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Abstract 

The human nervous system can be damaged as a result of disease or trauma, causing 

conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary 

method of treatment. However, drugs cannot restore some cases, such as visual 

disorder. Alternatively, this impairment can be treated with electronic neural 

prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not 

efficient and only people with retinal pigmentosa benefit from it.  

In such treatments, stimulation of the nervous system can be achieved by electrical or 

optical means. In the latter case, the nerves need to be rendered light sensitive via 

genetic means (optogenetics). High radiance photonic devices are then required to 

deliver light to the target tissue. Such optical approaches hold the potential to be more 

effective while causing less harm to the brain tissue. As these devices are implanted in 

tissue, wireless means need to be used to communicate with them. For this, IEEE 

802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most 

advanced electronic devices, and are also safe and secure. Also, wireless power delivery 

can operate the implanted device. 

In this thesis, a fully wireless and efficient visual cortical stimulator was designed to 

restore the sight of the blind. This system is likely to address 40% of the causes of 

blindness. In general, the system can be divided into two parts, hardware and software. 

Hardware parts include a wireless power transfer design, the communication device, 

power management, a processor and the control unit, and the 3D design for assembly. 

The software part contains the image simplification, image compression, data encoding, 

pulse modulation, and the control system. Real-time video streaming is processed and 

sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. 

After retrieving the compressed data, the processed data are again sent to the 

implanted electrode/optrode to stimulate the brain’s nerve cells. 
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Chapter 1. Visual cortical prosthesis 

 

1.1 Introduction 

As the world population rises, so too does the proportion of elderly and disabled 

people [1]. Older people suffer from increased morbidity and various age-related 

conditions. Furthermore, a significant proportion of society is disabled. Medical 

problems include blindness, loss of limb function, and hearing loss. There are many 

general treatment methods for illness and disability, including pharmaceutical, physical 

(e.g. physiotherapy), clinical surgery and biological therapies (e.g. monoclonal 

antibodies and cancer vaccines). 

One method of treatment is the use of Active Implantable Medical Devices (AIMDs). 

Today, there are more than 600 million people who have an AIMD, such as a 

pacemaker [2]. In the United States of America every year more than 150,000 

pacemakers are manufactured [3], and around the world more than 60,000 deaf people 

use cochlear implants [4]. Therefore, the need for AIMDs is increasing each year [5]. 

Implants are usually made of biocompatible materials such as titanium, silicone and 

ceramics so that the human body does not reject them [6]. An example of an application 

for current implants is electronic stimulation and recording techniques such as in vision 

prostheses, and cochlear or cardiac pacemakers [7]. 

To restore sight to blind people, retinal prostheses achieved regulatory approval in 2013. 

The first device approved for human use was called Argus I, manufactured by the 2nd 

Sight Company [8]. However, the retinal prosthesis is bounded by some technical and 

usage limitations, such as poor quality vision. Maximum quality is around 1,500 pixels 

by Retina AG devices, in comparison to human vision at about 120 million pixels [9]. 

Also, a retinal prosthesis is only suitable for retinal disorders such as retinitis 

pigmentosa (RP). That is to say, a retinal prosthesis can assist in restoring the vision of 

millions of people worldwide [10]. For those with glaucoma and trauma, the best option 

for recovering vision is a visual cortical prosthesis, which may help a greater number of 

the blind worldwide with better quality images [11]. 
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There are two types of visual cortical stimulation: electrical and optical. Electrical 

stimulation was performed for the first time by Dobelle in the 1970s and Brindley in 

1982 [12]. For optical stimulation, Channelrhodopsin‐2 is employed as a light sensitive 

protein. There is a method for engineering the nerve cells called optogenetics; this can 

be used to make the nerve cells respond to light. Optogenetic retinal prostheses [13] 

open the door for researchers in this area to use light for brain cell stimulation to restore 

vision.  

 

1.2 The human eye, vision and blindness 

The perception of the world by a human is achieved with sensory neurons [14], which 

perceive sight, hearing, taste, touch, smell and balance; defects to any of these result in 

a sensory disorder [15]. Visual disorders are a significant issue to humanity as the 

visually impaired cannot see the beauty of the world, and managing their daily needs 

can be arduous. People may not require external support when they lose other sensory 

systems, but the blind require considerable support.  

To understand the journey of the image from the eye to the brain, one needs to 

understand the anatomy of the eye and its functionality. The eye can be compared to a 

man-made camera. A diagram of the human eye is shown in Figure 1-1, taken from [16]. 

As shown in the figure, from left to right, the eye structure is as follows: The cornea is 

at the front of the eye, and is transparent to the light. The iris and pupil come after the 

cornea. The iris offers the beauty of the eye by its attractive colour, and its job is to 

control the size of the pupil by a tension and release mechanism. Then, the lens is behind 

the pupil and is also transparent to the light. Its physical properties are similar to rubber 

or jelly. The retina is located at the back of the eyeball and its function is to convert light 

into electrochemical signals. There are three main structured layers in the retina, and 

from outside to inside these are: the ganglion cell layer, bipolar cell layer, and 

photoreceptor layer. In the photoreceptor layer, there are two types of photoreceptor: 

rods and cones. Their names are identical to their shapes. Cones can be subcategorised 

into three types based on their response to the light wavelength: red, green and blue. 

The eye is connected to the brain via the optic nerve. The optic nerve for both eyes is 
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joined at a point called the optic chiasma. The optic nerve extends from the optic 

chiasma to the primary visual cortex area at the back of the brain. 

 

Figure 1-1: The anatomy of the human eye. The cornea is at the front of the eyeball 

and it ends at the optic nerve. Light passes through different layers and mediums until 

it reaches the retina. There is a cornea, aqueous humour, a lens, vitreous humour, and 

a retina [16]. 

 

The image starts by passing through the eye from the cornea (which provides 40 

diopters of fixed optical power) and focuses a part of the image on the lens (which 

provides 20 diopters of variable power) via the pupil. The pupil/iris controls the amount 

of light entering the eye. By the tension and relaxation of the lens, the lens can focus 

the scene on the retina. The light passes through the ganglion layer to the photoreceptor 

cells. Rods (night vision) and cones (colour/day vision) in the photoreceptor layer absorb 

the light and convert it to electrochemical signals. For night vision and dim light, rods 

take responsibility, while cones are responsible for visible colours. Each cone is sensitive 

to a range of colours and in combination they can deliver information in all visible 
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colours. This processing starts with the inner layer, called the first layer. Then the data 

is forwarded to the third layer via the middle layer. After processing the data in the third 

layer, it redirects to the optic disc. The most significant image processing occurs in the 

retina. The signals from the optic disc are sent to the primary visual cortex through the 

optic nerve.  

The higher level processing of the visual pathway starts in the visual cortex area. The 

visual cortex can be divided into two parts: primary and secondary visual cortex, which 

are further subcategorised. For example, the parts responsible for motion, colour, 

recognition, attention, and face detection functions have been adopted. The details of 

the anatomy of the human eye and its link to the brain network are not illustrated here 

due to the need for simplicity. 

From the cortical nerve cells, the signal is then transformed into useful information 

which the brain can analyse. A simple diagram in Figure 1-2 tracks the journey of the 

image from the eye to the brain. 

 

 

Figure 1-2: The visual pathway from the eye to the visual cortex in the brain. Real time 

images are processed in the eye and transferred via the optic nerve to the visual 

cortex.  
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1.3 Examples of eye diseases causing blindness 

There are several eye diseases which may cause visual impairment or blindness [17]: 

 Glaucoma: is a group of eye diseases which damage the optic nerve, causing loss 

of vision. In general, it is related to a pressure increase in the eye, which causes 

damage to the retinal projections in the optic nerve. Usually, there are no 

symptoms in the early stages of glaucoma. Advanced glaucoma can be 

decelerated with pharmaceutical eye drops or laser and surgical techniques. 

 Cataract: when the eye lens is lost, the transparency of vision is blurred. This 

mostly occurs in the elderly but can also be caused by trauma, diabetes, the use 

of some medication for other eye diseases, and moreover ultraviolet light may 

affect the transparency of the lens. It can be treated by lens replacement. 

 Age Related Macular Degeneration: this affects the macula, and normally starts 

in the 60s. It can be divided into two types: dry and wet. In the first case, 

abnormal blood vessels behind the retina grow, and leaked blood causes a loss 

of central vision in the retina. In the second case, the central vision of the retina 

slowly reduces over time because of waste products that build up in the retina. 

 Diabetic retinopathy: this affects the blood vessels in the eye especially those in 

the inner layer of the retina. As laser treatment may cause damage, the best 

option for preventing this disease is to control glucose.  

 Trauma: this is also known as an eye injury, for example by chemical burn, 

radiation exposure, penetrating foreign bodies, and blows to the eyes. Minor 

injuries may require medication and painkillers, and sometimes surgery is 

required for treatment.  

 

1.4 Requirements for medical implants  

There are significant requirements for an AIMD to be implanted in a human body 

cavity [6]. The main specifications for active medical implantable devices, in general, are 

as follows: 
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Infection free 

Implantable devices should not cause infections. Communication between the 

implanted device and outside the body is achieved by a percutaneous cable, which is 

risky. 

Lightweight 

The placement of the implant device will determine the maximum allowed weight to be 

implanted in the body. For example, retinal implants should be light compared to breast 

implants. 

Small in size 

Similar to the weight requirement, the size of the implanted device depends on the 

place, purpose and application of the implant. For example, compared to the size of a 

cardiac pacemaker, the retinal prosthesis is much smaller. 

Ergonomic 

Implant devices should be comfortable to wear because the patient will carry it for a 

long period. 

Safe operation 

Safety is the most significant key requirement with implanted devices. The implant 

device should not have any side effects on the surrounding tissue, for example injury, 

infection, burning or damage. 

Low power 

All the active AIMDs require a power source for its operation. There are several ways to 

power medical implant devices: piezoelectric [18], thermoelectric [19], kinetic [20], 

ambient energy harvesting [21], and a certain wavelength of light [22]. It is widely used 

today in medical implant devices to transfer power and data [23]. A wireless system 

performs various functions depending on the type of application, which includes 

wireless power transfer, wireless programming,  data control, wireless sensors, and data 

transfer [24]. Recently, microcontrollers have become popular to enable researchers to 

collect data, record automatically or stimulate, control remotely, and process data [25]. 
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For relieving neurological disease or sensory shape replacement caused by disease or 

injury, stimulating therapy has certain achievements when using implantable medical 

devices [26]. Such diseases as Parkinson’s, epilepsy and dystonia can be treated with 

deep brain stimulation (DBS). For the DBS power source, a battery is used which is 

placed in the chest cavity as there is more space available. Also, from the chest, it is 

connected to the brain by passing through the neck [27]. 

Generally, batteries power implant devices, but these are limited according to the 

system’s power consumption and their lifetime. The battery needs to be replaced every 

five to ten years by surgery. Otherwise, it is a source of risk due to electronic failure [28]. 

An alternative solution for powering up the implant devices with low risk is wireless 

power transfer. For example, the lifetime of a battery in a pacemaker is up to ten years 

and requires a surgical procedure to change it at the end of the battery lifecycle [29], 

which may have complications and is costly. For rechargeable batteries or direct power 

units, a percutaneous cable causes infection and is not an effective solution in 

reality [30]. 

Exemplar applications 

An example of a medical implant device is neuroprosthesis in deep brain 

stimulation (DBS) [31]. Surgery is required to implant electrodes in the globus pallidus 

or subthalamic nucleus. The location of the electrodes in the brain depends on the 

purpose of the implant device, e.g. for epilepsy it is a brain surface or deep brain 

stimulation technique [32, 33]. DBS can be used for various purposes, such as: 

 Depression 

 Obsessive compulsive disorder (OCD) 

 A cluster headache 

 Chronic and phantom limb pain 

 Tourette’s syndrome 

 Eating disorders 

 Post-traumatic coma 
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Historical periods of the active implanted medical devices are shown in Figure 1-3. The 

time listed depends on the discovery and early human trials. 

 

Figure 1-3: Examples of DBS and the history of the AIMDs. The historical periods 

depends on the early invention and testing times. All those listed are still in the 

developing and improvement stage [34]. 

 

1.5 Main components of visual prosthesis 

Active medical devices require wireless power transfer and communications [35]. The 

hardware components for the wireless power transfer consist of two parts: the 

transmitter and the receiver parts. In the transmitter side, the battery energy source is 

essential for operating all the system. In the transmitter side of the wireless power 

transfer circuit, there is a moderator to generate the required frequency. To ensure 

sufficient power in the wireless power system on the transmitter side, adding the power 

amplifier is essential [36]. The coil size (transmitter coil, Tx) and shape need to be 

calculated for the delivery of efficient power. On the receiver side, the receiver coil has 

the same consideration as the Tx coil, but also depends on the implanted place. The AC 

voltage needs to convert to DC voltage, and the output voltage should be adjusted. 

The components of the communication system can be divided into two parts: hardware 

and software. The hardware parts, like the power transfer, have transmitter and 

receiver parts, and a camera is essential for capturing real time scenes. The data needs 
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to be processed and sent to the receiver end. After the data reach the receiver side, they 

are processed to retrieve the original data and then used to drive the stimulator. 

For image processing on the transmitter side, after the images were captured by the 

camera, the data are processed. For low quality images, image simplification is essential 

to remove the unnecessary information, and should satisfy the retinal needs for image 

processing. This is for smoothing and contrasting valuable information in the image.  

For low baud rate communication protocols, the data should be compressed to achieve 

live streaming videos over a low baud rate data link such as Bluetooth. The data are 

processed to operate the stimulator. This process can be pulse modulation, to convert 

each frame to sub-frames and achieve the intensity level. 

The general concept of the visual cortex prosthesis system is shown in Figure 1-4. The 

visual cortex stimulator system can be divided into two main parts: hardware and 

software. The hardware includes the power management system, data processing unit, 

data link unit, printed circuit board, and 3D printing. This system is the only example 

explaining how the system will engage with the stimulating part as a proof of concept.  

 

Figure 1-4: The concept of a fully wireless optogenetic visual cortex implant for 
restoring sight. The system comprises a wireless power delivery to the implant system, 
the retinal image processing and the wireless data link. The brain cells are injected 
with Channel-Rhodopsin2 to respond to the light stimulator. 
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At this stage, focusing on using light or electrodes is not essential, but a two dimensional 

micro Light Emitted Diode (𝜇LED) will be used for proof of the concept. An efficient 

implantable cortical prosthesis may be used for electrical or optical stimulation in the 

future. Also, it may be used to stimulate the retina instead of the cortical prosthesis. 

 

1.6 Human health and safety considerations 

From the wireless communication perspective, Bluetooth has been used worldwide in 

many industrial devices and those utilised by humans. First of all, the frequency 

bandwidth of the Bluetooth is in the range of the ISM boundary. Although the most 

common device in which it is used is mobile phones, Bluetooth is also used with medical 

and non-medical equipment. In other words, using Bluetooth to send images to the 

human brain comes under ISM limitations.  

Wireless power transfer is designed to tune in to the 13.56 MHz frequency. However, 

the current target needs to be delivered at under 200 mA. The 3D model in the COMSOL 

software package was tested for the 13.56 MHz to transfer 200 mA. The results show 

that the heating issue with the head tissue due to electromagnetic radiation was below 

the limits, while the Specific Absorption Rate (SAR) was in the range of 0.01 mW/Kg [37].  

1.7 Thesis  

1.7.1 The motivations 

Science and technology should serve the needs of the humanity. The population of the 

world is increasing and so is the number of people who suffer from blindness. Restoring 

sight is comparable to giving a second lease of life to them. However, the existing 

technology for restoration of the sight is insufficient, leaving a major gap in 

rehabilitation. The visual cortical prosthesis system can be an appropriate rehabilitative 

system for the restoration of the sight. 

1.7.2 The aim 

The aim of this PhD program was to design of a telemetry system that can control a 

visual cortical stimulator. This system was envisaged to have offer to features:  
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1. Wireless power charging. 

2. Live scene streaming over wireless communication channel.  

1.7.3 The objectives 

In line with the aims, the transmitter side was planned to use off the shelf components 

for image processing and wireless communication. In contrast, it was planned that the 

receiver side will be designed and manufactured in house. An additional objective was 

that the overall system would be useful for both optical and electrical stimulation of the 

nervous system.  

Further objectives were placed on the physical properties of the system: The 

implantable parts should not be power hungry 0.01 mW/Kg, it has a reasonable size 30 

mm x 30 mm and to be safe according to SAR [38].  

 

1.7.4 The achievements 

The main achievements of this project are: 

 The main achievements of this PhD projects are: Improved image decompression 

using the discrete cosine transform. I was able to transfer frames of 64x64 pixel 

size and 25 frames per second over a Bluetooth connection. By this means, the 

quality of transferred images and real time transfer streaming of scenes were 

improved. 

 Design of a Class E power amplifier for the wireless power transfer with an 

efficiency of 93.43%. This level is sufficient power implantable devices.  

 Design and manufacture of an efficient implantable electronic board to use in 

stimulation of the visual cortical neuron cells and retina. An example in this 

project uses a 2D µLED as a proof of concept. 

 

1.7.5 The outline 

The thesis is structured as follows: 
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 Chapter 2 (Literature Review) focuses on the previous achievements of medical 

implant technology and visual cortical prostheses. 

 Chapter 3 (Wireless power transfer) is about powering active medical implants 

and designing efficient wireless power transfer. 

 Chapter 4 (Real time data transfer) is about the communicating with the medical 

implant device, and sending live streaming data to the implantable device.  

 Chapter 5 (System integration and packaging) presents the main results and the 

system concept. 

 Chapter 6 (Discussion and Conclusion) discusses the main results and design 

issues. 

 Chapter 7 (Future work) concerns the plans for future work. 
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Chapter 2. Literature Review 

 

2.1 Introduction 

According to the World Health Organization (WHO), health can be defined as “a state of 

complete physical, mental and social well-being and not merely the absence of disease 

or infirmity”. Where there is an abnormality of human health, treatment will be 

necessary. There are many types of treatment depending on the disease and the organs 

involved. If we concentrate on visual disorders and more specifically blindness, the WHO 

reports that the number of the blind will reach approximately 80 million globally by 

2020 [39]. There are different methods to restore sight, involving both preventative and 

restorative techniques. An example of a preventative method is saving people from 

blindness by reducing eye pressure (glaucoma), while restorative ways of treating the 

blind are to implant a retinal and visual cortical prosthesis, and stem cells. 

In general, there are three categories of blindness: myopia, legal blindness, and dark 

blindness. Myopia is visual impairment or low vision, meaning that the person cannot 

see well without eyeglass or contact lenses. The range of visual impairments starts from 

mild to severe, and legal blindness counts as a severe impairment. A visual prosthesis is 

useful for those who cannot see anything at all, known as dark blindness.  

Retinal prostheses have been successfully used in humans to restore sight, and Argus II 

from Second Sight is one such example [8]. People who benefit from retinal implant 

devices are those who have retinal pigmentosa (RP). In 2012, the National Organization 

for Rare Disorders (NORD) estimated that the number of people suffering from RP is 

2.35 million people [40]. To put it another way, globally about 20% of people with RP 

could use a prosthesis [41]. By contrast, a retinal prosthesis is not useful for other cases 

of blindness [42] such as glaucoma and trauma. 

Alternatively, a visual cortical prosthesis is another option for helping the blind to see 

again. Compared to a retinal prosthesis, the visual cortical prosthesis is more 

challenging. However, it can restore sight in more than 40% of cases where sight has 

been lost due to an accident, or glaucoma [43]. In early visual cortical prosthesis devices, 
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electrodes were used to stimulate neurons. In general, a visual prosthesis clearly needs 

a power source and communication. For this, a percutaneous wire is used, but this 

causes many problems. First of all, it is not comfortable for the patient, can cause 

infections, and there is a risk of entanglement with another object. Because of the 

above, a novel, efficient, fully wireless visual cortical prosthesis system is a more 

appropriate solution. 

 

2.2 Neuroprosthetics history 

Neuroprosthetics are used to restore the functionality of motor, sensory, and autonomic 

neurons which may have been damaged by disease or injury. For example, a 

neuroprosthesis which can restore the sense of hearing is a cochlear prosthesis [44]. 

Neuroprostheses for restoring vision is known as retinal (subretinal, epiretinal and optic 

nerve) and visual brain (visual thalamic and visual cortical) prostheses. Furthermore, 

brain-machine interfaces can assist those with lost limb functionality [45]. The history of 

nerve prostheses began in the 18th century when Galvani observed the movement of a 

frog’s leg due to electrical stimulations. In 1924, after completing most of his initial tests 

on dogs, the German psychiatrist Hans recorded an electroencephalogram (EEG) from a 

human brain for the first time. The EEG is a means of recording the brain’s electrical 

activity, and Hans was able to receive a signal from the brain by inserting needle 

electrodes under the scalp [46, 47]. To improve the quality of life people with neural 

disabilities, a neuroprosthesis is an option to augment or replace damaged senses [38]. 

In 1929, a German neurologist called Foerster found that the electrical stimulation of 

the visual brain led to the sensation of phosphenes [48]. The first patent for the concept 

of the retinal prosthesis was gained by Tassicker from Australia in 1956 [49]. In 1961, 

Liberson used a portable device for functional electrical stimulation for the first time. 

This type of stimulator employed surface stimulation to assist people with hemiparesis. 

After developing his invention, the device was commercialized in the 1960s in Ljubljana, 

led by Lojze Vodovnik [50]. The first cardiac pacemaker was developed in the early 

1960s [51]. In 1980, two different research groups from Boston and North Carolina 

started seriously considering visual prosthesis [52].  
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Around 3,000 multichannel cochlear stimulators were successfully implanted worldwide 

in the 1990s [53]. In 1992, Humayun and colleagues reported that both normal and blind 

people could see “phosphenes” as light when the retina was electrically stimulated [54]. 

