210 research outputs found

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    05051 Abstracts Collection -- Probabilistic, Logical and Relational Learning - Towards a Synthesis

    Get PDF
    From 30.01.05 to 04.02.05, the Dagstuhl Seminar 05051 ``Probabilistic, Logical and Relational Learning - Towards a Synthesis\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Introduction to the special issue on probability, logic and learning

    Get PDF
    Recently, the combination of probability, logic and learning has received considerable attention in the artificial intelligence and machine learning communities; see e.g. Getoor and Taskar (2007); De Raedt et al. (2008). Computational logic often plays a major role in these developments since it forms the theoretical backbone for much of the work in probabilistic programming and logical and relational learning. Contemporary work in this area is often application- and experiment-driven, but is also concerned with the theoretical foundations of formalisms and inference procedures and with advanced implementation technology that scales well

    kProbLog: an algebraic Prolog for machine learning

    Get PDF

    Learning to Understand by Evolving Theories

    Full text link
    In this paper, we describe an approach that enables an autonomous system to infer the semantics of a command (i.e. a symbol sequence representing an action) in terms of the relations between changes in the observations and the action instances. We present a method of how to induce a theory (i.e. a semantic description) of the meaning of a command in terms of a minimal set of background knowledge. The only thing we have is a sequence of observations from which we extract what kinds of effects were caused by performing the command. This way, we yield a description of the semantics of the action and, hence, a definition.Comment: KRR Workshop at ICLP 201

    Inferring Robot Task Plans from Human Team Meetings: A Generative Modeling Approach with Logic-Based Prior

    Get PDF
    We aim to reduce the burden of programming and deploying autonomous systems to work in concert with people in time-critical domains, such as military field operations and disaster response. Deployment plans for these operations are frequently negotiated on-the-fly by teams of human planners. A human operator then translates the agreed upon plan into machine instructions for the robots. We present an algorithm that reduces this translation burden by inferring the final plan from a processed form of the human team's planning conversation. Our approach combines probabilistic generative modeling with logical plan validation used to compute a highly structured prior over possible plans. This hybrid approach enables us to overcome the challenge of performing inference over the large solution space with only a small amount of noisy data from the team planning session. We validate the algorithm through human subject experimentation and show we are able to infer a human team's final plan with 83% accuracy on average. We also describe a robot demonstration in which two people plan and execute a first-response collaborative task with a PR2 robot. To the best of our knowledge, this is the first work that integrates a logical planning technique within a generative model to perform plan inference.Comment: Appears in Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-13
    • …
    corecore