
Journal of Artificial Intelligence Research 52 (2015) 361-398 Submitted 7/14; published 3/15

Inferring Team Task Plans from Human Meetings:
A Generative Modeling Approach with Logic-Based Prior

Been Kim beenkim@csail.mit.edu

Caleb M. Chacha c chacha@csail.mit.edu

Julie A. Shah julie a shah@csail.mit.edu

Massachusetts Institute of Technology

77 Massachusetts Ave. MA 02139, USA

Abstract

We aim to reduce the burden of programming and deploying autonomous systems to
work in concert with people in time-critical domains such as military field operations and
disaster response. Deployment plans for these operations are frequently negotiated on-the-
fly by teams of human planners. A human operator then translates the agreed-upon plan
into machine instructions for the robots. We present an algorithm that reduces this transla-
tion burden by inferring the final plan from a processed form of the human team’s planning
conversation. Our hybrid approach combines probabilistic generative modeling with logical
plan validation used to compute a highly structured prior over possible plans, enabling us
to overcome the challenge of performing inference over a large solution space with only a
small amount of noisy data from the team planning session. We validate the algorithm
through human subject experimentations and show that it is able to infer a human team’s
final plan with 86% accuracy on average. We also describe a robot demonstration in which
two people plan and execute a first-response collaborative task with a PR2 robot. To the
best of our knowledge, this is the first work to integrate a logical planning technique within
a generative model to perform plan inference.

1. Introduction

Robots are increasingly being introduced to work in concert with people in high-intensity
domains such as military field operations and disaster response. For example, robot deploy-
ment can allow for access to areas that would otherwise be inaccessible to people (Casper
& Murphy, 2003; Micire, 2002), to inform situation assessment (Larochelle, Kruijff, Smets,
Mioch, & Groenewegen, 2011). The human-robot interface has long been identified as a ma-
jor bottleneck in utilizing these robotic systems to their full potential (Murphy, 2004). As a
result, significant research efforts have been aimed at easing the use of these systems in the
field, including careful design and validation of supervisory and control interfaces (Jones,
Rock, Burns, & Morris, 2002; Cummings, Brzezinski, & Lee, 2007; Barnes, Chen, Jentsch,
& Redden, 2011; Goodrich, Morse, Engh, Cooper, & Adams, 2009). Much of this prior
work has focused on ease of use at “execution time.” However, a significant bottleneck also
exists in planning the deployment of autonomous systems and in the programming of these
systems to coordinate task execution with a human team. Deployment plans are frequently
negotiated by human team members on-the-fly and under time pressure (Casper & Murphy,
2002, 2003). For a robot to aid in the execution of such a plan, a human operator must
transcribe and translate the result of a team planning session.

c©2015 AI Access Foundation. All rights reserved.

Kim, Chacha & Shah

In this paper, we present an algorithm that reduces this translation burden by inferring
the final plan from a processed form of the human team’s planning conversation. Inferring
the plan from noisy and incomplete observation can be formulated as a plan recognition
problem (Ryall, Marks, & Shieber, 1997; Bauer, Biundo, Dengler, Koehler, & Paul, 2011;
Mayfield, 1992; Charniak & Goldman, 1993; Carberry, 1990; Grosz & Sidner, 1990; Gal,
Reddy, Shieber, Rubin, & Grosz, 2012). The noisy and incomplete characteristics of obser-
vation stem from the fact that not all observed data (e.g., the team’s planning conversation)
will be a part of the plan that we are trying to infer, and that the entire plan may not be
observed. The focus of existing plan recognition algorithms is often to search an existing
knowledge base given noisy observation. However, deployment plans for emergency situ-
ations are seldom the same, making it infeasible to build a knowledge base. In addition,
planning conversations are often conducted under time pressure and are, therefore, often
short (i.e., contain a small amount of data). Shorter conversations result in a limited amount
of available data for inference, often making the inference problem more challenging.

Our approach combines probabilistic generative modeling with logical plan validation,
which is used to compute a highly structured prior over possible plans. This hybrid approach
enables us to overcome the challenge of performing inference over a large solution space with
only a small amount of noisy data collected from the team planning session.

In this work, we focus on inferring a final plan using text data that can be logged from
chat or transcribed speech. Processing human dialogue into more machine-understandable
forms is an important research area (Kruijff, Janıcek, & Lison, 2010; Tellex, Kollar, Dick-
erson, Walter, Banerjee, Teller, & Roy, 2011; Koomen, Punyakanok, Roth, & Yih, 2005;
Palmer, Gildea, & Xue, 2010; Pradhan, Ward, Hacioglu, Martin, & Jurafsky, 2004), but we
view this as a separate problem and do not focus on it in this paper.

The form of input we use preserves many of the challenging aspects of natural human
planning conversations, and can be thought of as noisy observation of the final plan. Because
the team is discussing the plan under time pressure, planning sessions often consist of a
small number of succinct communications. Our approach can infer the final agreed-upon
plan using a single planning session, despite a small amount of noisy data.

We validate the algorithm through experiments with 96 human subjects and show that
we are able to infer a human team’s final plan with 86% accuracy on average. To the best
of our knowledge, this is the first work to integrate a logical planning technique within a
generative model to perform plan inference.

In summary, this work includes the following contributions:

• We formulate the novel problem of performing inference to extract a finally agreed-
upon plan from a human team planning conversation.

• We propose and validate a hybrid approach to perform this inference that applies
the logic-based prior probability over the space of possible agreed-upon plans. This
approach performs efficient inference for the probabilistic generative model.

• We demonstrate the benefit of this approach using human team meeting data collected
from large-scale human subject experiments (total 96 subjects) and are able to infer
a human team’s final plan with 86% accuracy on average.

362

A Generative Modeling Approach with Logic-Based Prior

This work extends the preliminary version of this work (Kim, Chacha, & Shah, 2013) to
include the inference of complex durative task plans and to infer plans before and after new
information becomes available for the human team. In addition, we extend our probabilistic
model to be more flexible to different data sets by learning hyper-parameters. We also
improve the performance of our algorithm by designing a better proposal distribution for
inference.

The formulation of the problem is presented in Section 2, followed by the technical
approach and related work in Section 3. Our algorithm is described in Section 4. The
evaluation of the algorithm using various data sets is shown in Sections 5 and 6. Finally,
we discuss the benefits and limitations of the current approach in Section 7, and conclude
with considerations for future work in Section 8.

2. Problem Formulation

Disaster response teams are increasingly utilizing web-based planning tools to plan deploy-
ments (Di Ciaccio, Pullen, & Breimyer, 2011). Hundreds of responders access these tools
to develop their plans using audio/video conferencing, text chat and annotatable maps.
Rather than working with raw, natural language, our algorithm takes a structured form of
the human dialogue from these web-based planning tools as input. The goal of this work
is to infer a human team’s final plan from this human dialogue. In doing so, this work can
be used to design an intelligent agent for these planning tools that can actively participate
during a planning session to improve the team’s decision.

This section describes the formal definition, input and output of the problem. Formally,
this problem can be viewed as one of plan recognition, wherein the plan follows the formal
representation of the Planning Domain Description Language (PDDL). The PDDL has
been widely used in the planning research community and planning competitions (i.e., the
International Planning Competition). A plan is valid if it achieves a user-specified goal state
without violating user-specified plan constraints. Actions may be constrained to execute
in sequence or in parallel with other actions. Other plan constraints can include discrete
resource constraints (e.g. the presence of two medical teams) and temporal deadlines for
time-durative actions (e.g. a robot can only be deployed for up to 1 hour at a time due to
battery life constraints).

We assume that the team reaches agreement on a final plan. The techniques introduced
by Kim and Shah (2014) can be used to detect the strength of this agreement, and to
encourage the team to further discuss the plan to reach an agreement if necessary. Situations
where a team agrees upon a flexible plan with multiple options to be explored will be
included in future study. Also, while we assume that the team is more likely to agree on a
valid plan, we do not rule out the possibility that the final plan is invalid.

2.1 Algorithm Input

Text data from the human team conversation is collected in the form of utterances, where
each utterance is one person’s turn in the discussion, as shown in Table 1. The input to our
algorithm is a machine-understandable form of human conversation data, as illustrated in
the right-hand column of Table 1. This structured form captures the actions discussed and
the proposed ordering relations among actions for each utterance.

363

Kim, Chacha & Shah

Natural dialogue Structured form (ordered tuple
of sets of grounded predicates)

U1
So I suggest using Red robot to cover “upper”
rooms (A, B, C, D) and Blue robot to cover
“lower” rooms (E, F, G, H).

({ST(rr,A),ST(br,E),
ST(rr,B),ST(br,F),
ST(rr,C),ST(br,G),
ST(rr,D),ST(br,H)})

U2 Okay. so first send Red robot to B and Blue
robot to G?

({ST(rr,B),ST(br,G)})

U3 Our order of inspection would be (B, C, D, A)
for Red and then (G, F, E, H) for Blue.

({ST(rr,B),ST(br,G)},
{ST(rr,C),ST(br,F)},
{ST(rr,D),ST(br,E)},
{ST(rr,A), ST(br,H)})

U4 Oops I meant (B, D, C, A) for Red. ({ST(rr,B)},{ST(rr,D)},
{ST(rr,C)},{ST(rr,A)})

· · ·
U5 So we can have medical crew go to B when

robot is inspecting C
({ST(m,B), ST(r,C)})

· · ·
U6 First, Red robot inspects B ({ST(r,B)})
U7 Yes, and then Red robot inspects D, Red med-

ical crew to treat B
({ST(r,D),ST(rm,B)})

Table 1: Utterance tagging: Dialogue and structured form examples. (The structured form
uses the following shorthand - ST: send to, rr: red robot, br: blue robot, rm: red medical,
bm: blue medical, e.g. ST(br,A) : “send the blue robot to room A.”)

