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When compared to traditional surgery, laparoscopic procedures result in better pa-

tient outcomes: shorter recovery, reduced post-operative pain, and less trauma to

incisioned tissue. Unfortunately, laparoscopic procedures require specialized train-

ing for surgeons, as these minimally-invasive procedures provide an operating envi-

ronment that has limited dexterity and limited vision. Advanced surgical robotics

platforms can make minimally-invasive techniques safer and easier for the surgeon

to complete successfully. The most common type of surgical robotics platforms –

the laparoscopic robots – accomplish this with multi-degree-of-freedom manipulators

that are capable of a diversified set of movements when compared to traditional la-

paroscopic instruments. Also, these laparoscopic robots allow for advanced kinematic

translation techniques that allow the surgeon to focus on the surgical site, while the

robot calculates the best possible joint positions to complete any surgical motion. An

important component of these systems is the endoscopic system used to transmit a

live view of the surgical environment to the surgeon. Coupled with 3D high-definition

endoscopic cameras, the entirety of the platform, in effect, eliminates the peculiar-

ities associated with laparoscopic procedures, which allows less-skilled surgeons to

complete minimally-invasive surgical procedures quickly and accurately.

A much newer approach to performing minimally-invasive surgery is the idea of

using in-vivo surgical robots – small robots that are inserted directly into the patient



through a single, small incision; once inside, an in-vivo robot can perform surgery at

arbitrary positions, with a much wider range of motion. While laparoscopic robots

can harness traditional endoscopic video solutions, these in-vivo robots require a fun-

damentally different video solution that is as flexible as possible and free of bulky

cables or fiber optics. This requires a miniaturized videoscopy system that incor-

porates an image sensor with a transceiver; because of severe size constraints, this

system should be deeply embedded into the robotics platform.

Here, early results are presented from the integration of a miniature stereoscopic

camera into an in-vivo surgical robotics platform. A 26mm×24mm stereo camera

was designed and manufactured. The proposed device features USB connectivity and

1280 × 720 resolution at 30 fps. Resolution testing indicates the device performs

much better than similarly-priced analog cameras. Suitability of the platform for 3D

computer vision tasks – including stereo reconstruction – is examined. The platform

was also tested in a living porcine model at the University of Nebraska Medical

Center. Results from this experiment suggest that while the platform performs well

in controlled, static environments, further work is required to obtain usable results in

true surgeries.

Concluding, several ideas for improvement are presented, along with a discussion

of core challenges associated with the platform.
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Introduction

Traditional open surgery, where a single large incision is made at the surgery site

and traditional tools are used, has largely been replaced in many surgical procedures

with an almost-ubiquitous adoption of minimally-invasive surgery (MIS). Laparo-

scopic surgery – one type of MIS – allows surgeons to carry out procedures by insert-

ing long, slender instruments into small incisions at the surgical site. Laparoscopic

procedures have greatly enhanced patient outcomes when performing exploratory or

curative operations, and many consider it one of the great advances in surgery in

the latter 20th century [5, 15, 46]. Today, laparoscopic procedures can be performed

in nearly every part of the body using a barrage of specialized tools and techniques

that cover almost every sub-discipline including ear, nose and throat (ENT), general

surgery, neurosurgery, gastrointestinal (GI) operations, and gynecology.[47].

Different laparoscopic procedures call for different sets of tools. These usually fall

into two classes – rigid and flexible. For example, a urology procedure may use rigid

tools and a rigid endoscope inserted into small incisions in the abdomen, while a GI

procedure may be carried out using a flexible video endoscope, which uses a tube that

carries control cables, a water channel, an air channel, a fiber bundle for transmitting

light, a CCD camera, and a biopsy/suction tube that can be used to insert tools into.

A new MIS technique, called natural orifice translumenal endoscopic surgery

(NOTES), is emerging as an alternative to traditional abdominal laparoscopic pro-
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cedures. Instead of making a small incision into the abdomen, a NOTES procedure

starts by traversing a natural orifice (urethra, mouth, anus, etc) with an endoscopic

instrument, then making a small internal incision in the stomach, vagina, bladder, or

colon. NOTES procedures offer faster recovery time, produce no abdominal scarring,

and eliminate postoperative problems like abdominal wall pain, wound infections, and

hernia formations.

While MIS procedures have had a dramatic effect on decreasing complications and

bettering patient outcomes, there are some major drawbacks. Laparoscopic instru-

ments provide the surgeon limited dexterity, limited navigation, limited instrument

insertion, and limited vision. Also, laparoscopic tools have a steep learning curve,

since every tool has a fixed rotational point (the incision), and therefore, operates as

a lever. Depending on the length of the tool on either side of the incision, movement

can either be magnified or attenuated. This requires lots of practice before a surgeon

is capable enough to operate safely and efficiently.

Surgical Robots

MIS surgery has seen interest develop in partial and full automation using robotics –

in hopes of making MIS surgery both easier to perform, more precise, and generally

faster as well. Surgical robots have seen parallel development with MIS technologies

since the late 1980s. Although surgical robots started as re-purposed industrial man-

ufacturing robots, they have since evolved into purpose-built machines with optimal

kinematics profiles suited for working in small areas.

Traditional robotic surgery systems, referred to hereafter as laparoscopic robots,

are designed to mimic human-guided laparoscopic procedures. This means they use

the same sorts of tools and techniques for robotic laparoscopic surgery as their human
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counterparts use for non-robotic laparoscopic procedures. The advantage of using

these robots over unassisted laparoscopic procedures is that they provide the surgeon

with slightly better dexterity, as their tools often feature more degrees of freedom

than laparoscopic tools.

Another interesting effect of using a robot is that surgeons who have no laparo-

scopic experience are able to operate the robot with much better control than tradi-

tional laparoscopic instruments. This is because the robot is capable of translating

kinematics for the surgeon; that way, the surgeon focuses only on where she wants

the tools to be while the robot performs the calculations to place the tool where it

needs to be. And since the tools have more degrees of freedom, novice surgeons are

not as encumbered by the dexterity issues associated with traditional laparoscopic

tools.

These platforms have become quite mature, and their use in hospitals is beginning

to emerge (the da Vinci system is an example of such system [13]). They are designed

to mimic human movement and perform surgery using already-established MIS pro-

cedures, which decreases the learning curve for doctors and speeds up medical board

approval for new procedures. This design choice, however, has a major shortcoming:

by assuming the traditional laparoscopic form factor (long, slender, rigid rods with

tools on the end), the robot’s design is unnecessarily constrained. One of the key ad-

vantages that robots have, in any application, is that they can be designed and built

in almost endless configurations – each one purpose-built for one type of job. How-

ever, the laparoscopic constraint prevents robots from being designed in the optimal

way to solve a particular surgical challenge. For example, the optimal design for a

robot built for gastrointestinal surgery may be a snake-like form factor. By removing

the constraint that surgical robots operate in a laparoscopic manner, interesting new

paradigms for robotic surgery can be created.
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A promising example is the in vivo surgical robot. Unlike laparoscopic robots, in

vivo robots are designed to be fully inserted into the patient and performs all work

from inside. This allows an entire surgery to be completed from a single incision.

These robots aim to preserve the dexterity of open surgery while being minimally-

invasive.

A subclass of these robots are NOTES robots, which are designed to aid a surgeon

in performing NOTES procedures. NOTES robots are even smaller than other in

vivo robots, and must be self-anchoring; they are not physically mounted on a rod

or support beam sitting external to the surgical site. NOTES robots are typically

anchored to the inner-abdominal wall using magnets.

Endoscopy

Regardless of whether a surgery is performed with a surgical robot or manually, a

major component of any MIS platform is the system that provides the surgeon a

high-quality view of the surgical scene.

Endoscopy – looking inside – refers to a set of techniques and technologies used

in industry and medicine for viewing images of internal environments that are not

easily accessible. Different types of technologies have been developed over time to ad-

dress requirements for the high quality transmission of an interior scene. Traditional

methods involve using either a rigid tube with a series of lenses (usually called an

endoscope), or a bundle of fiber (called a fiberscope), to transmit light rays directly

to the observer.

Fiberscopes offer a key advantage over traditional endoscopes when performing

certain types of surgery (like GI): because they are flexible, they can bend and contort,

allowing them to traverse an irregular-shaped pathway (like the esophagus). However,
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their flexibility is very limited – most have a maximum bend radius of several inches.

This prevents them from being used effectively on in vivo surgical robots (especially

NOTES robots), where the camera system must be precisely oriented, and must travel

with the robot at all times.

With advances in miniaturization, an entire camera system can now fit in the tip

of a flexible endoscopic instrument, instead of requiring lenses or fiber to be used

to transmit the image to a remote camera. Because the bulky bundle of hundreds

of fibers can be replaced with a small bundle of wires carrying communication and

power, this sort of instrument (known as a videoscope) is much more flexible and

maneuverable than fiberscopes.

Stereopsis

A primary limitation of endoscopic systems is that, typically, the viewer loses most

depth perception while using them. This is because in addition to using context-based

depth cues, humans use their binocular vision to provide direct depth perception by

observing how objects appear relative to each other in both the left and right eyes’

views of a scene; this is called stereopsis. Unfortunately, a typical endoscopic device

only provides a view of the surgical scene to a single eye. Because depth perception

enhances the naturalness of an image [60], and enables better judgment of depth, as

well as better perception of surface curvature and material properties [25], endoscopic

systems have been reworked to provide two slightly offset views of the scene – one

for each eye. Any camera with this sort of configuration is stereoscopic. Stereoscopic

endoscopes are typically built around either fiberscope technology (which have two

bunches of fiber, instead of one, transmitting images from two slightly offset lenses at

the tip of the endoscope), or videoscope technology (having two offset cameras wired
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to a special stereoscopic display). Stereoscopic endoscopes aid medical professionals

in many areas of treatment, diagnosis, pre-operative planning, surgery, and surgical

training and teaching [66]. Although early tests showed mixed results [12], it is

now well-established that surgeons – especially those inexperienced with performing

laparoscopic surgery – perform better with a stereoscopic camera [29, 11, 59].

To provide a natural, realistic view, certain considerations must be made when

designing a camera system for stereoscopic videoscopy: cameras should be mounted

in a manner that mimics the arrangement of the human eyes (i.e., arranged side

by side), and thought must go into deciding the optimal separation distance: most

humans have a pupillary distance of 48 to 83mm, with a mean value of 63mm [17],

so using a camera separation distance similar to this value will provide the same

sort of depth perception as humans are used to, while deviating from this value will

scale the operator’s depth perception accordingly — a smaller separation value will

decrease the amount of depth perception, while an increase in camera separation

will increase the amount of depth perception. For in vivo applications, where the

environment is very small, it is useful to decrease the camera separation distance to

provide appropriately-scaled depth perception.

Focus of Thesis

It has been established that while traditional laparoscopic robot platforms can har-

ness traditional endoscopic methods, like rigid endoscopes and flexible fiberscopes, in

vivo robots, including NOTES platforms, require an imaging solution such as flexible

videoscopy, which allows the robot to assume any orientation required during surgery,

without having to worry about the bend radius of the cabling. It has also been estab-

lished that a stereoscopic imaging solution provides key advantages over monocular
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camera solutions.

This thesis covers the design and evaluation of a stereoscopic camera that can

be integrated into an in vivo surgical robot platform, with a primary focus on a

dual-sensor USB-based camera. In the following chapter, background information is

presented to motivate the design of the camera. In the third chapter, the design is

discussed. In the fourth chapter, results from evaluation and testing are presented.
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Background

Before the proposed USB stereoscopic camera is introduced, it is important to have

a firm grasp on human depth perception (which explains why the dual-camera sys-

tem is especially important in a surgical environment); this topic is presented first.

Afterward, camera imaging technologies are explored and briefly discussed. Finally,

endoscopes are discussed thoroughly to establish the state of the art for camera sys-

tems used for medical purposes.

Human Depth Perception

Humans perceive depth using two methods: visual cues and stereopsis. Visual cues

include the following:

• Motion parallax – when we move, the relative motion of objects around us

relative to the background gives clues about the relative distances between

these objects.[36]

• Perspective – When lines we know to be parallel converge or diverge, we can

judge the relative distance between two parts of an object.

• Relative size – when objects that are of known physical size appear in a view

at different proportions than expected, we know the objects are at different
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Figure 1: Demonstration of stereopsis. The left and right cameras observe the same
scene from two different views. Human brains can process these two disparate views
to construct depth information about the scene.

distances from us.

• Optical effects – the human eye’s depth of field is limited, so objects at different

depths from the current area of interest will be out of focus; there’s also a

kinesthetic sensation associated with the muscles responsible for focusing.

Separately from visual cues, human brains are also capable of perceiving depth

using stereopsis; where objects observed from two different views appear at different

offsets, depending on their relative distances from the observer. By recognizing the

relative location of objects in the left eye, and comparing that to the locations of those

same objects in the right eye, the brain can gauge distance. Figure 1 demonstrates

this effect: in this illustration, two box cameras are pointed toward an orange cylinder,

a green cone, and a purple box. An observer looking at the figure on paper might

be able to judge the relative distance between the objects using the checkered floor

pattern as a reference point; however, a more precise method is to take advantage of
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Figure 2: The Half Dome at Yosemite rises more than 4,700 ft above the valley
floor (left). Most people can still recognize the Half Dome’s enormous size relatively
quickly, even if another object of known size (an engineering student) is oriented in
the view such that it is appears larger than the Half Dome (center). But when objects
appear to interact with each other, our brain has trouble using visual cues to identify
correct sizes of objects (right).

the parallax effect; two offset cameras shooting the same scene see the same scene

from two different views (shown on the illustrated monitors). By judging how the

views are different, the human brain can estimate the relative positions of objects.

This is the most precise way humans can judge short distances; while we use visual

cues as our dominant source of depth information about our surrounding, these cues

are only useful when interacting with familiar objects in a macroscopic environment.

When objects are unfamiliar, or they are positioned in a manner that is counter-

intuitive, visual cues alone can confuse our brain into creating a false depth model of

the view (for an example of this, see Figure 2).

Surgeons are especially prone to misjudging depth using visual cues while operat-

ing laparoscopically for the following reasons:

• The surgical environment is usually nearly fixed; if the surgeon is unable to
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move about the environment, she is confined to a single, stationary view of

the scene. This prevents the surgeon from judging depth from relative motion

(using motion parallax).

• The surgical environment often has low detail, complex, continuous geometry

and unnatural lighting, which casts confusing shadows; this prevents judging

convergent lines, which prevents the surgeon from establishing perspective.

• The relative sizes of objects cannot be used, since the distances involved in the

surgical environment are highly constrictive (which diminishes the effect in the

first place).

• Because the surgeon is viewing the scene indirectly, using some sort of endo-

scopic device, kinesthetic sensation associated with focus is largely absent or

unintuitive. Furthermore, these tools typically have small lenses with limited

aperture sizes; thus, these optical assemblies have extremely deep depth-of-

field, which prevents any sort of selective focus from occurring; all objects in

the surgical scene are always in focus all the time.

Because of these issues, requiring the surgeon to rely on visual cues alone is prob-

lematic, and requires training and experience to be able to use effectively[65]. This

is why it is desirable to provide the surgeon a stereoscopic view of the surgical area

taken from two different offsets; without it, the surgeon’s ability to perceive depth of

the scene will be greatly diminished.

This challenge can be solved with either mechanical systems (such as stereoscopic

fiberscopes or stereoscopic rigid endoscopes), or with an electronic stereoscopic video-

scope. Mechanical stereoscopic systems are bulky and require the viewer to press

their face up to a dual-eyepiece system, while a stereoscopic videoscope enables a
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Figure 3: Vidicon tube diagram

much more natural view of the scene by using a variety of lightweight displays. This

will be discussed in detail in coming sections.

Image Capture

Every videoscope system is essentially comprised of an image capture device (or in the

case of stereovideoscopy, two image capture devices), so it is instructive to overview

how images are captured electronically. Historically, there have been three different

technologies used for capturing images: video camera tubes, charge-coupled devices,

and CMOS image sensors[32].

