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Abstract 

Changes to the while matter of the brain disrupt neural communication between spatially 

distributed brain regions and are associated with cognitive changes in later life. While 

approximately 95% of older adults experience these brain changes, not everyone who has 

significant white matter damage displays cognitive impairment. Few studies have investigated 

the association between white matter changes and cognition in the context of functional brain 

network integrity. This study used a data-driven, multivariate analytical model to investigate 

intrinsic functional connectivity patterns associated with individual variability in white matter 

lesion load as related to fluid and crystallized intelligence in a sample of healthy older adults (n = 

84). Several primary findings were noted. First, a reliable pattern emerged associating whole-

brain resting-state functional connectivity with individual variability in measures of white matter 

lesion load, as indexed by total white matter lesion volume and number of lesions. Secondly, 

white matter lesion load was associated with increased network disintegration and 

dedifferentiation. Specifically, lower white matter lesion load was associated with greater within- 

versus between-network connectivity. Higher white matter lesion load was associated with 

greater between-network connectivity compared to within. These associations between intrinsic 

functional connectivity and white matter lesion load were not reliably associated with 

crystallized and fluid intelligence performance. These results suggest that changes to the white 

matter of the brain in typically aging older adults are characterized by increased functional brain 

network dedifferentiation. The findings highlight the role of white matter lesion load in altering 

the functional network architecture of the brain. 
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Introduction 

Aging increases risk for developing neurodegenerative diseases and accompanying 

disruptions in mental abilities. Cerebral small vessel disease (CSVD) is the second most 

prevalent pathology associated with age-related cognitive decline (Debette & Markus, 

2010;  Griebe et al., 2014). It has been associated with increased risk of stroke, Alzheimer’s 

disease, and other forms of dementia (Barnes et al., 2013; Debette & Markus, 2010; Provenzano 

et al., 2013; Snowdon et al., 1997). CSVD is characterized by pathological changes in white 

matter or axonal tissue of the brain (Pantoni, 2010), the role of which is to enable communication 

between spatially separate brain regions and networks. White matter connections, therefore, form 

the intrinsic structural architecture in the human brain. These white matter changes can be 

identified on magnetic resonance imaging (MRI) scans as white matter hyperintensities (WMH) 

(Black, Gao, & Bilbao, 2009; Wardlaw, Smith, & Dichgans, 2013). Brain imaging studies reveal 

the presence of one or more WMH in nearly 95% of adults over the age of 45, many of whom do 

not endorse clinical symptoms (Vernooij et al., 2007).   

In addition to these structural brain changes, aging is accompanied by a general shift in 

cognitive abilities, a trend recently described as the semanticization of cognition (Spreng & 

Turner, 2019). This shift is marked by a decline in cognitive control abilities referred to as fluid 

intelligence (Park, Polk, Mikels, Taylor, & Marshuetz, 2001; Verhaeghen & Cerella, 2002), in 

the context of continued accumulation and increased reliance on semantic knowledge, or  

crystallized intelligence (Park et al., 2001; Verhaeghen, 2003). Fluid intelligence guides novel 

problem solving and includes the capacity for orienting attentional resources to pertinent aspects 

of the environment, inhibiting distractions, and flexibly delegating cognitive resources to sustain 

goal-directed behaviours (Carpenter, Just, & Shell, 1990; Cattell, 1971). Crystallized intelligence 
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relies on accessing the storage of semantic knowledge about the self and the world that is 

accumulated over a person’s lifetime (Cattell, 1971).  

Damage to white matter, as indexed by WMH, leads to a decrease in the healthy neural 

tissue available for the types of computations required for flexible cofgnitive operations (De 

Marco, Manca, Mitolo, & Venneri, 2017). Both cross-sectional and longitudinal studies have 

related the severity of WMH to poorer performance in the age-sensitive domains required for 

fluid intelligence, including executive functions (Cook et al., 2004; Kramer et al., 2007), 

episodic memory, working memory (Raz, Rodrigue, Kennedy, & Acker, 2007), and processing 

speed (Gunning-Dixon & Raz, 2000).  

Furthermore, these age-related shifts in cognition mirror local and network-level 

functional brain changes that are observed in older adulthood (Spreng & Turner, 2019). Large 

scale brain networks are comprised of anatomically distributed brain regions that are temporally 

connected and form the intrinsic functional architecture of the brain (Friston, 1994). At the brain 

network level, functional reductions within-networks and increased connectivity between-

networks have been documented across the neurocognitive aging literature (e.g., Chan, Park, 

Savalia, Petersen, & Wig, 2014; Geerligs, Renken, Saliasi, Maurits, & Lorist, 2014).  

Converging findings across studies report the default network to be most sensitive to the effects 

of aging (Grady, 2012). The default network is engaged during internally-driven cognitive 

processes when access to stored knowledge representations and experiences is required 

(Andrews-Hanna, Smallwood, & Spreng, 2014). It is comprised of the posterior cingulate cortex, 

medial prefrontal cortex, inferior parietal lobule, as well as the medial and lateral temporal lobes 

(Buckner, 2004). Functional connectivity within this network is observed to diminish in older 

adults (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; see Damoiseaux, 2017; Dennis & 
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Thompson, 2014; Ferreira & Busatto, 2013 for reviews), and this reduction predicts increased 

connectivity with the frontoparietal network which is involved in cognitive control (Grady, 

Sarraf, Saverino, & Campbell, 2016). Therefore, aging is also associated with increased 

between-network connectivity of the frontoparietal network (Grady et al., 2016). Both the default 

network and the frontoparietal network have also been observed to exhibit lower network 

segregation, a measure of within- versus between-network connectivity, (see Chan et al., 2014) 

in older adults (Grady et al., 2016).  

