14 research outputs found

    Meshfree Approximation Methods For Free-form Optical Surfaces With Applications To Head-worn Displays

    Get PDF
    Compact and lightweight optical designs achieving acceptable image quality, field of view, eye clearance, eyebox size, operating across the visible spectrum, are the key to the success of next generation head-worn displays. The first part of this thesis reports on the design, fabrication, and analysis of off-axis magnifier designs. The first design is catadioptric and consists of two elements. The lens utilizes a diffractive optical element and the mirror has a free-form surface described with an x-y polynomial. A comparison of color correction between doublets and single layer diffractive optical elements in an eyepiece as a function of eye clearance is provided to justify the use of a diffractive optical element. The dual-element design has an 8 mm diameter eyebox, 15 mm eye clearance, 20 degree diagonal full field, and is designed to operate across the visible spectrum between 450-650 nm. 20% MTF at the Nyquist frequency with less than 3% distortion has been achieved in the dual-element head-worn display. An ideal solution for a head-worn display would be a single free-form surface mirror design. A single surface mirror does not have dispersion; therefore, color correction is not required. A single surface mirror can be made see-through by machining the appropriate surface shape on the opposite side to form a zero power shell. The second design consists of a single off-axis free-form mirror described with an x-y polynomial, which achieves a 3 mm diameter exit pupil, 15 mm eye relief, and a 24 degree diagonal full field of view. The second design achieves 10% MTF at the Nyquist frequency set by the pixel spacing of the VGA microdisplay with less than 3% distortion. Both designs have been fabricated using diamond turning techniques. Finally, this thesis addresses the question of what is the optimal surface shape for a single mirror constrained in an off-axis magnifier configuration with multiple fields? Typical optical surfaces implemented in raytrace codes today are functions mapping two dimensional vectors to real numbers. The majority of optical designs to-date have relied on conic sections and polynomials as the functions of choice. The choice of conic sections is justified since conic sections are stigmatic surfaces under certain imaging geometries. The choice of polynomials from the point of view of surface description can be challenged. A polynomial surface description may link a designer s understanding of the wavefront aberrations and the surface description. The limitations of using multivariate polynomials are described by a theorem due to Mairhuber and Curtis from approximation theory. This thesis proposes and applies radial basis functions to represent free-form optical surfaces as an alternative to multivariate polynomials. We compare the polynomial descriptions to radial basis functions using the MTF criteria. The benefits of using radial basis functions for surface description are summarized in the context of specific head-worn displays. The benefits include, for example, the performance increase measured by the MTF, or the ability to increase the field of view or pupil size. Even though Zernike polynomials are a complete and orthogonal set of basis over the unit circle and they can be orthogonalized for rectangular or hexagonal pupils using Gram-Schmidt, taking practical considerations into account, such as optimization time and the maximum number of variables available in current raytrace codes, for the specific case of the single off-axis magnifier with a 3 mm pupil, 15 mm eye relief, 24 degree diagonal full field of view, we found the Gaussian radial basis functions to yield a 20% gain in the average MTF at 17 field points compared to a Zernike (using 66 terms) and an x-y polynomial up to and including 10th order. The linear combination of radial basis function representation is not limited to circular apertures. Visualization tools such as field map plots provided by nodal aberration theory have been applied during the analysis of the off-axis systems discussed in this thesis. Full-field displays are used to establish node locations within the field of view for the dual-element head-worn display. The judicious separation of the nodes along the x-direction in the field of view results in well-behaved MTF plots. This is in contrast to an expectation of achieving better performance through restoring symmetry via collapsing the nodes to yield field-quadratic astigmatism