Video Camera Tubes

Video camera tubes are the dual of the well-known cathode ray tube (CRT) display;

they were widely used in image acquisition before the 1980s. While camera tubes

evolved significantly – the Iconoscope, followed by the Image Orthicon, and the Vidi-

con – the general principle of their operation is the same: a focused electron beam

scans the imaging plate (also known as the target), line by line. The plate has a a re-

sistive or capacitive property that changes with respect to the amount of light present
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at that spot, and the scanning electron beam activates that electrical property for

the currently-scanned spot on the plate. For example, the Iconoscope’s image plate

has photosensitive granules that vary in capacitance with light intensity [3], while the

Vidicon’s target plate – made from selenium or, later, silicon diode arrays – varies in

resistance. In Figure 3, this resistance is measured using a voltage-divider, produc-

ing a Vout that is proportional to the intensity of light at the particular location the

electron beam is striking [67]. By scanning the electron beam quickly over the entire

target, the light intensity at each point is read.

To display this image, the CRT monitor’s electron gun’s position is synchronized

to the camera’s; then, the output voltage is simply used to control the intensity of

the electron gun’s beam. In the world of discrete analog circuitry, the most challeng-

ing part of the imaging system to design was the synchronization and modulation

circuitry; the fundamental operation of the camera tube and CRT display are quite

simple.

CCD Sensors

While video camera tubes can provide good resolution, they are extremely bulky and

expensive to produce. The CCD sensor was the first device that could be mass-

produced using relatively inexpensive production techniques, which allowed the rise

of consumer-oriented video cameras. The CCD sensor has a discrete number of pixel

sites which gather light during an integration time period. These pixel sites function

as capacitors – storing a charge that is proportional to the light intensity at that

pixel site. After the image has been exposed, control circuitry causes each capacitor

to transfer its contents to its neighbor, line by line. The last pixel in the array is

hooked up to a charge amplifier which measures this charge. As the control circuitry
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iterates over the entire array, the charge gets measured by the charge amplifier, then

discarded. Eventually, every pixel site has been measured[10]. Figure 4 illustrates

the shifting behavior of the pixel array – in the figure, a 10x10 CCD array is read

out, pixel by pixel, by shifting the values into the charge amplifier for measurement

one by one.

CMOS Sensors

The major problem with CCD sensors is that they cannot be produced on a standard

CMOS process; because of this, digital circuitry cannot be integrated into the product

directly. Since a camera is comprised of both the sensor and support circuitry, this

makes the overall camera package larger. CMOS sensors are imagers that can be

built on a silicon wafer in the same manner that any other analog or digital circuit is

created. This allows them to be produced extremely cheaply, with good reliability and
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consistent image quality. CMOS sensors also make use of the photoelectric effect, but

instead of shifting this charge around, each pixel site has an amplifier and a row-select

transistor. Figure 5 diagrams this process. Each pixel in the 10x10 array, this time,

has a photo diode (the green box labeled “PD”), an amplifier (black triangle), and

a row-select transistor. At the bottom of every column is a column-select transistor.

This allows control logic to route arbitrary pixel values to the output. To read out

the data, the control logic simply alternates between every row/column combination.

One often-used advantage this has is that small portions of the sensor can be read

out, allowing the same image sensor to provide both full-quality still-frame imaging,

as well as high-speed (albeit lower-resolution) video. Comparatively, the CCD sensor
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Figure 6: Approximate response curves for the short (S), medium (M), and long (L)
types of cone cells in humans. These three curves roughly center on red, green, and
blue – the primary additive colors mixed to represent any arbitrary visible color.

must be read out in full each time.

Because of all the ancillary circuitry required at every pixel site, the size of the

photo diode is much smaller for a CMOS sensor than a CCD sensor with the same-

sized pixels. This means the CMOS pixel site has more noise due to pickup than a

comparable CCD pixel; it also means the CMOS sensor generally has less dynamic

range (ability to capture high-contrast scenes without clipping) than the CCD sensor.

However, CCD sensors have more noise introduced between pickup and sampling than

CMOS sensors do, so overall noise – the addition of pickup noise and noise caused by

signal travel – is similar between sensors[70]. CMOS sensors can sample faster (1000

Mpixels / second) than CCD sensors (70 Mpixels / second) [35]. CCD sensors are

incompatible with standard VLSI processes, so it is not possible to integrate them into

a larger image processing integrated circuit. CMOS sensors, on the other hand, can

easily be integrated into an imaging system-on-chip (SoC), complete with amplifiers,

analog-to-digital converters, DSP functionality, etc.[21].
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Color Vision

When designing any camera system intended to relay visual information as accu-

rately as possible, careful consideration of the colorimetry of the system is important.

Poorly-calibrated colorimetry causes images to appear dull, washed out, or unnatu-

ral. Since surgeons use the appearance of tissue (including the color of the tissue)

for diagnostic purposes, it is important that the colors of the scene viewed by the

surgeon are as accurate as possible. Humans are trichromats [8]; they perceive color

sensations using cone cells. There are three different types of cone cells – short (S)

cone cells are receptive mostly to blue light; medium (M) cone cells are receptive

mostly to green light; long (L) cone cells are receptive mostly to red light (See Fig-

ure 6). When we see a color in nature like yellow, we really perceive a proportional

combination of L and M receptors. To simulate a natural color, we can add certain

amounts of red and green light together; To our eyes, this appears as a single color

– not as a superposition of two individual colors. This technique of mixing “primary

colors” allows us to produce any color imaginable by simply varying the intensity of

three primary colors – usually red, green, and blue.1

Color Spaces

A color space defines how real-world colors get mapped to numeric color values used

for processing and transmission. Different color spaces are used for different pur-

poses: some color spaces are designed to mimic how color is captured from a camera,

or displayed on a monitor. Some color spaces mimic how human eyes perceive color

sensations. Other color spaces are designed to represent colors in a way that makes
1As an interesting aside, the red, green, and blue primary set is ubiquitous today, but before we

knew as much about human vision, other primary sets were used; one example, called autochrome,
used orange, green, and violet primaries.[50]
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Figure 7: sRGB and ProPhoto RGB color spaces drawn inside of CIE 1931.

it intuitive for processing. Because humans are trichromats, every color space is

three-dimensional; different color spaces are simply different coordinate systems rep-

resenting the same information. This allows a color represented in one color space to

be converted to another space. Not all color spaces are capable of representing every

visible color. The set of colors a space can represent is known as the gamut of the

space.

From the previous discussion, the most natural color space seems to be one that

creates colors as a linear combination of intensities corresponding to short, medium,

and long cone normalized response curves, similar to what is seen in Figure 6. This

defines the LMS color spaces. The L coordinate represents the response of the long

cone cells, the M coordinate represents the response of the medium cone cells, and

the S coordinate represents the response of the short cone cells. Although this color

space may seem like the obvious choice for working with color, for historic and tech-
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nical reasons, however, this space is rarely used. Rather, for technical, physiological

and psychological work on color, a more commonly used color space is CIE 1931.

CIE (sometimes known as XYZ) defines a color by the luminance, Y , and the color

components X and Z. Because it encompasses all color sensations that an aver-

age person can perceive, it is useful as a benchmark space (as it has an extremely

wide gamut). However, because it does not encode color information in a manner

consistent with how images are captured or displayed, it is typically only used for

specialized applications. Instead, for most work, an RGB space is used. All RGB

spaces represent colors as a linear combination of three primaries – red, green, and

blue. Where RGB spaces differ from each other, however, is in the precise defini-

tions used for the primaries, and the definition of the white point (i.e., what color

of white should be displayed when all primaries are illuminated at 100%). The most

commonly-used RGB color space, sRGB, defines the primaries based on the color

of primaries used in CRT monitors. The white point that sRGB uses, Illuminant

D65, is approximately the color of standard daylight, and has a color temperature of

approximately 6500 Kelvin. ProPhoto RGB, as an example of a wide gamut color

space, uses primaries that are much more saturated (the green and blue primaries

used for ProPhoto are actually outside of human vision). These two color spaces are

drawn on top of CIE 1931 in Figure 7. In the figure, sRGB has a gamut that covers

the smaller triangle. ProPhoto RGB’s gamut covers the larger triangle. The three

points comprising each triangle represent the primaries used to form the color space,

with green on top, red on the right, and blue on the bottom left. Using a wide-gamut

profile allows storing and processing image data intended for display on media that is

capable of displaying colors outside of the sRGB gamut. One such example is editing

digital photography that is intended for print in magazines using a full-color CMYK

process. While CMYK, as a whole, has a much smaller gamut than sRGB, it has the



20

Figure 8: Tear-away view of an image sensor, with a Bayer array (colored filters)
placed atop an array of pixel sites (gray boxes).

ability of producing some colors (like very saturated cyan or magenta) that sRGB is

incapable of producing. ProPhoto RGB has a gamut that encompasses both sRGB

and CMYK (and almost all other visible colors), so it is a useful space for working

with different output media. Since almost all color work takes place on computers

using fixed-point arithmetic, one disadvantage with wide-gamut spaces is that the

color resolution is reduced as the color space is extended.

Since all current image sensors are luminance (not chroma) sensitive, to arrive

at a color image a specially-designed system that bandpass-filters light based on

wavelength must be employed. There are two methods often used to record color

information – a single-sensor color filter, called a Bayer pattern, and a split-prism

color filter, which splits incoming light into different colors and directs each to a

separate sensor. The Bayer pattern, depicted in Figure 8, consists of an array of color
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Figure 9: A dichroic prism is used to separate light into primary colors, which are
directed at three different image sensors.

filters aligned to the imaging array of pixels. As can be seen in the figure, each pixel

receives either red, green, or blue light. This approach is inexpensive and compact,

but an interesting problem arises: what is the RGB color value of a particular pixel?

Various methods exist to demosaic the Bayer image into a component RGB image

(where each pixel has a full RGB color value assigned to it) [33]. The easiest method

(and also the worst in terms of quality) is to simply perform pixel doubling. Using

this method, each 2x2 square is converted into one pixel; the resulting image has one-

quarter the resolution of the pixel array, and suffers from aliasing artifacts. However,

this method is extremely fast to perform, and produces predictable results that are

not interpolated. This may be useful for some image processing applications. A more

naturally-looking method uses linear or bilinear interpolation, or a Gaussian kernel

that weights neighbor colors to arrive at the correct pixel value.

When cost and size are not of concern, a better option is to use a dichroic prism

(Figure 9) which splits light into red, green, and blue wavelengths, and directs them

at three different image sensors. For historical reasons, this is typically referred to

as a “3CCD” system. As long as the three image sensors are aligned properly, the
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Figure 10: These are 400% crops of the ubiquitous SMPTE colorbars test pattern.
On the left, the uncompressed test pattern. On the right, the test pattern has been
chroma subsampled using YUV 4:2:2. Note the soft edge between the green and violet
colors.

RGB color value at a particular pixel can simply be read at the corresponding pixel

locations for each of the three sensors. No further processing or demosaicing needs

to be done to arrive at the final color image. Typically, these systems are only used

on broadcast video equipment and high-quality consumer/prosumer video cameras.

Compression using Chroma Subsampling

Now that the concept of color vision and color representation has been established,

we can take advantage of color spaces to compress color data. Human eyes are much

more sensitive to changes in luminance (brightness) than changes in color [40], so

one obvious way of compressing data is by using less bandwidth to represent color

information than to represent luminance. This is the idea of chroma subsampling 2.

To do this, we must first convert the image from its source profile to a colorspace

that separates the representation of color from luminance. Although the previously-
2It is important to understand that chroma subsampling refers to sampling rates (in the spatial

domain), and not sampling bitdepth (i.e., quantization of the actual color values)
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mentioned CIE space certainly does this, CIE is not practical to implement (as it

takes on real values, as opposed to discrete ones). Because of this, we typically use

the Y’CrCb space (which represents colors as discrete values as 8 bit, 10 bit, or 12

bit quantities). Typically, the amount of subsampling is specified as a ratio between

the horizontal sampling region, the number of color samples in the first row, and the

number of color samples in the second row. Popular examples with illustrations are

shown in Figure 11. In this figure, the original image is decomposed into luminance

and chroma values (first and second row, respectively). Each column shows a different

chroma subsampling of the original image. The first column, YUV 4:4:4, shows the

uncompressed image. Notice that the chroma is sampled 4 times in the first row,

and 4 times in the second row. The next column shows YUV 4:2:2 compression. In

this case, the chroma values are only sampled two times in the first row and two

times in the second row. In-between values are copied from the left. As can be

seen by comparing the original image with the YUV 4:2:2 resulting image, chroma
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subsampling preserves the luminance resolution in the original image, but a pixel’s

colors are incorrect. However, since color usually changes very gradually across a

scene (in a fairly continuous fashion), these sorts of compression artifacts are generally

not visible. While YUV 4:2:2 is by far the most popular chroma subsampling rate,

other rates are used in different applications. They are presented in Figure 11 for

completeness.

Considerations for Stereoscopic Systems

One of the most important considerations in deciding if a camera system designed

for monocular vision is suitable for stereoscopic use is to ensure that the amount

of crosstalk between the cameras is minimized, since crosstalk can cause blurred

vision and double-images to appear to the viewer. Other characteristics, such as op-

tical sharpness (local contrast), resolution, frame rate, and low-light performance, are

equally important for both monocular and binocular vision systems. Post-processing

of stereoscopic images involves standard image processing (gamma curve adjustment,

white balance, exposure, etc) and compression/decompression found in monocular

systems. Although using asymmetric parameters for these tasks yields little loss in

terms of depth perception, it may increase eye strain and decrease image quality.

Stereoscopic Display

To enable the viewer to perceive depth, the output display attached to the stereoscopic

camera must be capable of sending the left camera’s image to the left eye and the

right camera’s image to the right eye.

The easiest way of accomplishing this is to simply have a separate display for each

eye, and to force each eye to only observe its corresponding display. For example,
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using mirrors oriented at 45-degree angles, the eyes can be directed toward their

respective display. This approach is bulky, but offers high-quality imaging with no

optical artifacts introduced by the display.

Another implementation of the dual-display concept is wearable LCD glasses,

which place a separate small display in front of each eye. Since we cannot comfortably

focus our vision that closely, an optical element is positioned between the eye and

the display to adjust the focal distance of the display. These glasses are much bulkier

than a normal pair of glasses, and the lightweight plastic optics that are often used

in these displays produce optical distortion and low resolution.

A single display can also be used, so long as it is capable of targeting each eye

separately. There are two common ways of doing this, and both require the viewers

to wear specialized glasses.

Passive (Polarization) Systems

Polarized systems (commonly called “passive” systems in the consumer electronics

world) take advantage of polarization filters to target each eye separately. To under-

stand how this works requires some elementary knowledge of electromagnetic waves.

Electromagnetic (EM) waves (including visible light) are comprised of a magnetic

field B and an orthogonal electric field E. The summation of these two components

produce the resulting EM wave. So long as the EM wave is coherent (i.e., does not

vary in amplitude, frequency, or phase), then depending on the phase and amplitude

relationship between E and B, the resulting wave can oscillate along a single axis

(linear polarization), or around a circle (circular polarization). These polarizations

are shown in Figure 12. The red and blue waves indicate the respective B and E

fields. In the linear polarization scheme, the waves have no phase shift; in the circular
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Figure 12: Polarized EM waves
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polarization scheme, one field lags the other by 90◦.

Non-coherent light may be linearly polarized using an optical absorptive polar-

izer, which only passes one polarization of light through. The most common optical

absorptive polarizer is the H-sheet (originally patented by Polaroid).

Another important filter is the quarter-wave plate. When circularly-polarized light

enters the quarter-wave plate, it is converted to linearly-polarized light that oscillates

along one of two orthogonal axis, depending on the handedness of the circularly-

polarized light. Incidentally, the filter works both ways: if linearly-polarized light

enters the filter, a circularly-polarized light exits; its handedness is dependent on the

angle of the linearly-polarized input.

