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Abstract 

In this paper \ve present a neM class of polynomial triangular macro-elements of arbitrary degree which are an 
extension of the classical Clough-Tocher cubic scheme. Their most important property is that the degree plays the role of 
a tension parameter. since these macro elements tend to the plane interpolating the vertices data. Graphical examples 
showing their use in scattered data interpolation are reported. 

K+wordh: Bernstein Bkier nrts: Bernstein! Btzier ~015 nomlals: Scattered data interpolation 

1. Introduction 

The Clough-Tocher cubic macro-elements were originally introduced for finite element methods 
(see, e.g., [7, 3111, but it was soon realized that they could also provide a useful tool for the 
interpolation of scattered data. We refer to [2, 5. 171 for an introduction to their basic properties, 
and we mention [l, 16,261 as examples of further generalizations and modifications. Here we 
simply recall that these basic cubic macro-elements can be locally defined using the function and 
the gradient values at the vertices of the triangle and they form a globally C’ function. The resulting 
interpolating surface has a simple polynomial representation and can be evaluated with low 
computational cost. but it does exhibit a high dependence on the scheme adopted for triangulating 
the data. In addition we note that the Clough-Tocher interpolant is uniquely defined by the data 
and so no modification can be made of its shape. The relevance of this observation relies on 
the comparison with the tension methods, which have been widely used both in one- and 
two-dimensional tensor-product interpolation, to control the form of the interpolant, typically 
for visual or shape-preserving purposes. We refer to [6, 24,28, 301 as examples of some 
popular methods, and recall that the usual tension approach consists of using a class of 
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parameter-dependent interpolants, in which the parameter is used to straighten the function 
toward a linear (one-dimensional case) or bilinear (two-dimensional case) form. 

To our knowledge there is no tension-like method for scattered data interpolation, although the 
desirability of controlling the shape remains unchanged. In this paper we try to partially fill the 
gap, proposing a new class of triangular macro-elements of arbitrary degree IZ, which, in the case 
n = 3, coincide with the classical Clough-Tocher macro-element, and, as n tends to infinity, tend to 
the plane interpolating the data points at the triangle vertices. 

This “tension feature” enables us to locally preserve the monotonicity and/or the convexity of the 
data inside the subtriangles of the Clough-Tocher split along directions parallel to the edges of the 
main triangulation. 

The macro-elements are a triangular extension of a one-dimensional idea developed some years 
ago, and which we briefly recall for an easier understanding of the method. Let I(x; n), n E N, n 33, 
be a piecewise linear function defined in the interval [0, 11 by 

1(x; n) = 

SE L 
n-l -> 1 I? 

and let h(s; n) be its corresponding Bernstein-Bezier polynomial of degree n: 

(1-l) 

(1.4 

as shown in Fig. 1. 
It is immediate to check that, for any 17 

h(0: n) =.fo, h(1: n) =fi. 

and that, as M increases, h(.; n) tends to uniformly approximate the straight line joining (O,f,) and 
(l,fi). A straightforward consequence is that, for sufficiently large n, b(x; n) has the shape induced 
by the datafo, ,fi, fd, .f;‘. We observe that h (x; M) depends, for any M, upon four parameters (actually, 
it belongs to a four-dimensional linear space) and high degrees do not effect the stability of the 
method (we need not worry about the high oscillations of classical polynomial interpolation) and 
produce a very limited increase in computational time [lo]. In other words, the degree is nothing 
more than a tension parameter. 

On the other hand. this tension scheme is polynomial with a very simple Bezier net which implies 
very simple checks on the shape of the function, and, more important, it allows extensions to 
bivariate interpolation. As a consequence, starting from basic one-dimensional results [S, 93, some 
two-dimensional schemes for the interpolation of data on a rectangular grid have been proposed in 
[ 1 l-1 31. while in [ 141 a method for interpolation of data distributed in a general tensor-product 
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0.8 - 
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Fig. 1. An example of h(u: n) and its net /(.Y: n), n = 5. 

topology has been considered. We note also that polynomials of the form (1.2) have been used in 
[20,21] mainly from the parametric curve-fitting point of view. 

