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Adaptive Meshless Centres and RBF Stencils

for Poisson Equation

Oleg Davydov∗ and Dang Thi Oanh†‡

December 24, 2009

Abstract

We consider adaptive meshless discretisation of the Dirichlet problem for Pois-
son equation based on numerical differentiation stencils obtained with the help
of radial basis functions. New meshless stencil selection and adaptive refinement
algorithms are proposed in 2D. Numerical experiments show that the accuracy
of the solution is comparable with, and often better than that achieved by the
mesh-based adaptive finite element method.

1 Introduction

Motivated by the difficulties to create, maintain and update complex meshes needed for
the standard finite difference, finite element or finite volume discretisations of the partial
differential equations, meshless methods have become a subject of intensive research, see
e.g. [15, 30, 33] and references therein.

Even though the most attention has been paid to the methods based on the dis-
cretisation of the PDE in the weak form, the strong form methods such as collocation
or generalised finite differences remain an attractive alternative as they avoid costly
numerical integration of the non-polynomial shape functions on non-standard domains
often encountered in the weak form methods.

It is a common idea to construct the shape functions such that their linear combi-
nations reproduce polynomials of certain degree, or to generate finite difference stencils
from numerical differentiation formulas obtained by imposing the conditions of polyno-
mial exactness, thus exploiting the local approximation power of polynomials. This is
not necessary in the approaches based on radial basis functions (RBFs). RBF approxi-
mation methods [5, 15, 43] have gained popularity as a tool for meshless scattered data
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modelling. Because theoretical error bounds predict the spectral convergence of RBF
interpolants when the density of interpolation points increases indefinitely, the most
popular applications of RBF to solving partial differential equations are via global collo-
cation or pseudospectral methods that can achieve spectral convergence orders, see [15].
Local weak form methods relying on shape functions resulting from RBF interpolation
have been proposed e.g. in [25, 26].

We are interested in adaptive discretisation techniques for the Poisson equation based
on generalised finite difference stencils generated with the help of RBF interpolation
studied recently in [21, 41, 42, 44, 4]. Note that the best known approach to the gen-
eration of finite difference stencils on irregular centres is the polynomial least squares
method [19, 23, 38, 3]. This and related methods are often understood as local colloca-
tion. The local shape functions are not necessarily polynomials, they can be generated
by moving least squares for example, but typically they are nevertheless guaranteed to
reproduce polynomials of certain degree [24, 34, 20, 32, 35]. Local numerical differen-
tiation with RBF rather than polynomials has been explored for solving certain time
dependent PDEs in [18, 6].

Our interest to RBF numerical differentiation stencils stems from our experience
with localised scattered data fitting methods, where RBF approximation has proved to
be more robust on highly irregular data than local polynomial least squares [9, 10, 8].
Whereas the local polynomial approximations require careful adaptive degree selection
because the minimum singular values of the least squares matrices directly influence the
approximation error [7, 11], RBF approximations are usually satisfactory as soon as the
local RBF centres are sufficiently uniformly distributed, see also [16].

In this paper we address two main problems which have not received much attention
in the literature. The first problem is the selection of RBF stencil supports on adaptively
distributed centres. Indeed, recall that in the weak form meshless methods the stencil
supports (the sets of centres with nonzero entries of the stiffness matrix in a given
row) are determined by the domains of influence of the centres. To obtain the entries
themselves, integration over intersections of the domains of influence is needed, which
requires accurate quadrature formulas and may be difficult if the domains of influence
are complicated. In contrast to this, generalised finite difference methods allow a lot of
flexibility in the choice of stencil supports. For the polynomial methods, sophisticated
algorithms have been developed, see [38, 20, 35]. We are not aware, however, of any work
in this direction for the RBF based generalised finite differences. In Section 5 we propose
an algorithm (Algorithm 1) for the selection of stencil supports that works successfully
in our numerical tests on adaptive centres in 2D, in particular on the centres generated
by a finite element method. To ensure a fair comparison it is important that the matrices
of the sparse linear systems that arise from both methods have a comparable number of
nonzero entries. This requirement dictates, in particular, the shape and the size of the
RBF stencils consisting of a central point and 6 or 5 nearby points.

The second problem is that of meshless adaptive refinement of the discretisation.
Clearly, one of the key ingredients of a successful numerical method for PDEs is the
availability of algorithms for (nearly) optimal spatial distribution of the degrees of free-
dom, which is solved by the mesh generation techniques in the mesh-based methods,
and needs to be addressed without using meshes in the case of meshless methods. If the
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locations of the singularities of the solution are known a priori, then meshless methods
for the generation of well-distributed centres with respect to a given density distribution
(see e.g. [22, 13, 28]) can be used. Otherwise, the ideas from the adaptive finite element
method [2] can be adopted. Recall that the main ingredients of an adaptive method are
an error indicator and a refinement algorithm. Adaptive methods have been intensively
studied for the weak form meshless methods (see [14, 27, 36] and further references in
[33, Section 2.10]), leading in particular to the error indicators based on a posteriori

error estimates similar to those used in the highly successful adaptive finite element
methods. Papers [3, 35] are devoted to the adaptive algorithms for the generalised finite
differences and related polynomial-based methods. In Section 6 we present an algorithm
(Algorithm 2) for adaptive meshless refinement of the set of centres which produces well
distributed centres in our numerical tests and, together with Algorithm 1 leads to a
purely meshless adaptive numerical method for the Poisson equation on domains in 2D
that can compete with the adaptive finite element method, see the numerical experi-
ments in Section 6.

The paper is organised as follows. In Section 2 we discuss a general form discreti-
sation of the Dirichlet problem for the Poisson equation which covers finite differences,
finite elements (when the use of numerical quadrature is taken into account) and the
collocation type meshless methods. Section 3 describes the computation of stencil coeffi-
cients for three types of RBF stencils considered in this paper. In Section 4 we provide a
numerical experiment where on a series of triangulations generated by an adaptive finite
element algorithm, the standard FEM stencil coefficients are replaced by RBF coeffi-
cients. The performance of the RBF methods in this setting seems inferior. Sections 5
and 6 are devoted to our main topics, meshless stencil support selection and adaptive
meshless refinement, respectively. Finally, Section 7 provides a short conclusion and a
discussion of future work.