Although we are not working with raw, natural language, this form of data still cap-
tures many of the characteristics that make plan inference based on human conversation
challenging. Table 1 shows part of the data using the following shorthand:

ST = SendTo
rr = red robot, br = blue robot
rm = red medical, bm = blue medical
e.g. ST(br, A) = SendTo(blue robot, room A)

2.1.1 Utterance Tagging

An utterance is tagged as an ordered tuple of sets of grounded predicates. Following a
formal definition for first-order languages, a grounded predicate is an atomic formula whose
argument terms are grounded (i.e., no free variables; all variables have an assigned value).
In our case, a predicate represents an action applied to a set of objects (a crew member,
robot, room, etc.), and an utterance can be represented as ordered sets of these actions. We
only consider utterances related to plan formation; greetings and jokes, for example, are not
tagged. Each set of grounded predicates represents a collection of actions that, according to
the utterance, should happen simultaneously. The order of the sets of grounded predicates
indicates the relative order in which these collections of actions should happen. For example,

364

A Generative Modeling Approach with Logic-Based Prior

({ST(rr, B), ST(br, G)}, {ST(rm, B)}) corresponds to sending the red robot to room B
and the blue robot to room G simultaneously, followed by sending the red medical team to
room B.

As indicated in Table 1, the structured dialogue still includes high levels of noise. Each
utterance (i.e. U1-U7) discusses a partial plan, and only predicates explicitly mentioned in
the utterance are tagged (e.g. U6-U7: the “and then” in U7 implies a sequencing constraint
with the predicate discussed in U6, but the structured form of U7 does not include ST(r,B)).
Typos and misinformation are tagged without correction (e.g. U3), and any utterances
indicating a need to revise information are not placed in context (e.g. U4). Utterances that
clearly violate the ordering constraints (e.g. U1: all actions cannot happen at the same
time) are also tagged without correction. In addition, information regarding whether an
utterance was a suggestion, rejection of or agreement with a partial plan is not coded.

Note that the utterance tagging only contains information about relative ordering be-
tween the predicates appearing in that utterance, not the absolute ordering of their appear-
ance in the final plan. For example, U2 specifies that the two grounded predicates happen
at the same time. It does not state when the two predicates happen in the final plan, or
whether other predicates will happen in parallel. This simulates how humans conversations
often unfold — at each utterance, humans only observe the relative ordering, and infer
the absolute order of predicates based on the whole conversation and an understanding of
which orderings would make a valid plan. This utterance tagging scheme is also designed
to support the future transition to automatic natural language processing. Automatic se-
mantic role labeling (Jurafsky & Martin, 2000), for example, can be used to detect the
arguments of predicates from sentences. One of the challenges with incorporating semantic
role labeling into our system is that the dialogue from our experiments is often colloquial
and key grammatical components of sentences are often omitted. Solving this problem and
processing free-form human dialogue into more machine-understandable forms is an impor-
tant research area, but we view that as a separate problem and do not focus on it in this
paper.

2.2 Algorithm Output

The output of the algorithm is an inferred final plan, sampled from the probability distri-
bution over the final plans. The final plan has the same representation to the structured
utterance tags (ordered tuple of sets of grounded predicates). The predicates in each set
represent actions that should happen in parallel, and the ordering of sets indicates the se-
quence. Unlike the utterance tags, however, the sequence ordering relations in the final
plan represent the absolute order in which the actions are to be carried out. An example of
a plan is ({A1, A2}, {A3}, {A4, A5, A6}), where Ai represents a predicate. In this plan, A1

and A2 will happen at step 1 of the plan, A3 happens at step 2 of the plan, and so on.

3. Approach in a Nutshell and Related Work

Planning conversations performed under time pressure exhibit unique characteristics and
challenges for inferring the final plan. First, these planning conversations are succinct —
participants tend to write shortly and briefly, and to be in a hurry to make a final decision.
Second, there may be a number of different valid plans for the team’s deployment — even

365

Kim, Chacha & Shah

Figure 1: Web-based tool developed and used for data collection

366

A Generative Modeling Approach with Logic-Based Prior

with a simple scenario, people tend to generate a broad range of final plans. This represents
the typical challenges faced during real rescue missions, where each incident is unique and
participants cannot have a library of plans to choose from at each time. Third, these
conversations are noisy — often, many suggestions are made and rejected more quickly
than they would be in a more casual setting. In addition, there are not likely to be many
repeated confirmations of agreement, which might typically ease detection of the agreed-
upon plan.

It might seem natural to take a probabilistic approach to the plan inference problem,
as we are working with noisy data. However, the combination of a small amount of noisy
data and a large number of possible plans means that inference using typical, uninformative
priors over plans may fail to converge to the team’s final plan in a timely manner.

This problem could also be approached as a logical constraint problem of partial order
planning, if there were no noise in the utterances: If the team were to discuss only partial
plans relating to the final plan, without any errors or revisions, then a plan generator or
scheduler (Coles, Fox, Halsey, Long, & Smith, 2009) could produce the final plan using
global sequencing. Unfortunately, data collected from human conversation is sufficiently
noisy to preclude this approach.

These circumstances provided motivation for a combined approach, wherein we built
a probabilistic generative model and used a logic-based plan validator (Howey, Long, &
Fox, 2004) to compute a highly structured prior distribution over possible plans. Intuitively
speaking, this prior encodes our assumption that the final plan is likely, but not required,
to be a valid plan. This approach naturally deals with both the noise in the data and
the challenge of performing inference over plans with only a limited amount of data. We
performed sampling inference in the model using Gibbs and Metropolis-Hastings sampling
to approximate the posterior distribution over final plans, and empirical validation with
human subject experiments indicated that the algorithm achieves 86% accuracy on average.
More details of our model and inference methods are presented in Section 4.

The related work can be categorized into two categories: 1) application and 2) technique.
In terms of application, our work relates to plan recognition (Section 3.1). In terms of
technique, our approach relates to methods that combine logic and probability, though
with different focused applications (Section 3.2).

3.1 Plan Recognition

Plan recognition has been an area of interest within many domains, including interactive
software (Ryall et al., 1997; Bauer et al., 2011; Mayfield, 1992), story understanding (Char-
niak & Goldman, 1993) and natural language dialogue (Carberry, 1990; Grosz & Sidner,
1990).

The literature can be categorized in two ways. The first is in terms of requirements.
Some studies (Lochbaum, 1998; Kautz, 1987) require a library of plans, while others (Zhuo,
Yang, & Kambhampati, 2012; Ramırez & Geffner, 2009; Pynadath & Wellman, 2000;
Sadilek & Kautz, 2010) replace this library with relevant structural information. If a library
of plans is required, some studies (Weida & Litman, 1992; Kautz, Pelavin, Tenenberg, &
Kaufmann, 1991) assumed that this library can be collected, and that all future plans are
guaranteed to be included within the collected library. By contrast, if a library of plans is

367

Kim, Chacha & Shah

not required, it can be replaced by related structure information, such as a domain theory
or the possible set of actions performable by agents. The second categorization for the
literature is in terms of technical approach. Some studies incorporated constraint-based
approaches, while others took probabilistic or combination approaches.

First, we reviewed work that treated plan recognition as a knowledge base search prob-
lem. This method assumes that you either have or can build a knowledge base, and that
your goal is to efficiently search this knowledge base (Lochbaum, 1998; Kautz, 1987). This
approach often includes strong assumptions regarding the correctness and completeness of
the plan library, in addition to restrictions on noisy data (Weida & Litman, 1992; Kautz
et al., 1991), and is applicable in domains where the same plan reoccurs naturally. For
example, Gal et al. (2012) studied how to adaptively adjust educational content for a better
learning experience, given students’ misconceptions, using a computer-based tutoring tool.
Similarly, Brown and Burton (1978) investigated users’ underlying misconceptions using
user data collected from multiple sessions spent trying to achieve the same goal. In terms
of technical approach, the above approaches used logical methods to solve the ordering
constraints problem of searching the plan library.

We also reviewed work that replaced a knowledge base with the structural information
of the planning problem. Zhuo et al. (2012) replaced the knowledge base with action models
of the domain, and formulated the problem as one of satisfiability to recognize multi-agent
plans. A similar approach was taken by Ramırez and Geffner (2009), wherein action models
were used to replace the plan library, while Pynadath and Wellman (2000) incorporated
an extension of probabilistic context free grammars (PCFGs) to encode a set of predefined
actions to improve efficiency. More recently, Markov logic was applied to model the geom-
etry, motion model and rules for the recognition of multi-agent plans while playing a game
of capture the flag (Sadilek & Kautz, 2010). Replacing the knowledge base with structural
information reduces the amount of prior information required. However, there are two ma-
jor issues with the application of prior work to recognize plans from team conversation:
First, the above work assumed some repetition of previous plans. For example, learning the
weights in Markov logic (which represent the importance or strictness of the constraints)
requires prior data from the same mission, with the same conditions and resources. Sec-
ond, using first-order logic to express plan constraints quickly becomes computationally
intractable as the complexity of a plan increases.

In contrast to logical approaches, probabilistic approaches allow for noisy observations.
Probabilistic models are used to predict a user’s next action, given noisy data (Albrecht,
Zuckerman, Nicholson, & Bud, 1997; Horvitz, Breese, Heckerman, Hovel, & Rommelse,
1998). These works use actions that are normally performed by users as training data.
However, the above approaches do not consider particular actions (e.g., actions that must
be performed by users to achieve certain goals within a software system) to be more likely.
In other words, while they can deal with noisy data, they do not incorporate structural
information that could perhaps guide the plan recognition algorithm. An additional limita-
tion of these methods is that they assume predefined domains. By defining a domain, the
set of possible plans is limited, but the possible plans for time-critical missions is generally
not a limited set. The situation and available resources for each incident are likely to be
different. A method that can recognize a plan from noisy observations, and from an open
set of possible plans, is required.

368

A Generative Modeling Approach with Logic-Based Prior

Some probabilistic approaches incorporate structure through the format of a plan li-
brary. Pynadath and Wellman (2000) represented plan libraries as probabilistic context
free grammars (PCFGs). Then this was used to build Bayes networks that modeled the un-
derlying generative process of plan construction. However, their parsing-based approaches
did not deal with partially-ordered plans or temporally interleaved plans. Geib et al. (2008)
and Geib and Goldman (2009) overcame this issue by working directly with the plan repre-
sentation without generating an intermediate representation in the form of a belief network.
At each time step, their technique observed the previous action of the agent and generated
a pending action set. This approach, too, assumed an existing plan library and relied on
the domains with some repetition of previous plans. More recently, Nguyen, Kambhampati,
and Do (2013) introduced techniques to address incomplete knowledge of the plan library,
but for plan generation rather than plan recognition applications.