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells

    Recognition, Analysis, and Assessments of Human Skills using Wearable Sensors

    Get PDF
    One of the biggest social issues in mature societies such as Europe and Japan is the aging population and declining birth rate. These societies have a serious problem with the retirement of the expert workers, doctors, and engineers etc. Especially in the sectors that require long time to make experts in fields like medicine and industry; the retirement and injuries of the experts, is a serious problem. The technology to support the training and assessment of skilled workers (like doctors, manufacturing workers) is strongly required for the society. Although there are some solutions for this problem, most of them are video-based which violates the privacy of the subjects. Furthermore, they are not easy to deploy due to the need for large training data. This thesis provides a novel framework to recognize, analyze, and assess human skills with minimum customization cost. The presented framework tackles this problem in two different domains, industrial setup and medical operations of catheter-based cardiovascular interventions (CBCVI). In particular, the contributions of this thesis are four-fold. First, it proposes an easy-to-deploy framework for human activity recognition based on zero-shot learning approach, which is based on learning basic actions and objects. The model recognizes unseen activities by combinations of basic actions learned in a preliminary way and involved objects. Therefore, it is completely configurable by the user and can be used to detect completely new activities. Second, a novel gaze-estimation model for attention driven object detection task is presented. The key features of the model are: (i) usage of the deformable convolutional layers to better incorporate spatial dependencies of different shapes of objects and backgrounds, (ii) formulation of the gaze-estimation problem in two different way, as a classification as well as a regression problem. We combine both formulations using a joint loss that incorporates both the cross-entropy as well as the mean-squared error in order to train our model. This enhanced the accuracy of the model from 6.8 by using only the cross-entropy loss to 6.4 for the joint loss. The third contribution of this thesis targets the area of quantification of quality of i actions using wearable sensor. To address the variety of scenarios, we have targeted two possibilities: a) both expert and novice data is available , b) only expert data is available, a quite common case in safety critical scenarios. Both of the developed methods from these scenarios are deep learning based. In the first one, we use autoencoders with OneClass SVM, and in the second one we use the Siamese Networks. These methods allow us to encode the expert’s expertise and to learn the differences between novice and expert workers. This enables quantification of the performance of the novice in comparison to the expert worker. The fourth contribution, explicitly targets medical practitioners and provides a methodology for novel gaze-based temporal spatial analysis of CBCVI data. The developed methodology allows continuous registration and analysis of gaze data for analysis of the visual X-ray image processing (XRIP) strategies of expert operators in live-cases scenarios and may assist in transferring experts’ reading skills to novices

    A Survey of Augmented Reality

    Get PDF
    © 2015 M. Billinghurst, A. Clark, and G. Lee. This survey summarizes almost 50 years of research and development in the field of Augmented Reality (AR). From early research in the 1960's until widespread availability by the 2010's there has been steady progress towards the goal of being able to seamlessly combine real and virtual worlds. We provide an overview of the common definitions of AR, and show how AR fits into taxonomies of other related technologies. A history of important milestones in Augmented Reality is followed by sections on the key enabling technologies of tracking, display and input devices. We also review design guidelines and provide some examples of successful AR applications. Finally, we conclude with a summary of directions for future work and a review of some of the areas that are currently being researched

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Roadmap on energy harvesting materials

    Get PDF
    Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere

    Corpos tatuados : experiências sensíveis em realidade aumentada móvel

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Instituto de Artes, Programa de Pós-Graduação em Artes, 2015.O corpo do ser humano contemporâneo testemunha o fim das fronteiras do sujeito envelopado pela pele. Cada indivíduo pode produzir sua própria identidade, atribuir determinado significado, que lhe permita reconhecer-se e ser identificado por meio da construção de sua imagem corporal. Para isso, são realizadas modificações corporais (body modification), com o uso da tatuagem, demarcadas pelo peso social e cultural próprio de seu tempo; são questões que problematizam o corpo carnal, por reflexões que envolvem o imaginário do corpo humano, a extensão da percepção visual e espacial com uso de dispositivos móveis que o tornam participante de experiências sensíveis em novas realidades. As consequências ruptoras sobre os limites corporais da carne são caracterizadas pelas revoluções tecno-científicas dos mecanismos para a visão, dos dispositivos tecnológicos analógicos que iniciam o processo de mecanização e consequente automatização da percepção visual humana, que permitem descorporificar a visão pela extrusão do olhar mediado pelos dispositivos móveis. Corpos Tatuados: Experiências Sensíveis em Realidade Aumentada Móvel é o título da presente tese de doutorado, que se centra numa prática artística, derivada da conjunção entre arte e tecnologia, direcionada para o tema do corpo tatuado em performance, utilizando a tecnologia e o conceito da Realidade Aumentada em dispositivos móveis como celulares, tablets, Head-Mounted Displays e óculos digitais. O ponto de partida foi a seguinte pergunta: como se dá a experiência estética da modificação corporal pela tatuagem na Realidade Aumentada Móvel? Nesse sentido, buscou-se a pesquisa teórica e empírica para comprovar a hipótese de que o corpo tatuado na Realidade Aumentada Móvel é uma experiência sensível na arte contemporânea, num contexto de interação lúdica. Essa hipótese configura-se numa formulação de reflexão sobre os caminhos da arte contemporânea, em específico das modificações do corpo carnal pela tatuagem relacionada às tecnologias móveis de interação, que permitem constituir uma suposição admissível de ser demonstrada ou verificada.The contemporary human body is witness to end of the boundaries of the subject encased in the skin. Every individual is now able to construct his own identity, attributing specific meaning to it and, allowing him to be aware of himself and to identify himself by means of construction of his own body image. For this, body modifications are performed, through the use of tattoo, marked by social and cultural weight of their own time; issues that question the carnal body, reflections involving the imagination of the human body, the extent of visual perception using mobile devices that allow it to participate in sensitive experiences in new realities. The disrupting consequences over the bodily limits of flesh are characteristic of the scientific and technological revolution of the visual mechanisms, of the analog technological devices that initiate the process of mechanization and therefore automation of human visual perception, that allow the disembodiment of vision through the extrusion of sight mediated by mobile devices. Tattoo Bodies: Sensitive Experiences in Mobile Augmented Reality is the title of the current doctorate thesis, which focused on an artistic practice, derived from the combination of art and technology, directed towards the subject of the tattooed body in performance art, using augmented reality technology on mobile devices, like smartphones, tablets, Head-Mounted Displays and digital glasses. The starting point was the following question: how the aesthetic experience of body modification using tattoo arises in the context of mobile augmented reality technology? In this regard, theoretical and empirical research was employed to verify the hypotheses that the tattoo body using Mobile Augmented Reality technology is a sensitive experience in contemporary art, in a context of ludic interaction. This hypothesis is based upon the formulation of a conjecture on the paths of contemporary art, in the context of art and technology specifically that of flesh body modification using interactive technology, supporting the formulation of a permissible assumption, to be demonstrated or verified