2 Discretisation of Poisson equation

Consider the Dirichlet problem for the Poisson equation in a bounded domain Ω ⊂ R
d:

given a function f defined on Ω, and a function g defined on ∂Ω find u such that

∆u = f on Ω; u|∂Ω = g. (1)

This problem can be discretised with the help of two finite sets Ξ ⊂ Ω (discretisation
centres) and Θ ⊂ Ω (collocation centres) as follows. For each ζ ∈ Ξ \ ∂Ξ, where
∂Ξ := Ξ ∩ ∂Ω, choose two sets Ξζ ⊂ Ξ and Θζ ⊂ Θ, as well as the weights wζ,ξ ∈ R,
ξ ∈ Ξζ , and σζ,θ ∈ R, θ ∈ Θζ. We assume that each Ξζ contains ζ . A discretisation
of the Dirichlet problem (1) is given by the following linear system with respect to the
vector û = (ûξ)ξ∈Ξ

∑

ξ∈Ξζ

wζ,ξûξ =
∑

θ∈Θζ

σζ,θf(θ), ζ ∈ Ξ \ ∂Ξ; ûξ = g(ξ), ξ ∈ ∂Ξ. (2)

If (2) is nonsingular, then its solution û can be compared with the vector u|Ξ = (u(ξ))ξ∈Ξ

of the discretised exact solution of (1).
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Many existing numerical methods for Dirichlet problem rely on solving a linear sys-
tem in the form (2). To define a particular method, one needs to describe 1) a centre

generation algorithm, that is a method to generate Ξ and Θ, and 2) a stencil selection

algorithm, a method to choose subsets Ξζ , Θζ and coefficients (wζ,ξ)ξ∈Ξζ
, (σζ,θ)θ∈Θζ

for
each ζ ∈ Ξ \ ∂Ξ. We will often refer to the set Ξζ as stencil support.

A standard finite difference method on a square domain Ω ⊂ R
2 is obtained if the

elements of Ξ and Θ are taken to be the nodes of a uniform grid of size h, and the
classical 5-point stencil is given by Θζ = {ζ}, σζ,ζ = 1, Ξζ = {ζ, ζ ± (h, 0), ζ ± (0, h)},
wζ,ζ = −4/h2 and wζ,ξ = 1/h2, ξ ∈ Ξζ \ {ζ}. Further versions of the finite difference
method derive the stencils from appropriate numerical differentiation formulas for the
Laplace operator,

∆u(ζ) ≈
∑

ξ∈Ξζ

wζ,ξu(ξ). (3)

The finite element method also leads to a system in the form (2) when the element
load vectors are computed by a numerical quadrature. For example, in the linear triangle
finite element method with midpoint quadrature, the centres in Ξ are the vertices of a
triangle mesh, Θ consists of the barycentres of the triangles, and the stencils are selected
as follows: for each ζ ∈ Ξ \ ∂Ξ, the set Θζ consists of the barycentres θ of the triangles
Tθ attached to ζ , Ξζ is the set of the vertices of the same triangles Tθ, θ ∈ Θζ , and
the coefficients are given by σζ,θ := area(Tθ)/3, wζ,ξ := −

∫

Ω
∇φξ∇φζ , ξ ∈ Ξζ , where φξ

denotes the hat function centred at ξ.
Recall that the role of a mesh in a mesh-based method is three-fold: It discretises

the domain Ω, provides the neighbouring information needed to determine the stencil
supports Ξζ , and it helps to extend the solution û from the discrete set of nodes Ξ to
any points in the domain. In a meshless method one has to provide meshless algorithms
for all these goals. See [17] for a discussion of various aspects of giving up a mesh in
meshless methods. We will not address here the extension of û, which is a scattered
data fitting problem. The problem of stencil support selection will be considered in
Sections 4 and 5, and the problem of domain discretisation in an adaptive manner will
be addressed in Section 6. Before that, we describe in the next section three methods
of computing stencil coefficients using RBF interpolation.

3 Stencil coefficients from RBF interpolation

Assuming Ξζ and Θζ have been chosen, radial basis function interpolation methods can
be used to generate the stencil coefficients σζ,θ and wζ,ξ as the weights of a numerical
differentiation formula

∑

θ∈Θζ

σζ,θ∆u(θ) ≈
∑

ξ∈Ξζ

wζ,ξu(ξ). (4)

In this section we discuss three methods for determining stencil coefficients, called single

point RBF stencil, multipoint RBF stencil and Hermite RBF stencil. In each case we
assume that Ξ and Ξζ , ζ ∈ Ξ \ ∂Ξ, are known and describe how Θζ and the weights σζ,θ

and wζ,ξ are computed. Then Θ is defined by Θ :=
⋃

ζ∈Ξ\∂Ξ Θζ.
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Let the function φ : R+ → R be positive definite or conditionally positive definite
function of order 1. Given any set Ξ = {ξ1, . . . , ξn} ⊂ R

d and a function u : R
d → R,

the RBF interpolant s is sought in the form

s(x) =

n
∑

j=1

ajΦ(x − ξj) + c, Φ(x) := φ(‖x‖) (5)

s(ξi) = u(ξi), i = 1, . . . , n, (6)

where c is a constant. Then the coefficients aj and c are uniquely determined by the
following conditions [43]

n
∑

j=1

ajΦ(ξi − ξj) + c = u(ξi), i = 1, . . . , n,

n
∑

j=1

aj = 0,

which can be written in matrix form as the linear equation
[

ΦΞ 1

1T 0

] [

a
c

]

=

[

u|Ξ

0

]

, ΦΞ := [Φ(ξi − ξj)]
n
i,j=1, 1 := [1 · · · 1]T ,

with a symmetric positive definite matrix.
Note that both c and the side condition

∑n
j=1 aj = 0 can be removed in the above

if φ is positive definite (and for certain conditionally positive definite functions like
multiquadric φ(r) =

√
1 + r2), or c can be replaced by a higher degree polynomial,

leading to a more complicated side condition and certain restrictions on the location
of points ξj. In the case of a higher degree polynomial, conditionally positive definite
functions of higher orders can be used, for example the thin plate spline φ(r) = r2 log r
which is a conditionally positive definite function of order 2 and hence requires at least
a linear polynomial term.

In this paper we only consider the RBF interpolant with a constant term, which is
indeed a popular choice in particular because it does not introduce any restrictions on Ξ
and the interpolant reproduces constants exactly. Several functions φ that are suitable
for this setting are known explicitely [43], but we restrict our attention to following three
positive definite basis functions that have shown a good performance in our numerical
tests:

Gaussian (G) φg(r) = e−r2

inverse multiquadric (IMQ) φimq(r) = 1/
√

1 + r2

Wendland’s C6 function (W33) φw33(r) = (1 − r)8
+(32r3 + 25r2 + 8r + 1)

As a function φ(r) remains positive definite when r is scaled, a scaling parameter δ > 0
is introduced, and the radial basis function φ in (5) takes the form φ(r) = φg(r/δ),
φ(r) = φimq(r/δ) or φ(r) = φw33(r/δ).

