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ABSTRACT 

Soil moisture plays an essential key role in the assessment of hydrological and meteorological 

droughts that may affect a wide area of the natural grassland and the groundwater resource. The 

surface soil moisture distribution as a function of time and space is highly relevant for hydrological, 

ecological, and agricultural applications, especially in water-limited or drought-prone regions. 

However, gauging soil moisture is challenging because of its high variability. While point-scale in-situ 

measurements are scarce, the remote sensing tools remain the only practical means to obtain regional 

and global-scale soil moisture estimates. 

A Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission ever designed to gauge 

the Earth’s surface soil moisture (SM) at the near-daily time scales. This work aims to evaluate the 

spatial and temporal patterns of SMOS soil moisture, determine the effect of the climate extremes on 

the vegetation growth cycle, and demonstrate the feasibility of using our drought model (GDI) the Gobi 

Drought Index.  The GDI is based on the combination of SMOS soil moisture and several products from 

the MODIS satellite.  We used this index for hydro-meteorological drought monitoring in Southwestern 

Mongolia. 

Firstly, we validated bias-corrected SMOS soil moisture for Mongolia by the in-situ soil moisture 

observations 2000 to 2015.  Validation shows satisfactory results for assessing drought and water-

stress conditions in the grasslands of Mongolia. The correlation analysis between SMOS and 

Normalized Difference Vegetation Index (NDVI) index in the various ecosystems shows a high 

correlation between the bias-corrected, monthly-averaged SMOS and NDVI data (R2 > 0.81). Further 

analysis of the SMOS and in situ SM data revealed a good match between spatial SM distribution and 

the rainfall events over Southwestern Mongolia. For example, during dry 2015, SM was decreased by 

approximately 30% across the forest-steppe and steppe areas. We also notice that both NDVI and 

rainfall can be used as indicators for grassland monitoring in Mongolia. 

The second part of this research, analyzed several dzud (specific type of climate winter 

disaster) events (2000, 2001, 2002, and 2010) related to drought, to comprehend the spatial and 

temporal variability of vegetation conditions in the Gobi region of Mongolia. We determined how 

these extreme climatic events affect vegetation cover and local grazing conditions using the seasonal 

aridity index (aAIZ), NDVI, and livestock mortality data. The NDVI is used as an indicator of vegetation 

activity and growth. Its spatial and temporal pattern is expected to reflect the changes in surface 

vegetation density and status induced by water-deficit conditions.  The Gobi steppe areas showed the 

highest degree of vulnerability to climate, with a drastic decline of grassland in arid areas. We found 

that under certain dzud conditions, rapid regeneration of vegetation can occur. A thick snow layer 

acting as a water reservoir combined with high livestock losses can lead to an increase of the maximum 

August NDVI. The snowy winters can cause a 10 to 20-day early peak in NDVI and the following increase 

in vegetation growth. However, during a year with dry winter conditions, the vegetation growth phase 

begins later due to water deficiency and the entire year has a weaker vegetation growth. Generally, 

livestock loss and the reduction of grazing pressure was played a crucial role in vegetation recovery 

after extreme climatic events in Mongolia. 

At the last stage of our study, we develop an integrated Gobi drought index (GDI), derived from 

SMOS and LST, PET, and NDVI MODIS products. GDI can incorporate both, the meteorological and soil 

moisture drought patterns and sufficiently well represent overall drought conditions in the arid lands. 

Specifically, the monthly GDI and 1-month standardized precipitation index SPI showed significant 
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correlations.  Both of them are useful for drought monitoring in semi-arid lands. But, the SPI requires 

in situ data that are sparse, while the GDI is free from the meteorological network restriction. 

Consequently, we compared the GDI with other drought indices (VSWI, NDDI, NDWI, and in-situ SM). 

Comparison of these drought indices with the GDI allowed assessing the droughts’ behavior from 

different angles and quantified better their intensity.  

The GDI maps at fine-scale (< 1km) permit extending the applicability of our drought model to 

regional and local studies. These maps were generated from 2000 to 2018 across Southwestern 

Mongolia. Fine-scale GDI drought maps are currently limited to the whole territory for Mongolia but 

the algorithm is dynamic and can be transported to any region. The GDI drought index can be served 

as a useful tool for prevention services to detect extremely dry soil and vegetation conditions posing a 

risk of drought and groundwater resource depletion. It was able to detect the drought events that 

were underestimated by the National Drought Watch System in Mongolia.  

In summary, with the help of satellite, climatological, and geophysical data, the integrated GDI 

can be beneficial for vegetation drought stress characterization and can be a useful tool to monitor 

the effectiveness of pasture land restoration management practices for Mongolian livelihoods. The 

future application of the GDI can be extended to monitor potential impacts on water resources and 

agriculture in Mongolia, which have been impacted by long periods of drought. 
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  General Introduction 

 Introduction  

Mongolia is located in north-east Asia and is bounded between 41°35’ - 52°06’N latitudes and 

87°47 - 119°57’E longitudes. The total area of the country is 1,562,950 km2, with an average altitude 

of 1,580 meters above sea level. This is the world's second-largest landlocked country with high 

mountains (up to 4,380 m) covering its northern and western regions and the Gobi Desert in the south. 

The country is located in a transition zone at the crossroads of the northern Asia and Boreal Arctic 

regions where the Siberian Taiga meets the Asian deserts and steppe. The mean annual temperature 

is -8 °C (in the northern areas) and 6 °C (in the southern areas) and the average annual precipitation 

lies between 50 mm (in the Gobi Desert) and 400 mm (in the northern mountainous area) (Batima P 

et al., 2005). Mongolia has six natural zones based on the next vegetation types: such as high 

mountains, taiga, forest-steppe, steppe, semi-desert, and the Gobi Desert zones (Figure 1.1). The dry 

and cold climate and geographical features of Mongolia are associated with the fragility of natural 

ecosystems (Ministry of Environment, 2009). Forests cover is limited to the Khangai, Khuvsgul, and 

Khentii mountainous regions in the north and on the hillsides of the Mongolian Altai and Gobi Altai 

mountains. 

 

Figure 1.1 Natural ecozones of Mongolia. Data source: (Information And Research Institute Of 
Meteorology, Hydrology And Environment of Mongolia, 2019)    
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Mongolia is a country of pastoralists. Here over 71 million head of livestock are herded,  

providing a livelihood for one-third of Mongolia’s population and support for the national economy 

National Statistical Office of Mongolia : Annual reports (2019). The livestock is herded in open pastures 

by nomadic pastoralists who migrate seasonally due to climatic variability, natural conditions, and 

water availability (Fernandez-Gimenez, 2000). The pastoralist depends directly upon natural resources 

for their livelihoods and is vulnerable to the impacts of climate change (Fernández-Gimenez et al., 

2012). Increases in extreme weather events are the principal phenomenon that can increase the 

vulnerability of peoples dependent on weather conditions (Downing, 1991). 

The climate change issue has become one of the most important global environmental 

challenges facing humanity, social-economic structures, and ecosystems (Miao et al., 2020a; Sathaye 

et al., 2006). The effects of global warming in Mongolia have been already occurring with an annual 

average air temperature rose by 2.4° C between the years 1940 and 2018, which was higher than the 

global average temperature rise of 0.85° C (Sustainable Adapted Use the Crop, 2020). Warming 

combined with variable precipitation can lead to land surface drying and will potentially increase the 

incidence and severity of droughts. One of the most significant impacts of climate change is an increase 

in the intensity and frequency of extreme climate events (Beniston et al., 2007). The occurrence of 

such events has been rapidly increased (Batima P et al., 2005; Oyudari Vova et al., 2020). Subsequently, 

drought is to become a major natural disaster in Mongolia (Nandintsetseg & Shinoda, 2013b). 

Approximately 88 % of the territory of Mongolia is considered agricultural land, of which 98 % is 

pasture as the main source of livestock grazing.  Less than 1 % of the country's territory is arable land 

(Rasmussen & Annor-Frempong, 2015). A drought directly influences livestock production, economic 

losses, and accelerates the processes of desertification by destructive human activities (i.e., 

overgrazing) (Chang et al., 2021), and natural ecosystem demise (Punsalmaa Batima et al., 2013).  

Soil moisture (SM) is an important variable influencing hydrological and meteorological 

exchange processes at the land surface (Awe et al., 2015; Robinson et al., 2008; D. Zhang et al., 2015; 

D. Zhang & Zhou, 2016).  It is used to indicate drought in grassland because the water content is an 

essential factor for vegetation growth (W. Palmer, 1965a; Takagi & Lin, 2011). Drought and excessive 

heat conditions cause significant losses of crop yield and negatively impact vegetation biomass. Natural 

processes like erosion, drought, flooding, and evaporation are directly or indirectly driven by soil 

moisture. Reliable soil moisture information contributes to improving the accuracy of weather and 

climate hazards forecasting. It is difficult to continuously monitor SM on a large scale, due to scarce 

SM stations. In particular, the spatial distribution of soil moisture with high-resolution images in 

Mongolia has been one of the basic problems in remote sensing, agricultural, meteorological, and 

environmental communities. On the other hand, the lack of SM measurements makes it challenging to 

validate remote sensing SM estimates over the large territory of Mongolia. The soil moisture product 

is a potential input variable for numerous geophysical applications including the drought indices that 

have been widely used for drought monitoring. In drought-prone areas (e.g., Mongolian grassland), 

the appropriate methods for regional SM assessment are still needed for the improvement of drought 

monitoring.   
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 Research objectives   

This work aims to develop an integrated method, which is based on the set of indices that can be 

used to characterize meteorological and hydrological drought conditions in the Southwestern 

Mongolian grassland.  

Overall objectives: 

i. To evaluate spatial and temporal changes of soil moisture related to drought in the Mongolian 
grassland  

 
ii. To examine how the climate extremes such as drought and dzuds impact the vegetation growth 

cycle 
 

iii. To establish a new model as a tool for the assessment of spatial and temporal patterns of 
meteorological and hydrological drought severity in Southwestern Mongolia.  

 

The objectives (i) and (ii) were addressed in Chapters 3 and 4, and the objective (iii) was addressed in 

Chapter 5. 

 Overview of the thesis 

This section provides an overview of the content of each chapter of the dissertation. This thesis 

is a cumulative version of my work.  It is divided into 6 chapters, of which chapters 3, 4, and 5 have 

been written in the form of scientific manuscripts. 

This thesis analyzes spatial and temporal changes of grassland drought by the integration of 

different remote sensing products and approaches on the regional scale. Finally, it presents a model 

that assesses meteorological and hydrological droughts by characterization of the vegetation and soil 

moisture conditions. The thesis is structured into six main parts (chapters).  

Chapter 1 presents a basic background of the research proposal development. A brief 

introduction of the research problem and objectives are put forward. The main concept, 

literature review, and methodologies are also introduced in this chapter. 

 

Chapter 2 provides information about the research area, including location, geographical 

characteristics, soil type, and other social and economic conditions of our study area in the 

southwestern part of Mongolia. 

 

Chapter 3 focuses on the evaluation of spatial and temporal patterns of SMOS SM related to 

hydrological drought on the regional scale. The spatial and temporal SMOS SM moisture 

analysis is conducted in the Uvurkhangai, Arkhangai, Bayankhongor, and Gobi-Altai provinces 

of Southwestern Mongolia. The validation of SMOS SM has been conducted through in-situ 

SM observations measured at the National Meteorological stations of Mongolia. Specifically, 

we compared Soil Moisture and Ocean Salinity (SMOS) first passive L-band satellite data with 

in situ measurements and investigate whether in situ and remotely sensed data in the 

unaccounted areas of Southwestern Mongolia are consistent with each other. We corrected 

biases of SMOS soil moisture (SM) data using the in situ measured soil moisture with both the 

simple ratio and gamma methods and verified the bias-corrected SMOS data with Nash–
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Sutcliffe method. Our analyses showed that bias correction enhanced the reliability of the 

SMOS data, resulting in a higher correlation coefficient between in situ data and remote 

sensing products. Both, the SMOS and in situ measured soil moisture data show that for the 

period 2010 to 2015, spatial soil moisture distribution matches the rainfall events pattern in 

Southwestern Mongolia. The results of this Chapter confirmed that the bias-corrected, 

monthly-averaged SMOS data has a high correlation with the monthly-averaged normalized 

difference vegetation index NDVI (𝑅2 > 0.81). For the first time in the grassland of Mongolia, 

the SMOS SM product was quantified in the areas with heterogeneous vegetation zones and 

applied for investigation of the soil moisture droughts. 

 
Chapter 4 analyses the effects of dzud-related factors (e.g., summer drought and winter heavy 

snowfall) on the vegetation growth cycle in the subsequent year.  This chapter comprehends 

the mechanical concept of dzud after droughts. Using Moderate Resolution Imaging 

Spectroradiometer MODIS-NDVI data (2000 – 2013), we show how vegetation responds to 

various dzud situations. Subsequently, we assess the impact of drought (using such climatic 

variables as Seasonal Aridity Index (aAIz) (Munkhtsetseg et al., 2007), precipitation, and 

temperature) on vegetation throughout the dzud period. We assessed the vegetation NDVI 

from MODIS products, spatiotemporal NDVI variations after dzud events, and quantified the 

length of the growing season during the dzud period. The extreme climate event (drought - 

dzud) was investigated in this Chapter. 

 

Chapter 5 focuses on the development of the meteorological and hydrological regional 

drought index (we named it the Gobi Drought Index, GDI). The GDI is based on multiple remote 

sensing products with a high contribution of the satellite SMOS SM and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) data. It was found that the GDI is an effective 

tool for a new drought model for monitoring hydrological and meteorological drought 

conditions in semi-arid regions. The Multiple Linear Regression (MLR) method was used for 

the estimation of the GDI parameters. The approach is based on the combination of the 

satellite SMOS SM data, the MODIS-based land surface temperature (LST), normalized 

difference vegetation index (NDVI), and potential evapotranspiration (PET) products. The 

established GDI demonstrates considerable relationships with other remote sensing-derived 

drought indices. We also analyzed the efficiency of these indices, using the in-situ SM 

observations as a reference for validation. The validation is based on the relationship between 

standardized precipitation index SPI and in-situ soil moisture (SM) observations, and their 

comparison to remote sensing (RS) – derived indices. Moreover, in a selected region, we 

compared the GDI monitoring results with the past and actual drought intensity reported by 

the other hydro-meteorological drought indices and data recorded at the national 

meteorological sites. Our findings indicated that the GDI drought mapping confers advantages 

in the accuracy and spatial resolution for drought monitoring. Furthermore, it has significant 

potential for grassland drought detection in the semi-arid grassland of Mongolia that is not 

covered by in situ observations.  

 

Chapter 6 summarizes the main conclusions of this work, states its limitations, and gives a brief 

outlook on possible further research. 
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Results of this research demonstrate that: 

• SMOS SM data can be used alone or in conjunction with other parameters in 
estimating meteorological and hydrological droughts. 

• SMOS SM data reflects well the in-situ SM observations. 

• The drought (GDI) index was established on the combination of SMOS SM and NDVI, 
LST, PET data. The drought model resulting in hydrological processes and the spatial-
temporal pattern of the regional drought was assessed. The spatial pattern of GDI 
follows the general precipitation trend across the region.  

• The variables that we integrated to generate the GDI (SMOS SM, NDVI, LST, and PET) 
can examine the state of soil moisture and vegetation and the role of temperature and 
evaporation for specific Gobi regions. The GDI combines essential factors for the 
determination of drought triggers, thus it is an efficient index for monitoring 
meteorological and hydrological drought in different ecological zones. 

• Compared with a standardized precipitation index SPI index and other remote sensing 
derived indices, the integrated GDI could characterize the soil moisture depletion and 
vegetation stress due to evaporation and spatial heterogeneity of regional drought.  

• The proposed drought monitoring approach can provide technical support for a 
comprehensive understanding of drought, it may be related to climate change and, 
therefore, be used to relieve future drought disasters. 

Separately, in our study, we advanced in the clarification of the role of dzud climate drivers.  We 

assessed the relationship between the seasonal aridity index and summer NDVI (as a proxy for 

vegetation conditions) and found a significant relationship. The summer conditions represented 

by seasonal aridity index and drought risk have an impact on livestock mortality, which is 

heightened by dzud. 

   Concept, literature review, and methodologies 

Drought is considered a natural hazard that devastates impacts on regional agriculture, economic 

losses, water resources, and the environment, with extending impacts in an increasingly globalized 

world (Sternberg, 2011). According to the United Nations Convention to Combat Desertification 

(UNCCD, 2018) as a result of global warming and climate change, about 40 % percent of the world 

population was affected by water scarcity and 85.5 % of livestock losses are related to drought 

conditions (The ripple effect: A Fresh Approach to Reducing Drought Impacts and Building Resilience | 

UNCCD). The lack of precipitation and high evapotranspiration have caused increasing aridity and 

resulted in widespread land degradation, soil erosion, and severe water scarcity (Miao et al., 2020b; 

Musolino et al., 2017). Droughts are among the most damaging natural hazards in terms of economic 

cost (Wilhite, 2000b) and social problems, such as hunger and loss of life. 

 Drought can lead to widespread plant death and restrict the geographical distribution of plant 

species (Gang et al., 2016; Sala et al., 1988; Tilman & El Haddi, 1992; M. Zhao & Running, 2010). Thus, 

droughts can be regarded as one of the disturbances of ecosystem structure and function. Drought-

related vegetation stress can have many serious ecological consequences. The impact of drought on 

vegetation can have substantial serious water resource implications as the use of limited surface and 

groundwater supplies to support agricultural crop production competes against other sectoral water 

interests (Wardlow et al., 2012). The ecological and economic systems can be disrupted by drought. 
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From the 1970s to the early 2000s, the total percentage of Earth's land area affected by serious 

drought has more than doubled (J. Huang et al., 2017a). The drylands of the globe continue to be the 

most vulnerable, threatened by desertification, land degradation, and drought (DLDD). A study on 

changes in vegetation and climate over dryland areas of China during the late Holocene showed a 

drying trend, although the responses were regionally diverse during the early Holocene (Y. Zhao et al., 

2009).  

Land degradation is a global phenomenon with 78 % of total degraded land located in 

terrestrial ecosystems1 (United Nations General Assembly, 2011). As global temperature rises, 

potential evapotranspiration (PET) and soil moisture demand become an increasingly important factor 

in the severity of drought and represent serious threats to ecosystems and societies (Hessl et al., 2018). 

The European Commission reported that the frequency of droughts has already increased and will 

further increase (Georgi et al. 2012). Anthropogenic factors of climate change will also speed up the 

droughts. Different disciplines, e.g., water resource management and agriculture, focus on different 

variables of the hydrological cycle, soil moisture, and vegetation growth respectively. This was also led 

to the classification of droughts into four types: meteorological, agricultural, hydrological, and socio-

economic droughts (Wilhite & Glantz, 1985a). The translation of a drought signal from deviating 

meteorological conditions into soil moisture and/or hydrological drought has been identified as 

drought propagation (W. Wen et al., 2016). Because drought propagation strongly depends on climate 

and catchments’ characteristics, hydrological drought shows a pronounced variation globally (Van 

Lanen et al., 2013). Investigations on drought have resulted that the catchment-scale studies confirm 

that climate seasonality can lead to severe drought events. However, there is a limited number of such 

studies because their geographical reference is limited to individual catchments or regions (Van Loon 

et al., 2014) 

A term associated with dryland is aridity. This signifies a permanent water deficiency closely 

related to strong insolation, high temperature, and the deficit of water. Evapotranspiration (ET) is a 

key variable of the terrestrial water balance. It describes the exchange of water between the land 

surface including plants and the atmosphere (Crocetti et al., 2020). Dryland is defined by the PET ratio, 

as referred to by the Aridity Index (AI) (J. Huang et al., 2017a). The studies on PET show that aridity has 

increased globally and this drying will continue because of global warming, especially over drylands 

(Dai & Zhao, 2017; Jianping Huang et al., 2016; Scheff & Frierson, 2014; Trenberth et al., 2014). Several 

studies emphasized that warming across all semiarid regions may be also related to other parts of the 

Earth (Guan et al., 2015; J Huang et al., 2017b). Interannual variations and probability distributions of 

temperature were closely related to the high frequency of extreme climate events and indicating the 

increasing probability of dry winters and summer droughts (Y.C. Zhang & Zhang, 2005).   

Studies of soil moisture changes based on the global climate models indicate severe drying trends 

and increased frequency of droughts (Sheffield & Wood, 2008; G. Wang, 2005; T. Zhao & Dai, 2015). A 

land surface temperature (LST) is defined as a fundamental parameter in the physics of surface energy 

and water balance (“Taking the Temperature of the Earth,” 2019). It serves as a proxy for assessing 

evapotranspiration, vegetation water stress, soil moisture, and thermal inertia (Karnieli et al., 2010). 

The surface drying trend induced by increased evaporative demand (i.e., PET) would reduce the surface 

soil moisture more rapidly than in the deeper layers of the soil. Furthermore, the deep soil layer could 

                                                           
 

1 UN General Assembly, 2012. High‐level meeting on addressing desertification, land degradation and drought in the context of sustainable 

development and poverty eradication. A/65/861 
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become increasingly dry particularly in the growing season related to the temperature increase 

(Schlaepfer et al., 2017). The soil moisture and temperature response contribute substantially to the 

amplified warming during the hottest days (Kala et al., 2016; Vogel et al., 2017). Thus, clear SM drying 

signs were observed over transitional areas between dry and wet regions (Cheng & Huang, 2016). The 

variation of SM and its response to vegetation biomass are important for water resources and hydro-

meteorological drought monitoring in semi-arid lands (Rodriguez‐Iturbe, 2000). 

 Understanding and monitoring the drought stress of vegetation is a critical component of 

proactive drought planning designed to mitigate the impact of this natural hazard. Comprehensive 

approaches that characterize the spatial extent, intensity and duration of drought-related vegetation 

stress provide essential information for a wide range of management and planning decisions. For 

instance, such information could be used by agricultural producers and water resource managers to 

adjust crop irrigation schedules and by ranchers to determine stocking rates and grazing rotations for 

livestock.  

This knowledge also helps natural resource managers to carry out best management practices 

under drought conditions and to other decision-makers to improve target assistance and response 

activities (e.g., the release of Conservation Reserve Program grasslands for emergency grazing or early 

detection of hot spots for wildfires) in a real-time manner. The satellite-based remote sensing data 

provide a fast and economic source of information to monitor and estimate the extent of drought, land 

cover classification, biophysical estimates, and vegetation phenology (L. Wang & Qu, 2007). Besides, 

the ground condition manifests the overall effect of rainfall and soil moisture, thus, satellite-based 

monitoring plays a significant role in drought monitoring and early warning system (Fekade Mekuria, 

2012; Vicente-Serrano et al., 2010). Up to now in Mongolia, there are no spatial-temporal continuous 

soil moisture products that satisfy the needs of meteorology, hydrology, and drought monitoring due 

to the limiting of information about its spatiotemporal variations.  

 

 Soil Moisture and Satellite Observations and their use in Drought Applications 

Soil moisture is defined as the amount of water stored in the unsaturated soil zone (Hillel, 1998). 

Extend research has shown that the spatial and temporal distribution of soil moisture is key to 

identifying Earth's hydrological and energy cycles (Seneviratne et al., 2010). Soil moisture (SM) has 

been identified as an essential climate variable for the Global Climate Observing System (GCOS) 

((WMO) et al., 2006).  

SM controls the partition between infiltration and runoff and impacts the potential rate of soil 

water uptake by vegetation. It controls plant water availability, the vegetation distribution, and is a 

critical factor controlling the net primary productivity of the planet. The state of soil moisture mainly 

depends on the balance of precipitation and evapotranspiration, as well as on the winter soil freezing 

and snow melting (Nandintsetseg & Shinoda, 2011a). There are various techniques to estimate soil 

moisture, including direct and indirect methods. It can be measured or estimated in various ways such 

as through in situ measurements (using climate stations and ground measurements), and by costly 

direct measurement in the field (by gravimetric method) (Rahimzadeh-Bajgiran & Berg, 2016). There 

are also indirect SM observations through satellite images. The uncertainty introduced by global 

climate change brings into question the temporal stability of model parameters (Peel & Blöschl, 2011), 

which can be better calibrated by the incorporation of soil moisture data (Koren et al., 2008). The 

benefits of soil moisture data have already been proven for many geophysical applications using in situ 

measurements with poor spatial representativeness (Koren et al., 2008) or at coarse spatial resolution 

(Bolten & Crow, 2012; Walker & Houser, 2001). The observations show that in the warm season, total 
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soil moisture is significantly decreasing from the north to the south of Mongolia (Oyudari Vova, Kappas, 

& Emam, 2019). 