Polarized Glasses

By placing a quarter-wave plate in front of a linear polarizer, it is now evident that we

can isolate left-handed circularly-polarized light based on its handedness. Assuming

our display is polarizing the image intended for the left eye using a left-handed circular

polarization, and the image intended for the right eye using a right-handed circular

polarization, we can build glasses that can direct light with the proper handedness

into the appropriate eye. This optical filter is relatively simple, which makes these

sorts of glasses very inexpensive to manufacture.

Polarized Display

This system works using the assumption the display is capable of circularly-polarizing

the entire image based on which eye it is intended for. For this to work, we must

essentially superimpose the left-eye and right-eye image on the same screen, and then

polarize the resulting image accordingly.
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Light rays intended for left eye
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Polarized by column

Polarized by line
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Polarization 
glassesLight rays intended for right eye

Polarized by frame interleaving

Figure 13: Polarized 3D system

One way of achieving this is by using a special projector screen that maintains

polarization, along with two projectors both pointing at the same screen, each with

an appropriately-handed circular polarizing filter placed in the optical path. The

polarized images will bounce off the screen (maintaining their polarization), and then

get filtered by the polarized glasses. [1]

For direct-view displays (CRTs, LCDs, etc), we may place an active polarizer in

front of the screen which can alternatively polarize the entire screen with a left-handed

or right-handed polarization scheme. The display alternates between images for the

left and right eye while the polarizer synchronizes with the display to produce the

appropriately-handed polarization. This technique of frame interleaving is also used

slightly differently in LCD shutter systems.

If resolution degradation is acceptable, we may instead deposit optical filters on a

pixel level. Common techniques assign even-numbered lines to one handedness, and

odd-numbered lines to the other handedness.

An overview of a polarized system is shown in Figure 13. Here, data intended for
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the left eye (seen in blue) is polarized by first traveling through a -45◦linear polar-

izer and then a quarter-wave plate, which circularly polarizes the light right-handed.

Meanwhile, data intended for the right eye (red) is linearly-polarized at 45◦ and then

also brought through a quarter-wave plate, which polarizes it left-handed. Just as

with unpolarized light emitted by the monitor, these light rays are scattered all over

the room; both polarized light streams enter both lenses on the pair of polarization

glasses. However, the glasses are able to separate the polarized light by reversing

the process: the polarized rays enter a quarter-wave plate which converts the circular

polarization to linear polarization. Then, linear polarizers oriented in −45◦ and 45◦,

respectively, filter out the unwanted polarization, which allows the left light rays to

enter the left eye, and the right light rays to enter the right eye. It may seem that the

quarter waveplates are an unnecessary addition to the system; it is true that if they

are omitted, the system will continue to function as long as everything remains in the

orientation depicted in the figure. However, if the viewer tilts her head side to side

at all, the linear polarization filters will no longer align with the television’s linear

polarizing filters. Circularly-polarizing the light allows the image to be recovered at

any orientation the viewer may be in.

Compared to other display solutions, the polarized systems may seem to be triv-

ially simple to implement. However, the most commonly-used display technology

these days – back-lit liquid crystals – only output light in certain polarizations due

to how they operate on a fundamental level. Consequently, panels must be designed

specifically to allow for optical polarizing filters; otherwise, these filters would interfere

with the functionality of the display.
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Active (Shutter) Systems

LCD shutter systems work by using the property of persistence of vision: if you put

a high speed shutter in front of your eyes, you will not perceive the open and closed

states; instead, you will see a slight dimming of the image. By placing a shutter

over each eye, and synchronizing it with the monitor (usually wirelessly), the monitor

can target each eye separately. The monitor displays the left image on the monitor,

and sends a signal to the shutter glasses to close the right shutter and open the left

one. Afterward, the monitor displays the right image on the monitor and sends a

signal to the shutter glasses to close the left shutter and open the right one. This

process repeats at twice the desired frame-rate of the video. This method and the

aforementioned polarization method are the primary ways 3D consumer televisions

function.

Auto-stereoscopic Displays

Auto-stereoscopic displays facilitate the display of 3D images to a single observer

or multiple observers by displaying two or more views of the same scene, usually by

using a curved display technology that has zero-degree viewing angle, which allows the

display to isolate each eye. [7, 31]. Although convenient for the viewer (since it does

not require any special glasses to be worn), auto-stereoscopic displays produce often-

unmanageable crosstalk [7], though using eye tracking to create an auto-stereoscopic

display may reduce this effect considerably [38].

Endoscopy Taxonomy

Endoscopy, broadly speaking, concerns technologies used to observe occluded areas

located inside things – endoscopic devices are used both in commercial/industrial
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applications, as well as medical applications. Endoscopic devices allow medical prac-

titioners to observe the inside of body cavities and joints while avoiding invasive

medical procedures. Although rigid endoscopes – which conform to a straight, solid,

tubular form factor – are still useful for some procedures, flexible endoscopes – which

can bend and contort, and can be quite long – have dramatically reduced the number

of invasive exploratory procedures required.

All endoscopes have a front objective lens made of one or more optics whose

properties control the field of view, depth of field, and brightness of the scene.

Rigid Endoscope

This is the oldest, simplest type of endoscopic instrument. In addition to the front

objective lens, rigid endoscopes have a series of relay lenses, usually separated by

air, which transmit the objective lens’s light through the tube, to either the observer

directly or to a full-size camera for electronic viewing or recording.

Flexible Endoscope

Fiberscope

The fiberscope uses a fiber optic image guide to transmit light through a flexible

jacket that often includes additional cables and tubes used for auxiliary purposes

(biopsy/suction and water spraying are common). Since individual fibers cannot

transmit focused light, to achieve a focused view of the scene, the image from the

objective lens is projected onto the tips of a bundle of fibers. Unlike rigid endoscopes,

whose resolution is determined by the optical quality and design of the relay elements,

fiberscopes have the interesting property of having a measurable, discrete resolution

equal to the total number of fibers in the bundle. Figure 14 illustrates the standard
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Figure 14: Fiberscope cross-sectional view. The gray tubes are the individual fibers;
the blue tube is one of the control cables used to bend the fiberscope to the desired
angle.

make-up of a fiberscope: the gray tubes represent individual fiber strands (providing

a finite number of “pixels” to the viewer (while the blue tube represents one of the

control cables used to pull the flexible fiberscope into the proper direction during

navigation.

It is often desirable to view the output image electronically by attaching a camera

to the eyepiece of the fiberscope. Because of the discrete resolution of the system,

any resolution or alignment mismatch between the lens and the image sensor of the

camera system will cause moiré. Since precise alignment of the fibers and pixels

is impossible, this artifact is suppressed through an optical low-pass filter [4] or by

intentionally imparting spherical aberration onto the lens [49].
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Figure 15: 12mm and 8.5mm endoscopic tip from da Vinci Si surgical robot.

Videoscope

With advances in VLSI minimization, image sensors can be placed directly at the end

of a flexible endoscope[30]. This allows bulky bundles of fiber to be replaced with a

handful of small wires that transport the image data. Videoscopes allow the most

flexibility when working endoscopically; but because of limitations of current image

sensors in that form factor, videoscopes currently top out at 800×600 resolution.

Current Developments in Endoscopy

The da Vinci Si surgical robot is a popular laparoscopic robot found in hospitals

already performing surgery. Since the robot has been privately developed by Intuitive
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Figure 16: da Vinci Si surgical robot.
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Surgical, a commercial entity, little is known about the technical details of the robot’s

implementation. For vision, the da Vinci uses a traditional rigid stereo endoscopic

system with either 12mm and 8.5mm barrels (see Figure 15). The endoscopic rods

optically feed the image back to a 3CCD HD camera, as can be seen in the center of

the robot in Figure 16. This endoscopic camera system produces very high-quality

images by using a large camera and quality optics – but this sort of system cannot be

used for in vivo surgical robots, because the device is completely rigid, which means

the view it can provide the surgeon is completely fixed.

As for videoscopy, the state of the art is made up, largely, of standard-definition

analog cameras. Stoyanov et al. perform soft-tissue 3D depth recovery using an

analog sensor [62], [63]. Hu and Miller developed an insertable stereoscopic device

[44], tested it [27], and made refinements [28]. Again, their system uses low-resolution

analog image sensors.

What does not exist yet is a high-definition stereovideoscope. Current surgical

procedures only entail operating on fairly accessible areas; right now, all MIS pro-

cedures use either rigid endoscopy instruments inserted into surgical incisions or a

flexible fiberscope tool that is swallowed and only requires limited malleability while

traveling down the esophagus. Videoscopes are in their early infancy – especially

since the tip of the smallest videoscope is still too large for many procedures. Us-

ing current technology to build a stereovideoscope (as this thesis proposes) results

in a device too large to be useful in real surgical settings; however, developing this

platform can provide keen insight that can be used as camera systems continue to

miniaturize.
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Problem Description, Work and

Results

Introduction and Specifications

To best equip an in vivo surgical robot with stereoscopic image capture abilities, both

for immediate display to the surgeon and for potential stereoscopic image processing,

a custom stereo videoscopy system was designed to provide real-time video to the

surgeon. The initial specifications for the camera were based on robot constraints

from [68]. They are

• Dual-camera, 3D-capable – allows the surgeon to perceive the surgical environ-

ment with depth perception, as well as stereoscopic image processing.

• No larger than 0.75” in diameter – this allows the camera to fit on the then-

current generation robot that was under development.

Additional specifications were established that were designed to meet image process-

ing needs:

• At least 720p high-definition (1280×720 resolution) video running at no less

than 30 frames per second (fps) – this requirement ensures captured images
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have high fidelity and are delivered in real-time, which is important for the

surgeon.

• Commonly-available computer interface connection (USB, FireWire, Ethernet,

etc) – this enables the camera to be attached to a computer for video recording

and image processing.

In terms of the demands of the application, the resolution and frame rate are relatively

arbitrary; anything operating with a frame rate of at least 24 frames per second (the

industry standard for film production) would be suitable for the application. Lower

frame rates than 24 fps would produce unpleasantly jerky video to the surgeon. By

selecting 30 fps, the video frames are fast enough to eliminate any jerkiness. The

same reasoning holds for resolution; while 640× 480 (standard-definition) resolution

is more than adequate for most image processing applications, high-definition camera

would allow the surgeon to see a clearer view of the surgical environment. And, as

will be discussed, the technology required to implement any sort of device with these

requirements is practically identical in terms of size, power consumption, and price. In

other words, a 1080p camera would not have been any larger than a 720p camera; nor

would a standard-definition camera been any smaller than a 720p or 1080p camera.

Design

In order to obtain real-time high-definition video, the system requires a high-speed

interface between the camera and the computer. Without compression, a 30 fps 1280×

720 video stream, encoded with no chroma subsampling and 8 bits per channel, would

require 1280 pixels×720 pixels×30 fps×3 channels per pixel×8 bits per channel =

633 Mbps. Theoretical data rates for common video formats are presented in Table
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Frame Size (pixels) Frame Rate (fps) Color Space Data Rate (Mbps)
1920× 1080 60p RGB888 2986
1280× 720 60p RGB888 1327
1920× 1080 60p YUV422 1991
1280× 720 60p YUV422 885
1920× 1080 30p/60i RGB888 1492
1280× 720 30p/60i RGB888 664
1920× 1080 30p/60i YUV422 995
1280× 720 30p/60i YUV422 442

Table 1: Theoretical data rates for common formats of uncompressed video.

Image Sensor Serializer Deserializer Host CPU

Figure 17: Block diagram illustrating the process of transmitting camera data to a
computer over a serial link.

1. It is important to note that these are theoretical data rates – actual data rates

are higher, because of the need to include horizontal and vertical blanking as well as

other timing and ancillary data.

Interface Selection

All commercially-available chip-level CMOS sensors contain on-board processing that

reads the image data from the array, demosaics the Bayer pattern, and presents the

data to the host processor using a high-speed parallel interface. The challenge of

designing a usable camera does not revolve around designing with or programming the

sensor; in reality, these sensors are extremely easy to use. They universally use a low-

speed easy-to-use serial protocol, called i2C, to read and write configuration registers
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which control the camera’s parameters. For example, to change the output resolution

of the sensor, the user writes a single value to a register using a single command.

Even the output of the sensors is also relatively straightforward to understand; video

is transmitted pixel-by-pixel, in a raster format, starting at the top-left pixel. Sync

signals instruct the processor when the next line of data is being sent, or when the

sensor reaches the end of the frame (the bottom-right pixel).

Instead, the challenge is figuring out how to transmit the data over relatively long

distances (for the camera’s 96 MHz 12-bit parallel bus, anything longer than about 6

inches is considered “long distance”), and then, how to get this data into a computer.3

These two challenges provide a blueprint for what any generic camera-to-computer

system will look like. Figure 17 visualizes this. As the figure shows, digital cameras

that interface to computers (or any digital equipment, really) use a circuit that con-

verts the high-speed parallel data from the sensor to a serial data stream that is

designed to transmit over long distances. This data is received by the computer, de-

serialized, and sent to the CPU. This is only a blueprint, however – different systems

implement this differently. For example, a consumer USB webcam uses a microcon-

troller with a USB interface to serve as the “serializer” – data is read from the image

sensor, packetized, and sent over the USB interface (which, itself, is obviously a serial

interface). The data is received by the USB host controller on the computer’s mother-

board, deserialized, reassembled, and sent to the host CPU. A professional broadcast

video camera uses a different implementation of this blueprint; image sensor data

is serialized into an HD-SDI (high-definition serial digital interface) stream. This is

sent down a 75-ohm coaxial cable, where it is received by an HD-SDI capture card
3Newer image sensors also have a high-speed serial bus that can be used to transmit sensor data

directly. This is not so much designed for increasing the distance data can be transmitted, but more
just to reduce the number of signals routed on the PCB between the image sensor and the host
processor
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installed in a computer, which deserializes the data and sends it to the processor.

Although the proposed camera could implement any serial protocol, it is obvious

that by selecting an existing established serial protocol, existing components can be

used to implement the system. There are really three possible interfaces to choose

from that have widespread implementation on PCs:

• USB – completely ubiquitous on all modern desktop and laptop computer sys-

tems.

• IEEE1394 (FireWire) – less popular, but still widely available as a built-in

feature on the computer motherboard. Computers without built-in FireWire

support can use low cost add-in PCI / PCI-Express cards to enable FireWire

access.

• HD-SDI – While not a built-in feature in many computers, desktops can support

add-in HD-SDI capture cards that are readily available from BlackMagic, Ma-

trox, NVidia, Osprey, and other companies. BlackMagic even has an HD-SDI

interface that supports connecting to laptops over ThunderBolt.

We will now examine each of these interfaces in detail, paying special attention to

the quality of the video supported by the interface, the latency of the interface, and

how the interface is implemented on the end device (camera),

IEEE1394 (FireWire)

FireWire is a full-duplex general-purpose, bus-arbitrated serial interface originally

developed by Apple, and later standardized by the IEEE P1394 Working Group.

FireWire supports both isochronous (regularly-scheduled) and asynchronous (event-

driven) transfers, and comes in both 400 and 800 Mbps flavors. FireWire’s most



41

popular uses include connecting external hard drives and DV cameras, but it is also

widely used in machine vision applications in industrial applications. For video ap-

plications, FireWire supports two forms of video transfer – DV and IIDC. DV is

commonly used for older tape-based consumer (and entry-level professional) cam-

corders, and has a fixed video format – 720x480 resolution, 30 frames-per-second,

YUV 4:1:1 chroma subsampling. IIDC allows the imaging device to specify its video

format, which allows it to support HD resolution and different color spaces (includ-

ing RGB and YUV, at different bitdepths). PCI and PCI-Express can not directly

interface to the camera because they are only designed to transmit and receive data

over very short distances (confined to the inside of a computer case).

