96 research outputs found

    Discretization of expression quantitative trait loci in association analysis between genotypes and expression data

    Get PDF
    Expression quantitative trait loci are used as a tool to identify genetic causes of natural variation in gene expression. Only in a few cases the expression of a gene is controlled by a variant on a single genetic marker. There is a plethora of different complexity levels of interaction effects within markers, within genes and between marker and genes. This complexity challenges biostatisticians and bioinformatitians every day and makes findings difficult to appear. As a way to simplify analysis and better control confounders, we tried a new approach for association analysis between genotypes and expression data. We pursued to understand whether discretization of expression data can be useful in genome-transcriptome association analyses. By discretizing the dependent variable, algorithms for learning classifiers from data as well as performing block selection were used to help understanding the relationship between the expression of a gene and genetic markers. We present the results of using this approach to detect new possible causes of expression variation of DRB5, a gene playing an important role within the immune system. Together with expression of gene DRB5 obtained from the classical microarray technology, we have also measured DRB5 expression by using the more recent next-generation sequencing technology. A supplementary website including a link to the software with the method implemented can be found at http: //bios.ugr.es/DRB5

    Comparison of classification methods for detecting associations between SNPs and chick mortality

    Get PDF
    Multi-category classification methods were used to detect SNP-mortality associations in broilers. The objective was to select a subset of whole genome SNPs associated with chick mortality. This was done by categorizing mortality rates and using a filter-wrapper feature selection procedure in each of the classification methods evaluated. Different numbers of categories (2, 3, 4, 5 and 10) and three classification algorithms (naïve Bayes classifiers, Bayesian networks and neural networks) were compared, using early and late chick mortality rates in low and high hygiene environments. Evaluation of SNPs selected by each classification method was done by predicted residual sum of squares and a significance test-related metric. A naïve Bayes classifier, coupled with discretization into two or three categories generated the SNP subset with greatest predictive ability. Further, an alternative categorization scheme, which used only two extreme portions of the empirical distribution of mortality rates, was considered. This scheme selected SNPs with greater predictive ability than those chosen by the methods described previously. Use of extreme samples seems to enhance the ability of feature selection procedures to select influential SNPs in genetic association studies

    Combining phenotypic and genomic data to improve prediction of binary traits

    Get PDF
    Plant breeders want to develop cultivars that outperform existing genotypes. Some characteristics (here ‘main traits’) of these cultivars are categorical and difficult to measure directly. It is important to predict the main trait of newly developed genotypes accurately. In addition to marker data, breeding programs often have information on secondary traits (or ‘phenotypes’) that are easy to measure. Our goal is to improve prediction of main traits with interpretable relations by combining the two data types using variable selection techniques. However, the genomic characteristics can overwhelm the set of secondary traits, so a standard technique may fail to select any phenotypic variables. We develop a new statistical technique that ensures appropriate representation from both the secondary traits and the phenotypic variables for optimal prediction. When two data types (markers and secondary traits) are available, we achieve improved prediction of a binary trait by two steps that are designed to ensure that a significant intrinsic effect of a phenotype is incorporated in the relation before accounting for extra effects of genotypes. First, we sparsely regress the secondary traits on the markers and replace the secondary traits by their residuals to obtain the effects of phenotypic variables as adjusted by the genotypic variables. Then, we develop a sparse logistic classifier using the markers and residuals so that the adjusted phenotypes may be selected first to avoid being overwhelmed by the genotypes due to their numerical advantage. This classifier uses forward selection aided by a penalty term and can be computed effectively by a technique called the one-pass method. It compares favorably with other classifiers on simulated and real data

