Gaussian fields (GFs) are frequently used in spatial statistics for their
versatility. The associated computational cost can be a bottleneck, especially
in realistic applications. It has been shown that computational efficiency can
be gained by doing the computations using Gaussian Markov random fields (GMRFs)
as the GFs can be seen as weak solutions to corresponding stochastic partial
differential equations (SPDEs) using piecewise linear finite elements. We
introduce a new class of representations of GFs with bivariate splines instead
of finite elements. This allows an easier implementation of piecewise
polynomial representations of various degrees. It leads to GMRFs that can be
inferred efficiently and can be easily extended to non-stationary fields. The
solutions approximated with higher order bivariate splines converge faster,
hence the computational cost can be alleviated. Numerical simulations using
both real and simulated data also demonstrate that our framework increases the
flexibility and efficiency.Comment: 26 pages, 7 figures and 3 table