Numerous studies that concurrently examined the changing landscapes of structural and 

functional brain connectivity found that they are highly correlated and influenced by age (e.g., 

Betzel et al., 2014; Fjell et al., 2016; Zimmermann et al., 2016; see Damoiseaux, 2017 for 

review). Although, some inconsistencies in the literature still exist. For example, functional 

connectivity between brain regions has been observed in the absence of structural connectivity 

(Damoiseaux & Greicius, 2009; Zimmermann et al., 2016), possibly as a result of indirect 

structural connections (Damoiseaux, 2017). Meunier and colleagues (2009) have suggested that 

structural disconnections may lead not only to decreases but also increases in functional 

connectivity. This phenomenon may be explained by The Compensatory Recruitment of Neural 

Circuits Hypothesis (CRUNCH) (Reuter-Lorenz & Cappell, 2008), which postulates that the 

structural and functional brain changes that accompany advancing age, including structural white 

matter changes, lead to less efficient (‘noisy’) cognitive processing operations, requiring for 

additional resources to be recruited to compensate for this deterioration of neural networks  

(Gazzaley, Cooney, Rissman, & D'Esposito, 2005; Li & Rieckmann, 2014; Schmitz, Dixon, 

Anderson, & De Rosa, 2014).  
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The relationship between age-related changes in functional connectivity and age-related 

declines in cognitive abilities remains poorly understood.  When controlling for the effects of 

age, most cross-sectional studies, but not all (Damoiseaux et al., 2017), report that participants 

with lower functional connectivity within networks also have poorer cognitive outcomes 

(Andrews-Hanna et al., 2007; Chan et al., 2014; Damoiseaux et al., 2008; Hirsiger et al., 2016). 

For example, functional connectivity within the default network has been found to be reduced in 

individuals with memory deficits compared to individuals with preserved memory (Bernard et 

al., 2015). However, while older adults at risk for CSVD have white matter damage that predicts 

cognitive decline, particularly in age-sensitive domains (Cook et al., 2004; Gunning-Dixon & 

Raz, 2000; Kramer et al., 2007; Raz et al., 2007), there is considerable variability in the 

association between these white matter changes and cognitive ability in older adulthood (Dey, 

Stamenova, Turner, Black, & Levine, 2016).  In other words, white matter changes that only 

minimally impact brain function may remain clinically ‘silent’. To elucidate this phenomenon, it 

is necessary to examine individual variability in the associations between age-related white 

matter changes and functional brain changes concurrently, in relation to patterns of cognitive 

functioning.  

To explain the association between structural and functional brain changes and their 

relationship to behavioural outcomes, a disconnection model of neurocognitive aging has been 

proposed. Originally stemming from the clinical neurological model of Geschwind (Catani & 

ffytche, 2005; Geschwind, 1965a, 1965b) and the brain-behaviour model of schizophrenia 

outlined by Friston (1998), the disconnection hypothesis states that compromise of structural 

connections (i.e., integrity of white matter) leads to a compromise of functional connections (i.e., 

brain networks) that have behavioural consequences. As it relates to cognitive aging, the 
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“disconnected brain” view suggests that progressive degeneration of white matter integrity 

associated with aging directly affects the functional architecture of the brain, leading to cognitive 

decline (Antonenko & Floel 2014; Bennett & Madden 2014; Ferreira & Busatto, 2013). In other 

words, damage to the white matter tracts that form the structural architecture of the brain affects 

the integrity of functional brain networks by altering neural communication between brain 

regions (Dey et al., 2016). Understanding how intrinsic shifts in the brain’s structural 

architecture impact the re-organization of functional networks can provide insight into the 

mechanisms underlying individual variability in cognitive functioning and is critical for 

distinguishing healthy from potentially pathological aging. 

 Empirical evidence supporting the disconnection hypothesis comes from animal studies 

(O’Reilly et al., 2013; van Meer et al., 2010) and in case-studies of individuals with known 

neurological conditions or trauma (Fridriksson et al., 2013; Johnston et al., 2008; Schonberg et 

al., 2006; Seghier et al., 2004; Song et al., 2014). Efforts in the present-day literature are being 

directed towards confirming this for pathologies such as white matter deterioration that are 

highly prevalent even in typically aging adults (Vernooij et al., 2007).  

Langen and colleagues (2017) examined the the location-specific relationship between 

white matter lesions and resting-state functional connectivity within a population-based setting 

of middle-aged and older adults. They found that local white matter lesions can decrease tract-

specific functional connectivity, both in direct and indirect connections. This study concluded 

that the brain’s structural network architecture allows brain function to be maintained via 

alternate pathways, even when direct connectivity is compromised. These findings provide 

support for the disconnection hypothesis at the level of the brain and offer novel insights into the 

interaction between the spatial topology of white matter lesions and intrinsic functional network 
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connectivity. However, given that this study did not extend their findings to neurocognitive 

functioning, it still remains unclear how this impacts age-sensitive cognitive domains such as 

fluid intelligence. 

A recent study (Madden et al., 2017) set out to distinguish various imaging measures to 

understand how they independently mediate the relationship between age and fluid intelligence 

in a sample of adults ages 19-79. They reported resting-state functional connectivity of 

sensorimotor networks, associated with processing speed, were a significant mediator of the age-

related decline in cognition. Whereas other imaging measures, including WMHs, did not mediate 

this relationship. This study provided insight into how age-related structural and functional brain 

changes are independently associated with cognitive abilities. However, it still remains unclear 

how structural and functional brain changes interact and lead to the emergence of the cognitive 

deficits seen in older adulthood. 

The aim of the present study was to examine how age-related white matter changes 

impact the functional network integrity of the brain in relation to neurocognitive functioning in a 

group of healthy older adults. To address the gaps in the literature, this study implemented a two-

step approach. First, multivariate modelling was used to measure how WMHs relate to resting-

state functional connectivity. Second, this multivariate association between structural and 

functional connectivity was related to cognitive performance on measures of fluid and 

crystallized intelligence.   

We predicted that the number and size of WMH (i.e., lesion load) would be inversely 

associated with resting functional connectivity and that the strength of this association would in 

turn predict cognitive functioning. Specifically, we predicted that increased white matter lesion 

load would be associated with a global increase in between-network connectivity and a decline in 
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within-network connectivity, consistent with a dedifferentiation account (Cabeza, 2002; Chan et 

al., 2014; Grady, 2012; Meunier et al., 2009, 2014; Turner & D’Esposito, 2010). Further, we 

predicted that the strength of the association between white matter lesion load and resting-state 

functional connectivity would be more strongly associated with declines in fluid versus 

crystallized cognitive abilities (Andrews-Hanna et al., 2007; Cole et al., 2012; Ferreira, 2016; 

Shen et al., 2018). 

