894 research outputs found

    Cooperatively Extending the Range of Indoor Localisation

    Get PDF
    ̶Whilst access to location based information has been mostly possible in the\ud outdoor arena through the use of GPS, the provision of accurate positioning estimations and\ud broad coverage in the indoor environment has proven somewhat problematic to deliver.\ud Considering more time is spent in the indoor environment, the requirement for a solution is\ud obvious. The topography of an indoor location with its many walls, doors, pillars, ceilings\ud and floors etc. muffling the signals to \from mobile devices and their tracking devices, is one\ud of the many barriers to implementation. Moreover the cha racteristically noisy behaviour of\ud wireless devices such as Bluetooth headsets, cordless phones and microwaves can cause\ud interference as they all operate in the same band as Wi -Fi devices. The limited range of\ud tracking devices such as Wireless Access Point s (AP), and the restrictions surrounding their\ud positioning within a buildings’ infrastructure further exacerbate this issue, these difficulties\ud provide a fertile research area at present.\ud The genesis for this research is the inability of an indoor location based system (LBS) to\ud locate devices beyond the range of the fixed tracking devices. The hypothesis advocates a\ud solution that extends the range of Indoor LBS using Mobile Devices at the extremities of\ud Cells that have a priori knowledge of their location, and utilizing these devices to ascertain\ud the location of devices beyond the range of the fixed tracking device. This results in a\ud cooperative localisation technique where participating devices come together to aid in the\ud determination of location of device s which otherwise would be out of scope

    Cooperatively extending the range of indoor localisation

    Get PDF
    Whilst access to location based information has been mostly possible in the outdoor arena through the use of GPS, the provision of accurate positioning estimations and broad coverage in the indoor environment has proven somewhat problematic to deliver. Considering more time is spent in the indoor environment, the requirement for a solution is obvious. The topography of an indoor location with its many walls, doors, pillars, ceilings and floors etc. muffling the signals to from mobile devices and their tracking devices, is one of the many barriers to implementation. Moreover the characteristically noisy behaviour of wireless devices such as Bluetooth headsets, cordless phones and microwaves can cause interference as they all operate in the same band as Wi-Fi devices. The limited range of tracking devices such as Wireless Access Points (AP), and the restrictions surrounding their positioning within a buildings' infrastructure further exacerbate this issue, these difficulties provide a fertile research area at present. The genesis for this research is the inability of an indoor location based system (LBS) to locate devices beyond the range of the fixed tracking devices. The hypothesis advocates a solution that extends the range of Indoor LBS using Mobile Devices at the extremities of Cells that have a priori knowledge of their location, and utilizing these devices to ascertain the location of devices beyond the range of the fixed tracking device. This results in a cooperative localisation technique where participating devices come together to aid in the determination of location of devices which otherwise would be out of scope

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Environmental monitoring of Galway Bay: fusing data from remote and in-situ sources

    Get PDF
    Changes in sea surface temperature can be used as an indicator of water quality. In-situ sensors are being used for continuous autonomous monitoring. However these sensors have limited spatial resolution as they are in effect single point sensors. Satellite remote sensing can be used to provide better spatial coverage at good temporal scales. However in-situ sensors have a richer temporal scale for a particular point of interest. Work carried out in Galway Bay has combined data from multiple satellite sources and in-situ sensors and investigated the benefits and drawbacks of using multiple sensing modalities for monitoring a marine location

    Topologies for combining the Internet of Things and Serious Games

    Get PDF
    Serious Games have been established over recent years as a means of utilising gaming for applications other than entertainment.With the emergence of the Internet of Things (IoT) paradigm, a new direction for serious games arises, where data gathered from the physical environment can be utilised towards new novel applications. This literature survey uncovers existing topologies that can be applied for combining IoT with Serious Games. This paper presents findings from extensive research into IoT, Serious Games, Pervasive Games and Gamification, IoT topologies and Wireless Sensor Networks (WSN), to identify the requirements of a topology for Serious Games and IoT. By understanding the topological requirements for combining IoT and Serious Games, the development process is reduced, allowing for the advancement in the mentioned field. Three topologies are presented for combining IoT with Serious Games and a detailed topology for developing a Serious Game that monitors student attendance is presented. Also included, is an insight into the new paradigm of Smart Serious Games (SSGs). This paper will aid future research and development in SSGs determine effective network topologies

