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Celia Salazar, Osvaldo Yañez, Alvaro A. Elorza, Natalie Cortes, Olimpo Garcı́a-Beltrán,

William Tiznado and Lina Marı́a Ruiz

Biosystem Analysis of the Hypoxia Inducible Domain Family Member 2A: Implications in
Cancer Biology
Reprinted from: Genes 2020, 11, 206, doi:10.3390/genes11020206 . . . . . . . . . . . . . . . . . . . 5

Omid Mahmoudi, Abdul Wahab and Kil To Chong

iMethyl-Deep: N6 Methyladenosine Identification of Yeast Genome with Automatic Feature
Extraction Technique by Using Deep Learning Algorithm
Reprinted from: Genes 2020, 11, 529, doi:10.3390/genes11050529 . . . . . . . . . . . . . . . . . . . 25

Javed Zahoor and Kashif Zafar

Classification of Microarray Gene Expression Data Using an Infiltration Tactics Optimization
(ITO) Algorithm
Reprinted from: Genes 2020, 11, 819, doi:10.3390/genes11070819 . . . . . . . . . . . . . . . . . . . 37

Mobeen Ur Rehman and Kil To Chong

DNA6mA-MINT: DNA-6mA Modification Identification Neural Tool
Reprinted from: Genes 2020, 11, 898, doi:10.3390/genes11080898 . . . . . . . . . . . . . . . . . . . 65

Xiangrui Zeng, Wei Zong, Chien-Wei Lin, Zhou Fang, Tianzhou Ma, David A. Lewis, 
John F. Enwright and George C. Tseng

Comparative Pathway Integrator: A Framework of Meta-Analytic Integration of Multiple 
Transcriptomic Studies for Consensual and Differential Pathway Analysis
Reprinted from: Genes 2020, 11, 696, doi:10.3390/genes11060696 . . . . . . . . . . . . . . . . . . . 77

Abdelaziz Ghanemi, Aicha Melouane, Mayumi Yoshioka and Jonny St-Amand

Exercise and High-Fat Diet in Obesity: Functional Genomics Perspectives of Two Energy
Homeostasis Pillars
Reprinted from: Genes 2020, 11, 875, doi:10.3390/genes11080875 . . . . . . . . . . . . . . . . . . . 91

Thomas Vanhaeren, Federico Divina, Miguel Garcı́a-Torres, Francisco Gómez-Vela, 
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Today, new technologies, such as microarrays or high-performance sequencing, are producing
more and more genomic data. This fact has brought new opportunities and challenges in the fields
of computational biology and bioinformatics, since this huge number of data need to be analysed in
order to be exploited.

In this context, new computational methods and tools, such as machine learning approaches or
gene expression analysis tools, could provide the solution to such issues.

The overall aim of this Special Issue is to compile the latest research and developments in the
field of computational methods for the analysis of gene expression data and, in particular, with the
modelling of biological processes.

Among all the submissions, eleven papers were accepted and published in this Special Issue.
In this sense, machine learning-based approaches have received particular attention, such as the
work presented by Vanhaeren et al. [1]. In this work, the authors used 1D sequencing signals to
model cohesin-mediated chromatin interactions in two human cell lines and evaluate the prediction
models obtained. To this end, they tested the performance of six popular machine learning algorithms:
decision trees, random forests, gradient boosting, support vector machines, multi-layer perceptron and
deep learning. The results obtained showed that gradient boost outperformed the other five methods,
yielding accuracies of about 95%. Despite these results, the authors established that it was necessary to
examine other cell lines and tissues to confirm the obtained observations.

In another article, Rehman and Chong [2] presented work where the authors propose a Convolution
Neural Network (CNN) and Long Short-Term Memory (LSTM)-based tool named DNA6mA-MINT
for DNA-6mA modification identification. The tool uses the CNN for feature extraction, while LSTM
provides optimal interpretation for those features. The authors showed that the performance of their
tool is superior to that achieved with existing state-of-the-art techniques on the “combined-species”,
Mus musculus genome, and rice genome datasets. Moreover, the authors carried out a performance
analysis on 5- and 10-fold cross-validation in order to obtain a better comparative analysis. The tool is
provided by a user-friendly web server, publicly available.

Another example of the use of CNN is the work by Mahmoudi et al. [3], where a new computational
model for identifying N6-methyladenosine (m6A) post-transcriptional modification in RNAs is
proposed. The technique, called iMethyl-deep, provides a novel computational method for identifying
m6A Saccharomyces cerevisiae sites by using single-nucleotide resolution to convert RNA sequences into
high-quality feature representations in the CNN. The model is able to extract the relevant features
from the input samples. The results obtained show that iMethyl-deep outperforms state-of-the-art
methods and achieves accuracies of 89.19% and 87.44% on the M6A2614 and M6A6540 benchmark
datasets, respectively.

In the context of machine learning, Delgado-Chaves et al. [4] presented an analysis of the effects of
the gene Ly6E in the immune response against the coronavirus responsible for murine hepatitis (MHV).
With this aim, the work used different datasets from mice, with and without the ablation of the gene

Genes 2020, 11, 1230; doi:10.3390/genes11101230 www.mdpi.com/journal/genes1
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Ly6E, to reconstruct computational gene co-expression networks, by using a machine learning-based
algorithm called EnGNet. The authors carried out an integration of differential expression analyses
and reconstructed network exploration, and significant differences in the immune response to the
virus were observed in Ly6E compared to in wild-type animals. The obtained results show that Ly6E
ablation in hematopoietic stem cells (HSCs) leads to a progressive impaired immune response in both
the liver and spleen.

Zahoor and Zafar [5] propose a novel optimization algorithm inspired by the “infiltration tactics”
of the war zone (ITO) for the task of classifying microarray datasets. The algorithm integrates
parameter-free and parameter-based classifiers to provide a highly accurate and reliable binary
classifier. The results are generated in two steps: (a) the Lightweight Infantry Group converges quickly
to find non-local maxima and produces comparable results, and (b) the Follow-up Team (FT) applies
advanced tuning to enhance the baseline performance. Each soldier is considered as a base model with
its own independently chosen subset selection method (pre-processing, and validation methods and
classifier). Therefore, successful soldiers are combined for optimal results. The performance of the
algorithm was successfully tested using three mouse livers and a rat liver.

In this Special Issue, some tools are presented as well, such as in the work by Zeng et al. [6]. In this
article, the authors present a new meta-analytic integration tool, called the Comparative Pathway
Integrator (CPI), which is able to deal with multiples studies of different conditions. To do so, the tool
uses an adaptive weighted Fisher’s method to discover consensual and differential enrichment patterns,
a tight clustering algorithm to reduce pathway redundancy, and a text-mining algorithm to assist the
interpretation of the pathway clusters. The authors demonstrate its effectiveness by applying CPI to
jointly analyse six psychiatric disorder transcriptomic studies. The results described show functions
confirmed by previous biological studies as well as novel enrichment patterns. The tool is publicly
available as a CPI R package.

Another interesting tool provided as an R package, named metaRE, was presented by
Novikova et al. [7]. MetaRE is able to perform a systematic search for cis-regulatory elements
enriched in the promoters of the genes significantly changed in their transcription in a reaction. metaRE
extracts datasets of multiple expression profiles generated to test the response of the same organism
and identifies simple and composite cis-regulatory elements that are systematically associated with the
differential expression of genes. The authors tested metaRE’s performance for the identification of
low-temperature-responsive cis-regulatory code in Arabidopsis thaliana and Danio rerio. MetaRE was
able to identify potential binding sites for known as well as unknown cold response regulators.

Computationally based analyses of biological processes are also included in this Special Issue.
For example, the work by Agioutantis et al. [8] analysed 21 human hepatocellular carcinoma (HCC)
cell lines (HCC lines) to explore intertumoral molecular diversity and pertinent drug sensitivity.
This article proposes an integrative computational approach based on an exploratory and single-sample
gene-set enrichment analysis of transcriptome and proteome data, and then a correlation analysis of
drug-screening data. The presented results classified HCC lines into two groups. In particular, the lines
were classified as poorly differentiated and well-differentiated, displaying lower/higher enrichment
scores in a “Specifically Upregulated in Liver” gene set, respectively. It is worth mentioning that the
analysis of correlation showed a differential effectiveness of specific drugs against poorly differentiated
compared to well-differentiated HCC lines, which is possibly applicable in clinical research with
patients with analogous features. As a result, this study may expand the knowledge of HCC lines and
proposes a cost-effective computational approach to precision anti-HCC therapies.

The work by Tian et al. [9] addresses the effect that deleting single-nucleotide polymorphisms
(SNPs) of genes affected by large-effect expression Quantitative Trait Loci (eQTL) may have on gene
expression. To this end, CRISPR-Cas9 mutagenesis was used to delete SNPs, obtaining single-cell
clones. The bottlenecks for the fine mapping of such SNPs were suggested to be the impossibility of
targeting many SNPs and the clonal variability of single-cell clones, among others.
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An analysis of the hypoxia inducible domain family member 2A (HIGD2A) was presented in
Salazar et al. [10]. The protein HIG2A is produced by the HIGD2A gene, found in mitochondria and
the nucleus, promoting cell survival in hypoxic conditions. The main objective of this study was to
carry out a biosystem analysis of HIGD2A with the aim of discovering its implications in cancer biology.
The authors used different public databases such Gene Expression Omnibus to evaluate some gene
expression datasets. The results presented suggested that the gene’s alterations are present in the
different cancers studied.

Finally, Ghanemi et al. [11] presented a review about the therapeutic alternatives to exercise in
obesity. The review focuses on a functional genomics perspective, in particular, finding potential
therapeutic targets for obesity. The authors point out various approaches, identifying differential
gene expression-based studies that aimed at finding genes that are differentially expressed under
diverse conditions depending on physical activity and diet (mainly high-fat). The authors suggested
that this area of functional genomics-related exploration will lead to novel mechanisms and also new
applications and implications along with a new generation of treatments for obesity and the related
metabolic disorders.

Funding: This research received no external funding.
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Abstract: The expression of HIGD2A is dependent on oxygen levels, glucose concentration, and cell
cycle progression. This gene encodes for protein HIG2A, found in mitochondria and the nucleus,
promoting cell survival in hypoxic conditions. The genomic location of HIGD2A is in chromosome
5q35.2, where several chromosomal abnormalities are related to numerous cancers. The analysis
of high definition expression profiles of HIGD2A suggests a role for HIG2A in cancer biology.
Accordingly, the research objective was to perform a molecular biosystem analysis of HIGD2A
aiming to discover HIG2A implications in cancer biology. For this purpose, public databases such as
SWISS-MODEL protein structure homology-modelling server, Catalogue of Somatic Mutations in
Cancer (COSMIC), Gene Expression Omnibus (GEO), MethHC: a database of DNA methylation and
gene expression in human cancer, and microRNA-target interactions database (miRTarBase) were
accessed. We also evaluated, by using Real-Time Quantitative Reverse Transcription Polymerase
Chain Reaction (qRT-PCR), the expression of Higd2a gene in healthy bone marrow-liver-spleen tissues
of mice after quercetin (50 mg/kg) treatment. Thus, among the structural features of HIG2A protein
that may participate in HIG2A translocation to the nucleus are an importin α-dependent nuclear
localization signal (NLS), a motif of DNA binding residues and a probable SUMOylating residue.
HIGD2A gene is not implicated in cancer via mutation. In addition, DNA methylation and mRNA
expression of HIGD2A gene present significant alterations in several cancers; HIGD2A gene showed
significant higher expression in Diffuse Large B-cell Lymphoma (DLBCL). Hypoxic tissues characterize
the “bone marrow-liver-spleen” DLBCL type. The relative quantification, by using qRT-PCR, showed
that Higd2a expression is higher in bone marrow than in the liver or spleen. In addition, it was
observed that quercetin modulated the expression of Higd2a gene in mice. As an assembly factor
of mitochondrial respirasomes, HIG2A might be unexpectedly involved in the change of cellular
energetics happening in cancer. As a result, it is worth continuing to explore the role of HIGD2A in
cancer biology.

Keywords: HIGD2A; cancer; DNA methylation; mRNA expression; miRNA; quercetin; hypoxia
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1. Introduction

Mitochondria are crucial for virtually all aspects of malignant transformation and tumor
progression, counting since the proliferation of transformed cells, the resistance of these cells to
hostile environmental surroundings, the interaction of transformed cells with the tumor stroma,
and their dissemination to remote anatomical sites [1]. Besides being the leading supplier of ATP,
mitochondria could provide building blocks for the proliferation of malignant cells, they produce
reactive oxygen species (ROS), and they are critical players in regulated cell death signaling [1].

Among the main mechanisms used by mitochondria for the malignant transformation of cells,
first, there is the production of ROS, which favors the accumulation of potential oncogenic defects in
DNA, and the activation of probable oncogenic signaling pathways [2]. Secondly, there is an abnormal
accumulation of mitochondrial oncometabolite such as fumarate, succinate, and 2-hydroxyglutarate [3].
Thirdly, there are defects in the mitochondrial permeability transition (MPT), which allow the survival
of malignant cells through the deregulation of regulated cell death processes [4]. Mitochondria
influence the outcome of cancer cells to therapy through metabolic reprogramming between glycolysis
and oxidative phosphorylation. The search for many anti-carcinogenic treatments is based on the
identification of molecules that kill cancer cells or sensitize them to treatments by priming MPT [1].

Thus, the understanding of mitochondrial metabolism is fundamental in the development of new
anti-cancer agents. Our research group is focused on the study of the Hypoxia Inducible Domain Family
Member 2A, HIG2A, which is a small protein (106 amino acids) located in the inner membrane of the
mitochondria. It has a hypoxia-induced-protein domain at the N-terminus [5]. HIG2A has a role in the
respiratory supercomplexes assembly, a function that has been evidenced in the C2C12 mouse cell line,
where the knockdown of Higd2a (nomenclature of mice gene) impaired supercomplex formation by the
release of CIV [6,7]. Recently, we showed that the knockdown of HIGD2A (nomenclature of a human
gene) decreases the activity of Complex I in the supercomplexes of HEK293 cells [8]. Noteworthy,
in that study, the authors described the following results for the first time: the Higd2a gene exhibits
differential expression in mice under basal physiological conditions that could be associated with
different cell proliferation rates, and with differentiation and physiological oxygen levels in each tissue.
Additionally, we also proved that physiological hypoxia induces HIGD2A (Higd2a) gene expression.
Interestingly, the latter showed an increase during the cellular differentiation of C2C12 cells from
myoblast to myotubes [8]. These results support a role for HIG2A in conditions of physiological stress,
such as hypoxia in some tissues, and cell differentiation processes.

Further analysis of the HIGD2A gene promoter region in human chromosome 5 provided insights
on how HIG2A could be related to cell cycle management. These studies evidenced several probable
binding sites for different transcription factors related to cell cycle control, including E2F-1, E2F-2, E2F-3a,
E2F-4, and E2F-5 [8]. These results agree with the evidence that under oxidative metabolism, E2F-1
directs cellular responses by acting as a regulatory switch from glycolytic to oxidative metabolism [9,10].
Moreover, we analyzed the effects of E2F-1 modulation on HIGD2A gene expression using roscovitine
(inhibitor of CDKs), flavopiridol, and caffeic acid phenethyl ester (CAPE) (antiproliferative drugs) [8].
Roscovitine treatment significantly increased HIGD2A gene expression in the human embryonic kidney
HEK293 cell line. Treatment with CAPE decreased HIGD2A gene expression in mouse myoblast C2C12
cells [8]. In the same work, the E2F-1 regulatory action in HIGD2A gene was studied, showing that the
inhibition of cell proliferation treated with CAPE promotes E2F1 binding to the regulatory region of
HIGD2A, thus setting a role for E2F-1 in the regulation of HIGD2A expression. Notably, analysis of
HIGD2A genomic location showed a chromosome 5q35.2 section, a region where several chromosomal
abnormalities are usually related to cancer [11–14].

Oncogenic mutations in the small GTPase Ras are highly prevalent in cancer. Depletion of
HIGD2A selectively impairs the viability of colon adenocarcinoma cells (DLD1), which are Ras mutant
cells, suggesting a role of HIG2A in cell cycle regulation and a potential target in cancer therapy [15].
Furthermore, the analysis of high definition expression profiles of HIGD2A with the Gene Expression
Omnibus (GEO) repository [16,17] suggested a role for HIG2A in cancer biology. This analysis showed
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that HIGD2A expression is significantly increased in Methotrexate resistant colon cancer cell lines
(HT29 resistant cells) (GDS3160) and Cisplatin-resistant non-small lung cancer cell lines (H460 resistant
cells) (GDS5247). Additionally, when the estrogen receptor alpha is silenced in MCF7 breast cancer
cells, a significant decrease of HIGD2A expression was evidenced (GDS4061). All the above data are
suggesting a role of HIG2A in cell cycle regulation.

Accordingly, in light of the background mentioned above, the research objective was to perform a
molecular biosystem analysis of HIGD2A, aiming to obtain insights on its implications in cancer biology.

2. Materials and Methods

2.1. Datasets

The Gene Expression Omnibus (GEO) [16] repository for gene expression profiles of DLBCL
was screened, and datasets were analyzed with GEO2R [17]. The microarray Illumina Human
HT-12 V4.0 expression bead chips were used in the study; “Role of hypoxia in Diffuse Large B-cell
Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL”.
This study offers further conclusive proof of the contribution of HK2 in the development of B-cell
lymphoma. It proposes that HK2 is a vital metabolic driver of DLBCL (Diffuse Large B-cell Lymphoma)
phenotype. The authors contributed to the public dataset GSE104212 [18]. For this study, two human
lymphoma cell lines, HLY-1 and SUDHL2, were cultured and assessed under hypoxic conditions
(n = 3, biological replicates per cell line) or normoxia (n = 3, biological replicates per cell line),
followed by a gene expression microarray analysis to examine the global gene expression differences
under these conditions [18]. Another dataset analyzed was obtained with the Agilent-014850 Whole
Human Genome Microarray 4 × 44K G4112F and were used in the study of gene-expression profiles
in a series of non-Hodgkin lymphoma (NHL) patients (Dataset GSE32018). This study shows that
PIM2 kinase inhibition is a logical process in DLBCL therapy and gives a new marker for patient
stratification [19]. The gene-expression profiling from Dataset GSE32018 was conducted in a series
of 114 B-cell non-Hodgkin lymphoma patients (DLBCL, Follicular Lymphoma (FL), Marginal Zone
Lymphoma_Type (MALT), Mantle Cell Lymphoma (MCL), Chronic Lymphocytic Leukemia (CLL),
and Nodal Marginal Zone Lymphoma (NMZL)). Seven freshly frozen lymph nodes and six freshly
frozen reactive tonsils were used as controls [19]. The last Dataset GSE12453 obtained the expression
profiling by array [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array was used
in the study; origin and pathogenesis of lymphocyte-predominant Hodgkin lymphoma as revealed
by global gene expression analysis. This study shows a relationship of microdissected lymphocytic
and histiocytic (L&H) lymphoma cells to the origin from germinal center B cells at the transition to
memory B cells. L&H cells are typified by abnormal ERK signaling and constitutive NF-κB activity [20].
The analysis of differential gene expression was performed in primary human lymphoma cells of
Nodular Lymphocyte-Predominant Hodgkin Lymphoma (NLPHL) in comparison with primary
lymphoma cells of classical Hodgkin lymphoma cells, and other B-non-Hodgkin Lymphoma (B-NHL)
samples, and subsets of non-neoplastic B lymphocytes isolated from blood or tonsils [20].

2.2. In Silico Analysis

A homology modelling of HIG2A protein structure was generated with the
SWISS-MODEL repository (https://swissmodel.expasy.org/repository/uniprot/Q9BW72?csm=
205DE0AE39950053) [21,22]. Two crystal structures of backbone structure of human membrane
protein HIGD1A and HIGD1B (protein data bank code: 2LON, 2LOM) were chosen as template for
the construction of the three-dimensional HIG2A model (Model 1A and Model 1B). For validation,
we used the PROCHECK program [23], which assesses the stereochemical quality of protein structures
and the root mean square deviation (RMSD), superimposing the structures of proteins and calculating
their deviation.
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Additionally, we performed some in silico analysis for the prediction of nuclear localization
signals (NLS) with the NLS Mapper software (nls-mapper.iab.keio.ac.jp) and DNA-binding residues
in HIG2A protein with the DP-Bind software (lcg.rit.albany.edu/dp-bind), which is a web server for
sequence-based prediction of DNA-binding residues in DNA-binding proteins. Moreover, we searched
for post-translational modifications of HIG2A and with the GPS-SUMO prediction of SUMOylating
sites and SUMOylating binding motifs (sumosp.biocuckoo.org).

DNA methylation and gene expression of HIGD2A in cancer was analyzed with MethHC,
a database for human pan-cancer gene expression, methylation and microRNA expression [24]
(http://methhc.mbc.nctu.edu.tw). The HIGD2A promoter was selected and the methylation level
evaluation method was defined as maximum.

2.3. Immunofluorescence and Confocal Microscopy

The immunofluorescence analysis was performed according to the procedure previously
reported [8] with brief addition for the inner nuclear membrane Lamin-B protein localization; anti-Lamin
B antibody (Lamin B sc-6216 SANTA CRUZ BIOTECHNOLOGY, INC), the secondary antibody red
signal-Alexa Fluor 546. Hoechst 33342 (Blue signal after DNA binding). Z-axis series were obtained
using a Leica SP8 confocal microscopy.

2.4. Isolation of Mitochondria and Nucleus, and Western Blot

The isolation of mitochondria and nucleus and Western blot were performed according to the
procedure previously reported [8].

2.5. Animals

The protocol of animal management was approved by the Bioethics Committee of the Vice-Rectory
for Research and Postgraduate Studies of Universidad Andrés Bello, Approval Act 009/2010, of 8 July
2010. The animals were treated and handled according to the Chilean National Commission for
Scientific and Technological Research-CONICYT requirements for the care and use of laboratory,
in accordance with NIH guidelines (The Guide for the Care and Use of Laboratory Animals, 1996).
Male C57BL/6 mice were housed in groups of nine mice per cage and maintained at 22 ◦C on a 12:12-h
light–dark cycle, with food and water ad libitum before the procedures. Moreover, male C57BL/6
mice (12 months of age) were daily injected intraperitoneally (i.p) with either 50 mg/kg quercetin
(Sigma-Aldrich, Cat # Q4951, Merck KGaA, Darmstadt, Germany) (n = 9), or vehicle (5% DMSO) plus
PBS (n = 9) for 15 days, according to the protocol previously described [25].

2.6. Reverse Transcription and Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from mice tissues with TRIzolTM Reagent (Invitrogen, Thermo Scientific,
Waltham, MA, USA) according to the manufacturer’s protocol. RNA quantification and quality
assessment were determined using the spectrophotometer Infinite M200 Pro (TECAN AG, Zürich,
Switzerland) and agarose electrophoresis. RNA (2 μg) was used for the reverse transcription with
the RevertAid First Strand cDNA synthesis Kit (Thermo Scientific, Waltham, MA, USA). qPCR was
performed using FastStart Essential DNA Green Master Kit (Roche, Risch-Rotkreuz, Zug, Switzerland)
and the LightCycler® 96-Real time PCR system (Roche, Risch-Rotkreuz, Zug, Switzerland). Data are
presented as relative mRNA levels of HIGD2A normalized to PPIA mRNA levels. The primers used
were: HIGD2A Fw: 5′-GCCTTTTGATCCGTCCAAGC-3′, Rev: 5′-CTGAAACGGAGGGAGCAAGT-3′;
PPIA Fw: 5′-GTGGTCTTTGGGAAGGTG-3′, Rev: 5′-GGTGATCTTCTTGCTGGTC-3′. The thermal
conditions used were as follows: an initial three-step amplification (95 ◦C for 10 s, 60 ◦C for 10 s and
72 ◦C for 10 s), followed by a one-step melting (95 ◦C for 10 s, 65 ◦C for 60 s and 97 ◦C for 1 s) and
finishing with a one-step cooling (37 ◦C for 30 s). All reactions were concluded with an integrated
melting curve reaction to verify the specificity of the amplification. Two experimental replicates were
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analyzed in a “LightCycler” run, improving the precision within the test. In order to improve the
variation between assays, four runs were carried out on four different days (biological replicates).

2.7. Statistical Analysis

All statistical analyses were performed with the Graphpad Prisma 6 software (San Diego, CA, USA).
An unpaired Student′s t-test followed by a Mann-Whitney test was used when comparing two average
values. One way-ANOVA followed by a Dunnett´s multiple comparison test was also performed.

3. Results

3.1. Structural Features of HIG2A Protein

For the homology modeling of HIG2A protein, two crystal structures of backbone structure of
human membrane protein HIGD1A and HIGD1B (protein data bank code: 2LON, 2LOM) were chosen
as template for the construction of the three-dimensional HIG2A model (Model 1A and Model 1B) as
it displayed a sequence identity of 36–36.14% and a similarity of 50.67–54.22%, see Figure 1. In the
current study, the stereo-chemical evaluation of backbone psi and Phi dihedral angles of the HIG2A
models showed that Model 1A and Model 1B residues were 70.3% and 70.4% in the most favorable
region, and 0% and 14% in the additional allowed region, respectively (Table 1 and Figure 2). In general,
a score close to 100% implies the good stereo-chemical quality of the model [26]. The total quality
G-factor −0.29 and −0.23, for Model 1A and 1B, indicated a good quality model (acceptable values of
the G-factor in PROCHECK are between 0 and −0.5, with the best models displaying values close to
zero). The PROCHECK stereochemical analysis showed neither wrong contacts nor bad scores for
main-chain or side-chain parameters. Therefore, these PROCHECK results suggest that the predicted
model was of good quality.