Our approach combines a probabilistic approach with logic-based prior to infer team
plans without the need for historical data, using only situational information and data from
a single planning session. The situational information includes the operators and resources
from the domain and problem specifications, which may be updated or modified from one
scenario to another. We do not require the development or addition of a plan library to infer
the plan, and demonstrate our solution is robust to incomplete knowledge of the planning
problem.

3.2 Combining Logic and Probability

The combination of a logical approach with probabilistic modeling has gained interest in
recent years. Getoor and Mihalkova (2011) introduced a language for the description of sta-
tistical models over typed relational domains, and demonstrated model learning using noisy
and uncertain real-world data. Poon and Domingos (2006) proposed statistical sampling
to improve searching efficiency for satisfiability testing. In particular, the combination of
first-order logic and probability, often referred to as Markov Logic Networks (MLN), was
studied. MLN forms the joint distribution of a probabilistic graphical model by weighting
formulas in a first-order logic (Richardson & Domingos, 2006; Singla & Domingos, 2007;
Poon & Domingos, 2009; Raedt, 2008).

Our approach shares with MLNs the philosophy of combining logical tools with prob-
abilistic modeling. MLNs utilize first-order logic to express relationships among objects.
General first-order logic allows for the use of expressive constraints across various applica-
tions. However, within the planning domain, enumerating all constraints in first-order logic
quickly becomes intractable as the complexity of a plan increases. For example, first-order
logic does not allow the explicit expression of action preconditions and postconditions, let
alone constraints among actions. PDDL has been well-studied in the planning research
community (McDermott, Ghallab, Howe, Knoblock, Ram, Veloso, Weld, & Wilkins, 1998),
where the main focus is to develop efficient ways to express and solve planning problems.
Our approach exploits this tool to build a highly structured planning domain within the
probabilistic generative model framework.

369

Kim, Chacha & Shah

4. Algorithm

This section presents the details of our algorithm. We describe our probabilistic generative
model and indicate how this model is combined with the logic-based prior to perform effi-
cient inference. The generative model specifies a joint probability distribution over observed
variables (e.g., human team planning conversation) and latent variables (e.g., the final plan);
our model learns the distribution of the team’s final plan, while incorporating a logic-based
prior (plan validation tool). Our key contribution is the design of this generative model
with logic-based prior. We also derive the Gibbs sampling (Andrieu, De Freitas, Doucet, &
Jordan, 2003) representation and design the scheme for applying Metropolis-Hasting sam-
pling (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) for performing inference
on this model.

4.1 Generative Model

We model the human team planning process, represented by their dialogue, as a probabilistic
Bayesian model. In particular, we utilize a probabilistic generative modeling approach that
has been extensively used in topic modeling (e.g., Blei, Ng, & Jordan, 2003).

We start with a plan latent variable that must be inferred through observation of ut-
terances made during the planning session. The model generates each utterance in the
conversation by sampling a subset of the predicates in plan and computing the relative or-
dering in which they appear within the utterance. The mapping from the absolute ordering
in plan to the relative ordering of predicates in an utterance is described in more detail
below. Since the conversation is short and the level of noise is high, our model does not
distinguish utterances based on the order in which they appear during the conversation.
This assumption produces a simple yet powerful model, simplifies the inference steps and
enables up to 86% accuracy for the inference of the final plan. However, the model can
also be generalized to take the ordering into account with a simple extension. We include
further discussion on this assumption and the extension in Section 7.4.

The following is a step-by-step description of the generative model:

1. Variable plan: The plan variable in Figure 2 is defined as an ordered tuple of sets
of grounded predicates, and represents the final plan agreed upon by the team. It is
distributed over the space of ordered tuples of sets of grounded predicates. We assume
that the total number of grounded predicates in one domain is fixed.

The prior distribution over the plan variable is given by:

p(plan) ∝

{
eα if the plan is valid

1 if the plan is invalid.
(1)

where α is a positive number. This models our assumption that the final plan is more
likely, but is not necessarily required, to be a valid plan.

The likelihood of the plan is defined as:

370

A Generative Modeling Approach with Logic-Based Prior

snt

s′t

β

kβθβ
plan

α

pnt

ωp

kωp
θωp

N

T

Figure 2: Graphical model representation of the generative model. The plan latent variable
represents the final agreed-upon plan. The pnt variable represents the nth predicate of tth

utterance, while snt represents the absolute ordering of that predicate in the plan. The
s′t represents the relative ordering of sn within the utterance t. The latent variable ωp
represents the noisiness of predicates, and β represents the noisiness of the ordering.

p(s, p|plan, ωp) ∼
∏
t

∏
n

p(snt , p
n
t |plan, ωp)

∼
∏
t

∏
n

p(pnt |plan, snt , ω, p)p(snt |plan)

Each set of predicates in plan is assigned a consecutive absolute plan step index s,
starting at s = 1 working from left to right in the ordered tuple. For example, given
plan = ({A1, A2}, {A3}, {A4, A5, A6}), where each Ai is a predicate, A1 and A2 occur
in parallel at plan step s = 1, and A6 occurs at plan step s = 3.

2. Variable snt : s
n
t represents a step index (i.e., absolute ordering) of the nth predicate

in the tth utterance in the plan. A step index represents an absolute timestamp of the
predicate in the plan. In other words, snt indicates the absolute order of the predicate
pnt as it appears in plan. We use st = {s1

t , s
2
t . . . } to represent a vector of orderings

for the tth utterance, where the vector st may not be a set of consecutive numbers.

snt is sampled as follows: For each utterance, n predicates are sampled from plan.
For example, consider n = 2, where the first sampled predicate appears in the second
set (i.e., the second timestamp) of plan and the second sampled predicate appears in
the fourth set. Under these conditions, s1

t = 2 and s2
t = 4. The probability of a set

being sampled is proportional to the number of predicates contained within that set.
For example, given plan = ({A1, A2}, {A3}, {A4, A5, A6}), the probability of selecting
the first set ({A1, A2}) is 2

6 . This models the notion that people are more likely to

371

Kim, Chacha & Shah

discuss plan steps that include many predicates, since plan steps with many actions
may require more effort to elaborate. Formally:

p(snt = i|plan) =
predicates in set i in plan

total # of predicates in plan
. (2)

The likelihood of st is defined as:

p(st|pt, s
′
t) ∼ p(st|plan)p(pt, s

′
t|st, β, ωp, plan)

∼ p(s′t|st, β)
∏
n

p(snt |plan)p(pnt |plan, snt , ωp)

3. Variable s′t and β: The variable s′t is an array of size n, where s′t = {s′1t , s
′2
t . . . s

′n
t }.

The s
′n
t random variable represents the relative ordering of the nth predicate within

the tth utterance in the plan, with respect to other grounded predicates appearing in
the tth utterance.

s′t is generated from st as follows:

p(s′t|st) ∝

{
eβ if s′t = f(st)

1 if s′t 6= f(st).
(3)

where β > 0. The β random variable is a hyper-parameter that represents the noisiness
of the ordering of grounded predicates appearing throughout the entire conversation.
It takes a scalar value, and is sampled from gamma distribution:

p(β|kβ, θβ) ∼ Gamma(kβ, θβ), (4)

where both kβ and θβ are set to 10.

The function f is a deterministic mapping from the absolute ordering st to the relative
ordering s′t. f takes a vector of absolute plan step indices as input, and produces a
vector of consecutive indices. For example, f maps st = (2, 4) to s′t = (1, 2) and
st = (5, 7, 2) to s′t = (2, 3, 1).

This variable models the way predicates and their orders appear during human conver-
sation: People frequently use relative terms, such as “before” and “after,” to describe
partial sequences of a full plan, and do not often refer to absolute ordering. People
also make mistakes or otherwise incorrectly specify an ordering. Our model allows for
inconsistent relative orderings with nonzero probability; these types of mistakes are
modeled by the value of β.

4. Variable pnt and ωp: The variable pnt represents the nth predicate appearing in
the tth utterance. The absolute ordering of this grounded predicate is snt . The pnt is
sampled given snt , the plan variable and a parameter, ωp.

372

A Generative Modeling Approach with Logic-Based Prior

The ωp random variable (hyper-parameter) represents the noisiness of grounded pred-
icates appearing throughout the entire conversation. It takes a scalar value, and is
sampled from beta distribution:

p(ωp|kωp , θωp) ∼ beta(kωp , θωp), (5)

where kωp is set to 40, and θωp is set to 10.

With probability ωp, we sample the predicate pnt uniformly with replacement from the
“correct” set snt in plan as follows:

p(pnt = i|plan, snt = j) =

{
1

pred. in set j if i is in set j

0 o.w.

With probability 1−ωp, we sample the predicate pnt uniformly with replacement from
“any” set in plan (i.e., from all predicates mentioned in the dialogue). Therefore:

p(pnt = i|plan, snt = j) =
1

total # predicates
. (6)

In other words, with higher probability ωp, we sample a value for pnt that is consistent
with snt but allows for nonzero probability that pnt is sampled from a random plan.
This allows the model to incorporate noise during the planning conversation, including
mistakes or plans that are later revised.

4.2 Plan Validation Tool

We use the Planning Domain Description Language (PDDL) 2.1 plan validation tool (Howey
et al., 2004) to evaluate the prior distribution over possible plans. In this section, we briefly
review the PDDL, and the plan validation tool that is used to form the prior in Equation
1.

4.2.1 Planning Domain Description Language

The Planning Domain Description Language (PDDL) (McDermott et al., 1998) is a standard
planning language, inspired by the Stanford Research Institute Problem Solver (STRIPS)
(Fikes & Nilsson, 1972) and Action Description Language (ADL) (Pednault, 1987), and is
now utilized in the International Planning Competition.

A PDDL model of a planning problem has two major components: a domain specification
and a problem specification. The domain description consists of a domain-name definition,
requirements on language expressivity, definition of object types, definition of constant
objects, definition of predicates (i.e. templates for logical facts), and the definition of
possible actions that are instantiated during execution. Actions have parameters that may
be instantiated with objects, preconditions, and conditional or unconditional effects. An
excerpt of the PDDL domain file used in this work, called the RESCUE domain, is shown
below. For example, the predicate isSaved encodes the logical fact of whether or not a
particular patient has been rescued, and the action SEND−ROBOT is instantiated during
execution to send a particular robot to particular location.