 Methods 

Participants 

All data for the current study were drawn from a larger neuroimaging and 

neuropsychological data collection initiative in collaboration with Cornell University known as 

the Goal-Directed Attention Study. Inclusion criteria included completion of all neuroimaging 

and neurocognitive protocols, a score of  > 26 on the Mini Mental Status Examination (MMSE), 

no subjective report of cognitive impairment or significant health condition, no history of 

neurological or active psychiatric disorder, and no current regime of medication known to impact 

cognition. All procedures were approved by the Institutional Review Boards of York and Cornell 

Universities.  

A total of 88 healthy older adults originally met study criterion. During the white matter 

hyperintensity segmentation process (see below for details), false positives were noted in the 

occipital lobe for one participant who was removed from the sample as a result. During the 

descriptive data analysis (see below) three participants with extreme white matter lesion load 

were flagged. Given that PLS is known to be highly sensitive to outliers, the decision was made 

to exclude these participants from further analyses as well. The final sample consisted of 84 

participants (47 women, 37 men, Mage = 67.46, age range: 60-83).  
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MRI Data Acquisition and Pre-Processing 

All neuroimaging data were acquired on a 3T GE Discovery MR750 scanner (General 

Electric, Milwaukee, United States) with a 32-channel receive-only phased-array head coil at the 

Cornell Magnetic Resonance Imaging Facility in Ithaca. Each participant underwent an 

anatomical scan acquired during a 5 m 25 s run using a T1-weighted volumetric MRI 

magnetization prepared rapid gradient echo [repetition time (TR) = 2530 ms; echo time (TE) = 

3.4 ms; inversion time (TI) = 1100 ms; flip angle (FA) = 7°; bandwidth = 195 Hz/pixel; 1.0 mm 

isotropic voxels, 176 slices]. Anatomical scans were acquired with 2 × acceleration with 

sensitivity encoding. 

Resting-state functional scans were acquired using a multi-echo echo planar imaging 

(ME-EPI) sequence with online re-construction (TR = 3000 ms; TE's = 13.7, 30, 47 ms; FA = 

83°; matrix size = 72 × 72; field of view (FOV) = 210 mm; 46 axial slices; 3.0 mm isotropic 

voxels). Each participant completed two resting-state multi-echo BOLD functional scans, 

keeping their eyes open, and blinking and breathing normally in the dimly lit scanner bay. These 

scans were acquired prior to engagement in any cognitive task functional magnetic resonance 

imaging (fMRI) experiment. Multi-echo fMRI is a novel data acquisition sequence that assists in 

eliminating noise components from resting fMRI datasets (Kundu et al., 2013, 2012). Through 

the acquisition of multiple echoes this method allows for the direct measurement of T2* 

relaxation rates. Blood-oxygen level dependent (BOLD) signal can then be isolated from non-

BOLD noise on the basis of echo time (TE) dependence. 

Resting-State Network Definition  

Resting-state functional MRI (rs-fMRI) was used as a measure of the intrinsic functional 

network architecture of the brain (Buckner & Vincent, 2007; Raichle & Snyder, 2007). Rs-fMRI 
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has proven particularly useful for studying the functional communication between spatially 

distributed brain regions and their relationship with behaviour (Stevens & Spreng, 2014).  

In order to identify functional brain networks, each participant’s cortex was separately 

parcellated into 400 functionally-defined regions. In order for each individual’s parcel 

boundaries to be optimized with respect to their rs-fMRI, the initial group parcellation developed 

by Schaefer et al., (2018) was refined (Chong et al., 2017). Initialization with a common 

parcellation produces automatic coherence between parcels across participants. A group sparsity 

constraint was used to model connectivity so that group similarities could be leveraged in 

connectivity between parcels while optimizing their boundaries for each participant. 

Initialization was used with this technique and applied across the entire cohort in groups of 20 

unrelated participants with initialization. Past studies validating this method demonstrated 

improved homogeneity of resting activity within the refined parcels (Chong et al., 2017). In 

addition, comparisons with task-based localizers showed a dependent decrease in variance of 

statistical parametric maps within the refined parcels compared to the group-based initialization, 

marking improved delineation of regions of functional specialization. This approach allows for 

increased accuracy in estimating individual functional regions while preserving consistency 

across participants with a standardized topological atlas (Chong et al., 2017). Using the 7 

network parcellation by Yeo et al., (2011), each parcel was matched to one of the corresponding 

networks: visual (VIS), somatomotor (SOM), dorsal attention (DAN), ventral attention (VAN), 

limbic (LIM), frontoparietal (FPN), and default networks (DN). For each individual in the 

sample, BOLD time-series for the two 10 m 17 s  rs-fMRI scans within each session were 

temporally standardized by subtracting the mean and dividing it by the standard deviation, and 

then concatenated. A Pearson correlation coefficient was calculated between each pair of 
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vertices. To generate the final 400 x 400 functional connectivity matrix, the correlation 

coefficient matrix was spatially standardized and averaged within and across parcels (Ge et al., 

2017). For each participant, the two connectivity matrices that were produced from the two 

sessions were averaged (Mwilambwe-Tshilobo et al., 2019). 

