25,837 research outputs found

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe

    The minimum energy expenditure shortest path method

    Get PDF
    This article discusses the addition of an energy parameter to the shortest path execution process; namely, the energy expenditure by a character during execution of the path. Given a simple environment in which a character has the ability to perform actions related to locomotion, such as walking and stair stepping, current techniques execute the shortest path based on the length of the extracted root trajectory. However, actual humans acting in constrained environments do not plan only according to shortest path criterion, they conceptually measure the path that minimizes the amount of energy expenditure. On this basis, it seems that virtual characters should also execute their paths according to the minimization of actual energy expenditure as well. In this article, a simple method that uses a formula for computing vanadium dioxide (VO2VO_2) levels, which is a proxy for the energy expenditure by humans during various activities, is presented. The presented solution could be beneficial in any situation requiring a sophisticated perspective of the path-execution process. Moreover, it can be implemented in almost every path-planning method that has the ability to measure stepping actions or other actions of a virtual character
    corecore