 

  Satellite Soil Moisture observations and Soil Moisture Retrievals 

A microwave part of the electromagnetic spectrum is well suited for remote sensing of the 

Earth surface conditions because the longer wavelengths are known to penetrate clouds and rain 

(Janssen, 1994). The most common frequencies for the remote sensing of soil moisture are 3.9-5.75 

GHz (C band) and the longer wavelength 0.39-1.55 GHz (L band). Microwave energy at the L band is 

particularly well suited for the SM remote sensing because it easily penetrates short and moderate 

vegetation cover and thus, theoretically, is assumed to be free of interference (Yann H. Kerr et al., 

2010). The land surface interacts with microwave energy, both active and passive ways. 

The microwave energy directly interacts with a solid vegetation structure. The microwave 

signal is determined by the physical structure of vegetation and by the vegetation water content 

(Wigneron et al., 2007). The microwave signal passes through greater amounts of vegetation causing 

greater attenuation of the soil moisture signal and larger influence of the vegetation signal, 

respectively (Yann H. Kerr et al., 2012). Active microwave remote sensing consists of the use of 

synthetic aperture radars (SAR), which illuminate the surface with radar pulse and which thereafter 

backscatters to the satellite for analyses. This remote sensing approach provides high resolution, but 

signal interference, having multiple radar reflections, results in a noisy signal. The SAR use is also 

limited by long revisit periods and high energy requirements that limit the operational cycle for each 

orbit (Albergel et al., 2009). Passive radiometers observe the microwave energy that is naturally 

emitted or reflected by the Earth’s surface. This allows for higher radiometric accuracy and less 

interference with microwave signals, which poses a physical limitation for satellites (Yann H. Kerr et 

al., 2010). The results have a coarse spatial resolution (~ 40 km), although the satellite revisits time can 

be as little as three days at the equator. Despite the low resolution, the short revisit times of 

radiometers and scatterometers are better suited for operational hydrological and geophysical 

applications.  

Subsequently, remote sensing techniques have been used for estimating soil moisture at a 

global and regional scale. Contemporary, available soil moisture products are retrieved from various 

remote sensed sensors, such as the Soil Moisture Ocean Salinity (SMOS) from the European Space 

Agency (ESA), the Soil Moisture Active Passive (SMAP) from the National Aeronautics and Space 

Administration (NASA), and the Advanced Microwave Scanning Radiometer-Earth observing system 

(AMSR-E) from the Japanese Aerospace exploration agency (JAXA). The active and passive approaches 

offer various advantages because of their instrumental characteristics (Kolassa et al., 2017). In this 

research, we focused on satellite observations from the European Space Agency (ESA) Soil Moisture 

Ocean Salinity (SMOS) mission, which was launched in November of 2009. SMOS L-band microwave 

mission is the first directly designed for the remote sensing of soil moisture. The SMOS L-band 

frequency (1.4 GHz) offers global coverage with a spatial resolution of approximately 40 km with a 

revisit time of 3 days. SMOS provides brightness temperature measurements of the soil with different 

incidence angles, with an accuracy target of 0.04 m3 m-3 (Kerr et al., 2010). 

 Most SMOS calibration and validation efforts have been focused on the validation of L2 soil 

moisture products. SMOS retrievals have been validated in the United States (Collow et al., 2012; 

Jackson et al., 2011), Canada, Europe, Australia, and East Asia (H. Kim & Choi, 2015; Kornelsen & 

Coulibaly, 2014; Schlenz et al., 2012). Furthermore, it was demonstrated that assimilation of soil 

moisture information from satellite retrievals improves the accuracy of land surface models (Draper et 
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al., 2012), weather prediction (De Rosnay et al., 2013), drought monitoring (Ahmadalipour et al., 2017; 

Chakrabarti et al., 2014), and flood forecasting (Niko Wanders et al., 2014). Most satellite observations 

of soil moisture have a spatial resolution of 25 – 40 km. To overcome this impediment, much attention 

was directed to the downscaling of satellite observations (González-Zamora et al., 2015; Sanchez et 

al., 2012). The satellite source may have biases affecting land surface or hydrological drought 

monitoring models. Thus, the bias correction technique is an important and necessary step of the 

remote sensing analysis (Abbaspour et al., 2009; B. K. Mishra et al., 2018) (Chapter 3).  

 

   Impact of drought in Mongolia 

A number of studies were carried out on drought monitoring in Mongolia (N. K. Davi et al., 

2006; Dorjsuren et al., 2016a; Sternberg, 2018). Impacts of intensifying drought and desertification 

processes and their feedback mechanisms on a regional climate in Mongolia have been significantly 

increased during the last thirty years (THIRD NATIONAL COMMUNICATION OF MONGOLIA Under the 

United Nations Framework Convention on Climate Change). In this context, regional temperatures of 

Southern Mongolia have also increased by 0.1° C – 3.7 °C and spring precipitation has decreased by 17 

% (Chang et al., 2017a). A recent study demonstrated that in the Gobi region, intensive drought in the 

spring and summer seasons can occur four times every five years (Karrouk, 2007). Nanzad et al. 

(Nanzad et al., 2019b) showed that about 41 - 57 % of the country was affected by mild to severe 

droughts for the last seventeen years. Consecutive severe drought events in 2002, 2005, 2007, 2010, 

2013, and 2015 severely affected the spring wheat production (Fao, 2017). Numerous investigations 

in Mongolia have shown the effect of drought not only on agriculture productivity and hydrological 

resources but also on natural vegetation conditions (Dorjsuren et al., 2016b). Dry summers and 

droughts decrease pasture productivity by 12 to 48 % in the high mountains and by 28 to 60 % in the 

Gobi desert-steppe regions (Punsalmaa Batima, 2006). Also, herders keep complaining that climate 

extremes increasingly influenced their pasture quality and livelihoods (Fernández-Giménez et al., 2015, 

2017, Tumenjargal et al. 2020).   

Shifts and precipitation decline in arid lands, signify an increase in the occurrence of dust 

events, which in turn, decreases the relative humidity via the semi-direct effect on dry land. Indeed, 

rainfall has become shorter and lasted only for few hours with high intensity and low infiltration into 

the soil. This adversely affects the recharge of water resources in shallow wells and springs 

(Tumenjargal et al., 2020). Moreover, in case of a high level of pasture stress due to a drought scenario, 

all parameters of the pasture including carbon and nitrogen, and below-ground biomass will be 

substantially reduced. This proves that excessive intensity drought pressure has drastic negative 

impacts on soil and plant productivity. A recent study revealed that the vegetation heat supply at the 

Mongolian Plateau has increased, whereas, the crop yield limitation became more acute being 

associated with decreasing moisture supply (Liu et al., 2019). In this context, there is an urgent need 

to consider soil moisture as one of the substantial indicators of drought in order to better investigate 

the impacts of climate extremes. The current investigations suggested that variability in precipitation 

patterns and rising temperatures are the key factors of increasing climate severity in drylands, with 

extreme events more inclemently affecting Mongolian herders (N. Davi et al., 2010). It is important to 

have more detailed weather forecasts for the days with a sharp increase in dryness (Natsagdorj & 

Renchin, 2010), in all-natural zones including high mountains, taiga, forest-steppe, steppe, semi-

desert, and desert. 
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  A potential impact of severe winter conditions “Dzud” and their relation to drought events 

“Dzud” in Mongolian,  characterizes the cumulative consequences of natural hazards that result 

in mass destruction of livestock due to poor forage available to livestock and extremely cold winter 

that undermine the livelihood security of herders (Farkas & Kempf, 2002). Several studies substantiate 

that in arid and semi-arid climatic zones which have vulnerable ecosystems from droughts, the harsh 

winter “Dzud”, and dust storms occur frequently (Nandintsetseg & Shinoda, 2011c; NYAMTSEREN et 

al., 2015; Sternberg et al., 2011). The local people stated that their environment has become more 

challenging due to frequent extreme winter events and drought.  

 Specifically, “Dzud” is attributed to changing weather patterns, shifts in pastoralism, lack of 

preparedness, socio-economic forces, and most frequent droughts (UNDP/NEMA, 2010), respectively. 

According to the national “Dzud” report, from 2009-2010 dzud, about 8.5 million livestock had 

perished. This was approximately 20 % of the country’s livestock and affected 769,000 people or 28 % 

of Mongolia’s population (Fernández-Gimenez et al., 2012). The dzud 2009-2010 was the most severe 

dzud that has occurred since the consecutive dzud winters of 1999-2002, as highlighted in red below 

(Figure 1.4.1).  

 

 

Figure 1.4.1 Losses of adult animals in Mongolia according to the National Statistical Office (National 
Statistics Office of Mongolia, 2019) 

 

Several studies show that the dzud events have a severe impact on the present vegetation cover 

(Tumenjargal et al., 2020). For instance, these dzud events are visible in the Spot-VEGETATION-NDVI 

series, for the Mongolian annual average (Gutman et al., 2020). Projections for drought and dzud 

showed an increasing trend in summer and winter conditions defined by monthly air temperature and 

precipitation data for future climate change in Mongolia (Ministry of Environment, 2009) derived by 

Global Climate Models. Consequently, a considerable amount of works was done that assessed 

impacts of climate extremes (drought - dzud) on pastoral livestock (Nandintsetseg & Shinoda, 2013a; 

Tachiiri et al., 2008). The investigation of (Begzsuren et al., 2004) highlighted that the livestock does 

not and will not get enough strength to overcome subsequent dzuds during the drought years. Many 

herder households traveled long distances (up to 1 000 km) to collect hay in less affected areas (Fao, 

2017). Besides, the unpredictability of pasture quality and resources, the danger of drought 

exacerbating extreme winter (dzud) conditions, and climatic limitations on potential agricultural 

production in the steppe zones aggravate the ongoing threat to livelihoods dependent on the natural 
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environment for sustenance and survival (Fassnacht et al., 2018; Fernández-Giménez et al., 2012). The 

study results of (Van Loon et al., 2014) demonstrated that the drought duration is related to seasonal 

precipitation. This implies that the effect of seasonality on drought propagation is stronger in cold-

season climates. Seasonality would led to heavy severe drought conditions and modifies drought 

duration and water deficit.  

  Thus, keeping in mind that investigating the effect of climate extremes and seasonality, water 

cycle, and their relation to global warming is crucial for understanding and predicting drought 

durations and the future dryland climate changes (M. Shinoda et al., 2010a; Masato Shinoda & 

Morinaga, 2005) (Chapter 4). 

 In-situ based drought indices and their use in drought monitoring 

Traditional meteorological drought indices include the Standardized Precipitation Index (SPI) 

(Mckee et al., 1993), and Palmer Moisture Anomaly Index (z-index) (W. Palmer, 1965b), and the 

classical Palmer Drought Severity Index (PDSI) (W. Palmer, 1965a). For instance, most studies applied 

climate parameters as indicators for drought, for example, Standardized Precipitation Index (SPI) (Ivits 

et al., 2014; Sternberg et al., 2009a), Standardized Precipitation Evaporation Index (SPEI) (Vicente-

Serrano et al., 2013), or soil moisture (Nandintsetseg & Shinoda, 2011b; Masato Shinoda & 

Nandintsetseg, 2011). Usage of these characteristics assumes the following vegetation response during 

the previously detected climate extremes. (T. Zhao & Dai, 2015) analyzed the PDSI, the top‐10 cm soil 

moisture content, and runoff directly from 14 CMIP52 models, of which at least nine models included 

the effect of stomatal closure under increasing CO2 levels. Under a low‐moderate emissions scenario, 

they found that aridity and the frequency of drought in the 21st century will increase with the soil 

moisture‐based estimates being the largest. These aridity changes happened because the actual 

evapotranspiration is often limited by moisture availability in the soil. The ground station SM 

observations include single-point-based specific location measurements. These measurements are 

provided by the direct and most accurate method called the gravimetric method (Engman, 1991). 

However, the point scale SM measurement stations are scarce and their use is limited due to a large 

spatial scale that should be covered. The study of (Bayarjargal et al., 2006) suggested that the 

combination of satellite-derived drought indices effectively identifies wider drought-occurred areas 

better than the PDSI and traditional ground observed drought-affected areas (DAA) maps. Generally, 

the present soil moisture detection methods are based on fixed ground field observations, model 

simulations, and remote monitoring. The ground fixed-point observations can observe the soil 

moisture changes over time, but it is time-consuming, restricted by the conditions in the study area, 

and it is difficult to use them to describe the SM spatial variation. Drought monitoring model can 

demonstrate the temporal and spatial changes of soil moisture content, but the results are highly 

dependent also on the input parameters. The model drought indices ingest gridded terrestrial 

meteorological datasets and are widely used to observe meteorological droughts. However, they do 

not resolve local surface peculiarities or provide information regarding drought effects on vegetation 

because the actual soil moisture available for plant growth is represented only indirectly (Crocetti et 

al., 2020). 

                                                           
 

2 Coupled Model Intercomparison Project Phase 5 (CMIP5) which provide a multi-model context 1) assessing the mechanisms responsible 

for model differences in poorly understood feedbacks associated with the carbon cycle and with clouds, 2) examining climate “predictability” 
and exploring the ability of models to predict climate on decadal time scales, and, more generally, 3) determining why similarly forced models 
produce a range of responses. 
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Except for the present study (Oyudari Vova, Kappas, & Rafiei Emam, 2019), as far as we know, 

there is no current research that inter-compares remote sensing retrievals of the L-band SMOS SM 

products with bias correction technique against in-situ SM observations across Southwestern 

Mongolia. We believe that this comparison will be a good option for remote sensing data validation in 

Mongolia (Chapter 3). Therefore, in this study, we choose the less-studied, most drought vulnerable 

region where satellite-based monitoring should play a crucial role in drought monitoring and early 

warning system (Gu et al., 2008a; Scaini et al., 2015a; Vicente-Serrano et al., 2012) (Chapter 5). 

 Satellite-based drought indices and their use in drought monitoring   

Consequently, advances in remote sensing technologies revolutionized the field of drought 

monitoring by enabling continuous observations of key drought-related variables available over large 

spatial and temporal scales (West et al., 2019). The remote sensing data has improved the ability to 

track drought conditions, particularly in data-poor regions, provides surface soil moisture, 

evapotranspiration, and vegetation data (Anderson et al., 2007; Du et al., 2013; Enenkel et al., 2016). 

Available drought monitoring systems diagnose drought in a given area in various ways.  For instance, 

the German Drought Monitor (Zink et al., 2016) uses a hydrological model driven by meteorological 

observations, estimates daily soil moisture, and then transforms it into a soil moisture index.  

Concerning meteorological and hydrological drought assessment, the examination of satellite-

based drought indices has become an important method when no field measurements, interpolation, 

or large-scale modeling are available or required. Numerous satellite-based indices have been widely 

used to detect and identify drought conditions globally. For investigating soil moisture and vegetation 

status under different climate conditions, several medium-resolution satellite data sets (e.g., SMOS, 

NOAA-AVHRR, Spot-VEGETATION, MODIS) were used in previous drought studies (Bento et al., 2018; 

Champagne et al., 2015; F. Kogan et al., 2004; Martínez-Fernández et al., 2015; Nilda Sánchez et al., 

2016a; Tuvdendorj et al., 2019).  

 Regarding the drought-caused stress to vegetation, the extent of drought can be reflected by 

changes in vegetation indices. In most cases, agricultural drought affects vegetation, increases plant 

mortality, promotes poor vegetation health, and lowers yields. The most well-known such index is the 

normalized difference vegetation index (NDVI). It is the normalized difference between near-infrared 

(NIR) and red reflectance which is effectively used for drought monitoring (Ji & Peters, 2003; Karnieli 

et al., 2010; Tucker, 1979b). NDVI is a valuable index for identifying plant stress due to drought and 

can be used in pasture land, crop management, and monitoring of drought conditions (Bao et al., 2014; 

Dorigo et al., 2007) (Chapter 4).  

Several indices based on NDVI have been applied for the identification of drought conditions at 

large and regional scales. For example, an integrated surface drought index (ISDI), composed of the 

NDVI and land surface temperature (LST) was developed by (Wu et al., 2013) and serves for agricultural 

drought monitoring in China. To assess the impacts of climate on vegetation, a vegetation condition 

index (VCI) was developed by (F. N. Kogan, 1995a). Visible and shortwave infrared drought index (VSDI) 

based on a combination of the blue, red, and shortwave infrared reflectance SWIR optical bands and 

the water-sensitive indices were purposed by (N. Zhang et al., 2013). Combining information from 

multiple near-infrared and short-wave channels into normalized multi-band drought index (NMDI), the 

authors of (L. Wang & Qu, 2007) concluded that their method is suited to estimate both soil and 

vegetation moisture. Solar Induced Fluorescence (SIF) is a relatively new emerging satellite product, 
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which provides information on photosynthetic activity versus NDVI, which is a greenness index. It 

serves as a strong proxy to gross primary production (GPP), capturing dynamic responses of vegetation 

to stressors such as drought and temperature.  

Land surface temperature (LST) derived from thermal radiance bands is a good indicator of the 

energy balance of the land surface. Since temperature can rise quickly under water stress, a 

temperature condition index (TCI) developed by (F. N. Kogan, 1995b) can also be a good indicator of 

water stress and drought. The combination of different indices indicating vegetation stress, water 

deficit, and soil moisture status can describe changes in drought better than each index in isolation. 

Recently, a study showed that vegetation supply water index (VSWI), is a cost-effective method that 

can detect soil moisture changes in agricultural land (Toby N. Carlson et al., 1990). In several countries, 

the vegetation health index (VHI) was often used for agricultural monitoring assessments (Shen et al., 

2019; Unganai & Kogan, 1998). The study by (Chang et al., 2017d) demonstrated that the normalized 

difference water index (NDWI) effectively detects drought conditions but only in forest-steppe areas 

in Mongolia.  

Noteworthy, that all these indices were focused on drought research in different countries or 

regions. Due to the influence of factors such as atmospheric circulation, soil type, vegetation type, 

different growth periods in a forest, steppe, and semi-desert zones, the spatial and temporal 

characteristics of drought events are also different. Also, a reference to meteorological observations 

could moderate the spatial representativeness of these indices. This implies that satellite bands in 

different regions have different responses to drought conditions, and the degree of drought varies in 

different regions respectively (Vicente-Serrano et al., 2012) (Chapter 5). Generally speaking, drought 

monitoring that will reliably deliver timely information, extent, and intensity of drought, could help to 

reduce drought-related fatalities and economic losses (Wilhite & Rhodes, 1993). To serve (propose, 

improve) such monitoring is an overall objective of our study. 

 Methodologies in an overview 

Surface soil moisture (SSM), vegetation indicator (NDVI), and Evapotranspiration (PET) play an 

important role in hydrological and meteorological drought assessment. The approach of this study was 

to validate the satellite data using in-situ observations, to produce a regional spatial pattern of soil 

moisture maps, and to quantify the regional hydro-meteorological drought conditions using these 

data. 

We used a bias-correction technique (ratio and gamma distribution) to compare in situ SM 

measurements and remotely sensed SMOS SM data. Specifically, we determine whether in situ and 

remotely sensed data in Southwestern Mongolia are consistent with each other, by comparing SMOS 

passive L-band satellite data with in situ measurements. Verification of bias-corrected SMOS data was 

conducted by Nash–Sutcliffe method. In addition, the comparison results suggest that bias correction 

enhances the reliability of the SMOS data, resulting in a higher correlation coefficient with the in-situ 

observations. The bias-corrected SMOS soil moisture values of the topsoil layer were used for studying 

the spatial pattern of the SM change mapping (Chapter 3).  

The assessed changes in drought characteristics were focused on the seasonal aridity index 

(aAIz). Due to local arid climatic conditions, the modified seasonal aridity index was applied to detect 

the respective drought years. In our study, we tried to link spatially variable climatic circumstances 

with specific summer characteristics before dzud events. This approach is based on daily temperature 

and precipitation in the summer season. The aAIz was used to quantify the drought risk and periodic 
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NDVI temporal pattern. The analysis of the NDVI-based vegetation conditions after drought – dzud 

(i.e., the map of NDVI spatial pattern after drought -dzud) was used for projections of the future 

vegetation state (Chapter 4). 

The multiple regression analysis was applied to develop the Gobi drought index (GDI). This 

model (as an indicator of drought) was used for the analysis of the drought occurrence and intensity 

in the Gobi region. The model shows how SMOS SM depends on NDVI, LST, and PET in the Gobi region. 

The model results were correlated with the standardized precipitation index SPI at the climate stations, 

other drought indices derived from satellite images, and in-situ SM data. Pearson’s correlation 

coefficients were used. We have chosen six drought indices (SPI, TCI, NMDI, VSWI, NDDI, and NDWI) 

which are commonly used for the arid regions. The detailed information on this analysis is included in 

Chapter 5. 

• Statistical analysis 

During the validation of the SMOS soil moisture product, a bias correction technique was used 

to evaluate the differences between the SMOS and in situ SM data. The gamma and ratio method were 

used to assess the differences of bias-corrected SMOS and observed SM data between within two soil 

layers (Chapter 3). To characterize the meteorological and hydrological drought conditions in Chapters 

3, 4, and 5, we used Pearson correlation analysis, student-T test, Nash Sutcliffe model efficiency 

coefficients and applied them to meteorological and several RS-based drought indices. 

• Geographical information systems and remote sensing 

Geographical Information System (GIS) and Remote Sensing (RS) play an essential role in this 

study. Various input data were extracted from RS resources such as spatiotemporal soil moisture 

(SMOS SM), MODIS products, vegetation (NDVI), precipitation and temperature (CRU), elevation 

(DEM), GDI drought index maps. The research also used map data from different formats and 

coordinate systems. All maps were created, analyzed, and stored in the ArcGIS software format. Two 

types of GIS data were used in this study (i.e. spatial databases and attribute data). The details of both 

the GIS and RS methods are described in each chapter of this thesis. 

• Multiple Linear Regression Model (MLRM) 

Regression analysis is a statistical method used to estimate the quantitative relationship 

between two or more variables. Multiple linear regressions are the commonly used strategies in many 

applications.  In this method, the researcher uses several explanatory variables to predict the outcome 

of a response variable. The goal of MLR is to model the linear relationship between the explanatory 

(independent) variables and response (dependent) variables (Tranmer & Elliot, 2008). The coefficient 

of determination (𝑅2) is a statistical metric that is used to measure how much of variation in the 

response variable output can be explained within the linear approximation by the variations of 

independent variables. 𝑅2 always increases as more predictors are added to the MLR model, even 

though the predictors may not be related to the output variable (Islam & Tiku, 2005). 𝑅2 can only be 

between 0 and 1, where 0 means that the response variable cannot be predicted by any of the 

independent variables, and 1 indicates that the MLRM output reproduces the response variable 

without error by the linear combination of the independent variables (Uyanık & Güler, 2013). In this 

dissertation, the dependent (response) variable in MLRM was SMOS SM and independent variables 

were NDVI, LST, and PET from MODIS products. The model was used to develop a drought model in 

the Gobi region of Mongolia.  
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The impact of drought on grassland and monitoring of drought is a process that comprises a 

great number of attributes and requirements across multiple levels. Therefore, the estimation of 

regional drought conditions can be adjusted based on a multiple linear regression model (MLRM). This 

model developed by linear regression analysis is frequently used in meteorological and hydrological 

drought modeling (Anshuka et al., 2019; Bayissa, 2018; S. W. Kim et al., 2020; Ribeiro et al., 2019) and 

ecological studies. It is intended to use with different goals and aspects in mind. In Chapter 5, we 

describe in detail how the drought model was developed by using the MLR analysis that incorporated 

different remote sensing products. Multiple regression model allows an analyst to define (predict) a 

drought based on SMOS SM and the MODIS-provided multiple explanatory variables.  

 Overview of the research area 

The study region comprises the central-southwestern part of Mongolia, with a particular focus 

on the Arkhangai, Uvurkhangai, Bayankhongor, and Gobi-Altai aimags (administrative province of 

Government of Mongolia), with a total size of 376.408 km2 (Figure 2.1). The climate of Mongolia is 

characterized by high continental semi-arid to arid conditions. From north to south, the climatic zones, 

the ecological zones, and relief characteristics vary considerably. However, the study regions are the 

most vulnerable to climate change and climate extremes such as drought - dzud (Johnston, 1992; Wen 

& Fu, 2000). About 79 % of the area is characterized as agricultural land, including pasture and 

meadowlands (National Statistical Office of Mongolia, 2019). The west to east trending “Valley of Gobi” 

with Buun Tsagaan Nuur (269 km2) and Orog Nuur (106 km2) lies between the Khangai Mountains and 

the Gobi – Altai in the south. The altitude of the study area ranges from sea level to 4000 m.a.s.l. 

(Khangai Mountain). 