The most challenging part of implementing a FireWire-capable camera is working

with the FireWire interface. Although many FireWire controllers, such as the Texas

Instruments TSB41BA3D, simplify interfacing with a FireWire bus, these ICs do not

provide a transparent conduit for transferring data – rather, they provide a low-level

interface to a FireWire bus; they must be attached to a microcontroller or FPGA

which is responsible for communicating with the host to establish the device type,

capabilities, parameters, and other details. FireWire transceivers also provides data

encoding and decoding, plus a parallel-to-serial buffer. Once the link is established,

the microcontroller or FPGA must packetize the desired data and transmit it appro-

priately. Because of this, an image sensor cannot interface directly with one of these

FireWire controllers; instead, an FPGA or fast microcontroller must sit between it

and the FireWire controller to read the streaming data from the image sensor, pack-

etize it, and send it to the FireWire controller. Although this is a relatively simple

operation, it must be done at a very high data rate (hundreds of megabits per second).

An exhaustive search yielded no results for a microcontroller with a built-in

FireWire interface, so building a FireWire-enabled camera would require at least a
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Active Image Format Total Image Size Frame Rate Color Space Data Rate
1920× 1080 2200× 1125 60p YUV422 (10 bit) 2970 Mbps
1920× 1080 2200× 1125 30p / 60i ARGB4444 (10 bit) 2970 Mbps
1920× 1080 2200× 1125 30p / 60i YUV422 (12 bit) 2970 Mbps
1920× 1080 2200× 1125 30p / 60i RGB444 (12 bit) 2970 Mbps
1280× 720 1650× 750 120p YUV422 (10 bit) 2970 Mbps
1280× 720 1650× 750 60p ARGB4444 (10 bit) 2970 Mbps
1280× 720 3300× 750 30p / 60i ARGB4444 (10 bit) 2970 Mbps
1920× 1080 2200× 1125 30p / 60i YUV422 (10 bit) 1485 Mbps
1280× 720 1650× 750 60p YUV422 (10 bit) 1485 Mbps

Table 2: Common SMPTE formats for HD video.

three-chip solution: the image sensor, the microcontroller/FPGA, and the FireWire

controller. Furthermore, because no application-specific (i.e., optimized) microcon-

trollers were found, a general-purpose high-speed ARM microcontroller or an FPGA

would most certainly have to sit between the image sensor and the FireWire inter-

face to glue the parallel digital video to the packet-based FireWire communication.

Also, the limited speed of the interface means that lossy video compression (most

likely MJPEG) would have to be used, as uncompressed video (even with chroma

sub-sampling) simply has too much bandwidth to transmit over a 400 Mbps (or even

an 800 Mbps) bus.

None of these FireWire controllers were designed to be particularly small; any

possible FireWire design built without using custom silicon would most certainly

violate the board size constraint in the design specifications. FireWire also requires

double differential links, which increases cabling size. Because of all this, a FireWire

interface would not be suitable for implementation of this project.
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Figure 18: HD-SDI Transmitter Block Diagram

Data Stream B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
DS1 First Word Y [9:0]
DS1 Second Word alternating U [9:0] or V [9:0]

Table 3: SMPTE 20-bit data format for 10-bit YUV

Data Stream B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
DS1 First Word G [9:0]
DS1 Second Word R [9:0]
DS2 First Word A [9:0]
DS2 Second Word B [9:0]

Table 4: SMPTE 20-bit data format for 10-bit ARGB 4444

Data Stream B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
DS1 First Word 1 0 0 0 Y [11:6]
DS1 Second Word 1 0 0 0 Y [5:0]
DS2 First Word 1 0 0 0 alternating U [11:6] or V [11:6]
DS2 Second Word 1 0 0 0 alternating U [5:0] or V [5:0]

Table 5: SMPTE 20-bit data format for 12-bit YUV 422

Data Stream B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
DS1 First Word B8 R [11:9] G [11:9] B [11:9]
DS1 Second Word B8 R [5:3] G [5:3] B [5:3]
DS2 First Word B8 R [8:6] G [8:6] B [8:6]
DS2 Second Word B8 R [2:0] G [2:0] B [2:0]

Table 6: SMPTE 20-bit data format for 12-bit RGB 444
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HD-SDI

Another interface that was explored was HD-SDI – the high definition serial digital

interface – which is ubiquitous in broadcast video. This interface supports two data

rates – 1.485 and 2.97 Gbps – and more than a dozen video formats. Some of these

formats are presented in Table 2. While FireWire is a complex, general-purpose bus,

HD-SDI is a simple point-to-point serial link designed specifically for high speed video.

Because the protocol is so simple, it can be implemented in low-level digital circuitry

(like ASICs or FPGAs); it does not need a general-purpose microprocessor.

A block diagram overview of an HD-SDI transmitter is shown in Figure 18. 20-bit

video data is fed into the FIFO in the formats specified by Tables 3 to 6. The active

video area (which contains the visible image) is indicated by an SAV (start active

video) symbol; at the end of the line, an EAV (end active video) symbol appears.

After the EAV symbol, two additional words are inserted into each video line to

indicate the current line number line number. A CRC (cyclical redundancy check)

code is calculated using the the generator polynomial

EDC (x) = x18 + x5 + x4 + 1.

The data is then serialized, LSB first. This serialized data is channel coded using

scrambled NRZI (non-return-to-zero, inverted). The serialized bit stream is scrambled

using the generator polynomial

G (x) =
(
x9 + x4 + 1

)
(x+ 1) .

Scrambling is a pseudorandom operation that widens the spectral content of the serial

stream and eliminates streams of 1s and 0s. At the same time, scrambling does not
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introduce any additional overhead (like 8b/10b or other line codes do).

The most popular format, 10-bit YUV 422, is specified in Table 3 and only requires

one data stream per pixel: notice that this format uses 422 chroma subsampling, so

the two-word chroma values are split between pixels. In other words, the first data

stream contains the Y (luminance) value for the first pixel, as well as the U color

component for the first and second pixel; the second data stream contains the Y

value for the second pixel and the V color component for the first and second pixel.

This means that the serializer’s data latch clock runs at the same speed as the pixel

clock. The last row of Table 2 is an example of a video standard that makes use of

the 10-bit YUV 422 format. We can calculate the parallel latch’s input clock by first

calculating the pixel rate as

1650 pixels/line× 750 lines/frame× 60 frames/sec = 74.25 Million pixels/second.

Since each pixel takes one clock cycle to read in, the clock rate is therefore 74.25

MHz. Notice that the preceding format, 1920 × 1080 30 fps 10-bit YUV422, also

runs at 74.25 MHz. This is the original HD-SDI format, which has a nominal output

data rate of 1.5 Gbps, and is now known as “single-link HD-SDI”. By doubling this

parallel clock rate from 74.25 MHz to 148.5 MHz, we can either double the frame

rate of the video, or increase the quality of color reproduction. This can either be

accomplished by adding a second HD-SDI lane (known as dual-link HD-SDI), or by

simply doubling the clock speed of the interface, known as 3G-SDI. These formats

appear first in Table 2, and all have a nominal data rate of 3 Gbps.

Three additional color formats are supported by the 3G-SDI / Dual-Link standard:

10-bit ARGB4444, 12-bit RGB, and 12-bit YUV422. The 10-bit ARGB4444 format,

shown in Table 4, uses two data streams (either one after another in the case of 3G-
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Figure 19: HD-SDI Camera Block Diagram

SDI or two simultaneously, in the case of dual-link) for transmitting color; the first

data stream transmits the green and red components in the first and second word

respectively, while the second data stream transmits the alpha and blue components.

The alpha channel describes the opacity of the pixel, and is useful for broadcast

video compositing (mixing video feeds together). For example, if white text is to

be overlayed on top of a live video stream from a camera, the video mixer needs

to know which pixels from the character generator should be transparent and which

ones should not be. To this end, the character generator can output an ARGB signal

where the background of the image has 0% alpha (totally transparent), while the

foreground (the white text) has a 100% alpha.

If the alpha component is not required, the double-speed stream can also be used

to transmit RGB video using 12-bit sampling depth instead of the standard 10-bit

used for the other video formats discussed so far. This format splits up the 12-bit

color values according to Table 6. Although 12-bit YUV 422 (Table 5) is a recognized

standard, it is not used as often, since 12-bit RGB provides the same sampling depth

and better color resolution.

It should be clear by now that HD-SDI is an ideal fit for transmitting video –

it was designed from the ground up solely for this purpose, and supports near-zero

latency, uncompressed full HD video. The principle components in an SDI camera
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consist of an image sensor, an FPGA, an SDI transceiver, and a cable driver. This

is presented in Figure 19. Some FPGAs (like the Altera Cyclone IV GX and other

higher-end Altera FPGAs, along with several Xilinx and Lattice FPGA products)

integrate a reconfigurable general-purpose SERDES chain that can implement the

HD-SDI transceiver logic. Because of the extremely high switching speed of this

block (2.97 Gbps), the serializer cannot be implemented in standard FPGA logic, so

if the FPGA does not have a built-in SERDES peripheral, an outboard transceiver

circuit must be used to serialize and scramble the 20-bit SMPTE data. An analog

component – the cable driver – is responsible for driving the digital signal into a

75-ohm coax cable. It is designed to drive the signal strongly enough to meet the

rise/fall timing requirements, while matching the cable impedance and minimizing

transmission line reflection.

Obviously, this application is highly constrained in terms of size, so designing a

system with an outboard HD-SDI transmitter is out of the question. Altera’s Cyclone

IV GX FPGAs are the lowest-cost devices with integrated SERDES functionality that

can implement a 3G-SDI transceiver. The devices are available in different packages

with various amounts of logic. The N148 package has 15,000 gates, and uses an

11 × 11mm 0.5mm pitch BGA. This package is extremely expensive to design with,

since it requires special PCB manufacturing techniques – via-in-pads, laser-drilled

microvias, etc – to be able to route signals to the package properly. The F169 package

uses a 1.0mm pitch BGA, and measures 14×14. It has a similar number of I/O as the

N148 package; it is also available in higher logic densities of 22,000 and 30,000 gates.

Since this FPGA’s package has moved up to 1.0mm pitch, traces can now be routed

between pads, and standard 8mm vias can be dropped between pins. The Cyclone

IV GX EP4CGX30 (with 30,000 logic cells) in the F169 package costs approximately

$80 a unit in single quantities.
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Figure 20: Example routing of a dual HD-SDI transmitter. A 324-ball 19 × 19mm
FPGA is attached to two cable drivers; one for the left camera, and one for the right.
The squiggly traces are designed to ensure both the positive and negative traces in
the differential signal pair arrives at the transceiver at the same time.

To gauge the feasibility of implementing an HD-SDI camera, an Altera Cyclone

IV development kit was purchased (along with an HD-SDI transceiver board) to aid

the development of firmware. At the same time, the PCB design process was started

to gauge the minimum size of the board that could be achieved (when constrained

to standard-spec PCB manufacturing techniques). The initial design used the afore-

mentioned 14× 14mm FPGA; however, several weeks into the development process,

it was discovered that this particular FPGA only supported a single 3G HD-SDI

link. The device was chosen based on the fact the datasheet indicated it supported

two transceivers; however, it was discovered that only one transceiver could operate

in high-speed 3G mode (2.97 Gbps). Because of this, the PCB design moved to the

larger 19×19mm BGA. The design shown in Figure 20 shows a best-guess of the min-

imum size required for a two-camera 3G-SDI PCB, assuming dual-sided component

placement. Although it may appear to have plenty of extra room, this design does not
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include image sensors or the necessary PMIC (power management integrated circuit)

required to provide the analog and digital 1.2, 1.5, 1.8, 2.8 and 3.3V supplies needed

for the analog and digital components of the image sensor, the FPGA’s core logic,

peripheral logic, and integrated transceiver, and the cable driver power supplies. The

board measured 1.8×0.8 inches in size, which falls outside of the design specification.

USB

So far, this discussion seems to indicate that transmitting live video to a computer is

inordinately difficult, costly, and bulky. Yet, every day, millions of people videochat

with friends and relatives over the internet using inexpensive webcams that can be

purchased for under $25. How do these cameras transport video to computers? Can

the same technology be used in this application?

The most commonly used computer interface supporting video is the Universal

Serial Bus (USB) interface; this is the ubiquitous interface used by webcam manufac-

turers. Version 2.0 of the USB specification provides a High-Speed mode supporting

up to 480 Mbps transfer rate, which, calculations show, is capable of streaming a

stereo pair of JPEG-compressed frames of 1280 × 720 resolution video at 30 fps us-

ing reasonably high-quality JPEG compression settings. While similar in spirit to

FireWire, USB is much simpler to implement; many microcontrollers ship with some

sort of USB transceiver block built-in.

USB 2.0 transceivers capable of High-Speed mode, however, usually only exist in

mid-level 32-bit ARM microcontrollers. An example, the STM32F4, is available in

a high-density, ultra-fine-pitch (0.4mm) BGA package measuring only 4.2× 4.0 mm,

but the circuit board specifications required to fan-out the pins on the package would

make the PCBs cost-prohibitive to manufacture. The microcontroller is also expensive

and provides more processing power than is necessary to read in a frame of video and



50

push it into a USB buffer. When disassembling off-the-shelf microcontrollers, it was

discovered that these products use application-specific 8-bit microcontrollers coupled

with features not typically found in 8-bit MCUs, like a high-speed USB 2.0 peripheral

interface (as well as the necessary DMA pathways to be able to use it) and a dedicated

camera interface port. It seemed like the best course of action was to design a system

using one of these processors.

Other interfaces

For completeness, other interfaces that were not considered are discussed below. All of

these interfaces required far too much circuitry to make them practical to implement

in a system whose size is so tightly constrained. Entirely different from traditional

peripheral interfaces, computers also have network access through WiFi and Ether-

net connections, however, the author does not consider this a peripheral interface;

although many embedded devices are starting to ship with Ethernet ports (including

cameras), TCP/IP is not designed for real-time data transfer, and there is significant

overhead involved in sending and receiving network traffic; these devices usually offer

network interfaces simply out of convenience to the end-user (for example, security

cameras with WiFi access can be easily set up around a building and configured to

stream video to a centralized server for storage). Returning to the long-running theme

in this project, both Ethernet and WiFi were eliminated as possible interfaces simply

because of the size constraints imposed by the design specifications; either interface

would require, at a bare minimum, a large FPGA/ARM combination IC, RAM and

flash memory ICs, along with an Ethernet transceiver module, magnets, and a PMIC

to power the system.

PCI-Express is a high-speed peripheral interface designed for accessory cards in-

stalled in a desktop computer. Thunderbolt is an external, mobile implementation
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of PCI Express. Both of these interfaces would easily be able to handle the data

rate of uncompressed video, however, again, they would require large FPGAs and

transceiver/cable driver units, as well as several pairs of cables to provide the needed

signaling. Size constraints of the device rules out the PCI-Express/ThunderBolt in-

terface.

DVI/HDMI suffers problems similar to the HD-SDI and PCI-Express solutions; it

requires a large transceiver/cable driver IC, along with a powerful FPGA. The board

would have to be slightly larger than the HD-SDI transceiver board, and would require

more cabling, too (as DVI/HDMI uses 4 twisted pairs to transmit video data, along

with additional wires for control).

Another option investigated was using an off-the-shelf camera module. While

highly-integrated single-chip camera modules exist, every chip investigated provided

an analog NTSC composite video output. This is a low-quality standard-definition

analog video connection that would require separate hardware for the computer to

capture video. This was ruled out, since it did not provide high-definition video, and

external computer hardware would be required for capturing video.

Processor selection

With the USB 2.0 interface selected, the next task is to find a USB camera controller

suitable for this application. Sonix, Alcor, and OmniVision are some of the compa-

nies that make the controllers found in off-the-shelf consumer webcams; and all of

these companies manufacture ICs that, for all intents and purposes, are functionally

identical. The project, at this point, is less about circuit design and computer science,

and more about supply chain management and finding communication channels with

suppliers.
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The bulk of the work (and time spent on the project) involved navigating the

Asian import market (where most of these controllers are developed) and trying to

find a vendor willing to partner with us on a project with such a low yield. The only

vendor that was willing to supply us with development tools was EETI with their

EM2780 USB camera controller.

EETI’s EM2780 camera controller integrates an Intel 8051-core microcontroller

with a USB peripheral and DMA bus between the parallel video interface and the

USB peripheral. The controller loads its firmware off serial Flash memory. The

firmware image for the camera controllers was provided by EETI, and instantiates a

USB Video Class (UVC) compliant interface using control and bulk endpoints. Source

code for the firmware was not provided, so the operation of the firmware cannot be

discussed here.