White Matter Hyperintensities 

T2- Fluid-Attenuated Inversion Recovery (FLAIR) structural MRI sequences were used 

to evaluate WMH load volume and quantity. WMH were segmented by the lesion prediction 

algorithm (LPA) (Schmidt, 2017, Chapter 6.1) as implemented in the Lesion Segmentation 

Toolbox (LST) version 2.0.15 (www.statistical-modelling.de/lst.html) for Statistical Parametric 

Mapping (SPM). This algorithm consists of a binary classifier in the form of a logistic regression 

model. This tool was originally trained to segment white matter lesion data of Multiple Sclerosis 

patients (Schmidt et al., 2012). Since then, this technique has been reliably implemented in 

samples of older adults with cardiovascular risk factors and healthy older adults (Birdsill et al., 

2014; Maldjian et al., 2013; Wang et al., 2014). As covariates for this model, a lesion belief map 

showing voxels that appear hyperintense on FLAIR images and that are likely to be part of the 

white matter was used (Schmidt et al., 2012). In addition, a spatial covariate that takes into 

account voxel specific changes in lesion probability was implemented. Parameters of this model 

fit are used to segment lesions in new images by providing an estimate for the lesion probability 

for each voxel. For the calculation of the lesion probability maps, T2-weighted FLAIR images 

were used. The resulting output was a probability lesion map in FLAIR space for each 

participant. Given that FLAIR images can be affected by artifacts such as cerebrospinal fluid 

pulsation, subject-specific anatomical masks were created using FSL tools 

(https://fsl.fmrib.ox.ac.uk/fsl/) in order to exclude voxels that were not part of the white matter. 
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The T1 high-resolution biased corrected images and dilated cerebrospinal fluid masks of each 

participant were used to create the anatomical masks. The resulting masks excluded the cortical 

and subcortical gray matter. The masks were then warped to each individual’s native FLAIR 

space. Regions falling outside the mask were excluded from the probability lesion maps. Finally, 

the masked lesion probability maps were used to calculate the total lesion volumes (in units of 

milliliters) and the total number of lesions for each participant. Volume and number of lesions 

values were then computed from the lesion maps. Each participants’ raw total lesion volume 

(TLV) in milliliters (mL) was then divided by their estimated total intracranial volume (eTIV) in 

mL. Final total lesion volume data (TLV/eTIV) and number of lesions data were converted to 

within-sample z-scores.  

Behavioural Measures of  Neurocognitive Functioning 

Neurocognitive performance on measures of fluid intelligence (fluid IQ) and crystallized 

intelligence (crystallized IQ) was assessed to characterize the cognitive abilities of each 

participant. Assessments of crystallized IQ and fluid IQ were obtained using the Unadjusted 

Fluid Cognition and Crystallized Cognition Composite Scores from the National Institute of 

Health (NIH) Toolbox Cognition Battery (http://www.nihtoolbox.org). The NIH Toolbox 

Cognition Battery includes tests that assess cognitive abilities that are important in adaptive 

functioning across the lifespan. The Unadjusted Scale Score provides a measure of the 

participant’s overall level of functioning compared with the general population, regardless of 

age, gender, or other demographic factors. This is done by comparing each test-taker’s 

performance to that of the entire NIH Toolbox representative normative American sample. 

Higher unadjusted scale scores imply better performance (Slotkin et al., 2012). All behavioural 
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measures of cognitive functioning in this study were treated as continuous variables. Any 

mention of high or low scores pertain to the sampling distribution of this specific study. 

Assessment of fluid intelligence. In this study, the NIH Toolbox Fluid Cognition 

Composite Score was used as an indicator for global information processing abilities in novel 

situations and capacity for new learning (fluid IQ). It is calculated by averaging the normalized 

scores of each of the fluid IQ measures (Flanker, Dimensional Change Card Sort, Picture 

Sequence Memory, List Sorting and Pattern Comparison), and then deriving scale scores based 

on this new distribution (Slotkin et al., 2012).  

Assessment of crystallized intelligence. The NIH Toolbox Crystallized Cognition 

Composite Score was used to measure cognition that relies more heavily on past learning 

experiences and accumulated knowledge (crystallized IQ) (Weintraub et al., 2013). It is derived 

by averaging the normalized scores of each of the Picture Vocabulary and Reading Recognition 

measures, and then deriving scale scores based on this new distribution (Slotkin et al., 2012).  

Data Analysis 

Partial least squares analysis. Behavioural Partial Least Squares (bPLS) was performed 

to identify resting-state functional connectivity patterns associated with individual differences in 

white matter lesion load (total lesion volume and number of lesions). PLS is a multivariate 

statistical method that relies on a data-driven approach to analyze complex, high dimensional 

datasets, including neuroimaging data (McIntosh, Chau, & Protzner, 2004; McIntosh & 

Lobaugh, 2004; McIntosh & Mišić , 2013). bPLS can be used to make inferences about 

individual differences in the intrinsic connectivity of large-scale neurocognitive networks. It 

allows for concurrent replication of previous resting-state functional connectivity patterns and 

explorative investigation of behavioural relationships outside of previously examined networks. 
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For this reason, it was considered the preferred method of analysis for this study. In this study 

white matter lesion load values were treated as behavioural variables. bPLS isolates patterns, 

known as latent variables of LVs, by identifying linear combinations of the original variables 

(functional connections and behavioural measures) that maximally covary with each other across 

individuals. These LV’s can be understood as optimally-paired functional networks and 

behavioural phenotypes (Mwilambwe-Tshilobo et al., 2019).  

In the present study, two matrices were generated to examine the relationship between 

resting-state functional connectivity and white matter lesion load (total lesion volume and 

number of lesions). The arrangement of the X matrix was such that the parcellated functional 

connectivity matrix for each participant was concatenated, resulting in an 84 x 400 x 400 matrix. 

The Y matrix was composed of individual scores for total white matter lesion volume and 

number of lesions for all participants, creating an 84 x 2 matrix. Both matrices were centered and 

normalized across participants. Singular value decomposition of the cross-correlation matrix 

X’Y produces multiple mutually-orthogonal LVs. Each LV is composed of three components: 

(a) a left singular vector which contains weights for each of the white matter lesion load 

measures; (b) a right singular vector which contains weights for each of the functional 

connections; (c) a scalar singular value. Effect size is indicated by squared singular values, which 

are proportional to the covariance between functional connectivity and the white matter lesion 

load variable (i.e., number, volume) that is accounted for by each LV. The number of LVs is 

equal to the rank of X’Y which is the number of white matter lesion load variables in the current 

study (b). 