The first implanted retinal prosthesis was recorded as a human clinical trial in 2002 [55]. 

The next generation in 2011 became the first retinal prosthesis device by Second Sight 

that was approved by the Food and Drug Administration (FDA). Later, a retinal implant 

device called Alpha from Retinal Implant AG, Germany, was approved by the FDA and 

became commercially available. This was after successful implementation in the 

suprachoroidal space in around three patients in Australia [56]. The first approved 

implantable retinal prosthesis was in 2013 by Argus [8]. Compared to commercially 

approved retinal implant prostheses, the visual prosthesis is still in the research stage 

and is yet to be further developed. This is one of the principal motivations for 

highlighting the retinal prosthesis developed in this study, to make a difference in the 

next generation prosthesis market. 

Neuroprosthesis devices are commonly used in experiments with animals to help 

researchers understand the brain and its functionality. Wireless monitoring of the 

brain’s electrical signal may make the results better by reducing the effects of wires. 

Accurate recording of the results will give a greater understanding of how the neurons 

are related to a specific function among its local populations [57].  

 

2.3 Visual prosthesis 

Not all kinds of blindness can benefit from a retinal prosthesis, as they can only be used 

in cases of RP [58]. For other cases, there are other ways to restore sight. One solution 

is to replace eye lenses with surgery for those with cataracts [59], or to use new 

pharmacological approaches [60]. Also, glaucoma can be treated by surgically reducing 

eye pressure or administering drugs in the early stages of rising pressure in the eye [61]. 

Although there is no single way to treat the wide range of causes of blindness, a visual 

cortical prosthesis may have the potential to do so. Figure 2-1 shows the principal 

components of the visual prosthesis. 

 



 16 

 

Figure 2-1: Principle components of a visual prosthesis. First, a camera captures real 

time images, and then the images are processed in a similar to how the retina would 

do so. Finally, visual cells are stimulated with electrodes/optrodes (from Degenaar 

lecture notes 2017). 

 

Vision can be restored to a blind patient with a retinal prosthesis [62], and both electrical 

and optical retinal stimulation are possible [63]. There is another dimension to the 

taxonomy of the retinal prosthesis, depending on the placement of the implant [64] 

being on the surface of the retina, in a subretinal position or suprachoroidal one, or on 

the sclera. A traditional retinal prosthesis is shown in Figure 2-2. 
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Figure 2-2: A traditional schematic of the retinal prosthesis. Real time video is 
wirelessly transferred to the implant part, and the received data, after being 
processed, are sent to electrode attached to the retina [65]. 

 

There are numerous potential applications of brain cortical implant devices, beginning 

with restoring sight to the blind or aiding people with dementia. However, brain implant 

devices are more challenging to design. The primary work of cortical stimulation for 

restoring vision began in 1968 [66]. Brindley and Lewin implanted stimulating electrode 

arrays in a female patient’s brain, demonstrating that the lady was able to recognise 

some samples when they transferred to her visual cortex [67]. 

There are two common ways to interface the cortical implants with the brain: direct 

interfacing (intracortical) and indirect interfacing (epicortical) [68]. Stimulating the brain 

cells by penetrating the implant's electrodes is called intracortical, while stimulating the 

surface of the brain is called epicortical. Intracortical stimulation requires firm 

electrodes as it goes deep into the brain. However, micro-motion in the brain means 

that flexibility is required to prevent injury to brain tissue. Epicortical implants are more 

flexible compared to intracortical ones [69]. 

Several research groups located in different countries are working on artificial vision 

focus using cortical prostheses. All these groups are using electrical stimulation, except 
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for the neuroprosthesis group to which I belong. Table 2-1 shows existing focus groups 

working on cortical stimulation.  

 

Table 2-1: Current visual cortical prosthesis working groups worldwide. 

Research group Group leader Head office 
Stimulation 

techniques 

UVNP1 R. Normann Salt Lake City, Utah Electric 

Cortivis E. Fernandez 

Universidad Miguel Hernandez; 
Alicante, Spain, Hernandez; 
Alicante, Spain 

Electric 

IVP2 P. Troyk 

Illinois Institute of Technology, 
Chicago, IL 
Prosthesis/Illinois Technology 

Electric 

PolySTIM 
Research Group 

M. Sawan 
Polystim Neurotechnologies 
Laboratory, Canada Electric 

OVCP3 P. Degenaar 
Neuroprosthesis lab, Newcastle 

University, UK 
Optical 

VPL4 J. Pezaris 
Visual Prosthesis Lab, Boston, 

USA 
Electric 

1 Utah Visual Neuroprosthesis Programme 
2 Intracortical Visual Prosthesis/Illinois Institute of Technology 
3 Optogenetic Visual Cortical Prosthesis 
4Visual Prosthesis Lab 
 

Below is a summary of each group listed in Table 2-1. 

Utah Visual Neuroprosthesis Programme: 

This group is also known as the Norman lab, and their work covers basic science and 

clinical application for improving interfaces with the peripheral and central nervous 

systems. They have developed two electrode arrays Utah Electrode Array (UEA) and 

Utah Slanted Electrode Array (USEA). The UEA consists of 100 silicon microneedles, and 

the USEA consists of graded needles from 0.5 mm to 1.5 mm. They use UEA for cortical 

applications and USEA for peripheral nervous systems. As well as these studies, they 

have focused on wireless power transfer and sending data to external electronic devices 

via a radio frequency link [70]. 
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Cortivis: 

This group is led by Dr. Eduardo Fernandez in the Universidad Miguel Hernandez, Spain. 

They are interested in the reforming and processing of visual information and other 

medical and bioengineering work. They have mainly focused on restoring sight by 

stimulating the periphery of the visual system using active cortical devices safely [71]. 

 

Intracortical Visual Prosthesis: 

The goal of their research is to develop an intracortical visual prosthesis (ICVP). They 

designed 16 electrode arrays for stimulating the brain’s occipital lobe. Their target is to 

achieve 600 to 650 electrodes for implanting in the dorsolateral surface of the occipital 

lobe [72]. 

 

PolySTIM Research Group: 

This group are interested in the design and test of mixed-signal circuits and systems, 

signal and image processing, medical devices, including optical devices and implantable 

sensors, and integrated circuits [73]. The electrode used in their projects has 16 

channels, and power is wirelessly transferred to visual cortical stimulations [74]. 

 

Visual Prosthesis Lab: 

In the visual prosthesis lab in Boston, Pezaris leads a group on restoring sight by 

stimulating the lateral geniculate nucleus of the thalamus; that is, by implanting 

electrodes and sending wireless data from a camera mounted on spectacles. Pezaris 

argued that deep brain stimulation is an alternate pathway of restoring scene [75]. 

In general, the visual prosthesis includes: 

 External camera 

 External image processing unit 

 Power supply 

 Power management 

 Wireless power transfer 

 Wireless data 
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 Implantable processing unit 

 Brain stimulation unit 

 

 

Figure 2-3: The visual cortical implant device of Dobelle from 1978-2000. The low 
quality camera mounted on glasses is connected to the implant device via 
transcutaneous wires [76]. 

 

To stimulate neuron cells, Brindley et al. described the use of electrical stimulation in 

their early visual prosthesis [67], and to power the implant devices, the power is 

transferred wirelessly in most visual prostheses. Brindley and Lew at the University of 

Cambridge tested a visual cortical prosthesis on a female blind patient aged 52, and were 

able to create a visual sensation during examination in this patient’s cerebral cortex by 

electrical stimulation, where the visual information appears in this part of the brain. 

They thought that electrically stimulating the occipital lobe of the human brain could 

trigger visual sensations called phosphenes, and the higher processing of visual signals 

occur in this part. Phosphenes are localised at the visual field, as the perception of spots 

of light. The results of the test were as predicted, and they also stated that 
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improvements to their prototype could help the blind to read and write, rather than just 

avoid obstacles when walking [77]. 

 

2.4 Image processing 

The main objective of image processing for visual implant devices is to convert captured 

video to a stimulating pattern. Furthermore, the image processing unit might also 

implement a function to promote prosthetic vision.  It is known that a retina is not only 

a pure photoreceptor, but also has a considerable role in image processing [78]. As the 

neurons are structured in a different layer in the retina [79], significant steps in image 

processing related to retinal processing are aimed at emulating the functionality of 

retinal layers. In general, the retinal processing consists of converting to: 

 The greyscale levels 

 Image simplification 

 Zooming 

 Edge enhancement 

Image simplification is mainly achieved by reducing the unnecessary detail in the image; 

this starts by suppressing low important texture [62], handled by a minicomputer or 

microcontroller. Another assignment of the image processing is reducing the size of the 

processed data before sending. This lets the wireless communication perform its tasks 

easily and efficiently, and consequently the data are compressed by encoding 

algorithms. Therefore, the data in the implant device have to be decoded into the 

original information [80]. Compression of data before sending is important when the 

baud rate is limited.  

Once received, the data needs to be decompressed, and the retrieved data on the 

implanted side is utilised to stimulate the visual neuron cells. In this case, an even power 

distributor algorithm is required to avoid a power surge [81]. This can happen when data 

are sent to the Micro Light-Emitting Diode (µLED) over a very short period. Also, the data 

are encoded to a specific pulse mode code when transmitted to µLED. 
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Figure 2-4: Example of image processing for the retinal prosthesis, showing the effect 
of scene simplification in reducing irrelevant information but leaving only the relevant 
objects. The left column is for an image size of 256x256 pixels, and the right columns 
are for an image size of 16x16 pixels Top set: is a spatial derivative image with the low 
contrast background. After retinal processing, the image is clearer than the lizard in 
the low contrast background for low quality images. Bottom set: is the simplified and 
edge enhanced scene [82].  

 

2.5 Image compression 

The key point of image compression is to reduce the amount of data during 

transmission, which in turn reduces the power consumption of the overall cortical 

prosthesis system. In a cortical prosthesis system, we obviously deal with a very limited 

amount of power which accords with legislation on health and safety requirements. 

Image compression is a technique used to transmit useful information in fewer bits. In 

the literature, different compression methods can be found such as portable network 
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graphics (PNG), tagged image file format (TIFF), Windows bitmap (BMP) and joint 

photographic experts group (JPG) [83-85]. Some of these algorithms are lossless, e.g. 

PNG and TIFF, whereas others are lossy. Each of these algorithms has its advantages and 

disadvantages, making it suitable for various applications.  

The Discrete Cosine Transform (DCT) algorithm is an essential and common part of most 

of image compression techniques [86]. The DCT is similar to the Discrete Fourier 

Transform (DFT), but it depends only on the real number, and this makes it less complex 

than DFT [87]. DCT has eight standards, four of which are most common: type 2 DCT, 

simply referred to as DCT, and type 3, simply called inverse DCT (IDCT). The other two 

common forms of DCT are the modified discrete cosine transforms (MDCT), which 

particularly deals with overlapping data, and the discrete sine transform (DST) 

equivalent to real and odd functions of DFT [88]. DCT represents the data image 

regarding a sum of sinusoids with different frequencies and amplitudes. In this thesis, 

types 2 and 3 of the DCT were used to reduce the overhead data transmission in the 

visual cortical prosthesis. The most attractive part of using DCT in image compression is 

that the DCT preserves most of the energy of the image at low frequencies. In contrast, 

the spectrum in DFT is distributed in a symmetrical way, where one part is unnecessary 

(redundant), as shown in Figure 2-5. 
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Figure 2-5: (A) Discrete signal. (B) The DFT spectrum. (C) The DCT spectrum. 
(D) Comparison of the DCT, DFT and the original signal x(n). 

 

 

2.6 Communication 

There are two main protocols with the communication: Near Field 

Communication (NFC), and Far Field Communication (FFC).  

2.6.1 Near Field Communication 

NFC is a wireless communication technology at a high frequency based on a Radio 

Frequency Identification (RFID) system. Moreover, it is used at short distances of 10cm 

data and power exchange. NFC is established in mobile devices to read information from 

tags [89]. Because of its short distance, communication is given higher security [90] than 

other types of communication such as Bluetooth, ZigBee and Wi-Fi. NFC works at the 

frequency range 13.56 MHz, which has been chosen to reduce absorption by tissue to 
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stop damage [91]. Near field can be utilised for power transfer with high efficiency, but 

the efficiency amounts to a ratio of input power to output power [92]. 

2.6.2 Far Field Communication 

The FFC is similar to the NFC as they are both electromagnetic waves. The speed of the 

magnetic field in the free spaces is equal to the speed of light (3x108m/sec) [93]. 

Bluetooth is an example of the FFC with a high frequency, and Amplitude 

Modulated (AM radio) broadcasting is an example of FFC with large distance 

transmission. The power of the transmitter to the receiver can be described by the 

following equation, known as the Friis formula: 

 𝑃𝑟

𝑃𝑡
= 𝑝.

𝜂𝑡𝐷𝑡𝑚𝑎𝑥𝜂𝑟𝐷𝑟𝑚𝑎𝑥
2

(4𝜋𝑟)2
 

(2-1) 

 

Where D is the directivity,  is wavelength, p is the account factor of misalignment of 

the antenna, r is the distance between two antennas and η is the input fraction power 

radiated in the far field to the antenna and equal to [94]: 

 

 
𝜂 =

𝑅𝑟𝑎𝑑

𝑅𝑟𝑎𝑑 + 𝑅𝑙𝑜𝑠𝑠
 

(2-2) 

 

There is a different wireless communication protocol at the short range distance and 

low power consumption. For example, there is Bluetooth (e.g. used for mouse, keyboard 

and mobile to mobile), Ultra-Wide Band (UWB) (for high bandwidth multimedia), ZigBee 

(for controlling networks and network monitoring) and Wi-Fi (for connecting two 

computers). Below, Table 2-2 compares these four common communication 

protocols [95]. 
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Table 2-2: Comparison between common communication protocols [95]. 

Standard Bluetooth UWB ZigBee Wi-Fi 

Frequency band 2.4 GHz 3.1 – 10.6 GHz 868 – 2.4 GHz 2.4GHz, 5 GHz 

Max Signal Rate 1 Mbps 110 Mbps 250 Kbps 54 Mbps 

Distance 10 m 10 m 100 m 100 m 

TX power 0-10 dBm -41.3 dBm (-25) -0 dBm 15 – 20 dBm 

Data 

protection/CRC 

16 bit 32 bit 16 bit 32 bit 

VDD (volt) 1.8 3.3 3.0 3.3 

TX (mA) 57 227.3 24.7 219 

RX (mA) 47 227.3 27 215 

Modulating GFSK BPSK, QPSK BPSK (+ASK), 

O-QPSK 

COFDM, CCK, 

M-QAM 

Acronyms: ASK (Amplitude Shift Keying), GFSK (Gaussian Frequency Shift Keying), BPSK/QPSK 
(binary/quadrature phase Shift Keying), O-QPSK (offset-QPSK), COFDM (Coded OFDM (Orthogonal 
Frequency Division Multiplexing)), M-QAM (M-ary Quadrature Amplitude Modulation), CCK 
(Complementary Code Keying), CRC (Cyclic Redundancy Check). 

 
The Packet Error Rate (PER) can be determined by finding the difference between the 

transmitter and receiver packets. The formula for measuring the PER is [96]: 

 
 𝑃𝐸𝑅 = 1 − (1 − 0.999)𝑁 (2-3) 

 
where N is the number of bits in the packet. 
 

2.7 Data transfer 

There are several design restrictions for the medical implant devices. With this, the 

selection or design of data link techniques is also restricted. The significant aspects that 

need to be considered while picking up the wireless protocol are size, data rate, low 

noise and security. For implant devices such as visual prosthesis, noise and accuracy are 

essential for transferring good quality images [97]. Moreover, the efficiency of real-time 

streaming is significant. In this case, the communication system will be designed or 

chosen from off-the-shelf industrial products. Because of their significant advantages, 

Bluetooth and ZigBee can be used for medical purposes [95, 98], and they are both in 

the range of ISM bandwidth and security. In addition to the previous points, power 

dissipation is important and should be considered seriously to keep the temperature 
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changes below the limitation, as a rise in temperature may lead to damage in the 

surrounding tissues [99]. The details of comparisons between Bluetooth, ZigBee, Ultra-

wideband (UWB) and Wi-Fi are presented by [100, 101]. 

The implant devices wirelessly receive data from outside the body (called the downlink 

transmission). The communication with the medical implant devices is commonly 

achieved via radio frequency RF telemetry signals at a frequency of 402-405 MHz [102], 

608-614 MHz, 1395-1400 MHz and 1427-1429.5 MHZ [23] ranges, used for low rate data 

transmission. Also, the data can be transmitted up to 2 m distance with low power 

transmission [103]. From outside, the modulator circuit will modulate the binary data to 

be transmitted to the implanted device. The common physical properties of the 

modulating process are the phase, frequency and amplitude of the carrier signal, 

depending on the binary value that needs to be transmitted.  

For high rate data transfer and high-efficiency power, a Phase Shift Keying (PSK) 

technique can be used instead of Amplitude Shift Keying (ASK). The data can also be 

transferred from implant devices to outside the body from the sensors or stimulators, 

known as uplink transmission. Sensors may transmit the temperature from the 

surrounding tissue and optical probes (optrode), or may send a data signal from the 

neurons. There are different objectives for the data transmission but the common 

performance is by Load-Shift Keying (LSK), but this depends on the load resistances of 

the AIMD [104].  

 

2.8 Implant Material 

For biocompatibility, common factors to consider include the host and the material from 

which the implant materials are made. On the host side, the standard factors are the 

type, genetic inheritance, location of the implementation, and the microenvironment. 

However, the main factors of the material itself are size, shape, coarseness, layout, 

porosity and morphology, structure, sterility issues, implementation duration, and 

degeneration. The period of the tissue response and the intensity are the responsibility 

of these parameters. Biocompatibility depends on the surface phenomenon, cell-cell 

representation, and polymer-protein interactions [105].  
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A biocompatible material or biomaterial is artificial, or natural materials which can 

replace a missing organ or function in close prolonged contact with the living tissue. 

In 1974, biomaterial was defined as “a systemically, pharmacologically inert substance 

designed for implantation within, or incorporation with, a living system” by the Clemson 

Advisory Board [106]. 

Biocompatible implant material is applied to living tissues directly, as an interface 

combining living and non-living substances [107]. Under this circumstance, 

biocompatible implant material should be compatible with the tissue and structures in 

the vicinity of the device and needs to be appropriately selected for their specific use. 

The encapsulation of the implanted medical device is quite challenging for keeping 

medical devices alive in the corrosive biomedical environment [108]. One of the most 

vital factors for the long-term success of the implant device is the appropriate selection 

of implant biomaterial [109].   

In the last decades, extensive research work has been reported for exploring new 

implant biomaterial, such as silicon, amorphous aluminium oxide, polyimide, 

amorphous carbon, parylene [110-112]. Table 2-3 describes a partial list of frequently 

used biocompatible materials [113]. 

Table 2-3: List of biocompatible material and their applications 

Material  Application 

Metal Titanium Case/Encapsulation 

 Platinum Electrode 

 Iridium Electrode 

 Zirconium Case 

 Gold Coil/Encapsulation 

Non-Metal Ceramic Case/Feedthroughs 

 Glass Feedthroughs 

 Silicone Rubber Carrier/ Encapsulation 

 Parylene Insulation Coating 

 Teflon Insulation Coating 
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The materials in the above table have shown excellent long-term performance in post-

market clinical studies [114]. Some leads also have redundant insulation, typically eTFE, 

on each wire of the conductor coil, which additionally serves to improve hardware 

reliability  [115]. 

 

2.9 Hermetic encapsulation 

To protect the electronic system from moist conditions in the harsh environment inside 

the body, two strategies of packing can be used: non-hermetic and hermetic 

implant [116]. Packaging is essential for the long-term implant to maintain the 

functionality and stability of the electronic device. Protecting an active medical implant 

device is challenging, especially in the field of neuroprostheses [117]. For the 

encapsulation challenge, the biocompatibility of the used material is key [118]. 

Hermetic or sealed packing is maintained in a dry atmosphere, and the long term 

functionality of the device is guaranteed as it is normally made from low water 

permeability rate materials. For example, the metal housing for a cardiac pacemaker is 

made from titanium [119]. Two main factors may permit water to leak inside the dry 

interior of hermetic encapsulation, and these are cracks inside the sealing, or along the 

electronic feedthroughs [120]. 

Non-hermetic encapsulation packaging is appropriate for an electronic system 

fabricated discretely [121]. Medical silicon rubber is commercially available for 

implantable devices for non-hermetic encapsulation [122]. For short term applications, 

including ingenerated circuits, epoxies can be considered for well-investigated silicon 

rubber, as this will decrease water permeability and it has low viscosity [123]. 

 

2.10 Stimulation probes 

There are many different types of stimulator architectures – flat, rod-like, and spike-like. 

The electrode is used in electrical stimulation, and has been used to stimulate the retina 

by Humayun [124], Hesse [125] and Thomas [126]. Electrode stimulation can be 
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achieved by Voltage Controlled Stimulation (VCS) and Current Controlled 

Stimulation (CCS) [127]. The electrode was used for brain stimulation by Hassan [128] 

and Vidaurre [129]. An optrode was used for retinal stimulation by Degenaar [130]. The 

optical stimulation of brain cells has been reported by Jing [131] and Kravitz [132]. 

Optical stimulation is performed by optogenetically engineered neurons [133, 134]. 

Potentially, the combination of simultaneously using electrodes with the optrode for 

stimulation was achieved by Veringa [135]. A stimulating technique sometimes needs 

extra processing, for example, in optical stimulation for specific nerve cells, the nerve 

cells are required to be genetically engineered, but with electrical stimulation, the cell 

can be executed directly without preliminary modification. 

2.10.1 Electrical stimulation 

There are three significant parameters in the electrical stimulation technique which 

need to be well programmed: voltage, pulse duration, and frequency. Electrical 

stimulation can be used for the treatment of disorders, including Parkinson’s disease, 

dystonia, and essential tremor. Electrical stimulation can also be employed to study 

nerve behaviour. There are two kinds of controlling DBS: closed-loop and open-loop. 

