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ABSTRACT 

 

Brain vascular damage accumulate in aging and often manifest as white matter hyperintensities 

(WMHs) on MRI. Despite increased interest in automated methods to segment WMHs, a gold 

standard has not been achieved and their longitudinal reproducibility has been poorly investigated. 

The aim of present work is to evaluate accuracy and reproducibility of two freely available 

segmentation algorithms. A harmonized MRI protocol was implemented 3T-scanners across 13 

European sites, each scanning five volunteers twice (test-retest) using 2D-FLAIR. Automated 

segmentation was performed using Lesion segmentation tool algorithms (LST): the Lesion growth 

algorithm (LGA) in SPM8 and 12 and the Lesion prediction algorithm (LPA). To assess 

reproducibility, we applied the LST longitudinal pipeline to the LGA and LPA outputs for both the 

test and retest scans. We evaluated volumetric and spatial accuracy comparing LGA and LPA with 

manual tracing, and for reproducibility the test versus retest. Median volume difference between 

automated WMH and manual segmentations (mL) was -0.22[IQR=0.50] for LGA-SPM8, -0.12[0.57] 

for LGA-SPM12, -0.09[0.53] for LPA, while the spatial accuracy (Dice Coefficient) was 0.29[0.31], 

0.33[0.26] and 0.41[0.23], respectively. The reproducibility analysis showed a median reproducibility 

error of 20%[IQR=41] for LGA-SPM8, 14%[31] for LGA-SPM12 and 10%[27] with the LPA cross-

sectional pipeline. Applying the LST longitudinal pipeline, the reproducibility errors were 

considerably reduced (LGA: 0%[IQR=0], p<0.001; LPA: 0%[3], p<0.001) compared to those derived 

using the cross-sectional algorithms. The DC using the longitudinal pipeline was excellent 

(median=1) for LGA [IQR=0] and LPA [0.02]. LST algorithms showed moderate accuracy and good 

reproducibility. Therefore, it can be used as a reliable cross-sectional and longitudinal tool in multi-

site studies. 
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1. INTRODUCTION 

White matter hyperintensities (WMHs) are a marker of white matter tissue damage seen as 

hyperintense signals on T2 and Fluid Attenuated Inversion Recovery (FLAIR) images. They are a 

potential hallmark of various disorders such as cerebrovascular disease [1], other neurological [2] 

(e.g. multiple sclerosis, MS, Trip and Miller, 2005, and dementia, Prins and Scheltens, 2015), 

psychiatric [5] or inflammatory disorders [1,6]. Moreover, WMHs are commonly seen also in 

cognitively unimpaired people [7], and their prevalence increases with aging [8]. The prevalence of 

WMHs in community-dwelling elderly is highly variable, ranging from 5.3% to 100% depending on 

study design, study population, and WMH assessment methods [9–14]. Consistent evidence exists 

that the volume of WMHs is positively associated with cognitive decline both in cognitively 

unimpaired people [15–17] and in patients with cognitive impairment [18,19]. This suggests that 

WMHs volume is a relevant biomarker and should be taken into account not only for the clinical 

evaluation of elderly people, but also in research studies [20,21]. Currently, WMHs are often 

quantified through visual semi-quantitative scales both in clinical and research settings (e.g. the Age-

Related White Matter Changes, and Fazekas scales, Fazekas et al., 1987; Wahlund et al., 2001). These 

scales are relatively quick, but require proper training and show significant inter-rater and intra-rater 

variability [24]. Similar limitations apply to manual segmentation [25], which are in addition very 

time-consuming. To overcome these limitations, there is an increasing interest in automated and semi-

automated methods allowing reliable and effective WMHs segmentation and quantification (for a 

review see [26]. We selected an open-source tool, Lesion Segmentation Toolbox (LST) from the 

Statistical Parametric Mapping (SPM) software package, that segments WMHs using FLAIR and T1 

images (http://www.applied-statistics.de/lst.html). We choose LST because: (i) it does not require 

training; (ii) is freely available; (iii) is fully automated; (iv) includes also a longitudinal pipeline, in 

addition to cross-sectional algorithms, that could be useful for monitoring the WMHs evolution over 

time [27]. LST was originally developed for MS lesion segmentation [28], but it was used to segment 

WMHs also in other diseases such as diabetes mellitus [29]. To the best of our knowledge, accuracy 

and test–retest reproducibility of WMH measurements in multi-site studies of elderly subjects have 

been poorly investigated. The aim of this study was to assess i) the accuracy of the two LST cross-

sectional algorithms versus manual segmentation performed by an expert rater (as a standard of truth), 

and ii) the test-retest reproducibility of the two cross-sectional algorithms and the longitudinal 

pipeline of LST. We also tested whether accuracy and reproducibility were affected by MRI scanner 

or site effects. 