EETI supplied a demonstration board and reference schematics for the EM2780

USB camera controller IC, as well as a firmware binary image for the demonstration

board. The EETI demonstration board used OmniVision’s OV9710 image sensor,

which has no publicly-available datasheets. OmniVision refused to send any informa-

tion on the OV9710, even under a Non-Disclosure Agreement.

No firmware source code was available, which meant that a firmware rewrite (from

scratch) would be required in order to use a different image sensor. General-purpose

microcontroller vendors, such as TI, Microchip, Atmel, and Freescale, usually offer

a wealth of development tools, including C header files, peripheral libraries, and

example code. While the EM2780 datasheet does have a list of registers, along with

short descriptions of each one, it would have taken too long to build up a development

environment from scratch, including writing a USB 2.0 stack that was compatible with

their transceiver. So, no attempts were made to modify the provided firmware; thus,

the design was locked to the OmniVision OV9710.
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Figure 21: Completed camera, shown without lenses mounted.

The OV9710 image sensor is a 1/4” format sensor with a 1280× 800 image array

and can deliver video at up to 30 fps. The sensor features on-board image processing

and formatting capabilities, allowing programmable resolutions, auto exposure, and

auto white balance. The image sensor was programmed for 720p HD video capture.

Detailed technical information on the OV9710 and its operation is unavailable, as the

datasheet for the image sensor is only available to approved parties, and is protected

by a Non-Disclosure Agreement.

A block diagram of the proposed system is shown in Figure 22. In the figure,

it can be seen that the proposed camera system consists of two image sensors, two

controllers, and a voltage regulator for supplying power. The only integrated circuits

not present in this figure are the two serial flash ICs used to store program data used

by the controllers.
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Figure 22: Block diagram of proposed camera

Circuit Design

To design the camera, two copies of the reference design from EETI were placed

on the circuit board; one for the left camera, the other for the right camera.4 Mi-

nor modifications to the reference design were made: first, a transistor allowing the

EM2780 to control power to the OV9710 was removed; second, one of the voltage

regulators was removed – this way, one voltage regulator powers both designs. These

changes minimize the number of components on the circuit board while maintaining

compliance with EETI’s design.

A 4-layer 0.031” PCB was manufactured and assembled by Advanced Circuits on

their standard-specification fabrication line with 5mil trace widths and 0.01” hole

sizes. The total size of the design is 26mm×24mm. A picture of the completed board

is shown in Figure 21, and Figure23 shows the PCB artwork for the PCB. The red and

blue traces indicate the top and bottom layer; the green traces indicate the middle

layers (power planes are not shown, but exist on all four layers).
4Actual schematics of the reference design used cannot be printed here, as it is protected by a

Non-Disclosure Agreement in place with EETI.
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Figure 23: Composite PCB drawing.

The passives were supplied by DigiKey and Newark; the EM2780 controllers were

supplied directly by EETI. It was very difficult to find a supplier willing to sell low-

quantity OV9710 image sensors (at any price), so it took several months of commu-

nicating with various businesses to find a supplier. Eventually, a U.S.-based importer

of electronic components was found, Odyssey Electronics, who helped us track down

a shipment of the image sensors.

The first revision board came back from Advanced Circuits nonfunctional due

to a package sizing problem with the image sensor. Since the datasheet for the

image sensor is unavailable, the package dimensions of a similar OmniVision sensor,

the OV9740, were used. Although the OV9710 and OV9740 are similar in terms
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of high-level specifications (resolution, imager size, output format, price, etc), they

have different package sizes and ball pitches. This was the only major setback of the

project – after several emails to EETI’s engineering support, a scanned page from

the OV9710 datasheet with the package outline was sent over. A second revision was

assembled, which functioned identically to the EETI evaluation module.

Camera Performance

The frame rate and the sharpness of the image were used as metrics to compare the

performance of the camera to both a standard-definition analog camera, as well as

a commercially-available USB-based Logitec C905 webcam. The C905 was selected

because it has the same sensor resolution and interface as the implemented USB

camera.

Resolving Ability

The resolving ability of the implemented camera was compared with a standard-

definition stereoscopic analog camera. Optical resolution is a measurement (in lines

per inch) of a camera system’s ability to distinguish black and white lines from 50%

gray The image sensor’s pixel resolution, the camera’s lens, and the processing algo-

rithms performed on the platform all influence the optical resolution of the system. A

consistent daylight-balanced florescent light source, measuring 2491 lux, was used to

light the scene consistently throughout the experiment. Low-cost plastic thin-profile

Sunex DSL756 3.8mm f/2.8 quarter-inch format lenses, which provide a wide-angle

field of view of 60◦, were used for both the analog and the digital cameras; in this

way, the non-ideal optical properties of the lens affect both systems in the same way,

which creates a better comparison between image sensors.
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Figure 24: Resolution test comparing the analog standard definition camera (top)
and the implemented USB 720p HD camera (bottom). The purple lines indicate the
approximate threshold of resolving ability.
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The resolution was tested using the ISO 12233 resolution chart[20]; the ISO 12233

is an industry-standard graphic for determining optical resolution; it allows different

cameras to be compared directly with each other. From visual inspection, captured

images from the standard definition camera and proposed high-definition camera

given in Figure 24 illustrate the implemented USB camera is capable of resolving

approximately 325 lines-per-inch, while the analog standard-definition camera can

resolve approximately 200 lines per inch; this is consistent with the resolution dispar-

ity between 1280x720 high-definition video and 640x480 standard-definition video.

Noise Performance

An important metric used to judge the quality of a camera system is a measurement

of noise. For the purposes of this paper, noise can be defined as any phenomena

that distorts the ability of the system to accurately record the image that has been

projected onto the image sensor. Modern digital cameras are afflicted by noise from

a variety of sources:

• Quantization – real-valued pixels are mapped to one of a finite number of dis-

crete levels. The resulting image has noise due to rounding errors.

• Conversion and transmission errors – “salt and pepper” noise is caused by bit

errors and analog-to-digital conversion errors.

• Photodiode Leakage – leakage through the image sensor’s photodiode array

causes capacitors to have inaccurate charge values.

• Thermal noise – this is the dominant source of noise; it is caused by agitation

of charge carriers in semiconductor devices.
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Figure 25: The experimental set up.

• Compression artifacts – lossy image compression changes the per-pixel values

of the image, which can be considered a form of noise (though this is usually

treated as a separable phenomena).

Since most noise comes from the image array, the gain of the camera system correlates

strongly with noise. When the image array is pointed at a poorly-lit scene, to obtain

proper output levels, the pixel values must be greatly amplified. This multiplies

the amount of noise in the image, and introduces additional noise as well (since all

amplifiers introduce thermal noise and nonlinearities).

In order to gauge the noise profile of the camera system, the camera was placed in

a suction-grip vice and pointed at a test pattern, which consisted of a black-to-white

radial gradient (Figure 26). This pattern is thought to be the ideal test pattern to use,

as it requires the camera to register every possible value for the red, green, and blue

channel. Because this pattern has no sharp edges or lines, it is less critical to achieve
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Figure 26: The test pattern used during the experiment.

perfect alignment between captured frames; this makes the variance calculation more

accurate (i.e., even with minor registration issues, the captured images should have

nearly zero variance except in the presence of noise). The light level was measured

using an Extech HD450 to be 517 Lux. Next, N = 12 images
{
I(1), I(2), . . . , I(N)

}
of a

test scene were captured with a stationary camera pose. A picture of the experimental

set-up is shown in Figure 25.

To calculate the variance of each pixel, var [px, y], first the arithmetic mean of the

pixel is calculated as

p̄x, y = 1
N

N∑
i=1

p(i)
x, y.

Then, the variance of px, y is

σ2
x, y = var [px, y] =

N∑
i=1

(
p(i)

x, y − p̄x, y

)2
.

This process was repeated for each px, y, and for each red, green, and blue channel.
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First, total signal-to-noise ratio (SNR) was calculated by averaging all σ2
x, y vari-

ances together into σ2 and all of the mean pixel values p̄x, y into µ. Then, the SNRdB

is

SNRdB = 10 log10

(
µ2

σ2

)
,

After the aforementioned calculation, it was found that the custom-designed USB

camera achieved a total SNR of 39 dB; the Logitech camera had a measured SNR of

44 dB.

To further characterize the noise profile of the implemented camera, the SNRs

were calculated as a function of intensity for each of the three color channels – this

provides a strong visualization to show what parts of an image are most likely to be

noisy. To do this, each of a channel’s pixel variances were grouped based on average

pixel value across all test images, i.e.,

Sv =
{
σ2

x, y : p̄x, y = v
}
,

and these groups were averaged independently as S̄v; for example, the set of variances

of all red pixels that have an average value of 5, S5 =
{
σ2

x, y : p̄x, y = 5
}
, were averaged

together into S̄5.

The results of this evaluation for both the Logitec web cam and the implemented

camera are presented in Figure 27. Oddly, in every scenario, the red channel appears

most noisy – typically, the blue channel will appear most noisy, especially in low-

intensity regions of the image [23, 39, 43]. This discrepancy is probably because of

the camera’s poor-quality auto white balancing – i.e., the red channel’s gain was

significantly higher than the green and blue channels. Higher gain always contributes

to more noise. Manually overriding this white balance setting would simply shift the

noise to a different channel, while not actually reducing it. Noise is more prevalent
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Figure 27: Noise performance in the red, green, and blue channels for the reference
Logitec webcam (left) compared to the implemented camera (right).

in dark pixels than in brighter pixels overall, this is seen most dramatically in the

red channel. For Bayer-pattern sensors, the green channel should be the least noisy,

since there are twice as many green pixels than red or blue ones. The reason the

implemented camera’s low-intensity noise has so much variation (compared to the

obvious trends seen in brighter values) is because there were very few pixels with

an average value less than 50 in the image – i.e., there were very few dark areas

in the captured images. After reviewing the captured images, each one was visibly

washed out; the black outside of the test image was a muted gray color. This is

caused by two phenomena: the auto-exposure control used by the camera’s firmware

needs to be adjusted – the camera consistently produces images that are over-exposed.

Secondly, the 3D-printed enclosure the camera is mounted inside is not perfectly light-

tight; despite plenty of duct-taping and other attempts at reducing light-leak, light

is getting inside the camera box, reflecting around off the glossy 3D plastic interior,

and hitting the image sensor, which causes a washed-out, low-contrast haze on all

images captured. This is extremely problematic and cannot easily be corrected for in

software.
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Frame Rate

The number of distinct frames an image sensor supplies per second is an important

metric when evaluating platforms. Because the EETI controller exposes a 30 frames-

per-second 720p video stream, any application connecting to it will report 30 fps

playback. However, this does not indicate that the camera is capable of delivering 30

fps performance – not every frame turned out to be unique; i.e., some of the frames

were dropped, and the previous frame was substituted in its place.

To test the frame rate of the camera, video of a quickly-moving scene (specifically,

a graphical stopwatch application running on a computer monitor) was recorded for

ten seconds. The number of distinct frames was counted and compared with the total

number of frames. The results of this experiment are shown in Table 7. The results

show the implemented EM2780-based device is incapable of capturing real-time video.

Because of the closed-source nature of the platform, no testing or analysis can be

performed to explain the discrepancy between the EM2780 specifications sheet and

the results obtained. This limitation was observed on the reference design provided

by EETI, so the PCB layout can be ruled out as a cause. This is most likely a bug

with the demonstration firmware that was loaded onto the camera.

This limitation represents a significant problem with the proposed platform –

because it is only capable of streaming video at approximately 16 fps, and because it

drops frames unpredictably, it does not provide a realistic view of the surgical scene for

the surgeon, and it also is unsuitable for stereoscopic image processing applications,

since the frame rate fluctuates, and there is no synchronization between frames in the

left camera and frames in the right camera. This means the platform is only useful

for stereoscopically processing static scenes that do not change over time, or change

very slowly.
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Camera Total Frames Unique Frames Frame Rate
Implemented EM2780 device 300 158 16 fps
Logitec USB 2.0 webcam 300 300 30 fps

Table 7: Frame Rate Tests

Other Parameters Tested

Power Consumption

While not relevant to our requirements, power consumption was also measured by

measuring the current consumed, in-circuit, with a multimeter, as well as the volt-

age appearing at power terminals of the device. After multiplying these quantities

together, it was found that the implemented camera consumes approximately 1.5W

of power, across both USB ports (which is equivalent to 0.75W per camera). This

per-camera figure is well below the 1.5W maximum allowed by USB’s 500 mA-per-

port current limit. The reference Logitech C905 webcam uses approximately 0.7W

per camera. The discrepancy is most likely due to different image sensors or chipset

features.

Temperature

Somewhat more important in our application is the temperature profile of the board.

Both the imager’s BGA package, as well as the processor’s exposed pad QFN package

are specifically designed to transfer heat to the PCB. To effectively do this, the PCB

must be carefully designed such that enough copper area is connected to the package

with low thermal resistance. Most of these design techniques were ignored to reduce

board size. To measure the board’s temperature, a Fluke infrared thermometer was

used. The board heats up to 126 ◦F within 1 minute of powering the board. This is

similar to the Logitech’s thermal profile.
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Conclusion

Given the design constraints, a low-cost stereo camera was designed using off-the-shelf

webcam technology. While this camera is much larger than conventional laparoscopic

cameras, it provides much higher quality optical resolving ability and is suitably

sized to fit on current-generation in vivo robotic platforms. When compared to a

commercial off-the-shelf webcam, the proposed device has similar SNR performance

– though firmware changes could enhance noise reduction and fix the mentioned auto-

exposure gain control problem. It is also apparent that more time should have been

spent designing a suitable enclosure for the device. A better enclosure that provided

better sealing would prevent light leaking in – and the enclosure should be coated

with a matte finish to prevent any stray light from reflecting around inside the box.

Also, the two cameras should be separated with some sort of wall or curtain to prevent

light leaking from the left lens to the right sensor, and vice-versa.

The biggest problem, however, is the random frame dropping. This reduces the

effective frame rate of the device, making it awkward to use for live viewing. And be-

cause frames are dropped randomly and without notice, it makes it nearly impossible

to use captured footage for stereo computer vision tasks that require synchronized

video. It is speculated that the source of this problem is in the inner-workings of the

EM2780 device, or its firmware, but further investigation cannot be completed with-

out obtaining the source code for the device, or writing new firmware from scratch.
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Applications

Once the proposed stereoscopic camera was implemented and tested, several different

uses were explored. This chapter will explore some applications of the proposed

stereoscopic camera.

Stereo Image Processing

In addition to allowing the surgeon to view the surgical scene using a 3D monitor,

the proposed camera enables many novel computer vision algorithms that rely on

a stereoscopic camera. These can augment the view of the surgical environment,

enhance the control of the surgical robot, and, eventually, help automate surgical

tasks. All stereo image processing algorithms generally do the same thing:

1. Establish the projection matrix for the two imagers that comprise the camera

– in other words, establish the mathematical model for determining where a

feature in 3D space gets projected in the left and right views.

2. Attempt to match pixels (or features) between the left and right image.

3. Using these feature correspondences, calculate the original point in 3D space

that projected these features onto the two imagers.
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Once features found in images are mapped back to their original 3D points found in

space, many things can be done with this information. For example, if the camera is

mounted to a surgical robot, the precise location of the robot’s arms can be determined

without requiring encoder feedback [52]. Because stereo image processing can rapidly

(and precisely) measure the surgical scene, it can be used in diagnostic [69] and triage

[53] scenarios. Because stereo algorithms can provide information about the surgical

scene, these algorithms can also be used to align preoperative scans with a view of

the surgical scene [14, 6], which can be used to augment the view of the surgical scene

for the surgeon. And – applicable to general robots more broadly – since stereoscopic

algorithms can be developed to produce dense 3D maps of the environment, they can

be used for automated robot navigation.

All multiview image processing algorithms make use of projective geometry, so it

is important to start with a formulation for the pinhole camera model. After that,

epipolar geometry will be discussed, which will allow us to back-project 2D points

into 3D space.