In 2011, Santaniello argued that closed-loop performance for stimulation is significantly 

better than open-loop [136]. This claim is supported by other researchers such as 

Birdno [137]. 

There are very important requirements that need to be met in the electrodes and pad-

electrodes for the stimulation [138]: 

 Biocompatible and limited stimulation of the immune system 

 No damage to tissue during stimulation and unaffected by corrosion 

 No surgical gash when implanting the electrode 

 Quick and easy implantation procedure of less than 20 minutes once the implant 

site is specified 

 Lead and probes strong enough not to break during the implanting process, and 

stable after implantation 



 31 

 Active implanting and accurate. 

 Voltage should exceed the ‘water window’ i.e. electrolysis water to O2 and 

H2 gas. Water window means there is a critical point at which reduction and 

oxidation of water takes place. If the electrode potential overtakes the water 

window, this can damage the electrode in the form of electrode erosion, 

resulting in the decay of the electrode material in the electrolyte [139]. 

 Size, type of material and placement of electrodes impacts the current density  

 Constant impedance: the controlled voltage techniques for deep brain 

stimulation can approximate the delivered current [140]. Overall impedance 

range typically varies between 500 Ω to 1500 Ω [141]. 

2.10.2 Optical stimulation 

Channelrhodopsin-2 genetically engineered neurons were used by Boyden in 2005 to 

light stimulate the mammalian brain using blue light pulses which cause the 

depolarisation of neurons [142]. The same tests were done by Ishizuka in 2006 [143] for 

the action potential. The evolution of the mechanism of light delivery is important for 

optical stimulation for deep impact tissue, stimulating at low power energy. Moreover, 

more light (direct or guided) is required to penetrate the tissue in this stimulation 

mechanism [144]. In 2002, Nagel discovered the light sensitive channel called channel-

rhodopsin [145]. When the light is supplied to the proteins, the green algae will move 

towards the light. It is sensitive to blue light, which causes the channel to open, and 

positive ions then flatten to the cell. This protein can work in membrane cells, and there 

is a very precise way of controlling the activity of the brain’s neurons cell using the 

channel-rhodopsin. Genetic engineering is required to make neurons produce this 

protein. 

Once a cell is genetically photosensitized, light needs to be delivered. For example, to 

assist in targeting specific neurons such as activating the neuron responsible for 

movement, the light can be delivered with a fibre optic cable. This makes these 

techniques very powerful. However, channel-rhodopsin is not the only optogenetic tool, 

as there is another type of protein which can switch off the neuron or mute it, such as a 

Halo-rhodopsin, which is sensitive to orange light. 
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Figure 2-6: Optogenetic engineering. (A) Three types of light sensitive proteins. Top: 
an example of a protein sensitive to blue light, called channel-rhodopsin-2 (ChR2). 
Middle: a protein example sensitive to yellow light, called Natronomonas pharaonis 
Halorhodopsin (NpHR). Bottom: optoXRs, which responds to green light. (B) Simplified 
steps of optogenetic engineering, shows adding the promotor to the opsin gene then 
injecting it to a virus. (C) Example of light delivery to an engineered brain cell in a 
mouse [146]. 

 

Grossman et al. in 2009 demonstrated a 16x16 µLED array as an example for optical 

neural stimulation. Each single µLED has the 16 mm2 area and 0.07 mW power 

consumption [147]. More specifically, the power requirement for the neural stimulation 

was between 0.1 mW/mm2 and 1 mW/mm2 with existing ChR2 [148]. Continuous pulse 

light for stimulating the neurons is required for real-time image delivery, and this was 

achieved for 600 ms at 1 mW/mm2 [133]. 
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2.11 Powering medical implants 

There are two types of medical implant devices: passive and active. Passive devices, such 

as vascular graft and orthopaedic devices, do not require a power source. Active 

implanted medical devices include cardiac pacemakers, neuron stimulators and cochlear 

implants [149]. These need power sources to operate. There are different ways to power 

the AIMD, such as percutaneous cables, battery, energy harvesting, and wireless power 

transfer. They have different power provision [150]. The range of the consumption for 

different AIMDs is shown in Figure 2-7. Battery source [151], mechanical energy 

harvesting [98] and the wireless power system [152] are the most efficient and common 

sources for powering the AIMDs.  

 

Figure 2-7: Medical implant devices and the conceptual range of power consumption. 
The power consumption line for Electromagnetic [152], Drug pump [153], Nero-
stimulator [154] central nervous system and peripheral nerve stimulation, 
Pacemaker [155], Cortical prosthesis [156], Retinal prosthesis [157] and Cochlear 
implant [2] are presented.  

 

To design the powering system, the following requirements need to be 

considered [158]:  

 Temperature 

 Steady operational lifetime 

 Size 

 Continuous power consumption 

 MRI compatibility and electromagnetic interferences 
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 Accuracy. 

The following subsections overview two examples of the power sources for the medical 

implant devices:  

 Battery 

 WPT 

2.11.1 Battery 

When the battery is adapted for the AIMD as a source of power, the following significant 

points need to be considered. First, batteries should have a long lifetime to prolong 

periods between the implant and surgical replacements. Next, it should satisfy the safety 

issue when implanted in a human. It should not have direct contact with the blood to 

prevent oxidation [159]. In general, implanted batteries can be divided into two groups: 

primary batteries (non-rechargeable) and secondary batteries (rechargeable). Primary 

batteries are the kind which can be used for only one period. When its lifetime is 

finished, the battery needs to be replaced. In Table 2-4, examples of primary batteries 

are presented for powering the AIMD. There are also other types which have not been 

mentioned here. More types of battery sources were reported by Bock [160], such as 

implantable batteries in the biomedical devices.  

Table 2-4: Examples of the primary batteries used for the medical implant devices. 

Battery types Example of use Ref 

Lithium / ion battery Pacemaker  [161] 

Lithium / manganese dioxide  Neuron stimulator, Pacemaker and Drug delivery [162] 

Lithium / carbon monofluoride  Alternative MID [163] 

Lithium / silver vanadium oxide  Implantable cardioverter defibrillators for 

monitoring patient’s heart continuously 

[164] 

 

Secondary batteries are also called rechargeable batteries. They have special properties 

like primary batteries but can be recharged. For the neuron stimulator, lithium/ion was 

the adopted by Lee in 2009 [165] because it is very small in size, the minimum discharge 

voltage is 3 V, its weight is 0.3 g to 40 g, and the charge/recharge cycle is about 1,000 
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times with a normal capacity of 80% [166]. Table 2-5 shows some examples and a 

comparison between secondary batteries. Palacin in 2009 reported that a lithium-ion 

battery is the most useful power on the market [167]. 

Table 2-5: Examples of rechargeable batteries power sources. 

Battery Application  ref 

lithium/iodine Medical Implant, Pacemaker [168] 

Nickel Cadmium Pacemaker [169] 

 

Recharging batteries 

There are different strategies for re-charging batteries in the AIMD. Examples of 

recharging the implanted battery are:  

 Goto et al. in 2001 demonstrated optical uses [170] 

 Radio frequency [171] 

 Thermoelectric devices (e.g., radioisotope decay energy) [172] 

 Electromagnetic power [173] 

 Piezoelectric power, by generating electricity from motion or vibration [174] 

(e.g. a vibrating medium generating mechanical energy [175]). 

The most common actual technique accepted widely in AIMD is radio frequency 

transfer. Furthermore, this is also used for data transfer. The block diagram of the 

wireless charging techniques is shown in Figure 2-8. 

 

Figure 2-8: Simple schematic of wireless radio frequency for recharging an implantable 
battery [176]. 
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2.11.2 Wireless power transfer 

Medical implant devices can be divided into two groups according to wireless power 

techniques: with and without battery power sources. Extra operations are required for 

implanted battery sources [165], either by replacing an expired battery or recharging it. 

Because of power discharge and other disadvantages reported before, the use of 

batteries for medical implants may not be the safest option. Direct power by wireless 

power transfer is an alternative option which delivers sufficient power to the implant 

system. 

Table 2-6 compares research on wireless power transfer technology. The amount of 

transferred power is illustrated depending on the type of implanted device. The most 

common and popular shape of the coil is a circle. The frequency ranges used for the 

wireless power are usually below 13.56 MHz. More specifically, they were in the ISM 

radio bands limitation condition. Consequently, the inductive links between two coils 

are commonly used in wireless power transfer [177, 178].  

Table 2-6: Wireless power transfer for the implant device 

References 
f MHz  

Coil 
shape 

R1, R2 
mm 

Application η % 
d 

mm 
P 

mW 

Lin 2016 [179] 10 Circle 30,20 Brain implant - 6 10 

Xu 2016 [180] 13.56 Square - Cardiac pacemaker 79 50 64 

Stoecklin 2016 [181] 13.56 Circle 10,4 Brain implant - 20 190 

Volk 2015 [182] 13.56 Circle 80,40 Brain implant 74 10 500 

Swain 2015 [183] 0.562 Circle - Pressure sensor 26 30 186 

Li 2015 [184] 13.56 Circle 25,9.5 Medical implant 92.6 3 102 

Lee 2013 [28] 2 Circle 40,10 Brain stimulation 87 15 25 

Carta  2011 [185] 1 Circle - Endoscopes - - 400 

Jow 2007 [186] 5 square 20,8 Neuroprosthesis 85.8 10 - 

Ghovanloo 2007 

[187] 

5 Circle - Medical implant 29.9 10 117 

Sauer 2005 [188] 4 Circle 50,20 Neural implants - 25 2.4 

Kendir 2005 [189] 1 Circle 4,2 Medical implant 67 7 250 

f: Frequency 
P: Received power  
η: Is the power efficiency 
d: Distance between two coils 
Coil size, R1: Radius of the primary coil, R2: Radius of the secondary coil. 
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2.12 Electromagnetic Radiation and Health 

There are two main types of electromagnetic radiation, which are ionising radiation, and 

non-ionising radiation. Ionising radiation concerns a single photon of energy 10 eV and 

more are capable of ionising oxygen or breaking chemical bonds inside the body. For 

example, ultraviolet light and higher frequencies are harmful and have significant effects 

on health. The effect of the electromagnetic field biologically will cause dielectric heat. 

This effect depends on the power exposure and frequency. The Specific Absorption 

Rate SAR is used to measure the heating effect by knowing the rate of energy absorbed 

by the body. It heavily depends on the part of the body that the exposure targets and 

the geometry of that part. For example, for mobile phone SAR testing, the location will 

be the entire head. For this, the Federal Communications Commission FCC in the United 

States set the SAR level to below 1.6 W/Kg, and the European Committee for 

Electrotechnical Standardisation CENELEC has specified the limitation to below 2 W/Kg.  

Each material inside the body has different and specific properties. It has been studied 

for 50 years for the frequency range of 10 Hz to 30 GHz [190]. The average model 

parameter is 45 for different tissues represented together [191, 192]. The biological 

tissues behave as a dielectric with losses because it is mainly water. The value of 

electromagnetism is known as it depends on the frequency. The dielectric permittivity 

is high, and it decreases with increases in frequency. For example, the relative 

permittivity of the blood is 435,000 at 1 Hz frequency. The electric conductivity is 

below 1 for the frequency range of 1 Hz to 1 GHz frequency band. The amount of water 

is based on whether the tissue is most lossy or least lossy. For example, wetter tissue is 

most lossy, and so blood could be counted as a lossiest because of its high water content, 

while fat is less lossy because of low water content [193].  
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Chapter 3. Wireless power transfer 

3.1 Introduction 

Power delivery to electronic medical implant devices is essential, as without power the 

system loses functionality. Normally, the AIMD is powered either by a battery or wireless 

system. The design of a wireless power transfer system requires an accurate circuit 

schematic and simulation to decrease power dissipation. The scheme of the wireless 

power transfer system is summarised as: 

a) Selecting the right tuning frequency for the system 

b) Designing the circuit for the oscillator to generate sine waves 

c) Calculating the power budget for the receiver side 

d) Choosing a proper Standard Wire Gauge (SWG) regarding the tuning frequency 

for coil design 

e) Adding the power amplifier to the circuit to increase up to the power on the 

transfer side. This allows the system to deliver power according to the power 

budget 

f) Rectifying the Alternating Current (AC) waves to the Direct Current (DC) wave 

g) Regulating the output voltage 

h) Finally, the system might require matching between the transmitter and receiver 

circuit. 

The system block diagram representing the concept of the wireless power delivery is 

shown in Figure 3-1. 

 

 

 



 39 

 

Figure 3-1: The general concept of wireless power transfer. K represents the coupling 
coefficient, which depends on the distance between the transmitter and the receiver 
coils. 

 

3.2 Physics of wireless power transfer 

There are different methods for transferring energy between the source and target 

using electromagnetic fields, and these are dependent on the distance between the 

transmitter and receiver devices, as explained below. To put it in another way, this 

depends on the range of energy link [194]. There are three regions according to the 

relation between the wavelength and distance: far-field (λ>>d), mid-field (λd) and 

near-field (λ<<d), where d is the distance between the two devices and λ is the 

wavelength [195]. In general, near-field is known as the non-radiative region and the 

far-field region is a radiative field. The wavelength can be defined as: 

 

 
𝜆 =  

𝐶

𝑓
 

(3-1) 

 

Where C is the speed of light and f is frequency. More specifically, the details of the two 

main regions are as follows:  

Far-field region 

Examples of far-field energy transfer are microwaves, light waves and radio waves, in 

which the distance between the transmitter and receiver is larger than the tuning 

frequency [196]. This range of power transfer is also called radiative regions, and the 

method can be used to achieve a longer range for transferring energy.  
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Near–field region 

Power can be transferred depending on the electric field, such as with capacitive 

coupling or a magnetic field in inductive coupling. Normally, the distance between the 

transmitter and receiver is significantly less than the tuning wavelength λ [196]. The 

distance dtx,rx between the transmitter and receiver compared to the size of coil/antenna 

dcoil, the antenna is important. If the λ << dtx,rx, the amount of transferred power will be 

effective and this range is called short-range [197], but if the λ  dtx,rx, the power cannot 

be transferred effectively and this range is known as the mid-field region. For this range, 

neither inductive nor capacitive coupling transfer sufficient power [198]. This range of 

power transfer is safer than the far–field, and it is radiative.  

3.2.2 Magnetic field strength 

A magnetic field is caused by moving a charge in a wire or space. Also, magnetic field 

strength H characterises the magnitude of the magnetic field and neglects the substance 

properties of the space. The general relation of the Magnetic Field Strength (H) is given 

by [199]: 

 
∑𝑖 = ∮ 𝐻⃗⃗ . 𝑑𝑠⃗⃗⃗⃗  

(3-2) 

 

Where i is the current. Equation (3-2) can be used for different kinds of conductor, as 

shown in Figure 3-2. 

 

Figure 3-2: Magnetic flux surrounds the straight wire. The direction of the magnetic 
flux can be assigned using the right grip rule. Where i represents current flow in the 
wire and H is the magnetic field. 
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Magnetic flux strength for a straight wire in distance r is stable and can be described by 

the equation [200]: 

 
𝐻 = 

1

2𝜋𝑟
 

(3-3) 

 

The magnetic field strength of the coil with the number of turns N, the radius r, at the 

distance x from the centre of the coil, and current I, is as shown in Figure 3-3. 

 

Figure 3-3: Current flows in a circular shaped wire and the magnetic field strength is 
the distance x from the coil. 

 

magnetic field strength is given by [199]: 

 
𝐻 = 

𝑖. 𝑁. 𝑟2

2 √(𝑟2 + 𝑥2)3
 

(3-4) 

 

In the middle of the coil for distance x equal to zero (0), the magnetic field strength is 

given by: 

 
𝐻 = 

𝑖. 𝑁

2𝑟
=

𝑖. 𝑁

𝑙
 

(3-5) 

 

According to [200], the optimal radius of the coil is relative to the distance of maximum 

magnetic field strength given by: 
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 𝑟1 = 𝑥. √2 (3-6) 

Where x is the distance from the coil. 

 

3.2.3 Magnetic flux and magnetic flux density 

Magnetic flux Φ is equal to the magnetic flux density B (total number of the magnetic 

line) in the specific cross-sectional area A. 

  = 𝐵. 𝐴 (3-7) 

 

The explanation is shown in Figure 3-4: 

 

 

Figure 3-4: The magnetic flux and magnetic flux density modified from [201]. 

 

3.2.4 Inductance 

If current passes through any form of the conductor, it will produce a magnetic field 

(magnetic flux). For a coil with the number of turns N and an area A, the flux linkage Ψ 

is: 
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  =  ∑∅𝑁

𝑁

= 𝑁.∅ (3-8) 

 

The inductance for the enclosed loop of wire (coil) is specified by the ratio of the total 

flux  to the current I, which is given by [199]: 

 
𝐿 =  



𝑖
=  

𝜇. 𝑁. 𝐻. 𝐴

𝑖
 

(3-9) 

 

µ is the permeability of the human body and µ=µo is the free space, which is equal to 

4π×10−7 H/m. Table 3-1 shows the amount of relative permeability for 13.56 MHz and 

2.45 GHz frequency for biological tissue at normal human body temperature. 

Table 3-1: The relative permeability of tissue at 37 oC [202]. 

Material 13.56 MHz 2.45 GHz 

Blood 155 60 

Bone 11 4.8 

Brain (white matter) 182 35.5 

Brain (grey matter) 310 43 

Fat 38 12 

Muscle 152 49.6 

Cornea 132 49 

Iris 240 52 

Lens cortex 175 48 

Lens nucleus 50.5 26 

Retina 464 56 

Skin 120 44 

 

 

The equations of inductance vary with coil shape, such as in this equation for a 

rectangular cross-sectional conductor [203]: 

 
𝐿 = 0.002𝑙 {𝑙𝑛 (

2𝑙

𝑤 + 𝑑
) + 0.50049 +

𝑤 + 𝑑

3𝑙
} 

(3-10) 
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Where w is the width, t is the thickness and l is the length, shown in Figure 3-5: 

 

 

Figure 3-5: Thin film conductor. 

 

For a flat, square coil: 

 
𝐿 = 0.0467𝑎𝑁2 {𝑙𝑜𝑔10 (2

𝑎2

𝑡 + 𝑤
) − 𝑙𝑜𝑔10(2.414𝑎)}

+ 0.02032𝑎𝑁2 {0.914 + (
0.2235(𝑡 + 𝑤)

𝑎
)} 

(3-11) 

Where a is the side length, t is the thickness, w is the width and N are some turns, as 

shown in this Figure 3-6: 

 

Figure 3-6: Square loop inductors. Where t trace thickness, N is the number of turns, 
a is the length of the first trace and W is width.  
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For the very thin square loop printed on printing circuit board PCB, then t  0, and 

equation (11) is reduced to: 

 
𝐿 = 0.0467𝑎𝑁2 {𝑙𝑜𝑔10 (2

𝑎2

𝑤
) − 𝑙𝑜𝑔10(2.414𝑎)}

+ 0.02032𝑎𝑁2 {0.914 + (
0.2235(𝑤)

𝑎
)} 

(3-12) 

 

There are four main factors which affect inductance [204]: 

1) The number of turns N: an increasing number of winds will increase inductance, 

while a decreasing number of turns decreases inductance 

2) Space between turns l: spacing between turns is called the length of inductance, 

which depends on the linear spacing 

3) The diameter of the coil R: a small diameter has less inductance than a large 

diameter inductance 

4) Core material µ (permeability): the inductance is greater when the core coil is 

steel or solid ferrite instead of air. 

A general simplified equation for inductance with the core filled with air for the solenoid 

coil with the number of turns N and length l is given by: 

 
L=

μo.A.N2

l
 

(3-13) 

 

The schematic diagram is shown in Figure 3-7 for the solenoid coil. 
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Figure 3-7: Solenoid coil. 

 

3.2.5 Mutual inductance 

The flow of current is in the first conductor and if the second conductor is placed near 

to the first then the magnetic flux, when produced in the first conductor, will generate 

current in the second. The magnetic flux of the first conductor is a function of the 

current 1(i1). Furthermore, the magnetic flux in the second conductor is a function of 

the current when applied to the first conductor 2(i1) [199].  

When more than two coils are shared with the combined magnetic flux, they will have 

the same mutual inductance. Moreover, the mutual inductance is the fundamental 

operating base of the transformer and other electrical devices when they interact with 

another device. Mutual inductance is when the current passes through the primary coil 

and encourages voltage in the secondary coil; however, sometimes mutual inductance 

is not positive because it can cause leakage or lost inductance. 

The coil site is very important for mutual inductance, as the amount of magnetic flux in 

the second coil, which is operated by the magnetic flux of the first coil, will be very weak. 

Also, the mutual inductance value will become small [205]. 

The mutual inductance for the two parallel circular coils can be described by [206]: 

 
𝑴𝒊,𝒐 =

𝝁𝒐. 𝝅. 𝒓𝒐
𝟐. 𝒓𝒊

𝟐. 𝑵𝟏. 𝑵𝟐

𝟐(𝒓𝒐
𝟐 + 𝒙𝟐)𝟑/𝟐

 
(3-14) 
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Where µo is the permeability of free space, ri is the radius of the inner/implantable coil, 

and ro is the radius of the outer/external coil.  

 

Figure 3-8: Mutual inductance between two coupled coils. The distance between the 
two coils is equal to x, and r represents the coil’s radius.  