 

 

http://www.applied-statistics.de/lst.html


2. MATERIALS AND METHODS 

For the present study, we analyzed data from the PharmaCog project [30]. Participants, study design 

and further details have been exhaustively described in previous studies [31–35], but are briefly 

summarized below.  

 

2.1 Participants 

Thirteen 3T MRI sites across Italy (Verona, Genoa, Rome, Perugia and Naples), Spain (Barcelona), 

France (Marseille, Lille, and Toulouse), Germany (Essen, Leipzig), Greece (Thessaloniki) and the 

Netherlands (Amsterdam) provided imaging data. Each site enrolled four-to-five cognitively 

unimpaired elderly (age range: 50-78 years, 60% of females) scanned twice as follow: (i) baseline 

(test); (ii) after 7-32 days (retest) (median interval: 13.5 days, IQR=15). This short test–retest interval 

minimizes potential biological changes, allowing to address the reproducibility of MRI assessment 

tools. All participants had no history of psychiatric, neurological or systemic disease, were Caucasian 

and provided written informed consent following procedures approved by the local institutional 

review board of the institution where scanning was performed. Detailed inclusion and exclusion 

criteria were described elsewhere [33]. 

 

2.2 MRI acquisition 

The 13 MRI sites used different MRI scanners (Siemens, GE, Philips) and only vendor-provided 

sequences. For each participant, axial 2D structural FLAIR images were obtained in different sessions 

two weeks apart for the test-retest evaluations. The acquisition parameters in each sessions followed  

mostly the harmonization suggestions from the ADNI-2 protocol 

(http://adni.loni.usc.edu/methods/documents/mri-protocols). For all sites the following basic FLAIR 

parameters were maintained: voxel 0.9 × 0.9 × 4 mm3; inversion flip angle 1500, no fat suppression, 

full k space, acceleration factor in the range of 1.5–2 was used where possible. Parameters that change 

across sites are reported in Table 1. Note that some parameters vary considerably across vendors due 

to differences in sequence implementations and definitions. The test–retest raw data from this study 

will be made available on request. 

 

2.3. MRI manual segmentation 

A rater with expertise in lesion segmentation performed the 2D manual segmentation of WMH only 

on the test FLAIR images using FSLview version 5.0.3 blinded to the results of the automated 

http://www.sciencedirect.com/topics/medicine-and-dentistry/measurement-technique
http://www.sciencedirect.com/topics/medicine-and-dentistry/systemic-diseases
http://adni.loni.usc.edu/methods/documents/mri-protocols


segmentation. The process of manual tracing resulted in the definition of binary masks, considered as 

a standard of truth. For each subject, WMHs volumes (expressed in mL) were calculated 

automatically using FSL (fslstats of FSLUTILS). 

 

2.4. MRI automated segmentation: LST 

We have processed the test and retest images using the two LST algorithms, and their outputs were 

further processed using the LST longitudinal pipeline for the reproducibility assessment. These tools 

are described below. 

1. Lesion Growth Algorithm (LGA): LGA is implemented both in SPM8 and SPM12. The 

algorithm first segments the T1 images into the three main tissue classes (CSF, GM and WM). 

This information is then combined with the coregistered FLAIR intensities in order to 

calculate lesion belief maps. By thresholding these maps with a pre-chosen initial threshold 

(κ) an initial binary lesion map is obtained which is subsequently grown along voxels that 

appear hyperintense in the FLAIR image. The result is a lesion probability map. We used LGA 

with an optimized parameter (Kappa=0.25) set by visual inspection of the segmentations 

resulting from different test parameters [36]. 

2. Lesion Prediction Algorithm (LPA): LPA is implemented only in SPM12. This algorithm 

consists of a binary classifier in the form of a logistic regression model trained on the data of 

53 MS patients with severe lesion patterns. Data were obtained at the Department of 

Neurology, Technische Universität München, Munich, Germany. As covariates for this model 

a similar lesion belief map as for the lesion growth algorithm [28] was used as well as a spatial 

covariate that takes into account voxel specific changes in lesion probability. Parameters of 

this model fit are used to segment lesions in new images by providing an estimate for the 

lesion probability for each voxel. The algorithm requires only a FLAIR image, however T1 

might improve WMH segmentation. We used LPA using both T1 and FLAIR. No parameters 

needed to be set [37]. 