373

Kim, Chacha & Shah

(define (domain RESCUE)

(:requirements :typing :durative−actions :negative−preconditions)
(:types patient valve − thingsToFix location − location

med−crew mechanic robot − resource)

(:predicates

(isAt ?p − thingsToFix ?l − location)

(isSaved ?p − patient)

(isFixed ?v − valve)

(isInspected ?l − location)

(isAvail ?r − resource)

)

(:durative−action SEND−ROBOT
:parameters (?r − robot ?l − location)

:duration (= ?duration 1)

:condition (and

(at start (isAvail ?r))

(at start (not (isInspected ?l)))

)

:effect (and

(at start (not (isAvail ?r)))

(at end (isAvail ?r))

(at end (isInspected ?l))

)

)

. . .)

The problem specification consists of a problem-name definition, the definition of the
related domain-name, the definition of all the possible objects relevant to the planning
problem, the initial state of the planning environment as a conjunction of true/false facts,
and the definition of goal-states as a logical expression over true/false facts. An excerpt of
the PDDL problem specification file used in this work is shown below. The ‘init’ section
describes initial conditions — for example, patient pB is initially situated at location B,
and patient pD is at D. The ‘goal’ section indicates the desired final state — in this case all
rooms must be inspected, all patients must be rescued, and all valves fixed. The ‘metric’
section defines the metric that the planner optimizes when producing a plan.

374

A Generative Modeling Approach with Logic-Based Prior

(define (problem rescuepeople)

(:domain RESCUE)

(:objects

pB pD pG − patient

vC vF − valve

A B C D E F G H − location

redMed blueMed − med−crew
redR blueR − robot

mech1 − mechanic)

(:init

(isAt pB B)

(isAt pD D)

. . .
(isAvail redMed)

(isAvail blueMed)

(isAvail redR)

(isAvail blueR)

(isAvail mech1)

(not (isSaved pB))

. . .
(not (isInspected A))

(not (isInspected B))

. . .
(not (isFixed vC))

(not (isFixed vF))

)

(:goal (and

(isSaved pB)

(isSaved pD)

. . .
(isFixed vC)

(isFixed vF)

(isInspected A)

(isInspected B)

. . .
)

)

;(:metric minimize (total−time))
)

For our work, we note that domain specification could be reused from one planning
session to another if the capabilities of a team do not change. For example, once the set of
possible set of actions is defined in domain specification, it may be sufficient to merely modify
the number and names of locations, medical crews, or robots in the problem specification.
The domain and the problem specification files represent the only ‘prior knowledge’ that
our approach requires in order to infer the final agreed-upon plan. A valid plan is defined as
a totally or partially ordered sequence of grounded predicates that achieves the goal state
from the initial state, without violating any constraints. Otherwise, the plan is invalid. The
next section describes a plan validation tool that assesses the validity of a given plan, given
the domain and problem specification files.

4.2.2 Plan Validation Tool (VAL)

The plan validator is a standard tool that takes as input a planning problem described in
PDDL and a proposed solution plan. The tool incorporates three input files: 1) a domain
definition file, 2) a problem definition file and 3) a proposed solution plan file. The domain

375

Kim, Chacha & Shah

definition file contains types of parameters (e.g., resources, locations), predicate definitions
and actions (which also have parameters, conditions and effects). The problem definition
file contains information specific to the situation: For example, the number of locations
and victims, initial goal conditions and a metric to optimize. A proposed solution plan file
contains a single complete plan, described in PDDL. The output of a plan validation tool
indicates whether the proposed solution plan is valid (true) or not (false).

Metrics represent ways to compute a plan quality value. For the purpose of this study,
the metrics used included: 1) the minimization of total execution time for the radioactive
material leakage scenario, and 2) the maximization of the number of incidents responded
to in the police incident response scenario. Intuitively speaking, metrics reflect the rational
behavior of human experts. It is natural to assume that human experts would try to
minimize the total time to completion of time-critical missions (such as in the radioactive
material leakage scenario). If first responders cannot accomplish all the necessary tasks in
a scenario due to limited availability of resources, they would most likely try to maximize
the number of completed tasks (such as in the police incident response scenario).

One could imagine that these input files could be reused in subsequent missions, as
the capabilities (actions) of a team may not change dramatically. However, the number of
available resources might vary, or there might be rules implicit in a specific situation that
are not encoded in these files (e.g., to save endangered humans first before fixing a damaged
bridge). In Section 6, we demonstrate the robustness of our approach using both complete
and degraded PDDL plan specifications.

The computation of a plan’s validity is generally cheaper than that of a valid plan gener-
ation. This gives us a way to compute p(plan) (defined in Section 4.1) up to proportionality
in a computationally efficient manner. Leveraging this efficiency, we use Metropolis-Hastings
sampling, (details described in Section 4.3.1) without calculating the partition function.

4.3 Gibbs Sampling

We use Gibbs sampling to perform inference on the generative model. There are four latent
variables to sample: plan, the collection of variables snt , ωp and β. We iterate between
sampling each latent variable, given all other variables. The PDDL validator is used when
the plan variable is sampled.

4.3.1 Sampling Plan using Metropolis-Hastings

Unlike snt , where we can write down an analytic form to sample from the posterior, it is
intractable to directly resample the plan variable, as doing so would require calculating the
number of all possible plans, both valid and invalid. Therefore, we use a Metropolis-Hasting
(MH) algorithm to sample from the plan posterior distribution within the Gibbs sampling
steps.

376

A Generative Modeling Approach with Logic-Based Prior

The posterior of plan can be represented as the product of the prior and likelihood, as
follows:

p(plan|s, p) ∝ p(plan)p(s, p|plan)

= p(plan)
T∏
t=1

N∏
n=1

p(snt , p
n
t |plan)

= p(plan)
T∏
t=1

N∏
n=1

p(snt |plan)p(pnt |plan, snt) (7)

The MH sampling algorithm is widely used to sample from a distribution when direct
sampling is difficult. This algorithm allows us to sample from posterior distribution ac-
cording to the user-specified proposal distribution without having to calculate the partition
function. The typical MH algorithm defines a proposal distribution, Q(x′|xt), which sam-
ples a new point (i.e., x′: a value of the plan variable in our case) given the current point
xt. The new point can be achieved by randomly selecting one of several possible moves,
as defined below. The proposed point is then accepted or rejected, with a probability of
min(1, acceptance ratio).

Unlike simple cases, where a Gaussian distribution can be used as a proposal distribution,
our distribution needs to be defined over the plan space. Recall that plan is represented as
an ordered tuple of sets of predicates. In this work, the new point (i.e., a candidate plan)
is generated by performing one of the following moves on the current plan:

• Move to next: Randomly select a predicate that is in the current plan, and move it
to the next timestamp. If it is in the last timestamp in the plan, move it to the first
timestamp.

• Move to previous: Randomly select a predicate that is in the current plan, and move
it to the previous timestamp. If it is in the first timestamp in the plan, move it to the
last timestamp.

• Add a predicate to plan: Randomly select a predicate that is not in the current plan,
and randomly choose one timestamp in the current plan. Add the predicate to the
chosen timestamp.

• Remove a predicate from plan: Randomly select and remove a predicate that is in the
current plan.

These moves are sufficient to allow for movement from one arbitrary plan to another.
The intuition behind designing this proposal distribution is described in Section 7.5.

Note that the proposal distribution, as it is, is not symmetrical — Q(x′|xt) 6= Q(xt|x′).
We need to compensate for that according to the following,

p∗(x′)Q(x′|xt) = p∗(x)Q(xt|x′), (8)

where p∗ is the target distribution. This can be done simply by counting the number of
moves possible from x′ to get to x, and from x′ to x, and weighing the acceptance ratio such

377

Kim, Chacha & Shah

that Equation 8 is true. This is often referred to as Hastings correction, which is performed
to ensure that the proposal distribution does not favor some states over others.

Next, the ratios of the proposal distribution at the current and proposed points are
calculated. When plan is valid, p(plan) is proportional to eα, and when plan is invalid,
it is proportional to 1, as described in Equation 1. Plan validity is calculated using the
plan validation tool. The remaining term, p(snt |plan)p(pnt |plan, snt), is calculated using
Equations 2 and 6.

Then, the proposed plan is accepted with the following probability:

min
(

1, p
∗(plan=x′|s,p)
p∗(plan=xt|s,p)

)
, where p∗ is a function proportional to the posterior distribution.

Although we chose to incorporate MH, it is not the only usable sampling method. Any
other method that does not require calculation of the normalization constant (e.g., rejection
sampling or slice sampling) could also be used. However, for some methods, sampling from
the ordered tuple of sets of grounded predicates can be slow and complicated, as pointed
out by Neal (2003).

4.3.2 Sampling Hyper-Parameters β and ωp with Slice Sampling

We use slice sampling to sample both β and ωp. This method is simple to implement and
works well with scalar variables. Distribution choices are made based on the valid value
each can take. β can take any value, preferably with one mode, while ωp can only take a
value between [0, 1]. MH sampling may also work; however, this method could be overly
complicated for a simple scalar value. We chose the stepping out procedure, as described
by Neal et al (Neal, 2003).

4.3.3 Sampling snt

Fortunately, an analytic expression exists for the posterior of snt :

p(st|plan, pt, s′t) ∝ p(st|plan)p(pt, s
′
t|plan, st)

= p(st|plan)p(pt|plan, st)p(s′t|st)

= p(s′t|st)
N∏
n=1

p(snt |plan)p(pnt |plan, snt)

Note that this analytic expression can be expensive to evaluate if the number of possible
values of snt is large. In that case, one can marginalize snt , as the variable we truly care
about is the plan variable.

5. Experimentation

In this section, we explain the web-based collaboration tool that is used in our experiment
and two fictional rescue scenarios given to human subjects in the experiment.

5.1 Web-Based Tool Design

Disaster response teams are increasingly using web-based tools to coordinate missions and
share situational awareness. One of the tools currently used by first responders is the Next

378

A Generative Modeling Approach with Logic-Based Prior

Generation Incident Command System (NICS) (Di Ciaccio et al., 2011). This integrated
sensing and command-and-control system enables the distribution of large-scale coordina-
tion across multiple jurisdictions and agencies. It provides video and audio conferencing
capabilities, drawing tools and a chat window, and allows for the sharing of maps and re-
source information. Overall, the NICS enables the collection and exchange of information
critical to mission planning.