 

Figure 1. Images in the left side show superimposed template (green) on their respective model (red).
Images in the right show alignment generated by the ESPript 3.0 webtool [27] of HIG2A protein with
the PDBs: 2LON and 2LOM, accessions used to build the Models 1-A and 1-B.
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Table 1. PROCHECK Summary.

Ramachandran Plot Quality (%) Goodness Factor

Most
Favored

Additional
Allowed

Generously
Allowed

Dis-Allowed Dihedral Covalent Overall

Model-1A 70.3 21.9 7.8 0.0 −0.30 −0.31 −0.29
Model-1B 70.4 23.9 4.2 1.4 −0.27 −0.22 −0.23

Figure 2. Ramachandran plots generated via PROCHECK for (A) HIG2A protein Model-1A and (B)
HIG2A protein Model-1B. PROCHECK shows that the residues in most favored (red), additionally
allowed (yellow), generously allowed (pale yellow) and disallowed regions (white color).

Our previous studies suggest that changes in oxygen concentration, cellular metabolism, and cell
cycle regulate HIGD2A expression [8]. HIG2A protein might function as a regulator of respiratory
supercomplexes assemblies in response to hypoxia, cellular metabolism, and cell cycle [8]. HIG2A
could function as a hypoxia sensor in respiratory supercomplexes to activate signaling pathways
of response to hypoxic stress. To explore the potential participation of HIG2A in cellular signaling
pathways, we performed several analyses of the HIG2A protein sequence. With the nuclear localization
signal, NLS Mapper software [28], for HIG2A, an importin α-dependent nuclear localization signal
was predicted (Figure 3), which is a noncanonical NLSs recognized by importin α [29]. This NLS in
HIG2A supports the participation of HIG2A in a cellular signaling pathway. HIG2A has a motif of
DNA binding residues in the alpha-helix, which also supports the interaction of HIG2A with DNA
(Figure 3).

Moreover, we looked at post-translational modifications for HIG2A that account for their
participation in signaling pathways. In high throughput, proteomic screening was found acetylation
in Ala 2- [30], phosphorylation in Thr 3 [31], and di-methylation in Arg 74 (PhosphoSitePlus®)
in HIG2A (Figure 3). HIG2A protein localizes in the mitochondrial network and nucleus [8].
The immunofluorescence analysis of C2C12 cells by confocal microscopy allows observing the
colocalization of HIG2A with the inner nuclear membrane protein, Lamin-B (Figure 4A). With the
Western blot, an upper band of approximately 10 kDa higher than HIG2A was detected in the nucleus
fraction with Anti-HIG2A antibody, suggesting that this upper band could be a post-translational
modification of HIG2A (Figure 4B). For this reason, protein HIG2A was analyzed for SUMOylating;
a probable SUMO interaction motif and a SUMOylating nonconsensus residue were identified (Figure 3).
The sumoylation could regulate the nuclear localization of some proteins [32–35].
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Figure 3. Structural features of HIG2A protein. (A) HIG2A noncanonical nuclear localization
signals (NLS), (B) Q9BW72 (HIG2A_HUMAN) Homo sapiens (Human) from SWISS MODEL protein
structure homology-modelling server, (C) post-translational modification of HIG2A, (D) sequence-based
prediction of DNA-binding residues in HIG2A protein. P, position; AA, amino acid; No mitochondrial
presequence; G 70 MPP cleavage site.

 
Figure 4. HIG2A protein localizes in mitochondria and nucleus. (A) Immunofluorescence image of an
Anti-HIGD2A antibody stained C2C12 cells, the secondary antibody (Green signal, DyLight® 488).
Lamin B (sc-6216) stained showing nuclear lamina localization, the secondary antibody red signal-Alexa
Fluor 546. Hoechst 33342 (Blue signal after DNA binding). z-axis series were obtained using a Leica
SP8 confocal microscopy. (B) Western blot of HIG2A in mitochondria and nucleus protein extract of
HEK293 cells. Normoxia condition (N), Hypoxia condition (H).
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3.2. Genetic Features of HIGD2A Gene in Cancer

The Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) database
indicates that the HIGD2A gene (COSG58129) has been reported as having mutations in 29 unique
samples out of a total of 35183 samples; therefore, HIGD2A is not a known cancer-driving gene [36].
Moreover, mouse insertional mutagenesis experiments do not support the designation of HIGD2A
as a cancer-causing gene [37]. On the other hand, DNA methylation is a vital epigenetic mechanism
that stabilizes gene expression and cellular states; their alteration has a role in tumor initiation
and evolution [38]. In the present study, we evaluated the correlation between DNA methylation
and mRNA expression in the HIGD2A gene in cancer. For this purpose, we used the MethHC,
a database of DNA methylation and gene expression in human cancer [24]. The comparison of
average beta value in tumor samples, and matched normal samples, indicates significant alterations
in DNA methylation and mRNA expression in the HIGD2A gene in diverse cancer: Breast Invasive
Carcinoma (BRCA), Head and Neck Squamous Cell Carcinoma (HNSC), Kidney Renal Clear Cell
Carcinoma (KIRC), Liver Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), Pancreatic
Adenocarcinoma (PAAD), Prostate Adenocarcinoma (PRAD), and Rectum Adenocarcinoma (READ)
(Figure 5). As shown in Figure 5, the correlation between DNA methylation and mRNA expression in
the HIGD2A gene is significant for most of the cancers previously mentioned. The correlation and
p-valued between DNA methylation and mRNA expression for each cancer are: BRCA (correlation:
−0.023392995888958, p-value: 7.7715611723761E-16); HNSC (correlation: −0.038296830523789, p-value:
8.8817841970013E-16); KIRC (correlation: 0.026605097926286, p-value: 1.2061907028738E-9); LIHC
(correlation: 0.03121030048201, p-value: 3.5347748061909E-9); LUAD (correlation: 0.00043286112981717,
p-value: 2.246819973406E-7); PAAD (correlation: 0.058019469632158, p-value: 0.40190361732643);
PRAD (correlation: −0.19807571454707, p-value: 0.0002748122809052); and READ (correlation:
0.21585872962767, p-value: 7.0291561460323E-8).

Moreover, we explored the microRNA-target interactions database (miRTarBase) analyzing
microRNAs (miRNAs) for the HIGD2A gene [39]. These miRNAs are small non-coding RNAs that
maintain cell homeostasis by negative regulation influencing each pathway practically from cell cycle
checkpoint, cell proliferation to apoptosis [40]. Of the 17 miRNAs found, four miRNAs stand out as
having experimental evidence and influence on different diseases related to cancer [39,41]. In Figure 6
the secondary structure of pre-miRNA; hsa-mir-181a-2, hsa-mir-181b-1, hsa-mir-181c, and hsa-mir-181d
are presented. The word cloud of miRNA-disease information, for these miRNAs, are related to
neoplasms, leukemia, carcinoma, lymphoma, among others. In Table 2, the significative clinical miRNA
and gene expression profile (miRNA-Target expression profile) from The Cancer Genome Atlas (TCGA)
is summarized. Briefly, the miRNA, hsa-mir-181a-2 prove a significant positive correlation for kidney
chromophobe (KICH) and a negative correlation for PRAD. Besides, the miRNA, hsa-mir-181b-1,
reveal a significant positive correlation for KICH and kidney renal papillary cell carcinoma (KIRP),
and a negative correlation for HNSC, BRCA, and lung squamous cell carcinoma (LUSC). Moreover,
the miRNA, hsa-mir-181c, indicates a significant positive correlation for KICH, liver hepatocellular
carcinoma (LIHC), Cholangiocarcinoma (CHOL), and a negative correlation for BRCA and LUSC.
Finally, the miRNA, hsa-mir-181d, demonstrate a significant positive correlation for LIHC and a
negative correlation for BRCA and LUSC (Table 2).
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Figure 5. DNA Methylation (A) and mRNA Expression (B) in the HIGD2A gene in Cancer. The distinct
methylation of HIGD2A in promoter region between cancer and normal tissues in GC patients (MethHC,
a database of DNA methylation and gene expression in human cancer). The average beta value for
the maximum methylation level evaluation method was used. Gene expression value was obtained
from RNA Seq RPKM (Reads Per Kilobase per Million mapped reads) values in TCGA Data Portal by
MethHC. Box plots in grey represent cancer samples and those in white represent normal samples.
BRCA (p-value 0.020048563931465) cancer samples (n = 748), normal samples (n = 129); HNSC:
Head and Neck Squamous Cell Carcinoma (p-value 0.0057123457160735), cancer samples (n = 517),
normal samples (n = 67); KIRC: Kidney Renal Clear Cell Carcinoma (p-value 0.0010765698395251),
cancer samples (n = 301), normal samples (n = 168); LIHC: Liver Hepatocellular Carcinoma (p-value
0.0014579663558734), cancer samples (n = 204), normal samples (n = 65); LUAD: Lung Adenocarcinoma
(p-value 0.047325233745657), cancer samples (n = 452), normal samples (n = 48); PAAD: Pancreatic
Adenocarcinoma (p-value 0.031511114364529), cancer samples (n = 91), normal samples (n = 16); PRAD:
Prostate Adenocarcinoma (p-value 9.6625187628874E-7), cancer samples (n = 340), normal samples
(n = 66); READ: Rectum Adenocarcinoma (p-value 0.002214301636065), cancer samples (n = 96), normal
samples (n = 13). “∗” indicates being statistically significant with p < 0.05. “∗∗” indicates being
statistically significant with p < 0.005.

 
Figure 6. Secondary structure of pre-miRNA; hsa-mir-181a-2 (A), hsa-mir-181b-1 (B), hsa-mir-181c (C),
and hsa-mir-181d (D) for HIGD2A target gene.
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Table 2. Clinical microRNA (miRNA) and gene expression profile from TCGA (miRNA-Target
expression profile).

miRNA.
(Accession ID)

Mature miRNA Sequence
miRNA-Target Expression Profile

(TCGA)

Tumor (n)
R (Pearson
Correlation)

p-Value

hsa-mir-181a-2
(MIRT256742 [miRNA, hsa-miR-181a-5p :: HIGD2A,

target gene])

39|
AACAUUCAACGCUGUCGGUGAGU

|61

KICH (25) 0.346 0.05
PRAD (50) −0.239 0.05

hsa-mir-181b-1
(MIRT256743 [miRNA, hsa-miR-181b-5p :: HIGD2A,

target gene])

36|
AACAUUCAUUGCUGUCGGUGGGU

|58

HNSC (42) −0.409 3.6 × 10−3

BRCA (84) −0.258 8.9 × 10−3

KICH (25) 0.374 0.03
LUSC (38) −0.276 0.05
KIRP (32) 0.296 0.05

hsa-mir-181c
(MIRT256744 [miRNA, hsa-miR-181c-5p :: HIGD2A,

target gene])

27|
AACAUUCAACCUGUCGGUGAGU

|48

BRCA (84) −0.312 1.9 × 10−3

LIHC (49) 0.283 0.02
CHOL (9) 0.642 0.03
LUSC (38) −0.302 0.03
KICH (25) 0.346 0.05

hsa-miR-181d
(MIRT256746 [miRNA, hsa-miR-181d-5p :: HIGD2A,

target gene])

36|
AACAUUCAUUGUUGUCGGUGGGU

|58

BRCA (84) −0.379 1.9 × 10−4

LUSC (38) −0.389 7.9 × 10−3

LIHC (49) 0.236 0.05

3.3. Study of the Datasets of HIGD2A Expression in Diffuse Large B-cell Lymphoma by Profiling Arrays with
Gene Expression Omnibus

Diffuse large B-cell lymphoma (DLBCL) is hematologic cancer and accounts for 35% to 40%
of non-Hodgkin’s lymphomas, the most common malignant lymphoid disease in adults [42,43].
Several classification schemes have been proposed for DLBCL, one of which was the molecular
profiling of DLBCL revealing three subtypes: mitochondrial oxidative phosphorylation (OXPHOS),
B-cell receptor/proliferation, and host response [44]. Another more widely accepted classification
scheme was the cell-of-origin (COO), which presented two categories based on patterns of gene
expression reminiscent of germinal center B cell (GCB group) and activated B cell (ABC group) [45].
However, the different subtypes of DLBCL are associated with different pathogenic mechanisms
and outcomes [43]. OXPHOS-DLBCLs shows increased glutathione levels, enhanced mitochondrial
energy transduction, and greater incorporation of nutrient-derived carbons into the tricarboxylic acid
cycle [46]. The metabolic phenotypes of neoplastic lymphocytes, and adjacent stroma in DLBCL,
indicate an OXPHOS phenotype in neoplastic lymphocytes while stromal cells in DLBCL samples
display a glycolytic phenotype [47].

Bhalla et al. (2018) [18] studied the role of hypoxia in DLBCL using two human lymphoma cell
lines, HLY-1 and SUDHL2, which were cultured under conditions of hypoxia or normoxia. In this
study, a gene expression microarray analysis was employed to examine the global gene expression
differences under these conditions. In this dataset, we analyzed the HIGD2A expression in DLBCL
with GEO2R. Neither of the two cell lines displayed differential expression of the HIGD2A gene in
response to hypoxia (Figure 7A). Bhalla et al. (2018) [18] suggested that the growth of lymphoma cell
lines HLY-1 and SUDHL2 was resistant to hypoxic stress. Gómez-Abad et al., (2011) [19] also studied
the gene-expression profile in a series of non-Hodgkin lymphoma patients, Follicular Lymphoma (FL),
Marginal Zone Lymphoma_Type (MALT), Nodal Marginal Zone Lymphoma (NMZL), Diffuse Large B
Cell Lymphoma (DLBCL), Mantle Cell Lymphoma (MCL), Chronic Lymphocytic Leukemia (CLL) and
as controls, reactive tonsils, and lymph-node were used. In this dataset, we analyzed the HIGD2A
expression, and the DLBCL indicated a HIGD2A expression significantly higher than the reactive tonsils
(Figure 7B). The expression of HIGD2A in DLBCL is significantly higher than in NMZL (Figure 7B).
Likewise, Brune et al., (2008) [20] studied the origin and pathogenesis of lymphocyte-predominant
Hodgkin lymphoma, the analysis of differential gene expression in primary human lymphoma cells
of nodular lymphocyte-predominant Hodgkin lymphoma in comparison with primary lymphoma
cells of classical Hodgkin lymphoma cells and another B-non-Hodgkin lymphoma, including DLBCL.
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Furthermore, our dataset analysis reveals a significant higher HIGD2A expression in DLBCL concerning
all subsets of non- cancerous B lymphocytes isolated from blood or tonsils (naive B-cells, memory
B-cells, centrocytes, centroblasts, and plasma cells) (Figure 7C). Lastly, the analysis of the GSE117556
dataset from the retrospective analysis of the whole transcriptome data for 928 DLBCL patients [48]
proves no differences of HIGD2A expression between the molecular COO subtypes; GCB and ABC.

Figure 7. HIGD2A expression in DLBCL. (A) Dataset GSE104212, Role of hypoxia in Diffuse Large B-cell
Lymphoma. Two human lymphoma cell lines, HLY-1 and SUDHL2, were cultured under conditions
of hypoxia (n = 3) or normoxia (n = 3), hypoxia was induced at 1% oxygen in the presence of 5%
CO2 for 24 to 48 h [18], and gene expression microarray analysis employed to examine the global
gene expression differences under these conditions. (B) Dataset GSE32018, Gene-expression profile
in a series of non-Hodgkin lymphoma (NHL) patients. FL, Follicular Lymphoma (n = 23); MALT,
Marginal Zone Lymphoma_MALT type (n = 15); NMZL, Nodal Marginal Zone Lymphoma (n = 13);
DLBCL, Diffuse Large B Cell Lymphoma (n = 22); MCL, Mantle Cell Lymphoma (n = 24); CLL, Chronic
Lymphocytic Leukemia (n = 16); reactive tonsils (n = 6) and Lymph-node (n = 7) were used as controls.
(C) Dataset GSE12453, Origin and pathogenesis of lymphocyte-predominant Hodgkin lymphoma as
revealed by global gene expression analysis. cHL, classical Hodgkin lymphoma (n = 12); NLPHL,
nodular lymphocyte-predominant Hodgkin lymphoma (n = 5); TCRBL, T-cell rich B-cell lymphoma
(n = 4); FL, Follicular Lymphoma (n = 5); BL, Burkitt lymphoma (n = 5); DLBCL, Diffuse Large B Cell
Lymphoma (n = 11); N, Naive B-cells (n = 5); M, Memory B-cells (n = 5); CC, Centrocytes (n = 5); CB,
Centroblasts (n = 5); PC, Plasma cells (n = 5). * p < 0.05, *** p < 0.001.

The effect of HIGD2A high expression level on DLBCL patient survival illustrates a downward
trend of survival probability in patients (n = 11) with high expression in relation with patients (n = 36)
with low expression, p = 0.85 [49] (Figure 8). Other cancers with a high expression of HIGD2A present
a downward trend survival of patients, being significant for Liver hepatocellular carcinoma (LIHC)
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p = 0.046; Skin cutaneous melanoma (SKCM) p = 0.024; Uterine Corpus Endometrial Carcinoma
(UCEC) p ≤ 0.0001; and Uveal Melanoma (UVM) p = 0.0055 (Figure 8). Meanwhile, other cancers with
high expression of HIGD2A present an upward trend in the survival of patients, being significant for
Sarcoma (SARC) p = 0.0087 (Figure 8).

 
Figure 8. Effect of HIGD2A expression on cancer patient survival. The red lines represent a high
expression level of HIGD2A, and blue lines represent a low/medium expression level of HIGD2A.
(A) DLBCL p = 0.85; high expression (n = 11), Low/medium expression (n = 36). (B) LIHC (Liver
hepatocellular carcinoma) p = 0.046; high expression (n = 91), Low/medium expression (n = 274).
(C) SARC (Sarcoma) p = 0.0087; high expression (n = 65), Low/medium expression (n = 194). (D) SKCM
(Skin cutaneous melanoma) p = 0.024; high expression (n = 113), Low/medium expression (n = 346).
(E) UCEC (Uterine Corpus Endometrial Carcinoma) p ≤ 0.0001; high expression (n = 137), Low/medium
expression (n = 406). (F) UVM (Uveal Melanoma) p = 0.0055; high expression (n = 20), Low/medium
expression (n = 60).

3.4. Effect of Quercetin on the Expression of Higd2a in Mouse Bone Marrow, Liver and Spleen

Quercetin is a natural polyphenolic flavonoid, abundant in the human diet, which has several
properties: antioxidant, antihypertensive, antifibrotic, antidiabetic, anti-inflammatory, anticancer, and
antibacterial [50]. Quercetin has a cancer cell-specific anti-proliferation effect; quercetin has been
shown to prevent carcinogenesis in murine models. Quercetin induces anti-proliferation and arrests
the G2/M phase in U937 cells; this was associated with a decrease in the E2F1 level [51]. Quercetin
induced p21 CDK inhibitor with a related decrease of phosphorylation of pRb, which inhibits the
G1/S cell cycle progression by blocking E2F1 [52]. The transcription factor E2F1 is related to the cell
cycle. The inhibition of cell proliferation promotes E2F1 binding to the regulatory region of HIGD2A,
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thus setting a role for E2F-1 in the regulation of HIGD2A expression [8]. We wonder what would
happen with the expression of Higd2a in an animal model treated with quercetin, where the cell cycle
would present alterations due to quercetin. To this effect, different tissues involved in DLBCL were
used: bone marrow, spleen, and liver, from C57BL/6 mice, injected with quercetin (50 mg/kg) and
compared with control animals injected with the PBS/DMSO vehicle. The RT-qPCR technique analyzed
the expression of the Higd2a gene. The relative quantification of the Higd2a gene showed tissue
specific-differential expression, displaying higher expression in the bone marrow when compared with
spleen and liver (Figure 9A). This result may be related to differences in tissues’ proliferation rates.
The latter is supported by the findings of Li et al., (2014) [53] who researched the downregulation of
survival gene expression of an anti-cancerogenic treatment combined with quercetin. We wondered
whether quercetin treatment modulated Higd2a expression in relevant tissues for DLBCL. Quercetin
significantly increased the expression of Higd2a in spleen and bone marrow, while it decreased it in the
liver (Figure 9B–D). Finally, the modulation by quercetin of the expression of Higd2a in liver, spleen,
and bone marrow in adult mice might be related to the effect of quercetin on cellular proliferation.

Figure 9. Effect of quercetin on mice Higd2a gene expression. Male adult C57BL/6 mice (12 months of age)
were administered intraperitoneally daily (i.p.) with 50 mg/Kg quercetin (Cat # Q4951, Sigma-Aldrich)
(n = 9) or with vehicle (5 % DMSO and PBS) for control animals (n = 9), for 15 days. The Higd2a gene
expression was quantified by RT-qPCR with independent runs of the control spleen, control bone
marrow and control liver (A). Higd2a quantification by Real-Time Quantitative Reverse Transcription
Polymerase Chain Reaction (qRT-PCR) with independent runs of the spleen samples of control and
quercetin treated; spleen (B); bone marrow (C) and liver (D). Each bar chart represents the mean ±
SEM, analyzed by t-test (p < 0.05), followed by a Mann–Whitney test. * p < 0.05, *** p < 0.001.

4. Discussion

In this study, we report that the mitochondrial protein HIG2A might have a nuclear localization
signal (NLS) and a potential sumoylation motif (Figure 3). The above structural features support the
HIG2A nuclear localization, according to our observations made by confocal microscopy and detection
of HIG2A in nuclear fractions [8] (Figure 4). HIG2A protein might function as a regulator of respiratory
supercomplexes assemblies in response to hypoxia, cellular metabolism, and cell cycle [8]. HIG2A
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could function as a hypoxia sensor in respiratory supercomplexes to activate signaling pathways of
response to hypoxic stress.

This study focuses on the molecular biosystem analysis of genetic features of the HIGD2A gene in
cancer biology. We learned that the HIGD2A gene is not connected to cancer via mutation. However,
DNA methylation and mRNA expression in the HIGD2A gene showed significant alterations in diverse
cancer (Figure 5). Besides, four miRNAs for the HIGD2A gene have been reported as having an
influence on cancer development [39,41], summarized in Figure 6 and Table 2. For instance, HIGD2A
gene showed a significantly higher expression in Diffuse large B-cell lymphoma (DLBCL) (Figure 7).
Intriguingly, the HIGD2A high expression level on DLBCL patients exhibited a downward trend of
survival probability [49] (Figure 8). The correlation of HIGD2A high expression and poor patient
survival is significant for liver hepatocellular carcinoma; cutaneous skin melanoma; uterine corpus
endometrial carcinoma; and uveal melanoma (Figure 8).

In this study, we considerably evaluated the expression of the Higd2a gene in healthy bone
marrow-liver-spleen tissues of mice after quercetin (50 mg/kg) treatment. The difference in the
expression of the Higd2a gene in the bone marrow, liver, and spleen may be related to tissues’
proliferation rates (Figure 9). Regardless of liver high metabolic rate, the liver is a quiescent organ
(Phase G0 of the cell cycle) with a low rate of cellular proliferation with only 0.0012 to 0.01% of
hepatocytes undergoing mitosis [54]. In contrast, the bone marrow is a tissue with a high rate of cellular
proliferation of hematopoietic stem cells (HSCs) [55]. Bone marrow presents hypoxic niches [56]
that might influence the expression of the Higd2a gene. Besides, the generation of red blood cells is
stimulated when the blood oxygen levels decay [57].

Recently, a particular type of DLBCL called "bone marrow-liver-spleen" [58,59], which mainly
deteriorates those tissues, [60] has been identified. The lymphoid tissues involved in DLBCL display
low oxygen levels; bone marrow is hypoxic (pO2 1.3%) with extravascular oxygen tension ranging
between pO2 0.6–4.2% [56], spleen also shows a hypoxic environment (pO2 0.5–4.5%) [61]. Meanwhile,
the liver presents a higher pO2 of 3–12% [62]. Currently, the importance of hypoxia in this lymphoma
has come into play. Hypoxia-Inducible Factor-1 alpha (HIF1α) is stabilized under hypoxic stress
in DLBCL cell lines leading to global translational repression that is coupled with a decrease in
mitochondrial function [18].

In most growing solid tumors, the vascular aspect is limiting and contains regions that experience
hypoxia producing metabolic changes that support energy generation, anabolic processes, and the
maintenance of redox potential, thus allowing cancer cells to survive and proliferate in a hostile tumor
microenvironment [63,64]. In hypoxia, mitochondria work as an oxygen sensor to regulate cellular
energetics, reactive oxygen species, and cell death [65].