    Proof of Concept of Wireless TERS Monitoring

    Get PDF
    Temporary earth retaining structures (TERS) help prevent collapse during construction excavation. To ensure that these structures are operating within design specifications, load forces on supports must be monitored. Current monitoring approaches are expensive, sparse, off-line, and thus difficult to integrate into predictive models. This work aims to show that wirelessly connected battery powered sensors are feasible, practical, and have similar accuracy to existing sensor systems. We present the design and validation of ReStructure, an end-to-end prototype wireless sensor network for collection, communication, and aggregation of strain data. ReStructure was validated through a six months deployment on a real-life excavation site with all but one node producing valid and accurate strain measurements at higher frequency than existing ones. These results and the lessons learnt provide the basis for future widespread wireless TERS monitoring that increase measurement density and integrate closely with predictive models to provide timely alerts of damage or potential failure

    Topology control and data handling in wireless sensor networks

    Get PDF
    Our work in this thesis have provided two distinctive contributions to WSNs in the areas of data handling and topology control. In the area of data handling, we have demonstrated a solution to improve the power efficiency whilst preserving the important data features by data compression and the use of an adaptive sampling strategy, which are applicable to the specific application for oceanography monitoring required by the SECOAS project. Our work on oceanographic data analysis is important for the understanding of the data we are dealing with, such that suitable strategies can be deployed and system performance can be analysed. The Basic Adaptive Sampling Scheduler (BASS) algorithm uses the statistics of the data to adjust the sampling behaviour in a sensor node according to the environment in order to conserve energy and minimise detection delay. The motivation of topology control (TC) is to maintain the connectivity of the network, to reduce node degree to ease congestion in a collision-based medium access scheme; and to reduce power consumption in the sensor nodes. We have developed an algorithm Subgraph Topology Control (STC) that is distributed and does not require additional equipment to be implemented on the SECOAS nodes. STC uses a metric called subgraph number, which measures the 2-hops connectivity in the neighbourhood of a node. It is found that STC consistently forms topologies that have lower node degrees and higher probabilities of connectivity, as compared to k-Neighbours, an alternative algorithm that does not rely on special hardware on sensor node. Moreover, STC also gives better results in terms of the minimum degree in the network, which implies that the network structure is more robust to a single point of failure. As STC is an iterative algorithm, it is very scalable and adaptive and is well suited for the SECOAS applications

    Localisation in wireless sensor networks for disaster recovery and rescuing in built environments

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyProgress in micro-electromechanical systems (MEMS) and radio frequency (RF) technology has fostered the development of wireless sensor networks (WSNs). Different from traditional networks, WSNs are data-centric, self-configuring and self-healing. Although WSNs have been successfully applied in built environments (e.g. security and services in smart homes), their applications and benefits have not been fully explored in areas such as disaster recovery and rescuing. There are issues related to self-localisation as well as practical constraints to be taken into account. The current state-of-the art communication technologies used in disaster scenarios are challenged by various limitations (e.g. the uncertainty of RSS). Localisation in WSNs (location sensing) is a challenging problem, especially in disaster environments and there is a need for technological developments in order to cater to disaster conditions. This research seeks to design and develop novel localisation algorithms using WSNs to overcome the limitations in existing techniques. A novel probabilistic fuzzy logic based range-free localisation algorithm (PFRL) is devised to solve localisation problems for WSNs. Simulation results show that the proposed algorithm performs better than other range free localisation algorithms (namely DVhop localisation, Centroid localisation and Amorphous localisation) in terms of localisation accuracy by 15-30% with various numbers of anchors and degrees of radio propagation irregularity. In disaster scenarios, for example, if WSNs are applied to sense fire hazards in building, wireless sensor nodes will be equipped on different floors. To this end, PFRL has been extended to solve sensor localisation problems in 3D space. Computational results show that the 3D localisation algorithm provides better localisation accuracy when varying the system parameters with different communication/deployment models. PFRL is further developed by applying dynamic distance measurement updates among the moving sensors in a disaster environment. Simulation results indicate that the new method scales very well
    • 

    corecore