 

Figure 2.1 Geographical location of meteorological stations with SM measurements in 
Bayankhongor, Uvurkhangai, Arkhangai, and Gobi-Altai Provinces. Map includes province 
boundaries, meteorological stations (blue color), and in situ SM measurement stations (pink color). 
Data source: Information and Research Institute of Meteorology, Hydrology, and Environment 
(IRIMHE) of Mongolia (Information And Research Institute Of Meteorology, Hydrology And 
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Environment ). Digital Elevation Model (DEM) from SRTM (Shuttle Radar Topography Mission) data 
(Shuttle Radar Topography Mission ). 

An annual average temperature range between -2 °C to 3.3 °C from 2000 to 2014 (Figure 2.2) 

(O. Vova, Kappas, & Emmam, 2019). The average annual temperature of the last 15 years (2000 – 2014) 

is higher than the temperature from 1985 to 1999. The mean annual precipitation range resides 

between 108 mm in the southern desert regions and up to 400 mm in the northern steppes from 2000 

to 2014 (Figure 2.2). During the winter season, the Siberian high-pressure cell produces cold and dry 

weather.  Most rainfall occurs between June and September. The seasonal precipitation distribution is 

characterized by 70 – 80 % of the annual precipitation falling during the summer months (Lehmkuhl et 

al., 2018). Steppe lies in the northwest of the study area, whereas the southern part encompasses the 

Gobi Desert and has a very dry climate. Nationwide, the vegetation cover of the forest-steppe, steppe, 

and Gobi desert is 53 %, 25 %, and 15 %, respectively (Gunin et al., 1999). The soil type of the steppe 

areas is mainly Kastanozems and Chernozems. The desert area soil types are Calcisols, Solonetz, and 

Solonchak, while the northern part of the mountain areas has Phaeozems and Cambisols. The soils are 

frozen from late November to the middle of March.  
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Figure 2.2 Mean annual temperature (a) and mean annual precipitation (b) of Southwestern 
Mongolia (1985 - 2014). Data source: (Information And Research Institute Of Meteorology, 
Hydrology And Environment of Mongolia). 

The locations of the SM sampling stations have been categorized into four natural zones: forest-steppe, 

steppe, High Mountain, and desert (Table 2.1). The SM measurements were made at vertical layers of 

soil from 10 to 15 cm depth. For this research, in situ SM measurements, climate data, and soil maps 

were provided by the Institute of Meteorology and Hydrology of Mongolia.  
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Table 2.1 Meteorological and in situ measured SM data stations with information on location, 
elevation, natural zone, and soil types.  

Station 
number 

Station Name 
Province 

Name 
Lat (°N) Long (°E) Soil Type 

Elevation 
(m) 

Natural Zone 

287 Bayankhongor Bayankhongor 46.192 100.718 
Kastanozems 

haplic 
1860 Steppe 

277 Altai Gobi-Altai 46.373 96.257 
Chernozems 

calcic, 
Calcisols haplic 

2147 
High mountain 

and desert 

288 Arvaikheer Uvurkhangai 46.266 102.778 
Kastanozems 

haplic 
1831 Steppe 

281 Tuvshruulekh Arkhangai 47.388 101.906 
Kastanozems 

haplic 
1900 Forest-steppe 

 

Figure 2.3 displays the soil type map of the research area. In situ SM measurements data has been 

taken from four different stations in different aimags at the uncultivated land (natural rangeland). The 

southern region of the study area is the semi-desert area, characterized by very sparse vegetation 

cover (shrubs) where agriculture and pasture fodder for livestock herds is scarce.  The northern-central 

region is more humid than the southern areas and has forest-steppe and steppe.  

 

Figure 2.3 Soil type map of Southwestern Mongolia. Data source: (Information And Research 
Institute Of Meteorology, Hydrology And Environment of Mongolia, 2019 ). 
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The following three chapters (3 through 5) comprise three papers published (Chapters 3 and 4) or 

submitted (Chapter 5) by the thesis author. Because these papers were submitted separately, the 

defendant apologizes for redundancy in introductions, the study area, and methods descriptions in 

these three Chapters.  This redundancy and the respective overlaps with the content of Chapters 1 and 

2 of this Thesis are inevitable. 
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 Abstract 

Monitoring soil moisture dynamics provides valuable information about grassland degradation since 

soil moisture directly affects vegetation cover. While the Mongolian soil moisture monitoring network 

is limited to the urban and protected natural areas, remote sensing data can be used to determine 

the soil moisture status elsewhere. In this paper, we determine whether in situ and remotely sensed 

data in the unaccounted areas of Southwestern Mongolia are consistent with each other, by 

comparing Soil Moisture and Ocean Salinity (SMOS) first passive L-band satellite data with in situ 

measurements. To evaluate the soil moisture products, we calculated the temporal, seasonal, and 

monthly average soil moisture content. We corrected the bias of SMOS soil moisture (SM) data using 

the in situ measured soil moisture with both the simple ratio and gamma methods. We verified the 

bias-corrected SMOS data with Nash–Sutcliffe method. The comparison results suggest that bias 

correction (of the simple ratio and gamma methods) enhances the reliability of the SMOS data, 

resulting in a higher correlation coefficient. We then examined the correlation between SMOS and 

Normalized Difference Vegetation Index (NDVI) index in the various ecosystems. Analysis of the SMOS 

and in situ measured soil moisture data revealed that spatial soil moisture distribution matches the 

rainfall events in Southwestern Mongolia for the period 2010 to 2015. The results illustrate that the 

bias-corrected, monthly-averaged SMOS data has a high correlation with the monthly-averaged NDVI 

(R2 > 0.81). Both NDVI and rainfall can be used as indicators for grassland monitoring in Mongolia. 

During 2015, we detected decreasing soil moisture in approximately 30% of the forest-steppe and 

steppe areas. We assume that the current ecosystem of land is changing rapidly from forest to steppe 

and also from steppe to desert. The rainfall rate is the most critical factor influencing the soil moisture 

storage capacity in this region. The collected SMOS data reflect in situ conditions, making it an option 

for grassland studies. 

 

Keywords: SMOS; soil moisture; statistics methods; Nash–Sutcliffe; NDVI; precipitation 
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 Introduction 

Soil moisture (SM) is an essential indicator of the hydrologic cycle that can affect vegetation 

growth, impacting both global agriculture and grassland condition (D’Odorico et al., 2007; N. Wanders 

et al., 2014). These impacts significantly concern herders in Mongolia, who depend on the pastureland 

for their livelihood. Mongolia is located in the Silk Road Economic Belt and has a high amount of 

grassland, most of which is used for pastoral purposes, which makes up a significant amount of the 

economic activity there (Yang et al., 2016). Soil moisture can be used to evaluate drought risk and 

grassland conditions in these arid lands. Accurate soil moisture data is necessary for short and long-

term monitoring of grassland development. One previous study determined that 90% of pastureland 

in Mongolia is vulnerable to land degradation and desertification and that 72% of that total territory is 

degraded to some degree; slight, moderate, severe, and severely degraded grassland occupies 23%, 

26%, 18%, and 5% of the vulnerable pastureland, respectively (Batkhishig, 2013). Climate change and 

overgrazing have caused significant grassland degradation in semi-arid regions (Emam et al., 2015; 

Kawamura et al., 2005; Sekiyama et al., 2014). 

Multiple analyses have compared satellite SM data to in situ SM measurements (Champagne et 

al., 2016; A. Souza et al., 2018; Zeng et al., 2015). As point measurements, in situ measurements cannot 

necessarily be applied to a large area, and are difficult to obtain in high-altitude areas where few 

ground stations are available. Remote sensing data is beneficial for retrieving spatial and temporal soil 

moisture measurements over large and mountainous areas. SM derived from remote sensing only 

applies to up to the first five centimeters of soil depth, depending on the soil characteristics (Jonard et 

al., 2018). de Beurs et al. and Wessels et al. have found that vegetation changes, increasing 

temperatures, decreasing rainfall, and larger livestock populations have led to droughts and grassland 

degradation (de Beurs et al., 2015; Wessels et al., 2007). Several remote sensing vegetation indices, 

e.g., Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Soil-

Adjusted Vegetation Index (SAVI) are widely used to assess changes in vegetation (Sternberg et al., 

2015; Tucker et al., 1991; W. Zhou et al., 2015).  

The Soil Moisture and Ocean Salinity (SMOS) satellite, the first and most successful space mission 

dedicated to monitoring global soil moisture, was launched in November 2009 (Y.H. Kerr et al., 2016; 

Yann H Kerr et al., 2010). The passive L-band (1.4 GHz) radiometer installed on this satellite acquires 

data for the entire globe every three days, with a spatial resolution of approximately 44 km. The 

overpass ascending time is 6:00 am local time and descending overpass time is 12 hours later (Yann H 

Kerr et al., 2012). Several studies have found that the quality and reliability of the SMOS products is 

sufficient (Bircher et al., 2012; Rüdiger et al., 2011; Schlenz et al., 2012), validation of SMOS SM data 

have been successful, and comparative analysis between SMOS data and in situ SM measurements 

have demonstrated a strong correlation (Marczewski & Łukowski et al., 2014). One study even 

suggested that there is no difference between using a SMOS-derived time series and the daily average 

of in situ SM measurements (Sanchez et al., 2012). Recent studies suggest that SMOS provides 

successful results for North America, Australia, and central Asia (Al-Yaari et al., 2014). The Soil Water 

Index (SWI), determined from SMOS products, has also been found to be an appropriate tool for 

drought monitoring (González-Zamora  Ángel  - Sánchez, Martínez-Fernández, José - Wagner, 

Wolfgang, 2016). A development overview of soil moisture studies from satellite sensors and their 

characteristics is summarized in Appendix A. 

Accurate SM data collection depends heavily on atmospheric circulation and the weather. 

Previous research indicates that precipitation changes affect SM variability (Lindroth et al., 1998). The 

annual temperature in Mongolia has warmed by 2.1 °C from 1940 to 2007, which, according to climate 
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forecasts, will continue to rise to 3.1 °C above 1940 levels by 2050, as defined by the Mongolia 

Assessment Report on Climate Change (Ministry of Environment Mongolia, 2009). Many studies have 

attributed grassland degradation to climate and precipitation patterns like drought and winter 

precipitation (Ravi et al., 2010; H. Zhou et al., 2005). Few studies, however, have compared satellite 

SM products with in situ measurements in Mongolia. The SMOS SM data is an affordable indication of 

soil moisture and vegetation conditions, as well as drought monitoring (Usowicz et al., 2019). Further 

analysis is necessary to identify the importance of SM for the future status of grassland conditions and 

the preservation of ecological functions. The objectives of this study are: (1) To examine the spatial 

distribution of SMOS, SM, and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and 

their relationship, and (2) compare satellite SMOS SM data with in situ measured SM data to evaluate 

grassland condition between 2000 and 2015 in Southwestern Mongolia.  

 

  Material and Methods 

  Study Area 

The study area is located in central-southwestern Mongolia, consisting of four provinces 

Arkhangai, Uvurkhangai, Bayankhongor, and Gobi-Altai (Figure 3.1). From north to south, the climatic 

zones, the ecological zones, and relief characteristics vary considerably. The winter monthly average 

temperature is between −20 °C and −21 °C. The summer monthly average temperature is between 16 

°C and 17 °C. Most rainfall occurs between June and September, showing an uneven distribution 

throughout the year. The altitude of the study area ranges from sea level to 4000 m.a.s.l. (Khangai 

Mountain). Steppe lies in the northwest of the study area, whereas the southern part encompasses 

the Gobi Desert and drier climate. The vegetation growing season is from April–September. The soil 

type of these regions is mainly Kastanozems and Chernozems. The soils are frozen from late November 

to the middle of March. The desert area soil types are Calcisols, Solonetz, and Solonchak, while the 

northern part of the mountain areas has Phaeozems and Cambisols. The southern region is almost 

exclusively a desert landscape, where agriculture and pasture fodder for livestock herds is scarce. 

These regions are more vulnerable to the impacts of climate change and droughts.  
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Figure 3.1 Meteorological stations of soil moisture (SM) measurements in Bayankhongor, 
Uvurkhangai, Arkhangai, and Gobi-Altai provinces, represent each of the zone elevations. The figure 
shows the province boundaries and in situ SM measurement stations (blue color). 

In this study, in situ SM measurements, precipitation data, and soil maps were obtained from the 

Institute of Meteorology and Hydrology of Mongolia.  
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Table 3.1 In situ measured SM data stations with information on location, elevation, natural zone, 
and soil types. 

Station 
code 

Station name 
Province 

name 
Lat 
(˚N) 

Long 
(˚E) 

Soil type 
Elevation 

(m) 
Natural 

zone 

287 Bayankhongor Bayankhongor 46.192 100.718 
Kastanozems 

haplic 
1860 Steppe 

277 Altai Gobi-Altai 46.373 96.257 

Chernozems 
calcic, 

Calcisols haplic 

2147 
High 

mountain 
and desert 

288 Arvaikheer Uvurkhangai 46.266 102.778 
Kastanozems 

haplic 
1831 Steppe 

281 Tuvshruulekh Arkhangai 47.388 101.906 
Kastanozems 

haplic 
1900 

Forest-
steppe 

 

The locations of the SM sampling stations have been categorized into four natural zones: forest-

steppe, steppe, High Mountain, and desert (Table 3.1). Nation-wide, the vegetation cover of the forest-

steppe, steppe, and Gobi desert is 53%, 25%, and 15%, respectively (“Vegetation Dynamics of 

Mongolia,” 1999). The SM measurements were measured at vertical layers of soil from 10 to 15 cm 

depth.  

 

Figure 3.2 Overview of soil moisture stations and soil types in Southwestern Mongolia. Data is 
sourced from the Institute of Meteorology and Hydrology of Mongolia. 
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Figure 3.2 presents the soil type map of the study area. In situ SM measurements data has been 

taken from four different stations (provinces) and the uncultivated land (natural rangeland). The 

southern region of the study area is the desert steppe area, characterized by very sparse vegetation 

cover (shrubs), and the northern central region is more humid than the southern area and has forest-

steppe and steppe.  

 

  Methods  

In this study, the SMOS L2 SM products were compared with in situ SM measurements. An area 

of 1822 × 684 km was examined, comprised of 918 SMOS L2 datasets. The statistical calculation of SM 

distributions of this region was studied from June to October to determine monthly averaged SMOS 

SM data for 2010–2015. These periods correspond to spring, summer, and autumn. We validated the 

SMOS SM data to assess the grassland 

conditions. We also examined the bias-

corrected SMOS SM and NDVI data 

temporally and spatially from 2000 to 

2015. Figure 3.3 presents a framework 

of the study that comprises pre-

processing and GIS data processing, 

image processing, bias correction, and 

the relationship between SMOS SM, 

rainfall, and NDVI. 

 

Figure 3.3 Flowchart of soil moisture 
evaluation steps. 

 

  Remote Sensing Data and Pre-

processing 

• SMOS (SM Data) 

The SMOS L2 data from January 

2010 to December 2015 were selected 

for the comparative analysis and to 

determine the SM distribution. The 

SMOS data was extracted using the 

ArcGIS tool “Extract multi values to 

point.” The data available are daily 

values, the monthly averages, and three 

parts per month. To accomplish further 

analysis, SMOS SM measurements were 

provided three times per month 

(normally between the 29th and 8th, 9th 

and 18th, and 19th and 28th of every 

month) during the warm period of the 
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year, which runs from April until the end of October. The radiometric SMOS SM data with an average 

spatial resolution of 43 km. Since the SMOS satellite data cover a large spatial area, it appears more 

reasonable to use the monthly average values. The datasets are provided in the netCDF format, ranging 

from regional to global scales and at a temporal resolution of three days. For checking the accuracy of 

the data, the bias-correction technique was used for different evaluation aspects. The bias-correction 

technique emphasizes the statistical characteristics of data and successfully reduces the error in data 

outputs, and has become very popular for correcting biases in multiple datasets and analyses 

(Abbaspour et al., 2009; B. K. Mishra et al., 2018). 

• In Situ Measured SM Data (Observation Dataset) 

The National Agency of Meteorology, Hydrology, and Environment Monitoring of Mongolia 

(NAMHEM) provided SM datasets from four different stations. In situ SM measurements used in this 

research were collected from 2010 to 2015. At each SM station, they collected one sample with the 

gravimetric method and converted the values to volumetric water content (Saxton & Rawls, 2006). In 

situ measured SM data were obtained at a 10–15 cm depth at a monthly interval. For the majority of 

the stations, no data is available from April 8th and October 28th. For that reason, both these dates 

were excluded from the analysis.   

• MODIS NDVI Data (Vegetation Dataset) 

The Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data used in this study are 

version 5 MODIS/Terra and MODIS/Aqua 1 km resolution daily daytime products (MOD13A2). These 

products are freely distributed by the U.S. Land Processes Distributed Active Archive Center   (Kamel 

Didan et al., 2015, LP DAAC : NASA Land Data Products and Services; Zhengming Wan, 2006). The 

Normalized Difference Vegetation Index (NDVI) computed from space-borne observations at visible 

infrared wavelengths has been widely used since the 1980s to study the vegetation changes, soil, and 

drought (Tucker, 1979a). The MODIS NDVI vegetation dataset used in this study is monthly averaged 

from 2010 to 2015. The NDVI was calculated using the following equation: 

NDVI = (NIR−Red) / (NIR+Red), 

where Red is the visible light of the red wavelength (from 400 - 700 nm) and NIR is the intensity 

of the near-infrared wavelength (from 700–1100 nm). The spectral reflectance ratios indicate the 

reflected radiation over the incoming radiation in each spectral band, therefore these values range 

from 0.0 to 1.0. Individual NDVI pixel values were extracted from the images at each station location. 

For further statistical analysis, we resampled the MODIS NDVI data resolution to SMOS pixel size. At 

the regional scale, grassland degradation has been monitored in semi-arid regions using vegetation 

indices derived from remote sensing.  

 

  Processing of the Soil Moisture  

Both the SMOS datasets and the in-situ datasets were available in volumetric water content. 

Recently, the bias correction method is often used for validation and comparison analysis. The bias 

correction technique significantly reduces the error in data output and emphasizes the statistical 

characteristics of observation data. Because of the coarse spatial resolution of the SMOS data, we 

applied two statistical approaches, the simple ratio method and the gamma method (Abbaspour et al., 

2009; B. K. Mishra et al., 2018; Rafiei Emam et al., 2017). The simple ratio method dictates that the 
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average SMOS SM for each month is divided by the corresponding in situ SM measurement. This factor 

is then multiplied by the daily SMOS SM data in order to receive a bias-free daily SM value. The gamma 

method is a bias-correction technique to decrease the biases in the SMOS SM data. The gamma 

distribution is a function of the probability density function (PDF) and the cumulative distribution 

function (CDF). More details about the bias technique can be found in (B. K. Mishra et al., 2018). Mishra 

et al. (2018) applied the bias correction technique to minimize the biases in the GCM precipitation data 

(B. K. Mishra et al., 2018). In substance, the two-parameter gamma distribution was employed for bias 

correction. Applying α and ẞ as shape and scale parameters, the gamma distribution can be expressed 

by probability density function (PDF) and the (CDF) as mentioned earlier (Equations (3.1) and (3.2)): 

𝑓(𝒳) =
1

𝛽𝑎Γ(𝑎)
χ𝑎−1 exp (−

𝜒

𝑎
) (3.1) 

𝑓(𝒳) = ∫ 𝑓(𝑡)𝑑𝑡
𝜒

0

 
 (3.2) 

 

where 𝜒 represents the monthly average SM for the range 0 <  𝜒 <  ∞ and 𝑡  is a dummy variable. 

Later, the bias-corrected SMOS SM data was evaluated by the Nash–Sutcliffe efficiency (NSE) and root 

mean square (𝑅2). We used the Web-based-Hydrograph Analysis Tool for our calculations 

(https://engineering.purdue.edu/mapserve/WHAT/cgi-bin/compute_r2_nash_sutcliffe.cgi). The tool 

is used in many cases of modeling to compute R2 (Nash–Sutcliffe) coefficients to validate the model. 

This Web-based statistics module provides a tool for the computation of these coefficients. The NSE 

value ranges from − ∞ to 1, and the 𝑅2 value ranges from 0 to 1.  

 

  Results 

  Temporal SMOS Soil Moisture (SM) Analysis 

We compared SMOS SM data to the in-situ SM measurements and examined their relation to 

climate (e.g. rainfall). Figure 3.4 shows the density scatter plots, which provide a quantitative 

comparison between the SMOS SM after bias correction and in situ SM measurements for the entire 

five-year monthly SM mean value in Southwestern Mongolia (encompassing four different stations). 

The bias-corrected SM values are more consistent with in situ SM data than the original satellite SMOS 

SM products. The ratio method resulted in an 𝑅2 = 0.81 in Bayankhongor, 𝑅2 = 0.77 in Uvurkhangai, 

𝑅2 = 0.74 in Gobi-Altai, and 𝑅2 = 0.60 in Arkhangai. The results suggest that SMOS SM data and 

precipitation time series show moderate compatibility. The monthly averaged SMOS SM data were 

strongly correlated with the average in situ SM measurements in the steppe and forest-steppe areas. 

These findings demonstrate that SM in these areas is relatively higher than SM in dry regions. In 

particular, 2012 was a relatively wet year in the provinces of Uvurkhangai and Arkhangai, when (on 19 

July) SM reached a peak value of 16.8% and 15.9%, respectively. During the spring and summer, SMOS 

SM increased in May, reached a peak value in mid-July, and then began decreasing through the end of 

August. The consistency of this SM cycle between SMOS SM and in situ measured SM data implies that 

the absolute maximum reached at the end of July may be correlated with the vegetation development. 

However, the soil water that accumulated during the winter and spring precipitation events was 

sufficient for vegetation growth. Subsequently, the spatial distribution of SM depends on the soil 

parameters that were not distributed homogeneously in the study areas (soil texture, vegetation, and 

topography). 

https://engineering.purdue.edu/mapserve/WHAT/cgi-bin/compute_r2_nash_sutcliffe.cgi
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Figure 3.5 shows the density scatter plots that compare the SMOS SM data after the gamma 

distribution with in situ measurements. The gamma distribution algorithm successfully replicated in 

situ measurements. The bias-corrected SMOS SM data correlated well with the in-situ SM data for all 

stations: Bayankhongor (𝑅2 = 0.69), Uvurkhangai (𝑅2 = 0.83), Gobi-Altai (𝑅2 = 0.74), and Arkhangai 

(𝑅2 = 0.84). Most of the in-situ SM distribution was similar to the bias-corrected SMOS SM distribution, 

and thus met the primary conditions of the bias correction technique. According to Moriasi et al. 

(2007), the performance of the model is acceptable when the NSE and R2 values are both greater than 

0.5. Mostly, the greatest variations of SM were observed during October and April in both datasets. 

Assessment of gamma results indicates that, generally, strong correlations were noted for moist soils 

(Figure 3.5b, d), while lower correlations were noted for dry soils (Figure 3.5a, c). The results presented 

in Table 3.2 (as an example) show the summary of the gamma distribution algorithm applied in this 

study. 

 

Table 3.2 Summary of statistical parameters (gamma distribution algorithm) applied for bias 
correction of SMOS SM data in this study. 

 

Bias-correction (gamma 
distribution algorithm) 
Station 288/Arvaikheer 

In situ measurements 
(observation data) 

SMOS 
data (raw) 

SMOS 
data (corrected) 

Average moisture % 6.68 11.05 6.69 

Standard Deviation 2.49 5.85 2.46 

shape, alpha 7.19 3.57 7.39 

scale, beta 0.93 3.09 0.91 
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Figure 3.4 Result of ratio method and comparison of the in-situ measurements SM data, and Soil 
Moisture and Ocean Salinity (SMOS) bias-corrected SM, and antecedent precipitation for (a) 
Bayankhongor, (b) Uvurkhangai, (c) Gobi-Altai, and (d) Arkhangai provinces. 

a) 

b) 

c) 

d) 
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Figure 3.5 Result of gamma distribution method and comparison of the in-situ measurements SM 
data, and SMOS bias-corrected SM and antecedent precipitation for (a) Bayankhongor, (b) 
Uvurkhangai, (c) Gobi-Atai, and (d) Arkhangai provinces. 

a) 

b) 

c) 

d) 
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The bias-corrected SMOS SM data was applied to assess the grassland development status. 

Overall, the SMOS SM data show moderately good compatibility with expected relationships, in 

particular, increasing SM after rainfall. During the winter period, SMOS had no SM data signal because 

of snow, which produced outlier values at the beginning (April) and end of the periods (October).  