This paper is divided into four sections. In the next one we describe the n-degree macro-element, 
and in Section 3 we show its shape-preserving and approximation properties. Finally, in Section 4, 
we develop a simple algorithm for computing the degree in order to satisfy the shape-preserving 
property and show its performance with some graphical examples. 

2. The n-degree macro-element 

It is now standard practice in computer-aided geometric design or in approximation theory to 
describe polynomials using their Bernstein-Bezier form, which allows significant simplifications in 
the description of their geometric structure. We start by briefly recalling some basic notations and 
properties. Let 

7 7 
p= 5 I 

II 
, r= 1.2.3, 

!‘r 
be three noncollinear points in R2, and let T denote the triangle they form. An n-degree 
BernsteinBezier polynomial has the form (see, e.g., [2, 181) 

h(x. J’; n) = h(u, c, w: n) := jbjFkz,& li.j.k uil’jwk* (2.1) 
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where, setting 

P = 3 ET, il 4’ u = u(x, y), 1‘ = c(x. y), II’ = M’(X, J), 

are the barycentric coordinates defined by 

P=uP,+L-P,+wP,; u+r+w=l. 

and li,j,k, i + j + k = n, are the BCzirr ordinates of b(. , . , . ; n). If we take x = s(u, v, w), 
1’ = V(U, L’. M’) and connect in lR3 the points (called control points) _ . 

ijk l( 11 .y -‘- 
n’ n’ n 

, i.j,k>O,i+j+k=n, (2.2) 

with triangular linear patches. we get the control net, L = L(u, c, w). It plays a fundamental role in 
this paper. 

In addition. a polynomial of the form (2.1) has the following interpolatory properties: 

h(x,, yr; n) = 1(x,, Jr; n), r%(x)., L’*: n) = Vl(x,. yr; n), I-= 1,2,3, (2.3) 

where 1(x, 4’; n) is the piecewise continuous linear function made by $ n(n + 1) patches such 
that 

(2.4) 

We will use the shorter notation I(s, y) = I(x, 4’; n), b(x, 2’) = b(x, 4’; n), whenever possible. 
Now let the triples P1, PI, PO and Qi, Q2, Qo, where PO = Qo, P2, = Qi, form two adjacent 

triangles T”’ and T”’ (see also Fig. 2), and Lif3,k. Lif],, be the corresponding Bezier control points. 
It is well known that the two Bezier polynomials h’” and h”’ form a Co surface across the common 
edge PO P2 if the corresponding control points coincide along the edge, that is 

L’“. 
O.J.II-j 

= Lt.21 
J.O.Fj’ 0 <j dn. 

and that they are C’ across the above-mentioned edge if the triples 

L ’ 1’. 
o.J+ l.n-j-l’ 

L”“. 
o.J.n-j’ 

L”‘. 
1 .,.n-.;- 1. 

and 

L’.2’ 
J+l.O.fl-j-l’ 

Ll.2’ 
J.0.P j’ 

L’,” 
J.l.n-j-l’ j=M-1 0: , . . . , 

lie on the same plane. 
We finally recall the so-called Clouyh-Tocher split of a given triangle, T, which consists of 

dividing T := PI P2 P3, called in this context macro-triangle, in three mini-triangles 

T”‘:= P, P2 P o. T”‘:= P, P, PO. T’3’:= P3 PI PO, 
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\ 
n-1,1,0 

n,O,O 

Pl 
n-2,2,0 l,n-1,O On0 

P2 

Fig. 2. The CloughbTocher split of a macro-triangle with the distribution of the indices of the control points in each 
mini-triangle. 

where PO is a point internal to T. often the barycenter of T (see Fig. 2). 
Our main idea is to take an n-degree macro-element defined by control points Liri,k, of the form 

(2.2) in T(‘). r = 1. 2. 3. 
To construct the macro-element we will assume that the central control points Lirl,k, 

k 32, I’ = 1, 2, 3. all lie on the same plane, that is (see Figs. 2 and 3) 

L!“. = 
i k-2 

1,J.k II - 2 
Lo? 