Homogenous Coordinates

Throughout this section, we will make use of homogenous coordinates. Homogenous

coordinates are especially useful for projective geometry since all coordinates (includ-

ing those at infinity) can be represented as finite homogenous coordinates. Also,

transformations and other formulations are much more compact with homogenous

coordinates than with Cartesian coordinates. All common transformations, including

projection, rotation, translation and scaling, can be represented as a linear operation

with a transformation matrix.

A point in a plane may be represented by a pair of coordinates (x, y) ∈ R2. We
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Figure 28: Matrix representations of various two-dimensional transforms

can think of the plane as being identified by R2, and thus, considering R2 as a vector

space, the previous point can be thought of as a vector [x, y]ᵀ. Now, in Euclidean

space, we can represent a line as ax + by + c = 0, where different choices of a, b,

and c create different lines. Then, we can represent a particular line as a vector

[a, b, c]ᵀ. Interestingly, k [a, b, c]ᵀ represents the same line for all values of k – so two

vectors related by a scaling constant are equivalent. This is the basis of homogenous

vectors. A point x = [x, y]ᵀ lies on the line l = [a, b, c]ᵀ iff ax + by + c = 0,

i.e., iff [x, y, 1] • [a, b, c]ᵀ = 0, written in inner-product notation. Thus, all vectors

[kx, ky, k] , ∀k ∈ R, represent the same point [x, y]. In homogenous coordinates,

[x, y, w]ᵀ represent a two-dimensional point or line.

Representing coordinates this way is very useful for projective geometry. The

point x lies on l iff xᵀl = 0. The intersection of two lines l1 and l2 is the point

x = l1 × l2. The line l through two points x1 and x2 is l=x1 × x2.
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Transformations

Points represented using homogenous coordinates can easily be transformed using

transformation matrices. Transformation matrices are often classified by how many

degrees-of-freedom they possess. While all two-dimensional transformation matrices

that operate on homogenous coordinates are 3 × 3, there are different classes of

transformations that preserve different amounts of geometry; the less a transformation

preserves, the more degrees-of-freedom it is said to have.

The simplest transformation is a translation; i.e., moving a point in the x direction

by a value of t1 and in the y direction by a value of t2. This can be accomplished

using the following operation:

x′ =


1 0 t1

0 1 t2

0 0 1

x

This transformation has two degrees of freedom. This is obvious by inspection, as

there are only two parameters that affect the values the matrix takes on.

A rotation transform preserves all distances and angles between points, while

shifting and rotating all points simultaneously. If you wish to rotate by θ and translate

points, this can be accomplished with:

x′ =


cos (θ) − sin (θ) tx

sin (θ) cos (θ) ty

0 0 1

x

This transformation has three degrees of freedom; two for the x and y translation,

and one for the θ rotation.
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This transformation is commonly grouped as

x′ =

R t

0 1

x

where R represents the 2 × 2 rotation matrix and t is a length-2 column vector

representing the translation coordinates.

An affine transformation preserves parallel lines. It can be accomplished with:

x′ =


a00 a01 tx

a10 a11 ty

0 0 1

x

Again, this is commonly grouped as

x′ =

A t

0 1

x

Although this transformation looks similar to the rotation transformation, it is im-

portant to understand that R is constrained by θ. In other words, it must take on a

value that can be written in the form

R =

 cos (θ) − sin (θ)

sin (θ) cos (θ)



On the other hand, A can take on arbitrary values, so the affine transformation has

six degrees-of-freedom.

The projective transformation preserves lines; everything else can be manipulated.

This type of transformation has the fewest constraints, as it can be any arbitrary 3×3
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matrix:

x′ =


h00 h01 h02

h10 h11 h12

h20 h21 h22

x

This may also be expressed as

x′ =

A t

vᵀ v

x

Although this matrix has 9 elements, only their ratios affect the transformation,

so the transformation has 8 degrees-of-freedom. While the transformation matrix can

be scaled so v = 1 (and this is common), it is entirely possible that v can take on a

value of 0, which would prevent the transformation matrix from being normalized by

v. A visual representation of these transforms can be seen in Figure 28.

Points and Transforms in 3D

Homogenous coordinates and transformations of these coordinates can be extended

to 3D relatively easily. A three-dimensional point at coordinate (x, y, z) can be

represented as homogenous coordinate vector X = [x/w, y/w, z/w, w]ᵀ. Again, these

coordinates are equivalent for all w ∈ R and fixed x, y, and z values. A plane is

uniquely defined by the join of three points or the join of a line.

Camera Pinhole Model

Now that we have established a basis for projective geometry, we can develop the

model of a camera. We ignore the complexities and irregularities involved in real-
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z

pinhole
x

X

Figure 29: Pinhole camera model

world optical systems and, instead, model the camera using the pinhole model –

where the world is observed through an infinitely small pinhole. This model forces

every point in space to be transferred to the image plane through a single ray of light,

which causes everything to appear in focus, with no optical deformities. This model

is shown in Fig 29. Here, a point in space passes through the pinhole, and projects

onto the image plane. This projection maps 3D world points into 2D points on the

image plane. This mapping can be written as

~x = P ~X,

where ~X is a point in 3D space (in homogenous coordinates), and ~x is a 2D homoge-

nous vector appearing on the image plane. With these constraints on dimensions, P

is a 3× 4 matrix called the camera projection matrix.

We can reformulate the pinhole model by placing the pinhole at the origin, and

placing the image plane some distance f along the z-axis. This is shown in Figure

30. Although this arrangement makes no sense, from an optical standpoint, it is

functionally equivalent to the model presented in Figure 29; this model simply eases

the derivation. By inspection,
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Figure 30: Central projection pinhole model

P



X

Y

Z

1


=


fX

fY

Z

 ∼

f X

Z

f Y
Z

1



where

P =


f 0

f 0

1 0

 .

Cameras, being pixel-based, are normally accessed from the top left of the image,

not the center. So, we must add an offset to the pixel’s values, according to

[
X, Y, Z

]ᵀ
7→
[
fX/Z + px, fY/Z + py

]ᵀ
.
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This can be incorporated into the projection matrix as


fX + Zpx

fY + Zpy

Z

 =


f px 0

f py 0

1 0





X

Y

Z

1


.

We will extend this projection matrix next, but first, it is important to note that

we often think of this projection matrix as a composition of a camera calibration

matrix, K, with other vectors and matrices. This is useful when trying to solve for

the values in these matrices; the user of the system knows that as long as the camera

is not altered, the values in the camera calibration matrix are constant. Thus, we

write

P = K
[
I3 |~0

]
.

At this point, we have assumed the camera is positioned at the origin looking down

the z-axis; however, it is often useful to operate relative to a different – usually world

– coordinate system, especially when multiple cameras comprise the system. This is

accomplished by rotating and translating the points using a rotation matrix, R, and

translation vector, ~t. This can be integrated into our camera projection matrix as

P = K
[
R |~t

]
= KR

[
I | − ~C

]
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Figure 32: Example images from the left and right imagers, respectively, captured
for camera calibration purposes. A total of 12 images like this were captured – all
showing the checkered pattern in various orientations.

Camera Calibration

The camera projection matrix depends on K, the camera calibration matrix, which

can be directly computed using known parameters of the cameras (focal length, pixel

size, offset, image array dimensions, etc), but because of manufacturing tolerances

(and resulting defects), it is more accurate to create a camera calibration matrix by

calibrating the actual camera using test images. By capturing a set of images con-

taining an object of known geometry (say, a checkered board), the camera calibration

matrix can be solved for using a direct linear transform (DLT) matrix solving algo-

rithm. Existing software, like the Camera Calibration Toolbox for MATLAB [9], are

useful for this task. Figure 31 illustrates a 3D model of the scene that was derived

by the Camera Calibration Toolbox by capturing a series of pictures (from both left

and right image sensors in the camera) of a checkered board pattern. These sets of
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images (one of them is depicted in Figure 32) are tagged as a “left” or “right” image

and fed into the Camera Calibration Toolbox for processing.

The camera calibration matrices for the left and right imager are, respectively:

Kleft =


2041.69 0 792.43

0 2051.30 440.72

0 0 1

 ,

and

Kright =


2017.84 0 692.44

0 2019.75 407.38

0 0 1

 .

The calibration toolbox also calculates extrinsic properties; i.e., how the cameras

relate to each other. The position of the right imager with respect to the left imager

is defined by the translation vector

~t =


−14.97

0.10

−1.67

 ,

and the rotation vector

~r =


0.00566

0.05233

0.00003

 .

Interpreting this, it can be seen that the two image sensors in the proposed camera

have measurable differences in terms of optics, as well as flaws in alignment. The two

imagers have close – but not equal – focal lengths. The left imager has a focal length
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Figure 33: An epipolar arrangement is created by forming a triangle from the two
camera centers and a point in space.

( X, Y, Z )

y

x

-z

Figure 34: Ideal epipolar scenario for stereo viewing and processing.

of approximately 2046.5 pixels (obtained by averaging the fx and fy focal lengths

together), and the right imager has a focal length of approximately 2018.8 pixels

(again, obtained by averaging the x and y focal lengths together). Although the

sensors on the PCB were designed to be exactly 15mm apart from each other, the

camera calibration indicates the actual optical axis difference is 14.97 mm. The right

imager is 0.1 mm higher than the left imager, and 1.67mm closer to the subject.
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Stereo Rectification

For viewing and image processing, we would like to remove as many alignment defects

as possible. A stereo camera that is not properly aligned can cause viewer fatigue

and perceived blurriness. And, as we will see, there are computational advantages to

working with rectified images – i.e., a set of images warped to mimic the ideal scene

depicted in Figure 34. Rectified images have the property that every point in 3D

space projects to the same vertical line number in both images; in other words, every

point found in the left image appears at the same height (line number) in the right

image, and line numbers remain parallel to the x-axis. The process of transforming

these images to enforce this constraint is called rectification. The terminology used

in this setup refers to the epipolar arrangement seen in Figure 33 ; in it, a point ~p

is projected onto two cameras C0 and C1 – where C1’s camera center is positioned

with rotation R and translation ~t with respect to C0’s. Then ~p (located along the ray

direction vector x̂0 from C0’s perspective) projects onto C0 at image coordinates ~x0

via K0– the camera calibration matrix for C0. At the same time, ~p (located along the

ray direction vector x̂1 from C1’s perspective) projects onto C1 at image coordinates

~x1 via K1. The 3 × 3 cross-product between ~t and R is called the essential matrix,

E. There is a relationship between the local ray direction vectors x̂0 and x̂1, called

the epipolar constraint, as

x̂ᵀ1Ex̂0 = 0,

which is such that E maps any point x̂0 in C0 to a line ~l1 = Ex̂0 in the other camera,

C1. All of these epipolar lines must pass through the epipolar point (epipole), ~e1.

The same is true for point x̂1, line ~l0, and epipole ~e0.

This is advantageous for doing any sort of triangulation to recover the three-

dimensional coordinate of a point in space; E will highly constrain the search problem



80

to a single line – given a point in one image, and E, we know the line in the other

image along which to search for a matching point. Keep in mind, though, that x̂0

and x̂1 are not image coordinates – they are ray direction vectors. Since we don’t

have direct access to ray direction vectors (the camera only has access to pixels – ~x0

and ~x1), we can obtain them from image coordinates as

x̂0 = K−1
0 ~x0

x̂1 = K−1
1 ~x1,

where K0 and K1 are the two camera calibration matrices for the cameras C0 and

C1.

To find E, typically the eight-point algorithm [41] is used, which takes eight or

more x̂0 and x̂1 correspondences as inputs, formulates a homogenous linear equation,

solves it, and then enforces internal constraints of the essential matrix by decomposing

the solution using singular-value decomposition, adjusting S′ so that two of its singular

values are equal and nonzero and the other is zero, and rebuilding it.

Plugging these into the previous expression for the epipolar constraint, we see that

~xᵀ1
((

K−1
1

)ᵀ
E
(
K−1

0

))
~x0 = 0.

These middle terms – which are constant for specific cameras mounted in a fixed

orientation relative to each other – comprise F, the fundamental matrix

F =
(
K−1

1

)ᵀ
E
(
K−1

0

)
,
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which can be found from the epipolar constraint on F,

~xᵀ1F~x0 = 0.

Note that we are now working with real pixel coordinates ~x0 and ~x1 in the image, and

no longer with ray direction vectors. This means we can find F with nothing other

than a set of pixel correspondences in the image – we don’t need to know anything

about the cameras or how they’re aligned with respect to each other. While the same

method to find E can be used to find F, the large variation in image coordinates

(on the order of thousands, with modern digital cameras) compared with the small

homogenous third coordinate causes the inputs to the algorithm to be ill-conditioned.

Instead, these inputs are typically normalized with a transform, processed using the

eight-point algorithm into a resulting F, which is then inversely transformed to its

correct value. This approach is known as the normalized eight-point algorithm [24].

To rectify the images, a projective transform is created that warps the image so

that the epipolar lines in each image are parallel and horizontal, and that correspond-

ing epipolar lines are at the same scan line; i.e., that the cameras are arranged as

seen in 34. This is done by moving the epipole to be in-line with the camera cen-

ter, perpendicular to both the optical axis and the vertical direction of the image,

but located at infinity. Without any additional constraints, this turns out to be an

under-defined problem – there are many transforms that will do this; and in the pro-

cess, the image may get warped, stretched, or skewed considerably. An entire area

of research attempts to constrain the transform to make the resulting images look

natural or maintain properties that make feature detection and matching reliable

[42, 45, 34, 51, 22].
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Figure 35: Example of a high-quality disparity map created using a laser rangefinder.
The left and right views of a scene (top) are stacked on top of each other (bottom
left). The horizontal distance between features increases as objects get closer to the
camera. This distance is expressed in grayscale in the bottom right image, where
darker pixels indicate less disparity, and brighter pixels indicate more disparity.

Stereo Matching

Once the images are rectified, dense stereo reconstruction techniques, coupled with

camera calibration, can recover the actual 3D coordinates which correspond to every

pixel in the images. For every pixel px, y in the left image, the matching pixel p′x′, y′ in

the right image is found. Because the images are rectified, the pixels are on the same

scan line – y = y′. This reduces the search space considerably, resulting in better

performance and more accurate matching. Once this p′ pixel is found, the disparity,
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d = x − x′, is returned for px, y. Once this process is completed, a disparity value

exists for each pixel in the image. The resulting disparity information, itself, is often

represented as an image as well. Figure 35 illustrates an example disparity map that

corresponds to a scene. The top two images are the left and right views of a scene

taken using a stereo camera. The bottom left view is of these images stacked on top

of each other and colorized to show the offset of content in the scene. The final image

shows the depth map of the scene.