 

3.2.6 Coupling coefficient 

K represents the coupling coefficient or coupling factor as: 

 

 
𝒌 =

𝑴𝟏𝟐

√𝑳𝟏𝑳𝟐

 
(3-15) 

 

Where L1 is the inductance of the primary coil, L2 is the inductance of the secondary coil, 

and M12 (when M=M12=M21) is the mutual inductance. The magnetic flux in the 

secondary coil operated by the magnetic flux in the primary coil is the coupling 

coefficient. Furthermore, it is in the range between 0 and 1 [207]. The coupling 

coefficient can be described as a function of the distance between two parallel coils, 

while the radius of the primary coil is ro and the radius of the secondary coil is ri, 

as in [199]: 
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𝑘 ≈

𝒓𝒐
𝟐𝒓𝒊

𝟐

√𝒓𝒐. 𝒓𝒊(√𝒙𝟐 + 𝒓𝒊
𝟐)𝟑

 
(3-16) 

 

3.2.7 Resonance 

In basic terms, resonance in the WPT is when the secondary circuit is driven by the 

primary coil at the same tuned frequency. The phases of the magnetic fields between 

the primary and secondary coils are synchronised. Connecting a capacitor to the 

secondary coil optimises the power efficiency in parallel with the inductance. According 

to the Thomson equation, the resonance frequency can be written as [208]: 

 
𝒇 =  

𝟏

𝟐𝝅√𝑳𝑪
 

(3-17) 

 

The quality factor, which is also called the unloaded quality factor, is given by the ratio 

of stored energy in the coil to the wasted energy in the wires. The quality factor can be 

described by [209]: 

 
𝑄 =

𝜔𝐿

𝑅2
 

(3-18) 

 

 

Figure 3-9: Resonant circuit after adding the capacitor C2 in parallel with the coil. 
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Where R2 is the resistance and L2 is the inductance in the secondary coil, and ω is the 

angular frequency, which is equal to 2 [199]. 

3.2.8 Power efficiency 

The power efficiency of the wireless system, in general, can be written as [210]: 

 
𝜂 =

𝑃𝑜𝑢𝑡𝑝𝑢𝑡

𝑃𝑖𝑛𝑝𝑢𝑡
 

(3-19) 

 

Where Pinput represents the total power transferred by the load, and can be present 

depending on the source and load resistance: 

 
𝜂 =

𝑖2𝑅𝐿

𝑖2𝑅𝑆 + 𝑖2𝑅𝐿 
 

(3-20) 

 

Where RL is the load resistance, RS is source resistance, and ‘I’ is the total current flow 

in the circuit. The power efficiency can be described regarding resistance as: 

 

 
𝜂 =

𝑅𝐿

𝑅𝑆 + 𝑅𝐿
 

(3-21) 

 

Finally, the equation can be simplified as [211]: 

 
𝜂 =

1

1 + 
𝑅𝑆

𝑅𝐿

 
(3-22) 

 

It indicates that the RL >> RS for the high efficiency power transfer. When the load 

resistance is equal to the source resistance, the maximum power efficiency will 50%.  

3.2.9 Impedance matching 

The impedance needs to be matched on both the transmitter and receiver side to 

improve the power transfer. There are different approaches for matching the circuits, 
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and the name of the method is classified by the shape of the circuit. For example, there 

are T-shape and L-shape circuits. In the L-shape, an LC matching circuit was used as 

shown in Figure 3-10. With the LC, L is the coil inductance, and C is the capacitance [212].  

 

Figure 3-10: ‘L’ Matching Network. 

 

To calculate the value of inductance and capacitance in the L-network matching circuit, 

first determine the quality factor Q by: 

 
𝑄 = √

𝑅𝐿

𝑅𝑔
− 1 

(3-23) 

 

When Rl is the load resistance, and Rg is source resistance, then the inductive reactance 

Xc can be described by: 

 

 
𝑋𝑐 = 

𝑅𝐿

𝑄
 

(3-24) 

And 

 𝑋𝑐 =  𝑄𝑅𝐿 (3-25) 
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The capacitance C and the inductance L can be founded by: 

 

 
𝑋𝑐 = 

1

2𝜋𝑓𝐶
 

(3-26) 

 

Also, the inductive reactance XL can be described by: 

 𝑋𝐿 =  2𝜋𝑓𝐿 (3-27) 

 

To calculate the load on the transmitter side, Matlab was used and the code is shown in 

Appendix A. 

3.2.10 Skin effect 

The phenomenon of skin effect is the electrical current displacement from the centre of 

the wire to its surface. This will happen especially when the AC passes through the 

conductor, and depends on the frequency of the source. For high frequency, the current 

density in the surface of the conductor will be high, while for the low frequency the 

current density is higher in the centre, because a higher frequency will push the majority 

of the current to the surface of the wire. The penetration depth δ can be described by: 

 

𝛿 =  √
2𝜌

𝜔𝜇
 

(3-28) 

  

The ρ is specific resistance. Examples for δ for the 50 Hz, 100 KHz and 10 MHz 

respectively are 10.4 mm, 0.23 mm and 0.036 mm [213]. This result shows that the 

evidence of the skin effect will affect the area in which current flows. It means increasing 

the resistance of the conductors to the higher frequency, due to energy loss in the 

conductors [214]. 
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3.2.11 Class E power amplifier 

For the Class E power amplifier, there are two main factors which need to be considered 

after the switch transistor is assigned according to the tuning frequency. The 

components such as Lch, C1, C2 and L1 need to be taken into account, as shown in 

Figure 3-11. The duty cycle of the circuit is about 50% for the class E amplifier. The start 

time can be represented as (2n+1)π, and the current in the resonant tank can be 

expressed by i, while the current across the inductor is Lch is Ich.  

 

 𝑖 = 𝐼 sin(𝑤𝑡 +  𝜃)  (3-29) 

 

Where θ is equal to (-32.5o), then: 

 𝐼1
𝐼𝑐ℎ

= (
𝜋2

4
+ 1)

1
2 

(3-30) 

 

The peak voltage Vp across the switch transistor appears when the dvc2/dt=0 where Vp is 

due to -2θVch 

 

 

Figure 3-11: The class E power amplifier schematic example (image from [215]). 
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The values of the C1 can be calculated by [215]: 

 
𝐶1 =  

1

𝜔𝑜𝑅1(
𝜋2

4 + 1)(
𝜋
2)

 
(3-31) 

So, 

 
𝐶1 =  

1

𝜔𝑜(5.447 𝑅1)
 

(3-32) 

 

Where,  

 
𝐿1 =  

𝑄 𝑅1

𝜔𝑜
 

(3-33) 

 

Then C2 can be calculated by: 

 
𝐶2 = 𝐶1 [

5.447

𝑄
] [1 + 

1.42

𝑄 − 2.08
] 

(3-34) 

 

Where Q is the quality factor and R1 is on the coil used on the transmitter side.  

 

3.2.12 Voltage rectification  

After the power is wirelessly transferred, the signal is AC coupled, and this needs to be 

converted to a DC signal, which can be achieved with a rectifier. Various topologies for 

the rectifier can be used. Typically, the combination of capacitors and diodes in a simple 

passive circuit can be used to convert AC to DC [216]. For a low voltage rectification, 

there will be a drop in voltage across the diode. Normal voltage reduction across the 

diode is 0.7 V. This will affect the energy level in the receiver end, but there is an option 

to replace the normal diode with a Schottky diode. For active rectification, replacing 

diodes with a voltage controlled switch transistor is the best option [217].   
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In general, rectifiers can be divided into two groups: half-wave and full-wave. For half-

wave rectifiers, the simplest circuit includes a single diode, which conducts only the 

positive half-cycle of the output voltage. In the negative half-cycle, the output voltage is 

blocked. The output voltage of the DC components can be described by: 

 
𝑉𝑜 = 

1

2𝜋
∫ 𝑉𝑝𝑆𝑖𝑛(𝜔𝑡)𝑑(𝜔𝑡) =  

𝑉𝑝

𝜋

𝜋

0

 
(3-35) 

 

Where Vp is the amplitude of received voltage. However, a half-wave rectifier is seldom 

used because half the power is wasted.  

The simplest circuit for a full-wave rectifier is composed of two diodes. When the first 

diode conducts a positive half-cycle, the second diode is blocked. In both cases, the 

direction of the current will be the same. Also, four diodes are used in a full-wave 

rectifier, which is called a bridge rectifier [218].  

 

Figure 3-12: Circuit schematic and waveform of (A) the half-wave rectifier and (B) the 
full-wave rectifier (image from [218]). 

 

The efficiency of the rectifier is given by: 

 
𝜂 =  

𝑃𝐷𝐶

𝑃𝐴𝐶
 

(3-36) 
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Where PDC is the output rectified voltage and PAC is the input voltage.  

3.2.13 Voltage Regulation 

The voltage should stabilise after it is rectified and a parallel capacitor is required to be 

connected to the output. The capacitor will secure the output voltage from a sudden 

drop.  An example of a voltage regulator is shown in Figure 3-13. 

 

Figure 3-13: Example of the adjustable operation of the voltage regulator. LT1763 is a 
low dropout, low noise regulator from the Linear Technology company. It is used for 
fixed and adjustable output voltage. 

 

The regulator drops the triple above the main operating voltage. The adjustable 

operation mode of the output voltage can be described by: 

 
𝑉𝑜𝑢𝑡 = 1.22𝑉 (1 + 

𝑅2

𝑅1
) + (𝐼𝑎𝑑𝑗)(𝑅2) 

(3-37) 

 

Where the R1 and R2 are the external resistors. Their ratios determine the output 

voltage, and a load capacitor is required to stop a sudden drop in output voltage [219].  

To calculate the power efficiency of the voltage regulator, this equation can be used: 

 𝜂 =  
𝑝𝑜𝑢𝑡

𝑃𝑖𝑛
 (3-38) 

 

Where Pout is the output power and Pin is the input power after the rectification. 
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3.2.14 Matlab simulation for Wireless Power Transfer 

For the simulation, Matlab version R2015a was used. Two figures below show the results 

of the calculation for the wireless power transfer using the equations presented in the 

previous sections. In general, the tuning frequency is set at 13.56 MHz. The relation 

between the magnetic field and the distance for different coil sizes is shown in 

Figure 3-14. The current set of 200 mA and the number of turns (N) is set to 1. For small 

coils with a very short distance between them, the H has the highest value, but for long 

distances, the larger coil radius is better. This refers to the propagation of the magnetic 

field in the centre of the coils. 

 

Figure 3-14: The magnetic field is proportional to the radius of the primary coil and 
reverse-proportional to the distance from the point of the measurement. For a 
distance of less than 50 mm the smaller coil is better, but for more than 50 mm the 
larger radius coil is better. 

 

To understand the relationship between the change in the coil size and the magnetic 

field. The Matlab simulation result is shown in Figure 3-15. The current was 200 mA, and 

N was equal to 1. The strongest field was at the shortest distance, while the size of the 

smaller coil was better than the larger coil. The result was more efficient for coils sized 

less than 5 cm.  
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Figure 3-15: Dependency of the magnetic field on the primary coil radius. A small coil 
for a small distance of less than 50 mm is better than the large coil.  

 

The current was set at 200 mA and the distance was 5 mm. There is a linear relationship 

between N and H, as shown in Figure 3-16. Also, when the number of turns is increased 

for a small coil, it will be a better than a large coil for the magnetic field. 

 

Figure 3-16: Relation between the Magnetic Field Strength (H) and the number of 
turns in the primary and secondary coils. A small coil is better than a large coil over 
small distances, and by increasing the number of turns it becomes more efficient. 
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Similar to the change in the number of turns, the current has a direct effect on the 

magnetic field. By increasing the current flow in the copper coils, the magnetic field will 

increase. Furthermore, the smaller size of the coil at a distance of 5 mm is better than 

the larger coil. The results of studying the relationship between current and H are shown 

in Figure 3-17. 

 

 

Figure 3-17: The relation between the Magnetic Field Strength (H) and change in 
current flow in the copper wires (coils). Increasing current flow in the small coil over a 
the small distance has the same effect as increasing the number of turns. 

 

For mutual inductance, a few simulations have been tested. The result of this simulation 

is shown in Figure 3-18. In the top figure, the relation between the mutual inductance 

with the inner coil, outer coil and distance is presented. When the inner radius was 

changed and the outer coil remained stable and equal to 3 cm, the mutual inductance 

achieved the highest value when the size for the inner coil was approximately one third 

of the outer coil. When the size of the outer coil was changed from 0 to 4 cm, and the 

inner coil was fixed at 3 cm, the mutual inductance became higher by increasing the size. 

It is clear that increasing the distance between the two coupled coils will decrease the 

mutual inductance. 
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The bottom figure shows the relation between the power efficiency and load resistance 

for a range of mutual inductance levels. The power efficiency is higher when the load 

resistance is close to 20 ohms, in general, while the higher value of the mutual 

inductance of approximately 20 ohms is the best. 

 

Figure 3-18: Relation between change in the radius of the inner coil, the distance 
between the two coils and change in radius for the implanted coil with the mutual 
inductance (TOP). The relation between the power efficiency and the load 
resistance (BOTTOM). 
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3.3 Power system design 

For the wireless power transfer, the required components are the battery, embedded 

system power management, and the power of the transmitter and receiver. More 

details of the power system are described in the following subsections. 

3.3.1 Battery 

Any electronic system requires a power source. There are some important factors 

should the system designer consider it. These are: 

1. The size of the battery and shape: this depends on where it will be used and 

where it will be fitted into the implant 

2. Whether the type of battery is primary or secondary: if the battery is reused for 

a period, the secondary battery is capable of recharging and it will be the right 

choice 

3. Capacity and discharge time: the battery will be selected according to the power 

consumption of the system, to cover the power budget and the required times 

of operating 

4. Hazard: the battery should be safe and free from leakage or explosion. 

In this project, a rechargeable battery of Lithium-ion polymer was selected. The 

technical details of the battery are listed below [220]: 

 Dimensions: 60mm x 36mm x 7mm / 2.4" x 1.4" x 0.3" 

 Weight: 34 g 

 Nominal Capacity: 2000 mAh ±2% 

 Nominal Voltage: 3.7 V 

 Standard Charge Current: ~0.2 C / 0.5 A 

 Recharge Voltage: 4.2 V 

 Standard Discharge Current: ~0.2 C / 0.5 A. 

Technically, this project requires a larger battery capacity to operate the system for 

more than 18 hrs/day. The battery should at least be capable of operating the system 

continually in the daytime to enable the patient to use the AIMD efficiently. The battery 
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charge and discharge curve are shown in Figure 3-19. The charging and discharging 

terminals are varied for any battery.  

 

Figure 3-19: Shows battery charge and discharge (image from Texas 
Instruments [221]). 

 

The midpoint line determines the charge and discharge edge, and the end of discharge 

voltage line shows the end of the battery life. When the battery is recharged to above 

the midpoint, the voltage increases its maximum peak. 

 

3.3.2 Embedded system power management 

In this project, two types of power boost were used in the external circuit, and voltage 

regulators were used in the internal circuit. The external components which receive 

power from the rechargeable battery source are a Raspberry Pi Zero and a wireless 

power transmitter. The Raspberry Pi Zero input voltage is 5 V. However, the selected 

rechargeable battery provides 3.7 V. Therefore, to convert 3.7 to 5 V, the power 

boost 1000C from Adafruit Company was selected, to convert battery power to supply 

the Raspberry Pi zero and also recharge the battery. A block diagram of the connecting 

network is shown in Figure 3-20. This board works as an Uninterruptible Power 

Supply (UPS) when the system is in running mode, and the battery can be recharging. It 

is useful when the battery is discharged, and it can be recharged from the external 
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power source. In other words, the user will not struggle to use the visual system because 

of an empty battery. 

 

 

Figure 3-20: The block diagram of connecting the Raspberry Pi Zero with the step-up 
voltage converter (power boost). It also shows the battery connections to the system. 
The power boost converts the voltage from 3.7 V to 5 V (green blocks). It connects the 
power boost 1000C to the wireless power transmitter. The step-up voltage (designed 
power boost) power converter from 5 V to 12 V is put in between (orange blocks). 

 

The second type of power boost was simulated and designed to operate the wireless 

power transfer system. It is designed to boost power from input 5 V to output voltage. 

The synchronous step-up DC-DC Converter LTC3122 from Linear Technology was used 

for this purpose. For the circuit schematic National Instrument (NI) Multisim and the PCB 

layout, NI Ultiboard, were used. The board was manufactured in the School of Electrical 

and Electronic Engineering at Newcastle University. The LTC3122 output current was up 

to 800 mA. The system schematic of the Synchronous Step-Up voltage converter is 

shown in Figure 3-23.  
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Figure 3-21: The LTC3122 Power boost, a DC-DC converter from 5 V to 12 V. The 
header J1 is for input 5V, and the header J2 is for the output. The schematic was 
provided by the Linear Technology Company. 

 

3.3.3 Power transmitter 

The details of the design of the wireless power transmitter circuit are described in the 

following subsections. 

Oscillator 

In this work, a programmable oscillator was used (DS1085L – frequency range 

from 8.1 kHz to 133 MHz with steps of 10 kHz). It was configured with the Arduino Uno 

to provide 13.56 MHz [222], and 6.78 MHz output frequency and then modified. The 

code script is shown in Appendix B, and the circuit schematic is shown in Figure 3-22. 

The circuit was used to programme and operate the microcontroller to generate the 

targeted frequency. The oscillator was powered by the battery, the value of R1 and R2 

was 1 KΩ, and they were used as pull-up resistors.  
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Figure 3-22: Circuit diagram of DS1085L for programing and generating the sine waves 
at a specific frequency. 

 

For frequencies below 2 MHz, an NEC555 programmable oscillator was used. This timer 

is very common, and is widely used as a square-wave generator [223]. The circuit 

diagram of the 555 timer is shown in Figure 3-23. The input power supply could be any 

value between 5 V to 15 V. In this project, the input voltage was 12 V, and the output is 

in the form of square waves. The period, T, of high voltage (t1) and low voltage (t2) will 

lead to a period with 50% of the duty cycle.  

 

 

Figure 3-23: Schematic of the timer 555. The total output time is equal to t1 plus t2, 
and output voltage depends on VCC. The two resistors R1 and R2 are used to control 
the output frequency. 
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The output voltage depends on the supply voltage, and can be described as: 

 𝑉𝑜𝑢𝑡 = 𝑉𝐶𝐶 − 1.5 (3-39) 

The total output time period T can be calculated from: 

 𝑇 = 𝑡1 + 𝑡2 (3-40) 

Where t1 and t2 are characterised as: 

 𝑡1 = 0.693 (𝑅1 + 𝑅2)  ×  𝐶2 (3-41) 

And 

 𝑡2 = 0.693 × 𝑅2 × 𝐶2 (3-42) 

The frequency strongly depends on the R2 and C2 when the 50% duty cycle is required. 

In this case, the R1 should be high enough to reduce the opportunity for interference 

with the C2. Otherwise, it will conflict with the C2 and, as a consequence, the time cycles 

will not be pure. The equation of the frequency at 50% duty cycle in Hz will be [224]: 

 
𝑓 =  

1

1.386 × 𝑅2 × 𝐶2 
 

(3-43) 

 

There are different options for wave generation, but the crystal oscillator was the right 

option because the tuning frequency is adjustable, accurate and fixed. This is why it is 

widely used in electronic devices such as an external clocks. 

Coil inductors 

Wireless medical devices have coils integrated onto cans/ceramic. In general, there are 

two types of coil for prototype devices: printed circuit coils (circular or square shaped), 

and normal copper wires on circular shaped forms. A square shaped printed circuit 

board (PCB) coil was designed. Nine coils were printed on one PCB, and the coils were 

different in some turns and this had different inductance. The middle value of the 

inductance for coil number five was 4.8 µH. The PCB coil layout and the sample are 

shown in Appendix C. 
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The National Instrument (NI) Ultiboard software package was used to design the coil, 

which was printed at Newcastle University by the electronic technician. For the physical 

dimensions and calculation, the Saturn PCB toolkit version 7.02 was used. The 

parameters of the square printed coil are listed in Table 3-2. 

Table 3-2: Parameters of the printed circuit 

Some turns (N): 16 

Conductor spacing (µm): 10 

Conductor width (µm): 100 

The outer diameter (mm): 20 

Inner diameter (mm): 1.782 

Fill factor (µm): 0.0576 

Inductance (µH): 4.8 

Tested frequency (kHz): 200 

Resistance (Ω): 4.2 

 

Coils were also designed with copper wire. For this, a circular shaped coil was selected. 

The diameter of the coil on the transmitter side should be greater or equal to the 

receiver coil for efficiency issues. On the transmitter side, again there are design 

limitations, since, for the current flow on the outside surface area of the wire, the 

thickness of the wire will affect the current flows because of wire cross sectional 

resistance. In this case, single core wire is one possible choice. The maximum size of the 

receiver coil will be 30 mm. Consequently, the transmitter coil will be 30 mm or more. 

Table 3-3 shows the physical parameter for the transmitter and receiver coils. The coils 

were fitted on transparent plastic paper.  

Table 3-3: Parameters for single and multicore coils. 

Properties Single core Multicore coil 

Number of turns 7 10 

Diameter (mm) 40 40 

Resistance (mΩ) 112.67 421.31 

Quality factor 54.98 20.75 

Angle (degree) +88.958 +87.24 

Inductance (µH) 4.93 6.958 
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Class E power amplifier 

Where the system of the WPT is designed, and the delivery was not enough, a power 

amplifier is required. In this project, to provide power delivery, a class E power was 

designed. The class E power amplifier operates as a switch rather than a current source. 

Ideally, current and voltage flows across the transistor and simultaneously they are 

nonzero. Typically, there should be no power dissipation in a switch. This concept is 

called soft-switching [225]. The condition of the soft-switch must satisfy the matching 

network components, which needs to be calculated for inductance L and capacitance C. 

As shown in Figure 3-24, the imaginary load R is for the transformation network [226]. 

 

 

Figure 3-24: The switch performance of the class E power amplifier. The switch 
represents a transistor. The value of resistance R depends on Lt and Ct.  

