes throughout the selected 
indicators.
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