    Space Systems: Emerging Technologies and Operations

    Get PDF
    SPACE SYSTEMS: EMERGING TECHNOLOGIES AND OPERATIONS is our seventh textbook in a series covering the world of UASs / CUAS/ UUVs. Other textbooks in our series are Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA\u27s Advanced Air Assets, 1st edition. Our previous six titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols et al., 2021) (Nichols R. K. et al., 2020) (Nichols R. et al., 2020) (Nichols R. et al., 2019) (Nichols R. K., 2018) Our seventh title takes on a new purview of Space. Let\u27s think of Space as divided into four regions. These are Planets, solar systems, the great dark void (which fall into the purview of astronomers and astrophysics), and the Dreamer Region. The earth, from a measurement standpoint, is the baseline of Space. It is the purview of geographers, engineers, scientists, politicians, and romantics. Flying high above the earth are Satellites. Military and commercial organizations govern their purview. The lowest altitude at which air resistance is low enough to permit a single complete, unpowered orbit is approximately 80 miles (125 km) above the earth\u27s surface. Normal Low Earth Orbit (LEO) satellite launches range between 99 miles (160 km) to 155 miles (250 km). Satellites in higher orbits experience less drag and can remain in Space longer in service. Geosynchronous orbit is around 22,000 miles (35,000 km). However, orbits can be even higher. UASs (Drones) have a maximum altitude of about 33,000 ft (10 km) because rotating rotors become physically limiting. (Nichols R. et al., 2019) Recreational drones fly at or below 400 ft in controlled airspace (Class B, C, D, E) and are permitted with prior authorization by using a LAANC or DroneZone. Recreational drones are permitted to fly at or below 400 ft in Class G (uncontrolled) airspace. (FAA, 2022) However, between 400 ft and 33,000 ft is in the purview of DREAMERS. In the DREAMERS region, Space has its most interesting technological emergence. We see emerging technologies and operations that may have profound effects on humanity. This is the mission our book addresses. We look at the Dreamer Region from three perspectives:1) a Military view where intelligence, jamming, spoofing, advanced materials, and hypersonics are in play; 2) the Operational Dreamer Region; whichincludes Space-based platform vulnerabilities, trash, disaster recovery management, A.I., manufacturing, and extended reality; and 3) the Humanitarian Use of Space technologies; which includes precision agriculture wildlife tracking, fire risk zone identification, and improving the global food supply and cattle management. Here’s our book’s breakdown: SECTION 1 C4ISR and Emerging Space Technologies. C4ISR stands for Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance. Four chapters address the military: Current State of Space Operations; Satellite Killers and Hypersonic Drones; Space Electronic Warfare, Jamming, Spoofing, and ECD; and the challenges of Manufacturing in Space. SECTION 2: Space Challenges and Operations covers in five chapters a wide purview of challenges that result from operations in Space, such as Exploration of Key Infrastructure Vulnerabilities from Space-Based Platforms; Trash Collection and Tracking in Space; Leveraging Space for Disaster Risk Reduction and Management; Bio-threats to Agriculture and Solutions From Space; and rounding out the lineup is a chapter on Modelling, Simulation, and Extended Reality. SECTION 3: Humanitarian Use of Space Technologies is our DREAMERS section. It introduces effective use of Drones and Precision Agriculture; and Civilian Use of Space for Environmental, Wildlife Tracking, and Fire Risk Zone Identification. SECTION 3 is our Hope for Humanity and Positive Global Change. Just think if the technologies we discuss, when put into responsible hands, could increase food production by 1-2%. How many more millions of families could have food on their tables? State-of-the-Art research by a team of fifteen SMEs is incorporated into our book. We trust you will enjoy reading it as much as we have in its writing. There is hope for the future.https://newprairiepress.org/ebooks/1047/thumbnail.jp
    corecore