 

Both L and C can be described as [215]: 

 
𝐿 =  

1.15 𝑅

𝜔
 

(3-44) 

and 

 
𝐶 =  

0.1836

𝜔. 𝑅
 

(3-45) 
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To calculate the class E power amplifier efficiency: 

 
𝜂 =  

𝑃𝐿

𝑃𝐿 + 𝑃𝑡𝑟
 

(3-46) 

 

Where PL is the output power, and Ptr is the dissipated power of the transistor. In this 

case, the power loss will relate to the power of the resistor Ron, only when the switch is 

in on-mode. 

3.3.4 AC to DC converter 

A bridge rectifier (full wave rectifier) has been designed to convert the AC voltage to DC 

voltage. The bridge rectifier is realised by using four diodes as a bridge. The diodes are 

best connected in a series of pairs. In other words, two diodes will allow current flows 

in each cycle. More specifically, for the positive cycle, diode D1 and D4 conduct current, 

while in reverse biased diodes D2 and D3 will conduct current. Capacitor C has a 

significant role in the circuit, and is called a smoothing capacitor. In Figure 3-25, the red 

waveform shown is without the capacitor, while the black waveform is after connecting 

the parallel capacitor to the circuit [218].  

 

Figure 3-25: The circuit schematic of the voltage rectifier and the result of the output 
voltage with and without the smoothing capacitor, while the peak of the ripple voltage 
(V_dc) depends on the current across the load resistance to the frequency and 
smoothing capacitor (bottom waveform). 
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The Schottky diode was used for this design to reduce the power dissipation. The 

selected model was NSR05F30NRT5G from the MOUSER Company, and the 

specifications are listed in Table 3-4. 

Table 3-4: Specification of the Schottky diodes used in the AC/DC converter circuit. 

Product Schottky Diodes 

Manufacturer Part No NSR05F30NRT5G 

Mounting Style SMD/SMT 

Forward Current (mA) 500  

Repetitive Reverse Voltage (V) 30 

Forward Voltage (V) 0.4  

Forward Surge Current (A) 10  

Reverse Current (µA) 75  

 

3.3.5 Voltage regulator 

For the implant device, the LT1763CDE was chosen because of its range of input 

voltages. The regulator was first simulated using NT Multisim software, as shown in 

Figure 3-26. For the receiver side, a two on the board regulator was implemented on the 

circuit. Both regulators have the same model but provide a different output voltage. The 

LT1763CDE-3.3 and LT1763CDE-5.0 provide fixed output voltage. For the implant, 3.3 V 

is required to operate the microcontroller, flash memory, and JTAG programmer, while 

5 V is required to operate the optrodes. The regulators allow current flows up to 

500 mA. The circuit schematic for simulation using NI Multisim is shown in Figure 3-26.  
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Figure 3-26: Simulation circuit schematic for LT1763CDE-1.8, LT1763CDE-3.3 and 
LT1763CDE-5 regulators. In this test, the circuit designed for obtaining three outputs 
as they are 1.8 V, 3.3 V and 5 V.  

  

The circuit was designed to show the performance of the regulator to provide three 

outputs 1.8 V, 3.3 V and 5 V. The National Instrument Multisim was used for circuit 

simulation.  

 

3.4 Portion of power consumption 

The power consumption of the individual components is shown in Figure 3-27. The 

portion of the power consumption on the transmitter side is on the left, and for the 

receiver, the end is on the right. On the transmitter side, the most hungry power device 

is the Wireless Power Transfer circuit, whereas on the receiver side it is the µLED. This 

version of the Raspberry Pi zero includes Bluetooth, which perhaps reduces the power 

consumption on the transmitter side by replacing the USB Bluetooth adapter and the 

USB hub. 
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Figure 3-27: Portion of the power consumption for the transmitter side (Left) and the 
receiver side (right).  

 

In future work, a three dimensional optrode will be used instead if a µLED matrix on the 

receiver end for brain cell stimulation. In this case, the power consumption for the 

stimulator will be changed. 
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Chapter 4. Real time data transfer 

4.1 Software design 

Software design is essential in the role of the visual cortical stimulator, and includes 

three types programming code:  

 Code for image processing: code to control and automate the system. Linux 

commands were used to connect the transmitter and receiver parts 

automatically via Bluetooth. Also, a push button was added, and a command 

code was written for this purpose. 

 Code for data encodes and decode for communication purpose: this is for image 

processing in the transmitter side using Matlab Simulink. It includes capturing 

images from the USB camera, resizing, converting images from RGB to the 

intensity form, applying the algorithm of the image simplification, and image 

compression. 

 Code for a microcontroller to control the system: on the receiver side, C code 

was used for receiving data, image decompression, pulse modulation and 

sending data to the optrodes. 

The flow chart of the software design is shown in Figure 4-1. It starts with the original 

scene and ends with the data being sent to the stimulator.  

Original scene: these are the live images captured by the USB camera. The speed of the 

stream of images is about 25 fps, and can be controlled by the time framing in Matlab 

and the number of iterations in the next step.  

Scene simplification: in this stage, the scene is simplified using image cartoonization, 

tinted reduced outlined nature (TRON), and edge enhancement algorithms. The 

significant details in a scene are enhanced, whereas the high frequencies are eliminated.  

Entropy: this eliminates any discontinuity in the gradient image and enhances the edge 

thickness by finding the difference between the current frame and the previous one. 
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Figure 4-1: The flow of image processing. The external devices start with the camera 

for capturing live streaming and end with data encoding, while the implant devices 

start with data decoding and end with the stimulators.  

 

Image compression: this reduces the size of the data transfer, which results in a saving 

in the communication bandwidth and in turn the power consumed. Basically, this block 

uses the most common compression technique which is the DCT. This stage of DCT 

discards the insignificant information so that far less are data transferred, and can be 

performed in two ways: block or zigzag. 

Data encoding: this is rearranging data before sending it wirelessly by resequencing the 

data into a special format. 
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Data decoding: this is the opposite process of encoding, by converting the formatted 

encoded data into the original form. 

Image decompression: this stage applies the IDCT to restore the image. The 

decompression is mainly applied to convert the compressed data to the original number 

of coefficients. 

Pulse encoding: this converts each frame into numbers of sub-frames depending on the 

number of bits used to represent the pulse width modulation to derive the uLED. 

Even power distributor (EPD): this represents future work to protect the system from 

instantaneous high peak power, and distribute power evenly to maintain continuous 

power delivery. 

µLED stimulator: this essential part of the implant uses 64x64 optrodes to excite 

(optically) the targeted cortical neurons area. 

 

4.1.1 An overview of retinal processing 

The visual processing begins with the retina’s the receptive surface inside the back of 

the eye. Light enters the eye and passes through the layers of cells of the retina, before 

reaching the photoreceptors located at the back of the retina. Light activates the 

photoreceptors, which modulate the activity of bipolar cells. These, in turn, connect with 

the ganglion cells located at the front of the retina. The axons of the ganglion cells form 

the optic nerve, which carries information to the brain. Two other types of neurons, 

horizontal cells and amacrine cells, are primarily responsible for lateral interactions 

within the retina. 
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Figure 4-2: The eye and three layers of the retina, including their cell types. The light 

passes through the outer layer into the inner layer and starts to be absorbed in the 

inner layer by cones and rods. Signals are sent to the ganglion cells via the bipolar cells. 

From the bipolar cells, data is forwarded to the optic nerve (image from nature 

reviews drug discovery [227]). 

 

The bipolar cells and ganglion cells are organised in such a way that each cell responds 

to a small circular patch of photoreceptors, which defines the cells receptive field. The 

receptive field of retinal ganglion cells is concentric and consists of a roughly circular 

central area and a surrounding ring. Retinal ganglion cells have two basic types of 

receptive fields: ON-centre OFF-surround, and OFF-centre ON-surround, as shown in 

Figure 4-3. The centre and its surround are antagonistic and tend to cancel each other’s 

activity. 

 

Figure 4-3: The receptive fields in the ganglion layer ON-centre and OFF-surrounded 
(left), OFF-centre and ON-surrounded (right). 
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 The response of the centre of the ganglion cell to a spot of light is shown in Figure 4-4. 

When no light falls on the receptive field, the spontaneous level of activity is recorded 

from the ganglion cell.  

 

Figure 4-4: The response of an on-centre ganglion cell to a spot of light (A) The light 
enters the surrounding region of this on-centre ganglion cell and the level of activity 
in the cell will decrease. (B) A spot of light in the centre of the receptor field increases 
the firing rate. (C) The maximum response in the on-centre ganglion cell is achieved 
when the entire centre of the field is illuminated. (D) If only the surrounding of the cell 
is illuminated with a ring of light, the ganglion cell is maximumly inhibited. 
(E) Illuminating both the centre and surrounding region means the response is just 
above the baseline. This occurs because the centre effects are slightly stronger than 
the surroundings. The response of an off-centre ganglion cell: (F) The light enters the 
surrounding region of the off-centre ganglion cell. The level of activity recorded in the 
cell increases. (G) A spot of light in the centre of the receptor field decreases the firing 
rate. (H) If the entire centre of the off-centre ganglion cell is illuminated, the cell is 
maximumly inhibited. (I) Maximum response is achieved when the entire surround is 
eliminated by the receiving field. (J) With the centre ganglion cell, if we illuminate the 
centre and surrounding region, the response will change very little from a baseline 
(the concept of the image from neuroscience [228]). 
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The architecture looks for gradient and thus only differences in illumination result in 

outputs. To understand the importance of luminous contrast, we can contrast the 

boundary between light and dark regions. The response rate changes depending on the 

position of the receptive field, by combining information from adjacent receptive fields, 

and so the brain can thus construct information about edges and ultimately shapes. 

Figure 4-5 shows the responses of the hypothetical population on the centre ganglion 

cell, whose receptors fields are labelled (i) to (v) and distributed across the light-dark 

edge. Those cells whose activities are most affected have receptive fields whose centre 

region light is adjacent to the light-dark edge [228].  

 

 

Figure 4-5: Responses of the hypothetical population on the centre ganglion cell. 
(i) There is no response from the receptor cell. (ii) Response rate below the 
spontaneous level of activity. (iii) No response. (iv) The highest response rates. 
(v) There is a response but it is low (image concept from neuroscience [228]). 
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The information supplied by the retina to the brain does not have equal weight for all 

parts of the visual scene, but instead emphasises features of the visual scene, such as 

boundary edges, which convey the most important information. 

 

4.1.2 Image simplification and edge highlighting 

The idea behind image simplification techniques is to improve image contrast. Due to 

the low resolutions of current retina prosthesis devices, chromatic information is not 

feasible at the moment, although this may change. We therefore focus on the 

information content of grayscale images. As the effective resolution of the stimulating 

array is quite small, it is better to present more primitive objects, and thus simple 

segmented edge weighted objects/scenes are more appropriate. 

First, the images need to be simplified by suppressing low importance textures. To 

achieve this, anisotropic smoothing is used. This algorithm iteratively eliminates noise 

and low importance textures. However, unlike Gaussian blurring, it reduces the 

diffusivity at those locations with a larger likelihood of being an edge, i.e. it does not blur 

them. Mathematically, the process is defined as follows: 

 

 𝐼(𝑥, 𝑦)𝑛+1 = 𝐼(𝑥, 𝑦)𝑛 + ∆𝑡[(𝐶. ∇𝐼(𝑥, 𝑦)𝐻) + ∇(𝐶. 𝐼(𝑥, 𝑦)𝑉)

+ ∇(𝐶. ∇𝐼(𝑥, 𝑦)𝐷1) + ∇(𝐶. ∇𝐼(𝑥, 𝑦)𝐷2)] 

(4-1) 

 

Where I is the initial unprocessed image pixel value,  is the gradient operator, and C is 

the diffusion coefficient. n is the iteration number, 𝑡 is the time step which controls 

the accuracy and speed of smoothing, and  𝐼𝐻 and,  𝐼𝑉 ,  𝐼𝐷1 , and  𝐼𝐷2 represent 

the horizontal (H), vertical (V), and two diagonal (D) gradients of the image pixel. The 

simplification process is continuous until the following equation is satisfied: 

 
𝐷 = ∑ 𝑎𝑘 − 𝑃𝑇

𝑛

𝑘=1

 
(4-2) 
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Where D is the energy deficit in an image, 𝑎𝑘  is the intensity of kth led, P is the power 

budget (number of LEDs in ON state at the same time) and T is the frame time. As can 

be observed from (eq 2), if D is positive it means more simplification is required unless 

the image fits into the energy budget. 

As with most detailed image processing algorithms, optimal parameters will vary with 

user preference. In the case of anisotropic diffusion, the key parameters are the number 

of iterations n. Smaller n results in more textures remaining; larger n leads to greater 

smoothing, which eventually also removes larger edge components, i.e. the image 

becomes blurred. However, eventually increasing n will consequentially increase the 

energy deficiency of the image, and so equation two controls this process.  

Once the anisotropic simplification is complete, we extract the spatio-temporal 

gradients of the image: 

 𝛻𝐼(𝑥, 𝑦) =  √(𝛻𝐻𝐼(𝑥, 𝑦)𝑆)2 + (𝛻𝑉𝐼(𝑥, 𝑦)𝑆)2 (4-3) 

 

Where IS is the simplified image. For still images, we simply use the spatial derivatives. 

To increase edge thickness and remove any discontinuity in the gradient image, we 

convolve it with a Gaussian filter and normalise it between 0 and 1. We then define two 

threshold values, 𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥  and set all pixels of the normalized gradient image below 

𝜏𝑚𝑖𝑛 to 0 and all the pixels above 𝜏𝑚𝑎𝑥 are set to 1 according to how much denser the 

edges need to be.  

To generate an edge-weighted image, we define a threshold value K below which all the 

pixels in the normalised gradient image will be raised to K. The value of K determines 

how much of the background information of the image needs to be reserved, and this 

can be determined according to patient preference. The gradient image now becomes 

a weighting matrix W, which will determine how many details of the visible image will 

be reserved while also increasing the brightness of the relevant edges. The edge-

weighted image is then defined as the multiplication of W by the anisotropically 

simplified image:  
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 𝐸𝑑𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑊 ∗ 𝐼𝑛+1 (4-4) 

 

Raspberry Pi Zero was programmed and deployed with Matlab Simulink for this purpose. 

Matlab function code is shown in Appendix number missing for image processing by Al-

Atabany, with some improvement [82]. Then the code was modified after adding a 

compression algorithm for the image compression. The code was written to print the 

outcomes on the screen in Raspberry Pi. The result was redirected by writing some codes 

in Linux to send it via Bluetooth. 

4.1.3 Image compression  

The system is designed to deliver live streaming and real time images to the brain cells. 

For live streaming, 25 frames per second are normally required [229]. An example of the 

image size is 64x64 pixels. In other words, the size of images is approximately 4,000 

pixels, equivalent to 4 Kbyte of data. This number is limited to the lowest visual 

perception for the human eye. The achieved baud rate for the Bluetooth was 170 Kbps, 

and so the 25 fps of the 4 KB image are equal to 100 KB, which is higher than the 

capability of Bluetooth. For this reason, the images should be compressed up to 61%. 

Effectively, this is a simplified motion JPEG method. 

There are two techniques which can be used for image compression. The two algorithms 

are DCT-block and DCT-Zigzag. As shown in Figure 4-6, after the image has been 

simplified, the steps of image compression using the DCT-block are as follows: 

a) Reduce the size of the simplified image to 64x64 

b) Divide the image into 8x8 blocks 

c) Rearrange the 8x8 blocks from 2D sequence to 1D 

d) Apply the DCT algorithm to each 8x8 block 

e) Select 5x5 blocks from the low frequency level 

f) Reshape the 5x5 blocks from 1D sequence to 2D 

g) End with a 40x40 pixel compressed image. 
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Figure 4-6: The steps of the image compression using the DCT-block. Matlab Simulink 
was used to implement the code to the LPC4330 microcontroller. This example is for 
61% compression ratio. 

 

 

The special header will be added to the compressed image for the design purpose. Then 

the data were printed on the screen in the Raspberry Pi Zero. Later, the data will be 

redirected and sent to the implant device over the Bluetooth. For this, the Linux 

command was written. In the command was linked to the push button for turning the 

system on/off. When the button is pressed and then released, the Raspberry is powered, 

and then the Bluetooth connects automatically to the implanted Bluetooth. Finally, the 

camera starts capturing real time images and sends over Bluetooth. 

4.1.4 Image decompression 

After the data has been delivered to the implanted device, the compressed information 

needs to decompress to restore the simplified image. Figure 4-7 shows the 

decompressed image, and the details are as follows: 

a) The 40x40 compressed image is collected over Bluetooth 

b) The image is divided into 5x5 blocks 

c) The 5x5 block sequence is reshaped from 2D to 1D 

d) Each 5x5 block is completed with zeros to make 8x8 blocks 

e) The IDCT is applied to each 8x8 block 
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f) The 8x8 block sequence is reshaped from 1D to 2D 

g) The 64x64 image is the restored image. 

 

 

Figure 4-7: Image decompression steps using the DCT-block. Matlab Simulink was 
used to implement the code in the LPC4330 microcontroller. This example is for 61% 
of the compression ratio.   

 

The images need to be converted to sub-frames and sent to the optrodes; the number 

of sub-frames will determine the intensity level of the optrodes.  

4.1.5 Pulse modulation 

Rather than the activation of the on-off LED, the pulse coding stage offers different 

levels of intensity to evoke a pixel in the visual space. It suggests that the intensity 

modulation should be varied using a pulse width modulation technique. The pulse width 

is subject to the efficiency of the µLED and the Channel-rhodopsin 2 (ChR2). In fact, this 

is important because it gives us the flexibility to control the LED’s brightness when 

conducting clinical trials. In other words, it allows us to determine how bright (and 

consequently how much current) a spot has to be so that the subject can observe it. 

The value of each pixel varies between 0-255 characters. This value represents the 

intensity level. For pulse modulation, the number of sub-frames determines the 

intensity level of the optrodes, and the number of frames can be found by: 

 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑓𝑟𝑎𝑚𝑒𝑠 =  2𝑛 (4-5) 
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where n is the number of bits for each pixel. 

For example, for n=5, the number of subframes is 32. The maximum number of 

subframes is 256, which creates the highest intensity level that can be sent to the 

µLED/optrodes. 

 

4.2 Visual information system 

For the visual information system, the hardware components include the USB camera, 

the embedded processor, and the data link. The block diagram for this is shown in 

Figure 4-8. 

 

 

Figure 4-8: The block diagram of the hardware of the transmitter part for the visual 
information system. The system consists of a camera, Raspberry Pi Zero, and 
Bluetooth. 

 

The details of the components of the transmitter are explained in the following 

subsections.  

4.2.1 Camera 

The camera has a significant role in this project, and quality and power consumption are 

two important factors in selecting the right camera. A good quality camera will give the 

designer a wide selection of lower level image quality, while low power consumption 

will keep the overall power consumption of the system down. The camera needs to be 

small to allow the user to mount the camera in a headset, and so a lightweight one is 

preferred. For this project, the Logitech C270 720p HD Webcam camera model was 

selected. The maximum power consumption for the camera is 260 mW in running mode, 
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and it is compatible with the Raspberry Pi Zero. It supports face tracking, which may be 

useful in future work. The main useful feature of the camera is that it works in dim light. 

The camera is shown in Figure 4-9. 

 

 

Figure 4-9: Logitech C270 720p HD Webcam is used on the transmitter side for live 
video streaming.  

 

In the assembly step, the original cover of the camera was removed to mount the 

camera in the eyeglass designed for this project.  

4.2.2 Embedded processor 

On the transmitter side, the mini processor plays an important role in image processing 

and data transmission. It should be able to hold the algorithm of the image processing 

and send data to the serial port at the same meantime. Normally, the mini processor 

will consume high power in visual prosthetic systems, and so selecting a low power 

consumption and an efficient device is a major choice. The Raspberry Pi Zero is shown 

in the Appendix – J was the right choice for this. The general specifications are as 

follows [230]: 

 Generation: PCB version 1.3 

 Architecture: ARMv6Z (32-bit) 

 System on chip: Broadcom BCM2835 

 Central Processing Unit: 1 GHz single-core ARM1176JZF-S 

 Size: 65 mm × 30 mm × 5 mm 



 86 

 Weight: 9 g 

 USB 2.0 ports: 1 Micro-USB (direct from BCM2835 chip) 

 Power rating: 700-800 mW. 

At the end of this PhD, a new version of the Raspberry Pi Zero became available with 

built in Bluetooth, and this will miniaturise the board further. 

The Raspberry Pi supports Matlab for programming. Matlab Simulink was used to 

implement the image processing code. The required components connected to the 

Raspberry Pi for image processing were the USB Bluetooth and camera modules.  

 

4.2.3 Microcontroller 

A microcontroller is defined as a microcomputer fabricated on a single chip [231]. 

Furthermore, like a microprocessor, it is available in different word lengths from 4 bit to 

128 bit. Today, most electronic devices have microcontrollers to operate components 

such as storage and communication, and are on display. Moreover, they are widely used 

in industry in cars and also in computer hardware devices such as a mouse and keyboard. 