II- 2.0.2 + L- L’,‘!,,-,,2 + n-2 L&+ 
I? - 2 

k 32. (2.5) 

where /I,., r = 1, 2, 3. denote the barycentric coordinate of PO. that is 

Po=b, P1+PzPz+83P3,jj,+Bz+/~3=1. 

In addition, we will require that the conditions for C’ continuity hold for the remaining triples 
adjacent to a common internal edge, that is (see Figs. 2 and 3) 

LW L (II 
l.n- 1.0’ O.fl.0’ L:‘!n- 1.1’ L!X’d. ~!z’l.O. KYO. 19 

lie in the same plane. and the same is true for 

q,, - 2, 13 Lb’,‘,, - 1, 1 . L’,‘!,, -- 2.2. L:zr:;.‘(). , 1 q:::.‘, , ? L~:.yl).~, 
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Fig. 3. The structure of the (two-dimensional projection of) the macro-element; the shaded parts correspond to planar 
patches. 

where, here and in the following, r - 1 E Z3. These requirements imply the internal C’ continuity 
of the n-degree macro-element constituted by the three Bezier polynomials h”), Y = 1,2, 3, of the 
form (2.1). We emphasize that for n = 3 we obtain the classical Clough-Tocher cubic macro- 
element. 

A simple inspection (see Fig. 3) shows that the macro-net has 3[n + (n - 2)] degrees of freedom 
because the control points 

L!” t.n-1.0, i = n, . . . ,l, 
L!” 

r = 1,2, 3, 
L.n- 1 -i.l) i = n - 2, . . . .l, 

can be arbitrarily chosen while the other are given by the planar conditions. 
In order to reduce the number of free parameters, we assume that part of the control points of the 

first two rows in each mini-triangle lie on a straight line. To be more precise, we assume, for 
r = 1,2, 3, (see Fig. 4) 

L;.T;-i,o = - l - 1 L”1 
M-* n 1.1.0 

+ (n - 2) - 6 - 1) L(‘) 
n-2 l.n- 1.0’ i=n-1, . . ..l. 

L!” _ i-l 
,.n-r 1.1 = ___ L”’ n-2 1,1 +(n-3)-(i-L!p _ 

n-3 . n-3 1.n 2.13 i = n - 2, . . . ,l. Q-6) 

In this way we have defined a linear space of polynomial macro-elements having dimension 15 
for any M >3 and dimension 12 for n = 3. We note also that the slices of the three mini-nets for 
k = 0, 1 have the form (1.1) and that the slices of Bizier polynomials at u = 0, D = 0 and w = 0 are 
one-dimensional polynomials of the form (1.2). 
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Fig. 4. HOW to compute Bkier ordinates of the macro-net: (0) from tangent planes (Eqs. (2.8)); ( + ) from cross boundary 
normal derivatives (Eqs. (2.9)): ( x) from linear conditions (Eqs. (7.6)): (*) from C’ continuity conditions and planar 
conditions (Eqs. (2.10). (2.11) and (2.5)). 

Non- let us consider the interpolation problem and suppose that the data 

(2.7) 

are given, where 1‘ E C’( T ). 
Let I7, be the orthogonal projection of PO onto the straight line through P, and P,+l and 

set 

e,:= Pr+* -P,. I, = P, - n,, pr := n, - P, = prer. 