1) Longitudinal Pipeline: A longitudinal LST pipeline is implemented only for SPM12. 

Segmented lesion maps of test and retests were compared using the longitudinal pipeline 

implemented in the LST toolbox. This pipeline consists of the following steps: First, lesion 

maps and FLAIR images are coregistered to the images of the first time point. In the next step, 

relative differences of FLAIR intensities are calculated along all voxels that were segmented 

as lesions in at least one time point. Finally, significant increase and decrease of lesion voxels 



are identified if their differences exceed or fall below a certain threshold that is obtained by 

analyzing healthy white matter. As a final result, lesion change labels are produced for all 

consecutive time points. In these images the three possible cases decrease, no change and 

increase are labeled by the numbers 1, 2, and 3, respectively. Both the LGA and LPA cross-

sectional outputs from SPM12 were further processed using this pipeline [27]. 

Since LGA and LPA output are on T1-space, we linearly registered them to the FLAIR-space (FSL-

FLIRT, 6 DOF and trilinear interpolation) where the manual segmentations were performed. 

 

2.5. Accuracy analysis 

First, a threshold of 0.5 was applied to the LGA and LPA lesion maps in order to create binary masks. 

After that, we assessed the accuracy of the cross-sectional algorithms (i.e. LGA and LPA) vs manual 

WMHs segmentation in terms of: i) volumetric accuracy (differences between volumes of the manual 

and automated segmentations), and ii) spatial accuracy (Dice coefficient, DC). DC was calculated 

with the following formula [38,39]: 

 

 

2.6. Reproducibility analysis 

 

We assessed the test-retest reproducibility of LST in terms of: i) volumetric reproducibility, using the 

reproducibility error (ε) and the intraclass correlation coefficient (ICC), and ii) spatial reproducibility 

using the DC. Reproducibility error was calculated with following formula [31]: 

 

 

2.7. Statistical analysis 

One‐way Kruskal–Wallis test was used to test for MRI site and scanner effects on the participants' 

distribution of age, volumes, accuracy and reproducibility measures (significance threshold set at 

p<0.05). If significant, we used post-hoc pairwise comparisons using Dunn's all-pairs test. For the 

spatial accuracy analyses, Spearman rank correlation between DCs and manual WMHs volumes was 

performed to evaluate if the association between WMH volumes and spatial overlap was significant. 



An independent 2-group Mann-Whitney U Test was used to assess the DCs differences between the 

low WMH volume group (≤5 mL) compared to the group with medium to high WMH volume (<5 

mL). All analyses were performed using R, version 3.5.2 (R Foundation for statistical computing, 

https://www.r-project.org/). 

 

 

3. RESULTS 

 

3.1. Participants’ features across MRI sites 

Table 1 shows participants’ demographic features across MRI sites. Age was similar across sites, 

except for the participants of site 5 (Essen) who were younger (age: 52 years, IQR=3) than those of 

site 2 (Barcelona, age: 73 years, IQR=1, p=0.004) and site 12 (Chieti, age: 69 years, IQR=4, p=0.022). 

No differences across sites were observed in gender distribution, and time interval between test and 

retest scans (Table 1). The median WMH volume measured by manual rater was 0.54 mL (IQR=1.58), 

and no differences across sites or scanners are observed for this measure. 

 

3.2. Accuracy results 

Of the 60 subjects, two were excluded from accuracy analysis due to lack of lesions detected by the 

expert (n=1), or for low signal-to-noise ratio (n=1). Visual inspection of the WMHs segmentation 

showed different segmentation quality across MRI scanners, in particular the visual quality 

assessment shows high performance for LPA segmentations (Figure 1). 

 

3.2.1. Volumetric accuracy 

Figure 2 shows median volume differences between manual and automated segmentations. 

Volumetric accuracy of LPA SPM12 (volume difference: -0.09, IQR=0.53) seemed numerically better 

than that of LGA SPM8 (-0.22, IQR=0.50, p=0.024), but was not statistically different than that of 

LGA SPM12 (-0.12, IQR=0.57, p=0.084) (Figure 2).  

No site effect was observed for volumetric differences, while a scanner effect was observed only for 

LGA SPM12 (-0.44, IQR=1.11 for GE vs -0.01, IQR=0.70 for Siemens, p=0.010) and LPA SPM12 

(-0.33, IQR=1.23 for GE vs 0.01, IQR=1.00 for Philips, p=0.003). 

