2,144 research outputs found

    Longitudinal segmentation of age-related white matter hyperintensities

    Get PDF
    Although white matter hyperintensities evolve in the course of ageing, few solutions exist to consider the lesion segmentation problem longitudinally. Based on an existing automatic lesion segmentation algorithm, a longitudinal extension is proposed. For evaluation purposes, a longitudinal lesion simulator is created allowing for the comparison between the longitudinal and the cross-sectional version in various situations of lesion load progression. Finally, applied to clinical data, the proposed framework demonstrates an increased robustness compared to available cross-sectional methods and findings are aligned with previously reported clinical patterns

    Different patterns of white matter degeneration using multiple diffusion indices and volumetric data in mild cognitive impairment and Alzheimer patients

    Get PDF
    Alzheimeŕs disease (AD) represents the most prevalent neurodegenerative disorder that causes cognitive decline in old age. In its early stages, AD is associated with microstructural abnormalities in white matter (WM). In the current study, multiple indices of diffusion tensor imaging (DTI) and brain volumetric measurements were employed to comprehensively investigate the landscape of AD pathology. The sample comprised 58 individuals including cognitively normal subjects (controls), amnestic mild cognitive impairment (MCI) and AD patients. Relative to controls, both MCI and AD subjects showed widespread changes of anisotropic fraction (FA) in the corpus callosum, cingulate and uncinate fasciculus. Mean diffusivity and radial changes were also observed in AD patients in comparison with controls. After controlling for the gray matter atrophy the number of regions of significantly lower FA in AD patients relative to controls was decreased; nonetheless, unique areas of microstructural damage remained, e.g., the corpus callosum and uncinate fasciculus. Despite sample size limitations, the current results suggest that a combination of secondary and primary degeneration occurrs in MCI and AD, although the secondary degeneration appears to have a more critical role during the stages of disease involving dementia

    Investigating White Matter Lesion Load, Intrinsic Functional Connectivity, and Cognitive Abilities in Older Adults

    Get PDF
    Changes to the while matter of the brain disrupt neural communication between spatially distributed brain regions and are associated with cognitive changes in later life. While approximately 95% of older adults experience these brain changes, not everyone who has significant white matter damage displays cognitive impairment. Few studies have investigated the association between white matter changes and cognition in the context of functional brain network integrity. This study used a data-driven, multivariate analytical model to investigate intrinsic functional connectivity patterns associated with individual variability in white matter lesion load as related to fluid and crystallized intelligence in a sample of healthy older adults (n = 84). Several primary findings were noted. First, a reliable pattern emerged associating whole-brain resting-state functional connectivity with individual variability in measures of white matter lesion load, as indexed by total white matter lesion volume and number of lesions. Secondly, white matter lesion load was associated with increased network disintegration and dedifferentiation. Specifically, lower white matter lesion load was associated with greater within- versus between-network connectivity. Higher white matter lesion load was associated with greater between-network connectivity compared to within. These associations between intrinsic functional connectivity and white matter lesion load were not reliably associated with crystallized and fluid intelligence performance. These results suggest that changes to the white matter of the brain in typically aging older adults are characterized by increased functional brain network dedifferentiation. The findings highlight the role of white matter lesion load in altering the functional network architecture of the brain

    Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study

    Get PDF
    Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities (WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold standard has not been achieved and their longitudinal reproducibility has been poorly investigated. The aim of present work is to evaluate accuracy and reproducibility of two freely available segmentation algorithms. A harmonized MRI protocol was implemented in 3T-scanners across 13 European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with manual tracing, and for reproducibility the test versus retest. Median volume difference between automated WMH and manual segmentations (mL) was −0.22[IQR = 0.50] for LGA-SPM8, −0.12[0.57] for LGA-SPM12, −0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility error of 20%[IQR = 41] for LGA-SPM8, 14% [31] for LGA-SPM12 and 10% [27] with the LPA cross-sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were considerably reduced (LGA: 0%[IQR = 0], p < 0.001; LPA: 0% [3], p < 0.001) compared to those derived using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent (median = 1) for LGA [IQR = 0] and LPA [0.02]. LST algorithms showed moderate accuracy and good reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-site studies

    APOE ?4 status is associated with white matter hyperintensities volume accumulation rate independent of AD diagnosis.