Permutation testing was used to evaluate the significance of each LV, while bootstrap 

sampling was used to determine its reliability. First, the significance of the pattern of functional 
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connectivity captured by a given LV was assessed using permutation testing to determine the 

extent to which the results differ from chance. This was accomplished by computing 500 

permutation tests where the sequence of the rows of one of the data matrices (X) was rearranged 

randomly. Then, the columns of this permuted matrix were correlated with the behavioural Y-

matrix and the correlation matrix underwent singular value decomposition (see above). Through 

this process a distribution of singular values was created under the null hypothesis that there is 

no relationship between functional connectivity and behaviour. The significance of the LV was 

estimated by computing the number of times the permuted singular values (covariance 

explained) was higher in proportion to the observed singular values (significance thresholded at 

p < .05). 

Bootstrap resampling was implemented to examine the reliability of weights for 

individual connections and behavioural variables. This was accomplished by sampling the rows 

of the X and Y data matrices with replacement, then a resampled correlation matrix (X’Y) was 

re-computed. The matrix then underwent singular value decomposition and this process was 

repeated 500 times to estimate a sampling distribution for each singular vector (i.e., connection 

and white matter lesion load) weight. The ratio between each weight and its bootstrap-estimated 

standard error was computed to determine which functional connections and white matter lesion 

load measures (a) contribute considerably to the overall multivariate pattern and; (b) are 

relatively insensitive to sample composition. Large ‘bootstrap ratios’ (BSRs) correspond to 

connections and behaviours that have large weights and narrow confidence intervals. BSRs are 

equivalent to z-scores if the sampling distribution is approximately unit normal. Brain network 

connections were considered reliable if the absolute value of the BSR > 3 (approximately p < 

.03) and were visualized using BrainNet Viewer (Xia et al., 2013). A partial correlation analysis 
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was conducted on the brain connectivity scores with behavioural scores controlling for covariates 

such as age, gender, and years of education using Statistical Package for Social Sciences (SPSS) 

version 24. 

The degree to which network-level functional connectivity contributes to individual 

differences in white matter lesion load was examined as well. Separate weighted adjacency 

matrices were created that reflected the positive and negative PLS weights, respectively. This 

was done in order to assess the network-level contributions to the connectivity pattern identified 

by the PLS analysis. The nodes of the graph depict the 400 brain regions defined by the 

individual parcellation scheme, and the edges depict the BSR weight for each pairwise 

connection. The matrices were thresholded so that BSRs with an absolute value less than 3 were 

set to 0. Significant positive BSRs were set to 1, and negative BSRs were set to −1. A 7 x7 

matrix was created by quantifying the network-level functional connectivity contributions. More 

specifically, this was done by computing the mean of the weights of all connections in a specific 

network. The entire threshold matrix was then subject to permutation testing by re-ordering the 

network labels randomly (preserving the number of nodes originally assigned to each network) 

and re-calculating the network averages 500 times to build a sampling distribution under the null 

hypothesis that network assignment does not contribute to the connectivity pattern. To determine 

the significance of the pairwise connections from the original 7 x 7 matrix, the number of times 

the values of the sampling distribution were greater than or equal to the original value were 

estimated (Shafiei et al., 2019).  

Neurocognitive analysis. A partial correlation was conducted to examine the 

behavioural relationship between cognition (Unadjusted Fluid and Crystallized Cognition 

Composite Scores) and significant brain connectivity scores, controlling for age, gender, and 
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years of education. The analysis was performed using SPSS version 24 with statistical 

significance set at p < .05. 

Results 

Descriptive Data Analysis  

Sample characteristics for age, gender, years of education, estimated total intracranial 

volume in mL (eTIV), total lesion volume in mL, number of lesions, crystallized IQ (indexed by 

Unadjusted Crystallized Cognition Composite scores), fluid IQ (indexed by Unadjusted Fluid 

Cognition Composite scores) are shown in Table 1.  

               

Pearson correlation based on 1000 bootstrap samples between these behavioural variables 

identified a positive relationship between total lesion volume and number of lesions (r(82) = .86, 

p < .001, 95% CI [0.55, 0.80]). Total lesion volume and number of lesions were both found to be 

positively correlated with age (r(82) = .43, p = .001, 95% CI [0.25, 0.60]; r(82) = .29, p = .003, 

95% CI [0.11, 0.47]). In addition, total lesion volume was positively correlated with education, 

Table 1 
Sample demographics (n=84) 
 

Gender     
 n %   
Female 47 56   
Male 37 44   
Variable Minimum Maximum Mean SD 
Age (years) 60 83 67.46 5.74 
Education (years) 12 24 17.55 3.08 
Crystallized-IQ 113.63 153.95 135.99 10.51 
Fluid-IQ 78.21 122.79 94.21 6.83 
eTIV (mL) 1094.15 2042.06 1588.71 186.44 
Total Lesion Volume (mL) 0 3.04 .92 .74 
Number of Lesions 0 18 8.74 4.03 

Note. Crystallized-IQ is indexed by Unadjusted Crystallized Cognition 
Composite scores; Fluid-IQ is indexed by Unadjusted Fluid Cognition 
Composite scores. eTIV= estimated Total Intracranial Volume; SD = standard 
deviation. 
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although the confidence interval here included zero (r(82) = .24, p = .013, 95% CI [-0.01, 0.12]). 

Fluid IQ was negatively correlated with total lesion volume (r(82) = -.26, p = .009 95% CI [-

0.42, -0.57]), number of lesions (r(82) = -.32, p = .002), and age (r(82) = -.40, p < .001, 95% CI 

[-0.55, -0.23]). Positive correlations were revealed between crystallized IQ and age (r(82) = .30, 

p = .003, 95% CI [0.12, 0.47]), as well as education (r(82) = .56, p < .001, 95% CI [0.37, 0.71]). 

Finally, age and education were positively correlated (r(82) = .32, p = .002, 95% CI [0.12, 

0.49]). No other significant correlations were noted between covariates (see Table 2 for a 

summary of all results). 