Then we can uniquely define a macro-net, according to the previous assumptions, using the 
following conditions (see Fig. 4): 

I”’ 11.0.0 =A. cL.l.0 =.fi + L (K e,), !I 
(2.8) 

/I” 
o.n.0 =.fi+ 1. /:‘I,,- 1.0 =.t;+ I -$L.~,A 
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and (see Fig. 4) 

(2.9) 

In addition, setting 

we observe that (2.9) are equivalent to say that the control point LL)2.1,1 (Ly!,-,,,) lies on the 
plane through Li,? l.l.O and LL! 2,2,0 (Ly!,l- 2,O and L(f!,l_ i,J having cross boundary normal 
derivative (along the edge e,) given by jL(“) (l/(n - 1)) (i,“’ ((n - 2),/(n - 1))). Using (2.6) we also see 
that any control point in the second row, Lilj,- i _ 1, i , i = n - 2, . . . , 1, belongs to the plane through 
L !” I + i ,n _ i _ , ,0, and Lir,‘l _ i,O having cross boundary normal derivative (along the edge e,) given by i(r) 
((n - 1 - i)/(n - 1)) i = n - 2, . . . , 1. W e h ave assumed, in other words, that the cross boundary 
normal derivative of the control net is a linear function along the edge P, P,+ i. 

Note that in the case n = 3, the two equations in (2.9) do coincide and produce the standard 
conditions for cross boundary normal derivatives used in the Clough-Tocher interpolation 
scheme. 

In order to complete the definition of the macro-net, we obtain from C’ continuity conditions 
and from (2.8) (2.9) 

(2.10) 

11:12.0.2 = BXL,,., + A+* C.1.l + flr+2q.;2:.,> 

CL’,, 2.2 = PrcL., + Pr+, CL.1 + /J,+zy;,)1.,. 
(2.11) 

It is simple to verify that (2.8). (2.10) corresponds to 

I”‘(P,) =j;, v~cr’(c.) = yf,. /“‘(P,+ 1) =,f,* 1, VP’(P,+ 1) = yf;+ 1. 

Then from (2.3) we immediately have that each Bezier polynomial h(‘) of the form (2.1) satisfies 

h”‘(P,) =.f,. Vb”l(P,) = vi, b”‘(Pr+ 1) =,f;+, . vv’(P,+ 1) = vf,, , . (2.12) 
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In addition. since (c?h”‘,‘it,) (u, 15, M.), along the edge e,, is a Bezier polynomial of degree y1 - 1 with 
Bizier ordinates 

;.w . i=n- 1. . . ..o 

(see [18]) it turns out that, via (2.9). we have imposed for h (I) linear cross boundary normal 
derivatives along the edge P, P,.+ 1. 

3. Some properties of the macro-net 

In this section we will collect some properties of the n-degree macro-element, which are stated in 
the form of theorems just for notational purposes. Let .&((s, J; n), (x, ~3) E T, be the bivariate 
piecewise polynomial such that .H(s, J; n),TS, = h(‘)(.u. ~3; n), where h”’ is the bivariate Bernstein 
polynomial of the form (2.1) obtained via (2.8), (2.9). by the interpolatory conditions (2.12). Let 
Y (s. 1‘; n), I/ (s. J‘; n) ,T’” = ICr)(r, J‘: n), be the corresponding z-component of the control net defined 
in (2.5). From the internal continuity conditions .@(s, 1’; n) EC’(T) and, from (2.12), it interpolates 
the data (2.7) at the vertices of T. 

Let us now put 

Then we have 

Theorem 3.1. Let A = ,4(x. .I,) the plune interpolating the Oata (p,.,,f;). I’ = 1. 2. 3. Then 

lim 1) h(., .; PI) - A r-, I = lim 11 Y(., .; n) - .4 ~ r, , = 0. (3.1) II - I ,I- I 

Proof. Since 4. represented in the Bezier form. coincides with its control net for each value of ~1, it 
suffices to prove that 

where Pj.y.k denotes the projection of Lrr:,, on the .Y - J’ plane. From (2.8)-(2.11) we have 

lim Ip’ ,,1,0 = lim I],r!!,,,,, = lim 1:: ,,o,l = lim lj,r!2,0,2 =,f;. 
,I--’ I II- I II- 1 ,I * I 