RBF interpolant s(x) provides a good approximation of u(x) if the function u is
sufficiently smooth and the set of points ξ1, . . . , ξn ∈ R

d is sufficiently dense in a neigh-
bourhood of x [43]. Moreover, the derivatives of s are good approximations of the
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derivatives of u if φ is sufficiently smooth. Therefore an approximation of Du(x), where
D is a linear differential operator annihilating constants, may be considered in the form

Du(x) ≈ Ds(x) =
n

∑

j=1

ajDΦ(x − ξj) =
n

∑

i=1

wiu(ξi), (7)

where the weights wi (depending on x) exist because the coefficients aj of the interpola-
tion function s defined by (5)–(6) depend linearly on the data u(ξi), i = 1, . . . , n. These
weights can be found by solving the symmetric positive definite linear system

[

ΦΞ 1

1T 0

] [

w
v

]

=

[

DΦ(x − ·)|Ξ
0

]

, (8)

that is by solving the RBF interpolation problem (5)–(6) with the data given by DΦ(x−
ξi), i = 1, . . . , n. Indeed, if the weight vector w satisfies (8), then

n
∑

j=1

ajDΦ(x − ξj) =

[

a
c

]T [

DΦ(x − ·)|Ξ
0

]

=

[

a
c

]T [

ΦΞ 1

1T 0

] [

w
v

]

=

[

u|Ξ

0

]T [

w
v

]

=

n
∑

i=1

wiu(ξi).

We now make use of the weights (8) to define two types of RBF stencils for the
discretisation of the Dirichlet problem (1) in the form (2).

Single point RBF stencil. Similar to the finite difference stencils, a numerical dif-
ferentiation formula for the value of the Laplacian of u at a single point ζ is used, and
hence Θζ = {ζ}, σζ,ζ = 1 in (2). Given a local set Ξζ of discretisation centres, the weight
vector w = [wζ,ξ]ξ∈Ξζ

in (2) is computed from the linear system
[

ΦΞζ
1

1T 0

]

[

w
v

]

=

[

∆Φ(ζ − ·)|Ξζ

0

]

. (9)

Multipoint RBF stencil. Motivated by the stencils resulting from the finite element
discretisation (see Section 2), we also consider a method of discretisation of the Dirichlet
problem based on numerical differentiation of a linear combination of Laplacians

Du =
∑

θ∈Θζ

σζ,θ∆u(· − ζ + θ).

Then Du(ζ) =
∑

θ∈Θζ
σζ,θ∆u(θ), and the numerical differentiation formula (7),

Du(ζ) ≈
∑

ξ∈Ξζ

wζ,ξu(ξ),

has the form (4) and leads to (2) with the weight vector w = [wζ,ξ]ξ∈Ξζ
computed from

[

ΦΞζ
1

1T 0

]

[

w
v

]

=

[

∑

θ∈Θζ
σζ,θ∆Φ(θ − ·)|Ξζ

0

]

. (10)
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Although various choices for Θζ and σζ,θ are possible, in this paper we take σζ,θ = 1 for
all θ ∈ Θζ , and apply the following algorithm to determine Θζ : Given a set Ξζ = {ζ =
ξ1, ξ2, . . . , ξn} ⊂ R

2 such that ζ lies in the convex full Ωζ of {ξ2, . . . , ξn} and all rays ζξi,
i = 2, . . . , n are different, split Ωζ into n − 1 triangles T1, . . . , Tn−1 with vertices in Ξζ

sharing a common vertex ζ , and define Θζ = {θ1, . . . , θn−1} to be the set of barycentres
of T1, . . . , Tn−1. For a set Ξζ ⊂ R

3 a similar splitting into tetrahedra can be used, where
the tetrahedra are determined by the triangles of a Delaunay triangulation on the unit
sphere centred at ζ of the intersection points of the rays ζξi, i = 2, . . . , n with this
sphere.

Note that the above Θζ might look unusual from the point of view of numerical
differentiation because Θζ does not contain ζ . Moreover, it mimics the finite element
‘stencil’ which apparently does not stem from any numerical differentiation method, and
so a priori it is not obvious that a similar stencil generated by numerical differentiation
should be good.

As shown in [44], numerical differentiation formulas of the type (4) can also be
generated with the help of the RBF Hermite interpolant sH [43, Chapter 16], which we
only formulate in the case of a single Laplacian and a constant polynomial term, even
though more general settings are also possible,

sH(x) =

n
∑

j=1

ajΦ(x − ξj) +

m
∑

j=1

bj∆Φ(x − θj) + c,

n
∑

j=1

aj = 0,

sH(ξi) = u(ξi), i = 1, . . . , n,

∆sH(ξi) = ∆u(θi), i = 1, . . . , m,

where, as before, c is a constant and Φ(x) = φ(‖x‖) with φ sufficiently smooth and
positive definite or conditionally positive definite of order 1. If Φ ∈ L1(Rd) ∪ C4(Rd),
then the solution of the above Hermite interpolation problem exists and is unique for
any data u(ξi), i = 1, . . . , n, ∆u(θi), i = 1, . . . , m, as soon as each Ξ = {ξ1 . . . , ξn}
and Θ = {θ1 . . . , θm} consists of distinct points, even though Ξ and Θ may coincide
or overlap. This follows from [43, Theorem 16.5] if one takes into account that the
assumptions of this theorem may be verified similar to the proof of [43, Theorem 16.4].
Note that Φ ∈ L1(Rd) ∪ C4(Rd) for two of the radial basis functions φ used in this
paper: φg and φw33. Inverse multiquadric φimq is infinitely differentiable but leads to
Φ /∈ L1(Rd), which makes it impossible to use the above mentioned results of [43] but
does not seem to cause any problem in numerical examples below.