The microcontroller usually contains the following components: a central processing 

unit, random access memory, read only memory, input/output ports, analogue to digital 

converters, interrupt controls, serial interfacing ports, oscillatory circuits and timers and 

counters. Figure 4-10 shows the block diagram and the basic structure of the 

microcontroller [232]. 
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Figure 4-10: Block diagram of the microcontroller architecture. In general, 

microcontrollers consist of a central processing unit (CPU), random access 

memory (RAM), read only memory (ROM), internal clock and port interfacing with 

external devices (image from eBook titled Digital System Design –Use of 

Microcontrollers [233]) 

 

For the development of medical implant devices, selecting the right microcontroller is a 

critical phase. The wrong microcontroller can result in a long development time and 

complicated firmware. Therefore, different microcontrollers from different companies 

were investigated and studied. These include OMAP138, XMOS, SAMA5D4, BCM2836 

SoC, ARM Cortex M0 and MK64FN1M0VLL12 MCU. Table 4-1 shows a comparison of the 

factors between these microcontrollers. As we can see from the table, ARM-Cortex-M0 

and SAMA5D4 have the lowest power consumption. However, these microcontrollers 

do not support DSP processing, which means they are not powerful enough to perform 

image processing algorithms. On the other hand, OMAP138, XS1-L4A-64-TQ48, and 

BCM2835 have high power consumption, even though they have a DSP processor. This 

leaves us with MK64FN1M0VLL12, which seems a good compromise that includes DSP 

and has relatively low power consumption. The main features of this microcontroller are 

1 MB Flash memory, 256 kB SRAM and 66 input/output GPIOs [234]. 
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Table 4-1: Comparison between highlighted microcontrollers for MID purpose 

Microcontroller 
Processor 

dimensions 

(mm) 

System 

CLK 

(MHz) 

Power 

consumption 
(mW) 

DSP Core 

OMAP138 [235] 16x16 375 479.73 Yes ARM926EJ-S 

XS1-L4A-64-TQ48 

[236] 

9x9 400 660 Yes XMOS 

SAMA5D4 [237] 16x16 500 150 No ARM Cortex-A5 

BCM2836 [238] 12.3x12.3 900 700 No ARM Cortex-A7 

ARM Cortex M0 [239] 7x7 48 29.7 No ARM 

MK64FN1M0VLL12 

[240] 

14x14 120 160 Yes ARM 

LPC4330 [241] 9x9 204 80 Yes ARM 

 

In the first design for version one, the MK64FN1M0VLL12 microcontroller was used and 

tested. The result is shown in chapter 5. Then, for the second version, the LPC4330 was 

adopted because its advantages. The details of designing the PCB, compared with both 

microcontrollers, and highlighting the advantage of LPC4330, are described in the next 

chapter. 

4.2.4 Data link 

Bluetooth is a common communication protocol used for medical purposes. Numerous 

medical devices use Bluetooth as a data link protocol. Table 4-2 gives examples of the 

medical devices that use Bluetooth and their manufacturers.  

Table 4-2: Examples of available medical devices communicating with Bluetooth [37] 

Device types Manufacturer Models 

Blood Pressure 
A&D UA-767PBT-C 

Omron Home Blood Pressure 

Glucose Meter Roche Accu-Check Smart Pix 

Pedometer 
Omron Pedometer with Bluetooth 

docking 

Pulse oximeter 
Nonin PalmSAT 2500 

Nonin Onyx II 9560 Fingertip 

Weighing Scales 

A&D UC-321PBT-C 

Omron Weighing scales with body 

composition 
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Bluetooth was selected for communication with the implant. On the transmitter side, a 

Plugable USB Bluetooth Adapter was used, and on the receiver side the HC05 Bluetooth 

module was used. On the transmitter side, a USB dongle was connected via the USB hub 

to the Raspberry Pi Zero because it has only one USB connection for data, while the 

HC05 was directly soldered to the implanted board. The connections between the two 

modules were configured by writing a command line in Linux. 

 

 

Figure 4-11: (A) Bluetooth 4.0 adapter model Plugable USB 2.0. It is used on the 

transmitter side, and it supports all Raspberry Pi models. It is compatible with classic 

Bluetooth [242]. (B) The HC05 Bluetooth module for the receiver side. The board is 

soldered to the implanted board. 

 

The Bluetooth module on the transmitter side is programmed to connect and send data 

automatically. The Linux command code is written to search and connect to the receiver 

coil. Then the Raspberry Pi Zero is programmed to send data over Bluetooth.  

 

4.3 Software configuration 

In this section, the details of live video streaming over Bluetooth are presented. This 

consists of live scene capturing, image simplification, image compression, data transfer 

over BLE, image decompression, an even power distributor and image encoding, to be 

displayed on the µLED. Image encoding will be used later for optogenetic brain cell 

stimulation. 
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First, the real-time images were captured by the camera mounted on the glasses. The 

standard resolution for the coloured images was set at 640x480. Then, the images were 

resized to 64x64, and after separating the RGB colours were converted to the grayscale 

intensity level. Matlab Simulink was used to programme the transmitter side for image 

processing, as shown in Figure 4-12.  

 

Figure 4-12: The images are converted to grayscale intensity after being captured by 
the USB camera. Then, the image is resized to 64x64 pixel size and simplified according 
to the retinal processing. 

 

The images were simplified, compressed and sent over Bluetooth. Image processing and 

transfer protocol are illustrated in the block diagram shown in Figure 4-13. 

 

 

Figure 4-13: Block diagram showing the image processing on the transmitter side.  

 

On the receiver side, the compressed images are received via Bluetooth connection to 

the microcontroller. Then, the compressed images are decompressed and returned to 
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their original state. The image processing steps are presented as a block diagram shown 

in Figure 4-14. The images are converted to sub-frames to perform pulse modulation, 

and the sub-frames vary from 0 to 255. 

 

 

Figure 4-14: Block diagrams of the image processing on the receiver side. The 
compressed images restored to the simplified image. Then, conversion of an individual 
image to pulse mode, and transition to the optrode. 

 

4.3.1 Image acquisition 

The size of coloured images is 640x480 pixels after capture. The RGB images are 

converted into grayscale intensity using Matlab Simulink to Intensity. Then, they are 

resized to 64x64 pixels. 

4.3.2 Image simplification 

Live streaming of 25 frames per second is captured from the Logitech camera mounted 

on the glasses. Raspberry Pi Zero is used for image processing on the transmitter side. 

The image was resized into 64x64 before applying the algorithm of image simplification. 

A few stages are applied for image simplification and retinal processing. Examples of 

image simplification are shown in Figure 4-15, including cartoonization and edge 

highlighting. 
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Figure 4-15: Example of image processing steps on the transmitter side, consisting of 
image simplification that includes image cartoonization and edge highlighting. The size 
of the images is 4096 bytes, which means 64x64 pixels. 

 

The iteration level was adjusted to obtain a better quality of image and stream of 25 fps. 

There is a significant relation between frames per second, number of iterations and the 

quality of the image, as shown in Figure 4-16. 
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Figure 4-16: Relationship between the number of iterations, the number of images per 
second, and the quality of images. Better quality is in the lower number of iterations 
region, and for the 25 frames per second, the number of iterations is equal to 7. 

 

4.3.3 Data analysis 

The purpose of the visual cortical implant device is to restore the sight of blind people, 

who will carry the device around. Different and mixed scenes were expected for AIMD 

to be captured in the streaming videos. Certainly, users will wear it everywhere in their 

daily life. Five different videos were recorded as exemplary scenes:  

1. in the biomedical lab to show natural light sources mixed with the electrical light 

source for different backgrounds  

2. in the corridor, which represents only industrial light source 

3. inside a lift, representing a dim light background  

4. a location with a complex background of nature  

5. a normal video for the nature of various backgrounds 

Screenshot samples of these video types are shown in Figure 4-17. 
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Figure 4-17: Five videos for data analysis. They were taken with different backgrounds 
and different light sources. The length of each video is 21 sec. A mobile phone 
Samsung Galaxy Note II was used to capture these scenes. 

 

The purpose of recording different scenes was to obtain a better understanding of the 

data rate. The Bluetooth data link is limited to below 170 Kbps for sustained signals. The 

original frame size of the recorded coloured videos was 640x480 pixels. First, they were 

converted to the grayscale level, and then the frame size was resized to different frame 

sizes of 256, 1024, 4096, 9216, 17424 and 65536 pixels, as shown Figure 4-18.  
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Figure 4-18: Relationship between the data rate and the number of pixels for different 
backgrounds. There is a noticeable shift for the videos with natural light backgrounds. 

 

Both natural background and sunlight limit the acceptable size for image transmission 

via Bluetooth to 4,096 pixels and lower. Other video frame sizes can increase up to 

17,424 pixels. The data reported here appear to support the assumption that sunlight 

affects the size of data. As a result, sunlight has a direct effect on the size of images.  

4.3.4 Image compression 

The images are compressed after they have been simplified at a ratio of 86%. For image 

compression, images are divided into 8x8 blocks, and DCT_BLOCKS is applied to each 

block in one image. Later, from each 8x8 block, a 3x3 matrix is adopted in the low-level 

frequency region. By using this technique, the original image is compressed from 64x64 

pixels into the 24x24 pixels, at a ratio of 86%. The data in each image after the previous 

process is shifted and sequenced into character codes in the range [44, 253]. Then, in 

each frame, the first pixel is replaced from the original character number into the 

specific character number 254 as the special header in this case.  
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Table 4-3: Examples of the image compression. 

Case of study Size of image 
before compression 

(Byte) 

Size of image 
after compression 

(Byte) 

CR % 

1 4096 4096 0 

2 4096 1024 75 

3 4096 576 86 

4 4096 256 93 

CR: Compression Ratio 

Details of image compression using Matlab Simulink are shown in Appendix E.  

4.3.5 Data link 

Bluetooth was used to communicate with the implant device, and the maximum data 

rate achieved was 170 Kbps. The bit error was checked between the transmitter and 

receiver end, and had a range of approximately 10 cm as a proof of concept. The result 

shows no difference between the transmitted and received data, as shown in 

Appendix F. The test bench setup for two-way communication between the Tx and Rx is 

shown in Figure 4-19.  

 

Figure 4-19: The novel two-way communication through the air using Bluetooth 
between two RFduino. RFduino is an example of Bluetooth 4.0 and Bluetooth Low 
Energy (BLE). The test was repeated by sending the data through water and pork.  

 

The experimental rig was used to test communication through pork and water, as shown 
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in Figure 4-20. The data are sent from the transmitter board (Tx) fixed on a stainless 

steel rod. When the receiver board (Rx) inside a Faraday cage receives the data, it sends 

the data back outside. The data are then gathered by the Tx. From the result, there is no 

data loss for the distance of up to 35 mm.   

 

 

Figure 4-20: Experimental rig with Faraday cage to measure wireless data and power 
transfer through pork. The implanted device (inside the cage) is powered wirelessly. 
The Transmitter RFduino is fixed on a rod at 25 cm distance from the Rx, and it is 
powered by a battery source. 
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Three different communication protocols in three different devices were tested: the USB 

Bluetooth model was Plugable, the nRF9E5 from the NORDIC company was run 

at 868/915 MHz, and the CC2430EM from Texas Instruments was run at 2.45 GHz. The 

practical result for the maximum baud rate using Plugable was 170 kbps, which is higher 

than others, as shown in Table 4-4. 

 

Table 4-4: Comparison results for different communication protocols. 

Parameter Plugable nRF9E5 CC2430EM 

Packet size (Byte) 1-32 1-32 1-32 

Tx Output power (dBm) 21 -(10) – 20 (-2) – 10 

Modulation GFSK FSK, MSK, GFSK GFSK 

Baud Rate (Kbps) 170 80 50 

Average BER % 0.1% 0.1% 0.1% 

 

4.3.6 Image decompression 

Compressed data sized 576 pixels are decompressed into 4,096 pixels using C 

programming language cross-compiled for the microcontroller. The decompression 

procedure is applied to each frame by dividing it into 3x3 blocks; then each block is 

converted to 8x8 by adding zeros. The IDCT is applied to 8x8 blocks to obtain the normal 

pixels. Later, the blocks are combined to reconstruct the original frame. To test the 

quality of images at the receiver end, examples from the live streaming were captured 

for different compression ratios, as shown in Figure 4-21. Square patterns are chosen as 

an example for image compression and decompression, while the triangular zig-zag 

patterns are normally used in DCT-jpeg compression. 
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Figure 4-21: Screenshot captured from live streaming for different compression ratios. 
The DCT-blocks were implemented for image compression. The 2x2 blocks for the 93% 
compression, 3x3 for the 86% compression and the 4x4 for the 75% image 
compression. 

 

The five recorded videos were used as an example of image simplification and image 

compression/decompression. Samples from each video were captured for different 

compression ratios, as shown in Figure 4-22. For video numbers 1, 2 and 5, the scene 

was clear for compression rates up to 86%. In videos 3 and 4, the scene was clear for 

compression rates up to 75%.  
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Figure 4-22: The result of image simplification and compression for five recorded 
videos. V1 was in the lab, V2 was in the corridor, V3 was in the elevator, V4 was in the 
garden, and V5 was a mixed natural background. In V1, V2 and V5, the scenes can be 
recognised, with a compression ratio of up to 86%. In V3 and V4, it is clear for up 
to 75%. 

 

4.3.7 Pulse modulation 

The original simplified image was grayscale, where each pixel was represented by 256 

intensity levels. If the full range of intensity levels had been chosen, the number of sub-

frames would have been 256. However, the microcontroller limitation reduced the 

intensity level to bits, and in this case the number of sub-frames was 16.   
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Figure 4-23: Example of sub-frames for pulse-modulation. The number of sub-frames 
depends on the intensity level requirement for the display on the µLED 
matrix/optrodes. In this example, 16 sub-frames were subtracted from 255 frames.  

4.3.8 µLED display 

The result of the processed images on the receiver side was sent to the optrode. In this 

work, a testing µLED matrix was used as a replacement for the target optrode. The 

images were displayed on 90x90 matrix size. The original size of the images was 64x64 

pixels, but this was resized to 90x90 pixels for showing on the µLED matrix. Figure 4-24 

shows a sample of displayed images tested on the µLED matrix. To stimulate the brain 

cells, we will use 3D optrodes. 
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Figure 4-24: A µLED matrix of 90x90 pixels displaying three examples of images. For 
testing, the µLED display was used instead of 3D optrodes. The top row is imaged after 
simplification and the bottom row shows the examples taken from the µLED matrix. 
The images are (Left column) a boy in a fire engine. (Middle column) A train. (Right 
column) A bird. 

 

4.3.9 Processing requirement 

The image processing at the transmitter and receiver side takes time. On the transmitter 

side, the image processing consists of image simplification and compression. On the 

receiver end, the following tasks are performed: collecting data from Bluetooth, image 

decompression, pulse modulation and transfer to the optrodes for display. Figure 4-25 

shows a distribution of the total elapsed time for image processing per frame on both 

sides. 
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Figure 4-25: Portion of the elapsed time for image processing at the transmitter and 
receiver side. In the front end processes, the image compression takes longer, and at 
the receiver, end decompression takes longer.  

 

The transmitter image compression takes more than half the total time, while image 

rescaling takes less time. Image decompression time is nearly three-quarters of the total 

time at the receiver side, but less time is needed to send data to the display. The 

absolute time for each frame it should be no more than 40 ms, for the average of 25 fps. 

 

4.3.10 Implantable microcontroller unit 

Medical implant devices in general and especially visual cortical prostheses have 

necessitated the use of a controller, either on the transmitter side, on the receiver side, 

or both. On the transmitter side there is no serious limitation, but there is on the 

receiver side. For this project, numerous microcontrollers were studied and tested for 

the receiver end. In this case, two microcontrollers from the ARM Company were 

allocated. The first microcontroller selected was the ARM Cortex M4 MK64FN series. 

After careful testing, it proved to be insufficient for the final design. Later, a dual-core 

microcontroller was chosen from the ARM Company of the LPC43xx series, comprising 

M4 and M0 cores, and this design was more efficient in terms of lower power 

consumption. 
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MK64FN1M0VLL12 

For primary testing, the ARM microcontroller (MK64FN1M0VLL12) was selected. A 

further practical step related to fabrication was taken by manufacturing a round-shaped 

two-layered PCB, using Altium 16.0 software, as shown in Figure 4-26. The diameter and 

thickness of this PCB are 30 mm and 2.68 mm respectively, and the weight is less than 

3 g. At this stage, the wireless power receiver was not added to the board. Figure 4-26 

shows the first version of the PCB which only contains the microcontroller. 

 

 

Figure 4-26: The PCB layout for MK64FN1MOVLL12 using the Altium designer 16.1. It 
is only two layers, and the diameter of the board is 30 mm, the width is 2.68 mm, and 
the weight is less than 3g. There is no communication or power link. 

 

The microcontroller was programmed with the Kinetis® Design Studio (KDS) using C 

language. As the K64F supports the Digital Signal Processing (DSP), the power 

consumption of the microcontroller, with and without DSP library, was obtained and is 

presented graphically in Figure 4. To keep the power consumption low for the implant 

device, frequencies below 40 MHz were utilised. 
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 Figure 4-27: Microcontroller power consumption varies almost linearly with the 
frequency. The limit of power consumption is below 76.56 and 57.59 mW with and 
without DSP, respectively. 

 

The microcontroller performs image decompression algorithm and pulse width 

modulation that stimulates the optrodes\electrodes. The image compression and 

decompression ratios were tested with different microcontroller frequencies. With an 

increase in the image compression ratio, the processing time of decompression will 

decrease. For the 40 MHz frequency, the fastest decompression time was 40 ms at 

CR 98%, as shown in Figure 4-28. As the compression technique was lossy, the image 

quality of the 98% compression ratio was poor compared to the 86% compression. In 

other words, the number of frames per second will increase for a high compression ratio. 
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Figure 4-28: Performance of the microcontroller in clock several frequencies with 
different compression ratios. With a higher compression rate, more frames per second 
are achieved, which means that the microcontroller can perform faster. 

 

To improve the quality of images and performance of the microcontroller, the DSP 

library was utilised. After adding the DSP library, the performance of the microcontroller 

was again tested with changes in the frequency of the microcontroller from 20 MHz to 

120 MHz, as shown in Figure 4-29. As expected, the elapsed time for 86% CR with DSP 

was reduced from 107 ms to 19.55 ms. 

 

Figure 4-29: Performance of the microcontroller for 86% CR with and without DSP. 
With the DSP, the microcontroller can run at a lower frequency with high 
performance. The microcontroller running at 120 MHz without DSP has the same 
performance at 20 MHz with the DSP.  
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Figure 4-30 shows the results of the energy consumed with and without DSP. As can be 

seen, at 40 MHz the energy consumed to perform IDCT with 86% CR was 10 mJ. The use 

of DSP reduced the energy to 1.8 mJ to perform the same task. 

 

 

 Figure 4-30: Energy efficiency for the microcontroller with and without DSP for 
different clock frequencies at 86% CR. Using the DSP is up to four times more energy 
efficient than if it is run without the DSP. 

  

ARM Cortex LPC4330 microcontroller 

There were some disadvantages in using the MK64FN1M0VLL12 microcontroller. For 

better results, we switched to using the LPC4330 instead. Both are from ARM Cortex M4 

microcontroller series. However, LPC4330 was better because of several features. First, 

the size is smaller: MK64FN is 14x14 mm, LPC4330 is 9x9 mm. Second, it has slightly 

lower power consumption, as shown in Figure 4-31. The maximum clock frequency for 

the previous one was 120 MHz, but for this microcontroller, it was 204 MHz, and 

therefore we prefer LPC4330 as a dual-core microcontroller. It has a built-in ARM Cortex 

M0 and M4F which allows the microcontroller to be programmed as a dual-core for 

better performance. 
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Figure 4-31: Comparison between MK64FN1M0VLL12 and LPC4330 power 
consumption at different frequencies. Basically, the power consumption of the 
LPC4330 is lower than the MK64FN1M0VLL12 by approximately 10 mW in each 
frequency range. 

 

A six layer and double-sided PCB was designed and fabricated for the LPC4330 

microcontroller. The weight of the board is less than 3 g, and the diameter is 30 mm. 

The top side of the board contains a flash memory, wireless power transfer circuit, 

power management, JTAG programmer pins, external oscillator and serial pins to drive 

the optrode. The bottom side of the board contains only the Bluetooth module. The 

printed circuit board is shown in Figure 4-32. For wireless power, the circuit perspective 

contains the AC-DC converter and dual DC-DC regulator. The two regulators provide 

3.3 V and 5 V output voltage for the implanted system. 

 



 109 

 

Figure 4-32: The final implanted board using LPC4330 ARM cortex M4F&M0 dual-core 
microcontroller. The board is six layers and double-sided. (A) The Bluetooth module. 
(B) Switch for boot selection. (C) External flash memory. (D) Serial Peripheral Interface 
header. (E) Joint Test Action Group (JTAG) interface connection port. (F) The 3.3 V and 
5 V voltage regulators. (G) Dual-core LPC43xx series microcontroller. (H) Ribbon cable 
header to control the optrodes. 

 

 

4.4 Comparison between DCT-Blocks and DCT-Zigzag 

The data compression or more specifically image compression is essential, as the image 

size was higher than the limitation requirement for the data link. DCT-blocks were used 

to compress the images, but later DCT-Zigzag was also tested for image compression 

and compared with the DCT-Blocks. Different compression ratios were examined for 

DCT-Zigzag and DCT-Blocks. For example, 94%, 86%, 75% and 61% compression ratios 

were used to compare the quality of the original image and the compressed image for 

both the DCT-blocks and DCT-Zigzag algorithm. The ratio of the maximum possible 

power of the signal to the power of corrupting noise that affects the fidelity of its 

representation was tested, known as Peak Signal to Noise Ratio (PSNR). The results are 

presented as images for visual comparison, and as a graph. As shown in Figure 4-33, the 

top line shows decompression images using DCT-blocks, while the bottom line shows 

the decompression images using DCT-Zigzag. Apparently, there is almost no difference 

between the images using DCT-blocks and DCT-Zigzag in the compression ratios used. 
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Figure 4-33: Peak signal-to-noise ratio that illustrates visual views comparing DCT-
blocks and DCT-Zigzag. There is a slight difference between the two methods, which 
can be ignored. 

 

In another way, as shown in Figure 4-34, the quality of the reconstructed images using 

DCT-Zigzag is better than DCT-blocks because PSNR is high. The result is as we predicted 

because with normal compression when using DCT-blocks some of the important pixels 

may be lost. 
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Figure 4-34: Peak signal-to-noise ratio between the original and compressed images. 
DCT-Zigzag is better quality than DCT-blocks but there is no significant difference. 