 

 

 

Table 2 
Pearson Correlation Matrix of White Matter Lesion Load, Cognition, and Demographics 
 

 TLV 

 
Number of 

Lesions   Age Education 
Crystallized

IQ 
Fluid 

IQ 
TLV - 

     

Number of 
Lesions  

.68** 
[0.55, 0.80] 

- 
    

Age .43** 
[0.25, 0.61] 

.29** 
[0.11, 0.47] 

- 
   

Education .24* 
[0.03, 0.45]  

0 
[-0.21, 0.21] 

.32** 
[0.12, 0.49] 

- 
  

Crystallized-IQ 0.15 
[-0.02, 0.33] 

0.08 
[-0.11, 0.29] 

.30** 
[0.12, 0.47] 

.56** 
[0.37, 0.71] 

- 
 

Fluid-IQ -.26** 
[-0.42, -0.06] 

-0.18 
[-0.35, 0.02] 

-.40** 
[-0.55, -0.23] 

-.09 
[-0.34, 0.15] 

-.05 
[-0.22, 0.12] 

- 

Note. Values in square brackets indicate the 95% confidence interval for each correlation. 
Crystallized-IQ is indexed by Unadjusted Crystallized Cognition Composite scores; Fluid-IQ is 
indexed by Unadjusted Fluid Cognition Composite scores. Both number of lesions and total lesion 
volume (TLV) values were converted to a z-score distribution. Results are based on 1000 
bootstrap samples. *p < .05; **p < .01 
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Intrinsic Resting-state Functional Connectivity Results  

Behavioural PLS was used to examine the multivariate relationship between resting-state 

functional connectivity, total lesion volume, and number of lesions. The analysis identified one 

significant pattern of connectivity that reliably expressed individual differences in total lesion 

volume and number of lesions (total lesion volume: r = .82, 95% CI [0.82, 0.87]; number of 

lesions: r = .82, 95% CI [0.86, 0.71]; permuted p = .04). Both total lesion volume and number of 

lesions were found to positively correlate with the pattern of brain connectivity of LV 1 (Figure 

1A). To ensure the precision of these results, a partial correlation analysis was conducted to test 

whether the relationship between measures of white matter lesion load and brain connectivity 

scores remained significant after controlling for age, gender, and years of education. The results 

remained significant for number of lesions (r(79) = .81; p < .001) and total lesion volume (r(79) 

= .81, p < .001). 
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Figure 1. Behavioural PLS results. Analysis revealed one significant latent variable (LV). The 
functional connections that most reliably express the rsfMRI/white matter lesion load 
correlations thresholded at bootstrap ratio (BSR) > 3.  (A) A bar-graph representation of the 
correlations between participants’ brain connectivity scores and measures of white matter 
lesion load for LV 1. (B) The correlation matrix of reliable pairwise connections associated 
with number of lesions and total lesion volume. Scatter plots show the relationship captured 
by the PLS analysis for individual brain connectivity scores as a function of number of total 
white matter lesion volume (C) and number of white matter lesions (D). 
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 ROIs that reliably covary with one another are displayed in Figure 2A-B. Overall, the 

connectivity pattern associated with the negative and positive expression of LV 1 revealed 

densely interconnected nodes that were more localized within the right hemisphere compared to 

the left. Participants with lower lesion load (i.e., smaller total lesion volume and a low number of 

lesions) showed increased posterior connectivity and shorter node-to-node connections (Figure 

 

 

Figure 2. Patterns of connectivity and functional network organization. The pattern of 
connectivity for LV 1 depicted in (A) blue represent the connectivity weights for LV 1 that 
covary negatively with white matter lesion load (total lesion volume and number of lesions), 
while those in (B) red covary positively with white matter lesion load thresholded at a 
bootstrap ratio (BSR) > 4 for visualization. Nodes that are not connected by edges on lateral 
surfaces indicate cross-hemisphere connections. Dorsal view of the brain depicts only cross-
hemisphere (bilateral) connections. Significant contributions of resting-state network pairs to 
the connectivity pattern for the (C) negative expression of LV 1 and (D) positive expression 
of LV 1. VIS = visual; SOM = somatomotor; DAN = dorsal attention; VAN = ventral 
attention, LIM = limbic, FPN = frontoparietal network; DN = default network. 
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2A). Participants with higher lesion load (i.e., greater total lesion volume and a high number of 

lesions) showed more long distance connections between anterior and posterior areas (Figure 

2B).  

In order to examine the differences in within- and between-network contributions of the 

seven networks in the Yeo et al. (2011) parcellation scheme, permutation testing was performed 

on the functional covariance matrix representing the pairwise BSRs for each of the 400 brain 

regions (Figure 1B). 

As shown in Figure 2C, the strongest contributions to the resting-state functional 

connectivity pattern associated with the negative expression of LV 1 were from the VIS, SOM, 

DAN, and VAN. For within network connectivity, the VIS (p < .001), SOM (p < .05), VAN (p < 

.05), and DN (p < .01) were found to contribute significantly to the resting-state functional 

connectivity pattern related to low white matter lesion load (low total lesion volume and low 

number of lesions). Whereas pairwise connections that contributed most to the between-network 

connectivity pattern were localized to the DAN and SOM (p < .001). 

Figure 2D displays the most robust contributions to the resting-state functional 

connectivity pattern associated with the positive expression of LV 1. Connectivity within the DN 

(p < .001) was found to significantly contribute to the resting-state functional connectivity 

pattern. However, in general, higher white matter lesion load (high total lesion volume and high 

number of lesions) was related to greater between-network connectivity. Pairwise connections 

that contributed the strongest for between network connectivity existed between the VIS with the 

FPN (p < .001) and the LIM (p < .002), as well as the SOM with the DN (p < .001) and the VAN 

(p < .03). 
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Neurocognitive Behavioural Analysis 

 The behavioural relationship between unadjusted fluid IQ and crystallized IQ composite 

scores and brain connectivity scores of LV 1 was investigated using a partial correlation, 

controlling for age, gender, and years of education. Results are based on 1000 bootstrap samples. 