Stereo Reconstruction

From the camera projection calculations worked out previously, the original (X, Y, Z)

coordinates of the pixel px, y with disparity d can be recovered as

X = − (x− px)Z
f

Y = − (y − py)Z
f

Z = −fb
d
,

where (x, y) is the pixel coordinate in the left image, f is the focal length of the left

camera, and px, py are the principle point offsets of the left camera. The distance

between the right and left cameras is b, and it is assumed that the left camera’s center

is at the origin looking down the negative z axis. As can be seen, while rectification

and stereo matching does not require a calibrated camera setup, recovering the 3D co-

ordinates of pixels from their location and disparity value does. This is why obtaining

accurate camera calibration data is so important.
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Matching Techniques

Finding the p′ correspondences to p is not a trivial task. While it may seem like p′

should simply be selected so that it has the same value as p, in practice, many factors

make this unreliable or impossible. First, p’s value is rarely unique; pixels are not

real-valued phenomena: because of digital representation, there are a finite number

of values a pixel can take – therefore, there may be several p′ that have the same

value as p. In images with low texture, there may be hundreds – or thousands – of

pixels that have exactly the same value. Second, due to noise and changes in camera

parameters (exposure, white balance, focus, lossy compression, et cetera) p and p′

likely do not have the same value. Because of this, window-based searching is usually

used that compares a window of pixels around p with a window of pixels around a p′

candidate; The p′candidate window is moved across the horizontal scan line to cover

all possible candidates, and the best p′ candidate is selected. Extensive research has

focused on how these windows of pixels are compared (the distance metric used), and,

more importantly, what makes a p′ a “good” match. The combination of these two

parameters is called the cost function. A simple cost function might be

C = (I (x, y)− I ′ (x′, y))2
,

where I () and I ′ () are functions which return the intensity of the pixel at the given

coordinates in the left and right image, respectively. This cost function performs

poorly since it is only trying to match to pixels with the closest intensity without

any regard for location of the pixel. More practical cost functions penalize disparities

that are significantly different from the disparities of neighboring pixels (smoothness

constraint), or for disparities that do not meet the uniqueness constraint (i.e., if p′

matches to p, does the same p match to the same , p′?).
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A comprehensive list of benchmark data from many different stereo matching

algorithms is available at the Middlebury Stereo Evaluation pages [58].

in vivo Porcine Testing

To evaluate the camera’s suitability for in vivo insertion, the camera was tested in

a living porcine model. This experiment took place as part of a larger evaluation of

a surgical robot platform developed by Dr. Shane Farritor’s mechanical engineering

lab. A fiberoptic xenon light source was used to illuminate the interior during video

capture. Following IRB approval, the experiment took place at the University of Ne-

braska Medical Center on December 21st, 2011, under the supervision of Dr. Dmitry

Oleynikov and Dr. Share Farritor. After a surgeon created a large incision in the

abdomen, the camera was inserted into the test subject along with a xenon fiberoptic

light source. The camera was attached to a laptop, and approximately 5 minutes

of video was recorded during the experiment. The experiment consisted of holding

the camera stationary for several minutes, as well as moving it around the surgical

environment. After the experiment, the video footage was temporally aligned, so that

left and right frames corresponded to the same instant in time.

Video Quality

Figure 36 shows a set of left and right frames extracted from the video captured

during the evaluation. As can be seen, the camera has shallow depth-of-field, and the

fixed-focus lens is not set to focus the correct distance. The only way to adjust focus

is to remove the camera, re-focus it manually, and re-insert. Due to time constraints,

this was not done.
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Figure 36: in vivo stereo images captured from inside a porcine model during an
experiment at UNMC.
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Stereo Matching

To evaluate the stereo performance of the camera, two frames of the video footage ob-

tained during the porcine experiment were reconstructed into a disparity (depth) map

using stereo reconstruction. As previously mentioned, dense stereo reconstruction re-

quires images to be rectified, which is usually accomplished using a method similar to

the CalTech Camera Calibration toolbox mentioned previously. Unfortunately, the

camera used during this particular experiment started malfunctioning before a full

camera calibration could be performed on it (the calibration results presented in the

previous section are for a different unit than the one used in this experiment).

To this end, to perform 3D reconstruction on these images, MATLAB’s built-in

rectification functions – which work without knowing camera parameters – were used

instead.

This method works by finding sets of corresponding features in a stereo pair of

images and then warping the images to enforce the epipolar constraint: that a feature

in the left image will appear on the same scan line as the same feature in the right

image. Then, a stereo matching algorithm attempts to find the disparity between

corresponding content in the left and right images. The main downside to this ap-

proach is that the resulting disparity map can only be expressed in terms of pixels –

not real-world coordinates.

Feature Matching

First, two matching frames were extracted from the video sequences recorded during

the experiment. The images were converted to grayscale. SURF feature detection

was performed on each image, which resulted in dozens of features associated with

each image (Figure 37). Once features were found, they were matched using a sum
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Figure 37: Top 30 SURF features are highlighted in the left and right images, respec-
tively.
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of absolute distances (SAD) metric, which maps each set of feature vectors to be

compared to a distance (error) value:

dSAD : (x, y) 7→ ‖x− y‖1 =
∑

i

|xi − yi|

These matches are shown in Figure 38.

With any feature-matching technique, there are bound to be false matches – two

uncorresponding features in the left and right image may happen to “look similar”

to the SURF algorithm, and therefore, match up. Unfortunately, image warping

using homographies is not robust to errors at all; one false feature-match will drasti-

cally change the homography matrix which will in turn warp the image incorrectly.

Therefore, we must ensure no false matches are propagated to the next step. While

increasing the SAD threshold will remove some of these false matches, it will also

eliminate many correct matches; because of image noise and camera differences, even

perfectly matched features can have vectors that differ.

Fundamental Matrix Estimation and RANSAC

A more robust way of removing incorrect matches is to use random sample consensus

(RANSAC) which, in general, is used to select parameters of a model while rejecting

outliers. It works by iteratively picking a small sample of possibly-correct parameters,

creating a model from those parameters, and evaluating it against other parameters.

Figure 39 illustrates an example of this process. In the left, example data has a

strong trend line in addition to many outliers. Least-squares regression cannot handle

outliers, and the resulting trend line (purple) is incorrect. With RANSAC, a small

sample of these points is selected, least-squares regression is performed, and then all

the points are evaluated against the regression. If the points that were randomly
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Figure 38: Matches found in the two images, overlayed on top of each other with
cyan-magenta coloring.
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Figure 39: Example data with a strong trend line along with many outliers. Least-
squares regression alone (magenta) cannot identify the correct trend line with the
outliers (left), while RANSAC identifies and removes the outliers (in red) while per-
forming least-squares regression (cyan line) on the inliers (green).

selected lie along the trend line, the number of inliers will be high, and the algorithm

will keep the sample set and continue to add more points, iteratively evaluating the

model at each step. If the points that were randomly selected include any outliers,

the least-squares regression will not fit the data well, so when the rest of the points

are checked against the model, the percentage of points that fit the line would be low;

the model is discarded and another sampling of points is selected.

For this application, RANSAC can be used to remove false matches while estimat-

ing F, the fundamental matrix. MATLAB’s estimateFundamentalMatrix() function

does this by randomly selecting a set of eight (x̃i, ỹi) corresponding features, calcu-

lating the fundamental matrix with those features using the normalized eight-point

algorithm, and then evaluating how well the resulting fundamental matrix fits all

of the feature matches by calculating x̃ᵀ
i Fỹi(which should be close to 0 for a good

match) for all the feature matches in the image set.
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Inlier points in left image
Inlier points in right image

Figure 40: RANSAC
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Inlier points in recti!ed left image

Inlier points in recti!ed right image

Figure 41: Image warping the left and right images so that features in the left image
appear on the same scan line as the corresponding features in the right image.

Rectification Warping

Once the fundamental matrix was found, MATLAB’s estimateUncalibratedRectifica-

tion() function was used to generate transform matrices that warp the images in a

way that matching features appear on the same scan line (i.e., lines drawn between

matched features are horizontal). The two rectified images, when laid on top of each

other, are shown in Figure 41. Before stereo matching, these images are cropped, as

shown in Figure 42.

Stereo Matching

Once the two images were rectified, a stereo matching algorithm [2] was used to gen-

erate a disparity map, shown in Figure 43. Because the cameras were uncalibrated,

true stereo reconstruction could not be performed. From visual inspection, the re-
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Figure 42: Warped images after cropping.
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Figure 43: Resulting disparity map generated from rectified images using stereo
matching.

constructed disparity map has many errors. This was largely caused by frame-level

synchronization issues; i.e., even though the video footage was aligned in time overall,

the frame-to-frame alignment was very poor. While this is not problematic in static

scenes, the live porcine test subject exhibited a great amount of organ movement

throughout the experiment. Further problems encountered include focusing issues,

which caused the already limited amount of texture to blur considerably into smooth

gradations. As discussed before, window-based stereo matching algorithms rely on a

highly textured scene to be able to correctly identify matching windows in images.

Conclusion

While the previous chapter explored the design of the camera and evaluated its tech-

nical abilities for general-purpose imaging, this chapter focused on applying it to in

vivo surgical robotics applications, which have a host of challenges specific to their

application. There are several key challenges that need to be overcome before this
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Figure 44: Stereo reconstruction of a surgical stitch trainer using the proposed stereo
videoscopy camera.

platform is suitable for use in its intended function, including better frame synchro-

nization and focus control, as well as redesigning the enclosure to provide better

contrast in the scene.

There are other problems peculiar to this particular application: internal tissue is

highly reflective (due to both tissue composition and moisture in the environment),

which causes specular highlights (bright dots on the surfaces of objects caused by

reflected light); also, many organs and other internal tissues have smooth, consistent

color with no patterning or textures at all; it is impossible for current stereo-matching

algorithms to perform effectively, since windows of pixels at almost any offset will look

the same. Pure black areas in the disparity images indicate no displacement at all;

this is usually a tell-take sign that those areas in the image have low texture, and the

algorithm is simply picking the closest window (corresponding to a disparity value of

0).

When all of these mentioned issues with the proposed device are controlled for (by
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using a static scene with no movement) – and the scene under test has low reflectivity

and sufficient texture – the stereo imager is capable of performing reasonably accurate

reconstructions. Figure 44 shows a synthetic view created by reconstructing a surgical

stitch trainer, obtaining a disparity map, then re-projecting the disparity map from

a different angle and assigning pixel color values obtained from the original image.

There are many fewer discontinuities, and the reprojected scene mimics the original

environment quite well.
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Conclusion

In this thesis, a stereoscopic camera for in vivo surgical robotics has been presented.

This device was developed to address the need for a compact, low-cost, high definition

camera capable of providing depth perception in surgical situations. The device uses

two 720p high definition image sensors and USB-enabled microcontrollers mounted

on a single printed circuit board, which allows for plug-and-play operation.

The implemented dual-camera system has been tested using a resolution chart to

allow for objective comparison to an existing standard-definition analog stereoscopic

camera system. Significant improvements in both local contrast and image resolving

capabilities were demonstrated using the proposed device. However, the implemented

device compares poorly to existing commercial webcams, such as the Logitech C905

– a 720p HD webcam that uses a similarly-sized CMOS sensor and control logic.

While the Logitech C905 is larger in size than the proposed device, it is because the

Logitech’s design offers several features the proposed solution lacks:

• A push button for shutter release

• On-board microphone

• Auto-focus lenses (with associated transistor drivers for the AF voice coil)

• Status LEDs
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• Detachable USB cables

• ESD protection

The Logitech camera is also relatively inexpensive when compared to the proposed

device because it uses lower-cost, bulkier components, and lower-quality PCBs with

looser tolerances. The Logitech board is designed for low-cost assembly as well,

by using low-density landing patterns that are less prone to solder problems during

assembly. Because of this, it is easy to see that the Logitech C905 webcam could

be miniaturized to the same size as the implemented system without loss of image

quality; this would be superior in performance to the implemented system.

The proposed device, while smaller than other off-the-shelf USB webcams, is still

much too large to be useful in a surgical environment. The device will not be able to

replace existing endoscopic systems until it is at least as small as these systems; da

Vinci uses 12mm endoscopes as a standard instrument, which is therefore a suitable

rule of thumb for useful size. From this, it can be seen the proposed system, which is

more than 580 mm2, must shrink by at least a factor of four before it is similar in size

to current endoscopic tools. Having said this, the proposed device fits on current-

generation in vivo surgical robotics platforms without exceeding size requirements.

Once integrated with a surgical robot, the dual-camera device can be used for vi-

sual servoing, object identification, and vision-driven semi-autonomous surgery [68].

The device can also be used to capture 3D high definition video of the surgical envi-

ronment for medical education and surgical training.
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Future Work

While the presented platform achieves some preliminary goals satisfactorily, the sys-

tem can be improved significantly. From a performance perspective, the camera

suffers from a fixed-focus design, sporadic frame dropping, and exposure issues. Un-

der the hood, the major problem with the current design is the highly proprietary

nature of the EETI EM2780 USB camera controller IC involved. Without firmware

source code, the camera controller ICs serve as a virtual “black box” – changes to

the firmware to fix the dropped-frame issue, or correct the overexposure problem,

or to add support for a different image sensor or an auto-focus drive coil would re-

quire a complete re-write of the firmware – which would be extremely difficult and

time-consuming, given the limited documentation available for the EM2780 IC.

While additional components can be integrated into the current hardware, like

an LED light source, a voice-coil-powered auto-focus lens assembly to fix the focus-

ing issues mentioned, or a pan-tilt mechanism, these extra features would require

additional, external control – since there is no way to hook into the camera con-

troller without modifying the firmware. This would necessarily increase the size of

the design.

Before any additional development can occur on this project, the platform must be

re-engineered to be non-proprietary. As mentioned previously, a core challenge with

this is finding a suitable controller; it must have high-speed interfacing, while also

being extremely small. These controllers simply do not exist, outside of proprietary

ASICs. So, there are two main ways of solving this problem:

• Continue using an applications-specific controller, such as the EETI one cur-

rently used, but re-create the firmware from scratch so that it may be modified

and enhanced to support future functionality.
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• Relax the size constraint, and migrate to an entirely new controller – probably

either using an ARM processor or an FPGA.

The first solution proposed will require writing a USB stack from scratch, or trying

to port an existing USB stack to the particular processor. Neither task is trivial.

Even once this is complete, setting up the DMA transfer between the parallel bus

and the USB transceiver – necessary for streaming high-definition video at full frame

rates – will be complex, given then limited documentation of the processor. Also,

the current platform, which uses an 8-bit microcontroller, provides a serious limit on

possible resolution and frame rate combinations.

Moving to a new platform would allow the selection of a faster controller that

comes with built-in libraries to handle the sorts of high-speed interfacing required.

Reducing Camera Size

Another mentioned problem with the camera is the size of the platform. While

suitable for current-generation in vivo robots, these platforms are quickly shrinking

– and for the platform to be viable, the camera will have to shrink, too. One way to

shrink the camera (and relax the size constraint of the controller at the same time)

is to move the controller off-board. The current design for the camera contains the

USB interface controller in addition to the CMOS sensor; however, an alternative

solution would mount only the CMOS sensor (with minimal support circuitry) on

the in vivo robot. This camera would be connected to an off-board camera control

module mounted outside the surgical environment.

While this design strategy was considered for the current design, the camera’s

parallel bus is highly constrictive; routing a high-frequency parallel bus more than a

couple of centimeters requires treating the wires as a transmission line: the bus would
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have to be driven with line drivers capable of controlled output impedance, the bus

itself would have to use cabling with guaranteed impedance, and the system would

require tuned termination on the receiver side, to control ringing and signal loss.

One other option to separate the image sensor from camera controller is to switch

from a parallel to serial interface. Most modern image sensors have a MIPI interface

– a high-speed differential serial interface that uses one lane for data and one lane for

clocking. This interface works reliably over relatively long runs – up to 50cm in one

test [37]. The MIPI bus would still have to be interfaced with the computer somehow,

but this step could be performed outside of the surgical site.

Other Interface Options

For higher-quality imaging (uncompressed video, 1080p HD, etc), a different interface

could be selected. This is difficult to do with the size constraints imposed for this

project, however, by relaxing these constraints slightly, much better-quality imaging

can be achieved.

USB 3.0

USB 3.0 offers a 5.0 Gbps communications link that is more than capable of carrying

two 720p streams at 60 fps, using YUV 4:2:2 subsampling. This would offer tremen-

dous image quality. Cypress Semiconductor currently manufactures the FX-3 USB

controller, which integrates an ARM9 microprocessor with a USB 3.0 transceiver, as

well as a high-speed reconfigurable parallel interface. Because the platform is de-

signed for traditional general-purpose development, the platform is much more open

and well-documented, which would eliminate the hassles encountered with the pro-

prietary camera controllers used in this project.



103

HD-SDI

As mentioned previously, another interface option is the High Definition Serial Dig-

ital Interface (HD-SDI), which is the ubiquitous digital video interface used in the

broadcast television and film industry. No current microcontrollers on the market im-

plement an HD-SDI interface; thus an HD-SDI solution would have to be developed

on an FPGA that has a high-speed transceiver module built-in. The Altera Cyclone

IV GX is the smallest FPGA that supports this functionality, however, at 23×23mm,

it is probably too large to integrate on an in vivo robot – though if a long-run MIPI

interface was used, the FPGA circuitry could reside out of the surgical environment

altogether, eliminating the stringent size requirements.