 

Then, to calculate the cumulative squared error between the original and compressed 

images, the mean-square error (MSE) for both algorithms was used. The results show 

that the DCT-blocks is better than DCT-Zigzag because the MSE for DCT-blocks is lower 

than MES for DCT-Zigzag. A comparison of MSE values between DCT-blocks and DCT-

Zigzag for all the compression ratios is shown Figure 4-35. 

 

 

Figure 4-35: The Mean Square Error (MSE) for DCT-blocks and DCT-Zigzag. DCT-block 
compression is better than DCT-Zigzag because it has a lower value of MSE. 
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The average differences in the number of pixels between the original and compressed 

images are shown in Figure 4-36. DCT-blocks have less difference in the number of pixels 

than DCT-Zigzag for compression ratios of up to 75%. However, DCT-Zigzag is better at 

higher compression ratios. 

 

 

Figure 4-36: Average difference in the number of pixels between the original and 
compressed images. DCT-blocks are better than DCT-Zigzag for compression ratios of 
up to 75%, whereas at 75% they are more similar. 

 

Finally, the maximum differences in the number of pixels between the original and 

compressed images were calculated. The calculation was made for DCT-blocks and DCT-

Zigzag to compare them. The outcome of maximum differences is shown in Figure 4-37. 

The results show that DCT-block compression is better than DCT-Zigzag, with only a 

slight difference between them.  

 

 



 113 

 

Figure 4-37: Maximum differences between the number of pixels in the original and 
compressed images. In general, both methods have closer similarity at 75% 
compression ratio.  

   

Overall, there were no significant differences between the DCT-blocks and DCT-Zigzag. 

Therefore, in this work, DCT-blocks as a method of compression technique was used.  

 

 

4.4.1 Embedded system integration 

A bench system for the power transmitter and receiver side was tested. After achieving 

the objective results, the next step was the PCB design and manufacture. There are 

numerous aspects to consider in PCB design. On the transmitter side, there is a wireless 

power system and power boost, while on the receiver side there is only the implanted 

board. 

In the external part, two boards were designed and manufactured. The first board was 

for the power boost; to step up the DC voltage, the voltage was converted from 5 to 

12 V. This was only a single layer board and it was manufactured at Newcastle 

University, while the Wireless Power Transfer board was designed after the final 
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implanted board had arrived. As there was insufficient time to send the layout of the 

board to be printed in the factory, the final WPT board was soldered on Veroboard, as 

shown in Figure 4-38. 

 

 

Figure 4-38: The wireless power transfer board was tuned at a frequency of 13.56 MHz. 

The 2N7000 used a switch transistor. 

 

The wireless power transfer circuit schematic was drawn using National Instrument 

Multisim.  

 

4.4.2 Implantable system integration 

The MK64FN1M0VLL12 microcontroller was selected, and the Altium designer was used 

to design the PCB. The first board was a single, double layer. On the board, there was no 

external flash memory or Bluetooth. The board was printed in Newcastle University. The 

LPC4330 microcontroller, for the PCB version 1 and version 2, the NI Ultiboard was used. 

The board consists of six layers. The type of the LPC4330 package was TFBGA100, and it 

is described as follows: 

 Plastic thin fine-pitch ball grid array package 

 Package of 100 Low Profile Quad Flat Pack (LQFP) 

 Body 9 x 9 x 0.7 mm 

 The version was SOT926-1.  
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The LPC4330 PCB is a multilayer board, and it includes: 

 Bluetooth  

 Wireless power receiver circuit 

 External flash memory 

 JTAG header 

 µLED header 

 SPI header 

 Boot switch.  

The external flash handles the program to bring the board to the standalone mode. The 

JTAG header allows programming via LPC_Link2 debugger. However, the µLED header 

controls the optrode/µLED matrix. Finally, the SPI header can be used for general 

purposes. On the board, there are two UART pinouts, the UART0 and UART1. Also, there 

are four GPIO out on the board for general purpose programming. The board pinout for 

the LPC4330 can be seen in Appendix D.  

The LPC4330 body size was 9 mm x 9 mm, and it consists of BGA. To connect the chip to 

the other components was quite challenging because of the manufacturer’s capability 

and the size of the chip. The VIAs were used to connect it to other components. For this, 

the trace was passed in between different layers. Moreover, the smallest size of the VIAs 

was used. Also, the BGA pad and VIA’s pad was overlapped to prevent a design error 

check in the system.  

The inner layers were set for the ground and power purposes. Also, the first layer was 

set for the ground, and the third layer was set for the power. This was to reduce the 

number of traces and minimise the interference between traces. 
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Chapter 5. System integration and packaging 

5.1 Hardware overview 

In this section, the wireless power transfer (WPT) results are presented. The rate of 

power delivery to the receiver end was carefully calculated. In general, a wireless power 

system consists of a transmitter and receiver parts. The techniques for designing the 

WPT can be performed by focusing either on the transmitter or receiver side. The total 

power consumption in the receiver end has a significant effect on the system design 

because of safety requirements. The transferred power is bounded by the IEEE and FCC 

standard exposure limitations [243, 244]. Additionally, the implant should not heat the 

tissue by more than 2oC. For these reasons, the receiver side was explored. The total 

power budget was calculated for the AIMD, and its subcomponents. Figure 5-1 shows 

the general concept of the wireless implantable system.  

 

Figure 5-1: The system is divided into two parts, the transmitter and receiver. The 
external parts are placed on the glasses and the case. The internal parts are collected 
on the implantable board. 

 

The result of designing the wireless power system and testing it are described in the 

following order: (1) the outcome of the coil design; (2) increasing the budget of input 

power for the wireless power system by adding an class E amplifier to the system; (3) 

matching the impedance for both sides of the circuits; (4) the AC-DC circuit and (5) 

regulating the voltage. Also, some examples are presented for testing the WPT systems. 
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5.1.1 External power management unit 

An Adafruit Power boosts 1000C (TPS61090) was used to operate the Raspberry Pi Zero 

and recharge the battery. It can be powered by a Lithium Ion 3.7 V rechargeable battery, 

and will provide 5 V output voltage. Its efficiency is above 90%, and it can supply up to 

1 A of output current. The board has load-sharing, which helps users to charge and boost 

the power without obstructing the output voltage, and it is therefore an uninterruptible 

power supply. The power boost board is shown in Figure 5-2. The board consumes 5 mA 

when it is enabled, and it consumes 20 µA when disabled. 

 

Figure 5-2: Adafruit Power boosts 1000C. While it is converting from 3.7 V to 5 V 
output voltage, it can be used to recharge a battery. The weight of the boards is 6 g. 
The power consumption of the board is approximately 18.5 mW (image from Adafruit 
web page [245]). 

 

 The next boost converter was added to the system to operate the wireless power 

transfer system on the transmitter side. The aim of using this is to convert the 5 V output 

voltage from the power boost 1000C to 12 V. For the circuit schematic and the PCB 

layout, the National Instrument (NI) Circuit Design suite 13.0 was used. The PCB is shown 

in Figure 5-3. The size of the board was 28.5 mm x 9.63 mm and its weight is 1.1 g. 
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Figure 5-3: LTC3122 power boost board for regulating voltage 5 V to 12 V. 

 

To simulate the LTC3122, LTspice software from Linear Technology was utilised, and the 

results are shown in Figure 5-4. The microcontroller took only 11 ms to adjust the output 

voltage. Also, the output current was up to 800 mA.  

 

 

Figure 5-4: Simulation results for the 12 V and 800 mA output from the LTC3122 
regulator. The input voltage is 5 V for the regulator. The output current (left y-axis) 
and the output voltage (right y-axis). 
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5.1.2 Power Transmitter 

The purpose of a wireless power transfer circuit is to transmit power wirelessly. The 

main components of the transmitter side include a pulse generator, a power amplifier 

and a coil. In the power amplifier circuit, the transistor functions as a switch. To turn the 

turning switch on/off automatically, a square wave is required. For this, the pulse 

generator is required in the circuit as an input wave to operate the transistor. In other 

words, the transistor speed should be equivalent to the pulse. In Figure 5-5, the 

fundamental diagram of the wireless power in the transmitter is presented.   

 

Figure 5-5:  The basic block diagram of the wireless power transmitter. The pulse 
generator operates the switch BJT/MOSFET transistor. Then, the transistor increases 
the power to the system. 

 

Pulse generator 

To generate 13.56 MHz and 6.78 MHz frequencies, a programmable oscillator was used. 

The output pin was connected to the Agilent InfiniiVision model MSO-X-4034A. The 

result of the generated wave is shown in Figure 5-6. The wave is supposed to be a square 

wave, but the signal was affected by the capacitor in the probe. When the 

programmable oscillator is programmed to achieve 6.78 MHz, the archived result was 

6.68 MHz, and for 13.56 MHz the closest result achieved was 13.74 MHz. Later, for the 

final design, a crystal oscillator was used to generate 13.5 MHz as it is very precise. To 

generate frequencies below 2 MHz, a 555 timer integrated circuit (IC) was used. The 

output pulse from the timer is more stable than the programmable oscillator. The 

waveform of the 555 timers oscillating at 1.63 MHz is shown in Figure 5-6. 
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Figure 5-6: Oscilloscope screenshot for 6.78 MHz and 13.56 MHz frequencies for the 

programmable oscillator DS1085L and Oscilloscope screenshot of 555 timers at 

1.63 MHz frequency. 

 

In the bench test for the wireless power transfer, the waveform generator from the 

Agilent oscilloscope was used for all frequency ranges. However, for the final design of 

the wireless power transfer, the crystal oscillator was employed and tuned at 13.5 MHz. 
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Class E power amplifier 

The observed power in the transmitter circuit of the wireless power system was 

4.63 mW. This was produced directly by the programmable oscillator. The output power 

measured at the output pin was 14.4 mW which is low. The power loss between 

transmitter and receiver is 32.15% because the impedance matching for the system at 

that stage was not considered. To increase the power level on the transmitter side, a 

class E power amplifier was designed with an efficiency of 93.43%. The N-Channel Logic 

Level Enhancement Mode Field Effect Transistor 2N7000 was implemented as a switch 

controller. The basic schematic of the class E amplifier is shown in Figure 5-7. 

 

 

Figure 5-7: Class E power amplifier schematic circuit. The main significant factors in 
the circuit are Cb and C1.The transistor acts as a switch and should satisfy the required 
speed of the system as the frequency is 13.56 MHz. 

 

The detailed specifications for the design of the class E amplifier tuned in the range of 

13.56 MHz frequency are listed in Table 5-1.  
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Table 5-1: List of parameters/components used in the Class E power amplifier. 

Q1 Vdd (V) Lb (µH) Cb (pf) C1 (pf) L1 (µH) R1 (Ω) Efficiency  

BSS138 12 8.8 126 81 2 100 87.3% 

IRF540 12 0.5 250 50 2.5 39 20.4% 

 

5.1.3 Coil Inductors 

Two sets of coils were designed and tested for wireless power transfer. First, copper 

wire was selected for the transmitter (Tx) coil with a Tx diameter of 40 mm. The coil wire 

was wound in the form of a planar coil, as shown in Figure 5-8. Specifications of both 

coils are listed in Table 4-2. For the coil on the transmitter side, single core copper wire 

was used because it is better than multicore wires, since single core wire has a larger 

outside surface area and low resistance compared with multi-core wires. In the final 

design, the single core Litz wire was selected for the transmitter side.  

The implant device will be placed outside the skull and connected directly to the RX coil. 

Keeping the receiver coil outside the skull has two main benefits: i) it prevents the brain 

from being damaged; ii) the distance from the transmitter coil will be kept short. In order 

to transfer power efficiently, a short distance should be kept from the transmitter. 

However, keeping the Rx coil far from the brain is required to prevent the tissue being 

damaged, because the temperature may rise in the RX coil during long periods of 

operation. The proposed design of the receiver coil is a printed circuit coil, and example 

of which is shown in Figure 5-8. 

The geometric size and parameters of the printed coil inductor are listed in Table 4-1. 

Although the printed coil was a good candidate, it was eliminated because of the high 

complexity of the implanted board, which left no space for the printed coil. 
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Figure 5-8: Planer flat coil at the front end (A), a planar coil at the front end and 

receiver side (B), and printed coil on the board just for the receiver side (C). 

 

5.1.4 Power receiver 

On the receiver side, after the electromagnetic wave has been received, it is sent to the 

full bridge rectifier to rectify the sine wave shape. The capacitor needs to be connected 

in parallel with the full wave bridge rectifier to smooth the wave and reduce the effect 

of the ripple wave. Finally, a voltage regulator is necessary to stabilise and fix the output 

voltage.   

Rectifier 

For the AC-DC conversion, a normal bridge rectifier was used. In this stage, the Schottky 

diode NSR05F30NRT5G was selected. The maximum supply current allowance for the 

circuit is 10 A, and the repetitive reverse voltage is 30 V. The tuning frequency is 

13.56 MHz, and the ripple voltage (V) was calculated for the full wave rectifier as: 

 
∆𝑉 = 

𝑙𝑙𝑜𝑎𝑑

2𝑓𝐶
 

(5-1) 

 

Where C is the parallel capacitor, it is connected with the load resistance. When the load 

of the implant device is approximately 100 Ω, 10 µf capacitors are chosen. Then, the 

value of the ripple is 0.055 V. The rectifier circuit did not affect the received current, but 

the voltage dropped by a factor of 0.35-0.44 V. This means that in theory if the delivered 

voltage to the receiver coil was 10 V, then the result is 9.2 V on average after the 

rectifier. 
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Figure 5-9 shows an experimental example of full-wave rectification, for the received 

voltage of 10.18 V peak to peak (maximum voltage 5.09) on the receiver side. After the 

rectifier, the positive and negative rectified voltage is highlighted. In this example, the 

maximum voltage was 4.95 V at the tuning frequency of 13.5 MHz. This was before 

connecting the capacitor in parallel with the output voltage. 

 

Figure 5-9: Example of the full wave voltage rectification on the receiver side before 
adding the smoothing capacitor.  

 

After adding the capacitor, the rectified signal becomes smooth, and DC voltage was 

4.81 V, as shown in Figure 5-10. The measured ripple voltage on the oscilloscope was 

55 mV.  

 

Figure 5-10: Voltage rectifier example after connecting the smoothing capacitor in 
parallel.  
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Regulator 

Different approaches have been attempted for the DC-DC converter for the transmitter 

and receiver parts. For the receiver end, the LT1763CDE DC-DC converter was supplied 

to fix the output voltage. Experimental data were measured with different resistance 

loads. As shown in Figure 5-11, the output voltage was stable and fixed at 3.3 V for the 

specific test. This test was performed to show the capability and stability of the 

regulator. The current decreased when more resistance load was added to the output. 

The power line increased from zero load resistance up to 100 Ω and then it decreased 

from 100 Ω to 1 kΩ. The peak value for the power was more than 80 mW at the receiver 

end at 100 Ω resistance load. The regulator starts working on the threshold value of the 

resistor. For each design regardless of the load, there should be a threshold value of 

resistance load connected to the regulator. The extra load will not make a difference 

after this. 

 

Figure 5-11: The relation between power, current and regulated voltage output with 
different loads. The key issue is to maintain the required voltage across the load. 
Below 100 ohms, the voltages drop off because the power management cannot supply 
sufficient current to the load. 
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5.2 Camera 

Still images with a quality of 640 x 480 pixels were captured using a Logitech C270 720p 

HD webcam. There are two useful specifications in this camera: it is capable of adjusting 

the image automatically in dim light, and it has a wide-angle lens that provides a 60o 

field of view. The camera was disassembled to fit in the 3D glasses model. The power 

consumption of the camera is about 260 mW. 

 

5.3 PCB Layout consideration 

There are some basic rules which need to be considered before starting to design a PCB. 

Some of these rules are related directly to the PCB designer, and some are related to 

the manufacturer’s technical capability. The PCB designer should pay attention to the 

power trace line because the wrong calculation causes the temperature to rise on the 

board, and this will increase the risk from the implant device.  

The PCB manufacturer company will limit the minimum design rule according to their 

capability. For example, the PCBTrain Company limits the trace width to no less than 

0.127 mm [246]. To make the PCB routing easier and more efficient regarding the power 

line, adding the power in a single layer is recommended. The PCB will be very small 

because of the implanting issue. Vertical Interconnect Access (VIA) is the most 

significant factor to consider, as techniques to connect two traces between two layers. 

Normally, it should cover the solder mask to protect it from being soldered. Moreover, 

the company will limit their minimum size. In this case, for using the BGA footprint 

microcontroller types, the smallest capacity of VIA is the best option.  

 

5.4 Security and safety  

The two main significant topics that need to be considered are security and safety. From 

the perspective of security, Bluetooth was used in the system for communication. 

Bluetooth is known as a secured protocol for communication. It is very common and 

used in many useful devices such as mobile phones, tablets, computers and medical 
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devices. In projects such as a pacemaker, a secure data link is permanent, but in this 

project it is not necessary because if the system is hacked nothing serious will affect the 

user. However, security is still considered to be essential and so Bluetooth was 

nominated as the communication protocol. 

The main potential problem during the operation of the AIMD is the probability of the 

device overheating the body parts in which it is located. This is likely to raise the 

temperature which could damage the tissue surrounding the device. The normal body 

temperature is 37oC. The International Organization for Standardization (ISO) 14708-

1:2014 limits the temperature increase by the AIMD to no more than 2oC [247], and 

therefore the AIMD in this project takes this into consideration. The size of the board is 

calculated taking into account the temperature changes, as smaller PCB implants are 

more likely to raise the temperature, especially with high power consumption devices. 

Devices of 3 cm2 and greater physical size are more likely to keep the temperature rise 

below 1oC. In this project, the physical dimension of the implant device is 7.686 cm2.  

The maximum allowance for the power consumption is 480 mW for this work, as shown 

Figure 5-12. Interestingly, the measured power consumption for the implant system was 

below 300 mW.  

 

Figure 5-12: Power consumption allowance is below the temperature change 
limitation. For a board size of 30 mm, the limitation of power consumption is around 
480 mW. The power consumption of the implanted board is approximately 300 mW. 
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It states that the designed implanted device is safe and can be implanted with low risk. 

The size of the implant is thus helpful for reducing the risk.  

 

5.5 System level testing 

Vertical distance and horizontal alignment 

The regulator was designed to provide 3.3 V output voltage. This test is just to display 

the performance of the voltage regulation. The output voltage for the test bench was 

fixed at 3.3 V. The test of the WPT system is made by varying the horizontal alignment 

and the change in distance between the two coils. According to the experiment, the 

limited range of the output voltage was observed to be unconditionally stable. Also, the 

distance between the coils was 0, 5, and 10 mm. The results show that there was no 

change in voltage, as shown in Figure 5-13. Plastic sheets of 4.9 mm thickness were used 

between the coils to organise the specific distances. 

 

Figure 5-13: Vertical distance between two coils. The two coils are contacted (top left), 
5 mm distance between two coils (bottom left) and the distance between two coils is 
10 mm (right). 
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For horizontal alignments, the primary coil was moved slowly till the edge fit the centre 

of the implanted coil. The result is shown in Figure 5-14, where the measured output 

voltage was stable [152]. The output voltage was stable, and there was no degradation. 

 

Figure 5-14: Maximum horizontal alignment between the two coils shows that the 
voltage is stable after moving the Tx coil to the centre of the Rx coil. The voltage was 
stable, and there were no changes. 

 

In-vitro test 

The circuit was characterised by transferring power through three different physical 

mediums: the air, water, and fresh pork. This temperature was chosen because of 

normal human body temperature. In this experiment, the test bench of wireless power 

transfer circuit consists of the power supply, programmable oscillator, Class E amplifier, 

matching circuit, transmitter and receiver coils, and the rectifier. The schematic of the 

wireless power transfer system circuit is shown in Figure 5-15.  



 131 

 

Figure 5-15: WPT circuit schematic used for transferring power through air, water, and 
pork. The programmable oscillator was set to 13.56 MHz. The power source of the 
device was from KESIGHT E3648A Dual output DC power supply.  

 

The measured results are illustrated in Figure 5-16. 

 

Figure 5-16: Received DC power through the air, water, and pork. At the 5 mm distance 
between two coils after transfer through the physical mediums, the power-degraded 
around 40%. 

 

 There was a significant variation in power on changing medium. In fact, the power 

reduced to 40% of its original value when the medium was changed from air to pork and 

water. Because of its similarity to human tissue, the tissue experiment was conducted 
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in-vitro with pork. The experimental base for power transmission through fresh meat is 

shown in Figure 5-17. 

 

 

Figure 5-17: (A) Top left, plastic for spacing between two coils for the air gap, and the 
rest is the experimental rig for the wireless power transfer through pork. (B) The box 
is labelled on top and the bottom is filled with water. This illustrates the power 
transmission through warm water. 
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5.5.2 Optrodes 

The µLED matrix employed in this work was 90x90 pixel as a proof of concept. It was 

designed and manufactured by Degenaar from Newcastle University. The purpose of 

this was for the retinal prosthesis, but it is used here to test and demonstrate the PhD 

work. Its power consumption is below the 320 mW for maximum brightness. An 

example of the µLED matrix is shown in Figure 5-18. 

 

 

Figure 5-18: The 90x90 µLED matrix used to illustrate the visual cortical stimulator.  

 

The µLED matrix requires an input voltage of 5 V. It has 4 input ports: clock, activate, 

column and row.  

 

5.6 Assembly of visual cortical prosthesis 

The overall system of a medical implant device for a visual cortical prosthesis is prepared 

after the assembly of all the parts. The main parts of the system are the transmitter and 

receiver. At the transmitter, there is a USB camera, 3D printed model glasses, a 
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rechargeable battery, a power management unit, a wireless power transmitter, the 

Raspberry Pi Zero minicomputer and Bluetooth. The transmitter components after being 

assembled are shown in Figure 5-19. There are two switches in the black box where most 

components are installed. The first switch (red colour) is for switching power off the 

system. By doing this, the battery will be disconnected from the system. The second 

switch (black colour) is for turning on and off the Raspberry Pi Zero. When the Raspberry 

Pi is switched on, it is programmed to capture the video and send it automatically over 

the Bluetooth. Also, the black box can either be attached to a belt or put in a pocket. 