There was no significant relationship found between LV 1 brain scores and crystallized IQ 

composite scores (r(79) = −.02, p = .897, 95% CI [−0.19, 1.88]). The association between LV 1 

brain scores and fluid IQ composite scores was also non-significant (r(79) = −.10, p = .39, 95% 

CI [−0.37, 0.19]). 

Discussion 

Changes to the white matter of the brain disrupt neural communication between 

anatomically distributed brain regions and have been associated with cognitive changes in later 

life. Yet, the association between these markers of neurocognitive aging remains poorly 

understood. This study used a data-driven multivariate analytical model to investigate patterns of 

intrinsic functional connectivity associated with individual variability in white matter lesion load 

in a sample of healthy older adults. This technique allowed for the identification of patterns in 

whole-brain networks that were reliably associated with two principal measures of white matter 

lesion load: total lesion volume and number of lesions. These findings were then used to 

investigate how these emerging patterns relate to cognitive functioning in our sample. Several 

primary findings were noted. A reliable pattern emerged associating whole-brain resting-state 

functional connectivity with individual variability in measures of white matter lesion load. 

Secondly, white matter lesion load was found to be associated with increased network 

disintegration and dedifferentiation. Specifically, lower white matter lesion load was associated 

with more within-network connectivity compared to between. In contrast, higher white matter 
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lesion load was associated with more between-network connectivity compared to within, with 

the exception of the default network, which showed increased within-network connectivity. In 

relating these results to cognition, patterns associating functional connectivity and white matter 

lesion load were not found to be significantly related to performance on measures of crystallized 

and fluid intelligence. 

Overall WMH – Resting-state Functional Connectivity Model 

As predicted, a strong and reliable pattern emerged associating whole-brain resting-state 

functional connectivity with individual variability in the number and total volume of white 

matter lesions. These effects remained even when accounting for demographic factors, including 

years of education, gender, and age. This finding contributes to the accumulating evidence for 

the “disconnection hypothesis” of the aging brain and supports the idea that functional brain 

changes (i.e., intrinsic functional network connectivity) are strongly related to structural brain 

changes (i.e., white matter changes) (Antonenko & Floel 2014; Bennett & Madden 2014; 

Ferreira & Busatto, 2013). However, given that this study was limited by a cross-sectional 

design, it is not possible to infer causality and establish whether WMH are a causal factor in 

resting functional connectivity patterns in older adults.  

Within- and Between-Network Functional Connectivity 

Increases in both number and total volume of white matter lesions were associated with 

increased functional network disintegration and dedifferentiation. Specifically, lower white 

matter lesion load was associated with more within- compared to between-network functional 

connectivity. Networks that exhibited increased within-network connections included: the 

somatosensory network, visual network, and ventral attention network. Increased between-
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network connectivity in participants with lower lesion load was only noted between the dorsal 

attention network and the somatosensory network.  

As expected, higher white matter lesion load was associated with greater between- 

compared to within-network functional connectivity. Networks that exhibited increased between-

network connections with one another included the visual network with the frontoparietal 

network, the visual network with the limbic network, the somatosensory network with the default 

network, and the ventral attention network with the somatosensory network. Of note, in addition 

to exhibiting increased between-network connectivity, the default network also showed increased 

within-network connectivity among participants with higher lesion load, a finding that was 

contrary to the study hypotheses. This particular finding is discussed further below. 

In general, these results complement observations in the literature reporting shifts in the 

functional network architecture of the brain in older adulthood away from within-network 

connectivity and towards between-network connectivity (e.g, Betzel et al., 2014). An explanation 

for how these functional network connections are influenced by white matter lesion load has 

been offered by Langen and colleagues (2017), who examined the effects of white matter lesion 

location on the organization of functional networks in the brain. They postulated that when direct 

connectivity is compromised (i.e., in the face of white matter damage) the brain’s structural 

network architecture allows brain function to be maintained via indirect pathways. Reviews of 

earlier literature have suggested brain plasticity as a compensatory mechanism that increases 

connectivity between alternate regions in the face of compromised direct connections (Cabeza, 

2002). However, another way of understanding age-related functional network dysconnectivity is 

in the light of the dedifferentiation process that manifests in older adults (Cabeza, 2002; Grady, 

2012; Turner & D’Esposito, 2010).  “Dedifferentiation” in aging (Baltes & Lindenberger, 1997; 
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Li, Lindenberger, & Sikström, 2001; Park et al., 2004) refers to reduced functional specialization 

of different brain regions and networks for the purpose of being recruited in goal-directed 

behaviour. Dedifferentiation in older adults has been observed in higher-order systems (Carp et 

al., 2011b), the ventral visual system (Park et al., 2004, 2012), and motor system (Carp et al., 

2011a; Bernard & Seidler, 2012).  

Results reported in the current study also align with the notion of functional segregation 

of brain networks (quantified using graph-theory metrics) in aging. Functional segregation is an 

extension of the “dedifferentiation” model, where within-network connectivity is reduced in 

exchange for increased connectivity between networks, and where network modularity is 

reduced with aging (Meunier et al., 2009, 2014; Chan et al., 2014). Networks with low 

modularity have sparse connections between the nodes within modules but dense connections 

between nodes in different modules (Bullmore & Sporns, 2009). In the current study, increases 

in white matter lesion load were associated with a shift from high within-network connectivity to 

predominantly between-network connectivity. 

Increased Within-Network Connectivity in the Default Network 

 Contrary to study hypotheses, white matter lesion load was associated with increased 

within-network connectivity in the default network. A majority of cross-sectional studies of 

functional network connectivity in aging report decreased within-network connectivity in the 

default network. However, in the longitudinal literature, default network functional connectivity 

has been associated with a non-linear trend in older adulthood. In a recent study, Staffaroni and 

colleagues (2018) found that within-network connectivity in the default network increased from 

ages 50-70, followed by a plateau around 70, and a subsequent decline as individuals aged 

further. Their findings remained significant even when accounting for effects of WMH. Given 
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that the average age of participants within our sample was 67, the work of Staffaroni and 

colleagues (2018) may provide insight into patterns of increased within-network connectivity in 

our sample, although it remains unclear why this pattern would be specifically affiliated with 

increased white matter lesion load. A potential explanation could be that in an effort to 

compensate, brains with greater lesion load engage more neural resources, leading to increases in 

brain activity and functional connectivity. This reasoning would align with the CRUNCH model 

(Reuter-Lorenz & Cappell, 2008; Reuter-Lorenz & Lustig, 2005) discussed earlier. To clarify 

this finding, examining WMH and functional connectivity associations across larger samples and 

different age-cohorts of older adults (i.e., young, middle, later older adulthood) is necessary. 