In this work, we observed that quercetin modulated the expression of the Higd2a gene. In spleen
and bone marrow, the expression was increased significantly, while in the liver, it decreased significantly
(Figure 9). Modulation of Higd2a expression might be related to the effects of quercetin on cellular
proliferation in promoting healthy bone marrow mesenchymal stem cell (BMSC) proliferation [66,67].
BMSCs cultured and treated with quercetin (0.1–5 μM and 1–10 μM for the isolation of mouse and
rat tissues, respectively) significantly stimulated cells [66,67]. On the other hand, quercetin could
have antiproliferative effects [68–71]. Quercetin at 2 μM shows antiproliferative activity against acute
lymphoid leukemia and acute myeloid leukemia [70]. We previously reported that quercetin treatment
also affected erythropoiesis. Immature erythroid populations showed a significant increase in the
number of cells, while the iron-dependent cell populations of erythropoiesis for heme and hemoglobin
biosynthesis significantly decreased in quercetin-treated mice [25].

Interestingly, quercetin at 50 μM has an antiproliferative effect on rat splenocytes. These cells have
also shown a decrease in cell viability and apoptosis induction [71]. Moreover, human mesenchymal
stem cell (MSC), isolated from bone marrow and cultured in the presence of two quercetin concentrations
(0.1 and 10 μM), showed that quercetin (10 μM) inhibited cell proliferation of undifferentiated MSC [68].
Furthermore, primary rat hepatic stellate cells (HSCs) and Human LO2 hepatocytes were cultured and
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treated with quercetin 0.5–120 μM. Quercetin at 20 μM resulted in a significant inhibitory effect of HSC
proliferation, and quercetin at concentrations higher than 80μM significantly inhibited the proliferation
of LO2 cells [69]. Besides, quercetin (1–10 μM) exerted inhibition of human breast carcinoma cells
proliferation by cell cycle arrest in the G1 phase product of the induction of p21 and a decrease of
phosphorylation of the retinoblastoma tumor suppressor protein (Rb) [52] (Figure 10). Remarkably,
quercetin at 10 μM did not affect the proliferation of MCF-10A cells, which have the characteristics of
normal breast epithelium [52]. All the above indicates that quercetin had selective inhibitory effects
on cell proliferation at a specific dose range and suggests that quercetin has a cancer cell-specific
anti-proliferation effect.

Figure 10. Quercetin can inhibit the progression of the cell cycle in cancer cells. Quercetin induces
the arrest of the cell cycle in the G0/G1 phase; Low doses of Quercetin, induces slight damage in
the DNA causing the activation Chk2, a primary transcriptional regulator of p21. The p21 protein
is a kinase-dependent cyclin inhibitor (CDK), p21 binds to the cyclin/CDK complex in the G1 phase,
causing the decrease in the phosphorylation of the retinoblastoma protein (pRb). When pRb is in
its hypophosphorylated state, it is bound to the transcription factor E2F1, inhibiting the cell cycle
progression in G1 / S, due to the capture of E2F1 by pRb. The transcription factor E2F1 is involved in
the regulation of HIGD2A gene expression. Quercetin decreases the expression of the cyclin B1 protein
by arresting the cell cycle progression in the G2/M phase; Quercetin inhibits the recruitment of the
transcription factor NF-Y to the promoter region of the cyclin B1 gene, decreasing its transcriptional
expression. Cyclin B1 is an essential component for the function of CDK1 and the progression of the
cell cycle in the G2/M phase.

The transcription factor E2F1 is involved in the regulation of HIGD2A gene expression [8]
(Figure 10). E2F1 plays a role in energy homeostasis, acting as a metabolic switch from oxidative
to glycolytic metabolism under stressful conditions [9,10]. Roscovitine is an inhibitor of CDK that
suppresses the proliferation of mammalian cells lines, and roscovitine induced a significant increase in
HIGD2A gene expression in the human embryonic kidney HEK293 cell line. However, in a mouse
myoblast C2C12 cell line, the treatment with Caffeic acid phenethyl ester and Flavopiridol, both
antiproliferative agents, decreased HIGD2A gene expression [8]. While inhibition of cell proliferation
in HEK293 was associated with increased expression of HIGD2A, in C2C12 it was associated with
HIGD2A decreased expression. Therefore, HIGD2A expression is not an indicator of cell proliferation.

5. Conclusions

DNA methylation and mRNA expression of HIGD2A gene present significant alterations in several
types of cancer.
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Four miRNAs for HIGD2A gene show significant gene expression profile related to neoplasms,
leukemia, carcinoma, and lymphoma.

HIGD2A gene expression is upregulated in DLBCL.
HIGD2A gene expression was higher in DLBLC than in Nodal Marginal Zone Lymphoma (NMZL).

Although this is not specific for DLBLC, it is a more generalized aspect of cancer cells.
The effect of HIGD2A high expression level on DLBCL shows a downward trend of survival

probability in patients.
The correlation of HIGD2A high expression and poor patient survival is significant for liver

hepatocellular carcinoma, skin cutaneous melanoma, uterine corpus endometrial carcinoma, and
uveal melanoma.

Quercetin induced the expression of Higd2a gene in bone marrow and spleen of healthy mice,
while it was reduced in the liver.

It is worth further exploring the role of HIG2A in cancer biology.
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Abstract: One of the most common and well studied post-transcription modifications in RNAs is
N6-methyladenosine (m6A) which has been involved with a wide range of biological processes.
Over the past decades, N6-methyladenosine produced some positive consequences through the
high-throughput laboratory techniques but still, these lab processes are time consuming and costly.
Diverse computational methods have been proposed to identify m6A sites accurately. In this paper,
we proposed a computational model named iMethyl-deep to identify m6A Saccharomyces Cerevisiae
on two benchmark datasets M6A2614 and M6A6540 by using single nucleotide resolution to convert
RNA sequence into a high quality feature representation. The iMethyl-deep obtained 89.19% and
87.44% of accuracy on M6A2614 and M6A6540 respectively which show that our proposed method
outperforms the state-of-the-art predictors, at least 8.44%, 8.96%, 8.69% and 0.173 on M6A2614 and
15.47%, 28.52%, 25.54 and 0.5 on M6A6540 higher in terms of four metrics Sp, Sn, ACC and MCC
respectively. Meanwhile, M6A6540 dataset never used to train a model.

Keywords: RNA N6-methyladenosine site; yeast genome; methylation; computational biology;
deep learning; bioinformatics

1. Introduction

Presently, many possibilities of methylation as an additional post-transcriptional modification
of RNA have been found in sequence RNAs particularly mRNA [1]. The first internal of the mRNA
modification discovery is N6-methyladenosine (m6A) modification which plays a fundamental
regulatory role in different biological processes, such as brain development abnormalities [2],
mRNA stability and splicing [3], RNA localization and degradation [4] and microRNA biogenesis [5].
It was reported that m6A modification associated with lots of diseases such as thyroid tumor [6],
prostate cancer [7], breast cancer [8–10], pancreatic cancer [11,12], leukemia [13] and etc. Undoubtedly,
the identification of m6A sites would be a great benefit for cell biology and disease mechanism research.

The high-throughput laboratory techniques such as two-dimensional thin layer
chromatography [14], high performance liquid chromatography [15] and next-generation sequencing
techniques (e.g., m6A-seq [16] and MeRIP-Seq [2]) have been developed to identify m6A sites but
all of these are time consuming and costly. Because of these restrictions of experimental methods,
finding an accurate and fast computational method for m6A sites identification is a significant task.

To date, some computational methods [17–19] have been proposed to build a predictive model
for detecting transcriptome and m6A sites in different species of RNAs such as Saccharomyces cerevisiae,
Homo sapiens, Mus musculus and Arabidopsis thaliana. S. cerevisiae is one of the most widely utilized
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organisms in biotechnology over the globe. The first computational method was proposed by
Schwartz et al., for identifying of m6A sites [20], where they used machine learning technique logistic
regression and inputted handcrafted features.

Chen et al., developed two sequence based predictors for the detection of m6A sites in S. cerevisiae
called iRNA-Methyl [17] and RAM-ESVM [18] by using the support vector machine through
pseudo nucleotide composition and pseudo dinucleotide composition respectively. iRNA-Methyl
and RAM-ESVM have an ability to predict with the accuracy of 65.59% and 78.35% respectively.
Xing et al., also contributed to improve the efficiency for the identification of m6A sites by
introduced RAM-NPPS [19] model in which they used position-specific condition propensity as
feature representation by using support vector machine. Their contribution increased the accuracy
of 79.59%. Last but not least, another model was built by the Leyi et al., called DeepM6APred [21]
with the handcrafted features by using different machine learning and neural network techniques.
Until now DeepM6APred is competing all the predictors by the accuracy of 80.50%. All of these
methods were trained and tested by using Chen et al. dataset [17]. They used handcrafted features for
the feature representation and machine learning algorithms for constructing the models. For the fair
assessment of the performance, each model used 10 fold and jackknife cross-validation.

In this study, we aimed to construct a deep learning model on M6A2614 and M6A6540 datasets
which were based on the pioneering work of Chen et al. [17] and Xiaolei Zhu et al. [20] respectively.
The proposed predictor which is called iMethyl-deep has a novel and powerful method to identify
m6A S. Cerevisiae sites by using single nucleotide resolution to convert RNA sequence into high-quality
feature representation in the robust deep learning technique convolution neural network (CNN).
It extracts the important features automatically from the inputted RNA samples. This idea purely
implemented for multiple extents of features for which deep learning is more robust. The proposed
model outperforms in comparison with the state-of-the-art methods and successfully achieves ACC of
89.19% and 87.44% on M6A2614 and M6A6540 benchmark datasets respectively.

2. Materials and Methods

2.1. Benchmark Datasets

Two benchmark datasets for the S. cerevisiae genome were used in this work. The first dataset,
named M6A2614, was proposed by Schwartz et al. [22], contains 1307 positive RNA sequences as
methylated sites and 1307 negative RNA sequences as non-methylated sites. Several state-of-the-art
computational identifiers used the M6A2614 dataset for their predictors [17–19,21]. The second
dataset is called as M6A6540 dataset which was introduced by Xiaolei Zhu et al.’s [20] contains 3270
positive RNA sequences regarded as methylated sites and 3270 negative RNA sequences regarded as
non-methylated sites, all steps for preparing the dataset was mentioned in their work. Both M6A2614
and M6A6540 benchmark datasets are mutually exclusive and to avoid the redundancy both datasets
used CD-HIT-EST software [23]. The length of each sequence is 51 bp in both benchmark datasets.
A depiction of the datasets is shown in Table 1.

Table 1. Benchmark datasets demonstration.

Datasets Positive Negative Total

M6A2614 1307 1307 2614

M6A6540 3270 3270 6540

As per the literature, the datasets are divided into training and testing set. The training dataset is
characteristically used for the learning of the model, whereas the testing dataset is worked to evaluate
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the model. The most effective way for testing is the k-fold cross-validation test [24], which we got the
combinations of different independent test datasets.

2.2. Formulation and Representation of RNA Samples

It is important to make data in the form of deep learning recognition because all algorithms
take input as a vector or discrete, so we formulated RNA sequences into vector form. It also needs
to consider the loss of pattern sequence information while converting into vector form, mostly it
happens in the discrete model. There are many introduced techniques to avoid it, for example,
PseAAC [25], which is widely used in proteomics. There is some vigorous software regarding PseAAC
known as PseAAC-Builder [26], Propy [27], and PseAAC-General [28] was developed as an open
source. Another approach, Pseudo K-tuple nucleotide composition (PseKNC), was introduced to provoke
different feature vectors for RNA and DNA sequences, which used widely in many research works [29–32].
The sequence of RNA in the benchmark datasets is represented as R = {N1, N2, N3, N4 . . . , Ni},
where N1 denoted as the first single nucleotide in a sequence, N2 the second nucleotide and so on
until the end of the sequence. In each sequence, there are four nucleotides A, C, G, U represented as a
string form with different combinations like AGCUAUAG . . . UGACAU.

We started with a suitable format of deep learning to convert an RNA sequence into vector form
for the formulation of the sequence instead of manually crafted features such as chemical properties
and nucleotide frequency. One-hot encoding is used for this purpose, which maps the categorical
variables into a binary representation. The four unique nucleotides A, C, G, and U mapped as (1, 0, 0,
0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) respectively. Several deep learning models used one-hot encoding
for the representation of the sequences such as [33,34]. Each sequence in both datasets is 51 bp long
and after one-hot encoding, it transformed into a matrix. The matrix is represented as 4 columns and
51 rows, each column signifies an RNA base of sequence and the rows signify mapped representations
of unique nucleotides.

3. The Proposed Model

We presented a model based on a CNN instead of handcrafted features extraction models as a
classifier such as support-vector machine (SVM) [17,35–37]. CNN has been used in deep learning
techniques and the area of bioinformatics extensively [33,34,38–40] and also in other fields [41,42].
It has the ability to gather all the worthwhile features automatically from the RNA m6A sequences
during the training process. The input of the iMethyl-deep is one-hot encoded RNA sequences,
each one has a length of 51 bp and four channels. CNN is processed with various layers and functions
such as the convolution layer, pooling layer, activation function, and dropout to get exceptional
results. We implemented a grid search algorithm while the learning process of the model with different
hyper-parameters tuning. The fine-tuning parameters consist of convolution layers, filters, filter size,
pool-size, stride length, and dropout values. The range of hyper-parameters is illustrated in Table 2.

The best resultant optimized parameters were chosen while considering the minimum validation
loss to evade the overfitting and underfitting. In the proposed model, we implemented two 1-D
(one-dimensional) convolution layers, which are represented as Conv1D. Each layer of Conv1D has
16 filters, with a filter-size of five. However, the convolution layer has the most pivot functionality
on CNN. It extracts the features from the RNA positive and negative samples of m6A sites. We used
the L2 regularization and bias regularization as a parameter in the convolution layer to avoid the
overfitting problem with the value of 0.001 for both Conv1D. The exponential linear unit (ELU) is used
as an activation function. A group normalization layer (GN) was used after both convolution layers,
which helped to decrease the outcomes of convolution layers produced by each filter of Conv1D.
Group normalization distributes the outcomes of convolution layers into groups and performs the
normalization in each group. The group size is set as four. After each GN layer, a max-pooling layer
was implemented to reduce the redundancy of the features from preceding layers. We set the pool-size
of 4 and stride of two in both layers. The dropout layer was used after the second max-pooling layer
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with a rate of 0.35, which prevents overfitting and enhances the authenticity of the model. The dropout
layer works as a strainer to discard some intermediary features while the training period, by arbitrarily
shutting down some neurons and setting zero value for them. We used flatten function to unstack
all multidimensional tensors of previous layers into a 1D tensor and fed to the fully connected (FC)
layer. FC layer has 32 hidden units and also uses the L2 regularization parameter for the weights and
bias with the value of 0.0001. We used the ELU activation function for the FC layer. In the end, a fully
connected layer was implemented with the sigmoid function for binary classification. Sigmoid function
squeezes the output values between 0 and 1.

Table 2. Range of Hyper-parameters.

Parameters Range

Convolution layers [1, 2, 3, 4]

Filters in convolution Layer [6, 8, 16, 24, 32, 44, 64]

Filter size [2, 4, 5, 7, 8, 10, 13]

Pool-size in Maxpooling [2, 4]

Stride length in Maxpooling [2, 4]

Dropout values [0.3, 0.35, 0.4, 0.45, 0.5]

The architecture of the proposed model is described in Table 3, where Conv1D (f, k, s) is a
convolution layer as one-dimensional, parameter f is the number of filters, k is the kernel-size, and s
represents the stride. ELU signifies as an activation function. The GroupNormalization (g) is a
normalization layer, where g is a number of groups. The Maxpooling1D (l, r) is a max-pooling layer with
two parameters, l is used as pool-size and r for the stride. The Dropout (d) denotes as a dropout layer
with the value of d and the Dense (e) is a FC layer with the number of e nodes. At the last, the Sigmoid ()
function as an activation function makes it possible that the range of output should be between 0 and 1.
Figure 1 demonstrates the comprehensive graphical architecture of the proposed model.

Figure 1. A graphical illustration of iMethyl-deep. Inputted RNA sequence converted into one-hot
encoded, then fed into the Convolution Neural Network (CNN) layers for training the datasets.
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Table 3. The architecture of the proposed model.

Layer Output Shape

Input (51, 4)

Conv1D(16, 5, 1) (47, 16)

ELU (47, 16)

GroupNormalization(4) (47, 16)

MaxPool1D (4, 2) (22, 16)

Conv1D(16, 5, 1) (18,16)

ELU (18, 16)

GroupNormalization(4) (18, 16)

MaxPool1D(4,2) (8, 16)

Flatten (128)

Dropout(0.35) (128)

Dense(32) (32)

Dense(1) 1

Sigmoid 1

In iMethyl-deep, we used stochastic gradient descent (SGD) optimizer with the momentum of 0.95
and binary cross-entropy as a loss function [43], Learning rate for SGD is set as 0.003. The epoch and
batch sizes are set to 100 and 32 respectively. The callbacks function is used to handle the checkpoint
for saving the models and their best weights which have high accuracy. The early stopping is also
used to stop the prediction accuracy when the validation stops improving, the value for the patience
level is set to 30. The iMethyl-deep is implemented on the Keras framework [44].

4. Performance Evaluation

To calculate the performance of the prediction system, we used 10 folds cross-validation. Choosing
a precise cross-validation method is a foremost part of investigating a prediction achievement.
The k-fold cross validation method is a resampling method that provides a more accurate estimate
of algorithm performance. It does this by first shuffling whole data and splitting them into k groups.
Then the algorithm is trained and evaluated k times and the performance summarized by taking
the mean performance score. Each unique group holds out as eight folds for training, one fold for
validation, and the last one for testing. Each model was fitted on the training set and will be saved
which one gives the highest accuracy on the validation fold. The performance of the model was
evaluated on test fold, keeping the evaluated scores and abandoning the model. The Average scores
of 10 repetitions were calculated and used as the performance evaluation of the proposed model.
Four standard evaluation metrics were used in many research publication [45,46], which consist of
overall accuracy (ACC), Mathew’s correlation coefficient (MCC), specificity (Sp), and sensitivity (Sn).
The following are the mathematical formulation of four metrics [47–50].

ACC =
TP + TN

TP + TN + FP + FN
(1)
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SN =
TP

TP + FN
(2)

SP =
TN

TN + FP
(3)

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(4)

where TP indicates a true positive which means a positive number of sequences predicted correctly and
TN indicates as a true negative which can be described as a negative number of sequences predicted
correctly. Meanwhile, FP designates as false positive which can be explained as a negative number
of sequences identified falsely as positive and FN represents a false negative which means a positive
number of sequences predicted falsely as negative. The receiver operating characteristics curve (ROC)
and area under the ROC curve (AUC) are also used to evaluate the performance of the proposed model.

5. Results and Discussion

We evaluated the identification performance of our model, iMethyl-deep, on two RNA m6A
benchmark datasets M6A2146 [22] and M6A6540 [20] for the S. cerevisiae genome. The results of the
proposed model on the benchmark datasets show better performance in terms of all evaluation metrics.
We used the same proposed model for both datasets.

5.1. The Performance of iMethyl-Deep on M6A2146 Benchmark Dataset

After validating the effectiveness of the proposed method, by comparing its performance with four
state-of-the-art methods iRNA-Methyl [17], RAM-ESVM [18], RAM-NPPS [19], and DeepM6APred [21]
which used the same benchmark dataset, we obtained 89.92%, 88.46%, 89.19% and 0.783 for Sp, Sn,
ACC and MCC respectively. Comparing with Deepm6Apred method, which is the best among the
other existing methods, the performance of the proposed predictor is 8.96%, 8.44%, 8.69% and 0.173
higher in terms of four metrics respectively. We observed the proposed method is capable to distinguish
m6A sites from non-m6A sites more accurately as compared to the other state-of-the-art predictors.
Additionally, the less false positives are achieved by the highest Sp, which we reached. Table 4 shows
the detail results of the iMethyl-deep model and Figure 2 represents the graphical illustration of results.
We achieved 0.931 of AUC to prove the successful performance of the iMethyl-deep as depicted in
Figure 3. The visualization representation of the confusion matrix is also shown in Figure 4.

Table 4. Performance comparison of iMethyl-deep with other four state-of-the-art methods on
M6A2614 dataset. Overall accuracy (ACC), Mathew’s correlation coefficient (MCC), specificity (Sp),
and sensitivity (Sn).

Model Sp (%) Sn (%) ACC (%) MCC

iRNA-Methyl 60.63 70.55 65.59 0.29

RAM-ESVM 77.78 78.93 78.35 0.57

RAM-NPPS 80.87 78.42 79.65 0.59

DeepM6APred 81.48 79.50 80.50 0.61

iMethyl-deep 89.92 88.46 89.19 0.78
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Figure 2. Performance evaluation illustration of iMethyl-deep on M6A2146 dataset.

Figure 3. The receiver operating characteristics (ROC) curve of iMethyl-deep on M6A2614 dataset.

Figure 4. Graphical illustration of confusion matrix of iMethyl-deep on M6A2614 dataset.
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5.2. The Performance of iMethyl-Deep on M6A6540 Benchmark Dataset

In this section, the results of iMethyl-deep on benchmark dataset M6A6540 which were introduced
by Zhu et al. [20] are shown. We should mentioned the DeepM6APred was just trained and tested
on M6A2614 and not considered on M6A6540 dataset. Meanwhile, The M6A6540 never used to train
in the other mentioned models. As shown in Table 5 and Figure 5, we obtained 86.54% of specificity,
88.34% of sensitivity, 87.44% of accuracy, and 0.749 of MCC. It is clear that our proposed model
can outperform all four metrics in comparison with three state-of-the-art model RAM-NPPS [19],
iRNA-Methyl [17] and RAM-ESVM [18] which had the maximum value for Sp, Sn, ACC and MCC
repectively. Moreover, same M6A2146 dataset we reached to 0.931 of AUC for M6A6540 dataset.
The AUC curve and the visualization representation of the confusion matrix are depicted in Figures 6
and 7 respectively.

Table 5. The results of iMethyl-deep on benckmark M6A6540 dataset.

Model Sp (%) Sn (%) ACC (%) MCC

RAM-NPPS 71.07 34.59 52.83 0.06

iRNA-Methyl 61.68 59.82 60.75 0.22

RAM-ESVM 64.53 59.27 61.90 0.24

iMethyl-deep 86.54 88.34 87.44 0.74

Figure 5. Performance evaluation illustration of iMethyl-deep on M6A6540 dataset.

32



Genes 2020, 11, 529

Figure 6. The receiver operating characteristics (ROC) curve of iMethyl-deep on M6A6540 dataset.

Figure 7. Graphical illustration of confusion matrix of iMethyl-deep on M6A6540 dataset.

6. Conclusions

In this study, we proposed iMethyl-deep as a new computational predictor to identify
N6-methyladenosine sites from RNA sequences. Two different benchmark datasets M6A2146
and M6A6540 were compiled to evaluate the performance of the proposed model. We used a
one-hot encoding method to input RNA sequence and fed into a CNN. The simulated results
show that iMethyl-deep can significantly and robustly improve the performance of deep learning
to identify m6A sites. To access the effectiveness of the proposed predictor, we compared its
performance with four state-of-the-art models. It predicts all evaluation metrics Sp, Sn, ACC, MCC
and AUC better than the others. Potentially, the method proposed in this paper can be extended
to be effective in brain development abnormalities, mRNA stability and splicing. In the future,
we will further study in other kinds of modifications. The datasets and model is available at
https://github.com/abdul-bioinfo/iMethyl-deep.
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Abstract: A number of different feature selection and classification techniques have been proposed
in literature including parameter-free and parameter-based algorithms. The former are quick
but may result in local maxima while the latter use dataset-specific parameter-tuning for higher
accuracy. However, higher accuracy may not necessarily mean higher reliability of the model. Thus,
generalized optimization is still a challenge open for further research. This paper presents a warzone
inspired “infiltration tactics” based optimization algorithm (ITO)—not to be confused with the ITO
algorithm based on the Itõ Process in the field of Stochastic calculus. The proposed ITO algorithm
combines parameter-free and parameter-based classifiers to produce a high-accuracy-high-reliability
(HAHR) binary classifier. The algorithm produces results in two phases: (i) Lightweight Infantry
Group (LIG) converges quickly to find non-local maxima and produces comparable results (i.e., 70 to
88% accuracy) (ii) Followup Team (FT) uses advanced tuning to enhance the baseline performance
(i.e., 75 to 99%). Every soldier of the ITO army is a base model with its own independently chosen
Subset selection method, pre-processing, and validation methods and classifier. The successful
soldiers are combined through heterogeneous ensembles for optimal results. The proposed approach
addresses a data scarcity problem, is flexible to the choice of heterogeneous base classifiers, and is
able to produce HAHR models comparable to the established MAQC-II results.