    Get PDF
    To assess the relationship between carriage of APOE ?4 allele and evolution of white matter hyperintensities (WMHs) volume, we longitudinally studied 339 subjects from the Alzheimer's Disease Neuroimaging Initiative cohort with diagnoses ranging from normal controls to probable Alzheimer's disease (AD). A purpose-built longitudinal automatic method was used to segment WMH using constraints derived from an atlas-based model selection applied to a time-averaged image. Linear mixed models were used to evaluate the differences in rate of change across diagnosis and genetic groups. After adjustment for covariates (age, sex, and total intracranial volume), homozygous APOE ?4?4 subjects had a significantly higher rate of WMH accumulation (22.5% per year 95% CI [14.4, 31.2] for a standardized population having typical values of covariates) compared with the heterozygous (?4?3) subjects (10.0% per year [6.7, 13.4]) and homozygous ?3?3 (6.6% per year [4.1, 9.3]) subjects. Rates of accumulation increased with diagnostic severity; controls accumulated 5.8% per year 95% CI: [2.2, 9.6] for the standardized population, early mild cognitive impairment 6.6% per year [3.9, 9.4], late mild cognitive impairment 12.5% per year [8.2, 17.0] and AD subjects 14.7% per year [6.0, 24.0]. Following adjustment for APOE status, these differences became nonstatistically significant suggesting that APOE ?4 genotype is the major driver of accumulation of WMH volume rather than diagnosis of AD

    White matter hyperintensities classified according to intensity and spatial location reveal specific associations with cognitive performance.

    Get PDF
    White matter hyperintensities (WMHs) on T2-weighted images are radiological signs of cerebral small vessel disease. As their total volume is variably associated with cognition, a new approach that integrates multiple radiological criteria is warranted. Location may matter, as periventricular WMHs have been shown to be associated with cognitive impairments. WMHs that appear as hypointense in T1-weighted images (T1w) may also indicate the most severe component of WMHs. We developed an automatic method that sub-classifies WMHs into four categories (periventricular/deep and T1w-hypointense/nonT1w-hypointense) using MRI data from 684 community-dwelling older adults from the Whitehall II study. To test if location and intensity information can impact cognition, we derived two general linear models using either overall or subdivided volumes. Results showed that periventricular T1w-hypointense WMHs were significantly associated with poorer performance in the trail making A (p = 0.011), digit symbol (p = 0.028) and digit coding (p = 0.009) tests. We found no association between total WMH volume and cognition. These findings suggest that sub-classifying WMHs according to both location and intensity in T1w reveals specific associations with cognitive performance

    Youthful Processing Speed in Older Adults: Genetic, Biological, and Behavioral Predictors of Cognitive Processing Speed Trajectories in Aging.

    Get PDF
    Objective: To examine the impact of genetic, inflammatory, cardiovascular, lifestyle, and neuroanatomical factors on cognitive processing speed (CPS) change over time in functionally intact older adults. Methods: This observational study conducted over two time points, included 120 community dwelling cognitively normal older adults between the ages of 60 and 80 from the University of California San Francisco Memory and Aging Center. Participants were followed with composite measures of CPS, calculated based on norms for 20-30 year-olds. Variables of interest were AD risk genes (APOE, CR1), markers of inflammation (interleukin 6) and cardiovascular health (BMI, LDL, HDL, mean arterial pressure, fasting insulin), self-reported physical activity, and corpus callosum (CC) volumes. The sample was divided into three groups: 17 "resilient-agers" with fast and stable processing speed; 56 "average-agers" with average and stable processing speed; and 47 "sub-agers" with average baseline speed who were slower at follow-up. Results: Resilient-agers had larger baseline CC volumes than sub-agers (p &lt; 0.05). Resilient-agers displayed lower levels of interleukin-6 (IL-6) and insulin (ps &lt; 0.05) than sub-agers, and reported more physical activity than both average- and sub-agers (ps &lt; 0.01). In a multinomial logistic regression, physical activity and IL-6 predicted average- and sub-ager groups. Resilient-agers displayed a higher frequency of APOE e4 and CR1 AA/AG alleles. Conclusion: Robust and stable CPS is associated with larger baseline CC volumes, lower levels of inflammation and insulin, and greater self-reported physical activity. These findings highlight the relevance of neuroanatomical, biological, and lifestyle factors in the identification and prediction of heterogeneous cognitive aging change over time

    Assessment Of The Interplay Between Regional β-Amyloid Burden And White Matter Hyperintensities On Cognition And Default Mode Network In Clinically Normal Older Participants