 

  Spatial Distribution of SMOS SM  

We examined the spatial variability of SM data with bias-corrected SMOS SM data. Figure 3.6 

shows the result of a corrected SMOS SM spatial distribution map (absolute differences from 2010 to 

2015). The maps indicate that the SM increased approximately 20% to 30% in 2011 in the northern 

part of Bayankhongor and northern central part of Uvurkhangai provinces, respectively. For 2012, we 

observed that SM increased by 2.5% to 10% for most of the investigated areas. Hence, significant 

changes in SM can be seen in bias-corrected SMOS SM map Figure 3.6b, c. However, a subsequent SM 

distribution showed a significant SM decrease (30%) in the steppe and forest-steppe regions that 

contain Kastanozems haplic soils (Figure 3.6f). Further, bias-corrected SM distribution maps allowed 

the delineation of wet areas in the northwestern and southeastern dry areas of Mongolia. Hence, the 

bias-corrected SMOS SM products imply that they could be effective for soil moisture monitoring.  

 

Figure 3.6 Spatial distribution of bias-corrected SMOS SM maps from 2010 to 2015 in Southwestern 
Mongolia. 

  The Relationship between SMOS SM and MODIS NDVI Vegetation  

In order to check how NDVI represents the spatial differences in vegetation, we examined the 

relationship between SMOS SM and NDVI. Consistently, the NDVI is a proven indicator of vegetation, 
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drought, and the thermal state of the land surface (Yengoh et al., 2016). Figure 3.7 displays the 

relationship between SMOS SM (annual average) and MODIS NDVI (annual average) from 2010 to 

2015. The results show that there is a positive tendency relating to the spatial patterns of NDVI. The 

bias-corrected SMOS SM favorably correlated with NDVI in the area around different soil types such 

as (Kastanozems haplic) with 𝑅2 = 0.94 and 𝑅2 = 0.72 (Figure 3.7b, d). Furthermore, lower correlations 

were found in semi-arid and desert regions (Chernozems calcic and Calcisols haplic) soils with 𝑅2= 0.65 

and 𝑅2= 0.62, respectively (Figure 3.7a, c). The cause of these varying correlations is the different 

vegetation types. For instance, the southern region corresponds to open shrub-land, which is drier and 

has a smaller degree of vegetation content.  

 

Figure 3.7 Scatter plot showing the annually-averaged correlation values obtained between SMOS 
SM and Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference 
Vegetation Index (NDVI) in the provinces: (a) Bayankhongor, (b) Arvaikheer, (c) Gobi-Altai, and (d) 
Tuvshruulekh. 

Figure 3.8 presents the seasonal correlations between SMOS SM and NDVI. The relationship 

between SM and NDVI was examined using the seasonal SM values from April to July and July to 

October. From the regression plots, it can be seen that the seasonal values of NDVI and SMOS SM 

have the highest correlation during the growing season (Figure 3.8a, c, e, g). We detected a far 

c) 

b) a) 

d) 
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weaker correlation for estimates during the non-growing season (Figure 3.8b, d, f, h). The seasonal 

NDVI values over the growing season correlate better in the humid and dense vegetation areas. 

 

Figure 3.8 Scatter plot showing the monthly-averaged correlation values obtained from SMOS SM 
and MODIS NDVI during two seasons, April through June and July through October, in the provinces: 
(a, b) Bayankhongor, (c, d) Arvaikheer, (e, f) Gobi-Altai, and (g, h) Tuvshruulekh. 

a) 
b) 

c) d) 

e) f) 

g) h) 
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  Discussion 

  Seasonal Precipitation and SM 

The results reveal that the temporal variation and spatial distribution of the bias-corrected SMOS 

SM were generally related to precipitation, in agreement with other findings (Usowicz et al., 2019). For 

the entire study area, peak SM was observed in late July and decreased in mid-August. The lowest SM 

was observed at the beginning of spring (i.e., April/May), which was due to the snow cover melting 

from the winter. Significant rainfall in July 2011 caused an increase in SM, which was recorded in both 

the bias-corrected SMOS SM data and the precipitation records at stations like Arkhangai (336 

mm/year). In 2011 and 2012, the maximum SM (in July) depended strongly on the precipitation. In 

Gobi-Altai province (desert/high mountain region) the wettest year was 2011, however, the highest 

SM value was detected in June and decreased in July. The lower than average rainfall during this rainy 

season was the main cause of the SM reduction in late July. Subsequently, in dry years, we found a 

shift of the SM depression from August to mid-July. These findings could indicate that SM conditions 

during the early plant growth stage critically impact the vegetation condition, which is consistent with 

other studies (M. Shinoda et al., 2010b). When there is a lack of rainfall in drylands (Bayankhongor, 

Gobi-Altai), higher temperatures reduce SM, which is precipitation driven in these areas (Jung et al., 

2010). Moreover, low precipitation leads to SM deficits, increasing aridity, and leading to drought. It is 

worth noting that many lakes in Mongolia have shrunk or dried up over the past decades (Tao et al., 

2015). In relatively dry areas covered by sparse vegetation, dry summer months also transport dust 

storm events causing additional damage related to, e.g., health, the environment, and the economy.  

  NDVI Vegetation Index and SM 

Most of the bias-corrected SMOS SM distributions in this study were similar to NDVI and have 

similar dynamics. This is particularly the case in open shrub-lands, where NDVI values are low. Because 

of the widespread droughts, the dry regions are becoming drier and the growing season is getting 

shorter (Hessl et al., 2018). A previous study highlighted that data from satellite remote sensing data 

SMOS are strongly correlated with vegetation dynamics (Prigent et al., 2005). Bias-corrected SMOS SM 

and in situ SM were most correlated in humid areas (Figure 3.7). Considerably, the spatial distribution 

of SM depends on soil parameters that are not distributed homogeneously in the area. This indicates, 

in general, that SM in dry steppe areas could change very rapidly in the topsoil layer. The dynamics of 

NDVI show good compatibility and a strong correlation with the bias-corrected SMOS SM when 

measured in the seasonal cycles (Figure 3.8).  

 Relation of SMOS SM to Measured SM 

The SMOS SM data strongly correlates with in situ SM measurements; the SMOS SM datasets 

successfully captured the spatiotemporal dynamics of the in-situ SM measurements in the transition 

zones between dry and humid climates (as seen in the comparison analysis). Furthermore, for 

comparison analysis, it is important to capture the correct temporal pattern of the in-situ SM 

measurements. The SMOS data exhibited weaker correlations in some of the desert areas (e.g., Gobi 

desert), possibly caused by the relatively small range of SM values in these regions (which corresponds 

to remote sensing accuracy (Yann H Kerr et al., 2001)). The desert and desert steppe regions are too 

dry to transmit an adequate signal to the sensor. With rising SM, the quality of the signal may increase 

and allow a stronger statistical context in the northern regions. Some differences between SMOS SM 

and in situ SM measurements were observed, which may be explained by the respective depths of the 
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measurement; SMOS data is for depths from 0 cm to 5 cm, while the in situ measurements are between 

10 cm and 15 cm (Szlazak et al., 2017). Particularly, in the early spring and late autumn, the greatest 

variations of soil moisture were observed in both datasets. The SMOS data exhibited a certain 

underestimation in April and October compared to the ground observations, although the SMOS data 

reacted to rainfall events more quickly (Figures 3.4 and Figure 3.5), which was also detected in previous 

validation experiments (González-Zamora et al., 2015).  

 

  Conclusions 

This study compared satellite SMOS SM with the in situ measured SM at depths between 10 cm 

and 15 cm from 2010 to 2015 in the southwest part of Mongolia. The spatial distribution of SMOS SM, 

MODIS NDVI, and their relationship were used to assess the grassland condition. SMOS SM was also 

compared with in situ SM measurements to examine the reliability of SMOS SM. Two techniques (i.e., 

ratio and gamma) were applied to correct the bias between the in-situ SM and SMOS SM data. The in 

situ measured SM distribution was close to the bias-corrected SMOS SM distribution, and thus met the 

primary condition of the bias-correction technique. The two algorithms utilized for comparison analysis 

successfully recreated the in-situ measurements. For all investigated stations, the coefficient of 

determination (𝑅2) ranged from 0.6 to 0.8 for the validation results. The distribution patterns of bias-

corrected SMOS SM correctly reproduced the precipitation season from June to July as well as the 

drying out period starting in October. In both datasets, the highest variability of SM occurred in the 

northern part of the study area in 2011, with an increase in SM of up to 30% above 2010 levels. The 

lowest SM values were observed in 2015, with a significant decrease (30% compared to 2010) in the 

steppe and forest-steppe regions with Kastanozems haplic soils. Overall, the small seasonal changes in 

the bias-corrected SMOS SM and situ measurements were generally similar throughout the study area 

during the three phases of observed vegetation growth (i.e., warm spring, summer recharging, and 

autumn drying season). The study site lies in a zone that transitions between steppe, forest-steppe, 

and desert. The lowest correction between SMOS SM and in situ SM was observed in the dry, lowland 

regions. While the spatial resolution of SMOS is coarse, the high temporal resolution of the SMOS SM 

data will be useful to determine large-scale temporal SM changes.  

This study confirms a simple bias-correction technique (ratio and gamma distribution) is a valid 

method to compare in situ SM measurements and remotely sensed SMOS SM data in the southwestern 

part of Mongolia. The use of SMOS SM data allows easier monitoring of spatial and temporal changes. 

The geostatistical results and spatial distribution SM maps will be useful in grassland development 

studies to address drought in Mongolia. In the future, the bias-corrected SMOS SM products can be 

used as an extra tool for monitoring the grasslands of Mongolia. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 Extreme Climate Event and Its Impact on 
Landscape Resilience in Gobi Region of Mongolia   



 

38 
 

 

 Extreme Climate Events and their Impact on Landscape 

Resilience in Gobi Region of Mongolia 

 

Oyudari Vova 1, *, Martin Kappas 1, Tsolmon Renchin 2 and Steven R. Fassnacht 1,3,4,5 

1 Cartography, GIS and Remote Sensing Department, Institute of Geography, University of 
Göttingen, 37007 Göttingen, Germany 

2 Physics department, National University of Mongolia, Ulaanbaatar 14200, Mongolia 
3 Department of Ecosystem Science and Sustainability—Watershed Science, Colorado State 

University, Fort Collins, CO 80523-1476, USA 
4 Cooperative Institute for Research in the Atmosphere, CSU, Fort Collins, CO 80523-1375, USA 
5 Natural Resources Ecology Lab, Colorado State University, Fort Collins, CO 80523-1499, USA 
* Correspondence Author 

This chapter was published as a research article: Journal of Remote Sensing 12(18):02881; Special Issue 

“Earth Observations for Ecosystem Resilience” DOI: https://doi.org/10.3390/rs12182881  

 

 Abstract 

 
The dzud, a specific type of climate disaster in Mongolia, is responsible for serious environmental and 

economic damage. It is characterized by heavy snowfall and severe winter conditions, causing mass 

livestock deaths that occur through the following spring. These events substantially limit socioeconomic 

development in Mongolia. In this research, we analyzed several dzud events (2000, 2001, 2002, and 

2010) to understand the spatial and temporal variability of vegetation conditions in the Gobi region of 

Mongolia. The present paper also establishes how these extreme climatic events affect vegetation 

cover and local grazing conditions using the seasonal aridity index (aAIZ), time-series Moderate 

Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI), and 

livestock data. We also correlated aAIZ, NDVI, and seasonal precipitation in the varied ecosystems of 

the study area. The results illustrate that under certain dzud conditions, rapid regeneration of 

vegetation can occur. A thick snow layer acting as a water reservoir combined with high livestock losses 

can lead to an increase of the maximum August NDVI. The Gobi steppe areas showed the highest degree 

of vulnerability to climate, with a drastic decline of grassland in humid areas. Another result is that 

snowy winters can cause a 10 to 20-day early peak in NDVI and the following increase in vegetation 

growth. During a drought year with dry winter conditions, the vegetation growth phase begins later 

due to water deficiency, which leads to weaker vegetation growth. Livestock loss and the reduction of 

grazing pressure play a crucial role in vegetation recovery after extreme climatic events in Mongolia. 

Keywords: dzud types; vegetation; aridity index; drought; livestock mortality 
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  Introduction 

Featuring a mix of monsoon, and harsh Siberian climates, the south Gobi of Mongolia is a unique 

desert steppe and nomadic living area, and one that is sensitive to global climate changes. Over the 

past 20 years, meteorological disasters in the Mongolian plateau have become increasingly severe, and 

its dynamic succession has become increasingly investigated partly through large-scale monitoring. 

The interaction between drought-dzud and vegetation has been an essential concern for pastureland 

use in Mongolia. Originally, dzud was the Mongolian term for a natural, winter-related climate disaster. 

Dzuds are now defined, biophysically, as anomalous climatic or land surface conditions (i.e., snow and 

ice cover) that lead to reduced accessibility or availability of pastures (Nandintsetseg, Shinoda, Du, et 

al., 2018). It often causes very high livestock mortality during the winter. Changes in the frequency and 

intensity of extreme climate events (e.g., heavy winter, snowfall, drought, and freezing rain) 

substantially affect societal well-being (Groisman et al., 2016). Hence, (Bulygina et al., 2011) and 

Groisman and Soja 2009.) have pointed out that extreme climate conditions impact the regional water 

deficit for the growing season. Some studies concluded that several factors influence dzud disasters, 

depending not only on climate hazards but also on the vulnerability of herders and livestock (e.g., 

(Nandintsetseg, Shinoda, Du, et al., 2018; NATSAGDORJ & L., 2001). Dzud causes years with growing-

season drought and severe winter weather (i.e., deep snow and extreme cold), which can lead to high 

livestock mortality. Related studies have identified five different types of dzud  (Table 4.1): white, black, 

iron/ice, cold, and hoof, but a combination of these is also possible (Punsalmaa Batima et al., 2013; 

Begzsuren et al., 2004). For example, a white dzud occurs when a severe winter follows heavy snow; A 

black dzud occurs when there is no snowfall. (Dagvadorj et al., 2009; Morinaga et al., 2003). Climate 

changes and other extreme events, such as overgrazing by goats, have led to the degradation and 

desertification of 76% of grasslands (8% of the land in Mongolia as of 2015). This has become one of 

the most problematic issues for the country, especially economically. (Masao Shinoda, 2015) and 

(Templer et al., 1993) reported that dzud events tend to follow droughts. Therefore, drought could 

serve as a strong predictor of a dzud event (Mukund Palat et al., 2015a).  

Table 4.1 Types of dzuds in Mongolia and their local nomenclature (Punsalmaa Batima et al., 2013; 
Begzsuren et al., 2004). 

Type of Dzud  Weather Condition Effects 

Tsagaan (white) 

The average thickness of the snow layer on 
pasture land exceeds 21 cm in high mountains 
and forest regions, 16 cm in steppes, and 10 
cm in the Gobi region. Snow density reaches 

200 kg/m3 or greater in any region. 

Prevents access to grass. The 
most common form of dzud and 

the most disastrous when it 
affects large areas. 

Khar (black) 
No snow during winter and the monthly or 

ten-day average temperature is 5.0⁰C lower. 

Causes water supply shortages, 
often exacerbated by lack of 

winter grass.  

Tumur (iron or ice) 

Snow cover melts and freezes due to rapid 
changes in temperature creating an ice cover 

that prevents livestock from grazing. Snow 
density reaches 0.30 g/cm3 or greater. 

Prevents access to grass. 

Khuiten (cold) 
Air temperature is 5 to 10 °C lower than the 

monthly mean temperature for several 
consecutive days. 

Extreme cold and strong freezing 
winds prevent animals from 

grazing. Animals spend most of 
their energy maintaining their 

body heat. 
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Turen (hoof) Extremely dry weather.  
Causes complete depletion of 
grass due to drought and/or 
trampling and heavy grazing.  

Khavsarsan 
(combined) 

Two or more of the above occurring simultaneously. 

The United Nations Convention to Combat Desertification (UNCCD) defines desertification as 

“land degradation in arid, semi-arid and dry sub-humid areas resulting from various factors, including 

climatic variations and human activities” (Ma et al., 2018). Desertification, therefore, denotes a form 

of land degradation specific to drylands. The UNCCD defines drought as “the naturally occurring 

phenomenon that exists when precipitation has been significantly below normally recorded levels, 

causing serious hydrological imbalances that adversely affect land production systems” (Ma et al., 

2018). Droughts increase the frequency and severity of dzud (Nandintsetseg, Shinoda, Du, et al., 2018; 

Nandintsetseg & Shinoda, 2013b). A drought mechanisms analysis revealed that severe water scarcity 

results from a combination of insufficient precipitation, high evaporation, and over-exploitation of 

water resources (Bhuiyan et al., 2006). It is important to note that reduced winter precipitation 

promotes drier summer conditions by reducing the soil water available for evapotranspiration in 

summer (Nandintsetseg & Shinoda, 2011c). 

The livestock sector of Mongolia has struggled with the harsh climate, overgrazing, and an 

imbalance in livestock species. These factors have led to significant damage to regional vegetation 

(Kakinuma et al., 2019). The winter of 2010 was the “most severe winter in nearly five decades” (FAO, 

2010), in which more than 10 million livestock died across the country. This represented a national 

disaster for a country where animal husbandry is the traditionally dominant form of livelihood, 

providing 16% of the Gross Domestic Product (GDP) for the country and employment to 366,000 

herders, as well as indirect economic support to about one million people or about a third of the 3.1 

million inhabitants (UNDP/NEMA, 2010). The impact on many herders was particularly severe during 

the three consecutive dzud winters of 1999 to 2002 when 30% of the livestock in the nation perished 

(Fernández-Giménez et al., 2012; Sternberg, 2010). More recently, the dzuds of 2009 to 2010 were 

even harsher. (Fernández-Giménez et al., 2012) analyzed the changing climate over the past 70 years 

(Appendix A), stating that the frequency and range of dzuds and summer droughts are expected to 

increase, particularly in central and northern Eurasia (Groisman et al., 2009; Hansen et al., 2010). The 

effects can vary according to the type of dzud (Table 4. 1). 

Analysis of extreme climate events has become an urgent task to understand dzud mechanisms 

in Mongolia. By studying the mechanisms of dzuds, we will be able to prepare herders and their 

livestock for dzud effects. Limited research has examined the response of vegetation conditions to 

dzuds and summer droughts for different ecosystems on the Mongolian plateau using long-term 

satellite observations (Tachiiri et al., 2008; Xu et al., 2012). One of the most cost-effective remote 

sensings approaches to detect vegetation changes across large scales is the Normalized Difference 

Vegetation Index (NDVI) (Zucca et al., 2015). NDVI features a nonlinear combination of the red and 

near-infrared (NIR) spectral irradiance, exhibiting a relationship with vegetation and green biomass. 

The NDVI index has been widely used to monitor global vegetation phenology from space across large 

scales (Karlsen et al., 2008; Y. Y. Liu et al., 2013). This study focuses on the impacts of dzud-related 

factors (e.g., drought and snowfall), as well as provides a more in-depth analysis of its spatial and 

temporal distribution and losses. The goal of this paper is to describe the effects of dzud on the 

vegetation growth cycle in the subsequent year. To comprehend the mechanical concept of dzud after 

droughts, and how vegetation responds to various dzud situations, we used MODIS-NDVI data (2000–
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2013) to estimate the spatiotemporal changes in NDVI. In this paper, we (1) determine the 

spatiotemporal variations in NDVI after dzud events and the length of the growing season, and (2) 

assess the impact of drought (using the climatic variables Aridity Index (aAIz), precipitation, and 

temperature) on vegetation throughout the dzud period. 

 

  Materials and Methods  

 Study Area 

The study area comprises the Bayankhongor and Gobi-Altai provinces (aimags) in southwestern 

Mongolia (Figure 4.1), with a total size of 258,200 km2 (National Statistical office of Mongolia 2015, 

n.d.). This is part of the central Asian desert belt (Klinge & Sauer, 2019) and has an arid ecosystem 

(John et al., 2008; Yu et al., 2003). It has an elevation that ranges from the sea level to 4000 m.a.s.l. 

and the average temperature is 17 °C in July and −24 °C in January. The area has become drier and 

hotter in recent years, due to the impact of climate change (Herzschuh, 2006). The Siberian high-

pressure cell in this area causes cold and dry conditions in winter (P Batima et al., 2005). The annual 

average rainfall varies from 200 to 300 mm, with an annual average wind speed of 3.1 m/s. The climate 

datasets and maps of vegetation zones were provided by the Institute of Meteorology and Hydrology 

of Mongolia. Six meteorological stations were examined for each province (Table 4.2). The dominant 

plant species are Stipa grandis, Leymus Chinensis, and multiple species of Artemisia spp. and Festuca 

spp. (Kang et al., 2007). Annual germination occurs between April and July, depending on the 

antecedent soil moisture and rainfall (BOHNER, 2008; Hilker et al., 2014; John et al., 2008).  

 

Figure 4.1 Location of meteorological stations for NDVI measurements in Gobi-Altai and 
Bayankhongor Provinces. Data are sourced from the Institute of Meteorology and Hydrology of 
Mongolia. 
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Table 4.2 Meteorological stations with location information, and vegetation zones. 

Meteorological Station Province Name Vegetation Zones Latitude Longitude 

Bayankhongor Bayankhongor steppe 46° 11’40’’ N 100° 42’2’’ E 
Galuut Bayankhongor steppe 46° 43’30’’ N 100° 8’35’’ E 
Bogd Bayankhongor desert steppe 45° 40’10’’ N 100° 7’75’’ E 

Ekhiingol Bayankhongor desert 43° 14’48’’ N 99° 21’14’’ E 
Shinejinst Bayankhongor desert steppe 44° 32’13’’ N 99° 17’34’’ E 

Bayanbulag Bayankhongor steppe 46° 49’32’’ N 98° 40’10’’ E 
Bugat Gobi-Altai desert steppe 45° 34’55’’ N 94° 22’91’’ E 

Khukhmorit Gobi-Altai desert steppe 47° 35’23’’ N 94° 28’51’’ E 
Aj Bogd Gobi-Altai desert 44° 37’52’’ N 94° 54’48’’ E 
Tooroi Gobi-Altai desert 44° 54’39’’ N 96° 47’42’’ E 
Altai Gobi-Altai desert steppe 46° 23’12’’ N 96° 15’14’’ E 

Tonkhil Gobi-Altai steppe 46°18’23’’ N 93° 54’51’’ E 

 

 Methods 

In this study, we combined Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI 

satellite data products, climate data from the Mongolian meteorological stations, spatial snow-cover 

data from global climate data sets, and livestock data from the National Statistics Office of Mongolia 

(National Statistical Office of Mongolia, 2010). We examined extreme climate events NDVI trends, and 

the relationship between NDVI and aridity index (aAIz) to characterize vegetation growth cycles after 

dzud events. Figure 4.2 presents a framework of the study that comprises pre-processing and 

meteorological data processing to compute aAIz, remote sensing data processing of NDVI, 

precipitation, temperature, snowfall, and livestock mortality. 
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Figure 4.2 Schematic flow chart of Geographic Information System (GIS)–based dzud evaluation 
methodology. 

  Remote Sensing Data and Pre-Processing. 

• MODIS NDVI Data (Vegetation Dataset) 

We examined vegetation variation in the Gobi region by using MODIS NDVI (MOD13Q1) data (K. 

Didan, 2015), which provides global data records with a spatial resolution of 250 m and a time 

resolution of 16 days from the year 2000 to the present. We used data from 2013 to extend over the 

most severe dzud years. The MOD13Q1 products are derived from atmospherically corrected bi-

directional surface reflectance function (BDRF) that have been masked for clouds, shadows, water, and 

aerosols (K. Didan, 2015). Comprehensive information and characteristics of MODIS NDVI can be 

obtained from (Kamel Didan et al., ) in TIFF format (LP DAAC - MOD13Q1,). In this study, we only 

processed NDVI data during dzud-related years, specifically during and after dzud events to estimate 

the mean monthly August NDVI value. Besides, we ensured that the areas were at least 500 x 500 m 

to fit the spatial resolution of the MODIS sensor (250 x 250 m). NDVI is defined by the following 

equation: 

NDVI = (NIR − red) / (NIR + red) (4.3) 

where red is the visible light of the red wavelength (from 400 to 700 nm) and NIR is the intensity of the 

near-infrared wavelength (from 700 to 1100 nm). The formula uses the specific reflective behavior of 

plant surfaces. NDVI values are normalized to a range from −1 to 1, where gross values over 0.1 

represent vegetation. A higher value indicates more vegetation, while negative values indicate water, 
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ice, or snow surfaces (Bannari et al., 1995). The MODIS NDVI data were then transformed into the 

same geographic coordinate system (UTM 48N) to ensure coverage equality. We used the “buffer” tool 

in ArcGIS (with a radius of 10 km) around the climate stations, afterward, computed the average 

MODIS NDVI for each area.  

