399 research outputs found

    A tension approach to controlling the shape of cubic spline surfaces on FVS triangulations

    Get PDF
    We propose a parametric tensioned version of the FVS macro-element to control the shape of the composite surface and remove artificial oscillations, bumps and other undesired behaviour. In particular, this approach is applied to C1 cubic spline surfaces over a four-directional mesh produced by two-stage scattered data fitting methods

    Adaptive meshless centres and RBF stencils for Poisson equation

    Get PDF
    We consider adaptive meshless discretisation of the Dirichlet problem for Poisson equation based on numerical differentiation stencils obtained with the help of radial basis functions. New meshless stencil selection and adaptive refinement algorithms are proposed in 2D. Numerical experiments show that the accuracy of the solution is comparable with, and often better than that achieved by the mesh-based adaptive finite element method

    Efficient spatial modelling using the SPDE approach with bivariate splines

    Get PDF
    Gaussian fields (GFs) are frequently used in spatial statistics for their versatility. The associated computational cost can be a bottleneck, especially in realistic applications. It has been shown that computational efficiency can be gained by doing the computations using Gaussian Markov random fields (GMRFs) as the GFs can be seen as weak solutions to corresponding stochastic partial differential equations (SPDEs) using piecewise linear finite elements. We introduce a new class of representations of GFs with bivariate splines instead of finite elements. This allows an easier implementation of piecewise polynomial representations of various degrees. It leads to GMRFs that can be inferred efficiently and can be easily extended to non-stationary fields. The solutions approximated with higher order bivariate splines converge faster, hence the computational cost can be alleviated. Numerical simulations using both real and simulated data also demonstrate that our framework increases the flexibility and efficiency.Comment: 26 pages, 7 figures and 3 table

    Estimation and inference in spatially varying coefficient models

    Get PDF
    Spatially varying coefficient models are a classical tool to explore the spatial nonstationarity of a regression relationship for spatial data. In this paper, we study the estimation and inference in spatially varying coefficient models for data distributed over complex domains. We use bivariate splines over triangulations to represent the coefficient functions. The estimators of the coefficient functions are consistent, and rates of convergence of the proposed estimators are established. A penalized bivariate spline estimation method is also introduced, in which a roughness penalty is incorporated to balance the goodness of fit and smoothness. In addition, we propose hypothesis tests to examine if the coefficient function is really varying over space or admits a certain parametric form. The proposed method is much more computationally efficient than the well-known geographically weighted regression technique and thus usable for analyzing massive data sets. The performances of the estimators and the proposed tests are evaluated by simulation experiments. An environmental data example is used to illustrate the application of the proposed method

    Model estimation, identification and inference for next-generation functional data and spatial data

    Get PDF
    This dissertation is composed of three research projects focused on model estimation, identification, and inference for next-generation functional data and spatial data. The first project deals with data that are collected on a count or binary response with spatial covariate information. In this project, we introduce a new class of generalized geoadditive models (GGAMs) for spatial data distributed over complex domains. Through a link function, the proposed GGAM assumes that the mean of the discrete response variable depends on additive univariate functions of explanatory variables and a bivariate function to adjust for the spatial effect. We propose a two-stage approach for estimating and making inferences of the components in the GGAM. In the first stage, the univariate components and the geographical component in the model are approximated via univariate polynomial splines and bivariate penalized splines over triangulation, respectively. In the second stage, local polynomial smoothing is applied to the cleaned univariate data to average out the variation of the first-stage estimators. We investigate the consistency of the proposed estimators and the asymptotic normality of the univariate components. We also establish the simultaneous confidence band for each of the univariate components. The performance of the proposed method is evaluated by two simulation studies and the crash counts data in the Tampa-St. Petersburg urbanized area in Florida. In the second project, motivated by recent work of analyzing data in the biomedical imaging studies, we consider a class of image-on-scalar regression models for imaging responses and scalar predictors. We propose to use flexible multivariate splines over triangulations to handle the irregular domain of the objects of interest on the images and other characteristics of images. The proposed estimators of the coefficient functions are proved to be root-nn consistent and asymptotically normal under some regularity conditions. We also provide a consistent and computationally efficient estimator of the covariance function. Asymptotic pointwise confidence intervals (PCIs) and data-driven simultaneous confidence corridors (SCCs) for the coefficient functions are constructed. A highly efficient and scalable estimation algorithm is developed. Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed method. The proposed method is applied to the spatially normalized Positron Emission Tomography (PET) data of Alzheimer\u27s Disease Neuroimaging Initiative (ADNI). In the third project, we propose a heterogeneous functional linear model to simultaneously estimate multiple coefficient functions and identify groups, such that coefficient functions are identical within groups and distinct across groups. By borrowing information from relevant subgroups, our method enhances estimation efficiency while preserving heterogeneity. We use an adaptive fused lasso penalty to shrink subgroup coefficients to shared common values within each group. We also establish the theoretical properties of our adaptive fused lasso estimators. To enhance the computation efficiency and incorporate neighborhood information, we propose to use a graph-constrained adaptive lasso. A highly efficient and scalable estimation algorithm is developed. Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed method. The proposed method is applied to a dataset of hybrid maize grain yields from the Genomes to Fields consortium

    On a class of polynomial triangular macro-elements

    Get PDF
    AbstractIn this paper we present a new class of polynomial triangular macro-elements of arbitrary degree which are an extension of the classical Clough-Tocher cubic scheme. Their most important property is that the degree plays the role of a tension parameter, since these macro elements tend to the plane interpolating the vertices data. Graphical examples showing their use in scattered data interpolation are reported
    • ā€¦
    corecore