Keywords: infiltration tactics optimization algorithm; classification; clustering; cancer; microarray;
ensembles; machine learning; infiltration; computational intelligence

1. Introduction

Microarray experiments produce a huge amount of gene-expression data from a single sample.
The ratio of number of genes (features) to the number of patients (samples) is very skewed which
results in the well-known curse-of-dimensionality problem [1]. This further imposes two self-inflicting
limitations on any proposed model: (i) processing all the data is not always feasible; and (ii) processing
only a subset of data may result in loss of information, overfitting, and local maxima. These two
limitations directly impact the accuracy and reliability of any machine learning model. To address the
curse-of-dimensionality, a lot of research has been done in the past to identify the most impactful feature
subset [2–5]. Both evolutionary as well as statistical methods have been proposed in the literature
for this purpose. Feature Subset Selection (FSS) techniques like Minimum Redundancy Maximum
Relevance (mRMR), Joint Mutual Information (JMI), and Joint Mutual Information Maximization
(JMIM) are amongst the most prominent statistical methods [6–8] while advanced approaches
like Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Deep Neural Networks (DNN),
Transfer Learning, mining techniques, etc. have also been shown in the literature to produce highly
accurate results [9–11]. The microarray data classification process is typically carried out in two
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major phases: (i) Feature Selection: this phase focuses on selecting the most relevant features from
otherwise a huge dataset to reduce noise, computational overheads, and overfitting. (ii) Classifier
Training: this phase builds a model from the selected features to classify a given microarray sample
accurately and reliably [12]. Advanced techniques like Deep Neural Network (DNN), Convolutional
Neural Network (CNN), Transfer learning, Image processing, ANT Miner, and other exploratory
approaches have been proposed in the literature [13–21]. While the advanced approaches for both FSS
and Classifier training are capable of producing high accuracies, they need to be tuned according to the
underlying dataset in a controlled setup to achieve these good results. However, in practice, there are
a number of factors that can impact the accuracy and reliability of a model. These include the different
cancer types that need analysis of different tissues, the differences in microarray toolkits/hardware
e.g., data ranges and durabilities, experimental setups, number of samples, number of features used,
type of preprocessing methods applied, validation method used, etc. Due to these variations and
No Free Lunch (NFL) theorem, many of the existing methods can not be generalized across datasets.
Thus, it is still a challenging problem for researchers to develop a generalized approach that can
enhance both the reliability and accuracy of the model across datasets and variations. The algorithm
proposed in this paper puts these variations at an advantage by using ensembles for the classification
of microarray gene expression data. The Infiltration Tactics Optimization (ITO) algorithm proposed
in this paper is inspired by classic war-zone tactics [22]—not to be confused with the ITO algorithm
based on the Itõ Process in the field of Stochastic calculus [23,24]. It is comprised of four phases: Find,
Fix, Flank/Fight, and Finish i.e., the so called Four F’s of the basic war strategy. A small light-infantry
group (LIG) penetrates into the enemy areas to setup a quick command and control center while the
follow-up troops (FT) launch a detailed offensive with heavier and sophisticated weapons to gain finer
control and victory over the enemy. Both the LIG and FT members independently identify enemy
weak-points and choose their own routes, targets, movements, and methods of attack. The “successful”
LIG members are then combined to form a heterogeneous group that can become operational in a
short time-interval. This LIG group is joined by the “successful” survivors from the FT to gain full
control. The following text describes the four Fs (i.e., Find, Fix, Flank/Fight and Finish stages):

1. Find: In this stage, the LIG members analyze the field position to make a strategy and find the
most appropriate target to attack.

2. Fix: In this stage, the LIG members use different light-weight weapons to infiltrate into
enemy areas.

3. Flank/Fight: In this stage, LIG members keep the enemy pinned down so they could not
reorganize their forces while the FT performs a detailed offensive in the area independently.

4. Finish: In this stage, the FT members apply heavier weapons to cleanup the area and gain full
control over the enemy.

The proposed ITO algorithm is inspired by the Super Learner algorithm [25] but works in
two phases to build the overall model. In the first phase, ITO builds a heterogeneous ensemble of
parameter-free classifiers which can produce comparable results in a very short time-span. This sets a
bar for the minimum accuracy and reliability of the overall ensemble which is further refined when
fully tuned parameterized classifiers are available. The final model is guaranteed to meet this bar for
accuracy and reliability at the minimum. Parameter tuning is generally very time-consuming and
mostly it produces the most optimal results.

The microarray technology produces thousands of gene expressions in a single experiment.
However, the number of samples/patients is much smaller (upto few hundreds) as compared to
the number of features (several thousands). The small number of samples (training data) are not
sufficient to build an efficient model from the available data. This is known as data scarcity in the field
of machine learning. The ITO algorithm overcomes the data scarcity problem by building multiple
heterogeneous base classifiers. ITO does not restrict the use of any base classifiers as LIG and/or
FT members. It is possible to use the most performant classifiers from literature with this algorithm.
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The LIG and FT use exploration to learn about the different configurations and gain knowledge about
rewards while the ensembling phase exploits the best performers from both LIG and FT to build an
optimal model. The ITO algorithm achieves generalization and reliability by addressing data scarcity
problems and producing HAHR models.

The rest of the paper is organized as follows; Section 2 provides a background of microarray-based
cancer classification domain and literature review, Section 3 presents the proposed algorithm, Section 4
describes the experimental setup. Section 5 discusses the results and analysis and Section 9 presents
the conclusions and future directions.

2. Background and Literature Review

Microarray gene expression data processing is a multidisciplinary area of computer science
spanning graph analysis, machine learning, clustering, and classification [13]. Microarray technology
allows measuring several thousand gene expressions in a single experiment. Gene expression levels
help determine correlated genes and disease progression, which in turn helps in early diagnosis and
prognosis of different types of cancers.

2.1. Phases of Microarray Gene Expression Data

2.1.1. Phase 1: Pre-Processing

First of all, the gene expression data are discretized for noise reduction, missing values are
imputed, and the data are normalized [13].

2.1.2. Phase 2: Feature Subset Selection

Feature subset selection (FSS) helps in reducing the width of dataset which is skewed due to a
very high features-to-samples ratio. A feature subset is selected such as to reduce feature redundancy
without loss of information. There are generally three approaches for feature subset selection:
i.e., filtering, wrapper based, or hybrid. Filtering approaches include minimum Redundancy and
Maximum Relevance (mRMR), Mutual Information (MI), Joint Mutual Information (JMI), Joint Mutual
Information Maximization (JMIM), etc. [4,5,8]. They perform feature selection without any information
about the downstream classifier to be used. Thus, the feature selection is independent of classification.
Wrapper-based approaches result in higher accuracy but are computationally expensive because they
use an embedded classifier to gauge their performance [4,5]. A hybrid approach makes use of a
combination of both filtering and wrappers [4,5], but the classifier used during feature selection may
be different from the downstream classifier used for actual classification.

2.1.3. Phase 3: Learning and Classification

In this phase, generally supervised classifiers are used with a subset of feature to train the
model. Different techniques are used for two-class and multi-class classification. State of the art
includes advanced techniques like transfer-learning, deep learning, convolutional neural networks,
etc. or swarm optimization techniques like Ant Colony Optimization (ACO), Bat algorithm (BA), etc.
However, overfitting (due to few training samples) and no-free-lunch theorem (NFL) (due to variations
in underlying Microarray technology, cancer subtypes and different cancers resulting in different
expressive genes, etc.) still remain two major challenges for most of the machine learning based
techniques [9,26]. This research covers two-class problem only and uses ensemble of heterogeneous
base classifiers to overcome overfitting and data scarcity.
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2.2. Literature Review

2.2.1. Microarray Quality Control (MAQC)

MAQC was a series of studies to monitor and standardize the common practices for development
and validation of microarray based predictive models. The first phase of this project focused on
addressing inter and intra-platform inconsistencies of results produced by different alternatives and
methods. The aim was to setup guidelines for reproducible results in different setups using different
hardware [27–29]. MAQC-II was the second phase of this project which aimed to establish a baseline
for microarray gene expression data analysis practices. The purpose of establishing this baseline
was to assess the reliability of clinical and pre-clinical predictions made through different models.
For this purpose, 36 independent teams analyzed six microarray datasets with respect to 13 end points
indicative of lung or liver toxicity in rodents or of breast cancer, multiple myeloma or neuroblastoma in
humans. More than 30,000 different models were produced by these teams using different alternatives
of analysis methods. MAQC-II used Matthews Correlation Coefficient (MCC) as the primary metric to
evaluate the models [12]. MCC is used as a measure of quality for two-class classification. It ranges
between [−1, 1] interval with MCC = 1 representing perfect prediction, MCC = 0 representing random
predictions and MCC = −1 representing completely −ve correlation between the predictions and actual
classes. MCC works better than other measures such as F-Score for microarray data with unbalanced
class distribution [30]. The subsequent phase of MAQC (SEQC/MAQC-III) was focused on quality
control for RNA Sequencing technologies rather than Microarray technology [31]. The MAQC-II
established baseline results are thus taken up in this study to compare our results against using MCC
as a primary metric. However, very limited research have reported results in the form of MCC.

2.2.2. Feature Selection Algorithms

In 2005, Ding et al. proposed the famous minimum Redundancy and Maximum Relevance
(mRMR) technique which made it possible to identify most relevant genes that can be used to reduce
computational cost while maintaining high accuracy [6]. It uses mutual information with the target
classes to determine relevant of a feature and dissimilarity of a selected feature with the already
selected features. Since it computes both relevance and dependency independently, it is very likely
that it may miss out a feature that individually looks irrelevant but when used in combination with
other features may become significant i.e., it may miss out on interdependence of the features.

In 2014, Nguyen et al. analyzed the Mutual Information (MI) based approaches and contended
that most of them are greedy in nature, thus are prone to sub-optimal results. They proposed that the
performance can be improved by utilizing MI systematically to attain global optimization. They also
reviewed the Quadratic Programming Feature Selection (QPFS) in detail and pointed out several
discrepancies in QPFS regarding self-redundancy. They proposed spectral relaxation and semi-definite
programming to solve this global optimization problem for mutual information-based feature selection.
Their experiments show that spectral relaxation approach returns a solution identical to semi-definite
programming approach but at a much lesser cost [32]. In addition, the spectral relaxation reduced
the computation time to O(n2) equivalent to mRMR. They also demonstrated empirically that their
proposed method was much more scalable as compared to other methods in terms of computational
time needed and working memory requirements. However, the computational time for mRMR with
careful optimization was much better than their proposed global method.

In 2019, Potharaju et al. introduced a novel distributed feature selection method to remedy the
curse-of-dimensionality of microarray data [33]. Their technique is inspired by an academic method of
forming final year project groups. They used Symmetrical Uncertainty, Information Gain, and Entropy
to build multiple balanced feature clusters. Each cluster is used to train a multi-layer perceptrons
(MLP) and the most performant cluster is chosen for further processing. The MLP training and tuning
itself is a very time-consuming task. Training multiple such clusters makes it even more resource
hungry. However, the use of MLP makes it possible to stop the process prematurely and pick up the
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cluster with the highest accuracy and lowest root mean square for further processing. This approach
may not scale well for a very large number of features because of computational and working memory
requirements. It will further require a way to strike a balance between the cluster size and number of
clustered required for such large datasets.

2.2.3. Ensemble Based Approaches

In 2006, Wang et al. used Neuro-Fuzzy Ensemble (NFE) approach to utilize many inputs by
dividing them into small (not necessarily disjoint) subsets that were used as input to individual
Neuro-fuzzy units to learn a model. The outputs of these units were then used in an ensemble to jointly
estimate the class of a sample. This approach made the biological interpretation of the selected features
more sensible [34]. However, this approach requires encoding of prior knowledge from different
sources, interpretation of the complete ensemble is still very complex, and it does not suggest how
to balance between accuracy and use of existing knowledge for interpretability. These problems also
make it hard to scale.

In 2009, Chen et al. proposed and showed that Artificial Neural Network (ANN) Ensemble
with Sample Filtering is more accurate and stable than single neural network. This method also
outperformed Bagging, Filtering, SVM, and Back Propagation [35]. However, the homogeneous
ensemble of ANN requires a lot of computational time and resources to train each of the base ANN,
thus it is not scalable for datasets with a very large number of features.

In 2013, Bosio used biological knowledge e.g., gene activation from Gene Ontology databases and
statistical methods to generate meta-genes. Each meta-gene represented the common attributes of
the contributing genes, thus replacing a number of genes with a representative meta-gene that yields
better accuracy. He used Improved Sequential Floating Forward Selection (IFFS) and meta-genes
to consistently out perform other models from literature [36]. However, this approach is mostly
brute-force i.e., it needs to compute all pairwise correlations to generate meta genes which are also
treated as genes/features for further processing. Although the IFFS algorithm eventually generates
very small feature subset comprising of both meta-genes and raw genes where meta-genes represent
cluster/tree-let of genes; however, based on the iterative nature of IFFS algorithm at each step,
it chooses the best gene from amongst all genes and checks if adding increases the model performance;
if not, then it checks if any existing genes should be removed or replaced with some other genes to
make the feature subset the most optimal one. This makes the overall feature selection step very time
consuming. Thus, scaling this approach for larger datasets will be a challenge.

2.2.4. Heterogeneous Ensemble Classifiers

In 2008, Gashler et al. showed that a heterogeneous ensemble of different tree algorithms performs
better than homogeneous forest algorithms when the data contain noise or redundant attributes [37].
This is particularly suitable for microarray data which contains a huge number of features, some of
which could be a mere noise and other noise introduced during data digitization from the microarray
chip. They use Entropy reducing Decision Trees and a novel Mean Margin Decision Trees (MMDT)
to build the heterogeneous ensemble. Their work also showed that a small heterogeneous ensemble
performs better than relatively larger homogeneous ensemble of trees. They used a diverse datasets
comprising of many diseases, cars, wines, etc. to show how a heterogeneous ensemble can potentially
address the NFL constrains. However, their work does not include MAQC-II Datasets and hence is not
comparable with that benchmark.

In 2018, Yujue Wu proposed a Multi-label Super Leaner based on Heterogeneous ensembles to
improve the classification accuracy of multi-class Super Learner [38]. A multi-label classification is a
problem where each sample can represent more than one class labels simultaneously e.g., a picture
may be assigned sea and beach or sea and mountains simultaneously depending upon the objects it
contains. This work was not in the bio-informatics domain as such, but it was shown to outperform all
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other methods for music sentiment analysis, birds acoustics, and scenery datasets. Again, the diversity
of problems it addresses shows the potential of heterogeneous ensemble to overcome NFL constrains.

In 2019, Yu et al. proposed a novel method using medical imaging, advanced machine learning
algorithms, and Heterogeneous Ensembles to accurately predict diagnostically complex cases of cancer
patients. They also used this system to explain what imaging features make them difficult to diagnose
even with typical Computer-Aided Diagnosis (CAD) programs [39]. Their work takes lung images as
input, performs segmentation of the image, and extracts features from them. These features are used
to train the heterogeneous base classifiers and build an ensemble of trained classifiers. Their work
improved the overall prediction accuracy to 88.90% as opposed to the highest accuracy reported in
literature as 81.17%.

2.2.5. Bio-Inspired Algorithms

In 2011, a very detailed overview summarizing the overall research carried out in the literature
was compiled by Elloumi et al. covering the challenges, solutions, and future directions for Bio-Inspired
algorithms [40].

In 2014, Selvaraj et al. compiled a list of applications of modern bio-inspired algorithms. Some of
these algorithms have been applied to cancer detection already. These algorithms can be applied to
microarray gene expression data to resolve the complex optimization problems posed by this data [14].

In 2016, Mohapatra et al. used modified Cat Swarm Optimization algorithm for feature
selection along with Kernel Ridge Regression (KRR) for classification. They demonstrated that KRR
outperforms wavelet kernel ridge regression (WKRR) and radial basis kernel ridge regression (RKRR),
irrespective of the dataset used. Their technique performs relatively better on two-class datasets as
opposed to multi-class datasets [41].

2.2.6. Deep Learning Based Approaches

In 2013, Rasool et al. used Deep Learning based unsupervised feature learning technique and
microarray data to detect cancer. PCA was used for dimensionality reduction. PCA along with a
random subset of features (to ensure that nonlinear relations amongst the features are not completely
lost due to PCA) are fed to auto-encoders to learn the gene-expression profiles. These gene-expression
profiles are compared with healthy tissues’ profiles to detect the disease. This approach generalizes the
feature subsets across different cancer subtypes. Their proposed method combines data from different
tissues (cancer types and subtypes) to train the classifier for type-agnostic cancer detection. Thus,
addressing data scarcity problem as well [9]. However, they did not use MAQC-II datasets in their
study. They claim their approach to be scalable across cancer types and bigger datasets. However,
because of missing time complexity analysis, missing parameter details of DNN, and very high level
description of steps, this claim can not be validated.

In 2016, Chen et al. proposed a deep learning based model code-named D-GEX to infer the
gene expression-levels of correlated genes based on the “landmark” genes. The idea of landmark
genes suggests that carefully selected 1000 genes can help infer 80% of the genome-wide gene
expression levels [10]. They trained their system using Microarray Omnibus dataset (not used MAQC-II
datasets) This idea can be used as a pre-processing step to impute missing values for microarray data.
The proposed model in this paper was compared with Linear Regression based current model and
KNN based models and shown to outperform both of the. However, the interpretation of the learned
hidden layers was found to be extremely difficult due to the complex way DNNs work i.e., lots of
weights and nodes representing learned hidden structures from data. In addition, their implementation
used random splitting of genes into smaller clusters due to hardware limitations. In its current state,
this model is not scalable. However, as proposed in the paper, with the help of gene expression profiles,
related genes could be clustered together and dimensionality reduction could be applied at a cluster
level before processing them with DNN. This can greatly simplify the hidden structure that the DNN
needs to learn and hence reduce computational needs for DNN.
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In 2019, Liao et al. presented a novel Multi-task Deep Learning (MTDL) method that can reliably
predict rare cancer types by exploiting cross cancer gene-expression profiling [21]. They used different
datasets one for each type of cancer and common hidden layers that are extracted from these datasets
to train the model. The trained model’s learning is then transferred as additional input to the prediction
model. Their work showed significant improvement in correct diagnosis when there is inadequate
data available. The performance improvements were evident in all but the Leukemia database where
multi-class data are used. The proposed model learns common features from 12 different types of
cancers to effectively exploit the right features for a given cancer type. Their work also showed the way
to generalize a model across cancer-type and across datasets. The simplified approach of combining
single task learners through a DNN and use of Transfer learning makes it a scalable model for two-class
problems. For multi-class problems, further improvement will need to be done.

2.2.7. Image Based Cancer Classification

In 2016, Huynh et al. extracted tumor information from mammograms to train their SVM classifier
for cancer detection. They showed that the image-features learnt from mammograms performed
comparable to the analytical feature selection methods [17]. A separate study by Spanhol et al.
in 2016 used patches of histopathological breast images from BreaKHis database with CNN to
classify samples for breast cancer. They used simple fusion rules to improve the recognition rates.
Their final results outperformed the other results reported in the literature [18]. In another study in
the same year, L’evy et al. used pre-segmented mammograms with Convolutional Neural Networks
to measure breast-mass for binary cancer classification. Their method surpassed the expert human
performance [20].

In 2017, Han et al. used histopathological breast images in conjunction with Deep Convolution
Neural Networks (DCNN) to achieve automated cancer multi-class classification (subtype detection).
Their proposed method achieved over 93% accuracy over a large-scale dataset BreaKHis.
Employing Class-Structure aware approach (hence the name CSDCNN), they used oversampling over
the training dataset to balance the class distributions amongst unbalanced classes. They also showed
that the performance of their proposed method was significantly better with transfer learning (from an
Imagenet dataset fine-tuned on the BreaKHis dataset) than learning the model from scratch directly on
BreaKHis. Their work was the first attempt at Image based classification of Breast Cancers [19].

In 2020, Duncan et al. compiled a set of the ten most recent contributions in the fields of
Big-Data, Machine Learning, and Image analysis in the Biomedical field and set the stage for upcoming
cross-cutting concerns in these three areas [15].

2.2.8. Cancer Detection Using Transfer Learning

In 2016, Huynh et al. used transfer learning from a deep CNN to learn tumor information
(features) from the mammograms. These features were used with SVM to classify cancerous samples.
They showed that this approach produced comparable results to the conventional FSS techniques.
Furthermore, they formed an ensemble to achieve an accuracy higher than these two methods [17].

In 2017, Ravishankar et al. studied the process of transferring a CNN trained on ImageNet for
general image classification to kidney detection problem in ultrasound images. They proved that
transfer learning can outperform any state-of-the-art feature selection pipeline [42]. They further
proved that a hybrid approach can increase the accuracy by 20%.

In 2018, transfer learning with Deep Neural Networks was used on unsupervised data from other
tumor types to learn the salient features of a certain type of cancer. They tested their approach on
36 binary benchmark datasets from GEMLeR repository to prove that their approach outperformed
many of the general cancer classification approaches [11].

The use of datasets for other cancer types and use of Transfer Learning makes these approaches
scalable and worthy for further investigation. The effectiveness of their approach should be tested on
MAQC-II benchmark datasets to gauge their reliability.

43



Genes 2020, 11, 819

2.2.9. Summary of Literature Review

Based on the advanced techniques presented in literature review, most of the studies have
reported comparable results in terms of accuracy and reliability. However, not all of the studies
are based on MAQC-II datasets and they use different scoring metrics like T-test, chi-test, MCC,
error rate, confusion matrix, etc. Therefore, they cannot be benchmarked uniformly and compared on
a common ground.

3. Proposed Algorithm

The proposed algorithm is inspired by warzone tactics. It is comprised of the Four Fs (Find, Fix,
Flank/Fight, and Finish) of basic war strategy for infiltration into enemy areas i.e., small light-infantry
group (LIG) backed by follow-up troops (FT) are used to conquer the area.

In our case, the LIG members are parameter-free classifiers that can be trained quickly to classify
a sample with reasonable accuracy and reliability. The LIG members independently choose to identify
enemy weak-points and choose their own routes, targets, movements, and methods of attack. While the
overall approach does not restrict the user to use any particular classifiers and any set of parameter-free
classifiers can be used; for this research, Decision Tree Classifier (DTC) [43], Adaptive Boosting
(AdaBoost) [13,44–46] and Extra Tree Classifier (also known as Extremely Randomized Trees) [47] were
used as LIG members with default settings.

The “successful” LIG members are then combined to form a heterogeneous ensemble which
can reliably classify a given unseen sample. In parallel, the FT applies heavier and sophisticated
techniques (i.e., parameter tuning) to find a better model. Random Forest [48], Deep Neural Network
(DNN) a.k.a. Multi-layer Perceptron (MLP) [16,49] and Support Vector Machine (SVM) [50–52] were
used as FT members with Grid Search and Random Grid Search for parameter tuning for binary
classification. The “successful” FT members are used to update the overall ensemble for enhanced
accuracy and reliability.

In the following text, we map the Four Fs (i.e., Find, Fix, Flank/Fight, and Finish stages) onto the
proposed algorithm:

1. Find: In this stage, a random grid search is applied on the 4-dimensional search space comprising
of pre-processing methods, FSS methods, Subset sizes, and Validation methods to generate “attack
vectors” (tuples of length 4 each from the search space with different combinations) for LIG and
FT members e.g., (Quantile method, mRMR, 50 features, 10 Fold CV) is one such tuple. Details of
the options used for each of these dimensions are given below.

2. Fix: In this stage, each of the LIG members use one of the attack vectors to construct individual
models. An efficiency index ρ is calculated using Matthews Correlation Coefficient (MCC) and
average classification accuracy (score) as:

ρLIG(i) = MCCLIG(i) × scoreLIG(i), (1)

where LIG(i) is the i-th member of LIG. Similar to MAQC-II benchmarks, MCC and accuracy
are used to compute ρLIG. In addition, our analysis from earlier experimentation showed that,
in the case of overfitting, though the average accuracy/score of the model seemingly improves
but simultaneously the MCC of the model decreases. Hence, these two measures were used to
decide the trade-off between accuracy and MCC at the time of base classifier selection. The value
of MCC ranges between −1 and +1, but, for our experimentation, we used only (0, 1] or MCC > 0
i.e., anything better than random guess. The accuracy ranges between [0, 1] range. Both measures
are equally important, thus we use product as a statistical conjunction function. It helps balance
the trade-offs between MCC and Accuracy. In our experiments, we observed that ρLIG helped
in improving both the MCC and accuracy in some cases and helped achieve a good trade-off

44



Genes 2020, 11, 819

between MCC and accuracy in other cases. A fitness threshold εLIG is used to filter in “successful”
members from the whole LIG i.e.,

ρLIG(i) > εLIG, 1 > εLIG > 0 (2)

The value of εLIG is chosen such that it filters at least the top 33% of the LIG members for
LIGEnsemble. Once the ensemble is formed, the value of ε can be adjusted to tune the ensemble for
maximum ρLIG−Ensemble yield as explained below.

3. Flank/Fight: In this stage, a heterogeneous ensemble of a subset of “successful” LIG members
(MCC > 0) is formed such that:

ρLIG−Ensemble ≥ ∀ρLIG(i) (3)

The ensemble is formed iteratively using a majority-vote method. In each iteration, the top LIG(i)
is added to the LIGEnsemble and ρLIG−Ensemble is computed to ensure that the newly added LIG(i)
did not deteriorate the ensemble performance. If an LIG(i) causes decline in the ρLIG−Ensemble,
it is discarded.

The LIGEnsemble takes relatively very short time to build while each FT(i) may take several hours
to days to train (depending upon the parameter-space), thus, for the time-sensitive cases e.g.,
in the domain of pandemic diseases where an early prediction may be required, LIGEnsemble can
be used until FT(i) are being trained. When the FT(i) are trained and the ensemble updated
for improved performance, a follow-up prediction could be done which will either strengthen
the confidence in prediction if both LIGEnsemble and FinalEnsemble agree on the prediction Or
FinalEnsemble could be used to over-ride the earlier prediction.