We designed a web-based collaboration tool modeled after this system, with a modifi-
cation that requires the team to communicate solely via text chat. This tool was developed
using Django (Holovaty & Kaplan-Moss, 2009), a free and open-source Web application
framework written in Python. Django is designed to ease working with heavy-duty data,
and provides a Python API to enable rapid prototyping and testing. Incoming data can be
easily maintained through a user-friendly administrative interface. Although it is a simpli-
fied version of the NICS, it provides the essence of the emerging technology for large-scale
disaster coordination (Figure 1).

5.2 Scenarios

Human subjects were given one of two fictional rescue scenarios and asked to formulate a
plan by collaborating with their partners. We collected human team planning data from
the resulting conversations, and used this data to validate our algorithm. The first sce-
nario involves a radioactive material leakage accident in a building with multiple rooms,
where all tasks (described below) were assumed to take one unit of time. We added com-
plexity to the scenario by announcing a new piece of information halfway through the
planning conversation, requiring the team to change their plan. The second scenario also
included time-durative actions (e.g., action A can only take place if action B is taking
place). These scenarios are inspired by those described in emergency response team train-
ing manuals (FEMA, 2014), and are designed to be completed in the reasonable time for
our experiments.

5.2.1 First Scenario: Radioactive Material Leakage

This disaster scenario involves the leakage of radioactive material on a floor consisting of
eight rooms. Each room contains either a patient requiring in-person assessment or a valve
that must be repaired (Figure 4).

Goal State: All patients are assessed in-person by a medical crew. All valves are fixed
by a mechanic. All rooms are inspected by a robot.

Constraints: There are two medical crews, red and blue (discrete resource constraint),
one human mechanic (discrete resource constraint) and two robots, red and blue (discrete
resource constraint). For safety purposes, a robot must inspect the radioactivity of a room
before human crews can be sent inside (sequence constraint).

Assumption: All tasks (e.g. inspecting a room, fixing a valve) take the same amount of
time (one unit), and there are no hard temporal constraints. This assumption was made to
conduct the initial proof-of-concept experimentation described in this paper, and is relaxed
in the scenario described in Section 5.2.2.

379

Kim, Chacha & Shah

Figure 3: Radioactive material leakage scenario

Announcement: During the planning session, the team receives a situation update that
the red robot is now out of order, requiring the team to modify their previously discussed
plan to only use one robot for deployment. The announcement triggers automatically once
the team has exchanged 20 utterances. The purpose of this announcement is to increase
task complexity for the team, to have at least two competing plans and to increase the level
of noise in the conversation.

This scenario produces a large number of possible plans (more than 1012), many of which
are valid for achieving the goals without violating the constraints.

5.2.2 Second Scenario: Police Incidents Response

The second scenario involves a team of police officers and firefighters responding to a series
of incidents occurring in different time frames. This scenario includes more complicated
time-durative actions than the first, as well as interdependency of tasks that has to be
taken into account when planning. The current time is given as 8 p.m. Two fires have
started at this time: one at a college dorm and another at a theater building, as shown
in Figure 4. Also, three street corners, indicated as crime hot-spots (places predicted to
experience serious crimes, based on prior data), become active between 8:30 p.m. and 9 p.m.
There is also a report of a street robbery taking place at 8 p.m. No injury has occurred;
however, a police officer must speak with the victim to file an incident report.

Goal State: Respond to as many incidents as possible given the resources listed in Table
2.

Constraints:
• Putting out a fire requires one fire truck and one police car equipped with a robot.
• A police car must stay with the robot until an evacuation is over.
• Only a robot can perform an evacuation.
• Each robot can only be used once.
• Successfully responding to a fire requires both evacuating the building and putting

out the fire. Both actions can happen simultaneously.

380

A Generative Modeling Approach with Logic-Based Prior

Figure 4: Police incident response scenario

Resources Name Function Duration

Evacuate one building in:
Patrol hotspot 30 min with one robot

Police teams Alpha 15 min with two robots
with Bravo Deploy robot for evacuation 10 min with three robots
robots Charlie

Respond to the street robbery Talk to the victim in:
10 min with one police car

Put out fire in:
Delta 30 min with one fire truck

Fire trucks Echo Put out fire 15 min with two fire trucks
Foxtrot 10 min with three fire trucks

(same for both dorm and theater)

Table 2: Resources available in police incident response scenario

381

Kim, Chacha & Shah

• Responding to a hot-spot patrol requires one police car to be located at the site for a
specified amount of time.
• Only one police car is necessary to respond to the street robbery.

Assumption and Announcement: If no information about traffic is provided, the travel
time from place to place is assumed to be negligible. During the planning session, the team
receives the following announcement: “The traffic officer just contacted us, and said the
First and Second bridges will experience heavy traffic at 8:15 pm. It will take at least 20
minutes for any car to get across a bridge. The travel time from the theater to any hot-spot
is about 20 minutes without using the bridges.” Once this announcement is made, the team
must account for the traffic in their plan.

6. Evaluation

In this section, we evaluate the performance of our plan inference algorithm through initial
proof-of-concept human subject experimentation, and show we are able to infer a human
team’s final plan with 86% accuracy on average, where “accuracy” is defined as a composite
measure of task allocation and plan sequence accuracy measures. We also describe a robot
demonstration in which two people plan and execute a first-response collaborative task with
a PR2 robot.

6.1 Human Team Planning Data

As indicated previously, we designed a web-based collaboration tool modeled after the NICS
system (Di Ciaccio et al., 2011) used by first-response teams, but with a modification that
requires the team to communicate solely via text chat. For the radioactive material leakage
scenario, before announcement, 13 teams of two (a total of 26 participants) were recruited
through Amazon Mechanical Turk and from the greater Boston area. Recruitment was
restricted to those located in the US to increase the probability that participants were
fluent in English. For the radioactive material leakage scenario, after announcement, 21
teams of two (a total of 42 participants) were recruited through Amazon Mechanical Turk
and from the greater Boston area. For the police incident response scenario, 14 teams of
two (total 28 participants) were recruited from the greater Boston area. Participants were
not required to have prior experience or expertise in emergency or disaster planning, and
we note that there may be structural differences in the dialog of expert and novice planners.
We leave this topic for future investigation.

Each team received one of the two fictional rescue scenarios described in Section 5.2, and
was asked to collaboratively plan a rescue mission. Upon completion of the planning session,
each participant was asked to summarize the final agreed-upon plan in the structured form
described previously. An independent analyst reviewed the planning sessions to resolve
discrepancies between the two members’ descriptions when necessary. The first and second
authors, as well as two independent analysts, performed utterance tagging, with each team
planning session tagged and reviewed by two of these four analysts. On average, 36% of
predicates mentioned per data set did not end up in the final plan.

382

A Generative Modeling Approach with Logic-Based Prior

6.2 Algorithm Implementation

The algorithm was implemented in Python, and the VAL PDDL 2.1 plan validator (Howey
et al., 2004) was used. We performed 2,000 Gibbs sampling steps on the data from each
planning session. The initial plan value was set to two to five moves (from MH proposal
distribution) away from the true plan. The initial value for s variable was randomly set to
any timestamp in the initial plan value.

Within one Gibbs sampling step, we performed 30 steps of the Metropolis-Hastings
(MH) algorithm to sample the plan. Every 20 samples were selected to measure accuracy
(median), after a burn-in period of 200 samples.
Results We assessed the quality of the final plan produced by our algorithm in terms of
the accuracy of task allocation among agents (e.g. which medic travels to which room) and
the accuracy of the plan sequence.

Two metrics for task allocation accuracy were evaluated: 1) The percent of inferred plan
predicates appearing in the team’s final plan [% Inferred], and 2) the percent noise rejection
of extraneous predicates that were discussed but do not appear in the team’s final plan [%
Noise Rej].

We evaluated the accuracy of the plan sequence as follows: A pair of predicates is
correctly ordered if it is consistent with the relative ordering in the true final plan. We mea-
sured the percent accuracy of sequencing [% Seq] by # correctly ordered pairs of correct predicates

total # of pairs of correct predicates .
Only correctly estimated predicates were compared, as there is no ground truth relation for
predicates not included in the true final plan. We used this relative sequencing measure
because it does not compound sequence errors, as an absolute difference measure would
(e.g. where an error in the ordering of one predicate early in the plan shifts the position of
all subsequent predicates).

Overall “composite” plan accuracy was computed as the arithmetic mean of the task
allocation and plan sequence accuracy measures. This metric summarizes the two relevant
accuracy measures so as to provide a single metric for comparison between conditions. We
evaluated our algorithm under four conditions: 1) perfect PDDL files, 2) PDDL problem file
with missing goals/constants (e.g. delete available agents), 3) PDDL domain file missing
a constraint (e.g. delete precondition), and 4) using an uninformative prior over possible
plans.

The purpose of the second condition, PDDL problem file with missing goals/constants,
was to test the robustness of our approach to incomplete problem information. This PDDL
problem specifiction was intentionally designed to omit information regarding one patient
(pG) and one robot (blueR). It also omitted the following facts about the initial state:
that pG was located at G, the blueR was available to perform inspections, and patient pG
patient was not yet rescued. The goal state omitted that pG patient was to be rescued.
This condition represented a significant degradation of the problem definition file, since the
original planning problem involved only three patients and two robots.

The purpose of the third condition, PDDL domain file with a missing constant, was to
test the robustness of our approach to missing constraints (or rules for successful execution).
It is potentially easy for a person to miss specifying a rule that is often implicitly assumed.
The third condition omitted the following constraint from the domain file: all the rooms are
to be inspected prior to sending any medical crews. This condition represented a significant

383

Kim, Chacha & Shah

degradation of the domain file, since this constraint affected any action involving one of the
medical crew teams.

Results shown in Tables 3-5 are produced by sampling plan and s variables and fixing
β = 5 and ωp = 0.8. The tables report median values for the percent of the inferred
plan predicates appearing in the final plan [% Inferred], noise rejection [% Noise Rej.], and
sequence accuracy [% Seq.]. We show that our algorithm infers final plans with greater than
86% composite accuracy on average. We also show that our approach is relatively robust to
degraded PDDL specifications (i.e., PDDL with missing goals, constants and constraints).
Further discussion of sampling hyper-parameters is found in Section 7.2.