I’ = 1. 2. 3. 

and, from (2.2) the control points Lj’),, with the above indices tend, respectively, to (P,...fT), 
(P,, I .,fi+ ,). The as sertion then follows from (2.6) observing that the central control points Lj’i,,, 
k 32 lie on the plane through L!,r!,,,,2. I’ = 1. 2. 3. C 
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08 
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Fig. 5. The effect of the degree on the shape of the function. Top: The macro-net (left) and the corresponding polynomials 
for n = 3. Bottom: The macro-net (left) and the corresponding polynomials for n = 7. 

Property (3.1), which is a trivial consequence of the construction of the macro-element, is the 
most relevant in our application. In fact, (3.1) says that the degree, II, is a tension parameter and 
that we can use it to control the shape of the net and of the corresponding Bezier polynomial. Fig. 5 
shows the effect of enlarging the degree. 

Theorem 3.1 suggests the idea of using the degree to reproduce the shape of the data. With this 
goal in mind we state the following definitions. Note that the second one is closely related but 
weaker than the notion of axial concexit~ given in [27]. 

Definition 3.2. The data (2.7) are increasing (decreasing) along the edge P, P,.+ 1 if 
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Definition 3.3. The data (2.7) are convex (concave) along the edge P, P,+ 1 if 

(%er> <(.fr+, -5) < (9f;+l,e,>. 

(( vi3 er> > CL+ 1 -.L) > (?fi+ 13 r,>I. 

Then we have the following result. 

Theorem 3.4. Ler P, E T he such that pr E [0, 11. I’ = 1 ,2, 3. and let the data (2.7) he increasing 
(decreasing) and/or conces (concave) alony the edGge P, P, + , . There exists a threshold degree, ti, such 
that for any FI 3 ii the interpolating piecwt’ise Bizier pol~mmial .A(., ,; n) is increasing (decreasing) 
and/or conrex (concave) in the suhtriunyle T “’ alom~ the lines parallel to the edge P, P,+ 1. 

Proof. Suppose the data are increasing along P, (m a similar way we conclude in the decreasing 
case). From (2.8) there exists Co, such that for any )I >Co, 

1”’ 
n.O.0 a:‘- 1.1.0 ~~:‘!,-- 1.0 G’n.0. (3.2) 

From the second expressions of (2.10) and from (2.9) 

That is, (2.9) implies 

Then since the data are increasing along P,. (see Definition 3.2). and /I~ E [0, 11. there exists El, such 
that for any II >I?, , 

/I” 
II ~ I .o. 1 d ‘I:’ 2. 1 1 G Y,, - 7. 1 d cr.‘,, I. 1 (3.4) 

Finally, from (2.11) 

l(r) o.n-2.2 - lj,r12.0.2 = c,r;+ 1 -f,, + 0 ‘A i, . \” 
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so there exists iiz. such that for any n >iiz, 

‘(4 
n-2.0.2 <T-2.2. (3.5) 

Let us assume now the data (2.7) are convex along the edge e, (similar results hold if the data are 
concave). From (2.8) and (2.6) 

P’ _ 1.n 1.0 - ‘y-2.0 = ;t.ti+, -.f,)+O ; 
ii 

and 

pi i.. - p. ?I . ?I 1+1.i-1.0 
zz 1”’ no ,-,, i-1,o - lizr!i,i,o. i = 2. . . .n - 2. 

Then since the data are convex along e, (see Definition (3.3)) there exists ii3, such that for any n >E,, 

p ._ ,I I T’(r) 
1.1tl.O - - n-i.i.0 + P’ >O.i=l,..., n-1. n I+ l.i- 1.0 ’ 

In the same way from (3.3), recalling (2.6). 