4. Finish: In this stage, the FT members apply advanced classifiers such as Deep Neural Networks,
SVM, etc. to build fine-tuned models. The “successful” FT members are filtered in using:

ρFT(i) = MCCFT(i) × scoreFT(i) (4)

where FT(i) is the ith member of FT. A fitness threshold is used to filter in “successful” FT
members i.e.,

ρFT(i) > εFT , 1 > εFT > 0 (5)

Then, FTEnsemble is computed from FT subsets such that:

ρFT−Ensemble ≥ ∀ρFT(i) (6)

Finally, a EnsembleFinal is formed using filtered-in LIG(i) and filtered-in FT(i). The following
different approaches can be used to build the EnsembleFinal :

(a) simply combine all the LIG and FT members from LIGEnsemble & FTEnsemble, respectively.
However, through empirical analysis, it was found that this approach actually causes a
decline in MCC and/or average accuracy of the model.

(b) start with one of LIGEnsemble or FTEnsemble and call it EnsembleFinal . Choose base
classifiers from the other ensemble with ρ ≥ ρFinal−Ensemble and add to EnsembleFinal .
However, starting with an ensemble with higher ρ would cause all of them to fail on
ρ ≥ ρFinal−Ensemble, thus resulting in no further improvement. In addition, our experiments
showed that, starting with an ensemble with lower ρ, the optimization gain was not as
good as the next approach because the condition ρ ≥ ρFinal−Ensemble filtered out many
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classifiers which still could help with reducing misclassifications of ensembles hence
improve both the accuracy and MCC.

(c) rebuild the EnsembleFinal from scratch using LIG(i) ∪ FT(i) ordered by ρ. This approach
was found effective to further enhance the performance.

While the proposed algorithm is flexible to allow the choice of any classifiers, the pre-processing
method, validation method, subset size, and FSS methods, etc., the following configurations were used
in this study for LIG and FT members to carry out the Four Fs.

The imputer method [51] was used for data normalization. During feature exclusion, the features
with any missing values were completely removed from the dataset because (i) the number of features
are in abundance already and, (ii) due to missing values, these features do not represent the sample
space sufficiently. For scaling of the data Quantile method, Robust method, and Standard method
were used [51].

While, in the most recent studies [53,54], multi-objective feature selection methods have been
shown to outperform the single-objective methods; however, their implementations are not widely
available for public use. Thus, for feature subset selection (FSS), also known as Variable Selection,
three publicly available single-objective methods, namely Joint Mutual Information (JMI), Joint Mutual
Information Maximization (JMIM), and minimum Redundancy Maximum Relevance (mRMR) were
used [6–8,51]. The minimum number of features that should be chosen, largely depends upon the
dataset being used. For the basic techniques like JMI and JMIM the produced subset may contain
some level of redundancy whereas mRMR ensures that the chosen features in a subset have minimum
redundancy and maximum relevance to the class label [6,8]. These are brute-force techniques and
all the features are considered to compute a ranked list of features based on statistical relevance and
hence it is a computationally expensive step [8]. The selection of these algorithms was done due to
their out-of-the-box availability for Python, not requiring an implementation from scratch.

For validation, 10-Fold Cross Validation (CV) and Leave-one-out CV (LOOCV) were considered,
both of which have been proven in the literature to be amongst the best validation techniques [36].

Pseudo Code

The ITO Algorithm (Algorithm 1) computes LIGEnsemble using Algorithm 2. This produces an
initial baseline result which is either the best of LIG members or an improved output from the
ensemble. The Grid G on line 2 of Algorithm 1 has 4-tuples i.e., four elements wide and the length of
G will be |preps| × |searchRadius| × |searchStrategy| × |successEvaluation| to hold all possible
combinations of these four sets. The variables tLIG and tLIG (also 4-tuples) are subsets of G, for our
experiments, we used half the size of G. The ComputeEnsembleFinal (Algorithm 3) conditionally
updates this ensemble using a ranked list of FT(i) if they improve the overall results.
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Algorithm 1: ITO Algorithm
input :

T: t × f matrix - training dataset with t samples and f features;
V: v × f matrix - validation dataset - with v samples and f features;
preps={Imputer, Robust, Quantile, Standard, ...} - set of preprocessing methods;
searchRadius={10, 50, 100, 150, 200, 250, ...} - set of FSS sizes;
searchStrategy={JMI, JMIM, mRMR ...} - set of FSS methods;
successEvaluation={10 Fold CV, LOOCV, ...} - set of validation methods;
LIGOptions={DT, AdaBoost, Extra Tree, ...} - set of parameter-free classifiers;
FTOptions={DNN, SVM, Random Forest, ...} - set of parameterized classifiers

output : EnsembleFinal

BEGIN

G ← GenerateOptionsGrid(searchRadius, searchStrategy, successEvaluation, preps);
Choose tLIG ⊂ G using Randomized Grid Search;
LIGEnsemble ← ComputeLIGEnsemble (T, V, LIGOptions, tLIG) //Algorithm 2;
Choose tFT ⊂ G using Randomized Grid Search;
EnsembleFinal ← ComputeEnsembleFinal (T, V, FTOptions, tFT) //Algorithm 3;
return EnsembleFinal ;
END

Algorithm 2: ComputeLIGEnsemble

input :

T: t × f matrix - training dataset with t samples and f features;
V: v × f matrix - validation dataset with v samples and f features;
tLIG: subset of configuration tuples each representing a combination with a preprocessing

method, FSS size, FSS method, validation method;
LIGOptions={DT, AdaBoost, Extra Tree, ...} - set of parameter-free classifiers

output : LIGEnsemble

BEGIN

LIGEnsemble ← {};
Train ∀ LIG(i) as LIG ∈ LIGOptions using every tuple from tLIG;
Compute ∀ ρLIG using Equation (1);
Sort descending on ρLIG;
Pickup top (50 OR 33%, which ever is bigger size) LIG members;
if ρLIG > εLIG then

//i.e., Equation (2);
LIGFiltered ← LIGFiltered ∪ LIG(i);
Update LIGEnsemble such that ρLIGEnsemble ≥ ρLIG(i) using Equation (3);

return LIGEnsemble;
END
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Algorithm 3: ComputeEnsembleFinal

input :

T: t × f matrix - training dataset with t samples and f features;
V: v × f matrix - validation dataset with v samples and f features;
tFT : subset of configuration tuples each representing a combination with a preprocessing

method, FSS size, FSS method, validation method;
FTOptions={DNN, SVM,Random Forest, ...} - set of parameterized classifiers;
LIGEnsemble: the LIG ensemble computed by Algorithm 2;
LIGFiltered: The top 33% filtered LIG(i) based on ρLIG

output : EnsembleFinal

BEGIN

FTEnsemble ← {};
Train ∀ FT(i) as FT ∈ FTOptions using every tuple from tFT ;
Compute ∀ρFT using Equation (4);
Sort descending on ρFT ;
Pickup top (50 OR 33%, which ever is bigger size) FT members;
if ρFT > εFT then

//i.e., Equation (5);
FTFiltered ← FTFiltered ∪ FT(i);
Update FTEnsemble such that ρFTEnsemble ≥ ρFT(i) using Equation (6);

AllFiltered ← LIGFiltered ∪ FTFiltered;
//Iteratively build EnsembleFinal from AllFiltered such that

ρFinal ≥ argmax(ρLIG(i)
, ρFT(i) , ρLIGEnsemble , ρFTEnsemble)

Sort AllFiltered on ρ;
EnsembleFinal = {};
for each classifier cl f ∈ AllFiltered do

TempEnsembleFinal ← cl f ∪ EnsembleFinal ;
if ρTempEnsembleFinal > ρEnsembleFinal

then

EnsembleFinal ← EnsembleFinal ∪ cl f ;
else

//else ignore cl f and continue with next element
end

return EnsembleFinal ;
END

4. Experimental Setup

The ITO Algorithm was run on each of the Datasets A, B, and C to Compute EnsembleFinal for
each of the datasets, respectively.

4.1. Benchmark Datasets

There are a number of publicly available datasets that have been used in different research
papers [13,40,55]. However, this research uses datasets A (Hamner), B (Iconix), and C (NIEHS) from
Microarray Quality Control Study—Phase II (MAQC-II) [12] as listed in Table 1.
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Table 1. MAQC-II datasets available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi.

Dataset Endpoint Accession Code Features
Training Samples Validation Samples

+ve −ve Total +ve −ve Total

Dataset A Hamner GSE24061 1004004 26 44 70 28 60 88
Dataset B Iconix GSE24417 0010560 73 143 216 57 144 201
Dataset C NIEHS GSE24363 0695556 79 135 214 78 126 204

4.2. Description of Datasets Used

Dataset A (Hamner), Dataset B (Iconix), and Dataset C (NIEHS) from the MAQC II study have
been used in this research. MAQC was a series of studies conducted by American Health Association
(AHA) to establish a baseline for a reliable model for data classification Microarray data.

Dataset A (accession code GSE24061) was obtained from mice while conducting Lung tumorigen
vs. non-tumorigen study using an Affymetrix Mouse 430 2.0 platform [12]. The training and validation
datasets have 1,004,004 features (using raw .CEL files). The training dataset contains 26 positive
samples and 44 negative samples (70 samples in total), while the validation dataset is comprised of 28
positive and 60 negative samples (88 samples).

Dataset B (accession code GSE24417) was data obtained for mice while conducting non-genotoxic
liver carcinogens vs. non-carcinogens study. The separation of the training and validation set was
based on the time when the microarray data were collected; i.e., microarrays processed earlier in
the study were used as training and those processed later were used for validation. This study was
conducted on an Amersham Uniset Rat 1 Bioarray platform. The training and validation datasets
have 10,560 features (using GSE24417_Training_DataMatrix.txt.gz file). The training dataset contains
216 samples with 73 positive and 173 negative samples, while the validation dataset contains 57 positive
and 144 negative samples (total 201 samples).

Dataset C (accession code GSE24363) was obtained from rat-liver while conducting liver necrosis
prediction. The data was collected from 418 rats using an Affymetrix Rat 230 2.0 microarray.
The training and validation datasets have 695,556 features (using raw .CEL files). The training dataset
contains 214 total samples with 79 positive and 135 negative samples. The validation dataset contains
204 samples with 78 positive and 126 negative samples.

The experimental data used to support the findings of this study are available at https://github.
com/JavedZahoor/phd-thesis-iv.

4.3. FT Parameter Setting

The objective of this research was not to find the most optimal parameters for the individual
FT members but to demonstrate the effectiveness of the proposed algorithm over whatever base
classifiers are used; hence, the best parameters found for FT members during these experiments are not
guaranteed to be the most optimal ones. In addition, since, in the final run, 199 FT(i) were filtered-in
for Dataset A based on ρ, 12 for Dataset B and 108 FT(i) for dataset C, thus, for the sake of brevity,
the list of those 312 optimal parameters is skipped from the paper. However, for the interested readers,
some details are provided here. The grid search was used on a small set of choices to find the best
available setting for individual FT members. For DNN/MLP, the following parameter grid was used:

1. learning_rate: [“constant”, “invscaling”, “adaptive”]
2. alpha: [1, 0.1, 0.001, 0.0001, 0.00001, 0.000001, 0.0000001, 0.00000001]
3. activation: [“logistic”, “relu”, “tanh”]
4. hidden_layer_sizes: [(100,1), (100,2), (100,3)]

For SVM, the following parameter grid was used:

1. C = [0.001, 0.01, 0.1, 1, 10]
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2. gamma = [0.001, 0.01, 0.1, 1]
3. kernels = [’rbf’,’linear’]

For the Random Forest, the following parameter grid was used:

1. estimators: [100, 300, 500, 800, 1000]
2. criterion: [‘gini’, ‘entropy’]
3. bootstrap: [True, False]

4.4. ITO Parameter Setting

The εLIG and εFT are used to control the number of classifiers that will be considered for
EnsembleLIG and EnsembleFT , respectively. These εLIG and εFT are set to control the number of LIG
and FT members that are considered “successful”. This helps in preventing overcrowded ensembles.
For this study, we numerically computed εLIG and εFT to ensure that the top 33% members for Datasets
A & C are included for which hundreds of LIG and FT members produced MCC > 0. However,
for Dataset B, where only few (less than 20) produced MCC > 0, we set the value of εLIG and εFT
very low to allow all of them to be included. Table 2 summarizes the settings for εLIG and εFT that
were used:

Table 2. ε Thresholds.

Dataset εLIG εFT

A 0.639793072 0.4923244337
B 0.1025047719 0.09680510363
C 0.6312148229 0.6648090879

5. Results and Analysis

The ITO algorithm optimizes the overall model in two phases, LIG optimization and
FT optimization.

5.1. LIG Optimizations

Figure 1a–c show the filtered LIG(i) of Datasets A, B, and C respectively sorted on their efficiency
index (ρ). As it can be seen from Figure 1, selection of LIG members can not be done based on the MCC
values or average accuracy alone, since they exhibit different and unrelated behavior for different LIG
members. Thus, the efficiency index (ρ) is used as a fitness measure to rank LIG(i) from most efficient
to least efficient. As a heuristic, only the top 33% of the successful (i.e., (ρ > 0) LIG(i) were filtered-in
for further processing.

For Dataset A, LIGFiltered is comprised of 98 members. The LIGFiltered had MCC ranging in an
0.84–0.95 interval (avg 0.89) and the accuracy ranging in a 70–81% interval (avg 75%). For Dataset
B, smaller subset sizes produced a high accuracy but poor MCC value hence the size of LIG group
was only 7 members. The average accuracy of LIG(i) was found to be 63–75% (an average of 69%),
whereas LIGEnsemble improved the average accuracy to 72%. However, due to poor MCC values in the
range 0.14–0.21, the ensemble contained only one LIG member i.e., the highest performing member.
For Dataset C, the chosen LIG group comprised of 80 LIG members and the LIG(i) average accuracy is
88% (in the range of 85–91%) with average MCC of 0.76 (in the range of 0.72–0.82).

An LIGEnsemble was formed for each of the datasets using a majority-voting ensembling method
to even out the individual biases of LIG(i). Figure 2a–c shows the efficiency index for LIGEnsemble
(shown at i = 0 in the graph) for Datasets A, B, and C, respectively. For Dataset A, the LIGEnsemble
resulted in a higher accuracy (95%) and MCC (0.90) as compared to the individual LIG(i) as shown
in Figure 2a. For Dataset B, the accuracy improved to 72% with an improved MCC value of 0.21 as
shown in Figure 2b. For Dataset C, the accuracy improved to 90% with an improved MCC of 0.82 as
shown in Figure 2c. Table 3 summarizes the performance improvements through LIGEnsemble:
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(a) readings for Dataset A

(b) readings for Dataset B

(c) readings for Dataset C

Figure 1. LIG(i) filtered-in accuracy, MCC, and ρ.
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(a) readings for Dataset A

(b) readings for Dataset B

(c) readings for Dataset C

Figure 2. LIGEnsemble vs LIG(i) filtered-in accuracy, MCC, and ρ.
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Table 3. Improvements by LIGEnsemble.

LIG(i) LIGEnsemble

Dataset |LIG| Accuracy MCC Accuracy MCC

A 98 75% 0.89 95% 0.90
B 07 69% 0.18 72% 0.21
C 80 88% 0.76 90% 0.82

Note that the value of ρ (Equation (1)) will always fall below the accuracy and MCC, but, due to
its relative nature, the max value of ρ will always indicate the best LIG(i) (or FT(i)).

5.2. FT Optimizations

As a next step, the FTs were trained on each dataset under the same configuration options
except the set of classifiers, which, in this case, were parameterized classifiers, each requiring its
own parameter tuning. Figure 3 shows filtered-in FT(i) and their ρ. For Dataset A, top 75 FT(i) were
filtered-in based on their ρ. Similar to LIG(i) selection, as a heuristic, top 33% of “successful” FT(i)
were chosen to construct the FTEnsemble which achieved an accuracy 97% as compared to average
accuracy of 70% (ranging from 58–79%) and MCC to 0.92 as compared to average MCC of 0.82
(0.65–0.90). For Dataset C, the FTEnsemble improved the average accuracy to 91%, average MCC to 0.84
as shown in Figure 3c. For Dataset B, like before, only 12 members were chosen from FTs due to poor
MCC values for all other members. The accuracies, MCC, and ρFT−Ensemble of FT(i) can be seen in
Figure 3b. Dataset B is a hard dataset to model [12], and it might be possible to get better individual
results through the use of advanced base-classifiers such as CNN or PSO based implementations, etc.
The limited choice of LIG and FT models used in this study (due to their out of box availability) did
not produce higher MCC. Table 4 summarizes the performance improvements through FTEnsemble:

ITO works independent of these choices, hence any better models can be used as a member for
both LIG and FT. The proposed optimization method was still able to produce comparable overall
accuracy and enhance the MCC value through optimization as shown in Figure 3c. Table 4 shows that,
for dataset B, the ITO algorithm produced a HAHR model with comparable reliability and accuracy.

Table 4. Improvements by FTEnsemble.

FT(i) FTEnsemble

Dataset |FT| Accuracy MCC Accuracy MCC

A 199 70% 0.82 97% 0.92
B 12 68% 0.16 72% 0.08
C 108 90% 0.81 91% 0.84

From raw results, it was interesting to note that a noticeable majority of successful FT(i) were using
RandomForest, followed by a relatively small number of FT(i) using SVM. FTEnsemble constructed from
FT(i) resulted in a relatively very high efficiency index as shown in Figure 4a. It is interesting to note
that, except for the first few LIG(i) and FT(i), the MCC values and average accuracies of the individual
LIG(i) or FT(i) seemed to be inversely proportional to each other i.e., the higher accuracy, the lower
reliability, and vice versa. This is a clear indication of over/under fitting of individual LIG(i) or FT(i).

Finally, Figure 5 shows that the proposed algorithm produced an overall best result.
It is interesting to note that, instead of choosing only ρFT(i) > ρLIG−Ensemble, updating the
LIGEnsemble with top FT(i) without this constraint improved the ρLIG−Ensemble i.e., ρoverall−Ensemble ≥
argmax(LIG−Ensemble, ρFT−Ensemble, ρLIG(i), ρFT(i)). Tables 5 and 6 show the values-of and %age
improvement in MCC, Accuracy and ρ between ITO Tuned Ensemble against LIG(i), FT(i), LIGEnsemble,
LIGEnsemble, and Combined Ensemble (i.e., an ensemble of all LIG(i) and FT(i)), respectively.
Tables 7 and 8 show that, for datasets A & C respectively, the ITO algorithm produced a HAHR

53



Genes 2020, 11, 819

model with significantly higher reliability and accuracy, whereas, for dataset B (Table 9, however,
the accuracy increased, but the MCC decreased a bit.

(a) readings for Dataset A

(b) readings for Dataset B

(c) readings for Dataset C

Figure 3. FT(i) filtered-in accuracy, MCC, and ρ.
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(a) readings for Dataset A

(b) readings for Dataset B

(c) readings for Dataset C

Figure 4. FTEnsemble vs. FT(i) filtered-in accuracy, MCC, and ρ.
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Table 5. All Datasets—Accuracy, MCC, and ρ.

Ensembles

Dataset Measure LIG(i) FT(i) LIG FT LIG & FT Combined ITO Tuned
(X1) (X2) (X3) (X4) (X5) (X6)

Accuracy 0.75 0.70 0.95 0.97 0.98 0.99
A MCC 0.89 0.82 0.90 0.92 0.95 0.97

Efficiency (ρ) 0.76 0.69 0.86 0.89 0.93 0.96

Accuracy 0.69 0.68 0.71 0.72 0.71 0.75
B MCC 0.18 0.16 0.06 0.08 0.00 0.33

Efficiency (ρ) 0.15 0.14 0.05 0.06 0.00 0.24

Accuracy 0.88 0.90 0.90 0.91 0.90 0.92
C MCC 0.76 0.81 0.82 0.84 0.83 0.87

Efficiency (ρ) 0.74 0.76 0.74 0.76 0.75 0.80

Table 6. All Datasets—ITO Improvement %age over LIG(i), FT(i), LIG Ensemble, FT Ensemble, and
Combined Ensemble.

ITO Improvement % Age Over

Dataset Measure LIG FT LIG Ensemble FT Ensemble LIG & FT
Combined Ensemble

(X6−X1)/X6% (X6−X2)/X6% (X6−X3)/X6% (X6−X4)/X6% (X6−X5)/X6%

Accuracy 24.24% 29.29% 04.04% 02.02% 01.01%
A MCC 08.25% 15.46% 07.22% 05.15% 02.06%

Efficiency (ρ) 20.83% 28.12% 10.42% 07.29% 03.12%

Accuracy 08.00% 09.33% 05.33% 04.00% 05.33%
B MCC 45.45% 51.52% 81.82% 75.76% 100%

Efficiency (ρ) 37.5 0% 41.66% 79.17% 75.00% 100%

Accuracy 04.35% 02.17% 02.17% 01.07% 02.17%
C MCC 12.64% 06.90% 05.75% 03.45% 04.60%

Efficiency (ρ) 07.50% 05.00% 07.50% 05.00% 06.25%

Table 7. Comparison with Results reported in Literature for an MAQC-II Dataset A.

Method MCC Accuracy

MAQC-II [12] 0.210 -
AID [56] 0.293 -
Kun [56] 0.407 -

Kuntie [56] 0.303 -
Kungenes [56] 0.346 -

EJLR [57] 0.57 -
Monte Carlo simulation as reported in [36] 0.270 67.3%

ITO algorithm 0.950 98%

Table 8. Comparison with Results reported in Literature for MAQC-II Dataset C.

Method MCC Accuracy

MAQC-II [12] 0.830 -
AID [56] 0.793 -
Kun [56] 0.812 -

Kuntie [56] 0.804 -
Kungenes [56] 0.781 -
Kunall [56] 0.792 -

t-test with KNN (Mean Centering) [57] 0.80 -
Monte Carlo simulation as reported in [58] 0.795 90.25%

ITO algorithm 0.870 92%
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Table 9. Comparison with Results reported in Literature for MAQC-II Dataset B.

Method MCC Accuracy

MAQC-II [12] 0.42 -
Ratio-G [57] 0.50 -

ITO algorithm 0.33 75%

Figure 5 and Tables 5 and 6 show that ITO was able to enhance both the accuracy as well as MCC
(and hence ρ) for all the datasets regardless of the base LIG and FT classifiers.

Figure 5. Overall improved results produced by ITO Algorithm on all datasets.

6. Machine Specifications

The experiments were performed on a shared machine with 64-bit ASUS GPU, 32 GB RAM,
Quad-core 64-bit Intel i7-4790K CPU, with 800MHz-4.4 GHz speed.

7. Time Complexity

The overall time complexity of the algorithm depends on:

1. number of samples (t)
2. number of features (f)
3. number of different preprocessing methods (P) and maximum execution time for preprocessing

(tprep) of dataset of size txf
4. number of FSS methods (FM) and maximum execution time for feature selection (t f ss) from f

features. This is one of the most time-consuming steps of the algorithm because the underlying
methods need to calculate pair-wise mutual information for feature ranking, which is eventually
used to pick the top features.

5. Subset sizes (S)
6. Validation methods (V)
7. number of parameterized classifiers (Cp) and maximum time to train a parameterized classifier (tp)

This is the second most time-consuming step of the algorithm. Parameter tuning for the classifiers
requires trying different combinations of parameter values and find the most effective one.
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8. number of non-parameterized (parameter-free) classifiers (Cn) and maximum time to train a
parameter-free classifier (t f ).

9. Ensemble construction time (EFT=FT Ensemble, ELIG=LIG Ensemble, EITO=Overall Ensemble).

The time complexity of ITO algorithm would be as given in Equation (7).

(P × tprep)× (FM × t f ss)× S × V × (Cp × tp + Cn × t f ) + ELIG + EFT + EITO (7)

8. Execution Times

FSS was a very time-consuming step because, for the chosen methods, all pairwise correlations
are computed between features to rank the most relevant features for final selection. To stay focused
on the generalization problem, the FSS method was chosen solely considering the availability of
out-of-the-box implementation or library for Python. Table 10 shows the minimum and maximum
times it took to generate FSS for datasets A, B, and C.

Table 10. Min and Max times for FSS Generation for Datasets A, B, and C

Data set Number of Features Min Time for FSS (Size 10) Max Time for FSS (Size 250)

A 1,004,004 26 h >72 h
B 10,560 50 min 2.6 h
C 695,556 24 h 72 h

LIG training and filtering: As can be seen from Figures: 6–8, the training time for the filtered-in
LIG(i) was under 15 s each.

LIG ensemble formation: In this phase, an ensemble is formed iteratively using the
majority-voting method. The execution time for this step was under 500 s.

FT training and filtering: The training times for the filtered-in FT(i) are relatively much larger
than LIG(i) as shown in Figures 9–11. However, the total execution times for ITO included training
and parameter-tuning for SVM and DNN as well which may have been filtered-out for Datasets A and
B. For example, for Dataset C, SVM training times fell around 3000 s to 4000 s (1.1 h each) while DNN
training times fell around 30,000 s to 35,000 s (8.3–9.7 each).

Figure 6. Dataset A—LIG(i) filtered-in training times.
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Figure 7. Dataset B—LIG(i) filtered-in training times.

Figure 8. Dataset C—LIG(i) filtered-in training times.