 

3.2.2. Spatial accuracy 

Figure 3 shows the spatial accuracy between manual and automated segmentations for each subject, 

expressed by the DC coefficient. Subject were ordered based on the manual segmentation WMH 

https://www.r-project.org/


volumes, showing a clear trend for worse performance at lower volumes. Median DC was 0.41 for 

LPA (from 0.34, IQR=0.21, in Philips to 0.43, IQR=0.34, in Siemens), 0.29 for LGA SPM8 (from 

0.25, IQR=0.27 in Philips to 0.42, IQR=0.34 in Siemens), and 0.33 for LGA SPM12 (from 0.31, 

IQR=0.35 in GE to 0.40, IQR=0.28 in Siemens). No statistically significant differences were observed 

among the algorithms (p>0.05). Moreover, as expected, the DC coefficient increased with increasing 

WMHs volume, independently of the considered algorithm (LGA SPM8: rho=0.70, p<0.001; LGA 

SPM12: rho=0.62, p<0.001; LPA SPM12: rho=0.62, p<0.001) (Figure 3). Table 2 reports the DC of 

the two algorithms divided by lesion volume in low (≤5 mL) and medium to high (>5 mL). Indeed, 

the DC is higher for the group with higher WMH, irrespective of the algorithm (p<0.005). No site or 

scanner effects were observed on these measures. 

 

3.3. Reproducibility results 

Of the 60 subjects, three were excluded from reproducibility analysis due to lack of lesions detected 

by the expert (n=1, the same subjects excluded from the accuracy analysis), or for low signal-to-noise 

ratio (n=1, the same subjects excluded from the accuracy analysis), or because the longitudinal 

segmentation failed (n=1). 

 

3.3.1. Volumetric reproducibility 

Using the cross-sectional algorithms, we observed a median reproducibility error of 10% (IQR=27) 

using LPA, 14% (IQR=31) for LGA SPM12 and 20% (IQR=41) for LGA SPM8.  

Applying the LST longitudinal pipeline to LGA and LPA, the reproducibility errors were considerably 

reduced (LGA: 0%, IQR=0, p<0.001; LPA: 0%, IQR=3, p<0.001) compared to those observed using 

the cross-sectional algorithms only (Figure 4). We observed a scanner effect only on the 

reproducibility error of SPM12 LGA (9% for Siemens vs 15% for GE, p=0.029; and 30% for Philips, 

p=0.003). Moreover, we found no site effect. We observed an excellent test-retest volumetric 

agreement using both cross-sectional algorithms and applying the longitudinal pipeline (ICC=1). 

 

3.3.2. Spatial reproducibility 

The comparison between test-retest cross-sectional algorithms showed a similar (p=0.975) DC for 

SPM8 LGA (0.65, IQR=0.26 ), SPM12 LGA (0.67, IQR=0.31) and LPA (0.66, IQR=0.17). For cross-

sectional algorithms the DC is higher in the group with higher WMH volume (Table 2, p<0.005). The 

DC for both LGA and LPA with longitudinal processing was very high (LGA: median=1, IQR=0 vs 

LPA: median=1, IQR=0.02; p=0.04). We observed no site or scanner effect on this measure (Figure 

5). 



 

4. DISCUSSION 

In this study, we evaluated the accuracy and reproducibility of LST in a population of healthy elderly 

subjects scanned twice in a 3T MRI across a multi-site cohort, showing a good performance of its 

cross-sectional algorithms and longitudinal pipeline in terms of volumes accuracy and reproducibility. 

In particular, our main results are summarized as follows: (i) LPA and LGA show a good volumetric 

accuracy, but LPA performed overall better than LGA; (ii) the LGA and LPA’s spatial accuracy 

increases with the amount of WMHs; (iii) volumetric reproducibility reveals that LST longitudinal 

pipeline steeply reduces the reproducibility error; (iv) spatial reproducibility of the longitudinal 

pipeline applied to LGA and LPA outputs was optimal. 