(3.6) 

‘W 
nr3.2.1 - w2.1.1 + Y’l.O.1 

1 -Pr 
= y- cc .L + 1 -.r;1 - ( 9/L r,>l + 0 $ 

0 
1 

‘W 7’(r) 
O.npl.1 - - l.,i-2.1 + qn --A,, =~rcer;,,.~rJ -CL+, -.M +o f 

i! 
and 

p. ,~ n ,.I - I”’ ._ 
1.1 n-L 1.1 2.1 

~ =lj~rLi-,.i.l -Ij,r1i,i-1.1,i=3, . . . . n-2. 

Then, since the data are convex along e, and pr E [0, 11, there exists fib, such that for any y1 >ti4, 

P! .- ?1 l 1.1.1 - 21r!i.i- 1,1 + l~!i+l.ip2,1 30, i = 2, . ,n - 1. 

Now. it we set 

(3.7) 

fi= max [iii\ 
i=o. .4 

then the subnet L(‘) is increasing and/or convex along the direction of the edge e, for any y1 3ti 
because of (2.5) and (2.6). 

The assertion then follows from the expression of the directional derivatives of the Bezier 
polynomials [lS]. Cl 



P. Costmtitli. C>. Alurlni Jo~wnul qf’ Compututiorlul und .Applied Muthcmarics 73 /1996) 45-64 57 

Remark 3.5. The hypothesis /I,. E [0, I], that is IZ, belonging to the edge I’,. P,+ 1, is not restrictive 
since it is always possible to choose Pn such that it is satisfied; for example, we can take PO as the 
center of the circle inscribed in T. However, from the computational point of view. it is better to 
consider the barycenter of the triangle whenever it satisfies the mentioned hypothesis. 

Remark 3.6. The previous theorem ensures that the macro-net has shape-preserving properties 
along the directions of the edges of T, and we can observe that, especially for convexity, global 
properties should be preferable (see, for example, [ 191). These, however, cannot be achieved for 
arbitrary data. If we consider the complete macro-net we have in fact the Grandine’s result [19] 
showing that the only convex macro-nets are the planar ones. However the following example 
shows that even the single mini-net can be nonconvex for arbitrary data values. 

Example 3.7. Suppose a set of convex data is given. To ensure a mini-net is convex the following 
condition is necessary: 

Let us now consider the paraboloid 

the equilateral triangle T with vertices PI = (0, 0), P2 = (2. 0), P, = (1, J’?), and let P,, be the 
barycenter of T. In this case, with a straightforward manipulation (3.8) becomes, for Y = 1, 

but, substituting the gradient value. the left member of the inequality is equal to -4 + 2 + 0(1/n), 
hence (3.8) cannot hold for large values of n, and the mini-net is not globally convex. 

We conclude this section with the following elementary property. 

Theorem 3.8. Let j’ E C“ ( T ). Then ,fiw unto II. 

‘,f’(.. .) - .d(.. .: II) 1 I‘. , = O(h’). l? := max ~ P,+ 1 - P,i 
I= 1.2.3 

Proof. For I’ arbitrary but fixed, let X(.X, J) =,f, + ( P’f;, [s - x,, 4’ - ~~1~) the truncated Taylor 
expansion of,f‘around P,. Then for each (s, 1‘) E T”’ 

I,f’(r, .\.I - A(s. J‘; II)1 = 1 ,f’(.r j.) - h”‘(.Y, J’: I?)1 

d/,f’(r. y) - n(s. y)I + 171(.x 1’) - h”‘(.x. y; II)] = O(h2), 

since, from (2.12), 71 is also the truncated Taylor expansion for h”‘. Cl 
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4. Scattered data interpolation 

As previously said in the introduction, this section is devoted to developing a simple algorithm 
for computing a C’ surface interpolating a set of scattered data. The surface is composed of 
triangular polynomial macro-elements and the degree (the same for each patch) is computed in 
a global automatic way. according to Theorem (3.4), and it reproduces, as far as possible, the shape 
of the data. 