Figure 9. Dataset A—FT(i) filtered-in training times.
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Figure 10. Dataset B—FT(i) filtered-in training times.

Figure 11. Dataset C—FT(i) filtered-in training times.

9. Conclusions and Future Directions

The scarcity of samples, digitization errors, and curse-of-dimensionality of microarray data makes
it hard to reliably and accurately classify cancerous cells and avoid overfitting. A number of FSS and
classification techniques have been applied to this domain to produce higher accuracies; however,
there is still room for more improvement on reliability and generalization of these techniques. The curse
of dimensionality and data scarcity can be addressed through the use of heterogeneous models built
from subsets of data.

This paper showed that, regardless of the dataset, the accuracy and reliability of a model is
inversely proportional (Figure 3a–c and Figure 1a–c) and hence both these factors should be considered
when evaluating a model. A notion of efficiency index ρ is introduced which can be used as a single,
more dependable factor to choose the best model amongst the available choices. The ITO algorithm
introduced in this paper enhances the efficiency index of the underlying LIG and FT models as shown
in Tables 7–9 and produces an HAHR classification model. The proposed algorithm is a generalized
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approach which balances the exploration through LIG and exploitation through FT to find a promising
initial baseline and optimizes the results beyond this baseline. It leaves the choice of underlying LIG
and FT members open to the user. A more advanced LIG or FT selection can further enhance the
optimality of the overall model. Further study can be conducted to apply the proposed algorithm on
datasets other than MAQC-II for wider comparisons.

For the LIG members, both majority-voting and soft-ensembles produced the same results.
However, it is because the underlying classifiers return the predicted class labels instead of raw
prediction values. It would be interesting to measure the impact of replacing the predicted class labels
with the raw prediction values for soft ensembles. The advantage of soft ensembles was evident when
used for FT members. Another future direction can be to cluster the erroneous instances separately
and construct a focused model for those hard instances. Once a subset is trained on this cluster, it can
be added to the beginning of the classification pipeline to bifurcate the instances accordingly. Use of
GPUs/parallel computing for FSS generation and classification should be explored to reduce the
overall execution time. Finally, the use of LIG as a filtering step for FT attack vectors should also be
explored as potential areas of improvements for the ITO Algorithm.
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Abstract: DNA N6-methyladenine (6mA) is part of numerous biological processes including DNA
repair, DNA replication, and DNA transcription. The 6mA modification sites hold a great impact
when their biological function is under consideration. Research in biochemical experiments for this
purpose is carried out and they have demonstrated good results. However, they proved not to be
a practical solution when accessed under cost and time parameters. This led researchers to develop
computational models to fulfill the requirement of modification identification. In consensus, we have
developed a computational model recommended by Chou’s 5-steps rule. The Neural Network (NN)
model uses convolution layers to extract the high-level features from the encoded binary sequence.
These extracted features were given an optimal interpretation by using a Long Short-Term Memory
(LSTM) layer. The proposed architecture showed higher performance compared to state-of-the-art
techniques. The proposed model is evaluated on Mus musculus, Rice, and “Combined-species”
genomes with 5- and 10-fold cross-validation. Further, with access to a user-friendly web server,
publicly available can be accessed freely.

Keywords: DNA N6-methyladenine; Chou’s 5-steps rule; Convolution Neural Network (CNN);
Long Short-Term Memory (LSTM); computational biology

1. Introduction

In genomes of distinct species, DNA N6-methyladenine (6mA) illustrates a crucial epigenetic
transformation [1,2]. DNA 6mA is a non-canonical process that modifies the catalyzed adenine ring
of DNA methyltransferases [3]. Alteration occurs at the sixth position of the adenine ring where
a methyl group is additionally introduced. DNA 6mA holds a vital role in numerous biological
processes, which includes DNA replication [4], DNA repair [5], DNA transcription [6], and others.
Recent research established that uneven 6mA modification has a role in different diseases such as
cancer [7], immune systems, and others. Therefore, this makes it necessary to identify a 6mA position
in the genome sites. Mammalian 6mA largely originates from the genomic incorporation mediated by
DNA polymerase, while the methylase-generated 6mA in mice remains elusive [8].

Silico prediction is considered to be a principal approach to encounter the aforementioned
problem, while N6-methyladenine prediction is its alternative. Intensive labor with extravagant
experiments and expenses limits the use of silico prediction, making 6mA prediction an ideal solution
for tracking modifications in the genome. For the identification of 6mA, diversified techniques can
be found in the literature. Initially, ultraviolet absorption spectra, paper chromatographic movement,
and electrophoretic mobility were combined to represent a complete mechanism. Although this
method was not efficacious enough to be used for detecting 6mA transformations in animals [9],
this led to an introduction of another technique for identifying 6mA modification using a restriction
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enzyme, but this approach was only capable of identifying transformed adenines that are present in
the target motifs [10].

For the detection of 6mA sites in prokaryotes and eukaryotes, numerous techniques were proposed
such as single molecule real-time (SMRT) sequencing [11], methylated DNA immunoprecipitation
sequencing [12], ultra-high performance liquid chromatography with mass spectrometry [1],
and metabolically generated stable isotope-labeled deoxynucleoside code [13]. Chlamydomonas genes
carry 84% N6-methyladenine modifications, which was identified after 6mA an immunoprecipitation
sequencing experiment [14]. SMRT sequencing found out that adenines of methylated sites carry 2.8%
of initial-diverged fungi [15]. Utilization of SMRT, 6mA immunoprecipitation, and mass spectrometry
result in 0.2% of adenines being methylated [16].

The experimental techniques proved to be expensive and prolonged processes,
therefore researchers tried to come up with computational techniques for prediction of DNA
6mA modifications. For this purpose, numerous prediction tools were proposed in the literature.
iDNA6mA-PseKNC was the first ever N6-methyladenine modification prediction tool for the
Mus musculus genome [17]. iDNA6mA-PseKNC proposed sequence sample formulation for feature
extraction and employed six different classifiers to identify the modification. csDMA is another
reported tool that predicts the modification in N6-adenine methylation, which used K-mer pattern,
KSNPF frequency, nucleic shift density, binary code, and motif score matrix for extraction of the
feature vector of the sequence [18]. Further, they deployed five different classifiers to evaluate the
performance of the extracted feature set. Recently, 6mA-Finder was introduced as an online tool
for predicting 6mA modification [19]. 6mA-Finder engaged seven sequence encoding schemes to
get three types of physico-chemical features encoded. These encoded features were then embedded
in seven different classifiers to evaluate the performance of encoded features. The i6mA-Pred is an
identification tool for N6-methyladenine modification in the rice genome [20].

FastFeatGen is another tool present in the literature that predicts DNA N6 methyladenine sites [21].
FastFeatGen has used a parallel feature extraction technique followed by an exploratory feature
selection algorithm to get the most relevant features. These features are then fed to Extra-Tree
Classifier (ETC) for the prediction. Liang et al. proposed the i6mA-DNCP tool for the identification
of 6mA sites [22]. i6mA-DNCP used optimized dinucleotide-based features with bagging classifier
for the prediction model. Undoubtedly machine learning has illustrated high performance for many
research problems, but the neural network has its benefits that need to be investigated for every
research problem.

In recent years, Neural Network (NN)-based techniques, especially Convolution Neural Network
(CNN), have shown tremendous improvement in many different research problems, e.g., in medical
imaging [23,24] and bio-informatics [25–27], while the use of CNN for DNA-6mA modification
identification is still in the infancy. Recently, a technique called iIM-CNN was reported by Wahab et al.,
which uses a CNN-based model for the N6-adenine methylation modification identification in genomes
of different species [28]. The proposed CNN model in iIM-CNN carries two convolution layers with
two max-pooling layers and a set of fully connected layers. iIM-CN showed high performance in
prediction of N6-methyladenine modification, somehow still, a research space is available where many
aspects of CNN can be explored more.

This article aims to provide a CNN and Long Short-Term Memory (LSTM)-based efficient tool
named DNA6mA-MINT, for DNA 6mA modification identification. The proposed model uses CNN
for feature extraction while LSTM gives optimal interpretation to those features. The proposed
architecture demonstrates higher performance than the existing state-of-the-art techniques on
the “combined-species”, M. musculus genome, and rice genome benchmark datasets. For better
comparative analysis between DNA6mA-MINT and existing techniques, we have carried out
performance analysis on 5- and 10-fold cross-validation. When compared with respective models
available in the literature, Matthews Correlation Coefficient (MCC) for the “combined-species”
benchmark dataset is noted with an increase of 20.83% for 5-fold cross-validation. The five steps

66



Genes 2020, 11, 898

are construction of dataset, encoding samples, constructing prediction model, evaluation of the
proposed model, and establishing an online server. For the development of a useful and effective
biological predictor, Chou’s 5-steps rule needs to be followed [29,30]. These steps were followed by
the previous researchers as well [17–20,28]. This research article follows Chou’s 5-steps rule.

2. Benchmark Dataset

In this work, we used three datasets. The M. musculus genome database for DNA 6mA was
proposed in 2018 by Feng et al. [17]. The dataset consists of 1934 samples for each positive and negative
case. The 6mA sites available in the mouse genome were collected from MethSMRT database [31]
with Gene Expression Omnibus (GEO) accession number GSE71866. Another dataset was on the rice
genome, which was presented in 2019 by Chen et al. [20]. This dataset consists of 880 samples for each
positive and negative case. The 6mA sites in rice genomes were provided by Zhou et al. [16] with
GEO accession number GSE103145. Combining both aforementioned databases, a “combined-species”
dataset is generated which contains 2768 samples for the positive cases and 2716 for negative cases.
While the “combined-species” dataset did not contain sequence redundancy, which is eliminated
by CD-HIT software [32], the rigorous sequence identity threshold was 0.80. Further, the dataset
for training comprises 2214 positive samples and 2214 negative samples, while for the purpose of
independent training 554 positive samples and 502 negative samples are taken into account. The length
of all sequences in the datasets are 41 bp centered with the 6mA and non-6mA site.

3. Methodology

The proposed architecture was an efficient deep learning-based model comprised of several
convolution layers, hidden layers, LSTM layers, and dense layers. Figure 1 is a visual representation
of DNA6mA-MINT. This model holds the capability of extracting critical features from the input
raw sequence, which are then used to carry prediction. The input sequence carries a combination
of 4 nucleotides, A, T, C, and G, as can be seen in the dataset block of Figure 1. The NNs work
on the numerical data only, therefore an encoding scheme is required here which can effectively
convert the sequence-based data to a numerical representation. For the said purpose, binary encoding
was taken into account. Where A, T, C, and G are represented as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
(0, 0, 0, 1), respectively.

Table 1 shows the architecture details of DNA6mA-MINT. The DNA6mA-MINT includes three
convolution layers that use different parameters to extract the features from the input binary encoded
sequence. The first convolution layer uses 32 filters with a filter size of five, followed by another
convolution layer which uses 32 different filters with a filter size of four. The last convolution layer
uses 16 filters of size four. Features extracted by the first two convolution layers undergo Batch
normalization, Max-pooling layer, and a dropout layer discarding 40% of features, while the features
extracted by the last convolution undergo Max-pooling and dropout of 20%. The number of filters for
the convolution layer with their filter size, Stride length, pool-size, and the dropout ratio is decided
after hyperparameter tuning. Therefore, the selected values of the parameters were capable of giving
the best performance from the model.
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Figure 1. DNA6mA-MINT architecture for identification of DNA 6mA modification.
Acronyms: Convolution 1 Dimension (Conv1D), BatchNormalization (BatchNorm), MaxPool (Max
Pooling), Convolution Neural Network (CNN), Conv1d (number of filters, size of the filters, number of
strides), MaxPool (pool size, number of strides), Dropout (ratio of features which needs to be discarded),
and Long Short-Term Memory (LSTM).

Table 1. Architecture details of DNA6mA-MINT.

Layer Output Shape Number of Parameters

Input (41,4) -
Conv1D (32,5,1) (37,32) 672

Batch Normalization (37,32) 128
Max Pooling (4,2) (17,32) 0

Dropout (0.4) (17,32) 0
Conv1D (32,4,1) (14,32) 4128

Batch Normalization (14,32) 128
Max Pooling (4,2) (6,32) 0

Dropout (0.4) (6,32) 0
Conv1D (16,4,1) (3,16) 2064

Max Pooling (2,1) (1,16) 0
Dropout (0.2) (1,16) 0

LSTM (1,4) 336
Flatten 4 0
Dense 32 160
Dense 1 33

In CNN models a greater number of convolution layers represents the extraction of deeper
features, but for the research problem under consideration, we cannot use more number of convolution
layers, as by further increasing the convolution layers, the overfitting problem is observed. Using three
convolution layers was an ideal solution to classify the input data we have, as this leads us to a
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high-performance architecture. All the convolution layers used ReLU as an activation function which
eases the training process. At this stage, sigmoid or tanh are not used as an activation function,
the reason being their vanishing gradient problem. The vanishing gradient problem makes the training
process difficult, where ReLU solves this problem due to its unbounded nature.

The set of features extracted from the CNN model was fed into LSTM, which is a recurrent
neural network (RNN). Here, the LSTM supports the sequence prediction. Therefore, the proposed
model consists of two sub-models: the feature extractor which is the CNN model and the feature
interpreter, which is the LSTM layer. In the proposed model, LSTM is used with a filter size of four,
which is selected after hyperparameter tuning. The optimally interpreted feature set was converted to
a single feature column by using a flattened layer. A single column feature set undergoes two dense
layers with 32 and 1 neurons respectively to give the final classification output. The first dense layer
uses the ReLU activation function while the second dense layer uses the sigmoid activation function.
Sigmoid activation function makes the output range between 0 and 1 which is required for a binary
classification problem. Below are the equations for ReLU and sigmoid functions.

ReLU(z) = max(0, z) (1)

Sigmoid(z) =
1

1 + exp(−z)
(2)

DNA6mA-MINT is implemented on the Keras framework [33]. The output of the sigmoid
activation function will be an input to the objective function. Binary cross-entropy is used as an
objective function [34] and its equation is as follows,

BCE = −y1log(Sigmoid(z))− (1 − y1)log(1 − Sigmoid(z)) (3)

where y1 is the label for class sample. The loss can also be expressed as

BCE =

{
−log(Sigmoid(z)) if y1 = 1

−log(1 − Sigmoid(z)) if y1 = 0
(4)

Stochastic gradient descent is used for optimizing the objective function. The equation below is used
for calculating stochastic gradient descent,

θi+1 = θi − α · 	θ Loss(θi, y) (5)

where θi is the current estimation of θ at iteration ′i′, α is the learning rate, and 	θ Loss(θi, y) is
computed gradient of the loss function.

Stochastic gradient descent reduces the computational complexity by achieving faster
iterations [35]. In the optimization process, the learning rate and momentum were set to 0.004
and 0.9 respectively.

4. Figure of Merits

Evaluation of the DNA6mA-MINT is carried out using k-fold cross-validation where the value of
k in our case is kept five and ten. In both cases, the whole dataset was divided into k subset. A single
subset is chosen iteratively for the testing purpose where remaining subsets are used for training
purposes. For the final performance estimation of the model, an average of k-trials is taken.

The figure of merits used in recent publications are listed with equations below,

Sensitivity = TPR =
TP

TP + FN
(6)
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Speci f icity = TNR =
TN

TN + FP
(7)

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

where

TP = True Positive = 6mA correctly identified as 6mA
FP = False Positive = Non 6mA incorrectly identified as 6mA

TN = True Negative = Non 6mA correctly identified as Non 6mA
FN = False Negative = 6mA incorrectly identified as Non 6mA

Sensitivity, also known as True Positive Rate (TPR), is a statistical measure which calculates
the ratio of positive samples identified as positive samples by the model. Specificity, also known as
True Negative Rate (TNR), is also a statistical measure which calculates the ratio of negative samples
identified as negative samples by the model. Accuracy measures the closeness of the model to the
idle situation. While the Matthews correlation coefficient (MCC) depicts the quality of the model as
a binary classifier, another figure of merit used in this study is the area under Receiver Operating
Characteristics (auROC). It measures the performance of the model at various thresholds. The auROC
indicates the capability of the model to distinguish two classes from each other.

5. Results and Discussion

The proposed model was evaluated on three datasets: M. musculus genome, rice genome,
and “Combined-species”. The state-of-the-art techniques in the literature carried out their results either
using 5-fold cross-validation or 10-fold cross-validation. Therefore, we validated DNA6mA-MINT
by using both numbers of folds so that a better comparative analysis can be derived. Therefore, it is
important to compare 5-fold cross-validation results with the models that have reported their results on
5-fold cross-validation. Similarly, 10-fold results should be compared with the 10-fold cross-validated
model in the literature. A greater number of folds depicts higher performance, the reason being that
by increasing the number of folds, the training dataset gets a higher ratio of the data which increases
the model performance.

Table 2 shows a comparison of the proposed model with existing techniques, while Figure 2
shows the graphical visualization of performance differences between existing techniques and the
proposed technique in this study. In the case of M. musculus genomes, the DNA6mA-MINT achieved
high results in all figures of merit when compared with models validated on 5-fold cross-validation.
On the other hand, compared on 10-fold cross-validation, the 6mA-Finder exhibits higher auROC
then the proposed model. However, in all other figures of merit the proposed model remains higher
in performance.

For Rice genomes with 5-fold cross-validation, the DNA6mA-MINT depicts an increase in all
figures of merit, while in 10-fold cross-validation, 6mA-Finder has not reported results for all figures of
merit, but the reported auROC achieved by 6mA-Finder is lower than that achieved by the proposed
model in 10-fold cross-validation.

70



Genes 2020, 11, 898

(a)

(b)

(c)

Figure 2. Graphical comparison of DNA6mA-MINT with state-of-the-art tools using five fold cross
validation on different species. (a) Mus musculus, (b) Rice, (c) “Combined-species”. Acronyms are
Sensitivity (SN), Specificity (SP), Accuracy (ACC), Matthews Correlation Coefficient (MCC), and area
under the Receiver Operating Characteristics (auROC).
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Table 2. Performance comparison of DNA6mA-MINT with existing techniques on different species
with 5- and 10-fold cross-validation.

Model Species Folds SN SP ACC MCC auROC

iDNA6mA-PseKNC
M. musculus 5 0.869 1 0.935 0.877 0.974

Rice 5 0.569 0.721 0.641 0.394 0.896
Combined-species 5 0.762 0.769 0.765 0.531 0.844

csDMA
M. musculus 5 0.932 1 0.966 0.935 0.974

Rice 5 0.842 0.880 0.861 0.723 0.923
Combined-species 5 0.863 0.735 0.799 0.603 0.879

ilM-CNN
M. musculus 5 0.938 1 0.969 0.941 0.971

Rice 5 0.841 0.914 0.875 0.752 0.934
Combined-species 5 0.869 0.780 0.824 0.651 0.892

6mA-Finder
M. musculus 10 0.9349 1 0.9674 0.935 0.9954

Rice 10 - - - - 0.9394
Combined-species 10 - - - - 0.9207

DNA6mA-MINT
M. musculus 5 0.9531 1 0.9766 0.9543 0.980

Rice 5 0.8621 0.9195 0.8908 0.7829 0.950
Combined-species 5 0.9182 0.9409 0.9295 0.8593 0.950

DNA6mA-MINT
M. musculus 10 0.9427 1 0.9714 0.9444 0.98

Rice 10 0.9425 0.908 0.9253 0.8511 0.950
Combined-species 10 0.9318 0.9321 0.932 0.8639 0.960

“Combined-species” is another benchmark dataset for the evaluation of the proposed model.
In “combined-species”, the proposed model has shown a tremendous increase in performance when
compared with existing techniques. In 5-fold cross-validated models, the DNA6mA-MINT increased
the sensitivity, specificity, accuracy, MCC, and AuROC by 4.92%, 16.09%, 10.55%, 20.83%, and 5.8%,
respectively. For 10-fold cross-validation, the proposed model illustrated an increase of 3.93% in
auROC when compared with 6mA-Finder. The sharp increase in MCC depicts the higher quality of
the DNA6mA-MINT in comparison to existing state-of-the-art tools.

Figure 3 shows the auROC curves for three species. As can be determined by the curves,
the proposed model curves are approaching the ideal scenario. Especially in the case of M. musculus,
which is almost near to ideal. Upon evaluation of DNA6mA-MINT on the “combined-species”
independent dataset with 10-fold cross-validation, a massive increase of 8.99% is observed in auROC.
The 6mA Finder has reported 87.01% auROC while the proposed model has achieved 96% auROC
for “combined-species” independent dataset. The high performance shown by the DNA6mA-MINT
depicts the reliability of the proposed tool.

For functional genomics, such an architecture should be used which can effectively model the
DNA motifs with some insertion/deletion (indels). Keeping it in mind to unfold the quality of
DNA6mA-MINT, the silico mutagenesis method is adopted. Nucleotides in the benchmark dataset
are computationally mutated. The effect of this mutation in model prediction is studied. One by
one the data at position “1-41” is mutated and the corresponding absolute difference is stored.
Last, the averaged predicted score for all the mutations over all the sequences in the benchmark dataset
is computed to construct the heat map. Figure 4 represents the constructed heat map illustrating the
important position of the input sequence. As can be seen, the final prediction is more affected by
the mutations occurring at the center of the sequence than the mutations happening on both sides of
the sequence.
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Figure 3. AuROC for M. musculus, Rice, and “Combined-species” genomes.

Figure 4. Heat Map to study the effect of mutation in model prediction.

In order to study the generalization of DNA6mA-MINT we have prepared additional dataset
for Rice genome (which is a part of our future work) from the NCBI Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE103145. We have prepared
from this repository 10,000 positive sequences and 10,000 negative sequences that are not 6mA.
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Obtained values for sensitivity, specificity, and accuracy are 84.77, 82.78, and 83.76, respectively.
The obtained results show that proposed model generalizes well to the new sequences.

6. Conclusions

DNA modification results in presiding form which is DNA N6-methyladenine (6mA). DNA-6mA
identification is necessary to explore different biological functions. This study proposed an effective
computational tool for the identification of DNA-6mA using a Neural Network framework.
The proposed model uses a CNN for feature extraction followed by the LSTM layer, which gives
interpretation of the high-dimensional feature vector so that they can be optimally utilized for
classification of methylated or non-methylated sites. For comparison purpose results are computed
on five and ten folds for three datasets. The proposed model outperformed the results achieved
by existing state-of-the-art models in the case of all the datasets. The aim to introduce this
model is to utilize it for different research fields working in the development of medicine
and bioinformatics. For the said reason, a web server is created which is publicly available at:
http://home.jbnu.ac.kr/NSCL/DNA6mA-MINT.htm.
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Abstract: Pathway enrichment analysis provides a knowledge-driven approach to interpret
differentially expressed genes associated with disease status. Many tools have been developed
to analyze a single study. However, when multiple studies of different conditions are jointly analyzed,
novel integrative tools are needed. In addition, pathway redundancy introduced by combining
multiple public pathway databases hinders interpretation and knowledge discovery. We present a
meta-analytic integration tool, Comparative Pathway Integrator (CPI), to address these issues using
adaptively weighted Fisher’s method to discover consensual and differential enrichment patterns,
a tight clustering algorithm to reduce pathway redundancy, and a text mining algorithm to assist
interpretation of the pathway clusters. We applied CPI to jointly analyze six psychiatric disorder
transcriptomic studies to demonstrate its effectiveness, and found functions confirmed by previous
biological studies as well as novel enrichment patterns. CPI’s R package is accessible online on
Github metaOmics/MetaPath.

Keywords: pathway; meta-analysis; text mining

1. Introduction

In a typical transcriptomic study, a set of candidate genes associated with diseases or other
outcomes are first identified through differential expression analysis. Then, to gain more insight into the
underlying biological mechanism, pathway analysis (also known as gene set analysis) is usually applied
to pursue functional annotation of the candidate biomarker list. The goal behind pathway analysis
is to determine whether the detected biomarkers are enriched in pre-defined biological functional
domains. These functional domains might come from one of the publicly available databases such as
GO [1], Reactome [2] and KEGG [3], or one of the integrated pathway collection such as MSigDB [4]
and Pathway Commons [5]. Three main categories of pathway analysis methods have been developed
in the past decade. The first category of methods called “over-representation analysis" considers
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biomarkers under a certain cutoff of differential express (DE) evidence and statistically evaluates the
fraction of DE genes in a particular pathway found among the background genes. Without a hard
threshold, the second category “functional class scoring" takes the DE evidence scores of all genes in a
pathway into account and aggregates them into a single pathway-specific statistics. The third category
“pathway topology" further incorporates the information of gene-gene interaction and their cellular
location in addition to the pathway database. Details of general pathway enrichment analysis review
can be found in [6].

