107 research outputs found

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Satellite on-board processing for earth resources data

    Get PDF
    Results of a survey of earth resources user applications and their data requirements, earth resources multispectral scanner sensor technology, and preprocessing algorithms for correcting the sensor outputs and for data bulk reduction are presented along with a candidate data format. Computational requirements required to implement the data analysis algorithms are included along with a review of computer architectures and organizations. Computer architectures capable of handling the algorithm computational requirements are suggested and the environmental effects of an on-board processor discussed. By relating performance parameters to the system requirements of each of the user requirements the feasibility of on-board processing is determined for each user. A tradeoff analysis is performed to determine the sensitivity of results to each of the system parameters. Significant results and conclusions are discussed, and recommendations are presented

    Communication channel analysis and real time compressed sensing for high density neural recording devices

    Get PDF
    Next generation neural recording and Brain- Machine Interface (BMI) devices call for high density or distributed systems with more than 1000 recording sites. As the recording site density grows, the device generates data on the scale of several hundred megabits per second (Mbps). Transmitting such large amounts of data induces significant power consumption and heat dissipation for the implanted electronics. Facing these constraints, efficient on-chip compression techniques become essential to the reduction of implanted systems power consumption. This paper analyzes the communication channel constraints for high density neural recording devices. This paper then quantifies the improvement on communication channel using efficient on-chip compression methods. Finally, This paper describes a Compressed Sensing (CS) based system that can reduce the data rate by > 10x times while using power on the order of a few hundred nW per recording channel

    Breadboard linear array scan imager using LSI solid-state technology

    Get PDF
    The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained

    Design and evaluation of a digital processing unit for satellite angular velocity estimation

    Full text link
    A satellite's absolute attitude and angular rate are both important measurements for satellite missions that require navigation. Typically, these measurements have been made by separate sensors, with star cameras being used to determine a satellite's absolute attitude, and gyroscopes being used as the primary rate sensors. Recently, there have been multiple efforts to measure both of these quantities using only the star camera, however the work primarily involves solutions where the optical sensor and the unit that processes the images are separate integrated circuits. Operation in this modality requires the use of chip to chip communication in order to estimate angular rate from star tracker images, which can lead to an increase in system power, a degradation in performance, and increased latency. The goal of this thesis is to consolidate the sensing and processing into a single integrated circuit. The design and evaluation of a digital processing unit that estimates angular rate and facilitates the realization of image sensor and processor integration is presented. The processing unit is implemented in UMC's 130 nm process, has an area of 10 mm × 200 ÎŒm, and consumes 8.253 mW of power

    Radar systems for the water resources mission, volume 2

    Get PDF
    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence

    Advanced scanners and imaging systems for earth observations

    Get PDF
    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area

    Spacelab data management subsystem phase B study

    Get PDF
    The Spacelab data management system is described. The data management subsystem (DMS) integrates the avionics equipment into an operational system by providing the computations, logic, signal flow, and interfaces needed to effectively command, control, monitor, and check out the experiment and subsystem hardware. Also, the DMS collects/retrieves experiment data and other information by recording and by command of the data relay link to ground. The major elements of the DMS are the computer subsystem, data acquisition and distribution subsystem, controls and display subsystem, onboard checkout subsystem, and software. The results of the DMS portion of the Spacelab Phase B Concept Definition Study are analyzed

    Towards Highly-Integrated Stereovideoscopy for \u3ci\u3ein vivo\u3c/i\u3e Surgical Robots

    Get PDF
    When compared to traditional surgery, laparoscopic procedures result in better patient outcomes: shorter recovery, reduced post-operative pain, and less trauma to incisioned tissue. Unfortunately, laparoscopic procedures require specialized training for surgeons, as these minimally-invasive procedures provide an operating environment that has limited dexterity and limited vision. Advanced surgical robotics platforms can make minimally-invasive techniques safer and easier for the surgeon to complete successfully. The most common type of surgical robotics platforms -- the laparoscopic robots -- accomplish this with multi-degree-of-freedom manipulators that are capable of a diversified set of movements when compared to traditional laparoscopic instruments. Also, these laparoscopic robots allow for advanced kinematic translation techniques that allow the surgeon to focus on the surgical site, while the robot calculates the best possible joint positions to complete any surgical motion. An important component of these systems is the endoscopic system used to transmit a live view of the surgical environment to the surgeon. Coupled with 3D high-definition endoscopic cameras, the entirety of the platform, in effect, eliminates the peculiarities associated with laparoscopic procedures, which allows less-skilled surgeons to complete minimally-invasive surgical procedures quickly and accurately. A much newer approach to performing minimally-invasive surgery is the idea of using in-vivo surgical robots -- small robots that are inserted directly into the patient through a single, small incision; once inside, an in-vivo robot can perform surgery at arbitrary positions, with a much wider range of motion. While laparoscopic robots can harness traditional endoscopic video solutions, these in-vivo robots require a fundamentally different video solution that is as flexible as possible and free of bulky cables or fiber optics. This requires a miniaturized videoscopy system that incorporates an image sensor with a transceiver; because of severe size constraints, this system should be deeply embedded into the robotics platform. Here, early results are presented from the integration of a miniature stereoscopic camera into an in-vivo surgical robotics platform. A 26mm X 24mm stereo camera was designed and manufactured. The proposed device features USB connectivity and 1280 X 720 resolution at 30 fps. Resolution testing indicates the device performs much better than similarly-priced analog cameras. Suitability of the platform for 3D computer vision tasks -- including stereo reconstruction -- is examined. The platform was also tested in a living porcine model at the University of Nebraska Medical Center. Results from this experiment suggest that while the platform performs well in controlled, static environments, further work is required to obtain usable results in true surgeries. Concluding, several ideas for improvement are presented, along with a discussion of core challenges associated with the platform. Adviser: Lance C. PĂ©rez [Document = 28 Mb

    Trade-off analysis of modes of data handling for earth resources (ERS), volume 1

    Get PDF
    Data handling requirements are reviewed for earth observation missions along with likely technology advances. Parametric techniques for synthesizing potential systems are developed. Major tasks include: (1) review of the sensors under development and extensions of or improvements in these sensors; (2) development of mission models for missions spanning land, ocean, and atmosphere observations; (3) summary of data handling requirements including the frequency of coverage, timeliness of dissemination, and geographic relationships between points of collection and points of dissemination; (4) review of data routing to establish ways of getting data from the collection point to the user; (5) on-board data processing; (6) communications link; and (7) ground data processing. A detailed synthesis of three specific missions is included
    • 

    corecore