While HD-SDI video can be captured by a PC for image processing, it can also be

displayed in real-time with industry-standard monitors, switches, and multiplexers.

This eliminates possible fatal situations that could happen if a computer responsible

for rendering live view to a monitor were to suddenly crash or freeze.

Conclusion

Videoscopy for in vivo surgical robotics applications has been explored. A novel,

USB-based stereo video camera has been proposed, which meets aggressive cost con-

straints while maintaining a level of miniaturization suitable for current-generation

in vivo surgical robotics platforms. The proposed camera was evaluated with stan-

dard benchmarking techniques, including optical resolving ability and noise analysis;

because of the application of the platform to stereo computer vision tasks, the design

was also evaluated in a porcine experiment to demonstrate aptitude for these sorts

of image processing techniques. While the proposed device compares admirably in

image quality tests when compared to existing analog imaging solutions, several key
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challenges must be overcome before this design is suitable for use; major problems

include the camera’s fixed-focus design, low-contrast video caused by the enclosure

design, and sporadic frame-dropping leading to unsynchronized video. Because of

platform constraints, many of these design challenges cannot be overcome without a

significant redesign.



105

Bibliography

[1] Digital cinema 3d, November 2012.

[2] Wim Abbeloos. Real-time stereo vision. Master’s thesis, Karel de Grote-

Hogeschool University College, Belgium, May 2010.

[3] A. Abramson. The history of television, 1942 to 2000. McFarland, 2003.

[4] R. Adachi and T. Takahashi. Eyepiece and photographing device for fiberscope,

jun 1987.

[5] AL Magos AG Gordon. The development of laparoscopic surgery. Bailliere’s

Clinical Obstetrics and Gynaecology, 3:429–449, 1989.

[6] Fabienne Betting, Jacques Feldmar, Nicholas Ayache, and Frederic Devernay. A

new framework for fusing stereo images with volumetric medical images. In Com-

puter Vision, Virtual Reality and Robotics in Medicine, pages 30–39. Springer,

1995.

[7] A. Boev, A. Gotchev, and K. Egiazarian. Crosstalk measurement methodology

for auto-stereoscopic screens. In 3DTV Conference, 2007, pages 1 –4, may 2007.

[8] R.G. Boothe. Perception of the visual environment. Springer, 2001.



106

[9] Jean-Yves Bouguet. Camera calibration toolbox for matlab (2008). URL

http://www. vision. caltech. edu/bouguetj/calib_doc, 2008.

[10] W.S. Boyle and G.E. Smith. Charge-coupled semiconductor devices. Bell System

Technics, 49:587–593, 1970.

[11] John C. Byrn, Stefanie Schluender, Celia M. Divino, John Conrad, Brooke Gur-

land, Edward Shlasko, and Amir Szold. Three-dimensional imaging improves

surgical performance for both novice and experienced operators using the da

vinci robot system. The American Journal of Surgery, 193(4):519–522, 2007.

[12] A. C. W. Chan, S. C. S. Chung, A. P. C. Yim, J. Y. W. Lau, E. K. W. Ng,

and A. K. C. Li. Comparison of two-dimensional vs three-dimensional camera

systems in laparoscopic surgery. Surgical Endoscopy, 11(5):438–440, 1997.

[13] William H.H. Chapman, Robert J. Albrecht, Victor B. Kim, James A. Young,

and W. Randolph Chitwood Jr. Computer-assisted laparoscopic splenectomy

with the da vinci surgical robot. Journal of Laparoendoscopic & Advanced Sur-

gical Techniques, 12(3):155–159, June 2002.

[14] Robert W Cox and Andrzej Jesmanowicz. Real-time 3d image registration for

functional mri. Magnetic resonance in medicine, 42(6):1014–1018, 1999.

[15] A Cuschieri. Minimal access surgery and the future of interventional laparoscopy.

American Journal of Surgery, 161:404–407, 1991.

[16] N.A. Dodgson. Autostereoscopic 3d displays. Computer, 38(8):31 – 36, aug.

2005.

[17] Neil A. Dodgson. Variation and extrema of human interpupillary distance. In

Proceedings of SPIE, volume 5291, pages 36–46, January 2004.



107

[18] J. Dumpert, A.C. Lehman, N.A. Wood, D. Oleynikov, and S.M. Farritor. Semi-

autonomous surgical tasks using a miniature in vivo surgical robot. In Engineer-

ing in Medicine and Biology Society, 2009. EMBC 2009. Annual International

Conference of the IEEE, pages 266 –269, sept. 2009.

[19] Asim F. Durrani and Glenn M. Preminger. Three-dimensional video imaging for

endoscopic surgery. Computers in Biology and Medicine, 25(2):237 – 247, 1995.

Virtual Reality for Medicine.

[20] International Organization for Standardization. Iso 12233, photography –

electronic still-picture ccamera – resolution measurement. ISO12233:2000(E),

September 2000.

[21] E.R. Fossum. Cmos image sensors: Electronic camera-on-a-chip. Electron De-

vices, IEEE Transactions on, 44(10):1689–1698, 1997.

[22] Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. A compact algorithm

for rectification of stereo pairs. Machine Vision and Applications, 12(1):16–22,

2000.

[23] Donald E Groom, Steven E Holland, Michael E Levi, Nicholas P Palaio, Saul

Perlmutter, Richard J Stover, and Mingzhi Wei. Quantum efficiency of a back-

illuminated ccd imager: an optical approach. In Electronic Imaging’99, pages

80–90. International Society for Optics and Photonics, 1999.

[24] Richard I Hartley. In defense of the eight-point algorithm. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 19(6):580–593, 1997.

[25] N. S. Holliman. 3D display systems. IOP Press, 2006.



108

[26] I.P. Howard and B.J. Rogers. Binocular vision and stereopsis. Oxford University

Press, USA, 1995.

[27] Tie Hu, P.K. Allen, and D.L. Fowler. In-vivo pan/tilt endoscope with integrated

light source. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ

International Conference on, pages 1284 –1289, 29 2007-nov. 2 2007.

[28] Tie Hu, P.K. Allen, T. Nadkarni, N.J. Hogle, and D.L. Fowler. Insertable stereo-

scopic 3d surgical imaging device with pan and tilt. In Biomedical Robotics

and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS EMBS International

Conference on, pages 311 –316, oct. 2008.

[29] G. Hubens, H. Coveliers, L. Balliu, M. Ruppert, and W. Vaneerdeweg. A

performance study comparing manual and robotically assisted laparoscopic

surgery using the da vinci system. Surgical Endoscopy, 17:1595–1599, 2003.

10.1007/s00464-002-9248-1.

[30] Y. Ikuno, T. Nakamura, Y. Tojo, S. Nishigaki, H. Suzuki, H. Yabe, J. Yoshinaga,

T. Yokoi, K. Ohzeki, M. Kanno, et al. Video scope system, February 13 1990.

US Patent 4,901,142.

[31] Ashish Jain and Janusz Konrad. Crosstalk in automultiscopic 3-d displays: Bless-

ing in disguise?, 2007.

[32] J. Janesick and G. Putnam. Developments and applications of high-performance

ccd and cmos imaging arrays. Annual Review of Nuclear and Particle Science,

53(1):263–300, 2003.

[33] Rémi Jean. Demosaicing with the bayer pattern. Red, 33(R53):2, 2010.



109

[34] Yun-Suk Kang and Yo-Sung Ho. An efficient image rectification method for

parallel multi-camera arrangement. Consumer Electronics, IEEE Transactions

on, 57(3):1041–1048, 2011.

[35] S. Kleinfelder, S.H. Lim, X. Liu, and A. El Gamal. A 10000 frames/s cmos digital

pixel sensor. Solid-State Circuits, IEEE Journal of, 36(12):2049–2059, 2001.

[36] J.J. Koenderink and VAN DooRN. Invariant properties of the motion parallax

field due to the movement of rigid bodies relative to an observer. Optica acta,

22:773–791, 1975.

[37] P. Kotiranta, I. Kelander, M. Rouvala, and J. Takaneva. Characterization of

flexible interconnects in mobile devices. In Signal Propagation on Interconnects,

2007. SPI 2007. IEEE Workshop on, pages 113–116. IEEE, 2007.

[38] Christoph H. Krah. Three-dimensional display system. U.S. Patent No.

7,843,449, September 2006.

[39] Michael P Lesser. Improving ccd quantum efficiency. In Proc. SPIE, volume

2198, page 782, 1994.

[40] Margaret Livingstone and David H Hubel. Vision and art: The biology of seeing,

volume 2. Harry N. Abrams New York, 2002.

[41] H Christopher Longuet-Higgins. A computer algorithm for reconstructing a scene

from two projections. Readings in Computer Vision: Issues, Problems, Princi-

ples, and Paradigms, MA Fischler and O. Firschein, eds, pages 61–62, 1987.

[42] Charles Loop and Zhengyou Zhang. Computing rectifying homographies for

stereo vision. In Computer Vision and Pattern Recognition, 1999. IEEE Com-

puter Society Conference on., volume 1. IEEE, 1999.



110

[43] Guy Meynants, Bart Dierickx, and Danny Scheffer. Cmos active pixel image

sensor with ccd performance. In SYBEN-Broadband European Networks and

Electronic Image Capture and Publishing, pages 68–76. International Society for

Optics and Photonics, 1998.

[44] A. Miller, P. Allen, and D. Fowler. In-vivo stereoscopic imaging system with 5

degrees-of-freedom for minimal access surgery. Studies in Health Technology and

Informatics, 98:234–240, 2004.

[45] Pascal Monasse, Jean-Michel Morel, Zhongwei Tang, et al. Three-step image

rectification. In Proceedings of the British Machine Vision Conference, 2010.

[46] U. D. A Mueller-Richter, A. Limberger, P. Weber, K. W. Ruprecht, W. Spitzer,

and M. Schilling. Possibilities and limitations of current stereo-endoscopy. Sur-

gical Endoscopy, 18:942–947, 2004. 10.1007/s00464-003-9097-6.

[47] E Neugebauer, H Troidl, CK Kum, E Eypasch, M Miserez, and Paul A. The

e.a.e.s. consensus development conferences on laparoscopic cholecystectomy, ap-

pendectomy, and hernia repair. consensus statements – september 1994. In The

Educational Committee of the European Association for Endoscopic Surgery, vol-

ume 9, pages 550–563, 1995.

[48] D.P. Noonan, P. Mountney, D.S. Elson, A. Darzi, and Guang-Zhong Yang. A

stereoscopic fibroscope for camera motion and 3d depth recovery during min-

imally invasive surgery. In Robotics and Automation, 2009. ICRA ’09. IEEE

International Conference on, pages 4463 –4468, may 2009.

[49] M. Okabe and A. Kikuchi. Television camera for endoscopes, June 1990.



111

[50] Walter Hines Page and Arthur Wilson Page. The World’s Work: Volume XV: A

History of Our Time. Doubleday, Page & Company, 1908.

[51] V Papadimitriou and Tim J Dennis. Epipolar line estimation and rectification

for stereo image pairs. Image Processing, IEEE Transactions on, 5(4):672–676,

1996.

[52] E. T. Psota, K. Strabala, J. Dumpert, L. C. Pérez, S. Farritor, and D. Oleynikov.

Stereo image-based arm tracking for in vivo surgical robotics. In Studies in

Technology and Informatics, volume 163, pages 454–460, 2011.

[53] Eric T Psota. Stereoscopic Wound Measurement Device and Algorithm. PhD

thesis, University of Nebraska–Lincoln, 2006.

[54] Eric T. Psota, Jedrzej Kowalczuk, Jay Carlson, and Lance C. Pérez. A local

iterative refinement method for adaptive support-weight stereo matching. In

International Conference on Image Processing, Computer Vision, and Pattern

Recognition (IPCV), July 2011.

[55] Y. Reibel, M. Jung, M. Bouhifd, B. Cunin, and C. Draman. Ccd or cmos camera

noise characterisation. The European Physical Journal Applied Physics, 21:75–80,

2003.

[56] Brian J. Rogers. Seeing in Depth: Depth perception, volume 2. University of

Toronto Press, 2002.

[57] Jacob Rosen, Blake Hannaford, and Richard M. Satava, editors. Surgical

Robotics: Systems Applications and Visions. Springer, 2011.

[58] Daniel Scharstein and Anna Blasiak. Middlebury stereo evaluation - version 2,

July 2014.



112

[59] Philip Servos, Melvyn A. Goodale, and Lorna S. Jakobson. The role of binocular

vision in prehension: a kinematic analysis. Vision Research, 32(8):1513 – 1521,

1992.

[60] Pieter J. H. Seunti, Ingrid E. J. Heynderickx, Wijnand A. Ijsselsteijn, Paul M. J.

Van Den Avoort, Jelle Berentsen, Iwan J. Dalm, Marc T. M. Lambooij, and

Willem Oosting. Viewing experience and naturalness of 3d images. In Three-

Dimensional TV, Video, and Display IV, Proceedings of SPIE, volume 6016,

Bellingham, WA, ETATS-UNIS, 2005. Society of Photo-Optical Instrumentation

Engineers.

[61] Pieter Seuntiens, Lydia Meesters, and Wijnand Ijsselsteijn. Perceived quality

of compressed stereoscopic images: Effects of symmetric and asymmetric jpeg

coding and camera separation. ACM Trans. Appl. Percept., 3:95–109, April 2006.

[62] Danail Stoyanov, Ara Darzi, and Guang Yang. Dense 3d depth recovery for soft

tissue deformation during robotically assisted laparoscopic surgery. In Medical

Image Computing and Computer-Assisted Intervention – MICCAI 2004, volume

3217 of Lecture Notes in Computer Science, pages 41–48. Springer Berlin / Hei-

delberg, 2004.

[63] Danail Stoyanov, Marco Scarzanella, Philip Pratt, and Guang-Zhong Yang. Real-

time stereo reconstruction in robotically assisted minimally invasive surgery. In

Tianzi Jiang, Nassir Navab, Josien Pluim, and Max Viergever, editors, Medical

Image Computing and Computer-Assisted Intervention – MICCAI 2010, volume

6361 of Lecture Notes in Computer Science, pages 275–282. Springer Berlin /

Heidelberg, 2010.



113

[64] G. Svaetichin. Spectral response curves from single cones. Acta Physiol Scand

Suppl, 39(134):17–46, 1956.

[65] N. Taffinder, SGT Smith, J. Huber, RCG Russell, and A. Darzi. The effect of

a second-generation 3d endoscope on the laparoscopic precision of novices and

experienced surgeons. Surgical endoscopy, 13(11):1087–1092, 1999.

[66] Maurice H. P. H. van Beurden, Gert van Hoey, Haralambos Hatzakis, and Wi-

jnand A. Ijsselsteijn. Stereoscopic displays in medical domains: a review of

perception and performance effects. In Human Vision and Electronic Imaging

XIV, Proceedings of the SPIE, volume 7240, 2009.

[67] P.K. Weimer, S.V. FORQUE, and R.R. Goodrich. The vidicon photoconductive

camera tube. Electronics, pages 70–73, 1950.

[68] Tyler D. Wortman, Kyle W. Strabala, Amy C. Lehman, Shane M. Farritor, and

Dmitry Oleynikov. Laparoendoscopic single-site surgery using a multi-functional

miniature in vivo robot. The International Journal of Medical Robotics and

Computer Assisted Surgery, 7(1):17–21, 2011.

[69] Tao T Wu, Jianan Y Qu, et al. Optical imaging for medical diagnosis based

on active stereo vision and motion tracking. Opt. Express, 15(16):10421–10426,

2007.

[70] L. Zhang, Y. Jin, L. Lin, J. Li, and Y. Du. The comparison of ccd and cmos image

sensors. In International Conference of Optical Instrument and Technology, pages

71570T–71570T. International Society for Optics and Photonics, 2008.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Fall 8-5-2014

	Towards Highly-Integrated Stereovideoscopy for in vivo Surgical Robots
	Jay Carlson

	tmp.1407266817.pdf.IREaq