Many transcriptomic datasets have been generated with the rapid advances of high-throughput
experimental technologies in the past decade. Meta-analysis, a set of statistical methods for
combining multiple studies of a related hypothesis, has thus become popular [7]. Some methods
have been developed for the pathway meta-analysis. Shen and Tseng [8] developed two approaches
of meta-analysis for pathway enrichment by combining DE evidence at the gene level (MAPE_G)
or at the pathway level (MAPE_P). Nguyen et al. [9] proposed a robust bi-level pathway
meta-analysis by adding an intra-experiment level analysis and another data-driven meta-analysis
approach, DANUBE [10], using unbiased empirical distribution. However, in many real applications,
when multiple datasets for a common biological hypothesis are available but possibly performed
under different conditions (e.g., different tissues, different cell composition or different experimental
platforms), it becomes necessary to detect both pathways enriched consistently in all studies
(consensually enriched pathways) and pathways enriched in partial studies (differentially enriched
pathways). One naïve way is to identify the enriched pathways in each study individually and
manually check whether a certain pathway is enriched in one or multiple studies (e.g., using Venn
diagram for enriched pathways in each study under a certain FDR threshold). This approach is
sensitive to the choice of FDR threshold and is ad hoc in drawing a final conclusion. To avoid an
arbitrary significance threshold, Plaisieret et al. [11] and Cahill et al. [12] have proposed rank-rank
hypergeometric overlap (RRHO) plot to visualize contrasting enrichment significance under all
continuous significance level of two studies. This approach is, however, limited to comparing two
studies. To the best of our knowledge, there is currently no available statistical tool that can achieve the
goal of integrating pathway enrichment of multiple studies in an automated and systematic manner
for characterizing consensually and differentially enriched pathways.

A second issue emerges with pathway enrichment analysis is the pathway redundancy across
pathway databases. Researchers often have difficult time to infer and interpret the underlying
biological mechanism without presumed bias due to the large number of pathways identified. This
kind of redundancy frequently occurs in a regular pathway enrichment analysis since different
pathway databases contain similar annotated pathways with highly overlapped genes. The DAVID
Bioinformatics Resources [13] partially resolved this issue by clustering pathways based on a kappa
statistic representing the pathway similarity. However, the users still had to manually inspect each
pathway in a cluster. Due to the long and vague descriptions in many pathways, users can still struggle
to reach a solid conclusion from the results.

In light of the aforementioned drawbacks in existing tools, we propose a meta-analytic
integrative framework to combine multiple transcriptomic studies for identifying consensual and
differential pathway enrichment, wrapped in a tool named Comparative Pathway Integrator (CPI).
CPI incorporates 25 pathway databases, including GO [1], Reactome [2], KEGG [3] and MSigDB [4]
or user-defined gene set lists, as reference of pathway analysis. In order to identify both consensual
and differential enriched pathways across studies, we applied the adaptively weighted Fisher’s
method [14], which was originally developed to combine p-values from multiple omics studies for
detecting homogeneous and heterogeneous differentially expressed genes. Next, cluster analysis based
on pathway similarity (defined by gene overlap) is applied to remove the level of pathway redundancy.
But unlike DAVID, we adopt a tight clustering algorithm similar to [15] to allow scattered pathways
without being clustered and derive tight pathway clusters. Subsequently, we developed a text mining
algorithm to automate the annotation of the tight pathway clusters by extracting keywords from
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pathway descriptions, which also offers more statistically valid summarization compared to leaving
user to manually explore pathways in a cluster. Lastly, CPI provide users with both spreadsheets
and graphical outputs for intuitive visualization, statistically solid presentation and insightful
interpretation. CPI has a standalone R package as well as being disseminated into MetaOmics,
an analysis pipeline and browser-based software suite for transcriptomic meta-analysis [16].

2. Materials and Methods

2.1. Workflow of Comparative Pathway Integrator (CPI)

CPI is a comprehensive tool incorporating several widely accepted mature methods as well as
multiple novel algorithms/approaches. It is mainly composed of three steps (Figure 1). The first step
(Section 2.2) performs meta-analytic pathway analysis, which integrates pathway enrichment analysis
and meta-analysis. This step partially resembles the previous in-house work of R package MetaPath [8]
but with advanced features. While MetaPath focuses on detecting consensually enriched pathways,
CPI will detect both consensual and differentially enriched pathways, providing valuable information
on how the patterns of pathway enrichment differ across studies. The second step (Section 2.3)
implements pathway clustering. This step aims to reduce redundancy of the pathway information
from commonly hundreds of enriched pathways to only handful (usually 5–10) pathway clusters.
The results are more succinct and interpretable. The third step (Section 2.4) includes text mining
based on pathway names and descriptions to find keywords characterizing the intrinsic biological
functions of each pathway cluster. A permutation-based statistical test is performed to assess if a
specific biological noun phrase appears significantly more than by chance. Without this step, it would
be difficult to avoid subjective biases from users and to objectively identify the representative biological
mechanisms for each pathway cluster since clustering of the pathways does not fundamentally reduce
the total number of pathways under investigation. Finally, we generate graphical and spreadsheet
outputs of pathway p-value matrices and pathway clustering details including gene composition and
functional keywords.

Figure 1. Workflow of Comparative Pathway Integrator (CPI).
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2.2. Meta-Analytic Pathway Analysis

Compared to differential expression analysis, pathway enrichment analysis provides more
biological insight in a more systematic and comprehensive manner. In CPI, we allow multiple
methods of over representation analysis since recent comparative studies [17,18] have shown little
additional advantages using sophisticated functional class scoring or pathway topology methods.
But if such advanced pathway enrichment analysis is preferred, users can externally implement
the pathway analysis and CPI can accept lists of significant pathways and the corresponding
p-values as alternative input (Input 2 in Figure 1). Given pathway enrichment results, we perform
adaptively-weighted Fisher’s (AW-Fisher) method [14,19] for meta-analysis, to identify pathways
significant in one or more studies/conditions. AW-Fisher not only increases statistical power, but
also provides a 0/1 binary weight for each study, indicating whether a study contributes to the
meta-analytic significance. Given a user-specified q-value cutoff, we obtain a list of significant
pathways, with 0/1 binary weights indicating whether a pathway is significantly enriched across
most or all studies/conditions (i.e., consensually enriched pathways) or only in partial studies
(i.e., differentially enriched pathways). For example, in Section 3, the “GO:MF kinase activity”
pathway has raw enrichment p-values (0.26922, 0.17773, 0.06485, 2.04 × 10−5, 0.00449, 0.018922) for the
six studies. AW-Fisher meta-analysis generates combined p-value = 5.52 × 10−6 (q-value = 0.00014)
with adaptive weights = (0,0,1,1,1,1), showing enrichment in the last four bipolar studies or major
depressive disorder studies but not in the first two schizophrenia studies.

2.3. Pathway Clustering for Reducing Redundancy and Enhancing Interpretation

Because of the nature of pathway definitions (e.g., hierarchy structure or overlapping
functions), many genes are shared among different pathways. Similar pathways can also repeat
in different pathway databases with slightly different gene composition, annotation or description.
Such redundancies often stumble interpretation of pathway analysis results. In CPI, we perform
pathway clustering to reduce the redundancy among detected pathways. The similarity between
different pathways is calculated based on kappa statistics [20], which depends on how many genes are
mutually identical or exclusive among those pathways. The kappa statistics represents the dissimilarity
between two pathways based on the genes composing each pathway. Based on the dissimilarity matrix
of all pathway pairs, consensus clustering [21] is used to estimate the number of clusters. Following
the original consensus clustering method, an elbow plot and consensus CDF plot are generated to
assist users to decide the number of clusters.

We next assign detected pathways into clusters. For most clustering algorithms including the
aforementioned consensus clustering, all pathways are forced into clusters although it is well-known
that leaving scattered subjects out of clusters often generate tighter clusters and improve the clustering
performance in such high-dimensional data [15,22,23]. In CPI, we allow scattered pathways to form
singletons, when its gene composition is largely different from representative pathway clusters, to
avoid adding outliers to the pathway clusters. To improve the tightness of the clusters, we further
calculated for each pathway the silhouette width [24], a measure of how tightly each pathway is
grouped in its cluster, and removed the scattered pathways with low silhouette width iteratively
until all pathways’ silhouette widths are above a certain cutoff. The removing cutoff for silhouette
width is estimated empirically based on its distribution as in our multi-disease application in Section 3
(we choose 0.1 in this paper). For the identified singleton pathways, we collected them to form a
scattered pathway set instead of filtering them out. In general applications, we recommend users to
investigate the identified tight pathway clusters first with the subsequent text mining tool introduced
in the next subsection since these pathway clusters are better annotated in the pathway databases and
are likely better studied in the current biological knowledge domain. We, however, do not discard
pathways in the scattered set but recommend them in the secondary investigation.
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2.4. Text Mining for Automated Annotation and Knowledge Retrieval of Pathway Clusters

2.4.1. Motivation and Problem Setting

Although the pathway cluster analysis in Section 2.3 can greatly reduce redundancy structure of
the detected pathways, users still have to manually scan through all pathways in a cluster to grasp its
major content and biologically driving mechanism, which can be labor-intensive and subject to the
user’s biased presumption. Therefore, we need a more rigorous and statistically meaningful summary
of the pathway cluster to guide an unbiased interpretation. The above goal is expressed here as the text
mining for key noun phrases of each pathway cluster: which noun phrase appears more frequently
in a certain pathway cluster than by chance in statistical sense? We will therefore treat these noun
phrases as the potentially representative entities (mechanism) for the pathway cluster. The entity is
counted based on the number of pathways containing it, rather than the frequency of it appearing
in all pathway descriptions in a cluster. For instance, in a certain cluster, if "T cell" occurs six times
in 3 pathway descriptions: three times in pathway #1, twice in pathway #2 and once in pathway #3,
T cell" is counted 3 occurrences even though it appears 6 times in total.

2.4.2. Pathway-Phrase Matrix

For each pathway description, we firstly extracted unique noun phrases from it. This step was
done using the spacy_extract _nounphrases function from R package spacyr [25] which is an R wrapper
around the Python spaCy package [26]. spaCy is an industrial strength text-mining package employing
a large library database as well as some machine learning algorithms to detect information from texts.
The stop words in English, such as “the”, “a”, “that”, which are common and carry no important
information, are removed from those noun phrases by using the English stop words database from
R package tm [27]. After removing all stop words, the last word of each noun phrases, i.e., the central
noun of a noun phrase, is lemmatized (converting plural form to singular form) by the lemmatize
_words function in textstem [28]. The top 5000 common English words [29] were then filtered out
from the result noun phrases of length one. A text mining process of an example sentence is shown
in Figure 2.

In total, we provide 25 pathway databases (GO, KEGG, BioCarta, Reactome, Phenocarta, etc.)
with 26,801 pathways in CPI for users to select in the analysis. The above preprocessing and filtering
steps were repeated for each pathway to generate standard noun phrases for all pathways. Based on
the results, we constructed a binary matrix where each row being a noun phrase and each column
being a pathway with element wij = 1 indicating the pathway description j contains the noun phrase i
and 0 otherwise.

Once the matrix was constructed, R package wordnet [30] was used to identify synonyms from
row names of the matrix (noun phrases). When a pair of synonyms are identified, the phrase with
lower occurrence in all pathways are combined with the phrase with higher occurrence. Then the
row of less occurred phrase was deleted. Since in later text mining of pathway clusters, a phrase
needs to at least occur in two pathways to be considered, all rows of phrases which occurred only
once in the 26,801 pathways were deleted. As a result, a matrix of 36,037 rows and 26,801 columns
was constructed.

For later penalized permutation test, the above text mining matrix construction procedure was
also applied to pathway names of 26,801 pathways, producing a similar matrix of 36,037 rows and
26,801 columns with vij = 1 indicating the pathway name j contains the noun phrase i and 0 otherwise.
For a given pathway (e.g., GO:0030964), the pathway name (“NADH dehydrogenase complex”) is
usually more concise while the pathway description (“An integral membrane complex that possesses
NADH oxidoreductase activity. The complex is one of the components of the electron transport
chain. It catalyzes the transfer of a pair of electrons from NADH to a quinone”) gives a more detailed
illustration of the pathway.
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Figure 2. Workflow of noun phrase extraction.

2.4.3. Test Statistics for Noun Phrase Enrichment Analysis

A simple strategy to test for the significance of a phrase frequently appearing in a cluster is by
simple counting and conducting Fisher exact test. Yet we found this method to be less powerful and
less biologically justifiable from real data analysis, because the phrases in the term name or a shorter
description of a pathway are deemed to be more representative than those in a full or longer description.
In other words, phrases appearing in a pathway with shorter description should statistically contribute
more weights than in a pathway with lengthy description because the latter is more likely to happen
by chance. Therefore, we down-weighted the phrase count with long description by assigning a score
between 0 and 1 to each pathway j to indicate whether it contains phrase i:

xij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 vij = 1 (phrase i appeared in
the j-th pathway name),

exp(−α · |wj|) vij = 0 and wij = 1 (phrase
i appeared only in the j-th
pathway description),

0 vij = wij = 0
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where |wj| = ∑i wij is the number of unique noun phrases in the description of pathway j and α is
a parameter controlling the degree of penalty. The greater α is, the greater the penalty is on longer
description. When α equals to 0, there is no penalty and our test simplifies to Fisher’s exact test with
equal weight to pathway names and pathway descriptions. Based on evaluation in real data, α = 0.05
is used in our package. Next, we define cluster score Ti(C) to be the sum of scores of pathways in the
cluster, i.e., for phrase i in a pathway cluster C, we define the test statistics:

Ti(C) = ∑
j∈C

xij

2.4.4. Permutation Test

To test for the null hypothesis that a phrase is not enriched in a certain cluster, we adopt a
permutation analysis. For each phrase i in the b-th permutation, pathways are randomly sampled to
form subset Sb with the same cluster size as C. Test statistics Ti(Sb) is recomputed at the end of each
permutation. The operation is then repeated for a large number of times (say, B = 10, 000 times). Finally,
all Ti(Sb)’s form a null distribution and are compared to the observed statistics Ti(C). And the p-value

could be calculated by p(Ti(C)) =
∑B

b=1 I(Ti(C)≥Ti(Sb))
B , indicating how extremely frequent phrase i is

seen in cluster C. Multiple comparison is then corrected by Benjamini–Hochberg procedure [31] to
control false discovery rate (FDR).

2.4.5. Graphical and Spreadsheet Output

In the final step, CPI outputs visualization tools, including (1) heatmap of kappa statistics matrix
for pair-wise pathways (see Figure 3) (2) heatmap of pathway enrichment p-value matrix (pathways
sorted by clusters on the rows and studies on the columns) (see Figure 4) (3) multi-dimensional scaling
(MDS) plot of pathways and cluster assignment distributed by kappa statistics (see Supplementary
Figure S3c) and (4) dendrograms of hierachical clustering (distance measured by pathway enrichment
p-values) of studies in each cluster (see Figure 5). CPI also provides diagnostic tools such as CDF plot
and scree plot to determine the number of clusters in consensus clustering.

2.4.6. Datasets and Databases

We provide 22 Homo sapiens pathway databases in CPI, including 14 pathway databases from
MsigDB (containing GO, KEGG, Reactome, BioCarta, and others), 2 databases from Connectivity
Map, transcription factor target database JASPAR, Protein-Protein interaction database and 3
microRNA target databases as options for enrichment analysis. In addition, GO and KEGG for Mus
musculus and Saccharomyces cerevisiae, and JASPAR database for Mus musculus are also provided
(see Supplementary Table S2). Users may choose to apply their own pathway databases with the extra
computing cost of re-calculating the pathway-phrase matrix in Section 2.4.2.

3. Results

3.1. Application to Transcriptomic Data of Multiple Psychiatric Disorders

To demonstrate its utility, we applied CPI to an integrative analysis of a postmortem microarray
dataset from three psychiatric disorders [32]. Briefly laser-microdissection was used to isolate pools
of 100 pyramidal neurons from layers 3 (L3) and 5 (L5) from dorsolateral prefrontal cortex (DLPFC).
Samples were collected from schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder
(MDD) subjects and unaffected comparison subjects matched for age and sex. Samples consisted
of both cell types from all subjects except for the L5 SCZ sample where two subjects were removed
due to quality control issues. Following identification of differentially-expressed genes in each of
the 6 diagnostic categories (cells from two layers and three different diagnoses) four default pathway
databases in CPI (Gene Ontology, KEGG, Reactome and BioCarta) were used for this application.
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Low expression and non-informative genes were first filtered out by quantile filtering and then
differential expression (DE) analysis was conducted by limma embedded in the MAPE2.0 function
from our package which allows both raw transcriptomic data input as well as DE p-value matrix
provided by users. Pathway enrichment analysis was performed in each study using the top 400 DE
genes and the results were meta analyzed by adaptively weighted Fisher’s method in CPI to obtain
the final integrative p-values and q-values in each pathway. We filtered out pathways containing less
than 15 genes or more than 500 genes in the pathway databases. Of the 1901 pathways analyzed,
96 pathways had meta-analyzed q-values smaller than 0.0005 and were entered for pathway cluster
analysis. The number of pathway clusters were selected to be 8 which was justified by the elbow
plot and consensus CDF plot (see Supplementary Figure S2a,b) and 18 pathways were left out as
scattered pathways.

Figure 3. Heatmap of kappa statistics of pair-wise pathways in all clusters.

Figure 4. Heatmap of log10-scale pathway enrichment p-values of pathways annotated by eight
pathway clusters (I-VIII) and a scattered pathway set (black).
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Figure 5. Hierarchical clustering of psychiatric studies in each cluster with distance defined by the
log10-scale pathway enrichment p-values.

Figure 3 displays heatmap of kappa statistics of pair-wise pathways, sorted by the 8
identified pathway clusters and a scattered pathway set (black color). Figure 4 shows heatmap
of log10-transformed pathway enrichment p-values with pathways on the rows and six studies on the
columns. Dendrograms of hierachical clustering of studies in each cluster are shown in Figure 5. Table 1
contains 10 functionally annotated phrases identified from the penalized text mining algorithm for
each pathway cluster. We note that, by our algorithm, heatmap pattern of pathways in the same cluster
in Figure 4 may not visualize similarly since the pathway clusters are obtained by kappa statistics,
representing similarity of gene content of any pair of pathways, rather than pathway enrichment
p-values. But in general, we do observe clear pattern in almost all 8 clusters. For example, cluster VI,
VII and VIII contain highly enriched pathways in SCZ-L3 and SCZ-L5, marginal enrichment in BP-L3
and BP-L5 but almost no significance in MDD-L3 and MDD-L5. Based on text mining results, clusters
VI and VIII contain pathways related to mitochondrion, ATP synthesis, NAD, etc. Our results also suggest
these alternations across DLPFC layer 3 and layer 5 are mainly related to ATP production rather than
other aspects of mitochondrial function. Cluster VII with keywords degradation, multiubiquitination,
ubiquitin 26s proteasome system, etc. is significantly altered in schizophrenia DLPFC layers and to a
lesser extent in bipolar disorder. Similar results have been reported in a blood-based microarray
investigation of both schizophrenia and bipolar disorder [33].

The result of cluster VI, VII and VIII is consistent to several biological findings in the literature.
Firstly, our results are highly consistent with the original publication in [32]. Secondly, the paper [34]
analyzed a mostly non-overlapping schizophrenia cohort and also showed that the differential
expression genes at the layer 3 and/or layer 5 pyramidal cells in the DLPFC of schizophrenia
subjects are mainly related to mitochondrial (MT) and ubiquitin-proteasome system (UPS) functions.
The findings were followed up with qPCR validation in selected target genes. This is again consistent to
our findings in cluster VI, VII and VIII. Finally, it has been shown that the synaptic area is particularly
sensitive to MT and UPS deficits due to the high demand for ATP and for UPS activity at pre- and post-
synaptic terminals [35], which is consistent with our results suggesting ATP production as the main
aspect of the mitochondrial dysfunction in schizophrenia diseases.
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Table 1. Ten significant keywords with q-value < 0.05 in each pathway cluster.

Cluster Keywords

I
insulin, NGF, focal adhesion, BDNF, neurotrophins, Trk tyrosine kinase receptor, insulin
receptor substrate, insulin receptor tyrosine kinase, Ras MAPK pathway, FAK

II neuron

III transcription, nucleoplasm, chromosome, nuclear content, nucleolus, RNA

IV
metabolism, mRNA, ribosome, replication, chemical reaction, cRNA, vRNA, viral protein,
NUMB, nucleus

V
cell death, apoptotic process, activation, endogenous cellular process, programmed cell
death, apoptosis

VI
mitochondrion, organelle, mitochondrial envelope, organelle envelope, lipid bilayer, inner e
lumen facing lipid bilayer, semiautonomous self replicating organelle, tissue respiration,
virtually eukaryotic cell, cytoplasm

VII
degradation, APC/C, apoptosis, CDC20, CDH1, mitotic protein, MHC, multiubiquitination,
ubiquitin 26s proteasome system, exogenous antigen

VIII
respiratory electron transport, ATP synthesis, inner mitochondrial membrane, chemiosmotic
gradient, brown fat, rotenone, FAD, mitochondrial matrix, body temperature, NAD

Abbreviation. NGF: Nerve growth factor, BDNF: Brain-derived neurotrophic factor, MAPK: Mitogen-activated protein
kinase, FAK: Focal adhesion kinase, RNA: Ribonucleic acid, APC/C: Anaphase-promoting complex, MHC: Major
histocompatibility complex, ATP: Adenosine triphosphate, FAD: Flavin adenine dinucleotide, NAD: Nicotinamide adenine
dinucleotide, NUMB, CDC20, CDH1: Gene names.

Cluster I and cluster IV had a different pattern of pathway alterations. Cluster IV with keywords
metabolism, mRNA, ribosome, viral protein, NUMB, etc. is significantly altered only in schizophrenia
DLPFC layers, which indicates protein synthesis dysfunction. However, similar altered expression of
gene sets related to protein synthesis has been found in postmortem hippocampus and orbitofrontal
cortex of patients with major depression, bipolar disorder, and schizophrenia consensually [36].
This implies different degrees of protein synthesis pathway alterations in different brain tissues.
Cluster I with keywords insulin, NGF, BDNF, neurotrophins, Trk tyrosine kinase receptor, etc. shows an
enrichment pattern mainly in MDD and BP-L5 with little enrichment in SCZ of BP-L3. This suggests
some similarity between the expression of these gene in layer 5 between BP and MDD subjects.

Pathways in cluster III are enriched in layer 3 of all three diseases (SCZ-L3, BP-L3 and MDD-L3)
but to a lesser extent in layer 5 (SCZ-L5, BPL5 and MDD-L5). This cluster is annotated with keywords
such as transcription, nucleoplasm, chromosome, nuclear content, nucleolus, RNA, indicating alterations
in general aspects of nuclear function. Finally, cluster II and V with moderate enrichment in all six
studies contain general neural disease related pathways with keywords such as neuron, cell death and
apoptotic process and likely represent processes involved in neuronal survival.

Interestingly hierarchical clustering of the six categories of samples (cells from two layers and
three different diagnoses) for each of the eight identified pathway clusters shows a similar pattern.
Specifically, each of the 8 pathway clusters are most tightly clustered by diagnosis across layers
suggesting similar alterations in layers 3 and 5 within a disease. Furthermore, across diagnoses
BP and SCZ cluster more strongly with one another than with MDD. This is consistent with
transcriptome [37–39] and genomic [40] findings suggesting similarities between SCZ and BP.

3.2. Justification to Penalize Pathway Description by Length in Text Mining

In pathway databases, some pathways come with only pathway names (usually less than
15 words) and some contains both pathway names and pathway descriptions (can be up to 1500 words).
In Fisher’s exact test by simple count, occurrences of a noun phrase are treated the same when
appearing in these two extreme cases. In this case, signals of important mechanism terms in
pathway names can be masked due to its frequent occurrence in pathway descriptions, while some
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non-informative terms can be falsely detected from long pathway descriptions. The penalization by
pathway description length in Section 2.4.3 helps improve the sensitivity and reduce false positives.
For example, in the real application in Section 3, the noun phrase apoptosis in cluster 7 was ranked low
in the Fisher’s exact test (r = 37, p = 0.051) while prioritized in permutation analysis of the penalized test
statistics (r = 4, p < 10−4) (see Supplementary Table S1). Some meaningless words such as et al in cluster
7 was ranked high in Fisher’s exact test (r=11, p = 5.08 × 10−7), but ranked low by penalized statistics
(r = 27 and p = 0.005). In our experience, B = 10, 000 permutations are sufficient to obtain accurate
p-value assessment while under a reasonable computing time. The entire permutation analysis for the
example in Section 3 required only 1.5 min under parallel computing using ten cores.

4. Discussion

CPI has three advantages compared to existing methods. Firstly, CPI explores consensual and
differential pathway enrichment pattern simultaneously when combining multiple related studies.
To our knowledge, CPI is the first method for this purpose. Secondly, CPI clusters pathways by
gene composition similarity (i.e., kappa statistics) to reduce pathway redundancy. Finally, CPI uses
a statistically evaluated text mining method to annotate mechanisms of each pathway cluster
automatically without subjective human interpretation. In addition, the proposed penalized text
mining algorithm by permutation test was shown to outperform conventional Fisher’s exact test in
text mining. We applied the tool to six transcriptomic datasets spanning on three psychiatric disorders
(SCZ, BP and MDD) and two layers in DLPFC (L3 and L5). The result identified multiple pathway
clusters with enrichment patterns consistent with previous findings, such as mitochondrial ATP
dysfunction in schizophrenia DLPFC layers, as well as other new findings.

The current CPI package has several limitations. Firstly, for single study pathway analysis, our
tool currently only provides Fisher’s exact test and Kolmogorov–Smirnov test. Users, however, can
externally apply advanced methods such as GSEA [41] or others and take the result as alternative
input. Secondly, our text mining algorithm relies on the descriptions provided by pathway databases.
For pathway databases without detailed descriptions (e.g., in some KEGG pathways), text mining
algorithm cannot annotate them well. Thirdly, computation time is not ignorable, especially in the text
mining step. To incorporate more studies or more pathway databases, scalable computing algorithms
will be needed.