  Meteorological Data (Climate Dataset) 

The National Agency of Meteorology and Environment Monitoring of Mongolia (NAMHEM) 

provided climate datasets (i.e., precipitation and temperature) from twelve different stations (Figure 

1). The station data were measured and documented for all study regions as average monthly 

temperature and total monthly rainfall. There were some limitations in data availability at 

(Khukhmorit, Bugat, and Tooroi) stations. The data from 1990 to 2013 were selected for aridity index 

analysis, while the data from 1985 to 2014 were selected for climate trend analysis in Bayankhongor 

and from 1990 to 2014 for the climate trend analysis in Gobi-Altai. The maximum and minimum 

temperatures were arithmetically derived from this data set. Rainfall and temperature records were 

averaged by season: summer (June, July, August), autumn (September, October, November), winter 

(December, January, February), and spring (March, April, May). We divided the time range (30 years) 

into three groups; 1985–2014, 1985–1999, 2000–2014, and trends were detected. The snowfall map 

was derived from the Climatic Research Unit (CRU) TS 3.22 global climate records for the period 1999 

to 2010. The dataset was provided as an accumulation of the precipitation (i.e., snowfall) amount from 

November to March. The gridded CRU TS 3.22 data are monthly variations in weather from 1901 to 

2013 with high resolution (0.5 × 0.5 degrees) grids, created by the Climatic Research Unit (CRU) at the 

University of East Anglia (Climatic Research Unit). The gridded data, along with the monthly station 

observations, are freely available at the British Atmospheric data center (Centre for Environmental 

Data Analysis, 2015).  

 

  Socio-Economic Data (Statistical Dataset) 

The livestock data used is from 2000 to 2013 and was provided by the National Administrative 

Department of Statistics (National Statistical Office of Mongolia). The Ministry of Livestock Husbandry 

composed the mortality data of the livestock each December, and the National Statistical Office (NSO) 

of Mongolia (1990–2015) collected the total livestock numbers for all provinces. We combined the 

statistical results to check the spatial and temporal variability of dzud events and the relationship 

between climate variability and livestock loss. To examine livestock mortality, livestock data were first 

converted to equivalent ‘sheep forage units’ (SFU) to standardize feed requirements, as each type of 

livestock requires different amounts of feed (Bedunah & Schmidt, 2000). The conversion rates to SFU 

were: 1 camel = 5 SFU, 1 horse = 7 SFU, 1 cow = 6 SFU, 1 sheep = 1 SFU and 1 goat = 0.9 SFU. The 

percent relative mortality for each province was calculated as the ratio of livestock deaths during 

winter and spring to the number of livestock at the beginning of the year. Consequently, the examined 

stock loss can be either a factor of the dzud of the prior year (in the case of drought temperatures) or 

of the current year (in the case of winter temperatures). 

 

 The Implementation of the Aridity Index 

Drought indices often integrate precipitation, temperature, and other variables, but may 

emphasize different aspects of drought and must be carefully selected concerning the drought 
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characteristics. For this purpose, we assessed changes in drought characteristics by focusing on the 

aridity index (AIz). Due to the local arid climatic conditions, we applied an adapted approach of the 

aridity index based on the respective drought years (Munkhtsetseg et al., 2007). This method was 

originally developed for the southern regions of Mongolia, to define the drought intensity during the 

summer months to estimate the relevant connection to pasture yields. In our study, it is intended to 

link spatially variable climatic circumstances and evaluate specific summer characteristics before dzud 

events. Hence, the aridity index was applied to each province (National Agency Meteorology and the 

Enviromental Monitoring, n.d.) to develop a zonal adapted seasonal aridity index (aAIz). Subsequently, 

the aAIz was used to show the drought risk and periodic temporal patterns in NDVI. We then arranged 

the standardized aAIZ values into three groups, represented by values less than zero (dry years), values 

between zero and five (normal years), and values greater than five to show the wet years.  

This method is based on daily temperature and precipitation values to assess the summer 

weather. The aridity index itself is based on a supply and demand concept of the water balance 

equation. The annual mean evapotranspiration and runoff rates are regulated by the amount of 

available energy (demand) and precipitation (supply). Equation (4.2) defines AI as a function of 

precipitation (P), the supply, and temperature (Hi), the demand. 

 

𝐴𝐼 = 
𝑃7

𝐻𝑖6 + 𝐻𝑖7
  (4.4) 

where P7 is the cumulative precipitation in July, while Hi6 and Hi7 are the average maximum daily 

temperatures during June and July, respectively. The basic theory behind this approach lies in the 

disproportionate significance of the July precipitation on biomass growth and its maximum in mid to 

late August. Within the southern parts of the study area, rainfall is usually limited to the summer 

months of July and August, with rainfall in August having a lower impact on the maximum growth 

stated, due to a response period of 10 to 20 days (Purevsuren et al., 2012). Evapotranspiration is 

highest in June due to the long days, high levels of incoming solar radiation, and high temperatures. 

Evapotranspiration can also be high in July due to the hot conditions (Munkhtsetseg et al., 2007). This 

aridity index approach demonstrates a stronger correlation to pasture yield in the southern part of the 

study area (i.e., arid climates) than in the central and northern parts. An expanded AI calculation as a 

zonal component (AIZ) is beneficial for regional assessment in the north, where precipitation increases 

in July and August, and a growth period spans from May to September (PMay-Sept). The denominator was 

extended by an empirically derived number (10) to compensate for different locations (Ni, 2003; J. E. 

Oliver & Fairbridge, 1987). Equation (4.3) represents the zonal aridity index.  

𝐴𝐼𝑧 = 
𝑃𝑟

10 + 𝐻𝑖
 (4.5) 

where Hi (TmaxJune-July) signifies the sum of the maximum daily temperatures from June and July, and 

Pr is the total precipitation during the respective season (in this case, summer). The seasonal 

precipitation (Pr) was applied to the zonal aridity index formula because seasonal and annual 

precipitation is the main factor that controls the spatial distribution of plant activity (Ni & Zhang, 2000). 

Greater negative values indicate increased aridity (i.e., drought). With this approach, we have 

developed our own regionally adapted index. In our study, the daily temperature data from June and 

July were accessible to find the maximum monthly temperature. The adjusted aridity index (aAIZ) is:  

 𝑎𝐴𝐼𝑧 =
𝑃𝑟

10 + 6𝑚 + 7𝑚
   (4.6) 
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where 6m and 7m stand for the average daily temperature in June and July, respectively. This value 

allows us to estimate the drought intensity at individual study area stations. Lower values of the aAIZ 

generally represent drier conditions in summer and a lower than maximum NDVI in August. 

Nevertheless, the prospect of direct comparability of the study area stations is problematic, since they 

are subject to different mean values and standard deviations. The steppe vegetation area shows a 

particularly strong correlation in terms of the aAIz, whereas the more arid desert regions show a lower 

correlation. This suggests that the vegetation that is present is very sparse or only present in small 

areas so that no significant vegetation signal can be detected. Thus, the calculated aAIZ values confirm 

the spatial variability of climatic conditions. Pearson’s correlation coefficients were applied to 

determine the sensitivity of aAIZ to different seasonal conditions as well as the relationship between 

mid-August NDVI and seasonal precipitation.  

 

  Results 

 Spatio Temporal MODIS NDVI Analysis 

We examined the spatial variability of MODIS NDVI data for dzud events in 2009/2010. Figure 4.3 

shows the NDVI spatial patterns in southwestern Mongolia (encompassing twelve different stations). 

The NDVI vegetation value of dry, shrub, desert regions were typically under 0.1. While NDVI values, 

associated with different vegetation types, varying environmental conditions, and station locations 

followed a similar trend. The maps designate that NDVI increased approximately (62.2%) in 2010, 

mostly in high mountain (steppe) regions in the northern part of Bayankhongor and the north-central 

part of Gobi-Altai. These results suggest that MODIS NDVI data showed a strong recovery after the 

2010 dzud events (Figure 4.3b). The NDVI data from 2010 exhibited maximal vegetation growth (mid-

August). This early growth phase depends on the weather conditions and the quantity of the snow 

cover. Through the exceptionally wet year of 2010 (aAIz = 0.91), vegetation reached its maximum 

interim growth. A dzud may be a determinant for a more substantial vegetation growth phase (outside 

of extremely arid desert zones). NDVI spatial distribution maps after dzud events also allowed the 

delineation of wet areas in the northwestern and southwestern dry regions of Mongolia.  
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Figure 4.3 Spatial distribution of MODIS NDVI maps from 2009 to 2010 for the study area. The NDVI 
map after dzud events: (a) Mean NDVI of August 2009; (b) Mean NDVI of August 2010. 

Figure 4.4 shows the spatiotemporal variations of mean MODIS NDVI from 2000 to 2013 among 

six different stations (Shinejinst, Bogd, Bayanbulag, Ekhiingol, Galuut, and Bayankhongor). The NDVI 

trend showed a remarkable increase in August 2003, August 2010, and August 2011. Only four of the 

12 climate stations exhibited a weak trend in NDVI. Two of them were within the extremely arid desert 

zone, where changes in NDVI values are severely restricted due to sparse vegetation. 

Positive NDVI trends can only be expected in the presence of relatively high precipitation. In 2002, 

a lack of precipitation led to substantial NDVI losses compared to the previous years. This pattern was 

widespread between the different station locations. The northern region vegetation had a stronger 

negative reaction to extreme droughts, while the southern region vegetation was well adapted to 

short-term and long-term droughts. The examination of vegetation response indicates that, generally, 

drought and water supply due to snow accumulation are essential in terms of the impact of dzud on 

vegetation development. 

Figure 4.5 shows the mean NDVI during 2001/2002 and 2009/2010. The most significant variations 

in NDVI were observed during both drought and dzud years at most stations. The combined drought-

dzud of 2002 had a strong negative impact on vegetation. 

 

 

(a) 

 

 (b) 
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Figure 4.4 Trends of mean NDVI of August for the period from 2000 to 2013 at meteorological 
stations in (a) Bayankhongor province; (b) Gobi-Altai province. 

 

Figure 4.5 Mean NDVI of August vegetation trends caused by the (a) 2001/2002 and (b) 2009/2010 
dzud events at different stations in the study area. 

(a) 

 

(a) 

 

(b) 

 

(b) 
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  The Relationship between MODIS NDVI, Aridity Index (aAIz), and Seasonal Precipitation 

To check how MODIS NDVI represents the spatial differences in vegetation, we examined the 

relationship between NDVI and the climate variables (adapted aridity index (aAIz) and seasonal 

precipitation; Figure 4.6). The results show that there is a significant relationship in the spatial patterns 

of NDVI; MODIS NDVI statistically significant (p < 0.001) correlated with aAIz and seasonal precipitation 

in the steppe regions with R2 = 0.64 and R2 = 0.59, respectively (Figure 4.6a, b). Furthermore, lower 

correlations were found in arid desert regions with R2 = 0.51 and R2 = 0.56, respectively (Figure 4.6c, 

d). The correlation for different vegetation types is higher between NDVI and aAIz than with NDVI and 

seasonal precipitation. 

 

Figure 4.6 Scatter plot showing the mean August correlation values between NDVI and aridity index 
(aAIz); seasonal precipitation (mm) in (a,b) Bayankhongor and (c,d) Gobi-Altai. 

The aAIz performed as expected, highlighting drought years and dzud years. Droughts caused 

reduced biomass and led to a decrease in the amount of hay/forage (Nandintsetseg & Shinoda, 2013b). 

We compared drought occurrences with aAIZ and created threshold criteria for the aAIZ values. From 

2000 to 2002, in particular, the effects of drought are apparent in these study regions. The dry years 

also contain massive dzud disasters, confirming the connection between the summer drought and the 

intensity of dzud events. The results of the developed aAIZ index (with their accompanying stations) are 

represented from 1990 to 2013 in Table 4.3. When there were high rainfall totals during the growth 

period, the mean NDVI was 0.72 points above average. Therefore, a strong influence of July 

precipitation on the maximal growth phase in mid/late August should be evident. 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Table 4.3 Summary of standardized aridity index (aAIz) values applied for drought risk analysis in this study.       

no data: areas do not have enough data to calculate aAIz; (-) negative values indicate dry years and drought; (+) positive values indicate wet years; (<−1) 
indicate extremely dry years; (−0.5 to 0.5) indicate normal years; (>1) values indicate wet years; 

Bayankhongor Gobi-Altai 
Station Bayanbulag Bayankhongor Bogd Ekhiingol Galuut Shinejinst Aj Bogd Altai Bugat Khukhmorit Tonkhil Tooroi 

1990 1.0 1.0 1.3 0.1 1.1 1.1 -0.8 0.9 no data no data 0.5 0.1 
1991 0.8 -0.1 -1.0 -0.6 1.0 0.1 1.5 0.6 no data no data 0.2 0.9 
1992 -0.7 0.0 -0.9 0.1 0.6 -0.5 -0.2 0.8 no data no data -1.3 0.5 
1993 2.3 1.9 1.2 2.1 1.7 1.6 no data 1.9 1.0 no data 2.4 no data 
1994 -0.7 2.2 -0.3 -0.1 1.5 0.9 -0.7 1.5 2.3 no data 2.1 -0.9 
1995 0.7 -0.5 -0.5 2.9 -0.5 -0.5 1.7 -0.1 0.3 no data 0.6 -0.5 
1996 -0.1 -0.6 -0.4 1.2 0.0 0.3 0.4 -0.8 -0.7 no data -0.6 0.7 
1997 1.3 -0.1 0.0 0.4 -0.5 1.6 -0.6 -0.3 0.6 no data -0.5 -0.3 
1998 1.3 -0.8 -0.1 -0.8 -1.4 -1.1 -0.6 0.5 -0.3 no data 0.1 -0.5 
1999 -0.2 1.0 0.3 0.1 1.1 1.7 -0.1 0.9 0.2 -0.3 0.3 -0.1 
2000 -0.3 -1.0 -0.4 0.3 -1.2 -0.2 0.0 -0.9 -0.8 0.0 -0.6 0.3 
2001 -1.0 -1.5 -1.4 -1.0 -1.2 -1.8 -0.7 -0.7 -1.5 -1.6 -1.2 -1.5 
2002 -0.6 -1.3 -0.7 0.2 -1.4 -0.9 0.5 -1.8 -0.2 -0.3 -0.9 0.1 
2003 1.1 2.3 2.2 0.0 0.2 1.9 3.1 1.4 2.5 2.7 2.5 3.4 
2004 -0.6 -0.2 -1.2 -0.2 -0.8 -1.2 -0.5 -0.4 -0.4 0.2 -0.4 -0.6 
2005 0.8 1.1 -1.4 -0.9 -0.5 -1.3 -0.5 1.3 0.0 -0.2 -0.2 0.7 
2006 -0.8 -0.7 -0.4 -0.6 -1.1 0.0 -0.8 -0.6 -0.2 -0.4 -0.5 -0.6 
2007 -0.5 0.6 0.9 2.4 -1.1 -0.2 -0.4 -1.2 0.3 0.5 -0.3 0.1 
2008 -1.3 -1.2 1.4 -0.3 -1.7 -0.3 0.5 -1.3 -0.6 -0.2 -0.8 -1.0 
2009 -1.5 -0.7 -1.2 -1.0 -0.4 -1.4 -1.5 -1.6 -0.9 -0.9 -0.5 -1.5 
2010 0.1 -0.2 0.0 -0.1 0.0 -0.6 0.6 -0.1 0.1 0.6 0.0 0.0 
2011 1.3 1.1 0.1 -0.3 1.3 0.5 -0.3 0.5 0.5 -1.1 -0.6 1.0 
2012 0.1 -0.2 1.7 0.8 0.4 1.6 -0.2 -0.5 -1.3 0.4 -0.3 0.5 
2013 -0.7 -0.3 -0.1 -0.6 0.0 -0.5 -1.0 0.3 -0.9 1.2 0.5 -0.7 
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Figure 4.7 compares the average MODIS NDVI of subsequent years (2000/2001, 2001/2002, and 

2009/2010). NDVI decreased by approximately −0.09 from 2000 to 2001 in the northeast of 

Bayankhongor Province, from 2001 to 2002 in the central part of Bayankhongor Province, and from 

2001 to 2002 in the southern part of Gobi-Altai (Figure 4.7a, b). However, NDVI increased in the steppe 

and mountain regions for most of the investigated areas (Figure 4.7c). The contribution of water supply 

in winter, a decrease of grazing pressure (due to livestock loss), and recovery in spring-summer rainfall 

played a minor role in vegetation regeneration in the semi-arid and desert regions. 

 

(a) 
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(b) 

 

(c) 

Figure 4.7 Spatial patterns of MODIS NDVI after dzud events (a) 2000/2001; (b) 2001/2002 and (c) 
2009/2010. 
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 Climate Condition Analysis  

We examined the spatial distribution of CRU snow data during dzud events. Figure 4.8 shows the 

accumulated snow distribution maps during the dzud years of 1999/2000, 2000/2001, and 2009/2010. 

Observations were collected from November to March. Snow only accumulated in the northern section 

of the study area and increased during later years. 

 

Figure 4.8 The spatial distribution of snowfall maps (between November and March), from (a) 
1999/2000; (b) 2000/2001 and (c) 2009/2010. 

We also examined the trends of annual mean precipitation and temperature as well as monthly 

precipitation and temperature. The mean annual precipitation and temperature differ significantly 

over the observation period. Figure 4.9 shows the time series of mean annual precipitation and 

temperature from 1985 to 2014 in Bayankhongor province and from 1990 to 2014 in Gobi-Altai 

province. Annual mean precipitation was 202 mm from 1985 to 2014, 226 mm from 1985 to 1999, and 

179 mm from 2000 to 2014 in Bayankhongor province (Figure 4.9a, b). During the combined drought-

dzud years, less precipitation was observed, i.e., 124.9 mm in 2000, 156 mm in 2001, and 128.6 mm in 

2002 in Bayankhongor province. However, an increase in precipitation was observed in 1993, 1999, 

2003, 2010, and 2011 (e.g., 233.8 mm in Bayankhongor province in 2011). For the Gobi-Altai province, 

the annual mean precipitation was 183.5 mm from 1990 to 2014, 205.7 mm from 1990 to 1999, and 

168.7 mm from 2000 to 2014 (Figure 4.9c, d). During the combined drought-dzud years, the totals were 

141.6 mm in 2000, 166.2 mm in 2001, and 108.3 mm in 2002. Hence, a peak in precipitation amount 

was observed in 1993, 2003, and 2010 in Gobi-Altai province (e.g., 215.3 mm in 2010). 

As for temperature, a general trend towards a warmer climate was recognized in the period from 

1985 to 2014. This result is consistent with (Klinge & Sauer, 2019).  

(a) 

 

(b) 

 

(c) 
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Figure 4.9 Comparison between mean annual precipitation and mean monthly precipitation (a,b) 
from 1985 to 2014 in Bayankhongor province and (c,d) from 1990 to 2014 in Gobi-Altai province. 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Most stations during the last 15 years (2000 – 2014) are statistically drier than the previous 15 

years (1985 – 1999). We determined the mean yearly precipitation during 2000–2014 is between 15 

and 20% lower than 1985–1999. Contrary to the expected strong warming tendency in the winter 

months, the last 10 – 15 years showed a cooling in winter, which could be related to the Siberian cold 

high. This circumstance, coupled with the high drought intensity, was a fundamental factor in the 

occurrence of the consecutive dzuds from 2000 to 2002. The average annual temperature of the last 

15 years (2000 – 2014) is higher than the temperature from 1985 to 1999. We detected the largest 

increase in annual temperature in the drier regions (southern area). The mean winter temperature 

from 2000 to 2014 (−3 to 2 °C) is cooler than the mean winter temperature from 1985 to 2014 (−0 to 

9 °C). The summer season shows the biggest gain in temperature, while the gain during autumn is quite 

low. Several studies have discovered an increase in Eurasian snow cover over the past decades (J. L. 

Cohen et al., 2012; X. Wang et al., 2017) and increasing trends in anomalous fall melt events (Pan et 

al., 2019) through remote sensing. 

 

 Livestock Mortality Analysis 

When considering the livestock mortality rate during consecutive dzud events, the most severe 

livestock loss was from 2000 to 2002, and from 2009 to 2010 (Figure 4.10). The highest livestock loss 

rate was nearly 60% in Bogd, Shinejinst, Ekhiingol, Bayankhongor, and Tooroi regions during the 

2000/2002 dzud events. Regions further west in Mongolia contained the most mortality hotspots, with 

80% of the total mortality (National Statistical Office of Mongolia, 2010). High mortalities indicate poor 

body conditions of the livestock-associated with adverse vegetation conditions due to drought or 

pasture degradation. During the 2010 dzud, the herds could not access pasture due to deep snow 

(Templer et al., 1993). The increase in pasture intensity reduces vegetation cover and it reinforced the 

effects of animal hooves (H. L. Zhao et al., 2005).  

 

Figure 4.10 The livestock loss rate in percent from 2000 to 2014 (where negative values equal losses). 
Data: National Statistical Office of Mongolia. 
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 Discussion 

Our findings are consistent with other studies indicating that summer droughts and cold, snowy 

winters seem to be the major factors leading to dzud disasters (Mukund Palat et al., 2015a; 

Nandintsetseg, Shinoda, & Erdenetsetseg, 2018; Tachiiri et al., 2008). As other studies documented 

that Mongolia is facing severe economic damage and huge livestock losses (Appendix B) (e.g.,(Benson, 

2011)) dzud might influence the vegetation phenology and livestock mortality. Our study finds that 

dzud, a combination of drought and harsh winter, contributes to the annual high livestock mortality in 

southwestern Mongolia, which is consistent with earlier studies (Begzsuren et al., 2004; Shestakovich, 

2010). The climate projections show that these trends will be aggravated in the medium term and 

those extreme events, such as drought and dzud, will become more frequent and more intense, with 

severe environmental, social, and economic impacts (Mukund Palat et al., 2015a). Also, drought/dry 

years and lack of meltwater in the spring may cause high grazing pressure due to less vegetation 

resources for livestock. Moreover, reductions in vegetation cover due to high livestock grazing could 

negatively impact ecosystem function and increase vulnerability (Kakinuma et al., 2008; T. H. Oliver et 

al., 2015). We also noticed that livestock grazing is difficult after a cold dzud with a high snowfall that 

does not melt and covers the grassland during the entire winter. Vegetation is susceptible to the length 

of the rainy season. The years with low NDVI had very dry conditions during the following summer. 

Most investigated stations with dry conditions (minimum AI of −1) showed a low NDVI. We observed 

that the highest increase in annual temperature was found in the drier regions in the south of the study 

area, while stations in the northern parts of the study region exhibited a lower mean annual 

temperature due to lower temperatures during the winter. Years with drought risk and long dry 

periods heavily influence the local water budget by causing high evapotranspiration, increased 

capillary effect, and short-term soil salinization. This suggest that a low NDVI and the low soil moisture 

conditions can induce drought, and these impacts tend to be a precondition for dzud. Our adapted 

aridity index showed a considerable regional difference in NDVI from the climatic effects. The NDVI 

was closely correlated with aAIz, while seasonal precipitation showed a lower correlation with NDVI 

(Figure 4.6). In general, the maximum vegetation growth, irrespective of the annual precipitation 

conditions, remains stable. When there is a lack of snow cover, there is a lack of water available at the 

beginning of the growth phase. This is likely reducing the pasture growth due to water stress. For 

instance, a large amount of livestock died at a later time due to weakness or dehydration, as they were 

burdened during the winter due to weakened fodder supply. This is limited mainly by winter 

precipitation and the livestock loss rate, which has emerged as the most important condition of 

vegetation regeneration. Accumulated snow cover will increase the amount of soil moisture in spring 

and result in a positive effect on the vegetation cycle. We recognize that our study was limited to 

investigating recent climate related impacts on vegetation cover. Long-term climate trends were not 

assessed and may play a significant role, particularly if severe dzud events are becoming more 

frequent. 
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 Conclusions 

This study examined the spatiotemporal pattern in NDVI and the cycle of the growing season after 

different dzud events detected from MODIS data. Our analysis quantifies the understanding of 

different dzud mechanisms and their influence on vegetation and livestock grazing. Our results reveal 

spatiotemporal patterns of vegetation response to dzud and combined summer drought-dzud, and it 

can help assess the resilience of vegetation in different ecological zones. To clarify the role of dzud 

climate drivers, we assessed the relationship between the aridity index and summer NDVI (as a proxy 

for vegetation conditions) and found a significant correlation. The summer conditions represented by 

aridity index and drought risk have an impact on livestock mortality, which is heightened by dzud. The 

drought-associated dzud years corresponded with lower summer NDVI. Specifically, we assume that 

during dry winter conditions, the growth phase begins later due to water deficiency and leads to a 

weaker and slightly later vegetation growth peak. However, the dzuds from 2009 to 2010 coincide with 

greater livestock losses corresponded and higher summer NDVI. Alleviating the impacts of climatic 

stresses (drought and dzud) on vegetation will be a crucial challenge in the arid and semi-arid regions 

of Mongolia.  