Compared to De Sitter and colleagues [40] in a cohort of 52 MS patients (mean WMH volume= 

4.85 mL), we found a slightly better volumetric accuracy comparing both LPA (mean volume 

difference= 0.45 mL and LGA (mean volume difference= 2.88 mL) using SPM12, or other tools that 

they have tested such as Cascade [41,42] (mean volume difference=0.67 mL), Lesion-Topology 

preserving Anatomical Segmentation (Lesion-TOADS) [43] (mean volume difference=2.18 mL) or 

using k-Nearest Neighbor with Tissue Type Priors (kNN-TTP) [44] (mean volume difference=-1.46 

mL). Similar results have been reported by Egger and colleagues [45] for LGA SPM8 (median volume 

difference=0.68 mL), LGA SPM12 (median volume difference=0.93 mL), LPA SPM12 (median 

volume difference=0.85 mL). 

On the other hand, the spatial accuracy we observed using both LGA and LPA (DC range=0.29-0.41) 

was lower compared to previous studies using LST algorithms or other supervised/unsupervised or 

automated methods  (DC range=0.75-0.84) [44 mean WMH volume= 16.33 mL, 46–48], except for 

De Sitter and colleagues that showed comparable results (DC range=0.23-0.44) [40]. Conversely, 

studies on healthy subjects showed more variability, e.g. DC=0.47 in Ong et al [49 mean WMH 

volume= 5.182.603 mm3], DC between 0.63 and 0.75 in Manjon et al [50], or DC=0.77 in Wang et 

al. [48,51 mean WMH volume= 20.43 mL]. The lower spatial accuracy found in our work might be 

due to the following reasons: (i) our sample consists of healthy participants with overall small WMHs 

volumes, which correlate with a lower DC (as represented in Figure 3); (ii) we acquired only 2D 

FLAIR images, so we could expect a higher accuracy using 3D FLAIR; (iii) given the multi-site 

nature of this study, we expected a considerable heterogeneity of the algorithms’ performance across 

sites and scanners, which is a non-systematic bias for both manual and automated segmentations. 

Indeed, a high variability was observed for all quantification methods. Nevertheless, the multi-site 

nature of this study is a strength of this study, making the research setting closer to the real clinical 

setting and improving the generalization of our results. 



As far as we know, only a few studies have investigated the reproducibility of WMHs 

segmentation tools. The reproducibility of a FMRIB’s tool to segments automatically WMHs, Brain 

Intensity AbNormality Classification Algorithm (BIANCA), was tested in a sample of 20 subjects 

scanned twice on the same scanner, revealing a very similar reproducibility error compared to our 

results for both LGA and LPA on SPM12 (reproducibility error mean =10%) [48]. However, the 

longitudinal pipeline of LST allows to reduce the reproducibility error approximately to 0%. 

A quick and reliable WMHs quantification across different sites and scanners is needed both 

in clinical practice, in order to improve the diagnostic workup and track the disease progression of 

elderly people with suspected neurodegenerative diseases, and in research settings to improve the 

selection of the population of interest. Further studies on larger datasets are needed to confirm the 

accuracy and reproducibility of LST and to provide normative data on WMHs. Moreover, studies on 

the cause of the low accuracy, like lesions location, type or shape will enhance our knowledge of the 

WMHs and will help the algorithm developers. 

 

Limitation 

Marizzoni et al. (2015)[32] and Jovicich et al. (2013, 2014)[31,33] have already discussed some 

limitations of the study design, but some of the issues are addressed here for completeness. 

First, the number of participants included in this study is small (n=60), and each site contributed with 

a different number of participants (from 4 to 5) was different among the MRI sites. We have grouped 

the MRI sites with the same scanner in order to increase the number of subjects per group. Moreover, 

the median WMHs volume of our sample was low (0.54 mL, IQR=1.58). Therefore, our sample might 

be little representative of a healthy subject’s population. We only had 2D FLAIR (instead of 3D 

sequences), and their lower resolution might explain the low spatial agreement. 

Lastly, we did not use a training dataset to set the threshold (see method, LGA) but only visual 

inspection to be coherent with clinical practice. 

 

Conclusion 

LST is a free, easy-to-use and quick automated method allowing to accurately and reliably assess 

WMHs volume, even at multiple time points. We suggest the use of this tool in observational 

longitudinal research studies as a reliable tool to quantify WMHs overtime. 
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Table 1. Summary of demographic, MRI system and 2D FLAIR acquisition differences across MRI 

sites (largely based on ADNI-2).  