The coefficients {aj}, {bj}, c of sH are determined from the symmetric positive defi-
nite linear system





ΦΞ ∆ΦΞ,Θ 1

∆ΦT
Ξ,Θ ∆2ΦΘ 0

1T 0 0









a
b
c



 =





u|Ξ

∆u|Θ

0



 ,

where ΦΞ is defined as before, and

∆ΦΞ,Θ := [∆Φ(ξi − θj)]
n,m
i=1,j=1, ∆2ΦΘ := [∆2Φ(θi − θj)]

m
i,j=1.
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RBF Hermite interpolant can be used to estimate the Laplacian of u at a point x as

∆u(x) ≈ ∆sH(x) =

n
∑

j=1

aj∆Φ(x − ξj) +

m
∑

j=1

bj∆
2Φ(x − θj)

=
n

∑

i=1

wiu(ξi) +
m

∑

i=1

σi∆u(θi),

where the weights {wi} and {σi} are found by solving the linear system





ΦΞ ∆ΦΞ,Θ 1

∆ΦT
Ξ,Θ ∆2ΦΘ 0

1T 0 0









w
σ
v



 =





∆Φ(x − ·)|Ξ
∆2Φ(x − ·)|Θ

0



 , (11)

see [44]. The above numerical differentiation formula is now written in the form (4),

∆u(θ0) −
m

∑

i=1

σi∆u(θi) ≈
n

∑

i=1

wiu(ξi), θ0 := x,

which leads to a discretisation equation in the form (2). This approach resembles Collatz’
Mehrstellenverfahren in the finite difference method. It is proposed in [44] to take
θ0 = ξ1 = ζ , the central point of the stencil, and choose Θ ⊆ Ξ such that certain diagonal
dominance criterion is met. Since there is little hope that the diagonal dominance
condition can always be fulfilled on adaptive centres, we choose m = n−1 and θi = ξi+1,
i = 0, 1, . . . , n − 1, which corresponds to the highest consistency order according to the
numerical tests in [44, Section 4.3]. Finally, since the row [∆ΦT

Ξ,Θ ∆2ΦΘ 0] of the matrix
in (11) involves second order derivatives of Φ, we scale it and the corresponding column
by d2, where d = d(Ξζ) := max{‖ζ − ξ‖ : ξ ∈ Ξζ} to precondition the matrix. This
results in the following method.

Hermite RBF stencil. Given a local set Ξζ of discretisation centres containing ζ ,
choose Θζ = Ξζ and set Θ̃ζ := Θζ \ {ζ}. The weights in (2) are determined as follows.
Set σζ,ζ = 1 and σζ,θ = −σ̃ζ,θ for all θ ∈ Θ̃ζ , where the vector σ̃ = [σ̃ζ,θ]θ∈Θ̃ζ

, together

with the other weight vector w = [wζ,ξ]ξ∈Ξζ
are computed from the linear system







ΦΞζ
d2∆ΦΞζ ,Θ̃ζ

1

d2∆ΦT
Ξζ ,Θ̃ζ

d4∆2ΦΘ̃ζ
0

1T 0 0











w
d−2σ̃

v



 =







∆Φ(ζ − ·)|Ξζ

d2∆2Φ(ζ − ·)|Θ̃ζ

0






. (12)

For each of the above RBF stencil methods, a discretisation of the Dirichlet problem
as described in Section 2 will be complete as soon as two algorithms are provided: (a)
an algorithm to generate the set Ξ of discretisation centres, and (b) an algorithm to
select the local sets Ξζ ⊂ Ξ for each interior centre ζ ∈ Ξ \ ∂Ξ. These algorithms will
be addressed in Sections 4–6.
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Choice of scaling parameter. It is well known that the quality of the RBF interpo-
lation heavily depends on the scaling parameter δ > 0 in φ(r) = φg(r/δ), φimq(r/δ) or
φw33(r/δ). Therefore, methods for determining its optimal values have been intensively
investigated, see [15, Chapters 16 and 17]. In particular, there is a trade-off between
the accuracy of the interpolant which improves when δ increases, and the conditioning
of the interpolation matrix ΦΞ which deteriorates in the same time [37]. Methods based
on asymptotic expansion of the analytic RBFs with respect to the powers of 1/δ pre-
sented in [44] allow stable computation of the RBF stencils even with extremely large
δ, leading to potentially very accurate numerical differentiation. In this paper we do
not explore these promising techniques, nor do we try to use the quadruple precision
computations to overcome the ill-conditioning of the RBF matrices as in [42]. Our pre-
liminary experiments have confirmed the observations from the earlier literature that
the best results are obtained if δ is chosen as large as possible with the RBF matrix still
numerically non-singular. Therefore, for each Ξζ we compute δ as large as possible with
the condition number of the matrix of (9), (10) or (12) not exceeding 1012. This value
of δ is found by a bisection type method with the starting interval [0.1, 400] for δ/d(Ξζ),
and the condition number is estimated using the singular value decomposition.

We now discuss a numerical experiment that compares the errors of the solutions of
the Dirichlet problem obtained using the three types of RBF stencils on a uniform grid.

Test Problem 1. Consider Dirichlet problem (1) with homogeneous boundary condi-
tions g = 0, where the domain Ω is the square (0, 1)2, the right hand side is defined by
f(x, y) = −2π2 sin πx sin πy. The exact solution is u(x, y) = sin πx sin πy.

For a number of values of N between N = 6 and N = 44, we defined the set
discretisation centres Ξ as the nodes of the uniform N × N grid in [0, 1]. The stencil
supports Ξζ , ζ ∈ Ξ \ ∂Ξ, are the 5 grid points as in the standard 5 point stencil used
in the finite difference method. We used scaled Gaussian RBFs φg(r/δ) to determine
the single point, multipoint and Hermite RBF stencil coefficients. The above method
of choosing scaling parameter led to the values δ/d(Ξζ) ≈ 720 for both single point and
multipoint stencils, and δ/d(Ξζ) ≈ 31 for the Hermite stencil (independent of N).

Fig. 1(a) shows the normalised root mean square (rms) error of the numerical differ-
entiation formula (4), computed as

(#Ξ \ ∂Ξ)−1
(

∑

ζ∈Ξ\∂Ξ

r2
ζ

)1/2

, rζ :=
(

∑

θ∈Θζ

σζ,θ∆u(θ) −
∑

ξ∈Ξζ

wζ,ξu(ξ)
)

/
∑

θ∈Θζ

|σζ,θ|,

whereas Fig. 1(b) presents the rms error of the solution û of (2) against the exact solution
u,

(#Ξ \ ∂Ξ)−1
(

∑

ζ∈Ξ\∂Ξ

(ûζ − u(ζ))2
)1/2

. (13)

As we can see in these figures, there is a strong correlation between numerical differ-
entiation error and the error of the solution of the PDE. The errors in case of the single
point RBF stencil is very close to the error of the finite difference solution. This is not
surprising as the single point Gaussian stencil is known to converge to the finite differ-
ence 5 point stencil as δ → ∞ [44]. Both multipoint and Hermite stencils exhibit up to
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(b) Dirichlet problem error

Figure 1: RBF solution with Gaussian φg on a grid using 5 point stencil supports for
Test Problem 1. Root mean square (rms) numerical differentiation error (a) and rms
error of the solution of the Dirichlet problem (b) are shown for the three types of RBF
stencils in comparison with the finite difference method. Legend: FD refers the finite
difference method with the standard 5 point stencil; sp, mp and H refer to the single
point, multipoint and Hermite RBF stencils, respectively.