The consequences of changes in the frequency and intensity of environmental disasters have 

become a considerable issue for regional herders and the well-being of local communities. As a further 

study, the combined approach of herder’s ecological knowledge and remote sensing is an opportunity 

to explore the speed of vegetation reaction to dzud and droughts. 
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 Abstract 

A new drought index for meteorological and hydrological drought monitoring is presented, based on 
the integration of different remote sensing products and in situ observations. Due to a shortage of 
precipitation droughts reduces vegetation productivity, and thus, aggravate the impact of moisture 
stress on pastureland. Specifically, we examined a new composite Gobi drought index (GDI) based on 
the combination of Soil Moisture and Ocean Salinity (SMOS) Soil Moisture, several products from the 
MODIS satellite, and in situ Soil Moisture (SM) observations. Multiple linear regression method was 
used for estimation of GDI drought index. The former includes the surface soil moisture from the Soil 
Moisture and Ocean Salinity (SMOS) mission, the Moderate Resolution Imaging Spectroradiometer 
(MODIS) derived land surface temperature (LST), normalized difference vegetation index (NDVI), 
potential evapotranspiration (PET). The GDI drought index combines the soil moisture and temperature 
conditions while including the sensitive response of arid and semi-arid vegetation. The validation of the 
approach is based on the relationship between SPI and in-situ soil moisture (SM) observations, and their 
comparison to remote sensing (RS) – derived indices. The results show that the correlation was 
statistically significant between GDI and in-situ SM observations from the meteorological stations at 
10 – 15 cm depths. The latter includes standardized precipitation index (SPI) from in-situ data. The 
correlation between GDI and SPI, as represented by the correlation coefficient (r) was 0.64. We also 
retrieved a subset of Soil Moisture Active/Passive (SMAP) soil moisture data and compared it with our 
GDI estimates. A high correlation between SMAP SM and GDI (0.85) is statistically significant at the 
0.01 level and confirms that the GDI is a good overall tool for drought monitoring. The established new 
GDI index was retrieved at the 1 km spatial resolution for Southwest Mongolia from 2000 to 2018, and 
their two summer months (July, August) were used for monitoring drought and vegetation response to 
the varying soil/climatic conditions. Based on the assessment of drought severity, the new drought 
index allowed us to assess a large-scale spatial coherence of droughts across the Southwestern part of 
Mongolia.  
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  Introduction 

In recent years, the severity of various climatic hazards is expected to continue increasing due to 

climate change. Droughts have affected many regions of the world with the worst impact in the 

agricultural and livestock sectors (Mukund Palat et al., 2015b; The impact of disasters and crises on 

agriculture and food security 2017 : FAO in Emergencies). In our knowledge, when there is a lack of 

rainfall, drought occurs due to a deficiency of soil moisture and dryness. The lack of precipitation and 

other climatic factors (such as high temperatures, high winds, dust storms, low humidity, soil moisture) 

aggravate the severity of the drought event (Wilhite, 2000a). Droughts in Mongolia occur every 2-3 

years; half of the country has been affected by a drought once every 4-5 years (Ulaanbaatar, 1998), 

and they always had significant socio-economic and environmental impacts. The largest droughts were 

in 2000, 2002, 2007, when most regions of the country were affected by extremely dry and hot 

weather (Bavuudorj, 2018; Regional workshop on understanding the operational aspects of the 

drought observation system in Mongolia | United Nations ESCAP ). It is worth noting that the droughts 

have a dramatic effect on natural grassland. Thus, they may accelerate desertification processes 

together with destructive human activities (such as overgrazing), particularly in the arid and semi-arid 

regions of the Mongolian Plateau (Chang et al., 2017b). As reported by the UNCCD, desertification 

affects 64.7 % of the territory of Mongolia (LAND DEGRADATION NEUTRALITY TARGET SETTING 

PROGRAMME NATIONAL REPORT ON VOLUNTARY TARGET SETTING TO ACHIEVE LAND DEGRADATION 

NEUTRALITY IN MONGOLIA National Committee on Combatting Desertification of Mongolia (NCCD), 

2018). During the past 60 years, regional temperatures in Southern Mongolia have increased by 0.1 – 

3.7 °C, spring precipitation has decreased by 17%, and summer precipitation has decreased by 11% 

(Karrouk, 2007). Climate changes are the likely causes that intensify droughts in the spring-and 

summer-time, especially during the growing season (THIRD NATIONAL COMMUNICATION OF 

MONGOLIA Under the United Nations Framework Convention on Climate Change; Oyudari Vova et al., 

2020). The pastoral livelihoods are under pressure from the drought effects, while herders and herds 

often migrate 150-200 km from their usual camps in search of good pasture (Honeychurch & 

Honeychurch, 2015). It is very important to investigate the pasture responses to soil moisture deficit 

and to summer droughts that are crucial for the nation (Deng et al., 2020). Consequently, it is 

important to emphasize that accurate regional assessment of drought modeling must be based on 

realistic models (variables) and their current environmental conditions (Wilhite & Glantz, 1985b). For 

instance, in some studies, the strength of drought is defined depending on its area impact (Moreira et 

al., 2012; Szép et al., 2005).  

Generally, there are recognized four types of drought: (1) meteorological drought, (2) agricultural 

drought, (3) hydrological drought, and (4) socio-economic drought (Heim, 2002). The meteorological 

drought refers to precipitation shortages, agricultural (or soil moisture) drought also accounts for soil 

moisture deficit, and hydrological drought is related to water resources (supply) in the forms of 

streamflow, groundwater, and/or evapotranspiration deficit. Socio-economic drought is linked with 

supply and demand economic aspects, related to other three types of drought (Dubrovsky et al., 2006). 

The meteorological and agricultural droughts occur when precipitation and available soil moisture 
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decrease, which can cause vegetation stress and adversely affect grassland (A. K. Mishra & Singh, 

2010). Figure 5.1 displayed the simplified sketch of processes and drivers relevant for meteorological, 

agricultural, and hydrological droughts.  

 

Figure 5.1 Drought types, causal processes, and their drivers of occurrences. Source: (Easterling et 
al., 2012) 

In this context, soil moisture is considered a significant variable of agriculture drought in arid 

and semi-arid land. According to moisture conditions and deficiency of water for a specified area, 

drought indices classify as precipitation indices, water balance indices, soil moisture indices, and aridity 

indices (Nilda Sánchez et al., 2016b). There are currently a variety of studies that used drought indices 

to estimate the intensity of drought (Dubrovsky et al., 2006; A. K. Mishra & Singh, 2010; Shah & Mishra, 

2020; Yihdego et al., 2019). The most well-known indices are the traditional Standardized Precipitation 

Index (SPI) and the Palmer Drought Severity Index (PDSI) (Alley, 1984; Mckee et al., 1993). The SPI and 

PDSI indices are used in long-term drought assessments. In Mongolia, six indexes were used for 

research, and two indexes such as PDSI, SPI indices were used for research and operational service 

goals (Information And Research Institute Of Meteorology, Hydrology And Environment). The above-

mentioned six indices are Vegetation condition index (VCI), Vegetation Health index (VHI), 

Temperature Condition Index (TCI), Normalized Difference Drought index (NDDI), Normalized 

Difference Water Index (NDWI), and Vegetation Supply Water index (VSWI). They are provided by 

National Drought Watch System (Satellite-based system to monitor droughts/dzuds handed over to 

Mongolia - Mongolia ).  

Most of the drought monitoring approaches using satellite data are based on Normalized 

Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and land surface temperature 

(LST) or brightness temperature. The NDVI is used to assess the vegetation condition to detect the 

greenness of vegetation canopy during the growing season affected by droughts (Hassan et al., 2018; 

Felix N. Kogan, 1997; Nanzad et al., 2019a; Berhan et al., 2011; Tucker & Choudhury, 1987). Among 

these variables, soil moisture indices (Martínez-Fernández et al., 2015), and some other hydrological 

aridity indices such as the Crop Moisture Index (W. C. Palmer, 1968), characterize the water deficit 

over a given area. Thus, several indicators are used jointly to get a full characterization of drought in a 

given area. It is noteworthy that the spatial distribution and the extent of drought events at the 

regional scale have become challenging. In this regard, the use of remote sensing data has the 
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advantage of providing temporal and spatial patterns of drought dynamics on large spatial scales. 

Hence, various remote-sensing indices were developed and proposed for global drought monitoring.  

The soil moisture satellite products have offered a substantial advantage in terms of global 

coverage, temporal and spatial resolution, and has integrated into various drought monitoring 

programs (Z. Wan et al., 2004). Currently, there are two missions devoted to global surface soil 

moisture (SSM, top 0–5 cm) monitoring: the Soil Moisture and Ocean Salinity (SMOS) (Su et al., 2013) 

and the Soil Moisture Active and Passive (SMAP) (Entekhabi et al., 2010). These two missions opened 

a new perspective on drought monitoring by offering a 40 km global spatial resolution of soil moisture 

values every three days. Recent studies show that SMOS SM was successfully tested and can be used 

to characterize the pasture conditions in Mongolia (Oyudari Vova, Kappas, & Rafiei Emam, 2019). 

However, despite the availability of soil moisture data at a global scale, there is limited research using 

satellite soil moisture observations for drought analysis (Martínez-Fernández et al., 2016a; Scaini et 

al., 2015b). Agricultural and meteorological drought indices should integrate various parameters, like 

soil moisture, temperature, and evapotranspiration deficits to effectively monitor agricultural and 

meteorological drought (Mannava Sivakumar et al., 2010). In drought conditions, the soil moisture 

scarcity is often exacerbated by an increased heatwave. Therefore, integration of soil moisture, 

evapotranspiration, and vegetation status data offers an appropriate response variable to characterize 

vegetation conditions in the arid land.  

Due to drought and desertification expansion in Mongolia, it is necessary to develop methods 

for large-scale vegetative drought assessment. The main objectives of the study were integrating the 

monthly average SMOS SM and the MODIS-based NDVI - LST - PET data using multiple linear regression 

(MLR) model to build an appropriate model for the drought assessment. Specifically: 1) to assess the 

GDI with other remote sensing indices (TCI, NMDI, VSWI, NDVI, NDWI, NDDI), and with the SPI index, 

2) to evaluate GDI by verifying it using the in-situ SM observations from meteorological stations, and 

after verification 3) to apply the GDI to produce regional wide GDI 1 - km drought maps for summer 

months (July and August) from 2010 to 2018 across Southwestern Mongolia.  

  Study Area 

This research was conducted in the Bayankhongor Province. The Province is located in the 

southwest of Mongolia and covers an area of 116,000 square kilometers. It includes the southern 

region of the Khangai Mountain Range, the eastern ridges of the Altai Mountains, and the unique Gobi 

Desert to the south Figure 5.2 (Ahearn, 2018). The Province climate is continental semi-arid with mean 

annual temperatures range from 0° to 7°C in the north and 0° to 8°C in the southern regions. As 

mentioned above, the region has experienced intense climatic change with the regional summer 

temperatures increased from 1984 to 2003 in the steppe, semi-desert, and desert areas. The Province 

suffers from a scarcity of water and has an average annual precipitation of 80   ̶ 160 mm (Oyudari Vova 

et al., 2020). The vegetation growing season is short and depends on antecedent soil moisture and 

regional rainfall (Böhner, 2006; Hilker et al., 2014). Short grasses, semi-shrubs, and woody plants are 

the dominant vegetation (Bayarjargal et al., 2006). The soil type of the Province has a vertical 

distribution by elevation: white-loamy and sandy soil (below 1300 m), gray-stony soil (1300-2000 m), 

and dark brown soil (above 2000 m). In the Province, a wide range of anthropogenic environmental 

problems have emerged during the past several decades. These include increased livestock numbers 

(goats) and less seasonal movement of herds. Goats comprise approximately 81% of the herd, sheep   ̶

16%, and the remaining 3% comprises camels, horses, and cattle (Fernández-Gimenez et al., 2012).  
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Figure 5.2 Geographical location and vegetation zone maps of Bayankhongor Province. (a) 
Meteorological station distribution and vegetation zones, data sourced from the Information and 
Research Institute of Meteorology, Hydrology, and Environment (IRIMHE) of Mongolia. (b) Digital 
Elevation Model (DEM) from SRTM (Shuttle Radar Topography Mission) data (USGS EROS Archive - 
Digital Elevation - SRTM Mission Summary ). 

The selected meteorological stations were representative of the surrounding geomorphologic and 

vegetation conditions. The climate datasets and maps of vegetation zones were provided by the 

Institute of Meteorology and Hydrology of Mongolia. The locations of the meteorological stations were 

categorized into three vegetation zones: steppe, semi-desert steppe, and desert (Table 5.1). These 

zones form belts of vegetation at different altitudes (from mountains to plains) and latitudes (from the 

north to south).  

Table 5.1 Meteorological stations in the Bayankhongor and situ-measured SM data stations with 
location information, and vegetation zones. 

Meteorological 

station 

Province 

name 

Vegetation 

zones 

Latitude 

(N) 

Longitude 

(E) 

Elevation 

(M) 

Bayanbulag Bayankhongor steppe 46° 49'32 N 98° 40'10 E 2398 

Galuut Bayankhongor steppe 46° 43'30 N 100° 8'35 E 2102 

Bayankhongor Bayankhongor steppe 46° 11'40 N 100° 42'2 E 1877 

Bogd Bayankhongor semi-desert  45° 40'10 N 100° 7'75 E 1264 

Shinejinst Bayankhongor semi-desert  44° 32'13 N 99° 17'34 E 2216 

Ekhiingol Bayankhongor desert 43° 14'48 N 99° 21'14 E 1011 
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  Data 

The datasets that were used in this study include in-situ SM, meteorological, and remotely sensed 

data. In situ data included soil moisture, precipitation, and air temperature from the meteorological 

stations which were applied at the validation stage of this research. Table 5.2 shows a summary of the 

datasets that were used in this research. 

Table 5.2 Summary of the datasets used in this research. 

Name of Dataset 
Implementation 

Year 
Information/Resolution of Data Source 

Soil Moisture (in-situ SM) 
Precipitation (P)/ mm, 
Temperature (T)/ °C 

2000-2015 Meteorological stations 

Information and Research 
Institute of Meteorology, 

Hydrology, and Environment 
of Mongolia 

http://irimhe.namem.gov.mn/
index.php 

NDVI MOD13 2000-2018 
MODIS/ TERRA (1 km resolution) 

Monthly NDVI 

https://lpdaac.usgs.gov/produ

cts/mod13a3v006/ 

LST MOD11 2000-2018 
MODIS/ TERRA 8 day, (1 km 

resolution) 
https://lpdaac.usgs.gov/produ

cts/mod11a2v006/ 

PET MOD16 2000-2018 
MODIS/ TERRA 8-day, 500 m (1 

km resolution) 

https://lpdaac.usgs.gov/produ
cts/mod16a3v006/ 

 

SMOS SM 2000-2015 

SMOS L2 
Daily composites to monthly 

(40 km resolution) 
 

https://earth.esa.int/web/gue
st/missions/esa-operational-
eo-missions/smos/content/-
/asset_publisher/t5Py/conten
t/how-to-obtain-data-7329 
 

SMAP SM 2015-2018          
SMAP L3 3-daily composite to 

monthly (9 km resolution) 
https://nsidc.org/data/SPL3S
MP_E/versions/3 

 

• SMOS products and (SM) data  

The SMOS Level 2 data (version 5.51) that we used, were provided by ESA's Soil Moisture and 

Ocean Salinity (SMOS) mission and projected on the Icosahedral Snyder equal-area hexagon Discrete 

Global Grid (DGG) with equally spaced nodes at ~ 15 km. The SMOS mission provides global soil 

moisture measurements with a 40 km spatial resolution and accuracy of 0.04 m3/ m-3 (Yann H. Kerr et 

al., 2010). The datasets are provided ranging from regional to global scales and at a three days 

temporal resolution. The data available are daily values, decadal, and monthly averages. The snap 

toolbox program was used for data pre-processing, and daily composites were aggregated to monthly 

average values. The datasets between April and September from 2010 to 2015 were selected to create 

the new integrated methodology for drought indices and the consequent drought analysis. Since the 

SMOS satellite data cover a large spatial area, it appears more reasonable to use the monthly average 

values. To accomplish further analysis, SMOS SM measurements were provided by decades, i.e., three 

times per month (normally between the 29th and 8th, 9th and 18th, and 19th and 28th of each month) 

during the warm period of the year from April until the end of October. Afterward, daily composites 

were used to compute the monthly average composites for further analysis. 

 

http://irimhe.namem.gov.mn/index.php
http://irimhe.namem.gov.mn/index.php
https://lpdaac.usgs.gov/products/mod13a3v006/
https://lpdaac.usgs.gov/products/mod13a3v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod16a3v006/
https://lpdaac.usgs.gov/products/mod16a3v006/
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos/content/-/asset_publisher/t5Py/content/how-to-obtain-data-7329
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos/content/-/asset_publisher/t5Py/content/how-to-obtain-data-7329
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos/content/-/asset_publisher/t5Py/content/how-to-obtain-data-7329
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos/content/-/asset_publisher/t5Py/content/how-to-obtain-data-7329
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos/content/-/asset_publisher/t5Py/content/how-to-obtain-data-7329
https://nsidc.org/data/SPL3SMP_E/versions/3
https://nsidc.org/data/SPL3SMP_E/versions/3
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• MODIS products (NDVI, LST, and PET) 

For this research, the Moderate Resolution Imaging Spectroradiometer MODIS input products 

were: NDVI MOD13 (MOD13A3)  ̶a Normalized Difference Vegetation Index, LST MOD11 (MOD11A2)  ̶ 

a land surface temperature images, and PET MOD16 (MOD16A3)   ̶ a potential evapotranspiration data 

from the MODIS sensor aboard the Terra and Aqua satellites. They were used to calculate the drought 

indices from April to September 2010-2015. These remote sensing products are freely distributed by 

the U.S. Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov). The NDVI MOD13 

is a 1 km spatial resolution monthly averaged daily product. LST MOD11 and PET MOD16 have an 8-

day composite temporal resolution, which was recalculated to a monthly average value similar to the 

NDVI MOD13. The LST product has a spatial resolution of 1 km and the PET was aggregated to a 1 km 

spatial resolution. The 8-day data are adjusted to nadir and standard sun angles using bidirectional 

reflectance (BRDF) models (Justice et al., 2002; Vermote et al., 2002). The products have been 

processed for atmospheric and geometric corrections. The AppEEARS web tool was used for data 

download and pre-processing images. This tool provides users the data values as well as the associated 

data quality characteristics (https://lpdaacsvc.cr.usgs.gov/appeears). All MODIS individual images 

were downloaded, based on geographic coordinates. The LST values were in Kelvins are encoded in a 

16-bit unsigned integer that ranges from 7500 to 65,535. The actual temperature values were derived 

using a multiplication factor of 0.02, as stated in the MODIS product manual. The NDVI values that 

were less than zero were excluded from analysis because the pixel values less than or equal to zero 

are assumed to represent the cloud or the presence of a water body. The PET values were in 

kg/m2/8day that range from -32767 to 32700, also actual PET values were calculated using a 

multiplication factor of 0.1. Further, MODIS spectral bands 2 and 6 are downloaded from April to 

September between 2000 and 2018 to calculate selected drought indices. The bands 2 and 6 were 

derived applying a multiplication factor of 0.0001 as it was stated in the guidance manual to MODIS 

products. 

• In-situ Soil Moisture (SM) data 

In-situ Soil Moisture (SM) measurements between April to September 2010-2015 from six different 

stations of the Bayankhongor Province were obtained from the Information and Research Institute of 

Meteorology, Hydrology, and Environment (IRIMHE) of Mongolia (Information And Research Institute 

Of Meteorology, Hydrology And Environment). The SM data are observed (by gravimetric 

methodology) as plant‐available soil moisture (mm) in the upper 0–50 cm at monthly intervals (the 7th, 

17th, and 27th days of each month) from April to September due to seasonal conditions and were 

calculated as the actual total soil moisture minus the moisture content at the wilting point. At each SM 

station, the observations include one sample per month and the data are available in volumetric water 

content m-3/ m-3. In-situ measured SM data represent a 10-15 cm depth layer at a monthly average 

interval. This soil layer includes the major rooting zone of the grasses that dominate most of Mongolia. 

To account for spatial consistency between in-situ SM measurements and RS-derived drought indices, 

the corresponding nearest pixel value was used for each of the six soil moisture station locations. 

• Meteorological data 

Monthly precipitation totals (mm) and surface air temperature (°C) data are based on daily 

observation data from meteorological stations. The meteorological data (precipitation) has been used 

to estimate the Standardized Precipitation Index (SPI) which is the most widely used meteorological 

drought index, developed by (Mckee et al., 1993). The SPI estimates the standardized departure of 

https://lpdaac.usgs.gov/
https://lpdaacsvc.cr.usgs.gov/appeears
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actual rainfall concerning a rainfall probability function. The SPI index was calculated using the monthly 

precipitation data from April to September 2000-2015 at the Information and Research Institute of 

Meteorology, Hydrology, and Environment (IRIMHE) of Mongolia. The seasonal SPI values are 

calculated to ascertain the influence of SPI values on vegetation conditions and the spatial patterns of 

soil moisture drought during the study period (Zargar et al., 2011). Specifically, the SPI is computed for 

shorter accumulation periods (e.g., 1 to 3 months); it is an indicator for immediate impacts of reduced 

soil moisture, snowpack, and flow in small creeks (Copernicus European Drought Observatory (EDO). 

The normalized SPI is an effective tool in analyzing wet and dry periods. The geographical locations of 

the six meteorological stations are displayed in Table 5.1. 

  Methods  

A new integrated Gobi drought index (GDI) is developed based on the monthly average SMOS SM 

and NDVI / LST / PET - MODIS data. After all data processing, a multiple linear regression (MLR) model 

was applied to build this index. It allows users to quantify the drought intensity in their area and use 

GDI for a drought monitoring system in the future (A. K. Mishra & Singh, 2010).  

Subsequently, the drought assessment based on the GDI was conducted in a three-stage process 

(Figure 5.3). Firstly, the assessment of the GDI model was performed by comparing the spatial-

temporal evolution of GDI with other remote sensing indices (TCI, NMDI, VSWI, NDWI, NDDI), and with 

the SPI index, using the Pearson correlation coefficient (R). Secondly, in-situ SM observations and 

SMOS SM were correlated with the GDI to confirm the effectiveness of the drought model based on 

this index. Thereafter, the seasonal precipitation and temperature that are traditional characteristics 

of regional climate conditions were compared with the GDI behavior during the drought-occurred 

years. Finally, the developed drought model was applied to produce the regional wide GDI drought 

maps for the two-month seasons (July – August) from 2010 to 2018 with a spatial resolution of 1 km 

and temporal resolution of one month. The regional-wide monthly GDI drought distribution map has 

not yet been considered in previous studies in Southwestern Mongolia.   

 

  Development and comparison of drought indices 

  Integration method for remote sensing data of drought index (GDI) 

Multiple linear regression analysis was conducted to develop the drought model which was named 

Gobi drought index (GDI). Multiple linear regression models have often been used in environmental 

and nature reserves studies. The model demonstrates how SMOS SM satellite data depends on NDVI, 

LST, and PET derived from the MODIS products. Multiple regression models were constructed to 

describe how the single response variable SMOS depends linearly on several predictor variables 

(Belsley et al., 2005; Murray et al., 2012). Basic descriptive statistics and regression coefficients are 

shown in Table 5.3. The six different drought indices (Table 5.5) were derived from the remote sensing 

(MODIS/TERRA) products, and the Standardized Precipitation Index (SPI) was computed as an 

alternative to verify the effectiveness and reliability of the GDI. Afterward, the remote sensing-based 

drought indices were tested in further comparative analysis. These drought indices are often applied 

for arid or semi-arid regions to represent the pasture conditions and drought monitoring (Chang et al., 

2017c; Q. Liu et al., 2020; Zolotokrylin et al., 2016). We assume that the purposed drought index, GDI, 

is derived from satellite data and depends on NDVI, LST, and PET variables as in Equation (5.1). 
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               GDI = F (NDVI, LST, PET)                                                           (5.1) 

Under this assumption, a multidimensional linear regression model was selected: 

𝑦𝑖 = 𝛽0 + 𝛽1 ∗ 𝑥𝑖1 + 𝛽2 ∗ 𝑥𝑖2 + 𝛽3 ∗ 𝑥𝑖3                                                        (5.2) 

Here yi is the dependent variable (GDI); β0 is the intercept, β1 – β3 are the coefficients; xi is the 
corresponding independent variables. Equation (5.2) represents the relationship between the 
dependent variable, GDI, and the independent variables as a weighted average in which the regression 
coefficients (𝛽’s) are the weight coefficients. The parameters of this model for all independent 
variables (NDVI, LST, and PET) and the characteristics of the goodness of fit are shown in Table 5.3. 
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Figure 5.3 Flowchart of processing of the GDI drought model of this study     
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Table 5.3 Descriptive statistics of the multiple-regression model (5.2) used in this study for dependent 
Variable SMOS 

 

Independent 

variables of the 

model 

Regression 

Coefficient 

Estimates t 

Collinearity Statistics 

𝜷 
Std. 