    Explainable deep learning models for biological sequence classification

    Get PDF
    Biological sequences - DNA, RNA and proteins - orchestrate the behavior of all living cells and trying to understand the mechanisms that govern and regulate the interactions among these molecules has motivated biological research for many years. The introduction of experimental protocols that analyze such interactions on a genome- or transcriptome-wide scale has also established the usage of machine learning in our field to make sense of the vast amounts of generated data. Recently, deep learning, a branch of machine learning based on artificial neural networks, and especially convolutional neural networks (CNNs) were shown to deliver promising results for predictive tasks and automated feature extraction. However, the resulting models are often very complex and thus make model application and interpretation hard, but the possibility to interpret which features a model has learned from the data is crucial to understand and to explain new biological mechanisms. This work therefore presents pysster, our open source software library that enables researchers to more easily train, apply and interpret CNNs on biological sequence data. We evaluate and implement different feature interpretation and visualization strategies and show that the flexibility of CNNs allows for the integration of additional data beyond pure sequences to improve the biological feature interpretability. We demonstrate this by building, among others, predictive models for transcription factor and RNA-binding protein binding sites and by supplementing these models with structural information in the form of DNA shape and RNA secondary structure. Features learned by models are then visualized as sequence and structure motifs together with information about motif locations and motif co-occurrence. By further analyzing an artificial data set containing implanted motifs we also illustrate how the hierarchical feature extraction process in a multi-layer deep neural network operates. Finally, we present a larger biological application by predicting RNA-binding of proteins for transcripts for which experimental protein-RNA interaction data is not yet available. Here, the comprehensive interpretation options of CNNs made us aware of potential technical bias in the experimental eCLIP data (enhanced crosslinking and immunoprecipitation) that were used as a basis for the models. This allowed for subsequent tuning of the models and data to get more meaningful predictions in practice

    Genetic association analysis of complex diseases through information theoretic metrics and linear pleiotropy

    Get PDF
    The main goal of this thesis was to help in the identification of genetic variants that are responsible for complex traits, combining both linear and nonlinear approaches. First, two one-locus approaches were proposed. The first one defined and characterized a novel nonlinear test of genetic association, based on the mutual information measure. This test takes into account the genetic structure of the population. It was applied to the GAW17 dataset and compared to the standard linear test of association. Since the solution of the GAW17 simulation model was known, this study served to characterize the performance of the proposed nonlinear methods in comparison to the linear one. The proposed nonlinear test was able to recover the results obtained with linear methods but also detected an additional SNP in a gene related with the phenotype. In addition, the performance of both tests in terms of their accuracy in classification (AUC) was similar. In contrast, the second approach was an exploratory study on the relationship between SNP variability among species and SNP association with disease, at different genetic regions. Two sets of SNPs were compared, one containing deleterious SNPs and the other defined by neutral SNPs. Both sets were stratified depending on the region where the polymorphisms were located, a feature that may have influenced their conservation across species. It was observed that, for most functional regions, SNPs associated to diseases tend to be significantly less variable across species than neutral SNPs. Second, a novel nonlinear methodology for multiloci genetic association was proposed with the goal of detecting association between combinations of SNPs and a phenotype. The proposed method was based on the mutual information of statistical significance, called MISS. This approach was compared with MLR, the standard linear method used for genetic association based on multiple linear regressions. Both were applied as a relevance criterion of a new multi-solution floating feature selection algorithm (MSSFFS), proposed in the context of multi-loci genetic association for complex diseases. Both were also compared with MECPM, an algorithm for searching predictive multi-loci interactions with a criterion of maximum entropy. The three methods were tested on the SNPs of the F7 gene, and the FVII levels in blood, with the data from the GAIT project. The proposed nonlinear method (MISS) improved the results of traditional genetic association methods, detecting new SNP-SNP interactions. Most of the obtained sets of SNPs were in concordance with the functional results found in the literature where the obtained SNPs have been described as functional elements correlated with the phenotype. Third, a linear methodological framework for the simultaneous study of several phenotypes was proposed. The methodology consisted in building new phenotypic variables, named metaphenotypes, that capture the joint activity of sets of phenotypes involved in a metabolic pathway. These new variables were used in further association tests with the aim of identifying genetic elements related with the underlying biological process as a whole. As a practical implementation, the methodology was applied to the GAIT project dataset with the aim of identifying genetic markers that could be related to the coagulation process as a whole and thus to thrombosis. Three mathematical models were used for the definition of metaphenotypes, corresponding to one PCA and two ICA models. Using this novel approach, already known associations were retrieved but also new candidates were proposed as regulatory genes with a global effect on the coagulation pathway as a whole

    Computational Methods for the Analysis of Genomic Data and Biological Processes

    Get PDF
    In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality

    Statistical Population Genomics

    Get PDF
    This open access volume presents state-of-the-art inference methods in population genomics, focusing on data analysis based on rigorous statistical techniques. After introducing general concepts related to the biology of genomes and their evolution, the book covers state-of-the-art methods for the analysis of genomes in populations, including demography inference, population structure analysis and detection of selection, using both model-based inference and simulation procedures. Last but not least, it offers an overview of the current knowledge acquired by applying such methods to a large variety of eukaryotic organisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, pointers to the relevant literature, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Statistical Population Genomics aims to promote and ensure successful applications of population genomic methods to an increasing number of model systems and biological questions
    • …
    corecore