5 times better errors in this test. Comparing the slopes of the curves, we conjecture the
h2 convergence order for all three RBF methods if a fixed scaling parameter δ, rather
than the one proportional to d(Ξζ), can be used. These numerical results complement
those in [42, 44].

4 RBF stencils on adaptive FEM meshes

In this section we study the performance of RBF stencils in the following setting: The
discretisation centres Ξ and stencil supports Ξζ are generated by the linear triangle finite
element method with midpoint quadrature, as described in Section 2. The sets Θ, Θζ

and coefficients σζ,θ, wζ,ξ are then chosen according to the single point (sp), multipoint
(mp) and Hermite (h) RBF methods of Section 3.

In the case that Ξ is a uniform or quasi-uniform mesh, several numerical examples
in [42] show that the accuracy of the solution of (2) based on the single point RBF
stencils is comparable with (and often significantly better than) the results obtained
with the FEM stencils. Our own experiments only confirm this observation, and we do
not present them here.

Our main interest are adaptively generated centres, and in this section they are the
nodes of an adaptive mesh. We consider a test problem, where adaptive finite element
meshes are known to perform much better than quasi-uniform meshes.

Test Problem 2. [1, function adaptmesh] Domain Ω is the circle sector given by the
inequalities r < 1, −3π/4 < ϕ < 3π/4 in polar coordinates, the right hand side f = 0,
the boundary conditions are defined by g(r, ϕ) = cos(2ϕ/3) along the arc, and g(r, ϕ) = 0
along the straight lines. The exact solution of (1) is u(r, ϕ) = r2/3 cos(2ϕ/3).
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MATLAB PDE Toolbox code provided in [1] (available also via MATLAB help en-
try on adaptmesh) generates a sequence of adaptive triangulations of Ω, where more
refinements are made near the singularity of the exact solution, resulting in a denser
distribution of the centres in the vicinity of the origin, as shown in Fig. 2. For each
triangulation generated by this code we place the centres Ξ at the vertices of the trian-
gulation and for each ζ ∈ Ξ \ ∂Ξ select the sets Ξζ as in the finite element methods, e.g.
by combining the vertices of all triangles attached to ζ . Then we choose Θ, Θζ , σζ,θ,
wζ,ξ according to the three RBF methods presented in Section 3.

Figure 2: Adaptive triangulations for Test Problem 2 produced by the adaptive finite
element method.

The rms errors (13) of the RBF solutions are presented in Fig. 3(a)–3(c) and com-
pared to the rms error of the FEM solution. The results show that the slope of the
error curves for all single point and multipoint stencils, as well as for the Hermite stencil
in the case of φw33 is roughly the same as the slope of the error curve obtained with
the finite element method, which indicates the same convergence order. However, the
distance between the curves shows that the errors of the RBF methods are 2–4 times
higher. Much less stable error curves are obtained with Hermite RBF stencil when the
functions φg are φimq are used (see Fig. 3(c)). This suggests that compactly supported
RBFs should be preferable when using Hermite RBF stencils. Finally, Fig. 3(d) presents
the minimum relative scaling in the RBF tests, computed as

min
ζ∈Ξ\∂Ξ

δζ/d(Ξζ),

where δζ is the value of the scaling parameter used in the stencil computation at ζ (see
the comments at the end of Section 3), and d(Ξζ) = max{‖ζ − ξ‖ : ξ ∈ Ξζ}. All curves
are nearly constant, which indicates that it might be possible to empirically determine
suitable values of the relative scaling parameter for each RBF and stencil type without
the costly calculation of δ for each Ξζ. Note that the behaviour of the scaling parameter
in our further tests in Sections 5 and 6 is quite similar to the one in Fig. 3(d).

5 Meshless stencil support selection

The approach of the previous section is clearly mesh dependent as it relies on the
triangulation generated by the finite element method, even though RBF stencil weights
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(c) Hermite stencils
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(d) Minimum relative scaling

Figure 3: RBF solution on adaptive FEM centres using FEM stencil supports Ξζ for Test
Problem 2. Figures (a)–(c) show the error obtained with three types of RBF stencils,
whereas (d) presents the minimum value of the scaling parameter relative to the stencil
size. Legend: FEM refers the finite element method; G, IMQ and W33 refer to RBF stencils
based on φg, φimq and φw33, respectively; the meaning of sp, mp and H is the same as
in Fig. 1. In (d) the graphs for the single point and multipoint stencils are combined
because they turned out to be indistinguishable.
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are used. In this section we propose a meshless method for the selection of the stencil
supports Ξζ for the bivariate Dirichlet problem, and use the same Test Problem 2 to
investigate its numerical performance and compare it with the performance of certain
algorithms known in the literature. It is remarkable that stencil supports selected by this
method turn out to be better on FEM centres than the ‘native’ FEM stencil supports,
compare Figs 3 and 4.

Given ζ ∈ Ξ \ ∂Ξ, we will select a set Ξζ ⊂ Ξ containing ζ . Let Ξζ = {ζ, ξ1, . . . , ξk},
where the points ξ1, . . . , ξk are ordered counterclockwise with respect to ζ . Consider the
following cost function

µ(ξ1, . . . , ξk) :=

k
∑

i=1

α2
i ,

where αi denotes the angle between the rays ζξi, ζξi+1 in the counterclockwise direc-
tion, with the cyclic identification ξk+i := ξi. We will also need the minimum and the
maximum angle

α(ξ1, . . . , ξk) = min{α1, . . . , αk}, α(ξ1, . . . , ξk) = max{α1, . . . , αk}.