Site 
(location) 

3T MRI 

Scanner 

Sequence parameters 2D 

FLAIR 

Acquisition  
matrix 

Voxel 

(read x 

phase x 

slice mm3) 

Subjects’  
age,  

median  
(IQR) 

Test-Retest  
Days 

interval, 
median (IQR) 

Gender, 

(female 

/N) TR 

(ms) 
TE 

(ms) TI (ms) FA (°) 

1 
(Verona) 

Siemens 

Allegra 9760 
86 

2500 

150 

256x256 

0.9x0.9x4.0 

68 (7) 7 (14) 2/5 
2 

(Barcelona) 
Siemens 

TrioTim 

9000 

73 (1) 12 (2) 4/4 
3 

(Leipzig) 
Siemens 

TrioTim 
90 

62 (4) 14 (1) 3/5 
4 

(Marseille) 
Siemens 

Verio 65 (11) 14 (28) 4/5 
5 

(Essen) 
Siemens 

Skyra 91 52 (3) 9 (6) 2/5 

6 
(Naples) 

Siemens 

Biograph 

mMR 
90 58 (2) 7 (27) 2/5 

7 
(Genoa) GE HDxt 11000 147 

2250 

58 (3) 14 (10) 2/4 
8 

(Thessaloniki) GE HDxt 
8002 126 

56 (11) 32 (13) 2/4 
9 

(Amsterdam) 
Discovery 

MR750 63 (10) 7 (7) 3/5 
10 

(Lille) 
Philips 

Achieva 
9000 

90 2500 

256x237 
66 (2) 8 (15) 3/5 

11 
(Toulouse) 

Philips 

Achieva 60 (4) 19 (9) 3/5 
12 

(Chieti) 
Philips 

Achieva 11000 
256x211 

69 (4) 9 (1) 4/5 
13 

(Perugia) 
Philips 

Achieva 9000 60 (12) 7 (3) 2/3 
 

Abbreviations: TR, repetition time; TE, echo time; TI, inversion time; FA, flip angle. 

 

 

 

 

 

 

 

 



Figure 1. Manual and automated WMHs segmentations overlaid on sample subject 2D FLAIR 

scan. 

 
Abbreviations: SPM, statistical parametric mapping. 

  



Figure 2. Volumetric Accuracy: comparison between automated and manual segmentations. 

 
 

Boxplot represents lesion volumes differences between automated and manual segmentations, 

separated for scanner type and in the whole group. The overall comparison showed that the difference 

between manual and LPA SPM12 volumes was lower than that between manual and LGA SPM8 

(p=0.024), while not statistically different than that between manual and LGA SPM12 (p=0.084), 

meaning that the volume accuracy is better for LPA SPM12 compared to LGA SPM8. 

Abbreviations: LGA, lesion growth algorithm; SPM, statistical parametric mapping; LPA, lesion 

prediction algorithm; Cross, cross-sectional. 

  



Figure 3. Spatial Accuracy: comparison between automated and manual segmentations. 

 

  



Figure 4: Volumetric reproducibility: comparison between test and retest automated WMHs 

segmentations. 

 
  



 

Figure 5: Spatial reproducibility: comparison between test and retest automated WMHs 

segmentations.  

 

 
Bars represent Dice Coefficients between test and retest automated segmentations.  

We assessed the spatial reproducibility of the cross-sectional and longitudinal pipelines of WMHs 

segmentation algorithms for each site and grouped for scanner type. No site or scanner effect were 

observed. 

Abbreviations: DC, dice coefficient; LGA, lesion growth algorithm; SPM, statistical parametric 

mapping; LPA, lesion prediction algorithm; Long, longitudinal. 

 

 

 

 

 

 



Table 2. Summary of the accuracy and reproducibility measure (expressed in DC) grouped by low 

and medium to high volume.  

Comparison 
 

Low 

(N=54) 

Medium to high 

(N=6) 

Volume ≤5 mL >5 mL 

Automated vs manual test 

DC Cross LGA SPM8 0.27 [0.29] 0.62 [0.02] 

DC Cross LGA SPM12 0.32 [0.28] 0.58 [0.10] 

DC Cross LPA SPM12 0.38 [0.22] 0.60 [0.05] 

Automated test vs retest 

DC Cross LGA SPM8 0.61 [0.31] 0.83 [0.06] 

DC Cross LGA SPM12 0.64 [0.29] 0.80 [0.02] 

DC Long LGA SPM12 1 [0.0] 1 [0.01] 

DC Cross LPA SPM12 0.65 [0.15] 0.81 [0.03] 

DC Long LPA SPM12 1 [0.03] 1 [0.01] 

Abbreviations: DC, dice coefficient; LGA, lesion growth algorithm; SPM, statistical parametric 

mapping; LPA, lesion prediction algorithm; Long, longitudinal. 