The dimensions of the box are as follows: width 10 cm, length 7.5 cm and height 4 cm. 

Its weight including the parts is 180.7 g, and the weight of the printed glasses is 96.3 g, 

with a total weight for the transmitter of 277 g. 

 

 

Figure 5-19: The transmitter parts of the wireless visual cortical stimulator are divided 
into two parts, case and glasses. The wireless power transmitter circuit, transmitter 
coil and the camera are mounted on the glasses. The Raspberry Pi Zero, rechargeable 
battery, power boost 1000C, a power boost for WPT, USN hub and Bluetooth adapter 
are placed in the case. 

 

The implanted receiver contains a PCB and a stimulator. The printed circuit board 

consists of a wireless power receiver, power management unit, flash memory, JTAG 
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programmer, LPC4330 microcontroller, Bluetooth, and switch for selecting an operating 

mode of the microcontroller. For the stimulator, in this stage of design, a µLED 90x90 

matrix was used. However, in a future design, a 3D model of the optrode will be used to 

stimulate visual neuron cells. The target and test purpose stimulators on the receiver 

side are illustrated in Figure 5-20. 

 

 

Figure 5-20: The receiver parts of the wireless visual cortical stimulator. The targeted 
3D optrode will be used in future work. µLED 90x90 is used to illustrate the result and 
single optrode for the blinking test. 
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Chapter 6. Discussion and Conclusion 

In this chapter, all aspects of the system design and results are discussed. After 

concluding the outcome of this chapter, potential future work will be presented. 

6.1 Wireless power transfer 

Neither the primary nor secondary type of battery sources were selected to power the 

implant devices. The primary battery does not provide enough power for the visual 

prosthesis. For example, the Lithium metal battery CR2032 is coin shaped and can 

provide 250 mAh and 3 V output. The dimension of the battery is 20 mm x 3.2 mm [248]. 

This battery can operate the system for only 26 minutes if the total power consumption 

of the system is 2 Watts, and so these types of batteries are not valid. Although the 

secondary batteries can be recharged, they have the same problem as the primary 

batteries in that they can provide power for a very short time and then require 

recharging. Thus, the most significant factor in using the secondary batteries in brain 

implant devices is size and related capacity. For this, the Wireless Power Transfer 

technique is designed and simulated to deliver efficient power to the implant devices.  

The main parts in the design of the WPT circuit are an oscillator, coils, power amplifier, 

AC-DC convertor and regulator. Three type of protocols are designed and tested to 

generate a square waveform: DS1085L programmable oscillator, 555 timers and crystal 

oscillator. The DS1085L can be programmed from 8.1 KHz to 133 MHz, but it is not 

stable. The 555 timer is more stable but cannot be programmed for a frequency higher 

than 2 MHz. At this stage, the crystal oscillator was the best option because it is stable 

and can provide the required frequency. 

Two types of coils were designed for the receiver side: a circular copper wire and square 

printed coil. The result of the square printed coil was better than the circle coil, but 

because of the complexity of the implanted PCB, there was no space to implement the 

printed coil. As a result, the simple circular copper wire was used on the receiver side. 

To improve the efficiency of the transferred power, the size of the transmitter coil is 

designed to be approximately equal to the receiver coil. 
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To increase the power on the transmitter side, there were two options: a class D 

amplifier and a class E amplifier. The class D power amplifier is good for frequencies of 

less than 10 MHz [249], but because the target frequency in this project was 13.56 MHz, 

the class E power amplifier was selected. This frequency was chosen for this project 

because of its compatibility with the NFC frequency range and its compliance with ISM 

bandwidth range. 

There are different types and strategies for AC-DC signal conversion, but for simplicity, 

a full bridge voltage rectifier was selected in this project. The Schottky diodes were used 

to reduce the power lost on the receiver side. A proper capacitor was connected in 

parallel with the bridge to reduce the ripple voltage. 

The output voltage should be fixed at a specifically required voltage, which should be 

stable for a small change in distance between the two coils. Several methods have been 

studied and tested to regulate the voltage. An example of the design of the voltage 

regulator step by step is shown in Appendix G. Two types of LT1763CDE voltage 

regulator from Linear Technology were selected to provide 3.3 V and 5 V in the 

implanted board. For the transmitter side, two DC-DC voltage converters were required, 

the first to convert 3.7 V to 5 V to operate the Raspberry Pi Zero and related 

components, and the second to convert 5 V to 12 V to operate the WPT circuit. For the 

first case, the Adafruit power boost 1000C was purchased, but for the second, the 

LTC3122 from Linear Technology was selected. The circuit was simulated in NI Multisim, 

and the PCB layout was designed in NI Ultiboard.  

The power transferred was tested through different mediums, namely air, water, and 

pork. The result was normal for transfer of the power through air. However, there was 

a reduction in power when it passed through water and pork. The average of the power 

reduction was approximately 40%. 

The targeted range for delivering power to the implanted devices is less than 10 mm. To 

fix the output voltage, a voltage regulator is used. When the distance between the two 

coils was increased from 0 to 10 mm, there was no change in voltage on the receiver 

side. Later, the horizontal alignment between the coils was changed. The edge of the 

transmitter coil was aligned to the centre of the receiver coil. The result showed no 

changes in the voltages when the output voltage was fixed at 3.3 V. 
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6.2 Image processing 

This section is divided into two parts, the hardware used for image processing and 

program code for image processing. 

6.2.1 Hardware  

On the transmitter side, the Raspberry Pi Zero was used. It is a minicomputer, efficient 

for image processing because its operating frequency is 1 GHz. Power consumption is 

significant for the visual prosthesis, especially for the implanted devices. Battery life is 

an issue for the implanted devices. For low power consumption devices, the battery will 

run for a longer time. Raspberry Pi Zero is not power hungry compared to other versions 

of the Raspberry Pi and minicomputer models, as its maximum power consumption 

is 750 mW. The weight of the external parts is not a problem, but being lightweight it is 

more convenient to carry. Its weight is only 9 g and the size of the board is acceptable. 

The Raspberry Pi Zero supports a USB Bluetooth dongle and a USB camera, and it can be 

programmed in Matlab Simulink, so the code can be easily deployed to it. 

The microcontroller ARM Cortex dual core M0&M4F LPC4330 is used at the receiver 

end. The advantages of the microcontroller are small size, light weight, low power and 

speed. The round shape PCB is designed to be easy for implanting. The spaces between 

components on the PCB were decreased to a minimum to keep the overall board size 

small. There was some extra space on the LPC4330 board, but the size of the HC05 board 

is too big to fit. The Bluetooth module will be changed to a smaller package in the 3rd 

version of the LPC4330 board. Therefore, the new board will be slightly smaller. 

6.2.2 Software 

As well as the retinal processing, other image processing is compiled for both the 

transmitter and receiver sides. Image simplification is essential to increase the useful 

information and reduce or decrease the unnecessary information. For this, image 

smoothing using image cartoonization and edge highlighting is used. The targeted frame 

size of 64x64 is used. For 25 fps, the total baud width is about 800 kbps, which is much 

higher than the capability of the Bluetooth link. The maximum baud rate was achieved 
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at 170 kbps. Image compression is required to reduce the size of the images. The best 

option at this stage for image compression was an 86% compression ratio. The desecrate 

cosine transform (DCT) was used to convert images to the frequency domain. Normally, 

DCT is applied to the 8x8 blocks. For the compression ratio of 86%, the 3x3 block was 

selected from each 8x8 block. This technique is named the DCT_block. Another method 

used for image compression was Zigzag diagonal scanning to select the required 

frequency domain elements. Both methods, DCT_block and DCT_Zigzag were compared, 

and the result was very close. Matlab Simulink was used for the image processing on the 

transmitter side. The code was deployed to the Raspberry Pi Zero. The result of the 

processed data was printed to the standard output and then redirected to send over 

Bluetooth using the Linux commands. 

In the receiver side, C code is used to retrieve the original data. The received data for 

each frame were decompressed after being collected. The LPC4330 is efficient and fast 

at processing these data when the core frequency is high, but running the 

microcontroller at a high frequency consumes high power. Using the Digital Signal 

Processing (DSP) library reduces the power consumption because the microcontroller 

can run at a low frequency. 

Each pixel in a 64x64 frame is in the character format ranges [0, 255] of intensity level. 

To operate the µLED, if the whole range is used, the number of sub-frames will be 256. 

This process is known as pulse modulation. In this project, only 16 levels were used for 

the intensity level. The µLED matrix is used as an example of stimulator optrodes. In the 

portion of the power consumption graph, the µLED power consumption is three times 

higher than the LPC4330 board. The power consumption of the targeted 3D optrode 

should be lower than the µLED matrix. This means that the total power consumption of 

the implant devices will decrease. 

 

6.3 Safety 

The maximum change in temperature by implanted devices is limited to no more than 

2oC. The total power consumption was below 300 mW. The maximum allowance of the 

power consumption for the implant devices of 30 mm diameter is approximately 
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480 mW. For this range, the change in temperature was 1oC, which is within the 

permitted change, as calculated and compared with the literature. This means that the 

device can be implanted under the skin outside the skull with low risk. 

 

6.4 Conclusion 

Blindness is unlike other disorders, as people who cannot see cannot manage their daily 

needs independently. With the increasing global population, blindness will also increase, 

and advanced medical electronic devices are one potentially successful method for 

helping the blind to see again. However, the approved retinal prosthesis can only aid 

people with retinal pigmentosa. To help a wider range of people by optical stimulation 

approaches, a visual cortical prosthesis will be an alternative option for restoring sight. 

In this work, a wireless visual cortical prosthesis was designed to help blind people to 

see again. This device consists of hardware and software parts. For hardware 

achievements, a wireless power system designed and printed on a board to deliver up 

to 200 mA to the implant part. To increase power on the transmitter side, a class E power 

amplifier was simulated and designed with an efficiency of 93.43%. There was 

approximately 40% reduction of power when it was transferred through water and pork. 

The DC-DC converter board was designed to power the WPT system. In the implantable 

side, a six-layer PCB was designed to handle the received power and data. The ARM 

Cortex LPC4330 microcontroller was used for image processing in this board.  

For software, on the transmitter side, the Raspberry Pi Zero was programmed using 

Matlab Simulink. The code includes capturing live streaming images, image implication, 

image compression and data encoding. On the receiver side, the designed LPC4330 

board was programmed using C code for data decoding, image decompression, pulse 

modulation and operating the µLED matrix. DSP library is used to reduce the power 

consumption. The 64x64 image is compressed with the ratio of 86% to allow it to be 

transferred over Bluetooth as the maximum achieved baud rate of Bluetooth was 

170 kbps. There was no change in data with transfer through water and pork. Two 

techniques of compression were tested, DCT_block and DCT_Zigzag, and there was no 

great difference between them. The board is safe for implant according to health and 
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safety limitations because the temperature increase for the implanted board was below 

1oC. For the assembly the transmitter parts, the glasses were designed and printed to 

hold the camera, wireless power transmitter and transmitter coil. Also, an off the shelf 

box was used to assemble the power management system to recharge the battery and 

power the transmitter devices, battery, USB hub, Raspberry Pi Zero and Bluetooth.  

In conclusion, the wireless optogenetic visual cortical stimulator is designed to restore 

sight to a wide range of causes of blindness. The porotype version of the system was 

tested with the µLED matrix. The future target stimulator is a 3D optrode designed by 

the CANDO group. 
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Chapter 7. Future work 

Regarding future work, there will be some development of, and improvement in, the 

existing wireless visual cortical prosthesis project, and other work related to this project. 

The ideas for developing and improving work are as follows: 

1. Use of frame techniques to reduce the size of the image and improve the quality of 

images. For image compression at 86%, the quality of images is acceptable, but reducing 

this ratio to 60% compression ratio would be better. However, when the compression 

ratio is decreased, the size of the images is increased. In this case, a frame to frame 

compression technique will be useful. This technique was invented by Patrick Degenaar 

and programmed and tested by Sabah Nayyef. The idea was to compare the two frames 

and select their similarities. The comparison is made between a frame sent and a frame 

that needs to be sent, so that similar pixels are not sent. The result of the frame to frame 

concept is shown in Figure 7-1. 

 

Figure 7-1: The frame to frame technique shows the number of saved blocks. Each 
block is 8 x 8 pixels, and the total number of blocks in each frame is 64 blocks for the 
frame size of 64 x 64 pixels [work by Sabah Nayyef].  
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2. The only step that is not included in this system is the even power distributor (EPD). 

This is another challenging work to reduce the power consumption in the implanted 

parts. The idea of the EPD was invented by Patrick Degenaar and the mathematical 

implementation was performed by Andrew Mokhov at Newcastle University. There is a 

plan to develop the visual cortical implant system in the future, and the EPD will be one 

of the targeted projects for this purpose.  

3. Use of a smartphone in the transmitter part for image processing. The code for image 

simplification and image compression written in Matlab will be translated to Java code. 

The graphics interface will be compatible with both Android and Apple operating 

systems. The entire code will be connected with the volume button for switching the 

application on and off. The camera of the mobile phone will be used to capture live 

streaming videos, and the Bluetooth on the mobile will be used to transfer the data. 

Bluetooth in the wireless visual cortical implant device is used for this work, and that 

was another reason Bluetooth was used in this research project.  

4. Testing wireless power transfer through water in different temperature ranges, 

from 0 to 100oC. 

5. Testing wireless power transfer through pork using different tuning frequencies. The 

operating frequencies for this test will be 200 KHz, 2 MHz, 6.78 MHz and 13.56 MHz. 

6. The stimulator part is an optrode or µLED matrix. The optrode was developed by the 

Controlling Abnormal Network Dynamics using Optogenetics (CANDO) team at 

Newcastle University. The aim of designing this optrode was to aid people with epilepsy, 

but the 3D matrix of that optrode can be used to deliver data to the visual cortex to 

restore sight. The 3D model of the optrode is shown in Figure 7-2, and a three 

dimensional optrode will be the target for stimulating the brain nerve cells in the future. 
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Figure 7-2: The three dimensional optrode exemplar designed by Patrick Degenaar for 
the CANDO project. This will be used for a visual cortical prosthesis in future work. 
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Appendix A. Calculating the total impedance RLC 

Matlab code for total impedance for parallel RLC circuit 

clear all; 
clc; 
% components 
R1=0; XL1=179; XC1=182; 
R2=0; XL2=0; XC2=110; 
R3=50; XL3=0; XC3=0; 
  
% claculating impedance 
Z1=R1+(XL1-XC1)*1j; 
Z2=R2+(XL2-XC2)*1j; 
Z3=R3+(XL3-XC3)*1j; 
  
% Total impedance 
ZT=(Z1*Z2*Z3)/((Z2*Z3)+(Z1*Z3)+(Z1*Z2)); 
MT=abs(ZT); thetaZT=angle(ZT)*180/pi; 
disp('Total Impedance ZT='); disp(ZT); 
fprintf('in polar form M=%0.4fohms\ttheta=%0.4fdegree\n', MT, thetaZT); 
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Appendix B. Programing DS1085L 

Arduino cod script for programing the DS1085 programmable oscillator 

#include <Wire.h> 
 
const int DS_1085L_address = 0xB0 >> 1;  
const byte freq_pin = 1;  
 
void setup() { 
  Wire.begin(); 
   
  Serial.begin(9600); 
  pinMode(freq_pin, INPUT); 
   
  //Initialize the programmer 
  i2c_write(DS_1085L_address, 0x08, 0x50, 0xF9);//Access DAC [08h] 
  //delay(500); 
  i2c_write(DS_1085L_address, 0x0E, 0x08);//Access OFFSET [0Eh] 
 // delay(500); 
  i2c_write(DS_1085L_address, 0x01, 0x00, 0x32);//Access DIV [01h] 
// delay(500); 
  i2c_write(DS_1085L_address, 0x02, 0x00, 0x00);//Access MUX [02h] 
 // delay(500); 
  i2c_write(DS_1085L_address, 0x0D);//Access ADDR [0Dh] 
 // delay(500); 
  i2c_write(DS_1085L_address, 0x37, 0x00);//Access RANGE [37h] 
  //delay(500); 
  i2c_write(DS_1085L_address, 0x3F, 0x00, 0x00);//Write E2 [3Fh] 
  //delay(500); 
} 
 
void loop() { 
  // Read frequency 
  Serial.println(getFrequency(freq_pin)); 
} 
 
void i2c_write(int device, byte address)  
{ 
     Wire.beginTransmission(device); 
     Wire.write(address);         
     Wire.endTransmission();  
} 
 
void i2c_write(int device, byte address, byte val1) 
 { 
     Wire.beginTransmission(device);  
     Wire.write(address);         
     Wire.write(val1);         
     Wire.endTransmission();  
} 
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void i2c_write(int device, byte address, byte val1, byte val2) { 
     Wire.beginTransmission(device);  
     Wire.write(address);        
     Wire.write(val1);         
     Wire.write(val2);         
     Wire.endTransmission();  
} 
 
long getFrequency(int pin) { 
  #define SAMPLES 4096 
  long freq = 0; 
  for(unsigned int j=0; j<SAMPLES; j++) 
    freq+= 500000/pulseIn(pin, HIGH, 250000); 
  return freq / SAMPLES; 
} 
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Appendix C. PCB coil 

(Right) Layout of the printed circuit board coil design using national instrument 

software package. (Left) The sample of coil after printing in the Newcastle University. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 164 

Appendix D. LPC4330 V2.0 pinout 

The µLED header for controlling the optrode and SPI for general serial peripheral 

interfaces. 
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The WPT_VCC and VCC_GND for connecting the receiver coil for the wireless power 

transfer.  
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Appendix E. Matlab Simulink for image processing 
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Appendix F. Bit Error Rate (BER) test for Bluetooth 
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Appendix G. Step by step voltage regulator 

1. Connecting the AC power source to the oscilloscope 
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2. Converting AC to DC signal using full bridge rectifier 
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3. Connecting a small capacitor in parallel with the rectifier for reducing ripple voltage 
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4. Replacing the value of the parallel capacitor from 1 pf to 1 nf. 
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5. Example non stable voltage regulator 
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6. By connecting the transistor such as 2N2222A the output voltage will be stable 
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7. The parallel capacitor is required to be connected to the regulator for the output 

buffer voltage. This is to protect the circuit against the fast voltage drop. 
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Appendix H. Turn-off Pi automatically 

The command line for shutting the Raspberry Pi off after pressing the switch. This script 

was authored by AndrewH7 (www.instructables.com/member/AndrewH7). 

#You have permission to modify and use this script only for your own personal usage 
#You do not have permission to redistribute this script as your own work 
#Use this script at your own risk 
 
import RPi.GPIO as GPIO 
import osgpio_pin_number= 7 
 
GPIO.setmode(GPIO.BCM) 
 
GPIO.setup(gpio_pin_number, GPIO.IN, pull_up_down=GPIO.PUD_UP) 
 
 
try:     
GPIO.wait_for_edge(gpio_pin_number, GPIO.FALLING)     
 
os.system("sudo shutdown -h now")     
 
#Send command to system to shutdown 
 
except:     
pass 
GPIO.cleanup() 
 
#Revert all GPIO pins to their normal states (i.e. input = safe) 
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Appendix I. Circuit schematic of LPC4330 V2.0 

The power management part 

 

 

Serial Peripheral Interface bus (SPI)  
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The Joint Test Action Group (JTAG) 

 

Bluetooth  
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The µLED header for connecting the µLED to the board 

 

Flash memory 
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Switch for booting options 

 

The headers for general purpose 
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Appendix J. Raspberry Pi Zero Version 1.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Raspberry Pi Zero version 1.3 is used in transmitter side 
for real time image processing. The image processing consists 
of image simplification, image compression and encoding 
data. Matlab is used for programing Pi.  
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Appendix K. Packaging 

After completing the subsystems, it is time for collecting and assembly all the parts. In 

general, the assembly parts includes: 

 The eyeglass. 

 The case. 

 The implantable system. 

The eyeglass or the headset is collecting the camera and Wireless Power Transfer circuit. 

Whereas, the case, is to hold the power management, power boost for WPT, Raspberry 

Pi Zero, Bluetooth and the USB hub. The implantable devices was assembled in a single 

PCB except the optrodes.  

Headset 

The basic ideas behind the 3D printing is melting of plastic in a single trace. Then by 

moving the head of the printer the 2D dimension shape can be created. Moreover, by 

combining multiple of 2D when the printer is continue in printing, the 3D shape will be 

made. Using this technology for creating a 3D model is significantly depends on the 

maximum build volume of the printer. 

The headset was designed and printed to hold some parts from the transmitter side. It 

holds the USB camera, power boost 3.7 V to 12 V and the wireless power transfer circuit. 

That was designed using Google SketchUp and printed in Newcastle University. It is 

consists of four separate parts the base, side/arms and the cover. They assembled after 

printing and they fitted on the base. The example of the design is shown in Figure 1. This 

is just demo eyeglass are used for this project.  
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Figure 17: The eyeglass designed by Google SketchUp. It is to hold the USB web cam, 
the power boost for running the Raspberry Pi Zero and the wireless power transfer 
circuit. 

 

The case is from the off the shelf devices, which it carries the battery, power 

management board, power boost, raspberry pi zero, USB hub and switches.  

Implantable unit 

The implantable unit includes: voltage rectifier, voltage regulator, controlling unit, flash 

memory, header for programming, SPI out, GPIO out, UART and switch for boot 

selecting. These components are all collected on a PCB shown in Figure 2.  
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Figure 2: The LPC4330 fabricated board version 1.0. The dimension of the board is 
30 mm. The board includes: LPC4330 microcontroller, flash memory, Bluetooth, 
External crystal oscillator, wireless power receiver circuit, JTAG and GPIOs. 

 

 