Since
∑k

i=1 αi = 2π, the expression
∑k

i=1 α2
i would achieve its unique minimum for

α1 = · · · = αk = 2π/k, that is for the uniformly spaces directions ζξi if ξ1, . . . , ξk were
chosen freely in R

2. However, these points have to be in the prescribed set Ξ, and
so the goal of the algorithm below is to choose ξ1, . . . , ξk ∈ Ξ such that µ(ξ1, . . . , ξk)
is minimised while keeping the distances ‖ξi − ζ‖ as small as possible. To achieve a
balance between the goals of a small µ and small distances, we introduce the restriction
that ξi must be among m closest points to ζ , and terminate the algorithm if the set
{ζ, ξ1, . . . , ξk} satisfies

α(ξ1, . . . , ξk) ≤ u α(ξ1, . . . , ξk),

where m > k and u > 1.0 are parameters to be determined empirically.

Algorithm 1. Meshless stencil support selection

Input: Ξ, ζ . Output: Ξζ . Parameters: k (the target number of points ξi), m > k
(the number of points in the local cloud) and u > 1 (the angle uniformity tolerance).
Parameter values used in our numerical experiments: k = 6, m = 30, u = 3.0.

I. Find m nearest points ξ1, . . . , ξm in Ξ\{ζ} to ζ , sorted by increasing distance to ζ ,
and initialise Ξζ := {ζ, ξ1, . . . , ξk}. If α(ξ1, . . . , ξk) ≤ u α(ξ1, . . . , ξk), then STOP:
return Ξζ.

II. For i = n + 1, . . . , m:

1. Compute the angles α′
1, . . . , α

′
k+1 formed by the extended set {ξ′1, . . . , ξ′k+1} =

{ξ1, . . . , ξk, ξi}.
2. If both angles between ζξi and its two neighbouring rays are greater than the

minimum angle α′ := α(ξ1, . . . , ξk, ξi):

i. Find j such that α′
j = α′. Choose p = j or p = j +1 depending on whether

α′
j−1 < α′

j+1 or α′
j−1 ≥ α′

j+1.
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ii. If µ({ξ′1, . . . , ξ′k+1} \ {ξ′p}) < µ(ξ1, . . . , ξk):

a. Update {ξ1, . . . , ξk} = {ξ′1, . . . , ξ′k+1} \ {ξ′p}.
b. If α(ξ1, . . . , ξk) ≤ u α(ξ1, . . . , ξk)

STOP: return the current set Ξζ = {ζ, ξ1, . . . , ξk}.

III. Observe that α(ξ1, . . . , ξk) > u α(ξ1, . . . , ξk) must hold for the current set Ξζ =
{ζ, ξ1, . . . , ξk} if the algorithm has not been terminated earlier. Find j such that
αj = α(ξ1, . . . , ξk). Choose p = j or p = j + 1 depending on whether αj−1 < αj+1

or αj−1 ≥ αj+1. STOP: return Ξζ = {ζ, ξ1, . . . , ξk} \ {ξp}.

Remarks

1. If the algorithm terminates before Step III then Ξζ consists of k+1 points (including
ζ). Otherwise, the number of points is k. We choose k = 6 to ensure that the matrix
[wζ,ξ]ζ,ξ∈Ξ\∂Ξ of the linear system (2) resulting form RBF discretisation is about as
sparse as the same matrix for the FEM discretisation, see Fig. 4(d) for the comparison
of the density of the two matrices.

2. The m closest points in Step I can be found efficiently in a meshless manner by using
the standard space-partitioning data structures such as kd-tree.

3. it is easy to see that the choice of p in Step II(2)i ensures that

µ
(

{ξ′1, . . . , ξ′k+1} \ {ξ′p}
)

= min
{

µ
(

{ξ′1, . . . , ξ′k+1} \ {ξ′j}
)

, µ
(

{ξ′1, . . . , ξ′k+1} \ {ξ′j+1}
)

}

.

A similar observation applies to the choice of p in Step III.

4. In case of complicated domains the points ξi such that the segment between ζ and ξi

intersects domain boundary should be removed in Step I.

Fig. 4 presents the results of our numerical experiments for Test Problem 2, where
the centres Ξ are generated by adaptmesh as in Section 4, but the stencil supports Ξζ

for the RBF methods are selected according to Algorithm 1. Figs 4(a)–(c) show that the
discretisations obtained with the single point, multipoint and, in case of φw33, Hermite
RBF stencils often lead to the solutions of (1) with 2 to 3 times smaller rms error than
the error of the FEM solution. In the same time, as seen in Fig. 4(d), the matrix
[wζ,ξ]ζ,ξ∈Ξ\∂Ξ of the linear system (2) determined by Algorithm 1 is about as sparse as
the matrix of the FEM discretisation.

For the sake of comparison, we implemented several stencil selection algorithms
known from the literature and tested them on Test Problem 2 in the same setting as
Algorithm 1 above. The results are presented in Fig. 5, where we only considered single
point RBF stencil with φg (or φimq in two cases where its performance was better). As
all error curves in Fig. 5(a) are above the reference FEM curve whereas the Algorithm 1
curves in Fig. 4(a) are below it, we conclude that Algorithm 1 compares favourably to
all these methods. The density graph in Fig. 5(b) compared with Fig. 4(d) shows that
only SLS leads to a significantly sparser linear system (2) than the one derived with
Algorithm 1.
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10
−2

10
−4

10
−3

10
−2

(number of interior centres)−1

rm
s 

er
ro

r

 

 
FEM
G
IMQ
W33

(c) Hermite stencils

10
−2

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

(number of interior centres)−1

de
ns

ity

 

 
FEM
RBF

(d) Matrix density

Figure 4: RBF solution on adaptive FEM centres using RBF stencil supports according
to Algorithm 1 for Test Problem 2. The first three graphs show the error obtained with
three types of RBF stencils, whereas the forth graph presents the density of the sparse
matrix of the linear system (2) for both FEM and RBF stencil support. The density
(or bandwidth) of a matrix A ∈ R

n×n is computed as nnz(A)/n, where nnz(A) denotes
the number of nonzero entries in A.
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Figure 5: RBF solution on adaptive FEM centres using RBF stencil supports obtained
by the following algorithms, nn: natural neighbours. 4quad: four quadrants criterium,
6near: 6 nearest points, LLF: algorithm suggested in [21], SLS: algorithm suggested in
[40]. The first graph shows the rms errors obtained with the single point RBF stencil
using inverse multiquadric for 6near and LLF, and Gaussian in the other cases. The
second graph presents the density of the sparse matrices of the corresponding linear
systems (2). The reference error and density curves for the finite element method (FEM
in the legend) are the same as in Figs 3 and 4.

Stencil selection algorithms in Fig. 5.