6.3 Concept-of-Operations Robot Demonstration

We illustrate the use of our plan inference algorithm through a robot demonstration in
which two people plan and execute a first-response collaborative task with a PR2 robot.
The participants plan an impending deployment using the web-based collaborative tool we
developed. Once the planning session is complete, the dialogue is tagged manually. The
plan inferred from this data is confirmed with the human planners and provided to the
robot for execution. The registration of predicates to robot actions, and room names to
map locations, is performed offline in advance. While the first responders are on their way
to the accident scene, the PR2 autonomously navigates to each room, performing online
localization, path planning and obstacle avoidance. The robot informs the rest of the team
as it inspects each room and confirms it is safe for human team members to enter. Video
of this demo can be found here: http://tiny.cc/uxhcrw.

7. Discussion

In this section we discuss the results and trends in Tables 3-5. We then discuss how sam-
pling hyper-parameters improves inference accuracy, and provide an interpretation of in-
ferred hyper-parameter values and how they relate to data characteristics. We also provide
additional support for the use of PDDL by analyzing multiple Gibbs sampling runs. Our ra-
tionale behind the i.i.d assumption on utterances made in the generative model is explained,
and we show how a simple extension to our model can relax this assumption. Finally, we
provide our rationale for designing the proposal distribution for the sampling algorithm.

7.1 Results

The average accuracy of the inferred final plan improved across all three scenarios with
the use of perfect PDDL as compared to an uninformative prior over possible plans. The
sequence accuracy also consistency improved with the use PDDL, regardless of noise level
or the type of PDDL degradation. The three scenarios exhibited different levels of “noise,”
defined as the percentage of utterances that did not end up in the finally agreed upon
plan. The police incidents response scenario produced substantially higher noise (53%),
as compared to the radioactive material leaking scenario before announcement (38%) and
after announcement (17%). This is possibly because the police incidents scenario included
durative-actions, whereas the others did not. Interestingly, perfect PDDL produced more

384

A Generative Modeling Approach with Logic-Based Prior

Task Allocation
% Seq.

Composite
% Inferred % Noise Rej. % Acc.

PDDL 61 100 97 86

PDDL with missing goals
100 58 77 78

and constants

PDDL with missing constraint 70 100 87 86

No PDDL 70 58 66 65

Table 3: Radioactive material leakage scenario plan accuracy results, before announcement
(13 teams / 26 subjects). The table reports median values for the percent of the inferred
plan predicates appearing in the final plan [% Inferred], noise rejection [% Noise Rej.], and
sequence accuracy [% Seq.]. Composite % Accuracy is calculated as the average of the
previous three measures.

Task Allocation
% Seq.

Composite
% Inferred % Noise Rej. % Acc.

PDDL 77 100 83 87

PDDL with missing goals
100 54 97 84

and constants

PDDL with missing constraint 72 100 90 87

No PDDL 100 54 81 78

Table 4: Radioactive material leakage scenario plan accuracy results, after announcement
(21 teams / 42 subjects). The table reports median values for the percent of the inferred
plan predicates appearing in the final plan [% Inferred], noise rejection [% Noise Rej.], and
sequence accuracy [% Seq.]. Composite % Accuracy is calculated as the average of the
previous three measures.

Task Allocation
% Seq.

Composite
% Inferred % Noise Rej. % Acc.

PDDL 97 89 97 86

PDDL with missing goals
92 86 92 83

and constants

PDDL with missing constraint 97 89 97 85

No PDDL 81 95 81 82

Table 5: Police incidents response scenario plan accuracy results (14 teams / 28 subjects).
The table reports median values for the percent of the inferred plan predicates appearing in
the final plan [% Inferred], noise rejection [% Noise Rej.], and sequence accuracy [% Seq.].
Composite % Accuracy is calculated as the average of the previous three measures.

385

Kim, Chacha & Shah

substantial improvements in sequence accuracy when noise level was higher, in the radioac-
tive material leaking scenario before announcement, and in police incidents scenario.

Accuracy in task allocation, on the other hand, did differ depending on the noise level
and the type of PDDL degradation. The noise rejection ratio was the same or better with
PDDL or PDDL with a missing constraint, as compared to an uninformative prior, for
scenarios with less noise (e.g. the radioactive material leaking scenarios before and after
announcement). However, PDDL did not provide benefit to the noise rejection ratio for the
police incidents scenario where the noise level was more than 50%. However, in this case
PDDL did provide improvements in inferred task allocation.

7.2 Sampling Hyper-Parameters

This section discusses the results of hyper-parameter sampling. First, we show that each
data point (i.e., each team’s conversation) converges to different hyper-parameter values,
then show that those values capture the characteristics of each data point. Second, we show
how learning different sets of hyper-parameters improves different measures of accuracy,
and describe how this is consistent with our interpretation of the hyper-parameters in our
model.

-10%

0%

10%

20%

30%

40%

50%

0% 0%

11%

42%
46%

13%

0% 0%

10%

42%
46%

5%

PDDL
PDDL with missing goals and constants
PDDL with missing constraint
No PDDL

Radioactive before Radioactive after Police

%
 im

pr
ov

ed
 a

cc
ur

ac
y

(a) Improvements in noise rejection when sampling
ωp

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

-4%

17%

3%

17%

-8%

5%

12%

-7% 0%

26%

12%

18%

PDDL
PDDL with missing goals and constants
PDDL with missing constraint
No PDDL

Radioactive before Radioactive after Police

%
 im

pr
ov

ed
 a

cc
ur

ac
y

(b) Improvements in sequence accuracy when sam-
pling β

Figure 5: Percent improvements in median noise rejection and median sequence accuracy
when sampling hyper-parameters versus setting ωp = 0.8 and β = 5.

7.2.1 Improvements in Sequence Accuracy versus Noise Rejection

The hyper-parameter β represents the noisiness in predicate ordering, while the hyper-
parameter ωp represents the noisiness in the assignment of predicates. Setting these param-
eters to a fixed value corresponds to an assumption about the noisiness of the data set. We
can learn these parameters through Gibbs sampling, allowing these values to be adjusted
according to different characteristics of each data set. The details of how we sample hyper-
parameters are explained in Section 4.3.2. We performed 2,000 Gibbs sampling steps on the

386

A Generative Modeling Approach with Logic-Based Prior

data from each planning session. The initial values of ωp and β were sampled from their
prior, where the parameters were set to the values described in Section 4.1.

We found that when we learned ωp (with β = 5), the noise rejection rate improved
compared with when we fixed ωp = 0.8. In the radioactive material leakage scenario, both
before and after the mid-scenario announcement, the noise rejection ratio was improved by
as much as 41% and 45%, respectively; in the police incident response scenario, we observed
up to a 13% improvement (Figure 5a). Note that in all cases the median noise rejection
ratio was maintained or improved with the sampling of ωp.

Similarly, when we learned β (with ωp = 0.8), sequence accuracies generally improved. In
the radioactive material leakage scenario, before and after the announcement, the sequence
accuracy improved by up to 26% and 16%, respectively; in the police incident response
scenario, we observed up to an 18% improvement (Figure 5b). Note that three cases did
see a degradation in accuracy of up to 4-8%. However in nine out of the twelve cases the
sequence accuracy was maintained or improved with the sampling of β.

Interestingly, most of the samples achieved the highest overall composite accuracy when
only plan and s were learned, and the hyper-parameters were fixed. In particular, we
observed an average 5% (± 3%) decrease in composite accuracy when sampling all four
variables together. One of the possible explanations for this finding is that, due to the
limited amount of data, Gibbs sampling may require many more iterations to converge all
the variables. This result suggests that one may choose the set of hyper-parameters to learn
based on which measure of accuracy is more important to the user.

7.2.2 Interpretation of Inferred Values of Hyper-Parameters

As described in Section 4.1, the ωp parameter models the level of noise in predicates within
the data. In other words, the ωp parameter is designed to model how many suggestions the
team makes during the conversation that are subsequently included in the final plan. If the
noise level is high, a lower-valued ωp will represent the characteristics of the conversation
well, which may allow for better performance. (However, if the noise level is too high, the
inference may still fail.)

To compare the learned value of ωp with the characteristics of the conversation, we need
a way to calculate how noisy the conversation is. The following is one way to manually
estimate the value of ωp: First, count the utterances that contain any predicates. Then,
count the utterances that contain predicates included in the final plan. The ratio between
these two numbers can be interpreted as noisiness in the predicates; the lower the number,
the more the team talked about many possible plans.

We performed this manual calculation for two teams’ trials — Team 3 and 10 — to
compare their values to the learned values. In Team 3’s trial, only 19.4% of the suggestions
made during the conversation were included in the final plan (i.e., almost 80% of suggestions
were not relevant to the final plan). On the other hand, 68% of suggestions made in Team
10’s trial were included in the final plan. Using this interpretation, Team 3’s trial is more
than twice as noisy as Team 10’s trial.

The converged value of ωp is lower in Team 3’s trial than in Team 10’s trial, reflecting
the characteristics of each data set. Figure 6b shows the converged value of ωp for each
team’s trial (sub-sampled, and for a subset of the dataset). The figure presents values of

387

Kim, Chacha & Shah

(a) Examples of β value convergences

(b) Examples of ωp value convergence

Figure 6: Inferred values of hyper-parameters (only showing subset of data set)

ωp at each iteration of the Gibbs sampling step. Note that the samples from Team 3’s trial
converge to 20%, while the samples from Team 10’s trial converge to 40%. The lower value
of ωp represents higher noise level, and matches our intuition.

However, there is no conclusive way to prove that these converged values are the true
values. In theory, the Gibbs sampling algorithm only guarantees convergences to the true

388

A Generative Modeling Approach with Logic-Based Prior

value with an infinite number of iterations. Therefore, we cannot prove that the converged
ωp variables shown in Figure 6 are the true values. In practice, a trace plot, such as that
in Figure 6, is drawn in order to demonstrate convergence to a local optimum. The fact
that the values appear to plateau after a burn-in period provides support of convergence
to a local optimum point. Investigation of this potentially local optimum point suggests
that the ωp value for each data point can be different, and that we can observe some
relationship between the ωp value and the characteristics of the data set. In addition, the
manual calculation of ‘noisiness’ is only one way of interpreting the ‘noisiness’ of the data
set. Therefore, this analysis should be considered as one possible way to gain insight into
the learned values; not a rigorous proof of the relation between the learned value of the
hyper-parameter and the characteristics of the data.