Given a set of scattered data 

P?, = (-%p J$ .r, =.W,,). sr;, = V(P,J. 11 = 1. . . . ,Np, (4.1) 

let 
T, = P,,, P,. P,(,, /I = 1. , NT, (4.2) 

be a corresponding set of non-overlapping triangles (the practical aspects concerning the gradients, 
supposed to be known a priori, and the choice of a triangulation method will be discussed later). 

For any n EN, using (2.5) (2.8H2.1 l), it is immediate to construct, for any triangle 
T!,, ,B = 1,. . , NT, a macro-polynomial &P(s. J*; II) such that 

.tiJX&. I’&; II) =.f,,, WJS,,. y/‘,;n) = or;,,. I’ = 1. 2. 3. (4.3) 

and the surface s(s. J*; 17) given by 

turns out to be a C’ function interpolating the data (4.1). In fact. the control nets of two adjacent 
triangles have the first two rows parallel to the common edge given by (2.Q (2.8) and (2.9) which 
define the same conditions for the two macro-nets. This, in turn, implies that contiguous triples of 
control points, adjacent to the same edge, lie on the same plane. Figure 6 shows an example of such 
a composite surface. The data reported in the top have been interpolated assuming zero gradients 
and the data points. The graphs obtained with II = 3 and n = 15, depicted in the center and in the 
bottom respectively, clearly show the visual consequences of the use of large degrees. 

As Theorem (3.1) suggests, the degree M of the polynomials can be used as a parameter to obtain 
the desired tension of the surface. If we are interested in reproducing the shape of the data, we can 
compute the degree so that the hypotheses of Theorem (3.4) are satisfied for all the triangles T, 
using the following scheme 

Algorithm 4.1. 
1. Let the delta (4.1) md the triunyulation (4.2) he yirell. 
2. For p = 1, . . , IV, 

2.1. For/.= 1,2,3 
2.1.1. Check [/‘the delta are increosiny (decreusiny) and/or concex (concuce) according to 

Dqfinitions 3.2 and 3.3 ulong the edge P,, P,,-, . 
21.2. Compute the threshold degree KU, uccording to Theorem 3.4. 

12. Set ii :=max’fi - -. 
3. Srln:=maL{fi,,/L=! lY 

I - n,: 5,; 
. . . . NT) 

4. For ~1 = 1, . . . .N, 
4.1. Compute the rnucr’o-element .&,1 (r, j‘; 11) \vhich .sati.sfies (4.3). 
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Fig. 6. An example of the composite surface. Top: the data. Center: the interpolating surface for n = 3. Bottom: The 
interpolating surface for n = 15. 

We need some more details on step (2.1.2.). Let us consider for the sake of simplicity only the 
increasing and/or convex case. It is clear that the macro-net of aP will have the same shape of the 
data if the corresponding mini-nets satisfy (3.2), (3.4H3.5) and/or (3.6)-(3.7). But Theorem (3.4) says 
that we have to look for a threshold degree 5, such that (3.2), (3.4H3.5) and/or (3.6x3.7) are 
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satisfied for any larger degree. It is unfortunately impossible to obtain from (3.2), (3.4)+3.7) simple 
stronger inequalities ensuring the asymptotic behavior of the net (see, for comparison, the 
analogous problem in [12]), because they lead to polynomial inequalities in l/n. However, the 
computation of the required elements of the macro-net is very cheap and we can adopt the 
following simple scheme. 

Algorithm 4.2. 
1. Let the data.&,&,+,, VS,,, Vfp,+,, increasing and/or convex, and the integer nmax be given. 
2. Set nternp = nmax. 
3. While ((3.2), (3.4H3.5) and/or (3.6H3.7) are satisjed with n = n,,,,). 

3.1. n temp = ntemp - 1. 
4. Set tip, = ntemp + 1. 