• Nearest neighbours (6near): Ξζ consists of ζ and a prescribed number of nearest
points in Ξ \ {ζ} to ζ , as suggested in one of the first papers on generalised finite
difference methods [19]. We choose 6 neighbours to ensure that the density of the
matrix [wζ,ξ] is close to the FEM case. The curve in Fig. 5(a) is for φimq as this
RBF performed better than φg and φw33.

• Natural neighbours (nn): Ξζ consists of ζ and all its natural neighbours, that is
the points in Ξ connected to ζ in the Delaunay triangulation of Ξ. To compute
the natural neighbours, only a local (albeit sufficiently large to actually include
the neighbours) subset of Ξ around ζ needs to be triangulated. This method for
RBF stencil selection is discussed in [6, 44] and used as part of a more complicated
algorithm in [35]. Its performance in our tests on FEM centres is very close to
that of the ‘mesh-dependent’ stencil support selection as in Section 4, compare nn

curve in Fig. 5(a) with the curves in Fig. 3(a).

• Four quadrants criterium (4quad) goes back to [23] and was used more recently
in [24, 3]. It is designed for the generalised finite difference method, where the
stencils are obtained from the local least square fitting by quadratic polynomials
on Ξζ . Since the number of points in Ξζ\{ζ} is 8, the matrix density is significantly
higher for this method, see Fig. 5(b).

• LLF: algorithm suggested in [21], where first the maximum distance dζ from ζ to
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its four closest neighbours in Ξ \ {ζ} is computed, and then Ξζ is defined as the
set of all points in Ξ with distance from ζ not exceeding ρ dζ for some constant
ρ > 0. The examples in [21] on non-gridded centres uses ρ = 2.0. We have chosen
ρ = 1.4 to optimise the rms error in our test. The matrix density for this method
is significantly higher than the density of the FEM matrix. We used φimq in this
test as suggested in [21].

• SLS: algorithm suggested in [40], which leads to a 6 points set Ξζ = {ζ, ξ1, . . . , ξ5}
well-posed for bivariate quadratic polynomial interpolation. Since the points ξi are
chosen one after another as the closest to ζ points in certain subdomains around
ζ , this method can be seen as an improvement of the four quadrants criterium.
Referring to the notation of [40, Algorithm A], we choose the parameter α0 = 0.2
(in radians) as it is near optimal for our test problem in the sense of the rms error.
This is the only method where the matrix [wζ,ξ]ζ,ξ∈Ξ\∂Ξ is sparser than the one
arising from FEM stencil supports.

Several more specialised (and more complicated) stencil support selection methods
have been proposed in the literature, such as Gauss-Jordan pivoting or other techniques
to ensure that high order polynomial discrete least square problems are well-conditioned
on Ξζ [38, 20, 35], linear or quadratic programming techniques that seek positive stencils
exact for polynomials of certain degree [39], or a search for RBF stencils satisfying a set
of conditions that make them especially well suited for certain time dependent PDEs
[6].

Note that Algorithm 1 will not perform well if the set Ξ is highly irregular, for
example if all 30 closest points to ζ ∈ Ξ\∂Ξ are located in one half-plane going through ζ .
This does not happen to the centres of the finite element mesh in our numerical example,
and hopefully does not happen to adaptive triangulations generated by appropriate
algorithms. More importantly, good methods for the meshless refinement of centres are
needed that produce well-behaved discretisation sets Ξ, rather than the design of stencil
support methods capable to deal with arbitrary irregular centres. The next section
presents a first attempt of such a refinement method.

6 Adaptive meshless refinement

To describe an adaptive discretisation method, one has to specify an error indicator
and a refinement algorithm [2]. We have not addressed the question of a posteriori

error estimates for the RBF finite differences because even a priori estimates are not
available yet. However, keeping in mind that certain heuristic error indicators are often
used successfully for the adaptive mesh refinement (see e.g. [29, 12]), we have chosen for
our numerical tests an error indicator based on the comparison of the local variation of
the solution û of (2).

Error indicator. Given a discretisation of the Dirichlet problem (1), for each ζ ∈ Ξ
and each ξ ∈ Ξζ we define the error indicator ε(ζ, ξ) associated with the directed edge
ζξ by ε(ζ, ξ) := |ûζ − ûξ|, where û is the solution of (2). Let ε̄ = ε̄(Ξ) := max{ε(ζ, ξ) :
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ζ ∈ Ξ, ξ ∈ Ξζ}. An edge ζξ is marked for refinement if ε(ζ, ξ) ≥ γ ε̄, where γ ∈ (0, 1] is
a user specified tolerance.

Note that we have decided to assign the error indicator to the edges rather than
centres because this seems to us a more universal technique, which may in particular
naturally lead to an anisotropic refinement if it is appropriate. Recall that a popular
refinement method of triangle bisection in the adaptive finite element method can also
be viewed as edge refinement.

We refine an edge ζξ by inserting a new centre in its middle point (ζ + ξ)/2. How-
ever, this point may be located very close to an existing centre ξ′ ∈ Ξ, or to a new
centre already created by the refinement of a different edge. This problem has been
recognised in [3, 35], where edge refinement algorithms are studied for the generalised
finite differences and the finite point method, respectively. Our approach to it is to only
proceed with the refinement if the insertion of a new centre does not significantly reduce
the local separation in the vicinity of ζ , which we define as

sepζ(Ξ) :=
1

4

4
∑

i=1

dist(ξi, Ξ \ {ξi}), ζ /∈ Ξ,

where ξ1, . . . , ξ4 are the four closest points in Ξ to ζ , and dist(ζ, Ξ) := min{‖ζ − ξ‖2 :
ξ ∈ Ξ} is the distance from a point ζ to a finite set Ξ.

For simplicity, we make the following assumptions about the boundary of Ω and the
set ∂Ξ: 1) the connected components of ∂Ω are simple closed parametric curves, 2)
for every simply connected component Γ of ∂Ω the set Ξ ∩ Γ consists of at least three
points, and 3) for each pair of consecutive points ξ1, ξ2 ∈ Ξ ∩ Γ there is a well defined
middle point ξ′ ∈ Γ, e.g. the point corresponding to the average of the parameter values
of ξ1, ξ2. Then the local refinement of ∂Ξ is well defined, by which we understand the
following algorithm: For any ξ ∈ ∂Ξ find its two neighbours ξ−, ξ+ in ∂Ξ, one on each
side of ξ with respect to the parametrisation of the boundary component containing ξ,
and extend ∂Ξ by inserting the two middle points ξ′−, ξ′+ defined by the pairs ξ, ξ− and
ξ, ξ+.