7.3 The Benefit of PDDL

This section provides additional evidence of the benefit of using PDDL by analyzing multiple
runs using the same data and sampling algorithm. As explained in Section 4.3, Gibbs
sampling is an approximate inference algorithm that can produce different results on each
run.

In this section we evaluate runs over a wide range of different settings to show that the
benefit of PDDL applies not just to a particular setting of parameters, but also to different
settings. We analyzed three cases across a range of parameters: 1) learning both plan and
s, 2) learning plan, s and ωp and 3) learning plan, s and β. In the first case, we changed the
value of α to range from 3 to 1,000, ωp from 0.3 to 0.8, and β from 1 to 100. In the second
case, in addition to α and β parameters, we varied the parameters for the prior distribution
of ωp — kωp and θωp ; both ranging from 2 to 70. In the third case, in addition to α and
ωp parameters, we varied the parameters for the prior distribution of β — kβ and θβ; both
ranging from 0.1 to 50. Values from the all ranges were selected randomly to produce a
total of 613 runs.

Eighty-two percent of the 613 runs showed higher accuracy when PDDL was used than
when PDDL was not used. This suggests that adding the structured prior improves accuracy
over a wide range of parameter settings. Figure 7 presents the ratio of runs that saw benefit
from the use of the PDDL, for each of the three scenarios.

Interestingly, the highest accuracy was not always achieved with perfect PDDL files;
in some cases, the highest accuracy was achieved with imperfect PDDL files (e.g., PDDL
file with missing goals/constraints, as described in Section 6). This observation may be
explained by the possibility that some finally agreed-upon plans 1) are not complete and/or
2) violate constraints (mostly due to participants’ misunderstandings). For example: Prior
to the announcement during the radioactive material leakage scenario, a number of teams
had not finished building complete plans. Therefore, the final plans in these cases may have
been better inferred with incomplete PDDL files (consistent with Table 4). In the police
incident response scenario, however, a number of teams missed the constraint that the hot-
spot patrolling task is only considered complete if that hot-spot is fully covered from 8:30
p.m. to 9 p.m. A number of teams dispatched police cars only for a portion of that time
window, resulting in invalid plans with the perfect PDDL files (consistent with Table 5)

389

Kim, Chacha & Shah

Radioactive before Radioactive after Police
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io
 o

f r
un

s
us

in
g

P
D

D
L

th
a

t i
m

p
ro

ve
d

co
m

po
si

te
 a

cc
ur

a
cy

173/216
198/230

134/167

Figure 7: Ratio of runs that show the benefit of using PDDL

The improvements achieved by adding the structure to the prior using PDDL suggest
that the structural information is beneficial to our inference problem. It would be interesting
to systematically investigate the smallest set of structural information that achieves accuracy
improvements, given a fixed computation budget, in future work.

7.4 The i.i.d Assumption on the Utterance in the Generative Model

Our generative model considers that all utterances are independent and identically dis-
tributed samples from the plan variable. In other words, we consider that all utterances
give equal evidence to a plan, regardless of the order in which they appear during the con-
versation. An alternative would be to have a different weight for each utterance, to take
the ordering into account. In this section, we explain the reasons for the i.i.d. assumption,
and how a simple extension to the current model can relax this assumption.

In the human subject data collected for this work, we did not observe a clear relationship
between the order of an utterance and whether the suggestion is included in the final plan.
For example, a number of teams decided to include parts of a plan that were discussed
at the beginning of the conversation within their final plan, after discussing many other
possibilities. The distribution of the utterances included in the final plan is shown in
Figure 8. In addition, when a team discusses plans under time pressure, the planning
sessions often consist of a small number of succinct communications. For example, the
average number of predicates in all utterances in a planning session is 90, whereas the
average number of predicates in a final plan is 12. A succinct conversation yields less
available data for the inference; therefore, a complicated model may fail to correctly infer
all the latent variables. A time series model, wherein the ordering is taken into account and
the weight of each utterance is a latent variable that needs to be learned from the data, is
an example of such a model.

390

A Generative Modeling Approach with Logic-Based Prior

Figure 8: The distribution of the utterances included in the final plan (normalized)

However, a simple extension of the current model can relax this assumption and incor-
porate the different importance of each utterance. One way to decide an utterance’s impor-
tance is to integrate human cognitive models. Human cognitive architectures (Anderson,
1983) model human cognitive operations, such as the memory model (Anderson, Bothell,
Lebiere, & Matessa, 1998). For example, we can decrease the importance of each utterance
as time proceeds in the planning session by applying varying weights to each utterance.
A simple extension to the current model can be made to incorporate the memory model.
Specifically, the variables ωp and β can be modified to be vectors that represent weight or
activation level of each utterance from the human cognition model (Anderson et al., 1998).
The vector of ωp will have the length of the utterances, ωp = {ωp,1, ωp,2, · · · , ωp,T }, where
each ωp,t represents the activation level of each utterance. Similarly, we can extend β to
be a vector, where each βt can represent how noisy each utterance is, weighing it accord-
ingly. However, while these cognitive models are empirically well-verified, Whitehill (2013)
pointed out that there is no structured way to set parameters for these models. In addition,
it is unclear how the human memory model would differ depending on the characteristics
of a given task. For example, the memory model may differ significantly for short, succinct
conversations conducted under time pressure.

7.5 Engineering the Proposal Distribution in the Metropolis-Hastings
Sampling Algorithm

This section describes the impact of different proposal distributions in the MH sampling
step, and our rationale for designing the proposal distribution as described in Section 4.3.1.

There have been numerous studies conducted on selecting a family of candidate-generating
density functions (Metropolis et al., 1953; Hastings, 1970; Geweke, 1989; Gelman & Rubin,

391

Kim, Chacha & Shah

Radioactive before Radioactive after Police
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Result with proposal distribution in preliminary work
Result with proposal distribution in current work

P
er

ce
nt

 c
o

m
p

o
si

te
 a

cc
u

ra
cy

Figure 9: The impact of different proposal distributions (The highest accuracy with perfect
PDDL files)

1992). However, as pointed out by Chib and Greenberg (1995), there is no structured way
to choose the proposal distribution. It becomes more challenging when the sampled object
is not a simple scalar variable, but a more complicated object, such as the plan variable
(i.e., tuples of sets of grounded predicates) in this work. For such an object, there are larger
spaces of potential proposal distributions to choose from.

However, a good choice for proposal distribution can improve performance. Figure 9
shows the results of the two different proposal distributions used for this work. The prelim-
inary version of this work (Kim et al., 2013) applied the following distribution:

• Select a predicate from the set of possible predicates. If it is in the current plan, move
it to either: 1) the next set of predicates or 2) the previous set, or 3) remove it from
the current plan. If it is not in the current plan, move it to one of the existing sets.

• Select two sets in the current plan and switch their orders.

One difference between the proposal distribution above and the one outlined in Section 4.3.1
is the set of allowed timestamps that a selected predicate can move to at each iteration.
The above proposed distribution allows a predicate to move to any timestamp, whereas the
one in Section 4.3.1 only allows a predicate to move to an adjacent timestamp.

The key insight into proposal distribution in this work is gained by investigating se-
quences of MH sampling steps and observing when a proposal distribution fails to propose
a good move. In other words, we identify what moves are necessary to move a proposed
value (i.e., proposed new plan) to the true value of the latent variable (i.e., true plan) when
they are close to each other. Often, a predicate is one timestamp off from the true times-
tamp (i.e., one timestamp after or before), and the proposal distribution as contained in
the preliminary work (Kim et al., 2013) often fails to suggest a better proposed point. This

392

A Generative Modeling Approach with Logic-Based Prior

motivated us to create a proposal distribution enabling more frequent moves between adja-
cent timestamps than between any two timestamps. As a result, we observed a substantial
improvement to accuracy in all scenarios, as shown in Figure 9.

While this particular proposal distribution cannot be applied to all cases, this insight
suggests that the following approach could be useful when designing a proposal distribution
for non-scalar valued variables: First, a distance metric is defined between the two non-
scalar valued variables. In our case, this step included defining the distance between two
tuples of sets of predicates (i.e., plan variables). For example, the distance could be the
average number of missing or extraneous predicates or the number of predicates that have
incorrect timestamps. Second, starting from an initial proposed distribution, the distance
between each sample and the true value is measured. Third, we can filter sample sequences
when the distance is short, and visualize them. The shorter distance indicates moments
when sampling could have almost reached the true value, but did not. Finally, the proposed
distribution is modified to include the move that converts the samples in the third step to
the true value within one or two moves. This process allows for insight into designing the
proposal distribution. We leave further investigation of the systematic approach to future
work.

8. Conclusion and Future Work

In this work, we have formulated the novel problem of performing inference to extract
a finally agreed-upon plan from a human team’s planning conversation. We presented
an algorithm that combines a probabilistic approach with logical plan validation, used to
compute a highly structured prior over possible plans. Our approach infers team plans
without the need for historical data, using only situational information and data from a
single planning session. We do not require the development or addition of a plan library
to infer the plan, and demonstrate our solution is robust to incomplete knowledge of the
planning problem. We demonstrated the benefit of this approach using human team meeting
data collected from large-scale human subject experiments (total 96 subjects) and were able
to infer the human teams’ final plans with 86% accuracy on average.

In the future, we plan to build on this work to design an interactive agent that par-
ticipates to improve human teams’ planning decisions. Specifically we envision the work
described here as a starting point for utilizing and building on human domain experts’
knowledge, and improving the quality of finally agreed-upon plan through human-machine
interaction.

9. Acknowledgement

This work is sponsored by ASD (R&E) under Air Force Contract FA8721-05-C-0002. Opin-
ions, interpretations, conclusions and recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

393

Kim, Chacha & Shah

Appendix A. The Visualization of Gibbs Sampling Convergence: Trace
Plot

It is known that there is no conclusive way to determine whether the Markov chain of the
Gibbs sampling has reached its stationary, or the desired posterior, distribution (Cowles
& Carlin, 1996). Many available diagnostic tools are designed to test for necessary but
insufficient conditions for convergence, such as work done by Gelman and Rubin (1992),
Geweke (1991), Heidelberger and Welch (1981) and Raftery and Lewis (1995), to mention
a few. In this work we utilize a much simpler yet still informative approach, which is to
visually check whether convergence has been reached using the trace plot.