Here nmax is the maximum degree allowed by the user, and in principle, nmax = + m (for 
example, in all the following tests we have used nmaX = 20). It is worthwhile to recall that we have no 
problem in dealing with large values of nmax since the macro-element tend uniformly to a plane, and 
so we do not have to worry about instabilities and oscillations. In addition, the structure of the 
macro-net makes possible to evaluate each polynomial using only O(n) addenda in (2.1). 

Algorithm 4.1 requires knowing the values of the gradients at the interpolation points, but, in 
practice, this information is often not available. It is clear that our resulting surface, as well as any 
other two dimensional shape preserving interpolant of gridded data, will depend heavily on the 
method we have adopted to recover the gradients from the data points. The problem of a good 
choice of the partial derivatives has been solved in some cases for tensor-product constrained 
interpolation, [3], but, to the best of our knowledge, has never been investigated in the scattered 
data setting. 

Similarly, Algorithm 4.1 requires the data have been organized in a triangulation, and it is widely 
known how significantly the triangulation method affects the shape of the interpolant. The most 
famous method is the so-called Lawson or Delaunay scheme [22], based on the max-min angle 
criterion, but new algorithms, based on data-dependent strategies have been recently developed 
[4,15, 23,25,29]. Obviously, we would like to have a data-dependent triangulation, especially 
tailored for our macro-elements and for the goals we want to achieve. 

Summarizing, a good shape-preserving method is given by three ingredients: (a) a good class of 
interpolating functions, (b) a good method to compute the gradients and (c) a good triangulation 
scheme. So far, we have obtained some results on item (a), but, for producing the examples of this 
section, we have used the Lawson method and we have computed the gradients as the weighted 
least-squares approximation of the neighboring data slopes. The development of better choices for 
(b) and (c), specialized for our problem, are under investigation. 

In the first example we have interpolated a function originally introduced by Ritchie (see Cl.51 for 
its analytical form) at a set of 25 scattered data points as shown in the top Fig. 7. In the center is 
shown the graph produced by the cubic Clough-Tocher interpolant. It is possible to see that its 
oscillations are strongly reduced in the bottom of Fig. 7, where the degree 18 produced by 
Algorithm 4.1 has been used. 

In the second example, see Fig. 8, we have computed 36 scattered values of the sigmoidal 
function (see [9] for the analytical form) and we show the interpolating surface for n = 3 (center) 
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Fig. 7. Example 1. Top: The data. Center: The interpolating surface for n = 3. Bottom: The interpolating surface for 
n = 18. 
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Fig. 8. Example 2. Top: The data. Center: The interpolating surface for n = 3. Bottom: The interpolating surface for 
n = 13. 
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and for II = 13, output value of Algorithm 4.1 (bottom). As in the previous test. we can see that the 
oscillations are reduced. 

For both the examples only monotonicity constraints have been considered in Algorithm 4.1. 
We point out that the surfaces in the bottom of Fig. 7 and 8 are not, strictly speaking, 

monotonicity preserving if compared with the data at the top. As previously said, this is due to the 
poor choice of the derivatives, which, following Definition (3.2), makes some triangles neither 
increasing nor decreasing in contrast to the shape of the data. This is the case, for example, of the 
triangles around the “hill” of Fig. 7. 

We want to conclude this section with some comments concerning the major drawback of the 
present scheme, that is the global choice of the tension parameter. It is in fact clear that a large 
value of n, even if suitable for some “sharp” subset of data, does force the other triangles to accept 
useless strong tension factors, and therefore the resulting surface could, in some cases, not be 
visually pleasing. In addition, we have the obvious disadvantage that all the data have to be 
processed for a single evaluation of the interpolating function. 

We anticipate that using some properties of the net and of the Bezier polynomials, it seems 
possible to modify our macro-element and obtain a local algorithm which provides a globally C’ 
surface, where any triangular polynomial patch has its own, locally computed, degree. However, 
due to space limitations, the corresponding results, which are still under study, will be reported in 
a subsequent paper. 
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