Additional investigations of location-specific effects of WMH on functional brain networks can 

also provide further insight (see Langen et al., 2017). 

Neurocognitive Results 

While the findings of this study provide support for the disconnection hypothesis at the 

level of the brain, there were no significant relationships between individual patterns of lesion 

load and functional connectivity that were associated with global measures of fluid and 

crystallized abilities. The link between WMH and declining performance in older adulthood has 

been established in both cross-sectional and longitudinal studies. The severity of WMH has been 

associated with diminished performance in age-sensitive domains required for fluid intelligence, 

including executive functions, episodic memory, and processing speed, among older adults  

(Cook et al., 2004; Gunning-Dixon & Raz, 2000). Indeed, preliminary analyses of the descriptive 

data of the current study sample revealed a significant association between total white matter 

lesion volume and fluid abilities. Fluid intelligence, total lesion volume, as well as the number of 

lesions were found to be positively associated with age. However, these findings did not translate 
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when accounting for individual variability in the association of white matter lesion load with 

resting-state functional connectivity patterns.  

Both cross-sectional and longitudinal studies have found decreased functional 

connectivity within the default network to be associated with poorer cognitive performance 

(Andrews-Hanna et al., 2007; Bernard et al., 2015; Sala-Llonch et al., 2015; Persson, Pudas, 

Nilsson, & Nyberg, 2014; Vidal-Pineiro et al., 2014; Ward et al., 2015). Whereas in younger 

adults increased connectivity in the default network is associated with poorer memory, Fjell and 

colleagues (2015) have noted a positive correlation between improved memory performance and 

default network connectivity in older adults. Given that in our study sample, increased lesion 

load was associated with increased default network connectivity, this may reflect a successful 

compensatory mechanism and may explain the null-findings. The CRUNCH model posits that 

older adults may engage cognitive control at lower levels of task load to preserve performance, 

making age-related differences difficult to detect in behavioural measures where task load is 

lower than one’s cognitive limit despite large differences in underlying processing (Reuter-

Lorenz & Cappell, 2008; Reuter-Lorenz & Lustig, 2005). Given that the effects of age were 

accounted for in the current study, it may very well be that the neural architecture supporting 

these cognitive processes has likely already undergone considerable change even prior to the 

presentation of any overt decline in these abilities. In other words, it could be the case that at a 

certain level, compensatory re-organization of functional brain networks in the presence of 

WMH can mask any observed changes in cognition. 

Study Strengths 

One strength of this study lies in the fact that both WMH and rs-fMRI data were acquired 

with consistent scanning parameters during the same scanning session. This study also benefited 
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from the implementation of a multivariate data-driven analytical model. This approach ensured 

that the study was free of pre-determined assumptions, thereby avoiding the possible risk of 

confounding results and interpretations and providing a more comprehensive analysis of patterns. 

Study Limitations 

Given that the average age of study participants was around 67, this study could benefit 

from increased sampling across the older adult age-cohort (80+). This is particularly important 

considering the non-linear trajectory of functional network connectivity across different stages of 

older-adulthood that has been reported in the longitudinal literature (Ng et al., 2016; Staffaroni et 

al., 2018). This study could have also benefited from increased statistical power that would allow 

for the implementation of a meditation analysis in order to provide additional converging 

evidence.  

Future Directions 

This study provides a framework for examining individual differences in the intrinsic 

structural and functional architecture of the brain as they relate to cognitive performance in older 

adulthood. The next step is to apply complex network analyses such as graph theory to derive 

metrics that can provide more insight into specific network features. Specifically, graph theory 

can be used to understand the network re-structuring that occurs in the face of disruptions in 

structural connectivity due to white matter pathology. Graph theory measures work by 

quantifying topologies of a systems’ network representation. They can provide insight into the 

segregation and modularity of functional networks, which have been shown in previous studies 

to be vulnerable to the effects of age (Grady, 2012).   

Functional brain networks display spontaneous dynamic fluctuations over scan time 

(Chang & Glover, 2010; Hutchison et al., 2013). Dynamic functional connectivity provides a 
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measure of changes in macroscopic neural activity patterns that underlie cognition and behaviour 

(Hutchison et al., 2013). Given this, another future aim is to use dynamic functional metrics to 

see how WMH impacts temporal network dynamics.  

Future efforts will also be directed at investigating how reliable functional and structural 

patterns relate to more specific abilities and processes that comprise fluid and crystallized 

cognition. This can be accomplished by examining the relationships between associations of 

white matter and functional connectivity in relation to scores on subtests of fluid and crystallized 

intelligence (e.g., processing speed, executive functions, episodic memory). These methods can 

be further applied to mapping shifts in the entire neuropsychological profile in the face of age-

related white matter disruptions across older adults in different age cohorts (i.e., young, middle, 

and late adulthood). 

Conclusion 

The extent of white matter lesion load in healthy older adults was associated with 

changes to the organization of intrinsic brain networks. However, this relationship was not 

reflected in individual performance differences on measures of fluid or crystallized intelligence. 

These findings support the disconnection model of neurocognitive aging at the level of the brain 

but do not translate to behaviour. This could be a possible indication that changes at the neural 

level have not yet manifest in behavioural changes as measured by standard neuropsychological 

assessment tools. The findings of this study mark an important step in understanding the 

relationship between WMH, intrinsic functional network organization, and cognitive abilities in 

later life. From a translational perspective, these discoveries can aid the future development and 

implementation of early preventative therapies. From a basic research perspective, clarifying this 
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association will allow for greater precision in differentiating healthy and pathological aging 

cohorts in the study of cognitive aging neuroscience.   
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