    Get PDF
    Objective: Alzheimer’s disease (AD) and subcortical vascular dementia are considered the most common pathologic contributors to dementia in the aging population. Both frequently coexist in over 80% of community dwelling adults with dementia. The neuropathological development of AD arguably begins with β-amyloid (Aβ) deposition in the brain. This series of studies aims to test the hypothesis that early focal regional amyloid deposition in the brain is associated with cognitive performance in specific cognitive domain scores in preclinical AD (pAD) (study1). Since mixed dementia is widely recognized as the norm rather than the exception, the second study aimed to explore the relation between regional and global Aβ and WMH with core cognitive function (executive function (EF) and memory) scores in cognitively normal (CN) older adults (study2). Finally, the relationship between WMH and Aβ is strongly determined by the spatial distribution of the two pathologies, so the third study aimed to quantify Aβ in Default mode network (DMN) regions to examine whether cerebral small vessels disease (SVD) disruption of connectivity affects Aβ deposition in disconnected DMN regions (study3). Method: Global and regional Standard Uptake Value ratios (SUVr) from Aβ-PET, WMH volumes from MRI FLAIR images, and cognitive test scores were analyzed across a sample of CN participants. Linear regression models adjusted for age, sex and education used to assess the relationships between regional SUVr and cognitive test scores across 99 CN from Sanders Brown Center on Aging (study1). Moderation, and mediation modeling were used to define the interplay between global, regional Aβ and WMHs measures in relation to EF and memory composite scores outcomes at baseline and after approximately 2 years across a sample of 714 CN from the Alzheimer’s Disease Neuroimaging Initiative ADNI (study2). The association of WMH volume in anatomically defined white matter tracts of atlas-based fiber tract with Aβ SUVr specifically in connected cortical regions within DMN was tested across sample of 74 CN from ADNI3. Results: EF performance was associated with increased regional SUVr in the precuneus and posterior cingulate regions only (p \u3c 0.05). The moderation regression analysis showed additive effects of Aβ and WMH over baseline memory and EF scores (p =0.401 and 0.061 respectively) and synergistic effects over follow-up EF (p \u3c 0.05). Through mediation analysis, the data from study 2 showed that WMH affects, mediated by global and regional amyloid burden, are responsible for baseline cognitive performance deficits in memory and EF. Finally, the regression analysis from study 3 demonstrated that increased WMH volumes in superior longitudinal fasciculus (SLF) was associated with increased regional SUVr in inferior parietal lobule (IPL) (p \u3c 0.05). Conclusion: While the prevailing view in the field suggests that memory performance is the earliest clinical hallmark of AD, the present data demonstrate that changes in EF, mediated by Aβ deposition in the precuneus and posterior cingulate may precede memory decline in pAD. After adding the second key driver of cognitive decline in CN, the finding suggested that WMH dependent changes in baseline cognitive performance are related to direct effect of WMH and an indirect effect through both global and regional Aβ burden. Further studies are needed to show the longitudinal influences of WMH on Aβ distributions in participants with mixed dementia

    Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration: A united approach

    Get PDF
    Item does not contain fulltextCerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE)

    APOE ε4 status is associated with white matter hyperintensities volume accumulation rate independent of AD diagnosis.

    Get PDF
    To assess the relationship between carriage of APOE ε4 allele and evolution of white matter hyperintensities (WMHs) volume, we longitudinally studied 339 subjects from the Alzheimer's Disease Neuroimaging Initiative cohort with diagnoses ranging from normal controls to probable Alzheimer's disease (AD). A purpose-built longitudinal automatic method was used to segment WMH using constraints derived from an atlas-based model selection applied to a time-averaged image. Linear mixed models were used to evaluate the differences in rate of change across diagnosis and genetic groups. After adjustment for covariates (age, sex, and total intracranial volume), homozygous APOE ε4ε4 subjects had a significantly higher rate of WMH accumulation (22.5% per year 95% CI [14.4, 31.2] for a standardized population having typical values of covariates) compared with the heterozygous (ε4ε3) subjects (10.0% per year [6.7, 13.4]) and homozygous ε3ε3 (6.6% per year [4.1, 9.3]) subjects. Rates of accumulation increased with diagnostic severity; controls accumulated 5.8% per year 95% CI: [2.2, 9.6] for the standardized population, early mild cognitive impairment 6.6% per year [3.9, 9.4], late mild cognitive impairment 12.5% per year [8.2, 17.0] and AD subjects 14.7% per year [6.0, 24.0]. Following adjustment for APOE status, these differences became nonstatistically significant suggesting that APOE ε4 genotype is the major driver of accumulation of WMH volume rather than diagnosis of AD
    • …
    corecore