A trace plot is simply a scatter plot of the statistics of successive parameter estimates
(e.g., the estimated values) with respect to the iteration steps. These statistics can be
means, variances or covariance. A trace plot is most informative when the scalar variables
are plotted. Figure 10 shows examples trace plots for the β and ωp variables.

References

Albrecht, D. W., Zuckerman, I., Nicholson, A. E., & Bud, A. (1997). Towards a Bayesian
model for keyhole plan recognition in large domains. In Proceedings of the Sixth
International Conference on User Modeling, pp. 365–376. Springer-Verlag.

Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal Learning
and Verbal Behavior, 22 (3), 261–295.

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. (1998). An integrated theory of
list memory. Journal of Memory and Language, 38 (4), 341–380.

Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to mcmc
for machine learning. Machine learning, 50 (1-2), 5–43.

Barnes, M., Chen, J., Jentsch, F., & Redden, E. (2011). Designing effective soldier-robot
teams in complex environments: training, interfaces, and individual differences. EPCE,
484–493.

Bauer, M., Biundo, S., Dengler, D., Koehler, J., & Paul, G. (2011). PHI: a logic-based tool
for intelligent help systems..

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
Machine Learning Research, 3, 993–1022.

Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2 (2), 155–192.

Carberry, S. (1990). Plan recognition in natural language dialogue. The MIT Press.

Casper, J., & Murphy, R. (2003). Human-robot interactions during the robot-assisted urban
search and rescue response at the World Trade Center. IEEE SMCS, 33 (3), 367–385.

Casper, J., & Murphy, R. (2002). Workflow study on human-robot interaction in USAR.
IEEE ICRA, 2, 1997–2003.

Charniak, E., & Goldman, R. P. (1993). A Bayesian model of plan recognition. Artificial
Intelligence, 64 (1), 53–79.

394

A Generative Modeling Approach with Logic-Based Prior

(a) Examples of β value convergences

(b) Examples of ωp value convergence

Figure 10: Trace Plots (only showing a subset of the data set)

Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The
American Statistician, 49 (4), 327–335.

Coles, A., Fox, M., Halsey, K., Long, D., & Smith, A. (2009). Managing concurrency in
temporal planning using planner-scheduler interaction. Artificial Intelligence, 173 (1),
1–44.

Cowles, M. K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics:
a comparative review. Journal of the American Statistical Association, 91 (434), 883–
904.

Cummings, M. L., Brzezinski, A. S., & Lee, J. D. (2007). Operator performance and intel-
ligent aiding in unmanned aerial vehicle scheduling. IEEE Intelligent Systems, 22 (2),
52–59.

395

Kim, Chacha & Shah

Di Ciaccio, R., Pullen, J., & Breimyer, P. (2011). Enabling distributed command and
control with standards-based geospatial collaboration. IEEE International Conference
on HST.

FEMA (2014). Federal emergency management agency.. [Online; accessed 3-December-
2014].

Fikes, R. E., & Nilsson, N. J. (1972). Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2 (3), 189–208.

Gal, Y., Reddy, S., Shieber, S. M., Rubin, A., & Grosz, B. J. (2012). Plan recognition in
exploratory domains. Artificial Intelligence, 176 (1), 2270–2290.

Geib, C. W., & Goldman, R. P. (2009). A probabilistic plan recognition algorithm based
on plan tree grammars. Artificial Intelligence, 173 (11), 1101–1132.

Geib, C. W., Maraist, J., & Goldman, R. P. (2008). A new probabilistic plan recognition
algorithm based on string rewriting.. In ICAPS, pp. 91–98.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 457–472.

Getoor, L., & Mihalkova, L. (2011). Learning statistical models from relational data. In-
ternational Conference on Management of Data, 1195–1198.

Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration.
Econometrica: Journal of the Econometric Society, 1317–1339.

Geweke, J. (1991). Evaluating the accuracy of sampling-based approaches to the calculation
of posterior moments. Federal Reserve Bank of Minneapolis, Research Department.

Goodrich, M. A., Morse, B. S., Engh, C., Cooper, J. L., & Adams, J. A. (2009). Towards
using UAVs in wilderness search and rescue: Lessons from field trials. Interaction
Studies, Special Issue on Robots in the Wild: Exploring Human-Robot Interaction in
Naturalistic Environments, 10 (3), 453–478.

Grosz, B. J., & Sidner, C. L. (1990). Plans for discourse. In Cohen, P. R., Morgan,
J., & Pollack, M. E. (Eds.), Intentions in Communication, pp. 417–444. MIT Press,
Cambridge, MA.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57 (1), 97–109.

Heidelberger, P., & Welch, P. D. (1981). A spectral method for confidence interval generation
and run length control in simulations. Communications of the ACM, 24 (4), 233–245.

Holovaty, A., & Kaplan-Moss, J. (2009). The definitive guide to Django: Web development
done right. Apress.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., & Rommelse, K. (1998). The Lumiere
project: Bayesian user modeling for inferring the goals and needs of software users.
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence,
256–265.

Howey, R., Long, D., & Fox, M. (2004). Val: Automatic plan validation, continuous effects
and mixed initiative planning using PDDL. IEEE ICTAI, 294–301.

396

A Generative Modeling Approach with Logic-Based Prior

Jones, H., Rock, S., Burns, D., & Morris, S. (2002). Autonomous robots in SWAT applica-
tions: Research, design, and operations challenges. AUVSI.

Jurafsky, D., & Martin, J. H. (2000). Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition (1st
edition). Prentice Hall PTR, Upper Saddle River, NJ, USA.

Kautz, H. A., Pelavin, R. N., Tenenberg, J. D., & Kaufmann, M. (1991). A formal theory
of plan recognition and its implementation. Reasoning about Plans, 69–125.

Kautz, H. A. (1987). A formal theory of plan recognition. Ph.D. thesis, Bell Laboratories.

Kim, B., Chacha, C. M., & Shah, J. (2013). Inferring robot task plans from human team
meetings: A generative modeling approach with logic-based prior. AAAI.

Kim, J., & Shah, J. A. (2014). Automatic prediction of consistency among team mem-
bers’ understanding of group decisions in meetings. In Systems, Man and Cybernetics
(SMC), 2014 IEEE International Conference on, pp. 3702–3708. IEEE.

Koomen, P., Punyakanok, V., Roth, D., & Yih, W. (2005). Generalized inference with
multiple semantic role labeling systems. CoNLL, 181–184.

Kruijff, G., Janıcek, M., & Lison, P. (2010). Continual processing of situated dialogue in
human-robot collaborative activities. In IEEE Ro-Man.

Larochelle, B., Kruijff, G., Smets, N., Mioch, T., & Groenewegen, P. (2011). Establishing
human situation awareness using a multi-modal operator control unit in an urban
search & rescue human-robot team. IEEE Ro-Man, 229–234.

Lochbaum, K. E. (1998). A collaborative planning model of intentional structure. Compu-
tational Linguistics, 24 (4), 525–572.

Mayfield, J. (1992). Controlling inference in plan recognition. User Modeling and User-
Adapted Interaction, 2 (1-2), 55–82.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., &
Wilkins, D. (1998). PDDL-the planning domain definition language..

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21, 1087.

Micire, M. (2002). Analysis of robotic platforms used at the World Trade Center disaster.
Ph.D. thesis, MS thesis, Department Computer Science Engineering, Univ. South
Florida.

Murphy, R. (2004). Human-robot interaction in rescue robotics. IEEE SMCS, 34 (2), 138–
153.

Neal, R. M. (2003). Slice sampling. Annals of Statistics, 705–741.

Nguyen, T. A., Kambhampati, S., & Do, M. (2013). Synthesizing robust plans under incom-
plete domain models. Advances in Neural Information Processing Systems, 2472–2480.

Palmer, M., Gildea, D., & Xue, N. (2010). Semantic role labeling. Synthesis Lectures on
Human Language Technologies, 3 (1), 1–103.

397

Kim, Chacha & Shah

Pednault, E. P. D. (1987). Formulating Multi-Agent Dynamic-World Problems in the Clas-
sical Planning Framework. In Reasoning About Actions and Plans: Proceedings of the
1986 Workshop. Morgan Kaufmann Publishers.

Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and
deterministic dependencies. AAAI, 21 (1), 458.

Poon, H., & Domingos, P. (2009). Unsupervised semantic parsing. EMNLP.

Pradhan, S., Ward, W., Hacioglu, K., Martin, J., & Jurafsky, D. (2004). Shallow semantic
parsing using support vector machines. NAACL-HLT, 233.

Pynadath, D. V., & Wellman, M. P. (2000). Probabilistic state-dependent grammars for
plan recognition. Proceedings of the Sixteenth conference on Uncertainty in Artificial
Intelligence, 507–514.

Raedt, L. (2008). Probabilistic logic learning. Logical and Relational Learning, 223–288.

Raftery, A. E., & Lewis, S. M. (1995). The number of iterations, convergence diagnostics
and generic metropolis algorithms. In Practical Markov Chain Monte Carlo, 115–130.

Ramırez, M., & Geffner, H. (2009). Plan recognition as planning. Proceedings of the 21st
international joint conference on Artificial Intelligence, 1778–1783.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine learning, 62 (1),
107–136.

Ryall, K., Marks, J., & Shieber, S. (1997). An interactive constraint-based system for
drawing graphs. Proceedings of the 10th Annual ACM Symposium on User Interface
Software and Technology, 97–104.

Sadilek, A., & Kautz, H. A. (2010). Recognizing multi-agent activities from GPS data.
AAAI.

Singla, P., & Domingos, P. (2007). Markov logic in infinite domains. UAI, 368–375.

Tellex, S., Kollar, T., Dickerson, S., Walter, M., Banerjee, A., Teller, S., & Roy, N. (2011).
Understanding natural language commands for robotic navigation and mobile manip-
ulation. AAAI.

Weida, R., & Litman, D. (1992). Terminological Reasoning with Constraint Networks and
an Application to Plan Recognition.

Whitehill, J. (2013). Understanding ACT-R - an outsider’s perspective. CoRR, 1306.0125.

Zhuo, H. H., Yang, Q., & Kambhampati, S. (2012). Action-model based multi-agent plan
recognition. Advances in Neural Information Processing Systems 25, 377–385.

398