Error 
Tolerance VIF 

(Constant) -1.197 .040 -4.897   

NDVI 1.246 .132 9.454 .591 1.692 

LST(Celsius) -0.0008 .001 -.524 .781 1.280 

PET 0.003 .001 4.490 .724 1.382 

 

Here the variance inflation factor (VIF) is a measure of the goodness of fit and can be between 0 

and 10 (J. Cohen et al., 2013; Hair et al., 1998); 𝛽 are the regression estimates of coefficients in Eq. 5.2; 

Std. Error are the standard errors of these regression coefficients; t is the t-statistics for the βi 

coefficients; Tolerance  is the significance of the presence of individual independent variables in Eq. 

5.2, and it ranges from 0 to 1 (𝑅2). Table 5.3 shows that there is no multicollinearity for this regression 

model.  

A combination of 𝜌 - value and VIF measures was used. The correlation analysis showed that there 

are no strong correlations between the independent variables as in Table 5.3. Likewise, the 

independent variables are normally distributed for the assumptions of the linear regression model.  

Substituting β estimates from Table 5.3, we have a linear model for the integrated drought index 

(GDI, Equation 3): 

𝑮𝑫𝑰 = −1.197 + 1.246 ∗ 𝑵𝑫𝑽𝑰 − 0.0008 ∗ 𝑳𝑺𝑻 + 0.003 ∗ 𝑷𝑬𝑻                   (5.3) 

LST and NDVI alone cannot deliver an efficient characterization of the spatial patterns of water 

stress at an ecosystem level. The contribution of NDVI and PET in equation (5.3) can be interpreted as 

means to modulate soil water content through vegetation and temperature conditions. Thereby, the 

GDI seems to be more suitable to capture large-scale drought conditions in the arid land of the 

Southwest of Mongolia than each of these three independent variables in the right part of (5.3) 

separately. The drought classification used in this study is based on the U.S. Drought Monitor (Svoboda 

et al., 2002). Hence, the negative GDI values indicate relatively dry conditions, while the positive values 

are typical for more wet conditions. Six drought categories have been identified (Table 5.4). 
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Table 5.4 Intensity classification of GDI values (modified from the U.S. Drought Monitoring (Svoboda 
et al., 2002)) 

Drought intensity classes GDI Ranges 

Extreme drought -0.5 to -0.3 or less 

Severe drought -0.3 to -0.2 

Moderate drought -0.2 to -0.1 

Abnormally dry -0.1 to 0 

Normal 0.1 to 0.2 

Abnormally wet 0.2 to 0.3 or above 

 

Table 5.5 The Drought Indices definitions and their formula used in this research. 

Drought index Formula Reference 

SPI (Standardized 

Precipitation Index) 

 

g(𝑥) =
𝑥𝑎−1 𝑒−

𝑥

𝛽
   

𝛽𝑎  Γ (𝛼)   𝑓𝑜𝑟 𝑥 > 0 

𝛼 > 0   is a shape parameter 

𝛽 > 0  is a scale parameter 

𝜒  is the precipitation amount 

Γ(𝛼) is the gamma function 

(Mckee et al., 1993 

Copernicus European 

Drought Observatory 

(EDO)) 

TCI (Temperature 

Condition Index) 
𝑇𝐶𝐼 =

𝐿𝑆𝑇𝑚𝑎𝑥−𝐿𝑆𝑇𝑗

𝐿𝑆𝑇𝑚𝑎𝑥−𝐿𝑆𝑇𝑚𝑖𝑛
∗ 100%  

LSTmax and LSTmin are the maximum and minimum LST values for 

a given year   

(F. N. Kogan, 1995b) 

NMDI (Normalized 

Multi-Band Drought 

Index) 

𝑁𝑀𝐷𝐼 =
𝑁𝐼𝑅 – (𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2)

𝑁𝐼𝑅 – (𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2)
 

NIR- Near-infrared band, Band 2 (841-876 nm); SWIR1 – 

shortwave infrared band; Band 6 (1628-1652); SWIR2 – 

shortwave infrared band, Band 7 (2105 – 2155 nm) 

(L. Wang & Qu, 2007) 

NDVI (Normalized 

Difference 

Vegetation Index) 

NDVI =  
𝑁𝐼𝑅 – 𝑅𝑒𝑑

𝑁𝐼𝑅 +𝑅𝑒𝑑
 

NIR- Near-infrared band, Band 2 (841 - 876 nm) 

Red – red band, Band 1 (620 – 670 nm) 

(Huete et al., 2002 ) 

VSWI (Vegetation 

Supply Water Index) 
VSWI = 

𝑇𝑠

𝑁𝐷𝑉𝐼
 

Ts – vegetation canopy temperature 

NDVI – normalized difference vegetation index 

(T. N. Carlson et al., 1994; 

Toby N. Carlson et al., 

1990) 

NDDI (Normalized 

Difference Drought 

Index) 

NDDI = 
𝑁𝐷𝑉𝐼−𝑁𝐷𝑊𝐼

𝑁𝐷𝑉𝐼+𝑁𝐷𝑊𝐼
 

NDVI – normalized difference vegetation index 

NDWI – normalized difference water index 

The NDDI was generated from NDVI and NDWI index 

(Gu et al., 2007b) 

NDWI (Normalized 

Difference Water 

Index) 

NDWI = 
𝑁𝐼𝑅 – 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 +𝑆𝑊𝐼𝑅
 

NIR - Near-infrared band, Band 2 (841-876 nm), 

SWIR - Short wave infrared  

(Gao, 1996) 
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 GDI drought index model validation 

The GDI drought index was employed to assess the next step. Pearson correlation (r) 

(Sedgwick, 2012) values were applied for estimated GDI and with the SPI index and in-situ SM 

observations. The coefficients of the Pearson correlation (r) are in Equation (5.4): 

                               r =
∑ =𝑛

𝑖 1 (𝑋𝑖−�̅�) (𝑌𝑖−�̅�) 

√∑ (𝑋𝑖−�̅�)2𝑛
𝑖 √∑  (𝑌𝑖−�̅�)2𝑛

𝑖   
                                              (5.4) 

Here 𝑋𝑖  and 𝑌𝑖  are implies the individual derivations and measurements of variables X and Y, 

whereas �̅� and �̅� are implies the mean of X and Y, respectively. The correlation coefficient (r) ranges 

between – 1 and 1. If (r) is equal to zero, this implies that there is no linear association between the 

variables. When r equal to 1, there is indicate a perfect positive linear relationship between variables. 

When 0 < r < 1, indicates a positive linear relationship, the smaller the absolute R-value, the less well 

variable can be characterized by a single linear relationship. When r is positive and r values close to 1, 

it describes a significant relationship between variables (Puth et al., 2014). The Linear Pearson´s 

correlation (r) was verified at a monthly scale for the GDI and SPI other RS-derived drought indices, 

with in situ SM observations, and SMOS SM data. 

 Meteorological and RS-derived Drought Indices 

To evaluate the effectiveness of the GDI, we compared it with several meteorological and satellite-

derived drought indices. A correlation analysis was performed between GDI and seven drought indices: 

SPI, NDVI, NDWI, NDDI, NMDI, VSWI, and TCI. These seven indices have been widely used for 

agricultural, and meteorological drought monitoring over different land-cover types. The equations 

used for their estimation are provided in Table 5.5.  

The monthly SPI index reflects short-term soil moisture and vegetation stress, especially during 

the vegetation growing season. The Standardized Precipitation Index (SPI) was widely used for the 

detection of meteorological drought and signified the precipitation deficit. The SPI estimates a 

standardized departure of actual precipitation concerning the precipitation probability distribution 

function (Svoboda et al., 2012). Drought, according to the SPI, starts when the SPI value is equal or 

below -1.0 and ends when its value becomes positive. Mean monthly SPI values were calculated 

between April to September from 2000 to 2015 and compared with the GDI values. We expected a 

negative SPI relation with GDI whereby the lower the SPI value would indicate precipitation deficit (dry 

year) and the greater SPI value indicates a wet year. Classification of the SPI index and further details 

about it can be found in (Mckee et al., 1993).  

The effect of meteorological drought over large areas can be assessed by using a temperature 

condition index (TCI). The temperature condition index (TCI) is associated with both, the temperature-

related vegetation stress and the vegetation stress caused by excessive wetness. TCI index 

characterizes the thermal soil condition and is based on the infra-red band soundings. These conditions 

are estimated relative to the maximum and minimum temperatures, and the TCI value ranges from 0 

to 100. The TCI behavior is opposite to the NDVI, high temperatures indicate unfavorable or dry 

conditions while low temperature indicates mostly favorable vegetation conditions (F. N. Kogan, 

1995b).  
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The normalized difference vegetation index (NDVI), is the normalized reflectance difference 

between the near-infrared (NIR) and visible red bands. NDVI is an indicator of vegetation phenology 

that captures the seasonal dynamics of vegetation and is used extensively in vegetation, ecosystem, 

and drought monitoring (Tucker, 1979b).  

Normalized Difference Water Index (NDWI) is constructed from the near-infrared (NIR) and short-

wave infrared (SWIR) bands and is a virtual indicator for vegetation liquid water content. It is less 

sensitive to atmospheric scattering effects than NDVI. NDWI is computed using the NIR and SWIR 

reflectance, which characterize sensitive changes in liquid water content and spongy mesophyll of 

vegetation canopies (Gao, 1996). The index has been successfully tested as a tool for drought indicators 

(Gu et al., 2007a, 2008b).  

The normalized multi-band drought index (NMDI) is an alternative approach, which was used for 

soil and vegetation drought indicators (A. K. Mishra & Singh, 2010). The index is based on a 

combination of multiple near-infrared, and short-wave infrared channels (L. Wang & Qu, 2007). NMDI 

is well suited to monitor dry soil status: an increase of soil moisture is connected with a reduction of 

NMDI value. In extremely dry soil areas the NMDI values are around 0.15, and for wet soils, its values 

are higher than 0.3.  

The Normalized Difference Drought Index (NDDI) is generated from NDVI and NDWI (Gu et al., 

2007b). This index is relatively new. It was applied to the grassland study of the Great Plains in the 

United States by means of multi-date Landsat fused images (Renza et al., 2010), where it was shown 

that NDDI is a better indicator of drought compared to other indices.   

The vegetation supply water index (VSWI), which was proposed by (T. N. Carlson et al., 1994), is 

based on the ratio between NDVI and land surface temperature (LST). The VSWI indicates the change 

in vegetation and soil moisture conditions using spectral reflectance of the visible bands. The VSWI 

index was consistently shown as an effective tool for the estimation of the water content status of soil 

and vegetation change (Hazaymeh & Hassan, 2016).  

  Results  

• Assessment of the GDI drought model  

 Estimation of GDI from SMOS L2 SM product as a dependent variable 

 Recent studies have successfully validated the SMOS L2 product (Dall’Amico et al., 2012; 

Gherboudj et al., 2012) and used it to assess drought conditions (A. G. S. S. Souza et al., 2018). The use 

of the growing season data was sufficient because in this season soil moisture and vegetation dynamics 

are quite closely related. In the study area, the GDI index values were averaged monthly for each SMOS 

SM grid cell. The linear correlation between satellite SMOS SM data and the GDI was calculated from 

April to September (2010-2015). The correlation between SMOS SM and GDI, as represented by the 

correlation coefficient (r), was 0.77 and considered statistically significant (Figure 5.4). It is important 

to note that the satellite SMOS product shows a good agreement with the computed GDI during the 

entire seasonal cycle. The developed drought index can adequately reproduce the soil water balance 

dynamics in terms of soil water availability for plants. Overall, drought is related to the soil water 

availability for vegetation, and the water is stored not only in the surface layer as well in the root-zone 

layer. Thus, only satellite remote sensing data will be sufficient for future drought monitoring.  
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Figure 5.4 Relationship between GDI and SMOS SM calculated for monthly average data for the 
period from April to September 2010-2015. 

 Comparison of RS-derived drought indices and the SPI with GDI  

To assess the reliability of the GDI, it was necessary to compare it with other RS well-known 

drought indices which are widely used globally for drought monitoring. While drought is a relative 

condition that differs widely between locations and climates, a standardized index such as SPI allows 

users to confidently compare historical and current droughts between different climatic and 

geographic locations. Generally, SPI is used since it is an appropriate indicator to assess the influence 

of precipitation or (drought conditions) in the growing season on the vegetation productivity period as 

well as in the temperature-driven drought areas where precipitation is relatively sufficient and high 

temperatures are the dominant factor in water stress areas. The comparison between GDI and seven 

computed drought indices, SPI, NMDI, VSWI, NDWI, NDVI, TCI, and NDDI was conducted from April to 

September during the 2010 – 2015 period. Correlation coefficients (r) were calculated at six 

Southwestern Mongolian stations (Table 5.6).  

Table 5.6 The results of the comparison (Pearson correlation coefficient) between GDI, SPI, and RS-
derived drought indices NMDI, VSWI, NDWI, NDVI, TCI, and NDDI (a); and between SPI and the same 
RS-derived drought indices (b). Stars (*) indicate the best correlations between specific RS-derived 
drought indices and GDI (SPI). 

(a)     Correlation coefficients (r) between GDI, SPI, 
and the RS-based drought indices  

SPI/GDI                   0.64 

NMDI/GDI -0.91* 

VSWI/GDI                   0.97* 

NDWI/GDI                   0.81 

NDVI/GDI                   0.96* 

TCI/GDI                   0.68 

NDDI/GDI                   0.78* 

(b)    Correlation coefficients (r) between SPI and the 
RS-based drought indices 

SPI/NMDI                  -0.48 

SPI/VSWI  0.61* 
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Table 5.6 suggests that GDI showed the strongest positive correlation with VSWI (r = 0.97), followed 

by NDVI (r = 0.96), NMDI (r = -0.91), NDWI (r = 0.81), NDDI (r = 0.78), TCI (r = 0.68), and SPI (r = 0.64) 

respectively. NDVI is included in Eq. 5.3 and, therefore, its correlation with GDI is essential. The 

negative correlation between NMDI and GDI is due to different descriptions of drought by NMDI (with 

positive values indicating drought), and GDI (with negative values indicating drought conditions).  

These comparisons indicate that the VSWI demonstrated more consistency with the GDI than other 

examined RS drought indices. While we can see that the SPI has a weak correlation with NDDI (r = 

0.38), and NMDI (r = - 0.48). However, the TCI and SPI (r = 0.69), NDVI and SPI (r = 0.62), VSWI and SPI 

(r = 0.61) were better correlated (Table 5.6b). This comparison in Table 5.6 suggests that GDI shows 

the greatest performance over diverse ecosystems compared to other RS-derived drought indices.  

To check the relationship between monthly GDI and SPI, a scatter plot and correlation 

coefficients were calculated between SPI and GDI for all six stations for the 2010 - 2015 period (Figure 

5.5 and Table 5.6). Figure 5.5 shows a satisfactory agreement between GDI and SPI over the entire 

study area (for all vegetation types and grasslands).  

 

Figure 5.5 Scatter plot of the GDI and the SPI index. 

Similarly, correlation analyses conducted for each year separately show statistically significant 

correlations between SPI and GDI ranging from 0.53 to 0.91 (Table 5.7) except for the moderate 

drought year of 2014.  

 

 

 

SPI/NDWI                   0.47 

SPI/NDVI                   0.62 

SPI/TCI  0.69* 

SPI/NDDI                   0.38 
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Table 5.7 Year-wise correlation between the VSWI and GDI, NMDI and GDI, NDDI and GDI. Stars (*) 
indicate the best interannual correlations between VSWI, NMDI, NDDI, and reference GDI for 
individual years from April to September.  

 

 

 

 

 

The linear correlations show the reliability of the GDI compared toRS–derived drought indices. 

Table 5.7 shows high statistically significant coefficient correlations between three RS-derived indices 

and the GDI. These results imply that the GDI is not only closely related to SPI but it also quantifies the 

past normal years and appropriately captures different responses of summer rainfall and seasonal 

drought conditions. Among them, the VSWI and the GDI demonstrate the best interrelation. The VSWI, 

NMDI, NDDI, and the GDI correlation results suggest that the GDI appropriately captures the inter-

annual variability of drought intensity, particularly in 2012, 2013, and 2015 at the 0.05 significance 

level. 

Figure 5.6 show the dynamics of the spatially averaged GDI, and SPI (a), and two of the RS-

derived drought indices, TCI (b), and NDDI (c). The comparative dynamics of the explored drought 

indices overlap well with the GDI and show a remarkable seasonal similarity. During the observation 

period, droughts occurred in the spring months of April, May, and in the summer period from July and 

August. The drought during August was especially severe in the southeastern areas. When the water 

demand in August to September is critical for pastures in the dry steppe, this period is more drought-

prone, especially in the dryland. However, the drought conditions were weakened from June to July. 

VSWI and the GDI Index [ correlation coefficient (r) ] 

VSWI – GDI (r) 0.95 0.96 0.99 * 0.98 0.97 0.99 * 

NMDI and the GDI Index [ correlation coefficient (r) ] 

NMDI – GDI (r) -0.43 -0.95 -0.97 * -0.96 -0.94 -0.98 * 

NDDI and the GDI Index [ correlation coefficient (r) ] 

NDDI – GDI (r) 0.89 * 0.88 0.90 * 0.81 0.55 0.65 
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Figure 5.6 Dynamics of the spatially averaged GDI and SPI (a), two of the RS-derived drought indices 
TCI (b), and NDDI (c). Time series span from April to September during the 2010-2015 period. 

 

 Validation of the GDI drought index by the in-situ SM observations 

Finally, the effectiveness of the GDI drought index was assessed by validation with in-situ SM 

measurements at six meteorological stations over the study region. Correlation coefficients between 

in-situ SM measurements and the GDI show a relatively strong relationship with in-situ SM 

observations in the study area across different vegetation zones (Table 5.8). 
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Table 5.8 Correlations between in-situ SM and GDI at each province station from north to south. 
Stars (*) indicate the best year correlations between in–situ SM measurements and GDI. 

 

In-situ SM and the GDI Index [ correlation coefficient (r)] 

Station Bayanbulag Galuut Bayankhngor Bogd Shinejinst Ekhiingol 

In-Situ SM – GDI (r) 0.65 0.78* 0.80 * 0.74* 0.55 0.83 * 

 

Figure 5.7 presents monthly variations of the in – situ SM observations and the GDI from April to 

September during the 2010 – 2015 period. The figure shows that the GDI has successfully captured the 

seasonal difference of the in - situ SM observations. When in-situ SM observations are substantially 

lower in April, May, and August, the GDI values are increased. Thus, the GDI recognizes both spring 

and summer droughts, which is helpful for agrometeorological drought early warnings. 

However, the point-derived data on soil moisture only reflects information from a small region, 

while the drought extent by satellite data over a large area and long periods are pixel values. Errors 

and uncertainties can occur in both data series because of limited observed SM data in the study area.  

 

 

Figure 5.7 Spatial and temporal variations of monthly averaged in-situ SM observations and the GDI 
at six stations in Bayankhongor Province.  

 

 The spatial relationship between the GDI, precipitation, and temperature. 

The rising temperature and lack of precipitation associated with global warming are likely to 

increase the intensity of drought events in the Mongolian Plateau (P Batima et al., 2005). Thus, we 

assume that observed climate conditions in the drought-occurred years would certainly manifest 

themselves in the GDI. The precipitation and temperature data over the five years from six 

meteorological stations in the Bayankhongor Province were used to assess the linear relationship 

between GDI and these meteorological variables. 

Table 5.9 depicts Pearson correlation coefficients in different years between the GDI and 

precipitation. Significant high correlations were found only during 2011, 2012, and 2013 years.  

Droughts in this area were mainly caused by summer precipitation deficit. By contrast, wet weather 
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accompanies higher rainfall and lower temperature, such as in the years 2011, 2012, and 2013. These 

years were comparatively wet in the Gobi areas of Mongolia (Dorjsuren et al., 2016).  

Table 5.9 Year-wise correlation between annual precipitation and the GDI.  Stars (*) indicate the best 
year correlations between precipitation and GDI. 

 

Precipitation and the GDI Index [ correlation coefficient (r) ] 

Year 2010 2011 2012 2013 2014 2015 

Precipitation (mm) – GDI (r) - 0.19 0.81 0.82 * 0.86 * 0.50 0.60 

 

Figure 5.8 panels show the scatter correlation plots between GDI and precipitation and between GDI 

and temperature at six stations from April to September during the 2010 to 2015 period. Pearson 

correlation coefficients 0.53 and 0.49 are statistically significant with p < 0.001. The summer season of 

2010 had high temperatures and little rainfall, which resulted in heavy droughts in this region. 

Intensive droughts were observed during the periods of 2001 to 2002, and 2010. The temperature rise, 

no effective precipitation, soil water depletion, and plant transpiration increase caused the drought 

conditions well caught by the GDI. 

                    

Figure 5.8 Scatter plots of the GDI with (a) monthly Precipitation and (b) monthly Temperature. 

 

  Spatial and Temporal Patterns of Drought intensity  

The spatial distribution GDI maps were produced for July and August, which have the highest 

vegetation growth and play a major role during the grazing season. The new integrated drought index 

can help to monitor pasture conditions while potentially may serve as an early warning to take proper 

drought management actions and to help herder’s wellbeing. Figure 5.9 shows the spatial pattern of 

GDI anomalies for July and August from 2000 to 2018 across the Bayankhongor Province. From 1999 

to 2002, the worst drought events had occurred in the consecutive summers across the country, and 

in 2009 and 2010 drought happened again throughout entire Mongolia. According to the spatial-

temporal pattern of GDI shown in Figure 5.9a, moderate to severe drought occurred in some areas of 

southern and central Bayankhongor, especially in 2001 and 2002. In 2001, the drought mainly occurred 

in southwestern Bayankhongor, and in years 2007 and 2009 in July in northwestern Bayankhongor 

(a) (b) 
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(Figure 5.9b). The intensity of drought was high in July 2001 and August 2002, which was consistent 

with the findings of the National Drought Monitoring (Information And Research Institute Of 

Meteorology, Hydrology And Environment).  

The vegetation with a relatively fast response to lack of precipitation during the dry season is 

mainly concentrated in the northwestern steppe and is nearly absent in the southern desert zone of 

the Province. In our study, severe to extreme drought conditions concentrated in central and 

southwestern areas of the Province in July 2007, July 2009, and in July 2017. In August 2010, July 2001, 

July 2002, and August 2007, both GDI and SPI (not shown) indicate moderate to severe meteorological 

and soil moisture droughts in this region. Meanwhile, wet weather conditions with higher precipitation 

and lower temperature (for example, July 2003 with the SPI +2.0, July 2011 with SPI +2.1, and August 

2012 with + 2.3), generate in the Gobi Desert a relatively wet year.  These findings correspond well 

with a study by Dorjsuren et al. (Dorjsuren et al., 2016). 
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(b)   
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(c) 
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     (d)                                                                  (e) 

 

Figure 5.9 Spatiotemporal drought severity GDI maps, calculated for July and August month for each 
of the years from 2000 to 2018 in Bayankhongor Province.  

The drought severity (moderate, severe, and extreme droughts) for different drought periods 

is shown in Figure 5.10. Here, changes in drought severity are computed as the percentage of the 

variance of change (as a percentage of change/magnitude). We see a large variability in the changes 

in drought intensity. The heaviest drought event in the Bayankhongor Province was observed in 2001 

when 50.28 % of the total area was identified as an area with moderate drought and 22% of the region 

was quantified as abnormally dry. 
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Figure 5.10 GDI changes in drought intensity (in % of the Province area). Percent of the grassland 
drought areas are shown as moderate (orange) abnormal dry (yellow), normal (light green), and wet 
(dark green). Prominent drought years were 2000, 2001, 2002, 2007, 2009, 2017, and 2018. 

 

 Discussion 

A need to reduce the impacts of future drought events is paramount being a part of the national 

development strategy and climate change adaptation plan in Mongolia (THIRD NATIONAL 

COMMUNICATION OF MONGOLIA Under the United Nations Framework Convention on Climate 

Change). A substantial part of this research was to recognize soil moisture as an 

important parameter for monitoring meteorological and hydrological droughts. The deficit of soil 

moisture is an appropriate indicator of regional agrometeorological drought assessments (Vyas et al., 

2015). The new proposed drought index GDI was derived from SMOS and LST, PET, and NDVI products. 

We evaluated the GDI performance by comparing it to other RS-derived drought indices, and in-situ 

SM observations. Presented integrated drought index, GDI has a maximum of benefits for description 

both, real-time vegetation conditions and soil moisture deficit.  