Algorithm 2. Adaptive meshless refinement

Input: The set of centres Ξ, stencil supports {Ξζ : ζ ∈ Ξ \ ∂Ξ}. Output: The refined
set of centres Ξ′ and stencil supports {Ξ′

ζ : ζ ∈ Ξ′ \ ∂Ξ′}. Parameters: γ (error
indicator tolerance), µ (separation tolerance). Parameter values used in our numerical
experiments: γ = 0.5 for Test Problem 2 and 0.3 for Test Problem 3, µ = 0.7.

I. Compute the maximum error indicator ε̄ = ε̄(Ξ) and mark all edges ζξ, ξ ∈ Ξζ\{ζ},
ζ ∈ Ξ \ ∂Ξ, such that ε(ζ, ξ) ≥ γ ε̄. Initialise Ξ′ := Ξ.

II. For each marked edge ζξ:

1. Let ξ′ := (ζ + ξ)/2.

2. If dist(ξ′, Ξ′) ≥ µ sepξ′(Ξ
′):

i. Set Ξ′ := Ξ′ ∪ {ξ′}.
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ii. If ξ ∈ ∂Ξ

Set Ξ′ := Ξ′ ∪ {ξ′−, ξ′+}.

III. 1. For each ζ ∈ Ξ′ \ ∂Ξ′

i. Apply Algorithm 1 to find Ξ′
ζ ⊂ Ξ′.

ii. Compute the distances dξ = ‖ζ − ξ‖2, ξ ∈ Ξ′
ζ \ {ζ}, and their average

dav := 1
ℓ

∑

ξ∈Ξ′

ζ
\{ζ} dξ, where ℓ = #Ξ′

ζ−1, and mark all edges ζξ, ξ ∈ Ξζ\{ζ},
such that dξ > 2dav .

2. Repeat Step II for the edges marked in Step III.1 and collect all newly created
centres in the set Ξaux .

3. Apply Algorithm 1 to compute Ξ′
ζ for all ζ ∈ Ξaux , and recompute Ξ′

ζ for all
ζ ∈ Ξ′ \ Ξaux such that dist(ζ, Ξaux ) < d(Ξ′

ζ) := maxξ∈Ξ′

ζ
‖ζ − ξ‖2.

Remarks

1. Often ξ ∈ Ξζ and ζ ∈ Ξξ simultaneously. In this case the error indicator for the edges
ζξ and ξζ has the same value and the potential new centre (ζ + ξ)/2 is the same.
This may be taken into account in Step I by avoiding the edge ξζ after ζξ has been
processed.

2. In Step II.2.ii it may happen that ξ′− or ξ′+ is already in Ξ′ in case that ξ− or ξ+

belongs to a marked edge, too. To avoid duplication it is sufficient to store the
information of which segments of ∂Ω have been refined.

3. Adjustment of Ξ′ in Step III helps to improve those stencils that become too irregular
with respect to the distances to ζ after the refinement performed in Step II.

4. If Algorithm 2 does not produce any new centres, it is repeated with a reduced
separation tolerance µ := 0.9µ until a minimum number of new centres (10 in our
tests) is found.

We have tested Algorithm 2 numerically on Test Problem 2 using as the initial
set of centres Ξ the vertices of the triangulation of Ω obtained by a call of the PDE
Toolbox command initmesh with default parameters. The refinements with γ = 0.5
were repeated until a prescribed number of interior centres was generated. Fig. 6 shows
typical distributions of the centres obtained in these refinements. Fig. 7 presents the
errors of the RBF methods as well as a matrix density curve. The numerical results in
Fig. 7 are similar to those in Fig. 4, but in contrast to them the discretisation centres
are now generated by a purely meshless method.

Finally, we apply the same method to a different test problem.

Test Problem 3. [3] Dirichlet problem (1) for the Laplace equation ∆u = 0 in the
domain Ω = (0.01, 1.01)2 with boundary conditions chosen such that the exact solution
is u(x, y) = log(x2 + y2).
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Figure 6: Typical adaptive meshless discretisations of Ω generated by Algorithm 2 for
Test Problem 2
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(b) Multipoint stencils
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Figure 7: RBF solution on adaptive meshless centres generated according to Algorithms
1 and 2 for Test Problem 2. The first three graphs show the error obtained with three
types of RBF stencils, whereas the forth graph presents the density of the sparse matrix
of the linear system (2) for both FEM and multipoint Gaussian RBF stencil methods.
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Numerical results presented in Fig. 8 are obtained by applying Algorithm 2 to Test
Problem 3, where we used the tolerance value γ = 0.3. We can see that the RBF errors
(except of Hermite stencils with φg and φimq) compare well to the error of the finite
element method, sometimes being up to 4 times smaller, whereas the density of the
matrix of (2) remains close to the density of the FEM stiffness matrix.
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(b) Multipoint stencils
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Figure 8: RBF solution on adaptive meshless centres generated according to Algorithms
1 and 2 for Test Problem 3. The first three graphs show the error obtained with three
types of RBF stencils, whereas the forth graph presents the density of the sparse matrix
of the linear system (2) for both FEM and multipoint Gaussian RBF stencil methods.

7 Conclusion and future work

The main outcome of the work presented in this paper is that numerical differentiation
stencils arising from RBF interpolation can be used to generate adaptive meshless dis-
cretisations of the Poisson equation in 2D capable to compete with the adaptive finite
element method by providing solutions of comparable, if not better, accuracy, while
maintaining approximately the same density of the linear systems to be solved.
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We hope that these results will help to develop effective meshless methods for the
more complex problems where mesh generation is challenging. An obvious route of fu-
ture research is to investigate higher order methods, where larger stencils are selected,
and other types of PDE problems. Algorithms 1 and 2 need to be further investigated
with a goal to develop them to the point where rigorous statements about the guaran-
teed quality of the centres and stencils can be made similar to what is known for the
adaptive mesh generation methods, where it is known for example that the bisection
algorithm on triangular meshes always produces shape regular triangles [31]. The selec-
tion of the scaling parameter δ needs improvement as our current approach seems to be
restricted to relatively coarse discretisations. In particular, the application of Contour-
Padé techniques of [44] may lead to a significant improvement of the error of the RBF
based meshless methods. Theoretical understanding of these methods, in particular a

priori and a posteriori error bounds, is a very interesting topic that requires nontrivial
new ideas.
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