A comparative analysis with other works that have used different approaches becomes now 

obligatory (Aghakouchak et al., 2015). There are only a few studies that compared traditional drought 

indices with the RS-derived drought indices and in-situ soil moisture observations (Scaini et al., 2015c; 

Vicente-Serrano et al., 2012). In the earlier work, the soil water scarcity index (SWDI), which was 

calculated from in-situ soil moisture data (0 - 5 cm), and SMOS soil moisture series, showed a high 

agreement with the surface layer observations (Martínez-Fernández et al., 2016b). Comparison of the 

SMOS products with in-situ observations has been performed earlier (Dall’Amico et al., 2012; N 

Sánchez et al., 2012). Positive results of this comparison support an idea that the SMOS L2 could be 

directly used for agricultural and hydrological drought monitoring (Chakrabarti et al., 2014). 

Champagne et al., 2015 (Champagne et al., 2015) used SMOS SM anomalies for analyzing agricultural 

drought risks, and Martinez-Fernandez et al. (Martinez-Fernandez et al., 2015) applied the agriculture 
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drought index SWDI (soil water deficit) and also found high relation between these indices and crop 

yields. We hypothesize that in-situ SM data in the different vegetation zones should be sufficient for 

validation of the GDI drought index. Our integrated drought index was able to satisfactorily capture 

the temporal variations of the in-situ observations in both desert and semi-desert areas and accurately 

reproduced the rainfall seasonality shown in Figure 5.7 (Y. H. Kerr et al., 2016; Molero et al., 2016). 

Figure 5.9 confirms that at shorter time scales (~month) GDI reproduces temporal and spatial 

variability of meteorological droughts (Lorenzo-Lacruz et al., 2010). However, semi-arid zone 

phenology is more dependent on moisture than temperature. We assume that temperature variations 

are responsible for the seasonal drought pattern whereas the drought severity is controlled by 

moisture supply. This argument is supported by the results shown in (Figures 5.6a and 5.8a). In arid 

lands, the rainfall is seasonal and directly affects vegetation. Thus, precipitation controls both the 

moisture-stress and thermal-stress of vegetation in the arid ecosystem (Bhuiyan et a., 2008).  

 SPI is known to exhibit a reasonable performance in replication the soil moisture variability on a 

global and regional scales (Halwatura et al., 2016; Li et al., 2020; Z. Liu et al., 2019a; Nepal S. et al., 

2020; Sternberg et al., 2009b). SPI and GDI series are compared at given selected locations of the 

Bayankhongor Province of Mongolia. In these locations, monthly precipitation (July and August) has 

similar tendencies as the GDI series (Figure 5.6a and 5.8a), which confirms that GDI variations at the 

monthly time scale were mainly caused by regional precipitation. The Student´s t-test was applied to 

all correlation estimates to verify that our results were statistically significant. Indeed, Figure 5.5 shows 

that GDI and SPI were statistically significantly correlated, with a p-value greater than 0.05. We 

hypothesized that for the summer season, drought conditions represented by the GDI are equally 

trustworthy when they are represented by the SPI. However, the SPI is based on in situ data and for a 

sparse network of the study area and cannot document all peculiarities of drought patterns. 

Considering the GDI comparison to other RS-derived indices, VSWI (r = 0.97), NDVI (r = 0.96), NMDI (r 

= - 0.91), and NDWI (r = 0.81) had the closest correlations with our Gobi Drought Index (Table 5.6a). 

In dry and hot climate zones the water evaporates faster, thus considering jointly evaporation 

(PET), vegetation (NDVI), temperature (LST) as reference data, the GDI was able to detect sufficiently 

steady the drought conditions in the Gobi region. With an integration of a vegetation condition and 

the surface evaporation, the grassland droughts were detected efficiently by the GDI. At high potential 

evapotranspiration and heatwaves, the loss of soil moisture will be intensified (Rind et al., 1990; Um 

et al., 2020). Since NDDI, NDWI, NMDI, and TCI are describing the vegetation condition and the 

temperature anomalies, which is may more suitable for the monitoring of droughts in the steppe than 

the semi-desert zone. A previous study highlights that the TCI is suitable for the forest zone, and the 

NDWI and VSWI are suitable for the steppe zone and the NMDI cannot accurately reflect grassland 

drought condition in Mongolia (Chang et al., 2017a).  

However, the spatiotemporal patterns of NDDI, NDWI, VSWI drought indices were comparable to 

the results from other studies conducted in the Southwest of Mongolian grasslands (Erdenetuya et al., 

2010). We noticed that the spatial changes in the monthly averaged NDVI, NDDI, NDWI, and VSWI 

during the 2000-2018 period across the Bayankhongor Province are strongly associated with the 

general distribution of GDI drought maps in Figure 5.9. Also, spatial patterns of NDVI, NDDI, NDWI, and 

VSWI drought characteristics highlight strong spatial links of droughts that occurred during the years 

2001, 2002, 2007, 2009, 2010, 2017, and 2018 across the Province (Figure 5.9). Particularly, the 

droughts during the 2000 – 2002 period were severe and extreme across the entire Mongolian Plateau 

(Z. Liu et al., 2019b; Sternberg et al., 2009a). Moreover,  2004, 2005, 2007, and 2009 years were also 
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highly affected by droughts throughout Mongolia (Nanzad et al., 2019b; Tuvdendorj et al., 2019). Let 

us note that the global-widespread drought stress was also intensified during this period. We can see 

that the dynamics of NDWI and VSWI are quite similar, hence these dynamics remain quite stable 

(Figure 5.11) and is consistent with the results of previous studies (Renza et al., 2010). Nevertheless, 

there are still discrepancies among different drought indices regarding the drought onset, persistence, 

and severity (Erdenetuya et al., 2010) and (National Remote Sensing Center of Mongolia). 

New Soil Moisture Active/Passive (SMAP) data products have become available since March 31st, 

2015, and cover the entire global land areas with about 3-day time step (Entekhabi, D. et al., 

2010).  These products (e.g. Enhanced SMAP L3) have a spatial resolution of 

about ∼9 km that is higher than the SMOS SM data spatial resolution used in our study (O’Neill, J.C et 

al., 2019). However, they characterize the soil moisture content only in the upper 5 cm soil layer. The 

L3 SMAP data product is unique to SMAP and is possible given that the SMAP radar and radiometer 

share the same antenna and data acquisition strategy. The L3 SMAP accuracy is equal to or better than 

0.04 cm3 cm–3 (1-sigma) for regions with volumetric water content below ~5 kg m–2, which is typical for 

the Gobi Desert areas. We retrieved a subset of SMAP (SPL3SMP_E.003) monthly average soil moisture 

data for our study area (https://nsidc.org/data/SPL3SMP_E/versions/3) and compared it with our GDI 

estimates. A high correlation between SMAP SM and GDI (+0.85) is statistically significant at the 0.01 

level and confirms that the GDI still is a good overall tool for drought monitoring in the Mongolian 

Drylands against new emerging remote sensing tools.  

 

Figure 5.11 Time series of the spatially averaged July and August NDDI, NDWI, and VSWI drought 
indices from 2000 to 2018. The drought years are highlighted by red columns. 

 

 Conclusions 

The multiple linear regression analysis was used to develop an integrated drought index, GDI, 

derived from SMOS and LST, PET, and NDVI of MODIS products. Our results provide experimental 

evidence about the usefulness of the integrated GDI for drought monitoring in the semi-arid study 

region. The integrated GDI can incorporate both, the meteorological and soil moisture drought 

patterns and sufficiently well represent overall drought conditions in the arid lands. The GDI 

assessment based on the SMOS SM product presented in this paper is one of the first such assessments 
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accomplished in Mongolia at the regional level. We tested which drought index has a high relationship 

with the integrated GDI and validated it with the in-situ SM observations. Specifically,  

• Monthly GDI and 1-month SPI show significant correlations and both are useful for drought 

monitoring in semi-arid lands. Strong correlations of monthly GDI with VSWI, NDDI, NDWI, and 

in-situ SM demonstrate the effectiveness of the GDI in drought monitoring. 

• Comparison of these drought indices with the GDI allowed assessing the drought coincidence 

in time from several angles and quantified better their intensity.   

• We conclude that the GDI model can play a key role in the monitoring and assessment of 

agrometeorological and hydrological droughts. 

The integrated GDI was able to detect the drought events which have been underestimated by the 

National Drought Watch System in Mongolia. The integrated GDI can be beneficial for vegetation stress 

characterization due to drought with the help of satellite, climatological, and geophysical data. Thus, 

the proposed drought index could serve as an independent and complementary drought monitoring 

index. Furthermore, the integrated GDI is an important source of information for assessing drought 

conditions that are typically quantified using climate indices on the regional scale. Our GDI can be used 

as an extra tool for rangeland managers, who are developing a local monitoring system, as well as for 

researchers in countries with similar climates and ecosystems. The future application of the GDI can 

be extended to monitor potential impacts on water resources and agriculture in Mongolia, which have 

been impacted by long periods of drought. However, the multiple linear regression model of the 

proposed new drought index should be enhanced and readjusted in different ecological and climate 

regions. 
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  General conclusions, limitations, and recommendations 

 Summary findings 

In this work, we have accomplished three main objectives:  

• evaluated of the spatial and temporal patterns of soil moisture, 

• estimated the effects of climate extremes on vegetation growth cycle, and  

• developed and assessed a new drought index. 

Below the dissertation is summarized in the form of its goals: 

We believe that our work is the first assessment step toward examining not only the consistency of 

remote sensing SMOS SM data based on the in-situ SM observations, and the spatial pattern of SM in 

the selected area, but also a useful tool for grassland drought monitoring in a rapidly changing climate 

and region.  

Future projections of climate extremes warn us to be prepared for them. However, studies over 

Mongolia have shown substantial limitations of methods on downscaling of coarse-scale remote 

sensing soil moisture products. Thus, a technical method of analysis of comparison ground and remote 

sensing data can be quite useful. Examined for Southwestern Mongolia, the bias correction technique 

and downscaling procedure resulted in significant improvements in the correlation of in-situ SM 

measurements and related vegetation patterns (NDVI). This work allows identifying the relationships 

between the regional climate factors and soil moisture depletion on one side, and resulting vegetation 

patterns on the other side.  

• The bias correction approach resulted in significant improvements in the accuracy and spatial 

resolution of the averaged SMOS SM during the 2010 – 2015 period. 

• Based on the recognized SMOS SM pattern, we identified the areas that are potentially 

threatened by drought stress and dryness.   

• After bias correction of SMOS SM data, NDVI has shown a relationship with both, SM and 

precipitation data. 

• An insufficient water supply from the soil and soil moisture deficit due to drought and dryness 

are highly likely to increase the frequency of dzud events and impact the vegetation growth 

cycle. 

• Regional droughts are likely prolonged in cold seasonal climates by insufficient snow 

accumulation in winter and by low precipitation and high evapotranspiration during the warm 

season. 

• Generally, much less is known about the impacts of climate extremes change on soil moisture 

and ecological droughts, particularly in drylands. 
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In chapter 3 the bias-corrected SMOS L2 SM product was validated against a situ SM measurement in 

the four provinces Arkhangai, Uvurkhangai, Bayankhongor, and Gobi-Altai in central-southwestern 

Mongolia. The bias correction method was used for comparing the Spatio-temporal characteristics of 

the SMOS SM to the in-situ SM measurements. An area of 1822 km × 684 km was examined, consisting 

of 918 SMOS L2 data pixels. Furthermore, we found that the bias-corrected SMOS SM distributions for 

the entire study area were similar to those of NDVI and had similar dynamics. This was particularly true 

in open shrub-lands, where NDVI values are low. Here, the NDVI dynamics show good compatibility 

and strong correlations with the bias-corrected SMOS SM in the seasonal cycle. 

Noticeably, the spatial distribution of SM depends on soil parameters that are not distributed 

homogeneously across the area. This indicates, in general, that SM in dry steppe areas could change 

very rapidly in the topsoil layer.  

The distribution patterns of bias-corrected SMOS SM correctly reproduced the relatively humid season 

from June to July as well as the drying out period starting in October. Significant rainfall in July 2011 

caused an increase in SM, which was recorded in both the bias-corrected SMOS SM data and the 

precipitation records. In 2011 and 2012, the maximum SM (in July) depended strongly on precipitation. 

In Gobi-Altai province (desert/high mountain region) the wettest year was 2011, however, while the 

highest SM value was detected in June, the SM had already decreased in July 2011. The lower than 

average rainfall during this rainy season was the main cause of the SM reduction in late July. These 

findings could indicate that SM conditions during the early plant growth stage critically impact the 

vegetation condition. When there is a lack of rainfall in drylands (Bayankhongor, Gobi-Altai), higher 

temperatures reduce further SM, which is precipitation driven in these areas. Our results showed that 

the small seasonal changes in the bias-corrected SMOS SM and situ measurements were generally 

similar throughout the study area during the three phases of observed vegetation growth (i.e., warm 

spring, summer recharging, and autumn drying season). The study region lies in a zone that transitions 

between steppe, forest-steppe, and desert. The lowest correction between SMOS SM and in situ SM 

was observed in the dry, lowland regions.  

In chapter 4 the results about dzud showed that a combination of drought and harsh winter, that lead 

to annual high livestock mortality in southwestern Mongolia. The climate projections indicate that 

these tendencies trends will be aggravated in the medium term and the extreme events, such as 

drought and dzud, will become more frequent and more intense, accompanied by severe 

environmental, social, and economic impacts. We applied the seasonal aridity index aAIz, and found 

that at the stations with dry conditions (minimum aAIz of −1) a low NDVI is observed. We noticed that 

drought/dry years and lack of meltwater in the spring may cause high grazing pressure due to less 

vegetation resources for livestock. The reductions in vegetation cover due to high livestock grazing 

could negatively impact ecosystem function and increase vulnerability. We noticed that livestock 

grazing is difficult after a cold dzud with a high snowfall that does not melt and covers the grassland 

during the entire winter. The years with low NDVI had very dry conditions during the following 

summer. We found the highest increase in annual temperature in the drier regions at the south of the 

study area, while stations in the northern parts of the study region exhibited a lower mean annual 

temperature due to lower temperatures during the winter. Years with drought risk and long dry 

periods heavily influence the local water budget by causing high evapotranspiration, increased 

capillary effect, and short-term soil salinization. Vegetation is susceptible to the length of the rainy 

season. Our results suggest that low NDVI and low soil moisture conditions can induce drought, and 

these impacts tend to be a precondition for dzud. The modified seasonal aridity index showed 
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considerable regional differences in NDVI due to climatic effects. The NDVI was closely correlated with 

aAIz, while seasonal precipitation showed a lower correlation with NDVI. Overall, the seasonal aridity 

index aAIz approach was beneficial from a meteorological aspect to determine and characterize the 

interconnection between water deficit and dzud effects on grassland drought.  

Long-term meteorological data and CRU snow data were used to characterize the climate conditions 

during dzud and drought years and the spatial distribution of snow cover during dzud events. 

Specifically, we examined trends of annual mean precipitation and temperature as well as monthly 

precipitation and temperature. Our results showed that in most stations during the last 15 years (2000 

– 2014), there was statistically drier than during the previous 15 years (1985 – 1999). We found that 

the mean yearly precipitation during 2000–2014 is by 15 to 20% lower than during the 1985–1999 

period. Contrary to the expected strong warming tendency in the winter months, the last 10 – 15 years 

showed a winter cooling, which could be related to the Siberian cold high shift. This circumstance, 

coupled with the high drought intensity, was a fundamental factor in the occurrence of the consecutive 

dzuds from 2000 to 2002. The average annual temperature of the last 15 years (2000 – 2014) is higher 

than the temperature from 1985 to 1999. We detected the largest increase in annual temperature in 

the drier regions (southern area). The mean winter temperature from 2000 to 2014 (−3 to 2 °C) was 

colder than the mean winter temperature from 1985 to 2014 (−0 to 9 °C). The summer season shows 

the largest gain in temperature, while the same gain during autumn is quite low. 

In chapter 5 we developed the Gobi drought index (GDI) is based on the combination of Soil Moisture 

and Ocean Salinity (SMOS) Soil Moisture and several products from the MODIS satellite. It was 

validated by the in-situ Soil Moisture (SM) observations. The GDI allowed us to characterize coherently 

the spatial and temporal drought expansion and map the droughts at the 1 km spatial resolution for 

Southwest Mongolia from 2000 to 2018. This mapping for two summer months (July, August) was 

conducted for monitoring the grassland drought and vegetation response to varying soil/climatic 

conditions. The comparison between the latest SM product (SMAP) and GDI has shown a high 

correlation (0.85) that is statistically significant at the 0.01 level. 

The proposed GDI associates the soil moisture and temperature conditions with a sensitive response 

of arid and semi-arid grassland conditions. Generally speaking, our GDI has the following benefits: (a) 

few data are required for its computation; (b) it can be transferable and scalable over most of the globe 

areas; (c) it is a useful model in the areas with scarce gauge coverage; and (d) it is an affordable tool 

since it can identify both, meteorological and hydrological droughts. The GDI assessment based on the 

SMOS SM product presented in this work is one of the first assessments accomplished in Mongolia at 

the regional level. 

As a result, the integrated GDI was able to detect the drought events which have been underestimated 

by the National Drought Watch System in Mongolia. Our integrated drought index can be beneficial 

for vegetation stress characterization due to drought with the help of satellite, climatological, and 

geophysical data. Thus, the proposed drought index could serve as an independent and 

complementary drought monitoring index. To the advantage of this research, we can say that the GDI 

can substitute several different remote sensing drought indices and help to monitor the vegetation 

condition and soil moisture status in different ecosystem drylands. 
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  Limitations 

A list of the drought-affected area and regional grassland drought assessment reports is missing and/or 

is still under development.  

An insufficient database on drought impact on the environment and socio-economic conditions, such 

as the vegetation growth cycle, crop plants, and state of soil moisture, and the surface water level is 

still a considerable problem for the local studies in Mongolia. 

The framework for hydrological and meteorological drought modeling is still under investigation and 

the experience is limited. We did not consider the dependence between vegetation and soil 

characteristics, because aquifer characteristics had a much more significant effect on hydrological and 

meteorological drought and then vegetation and soil characteristics (Van Lanen et al., 2013). 

 Recommendations 

Our study demonstrated the use of an integrated drought index, GDI, for assessing the severity of 

droughts at a large scale in the Southwestern region of Mongolia. The proposed drought model will be 

useful as a tool for national drought management and future Gobi ecosystem assessments. These 

assessments may include mapping of pasture conditions, desertification, hydrological and 

meteorological droughts.  

This work can be useful for planners and policymakers, who are actively engaged in drought mitigation 

and preparedness. Based on current and past observed drought states, e. g. on the state of soil 

moisture, temperature, precipitation, the vegetation conditions, and their cumulative effects, the 

planners can use the projections of climate and future human activity jointly with our results to predict 

the future states of environment and drought variations in Mongolia.  

For example, investigating the vegetation reaction on drought impact may help us to determine (to 

plan) the plant resistance to drought and develop irrigation systems that will reduce the consequences 

for Mongolia of moisture deficit and its changes. Our study emphasizes and describes intensifications 

of seasonal patterns of drought. These tendencies could affect temperate dryland plant conditions and 

the services they provide. Knowledge of these tendencies and proper prevention measures that 

address groundwater resources protection, soil conservation, and efficient agriculture practices can 

help to keep the Gobi ecosystem stable. 

The future application of the GDI can be extended to monitor potential impacts on water resources 

and agriculture in Mongolia, which have been impacted by long periods of drought. However, the 

multiple linear regression model of the proposed new drought index should be enhanced and 

readjusted in different ecological climate regions. 

The results and methods of the Ph.D. thesis are based on already freely available satellite data products 

from existing satellites. The development of new satellites and methods is a rapidly developing field of 

research. Future satellites such as EnMAP or innovative data products such as SIF will make new 

environmental data available at higher spatial and spectral resolution. For example, the Environmental 

Mapping and Analysis Program (EnMAP scheduled to be launched at the end of 2021) is a German 

hyperspectral satellite mission that aims at monitoring and characterizing Earth’s environment on a 

global scale. It measures the dynamic processes of Earth’s ecosystems by extracting geochemical, 

biochemical, and biophysical parameters that provide information on the status and evolution of 

various terrestrial ecosystems. The use of Solar Induced Fluorescence (SIF) to Assess Vegetation 
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Change and Vulnerability will have a new impact on ecological studies and could be integrated into our 

GDI-approach. The SIF is a relatively new emerging satellite product, which provides information on 

photosynthetic activity versus NDVI, which is a greenness index. It serves as a direct and strong proxy 

to gross primary production (GPP), capturing dynamic responses of vegetation to environmental 

stressors such as drought and high-temperature anomalies. Due to the dynamics in the development 

of remote sensing, new data with enhanced quality (e.g. hyperspectral data) will be available in the 

near future. Further development is also taking place in the radar area, where in the future we will be 

using much higher spatial resolution data and frequencies (e.g. the ESA Biomass Earth Explorer 

mission, which will carry the first P-band synthetic aperture radar, able to deliver accurate maps of 

tropical, temperate and boreal biomass). Observations from these new missions will support and also 

will lead to a better insight into the rates of habitat loss and, therefore, on the effects that this loss 

may have on the environmental biodiversity. 
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Appendix to Chapter 3 

Appendix A  

Table A 1. Summary and general characteristics of SM sensors in the last and current decade. 

Sensor/Space 
mission 

Operation 
period 

Frequency 
(GHz) 

Resolution 
(km) 

Incidence 
angle (°) 

SSMR/Nimbus-7 1978-1988 6.6, 10.7, 18, 21, 37 150 (at 6.6 GHz) 50 

SSM/I/DMSP 1987- 19.3, 22.3, 37, 85.5 25 (at 19.3 GHz) 53 

TMI/TRMM 1997-2015 
10.65, 19.35, 21.3, 37, 

85.5 
50 (at 10.65 GHz) 53 

AMSR-E/EOS PM-1 2002-2011 
6.9, 10.7, 18.7, 23.8, 

36.5, 89 
56 (at 6.9 GHz) 55 

AMSR2/GCOM-W1 2012 
6.92, 7.3, 10.65, 18.7, 

23.8, 36.5, 89 
10 (at 6.92 GHz) 55 

MIRAS/SMOS 2009 1.42 25 to 40 0 to 55 

Aquarius/SAC-D 2011-2015 1.41 
76×94, 84×120, 

96×156 
29, 38, 46 

SMAP/SMAP 2015- 1.43 40 40 

Source: (Baghdadi. N; Mehrez. Z, 2016), SSMR = Scanning Multi-channel Microwave Radiometer; 

SSM/I/DMSP = Special Sensor Microwave Imager/Defense Meteorological Satellite Program; 

TMI/TRMM = Microwave Imager/Tropical Rainfall Measuring Mission; AMSR-E/EOS PM-1 = Advanced 

Microwave Scanning Radiometer – EOS; MIRAS/SMOS = Microwave Imaging Radiometer using 

Aperture Synthesis/Soil Moisture Ocean Salinity; Aquarius/SAC-D = Aquarius/Satélite de Aplicaciones 

Científicas-D; SMAP = Soil Moisture Active Passive 
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Appendix to Chapter 4 

Appendix A  

Table A 2. The Dzud events on the Mongolian plateau in the past 70 years. 

Year Extreme Event Livestock Mortality/NSO 

1944–1945 dzud+drought No data 

1954–1955 dzud - 

1956–1957 dzud - 

1967–1968 dzud+drought - 

1976–1977 dzud 3294.30 

1986–1987 dzud 1635.10 

1993–1994 dzud 2342.12 

1996–1997 dzud 1203.50 

1999–2000 dzud+drought 4291.30 

2000–2001 dzud+drought 8249.90 

2001–2002 dzud+drought 7676.50 

2009–2010 dzud+drought 12,052.81 

Source: (Fernández-Giménez et al., 2012b). 

Appendix B 

Table A 3. Economic loss caused by drought and Dzuds in Mongolia. 

Dzud and Drought 
Information 

1999–2002 Drought and Dzud 
Years. 

2009–2010 White Dzud 
Years.  

Drought and Dzud severity 
range 

Drought and Dzud continued 3 
consecutive years and covered 

around 90% of the total territory. 

Covered 80.9 % of the total 
territory, 17 provinces and 

175soums/administrative unit 

Mortality 
Not enough information /not 

clear 
17 people between the ages 

of 12 and 89 died 

Livestock loss 11 million livestock 8.8 million livestock 

Financial loss (the exchange 
rate is during that period) 

91.7 billion MNT (Mongolian 
Tugrik) 

360 billion MNT 

The number of households 
left without livestock 

2369 households 8711 households 

The number of households 
left with livestock 

Over 10,000 households were 
left with less than 100 livestock 

32,756 households lost more 
than 50% of their livestock 

 Source: (Benson, 2011). 
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