5. Conclusions

In this article, we developed an integrative framework for combining and comparing pathway
analyses from multiple transcriptomic studies, namely Comparative Pathway Integrator (CPI).
CPI performs meta-analytic pathway analysis, reduces pathway redundancy to condense knowledge
discovered from the results and conducts text mining to provide statistically solid inference on
interpreting results. CPI has three major steps. In the first step, users can input either gene-based
differential expression p-value matrix or pathway-based enrichment p-value matrix for each study
to start with. If p-values of genes are entered, pathway enrichment analysis is applied first within
each study. Enriched pathways are passed down to meta-analysis where AW-Fisher is applied to
discover consensually and differentially enriched pathways. In the second step, significant pathways
from AW-Fisher meta-analysis are clustered using consensus clustering, with consensus CDF plot
and elbow plot to assist users to choose the number of clusters [21]. Silhouette information is used
to achieve cluster tightness by removing scattered pathways without being clustered. In the third
step, a penalized text mining algorithm is used to annotate each pathway cluster for an unbiased
knowledge learning from the experimental data and pathway database. With the penalized matrix
provided in package, CPI requires 2.8 min under parallel computing using ten cores to integrate six
studies and 9888 genes in the psychiatric example with 1901 pathways in default pathway databases
and B = 10,000 in permutation analysis. An R package is available at Github metaOmics/MetaPath.
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In summary, CPI is a meta-analytic tool for integrating multiple related transcriptomic studies in
pathway enrichment analysis. As more and more transcriptomic datasets accumulate in the public
domain, the need of such integrative analysis will become more and more prevalent. CPI can fill
the gap and provide biological insight in such comparative and integrative tasks. In addition to
transcriptomic studies, the framework is readily extensible to integrate pathway analysis of multiple
related proteomic studies or multiple metabolomics studies.
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enrichment p-values of pathways and MDS plot of pathways and cluster assignment distributed by kappa
statistics and Hierarchical clustering of psychiatric studies in each cluster, Table S1: Fisher-exact test 2 × 2
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Abstract: The heavy impact of obesity on both the population general health and the economy
makes clarifying the underlying mechanisms, identifying pharmacological targets, and developing
efficient therapies for obesity of high importance. The main struggle facing obesity research is that the
underlying mechanistic pathways are yet to be fully revealed. This limits both our understanding of
pathogenesis and therapeutic progress toward treating the obesity epidemic. The current anti-obesity
approaches are mainly a controlled diet and exercise which could have limitations. For instance,
the “classical” anti-obesity approach of exercise might not be practical for patients suffering from
disabilities that prevent them from routine exercise. Therefore, therapeutic alternatives are urgently
required. Within this context, pharmacological agents could be relatively efficient in association to an
adequate diet that remains the most efficient approach in such situation. Herein, we put a spotlight
on potential therapeutic targets for obesity identified following differential genes expression-based
studies aiming to find genes that are differentially expressed under diverse conditions depending on
physical activity and diet (mainly high-fat), two key factors influencing obesity development and
prognosis. Such functional genomics approaches contribute to elucidate the molecular mechanisms
that both control obesity development and switch the genetic, biochemical, and metabolic pathways
toward a specific energy balance phenotype. It is important to clarify that by “gene-related pathways”,
we refer to genes, the corresponding proteins and their potential receptors, the enzymes and molecules
within both the cells in the intercellular space, that are related to the activation, the regulation, or
the inactivation of the gene or its corresponding protein or pathways. We believe that this emerging
area of functional genomics-related exploration will not only lead to novel mechanisms but also new
applications and implications along with a new generation of treatments for obesity and the related
metabolic disorders especially with the modern advances in pharmacological drug targeting and
functional genomics techniques.

Keywords: obesity; differential genes expression; exercise; high-fat diet; pathways; potential
therapeutic targets

1. Obesity as a Health Problem in Need of Novel Approaches

Obesity is defined as an abnormal or excessive fat accumulation [1] resulting from a broken energy
homeostasis [2]. It has an epidemiological profile with a continuously increasing trend worldwide [3–5].
In the United States of America, at least 78.6 million people suffer from obesity [6]. Obesity is also
linked to diabetes development (diabesity) [7]. In addition, not only many risk factors can increase
obesity prevalence [8–10] but the obesity epidemic has also a major impact on health due to the

Genes 2020, 11, 875; doi:10.3390/genes11080875 www.mdpi.com/journal/genes91



Genes 2020, 11, 875

complexity of its mechanisms, pathophysiology, and metabolic consequences [11]. Obesity has also
been reported to increase risks and incidence of diseases and disorders such as advanced colorectal
neoplasm [12], malnutrition [13], and mortality risk [14] in addition to decreasing life expectancy [15]
among other diverse health impacts that could justify classifying obesity as a disease [16].

Diet control (caloric restriction), exercise, or the combination of both are the main anti-obesity
approaches. For persons with morbid obesity, bariatric surgery can be an option [17] and medications
are prescribed in some cases [18,19] as well. Although body weight management is a multibillion-dollar
market, there are only few Food and Drug Administration-approved drugs available for long-term
obesity treatment, but all have undesirable side effects [20,21].

In addition, some disabilities or heart diseases might limit the ability of individuals with obesity
to exercise. In spite of the efforts of the diverse local, national, and international organizations in
collaboration with health professionals and decision makers, obesity remains a major challenge with
heavy consequences on life quality of the population and on healthcare budgets [22,23] especially
that patients with obesity might require a specific or an adapted therapeutic care for some diseases
compared to patients not suffering from obesity.

Therefore, there is an urgent need to further explore the obesity-related pathways in order to
understand the underlying mechanisms and identify potential therapeutic targets. Herein, we focus on
exercise and high-fat (HF) diet as they represent key factors for obesity prevention, development, and
treatment area. We highlight how functional genomics allows exploring these factors via illustrative
examples along with the research, pharmacological and clinical possible outcomes, and implications.

2. Exercise-Related Genes and Pathways: Towards an Exercise Pill

2.1. Exercise and Health

Along with resting energy expenditure, exercise-induced energy expenditure represents a key
component of the total energy expenditure [24]. In addition to its place within the energy balance as
the most variable part [24], exercise has benefits at different levels even for the older population [25].
Regular exercise contributes to reduced body weight, blood pressure, low-density lipoprotein, and
total cholesterol and increases high-density lipoprotein cholesterol, muscular function, and strength
as well as insulin sensitivity [26,27]. This makes exercise an important therapy both to prevent and
manage obesity [28]. Although the purpose remains to create an accumulative negative caloric balance
leading to weight loss [29], intensity, regularity, and duration of an exercise defines its type and the
related outcomes and benefits.

The choice of exercise types depends on what we want to achieve in terms of muscle strength,
fat mass loss, mitochondrial function enhancement, etc., as well as the ability of the individual
depending on factors like age, cardiovascular health, and disability. For instance, an elderly person
with cardiovascular disease would go for a walk to burn calories because of their limited exercise
capacity [30]. The key metabolic tissue used during exercise is the skeletal muscle and its health
represents a key factor for both an improved metabolic performance as well as a healthy ageing [31]
which are two risk factors of obesity.

Exercise has a crucial role in maintaining skeletal muscle homeostasis [32] especially for the older
population [33]. Biochemical profile of muscles is highly determined by protein synthesis (muscle
contraction) and energy metabolism (energy expenditure) that govern the ability of energy usage via
locomotion, which is a principle component of anti-obesity therapy involving exercise. Importantly,
both body size and body composition, which are shaped by exercise, are determinants of resting
energy expenditure. This shows that the benefits of exercise in terms of caloric use goes beyond the
exercise-related energy expenditure. In addition, the benefits of exercise are not limited to energy
metabolism, lipoprotein profile, or obesity treatment. Indeed, studies have shown how exercise could
help to improve the prognosis, therapy, or prevent (reduce the risk) the onset of diverse diseases
and conditions such as cancers [34,35], cancer-induced cardiac cachexia [36], multiple sclerosis [37],
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stroke [38], breast cancer-related lymphedema [39], as well as to counteract some treatments side
effects [40] and can even be prescribed as a complimentary therapy (e.g., exercise oncology) [41].

2.2. Exercise Impacts Gene Expression

Identifying genes that are regulated by exercise (exercise-induced genes, especially in the skeletal
muscle) has been among the focus of different research groups that have already identified a number
of key exercise-related transcriptomes. For instance, numerous studies have obtained data that defined
the effects of exercise on genes that are related to exercise benefits at the biochemical and metabolic
levels. Indeed, they have shown that exercise induces the expression of genes that regulate or are related
to mitochondrial biogenesis [42], oxidative phosphorylation (OXPHOS) [43], antioxidant defense
mechanism [44], cell proliferation [45], and the amelioration of insulin resistance [46] which indicates
links between exercise outcomes and transcriptome modifications.

Furthermore, other gene expression-based studies, mainly comparative [47] and under different
conditions including exercise [48] and resting [49] have allowed the collation of data and increase our
understanding of the skeletal muscle transcriptome and functions in diverse contexts and depending
on the population category. This contributes to a more precise mechanistic understanding of the
genetic and biochemical changes at the molecular level. Thus, could guide to a muscle-targeting
therapy development for obesity by defining the pathway associations with genes to optimize other
therapies and even improve the pharmacovigilance based on genetic profiling. Beyond that, identifying
exercise-induced genes would support further progress in understanding and treating different
diseases other than those only depending on energy homeostasis which would expend the benefits of
“exercise pills”.

2.3. Gene Expression Patterns Underlie Muscular Adaptation to Exercise

Exploring such exercise-induced genes and pathways contributes to understand the molecular
profiles that govern the adaptive responses of muscles to exercise. In addition, advances in epigenetics
of muscle [50] in relation to exercise [51,52], diet [52], and aging [53] would further strengthen this field
beyond genomics and put each of these pillars within a complementary network of data via which
we can investigate potential therapies. For instance, exercise during pregnancy induces offspring
changes [54,55], indicating that mother physical activity (intensity and frequency) impacts the health
of the unborn child which opens an area in molecular pediatrics research.

Our team has also focused on gene expression in the skeletal muscle of endurance athletes
compared to sedentary men and identified 33 genes that are differentially expressed [56]. This study,
which supports the data reported above, highlight the global muscle gene expression including
genes mostly related to muscle contraction and energy metabolism (two parameters improved by
exercise). Moreover, these data further support our previous characterization of the global gene
expression profile of sprinter’s muscle, that shows transcripts mainly involved in contraction and
energy metabolism as the most expressed in muscles of sprinters [57]. Such genetic expression pattern
reflects a functional and metabolic adaptation of athletes toward an increased muscle contractile
function along with an enhanced energy expenditure in the context of exercise training-induced muscle
adaptations [58]. Furthermore, another study, involving healthy men, shows that moderate-intensity
exercise at the lactate threshold induces the expression of transcriptomes involved in the tricarboxylic
acid cycle, β-oxidation, antioxidant enzymes, contractile apparatus, and electron transport in the
skeletal muscle [59].

Following the same line of thought, it was demonstrated that after 6 weeks of endurance training
at lactate threshold intensity, the regulation of skeletal muscle transcriptome in elderly men includes
increased expression of genes related to oxidative OXPHOS [60]. All these changes reflect an increase
in the energy expenditure ability via an enhanced mitochondrial activity with an increased usage of
biofuels which would be combined to reduced energy storage and lead to protection from obesity.
This study [60] has also highlighted the importance of mitochondrial OXPHOS and extracellular
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matrix (ECM) remodeling in the skeletal muscle adaptation which correlates with a previously
reported work in which genes of both ECM and calcium binding are upregulated and those related to
diabetes are modulated in human skeletal muscle following a 6 wks aerobic training [61]. We note
that the exercise-induced genes are associated with a profile that counteracts the ageing process.
Indeed, whereas ageing (risk factor for obesity) decreases metabolic performance (e.g., mitochondrial
dysfunction [62]) and the strength of the muscle [63] and increases oxidative stress [64], exercise
improves those biological patterns in the muscle.

One of the mild endurance training induced genes that draws particular attention is the secreted
protein acidic and rich in cysteine (SPARC). This gene was characterized as an exercise-induced
gene [60] as well as electrical pulse stimulation (considered as the in vitro form of exercise)-induced
gene in C2C12 myoblasts [65]. In addition, studies have shown that SPARC increased in the skeletal
muscle during training [66–68]. This same protein plays diverse roles in energy metabolism especially
in the muscle [69,70], ECM remodeling and myoblast differentiation [71–74], inflammation [75], and
cancer development [76], which would indicate that SPARC plays a role in exercise-induced benefit
related processes involving inflammation, cancer, and tissue remodeling.

All these gene expression changes help to understand, at least in part, exercise-induced pathways
of mitochondrial biogenesis [77] and mitochondrial biochemistry [78] as well as muscle adaptation [79]
and how exercise can reverse ageing impacts on skeletal muscle [80]. Such genomics studies are
supported and complemented by proteomics studies that have explored the variations in protein
expression in muscle depending on the physical activity [66,81–83] and reflects an adaptation of the
proteinic profile, comparable to the transcriptomic changes, as well. This includes the increase in the
expression of a peroxisome proliferator-activated receptor γ coactivator 1 α isoform PGC-1α4 that
is involved in the regulation of skeletal muscle hypertrophy [84] which reflects an aspect from the
correlation and complementarity between the functional genomics and functional proteomics.

Moreover, studies of exercise-related genes can be categorized depending on exercise type,
e.g., endurance-based exercise and resistance-based exercise [85]. The transcriptomic signature of
exercised muscle is also variable depending on muscle fibers and age [86]. This indicates a need of a
classification strategy depending of the variables (age, muscle fibers, exercise type, etc.) that modify
gene expression response to exercise. Such classification could also be extrapolated to the therapeutic
target identification depending on the suitable pharmacological effects (enhance the metabolism,
increase muscle strength, etc.).

2.4. Implications

Such exercise-related gene expression patterns explain some of the exercise benefits, including
those seen even after detraining [87], including increased muscle contraction and energy metabolism
improvement, thereby providing molecular and mechanistic links between the exercise benefits and
the genes (over) expressed with or following exercise which could potentially be used for drug
development towards an “exercise pill” (Figure 1).

Importantly, the exercise benefits and their clinical outcomes are precisely what clinicians hope
to observe in their patients (with obesity, diabetes, etc.) such as an improved blood lipoprotein
profile [88,89], increased usage of lipids and glucose, ameliorated insulin resistance, as well as an
enhanced energy expenditure. Obtaining these effects is exactly what functional genomics-based
therapies aim to achieve via pharmacological agents. Indeed, identifying exercise-specific genes and
exploring the pathways they control would allow the development of exercise pills. Such pills could
therapeutically mimic the effects of exercise via targeting these “exercise-genes” pathways through
pharmacological agents and thus, obtain the benefits of exercise without intensive training. This is
of a particular importance for old (and suffering from heart diseases) or disabled individuals who
have limited ability to exercise but who therapeutically require the benefits of exercise. Therefore,
such “exercise pill” would allow to overcome this limitation of applying exercise as a therapy for obesity.
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Figure 1. The implications of identifying genes differentially expressed during exercise training:
exercise-induced genes.

3. Diet-Related Genes: A Focus on High-Fat Diet to Identify a Lipid-Specific Signal

3.1. High-Fat Diet Particularities in Obesity Context

As diet is the other pillar in obesity research and represents the energy intake and a key part
of anti-obesity therapy, it is also an important factor for gene expression studies in the context of
obesity. The diverse properties and impacts the diet has on metabolism pattern and biochemical
adaptations made the identification and the exploration of associated specific gene expression patterns
an important element in obesity molecular research. The effect of diet on obesity development is well
known especially for HF diet [90–92]. The reason behind the focus on fat, beyond the concept of excess
caloric intake, is that this nutrient, compared to both carbohydrates and proteins, has limited effect on
satiety, is associated with high palatability, and has a high caloric density [93]. In addition, the lipid
content in the modern Western diet increases fat consumption and is part of the unhealthy lifestyle.
Indeed, following a HF meal ingestion, both caloric intake and energy expenditure favor weight gain
because of the palatability, high caloric density, and low satiety effect of HF nutrients, as well as the
weak potency for fat oxidation and energy expenditure associated with elevated fat intake [94–96].
The other pattern associated with HF diet is that the offspring have obesity risk and gene expression
alterations [97] as a consequence of the maternal HF diet. This highlights the need to focus on HF diet
especially as it impacts gene expression and epigenetics profile [98] as exemplified by studies showing
that epigenetic changes can be consequences of the maternal HF diet [99–101]

The control of food intake represents a major determinant in the etiology of obesity especially
with HF meals which acutely disrupt energy balance [102,103]. Feeding behavior is controlled by
short-term circulating nutrients and hormones as well as signals derived from peripheral tissues in
response to a meal and changes in energy stores. Within this context, the hypothalamus is a key brain
center upon which all these peripheral signals converge to regulate feeding behavior and energy intake,
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thus it controls short-term as well as long-term energy balance and steady-state body weight [104,105].
Therefore, screening the changes in gene level following acute HF meal ingestions would reveal
new elements within the gut–brain axis leading to the development of novel approaches for the
understanding and the control of energy homeostasis. In particular, the identification of transcriptomic
changes induced by HF diet both in digestive and peripheral tissues as well as within the central
energy metabolism control centers in the brain.

3.2. Digestive System (First Food “Receptors”)

Differentially expressed genes in the stomach and intestine are key elements since these two
tissues represent the sites of most of the digestive processes and where the nutrients are first available
in the simplest forms (that interact with endocrine system and different receptors). Thus, stomach
and intestine represent the starting point of signals controlling energy balance (including food intake).
Importantly, variations (gene expression) within the digestive system may reflect changes at the
digestive process that could impact the availability, the absorbance ratio, as well as the biochemical
and endocrine effects of the diet nutrients. Since HF diet-induced transcriptomes would require more
attention than the low-fat (LF) induced genes, it is of a great importance to identify and more precisely
distinguish between HF and LF specific genes. Therefore, the particularity of selected studies we
report first herein is that fasting status was the reference (control) to study both HF and LF-specific
genes. In fact, numerous previous studies that investigated HF-specific changes used LF conditions as
a reference, therefore, were not able to characterize LF-specific genes nor to distinguish HF-specific
from LF-specific transcriptomes. We first report a transcriptomic study that identified the peripheral
signals of appetite and satiety from mice duodenum by investigating the transcriptomic changes
in the duodenum mucosa 30 min, 1 h, and 3 h (to explore acute impact rather than chronic gene
expression modifications) following HF and LF meal ingestion [106]. This study reveals that energy,
protein, and fat intake transcriptome expression changes were higher in the HF groups compared to LF
groups [106,107]. These data correlate with an intestinal mucosal mRNA analysis that demonstrates
changes in the expression of genes related to anabolic and catabolic lipid metabolism pathways [108]
and a recent paper shows that the expression of genes related to the uptake and transport of lipid
and cholesterol as well as glucose storage are upregulated in the duodenum [109]. This changes
specific patterns of HF-diet compared to LF-diet. Digestive mucosa is the first tissue that interacts
with nutrients during the first digestive processes and has the ability to produce signal molecules that
can act as hormones within the gut–brain axis [110]. Therefore, the key concept beyond identifying
digestive mucosal diet-induced genes is to eventually identify new signals and responses to nutrient
ingestion controlling food intake and energy expenditure. As an example of a potential signal molecule,
the trefoil factor 2 (Tff2) has been identified as a newly found HF-specific gene [106] for which its
deficiency in mice leads to a protection from HF diet-induced obesity [111,112]. Among the hundreds
of genes that are modulated after HF or LF meal ingestion [106,113–116], we put a spotlight on the Tff2
and its pathway as a potential targetable pathway for obesity molecular therapies. Indeed, this gene is
upregulated by HF (and not LF) diet [106] which suggests it is a specific acute HF-induced signals
that may impact food intake regulation. At the peripheral level, HF-diet decreases the expression of
genes involved in metabolizing glucose in porcine perirenal and subcutaneous adipose tissues [116]
which would indicate the switch (as an adaptation) of the metabolism toward less glucose usage in the
presence of lipid intake, probably to increase lipid metabolism following a LF-diet intake. In addition,
it has been shown that in mesenteric adipose tissue, only LF meal upregulated transcripts implicated
in lipid biosynthesis, whereas transcripts involved in lipid utilization and glucose production were
downregulated in both HF and LF meals following 3 h of meal ingestion [114], also pointing a metabolic
adaptation of lipid metabolism depending of lipid ratio within the diet.
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3.3. Adipose Tissue (Energy-Stocking Tissue) and Skeletal Muscle (Energy-Usage Tissue)

HF diet induces an increase in the expression of genes related to inflammation, whereas it
downregulates genes related to lipid metabolism, adipocyte differentiation markers, and detoxification
processes, and cytoskeletal structural components in mouse adipose tissue [117]. These observations
highlight how the metabolic function reacts to HF diet in terms of adaptation and at the same time
emphasizes health problems associated with obesity such as inflammation. These results, further
indicate that the metabolism is shifted toward the usage of lipids rather than glucose, are in agreement
with other studies showing that HF diet enhances the expression of genes related to lipid catabolism in
the skeletal muscle [118]. Such data illustrate how the metabolic cellular system can adapt to the type
and the quantity of nutrients received through different diets and the activated metabolic processes are
chosen depending on such factors. Exploring such “diet-oriented” metabolic pathways might allow the
development of pharmacological approaches that could mimic such pathways in order to increase lipid
store usage by tissues as a part of anti-obesity therapies. Importantly, knowing the metabolism-related
genes regulated by diet could optimize pharmacotherapies and diet-based therapies by selecting the
type and the quantity of specific nutrients that could act towards a suitable metabolic phenotype for a
specific patient. Herein, it is worth emphasizing that in order to correctly design a study, selecting the
control group remains critical. Indeed, to study HF or LF diet, it is important to define the reference
whether it is fasting status or fed control. In case of fed control, not only the caloric content but also the
fat type and its chemical nature are also to be taken into account when reaching conclusions.

3.4. Brain (Energy Balance-Control Centers)

Besides identifying diet-related peripheral signals, changes induced by the diet at the central level
have also been studied. For instance, the study of HF and LF meal ingestion-induced changes in the
hypothalamic transcriptome reveals that 3 h after the beginning of meal ingestion, 12 transcripts were
regulated by food intake including two involved in mitochondrial functions [115]. This work also
reveals the increased expression of the major urinary protein 1 (Mup1) gene in the hypothalamus of LF
fed mice compared to fasting mice. MUP1 is a protein involved in metabolic profile improvement
including energy balance toward skeletal muscle with increased mitochondrial function and energy
expenditure in diabetic mice [119]. These MUP1 effects on metabolism regulation [120] including
glucose and lipid metabolism [121], might explain the benefits of the LF diet. Such benefits are not
only explained by the limited caloric intake in LF diet compared to HF diet but results from the switch
of the metabolic profile toward more fuel usage and energy expenditure. In addition, we might also
suggest that Mup1, with biochemical effects protecting from obesity, is involved in the pathways
that are blunted during obesity which would further increase energy storage and decrease energy
expenditure. Indeed, in another study, a 8–12 d dietary restriction in LF-diet groups of mice led to a
downregulation of Mup1 in adipose tissue [122] which could be an adaptation to the dietary restriction
in order to conserve energy stores and limit energy usage since the organism is under caloric privation.
This further highlights the importance of Mup1 in energy balance, both in energy expenditure and
energy conservation, and presents its function as a potential molecular target for obesity as well.

Furthermore, regarding the hypothalamic (center of energy homeostasis control) transcriptome,
high-fructose diet fed to Wistar rats throughout development lead to the remodeling of 966 genes
and enhanced both depressive-like and anxiety-like behaviors [123] which could lead individuals to
manifest either increase or loss of their appetite. In addition, the hypothalamic transcriptome pattern
under HF diet condition (over 2 wks) exploring the neuropeptides involved in energy balance explains
how ingesting a HF meal contributes to remodeling the expression of neuropeptide Y, agouti-related
protein, and proopiomelanocortin over time [124]. This last element is extremely important to
understand the establishment and the development of obesity by studying key molecular signals at
different steps and reveal the underlying paths. Importantly, the data generated on preferentially
expressed genes in the hypothalamus and pituitary gland [125,126] improve the understanding of the
central control of energy metabolism and diet impact on gene expression.
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3.5. Potential Applications

The characterization of novel fat-specific genes may contribute to the development of new
therapeutic targets for appetite and satiety controls. Herein, it is worth mentioning that the existence
of two levels of diet-dependent energy metabolism control (peripheral and central) provides wider
therapeutic options and further choices depending on the patient’s physiological or pathophysiological
status. For instance, a patient with obesity suffering from a functional gastrointestinal disease might
not respond well for an obesity therapy targeting the peripheral signals and would require targeting
the central pathways. Mapping how the metabolic profiles (governed by selected genes) change
according to the type of diet and the time between meal ingestion and gene expression analysis (and
eventually at which time the meal is ingested) would allow the identification of selected signals that
are specific and/or time dependent (Figure 2). Such data could allow to improve precise personal
therapies for individuals.

Figure 2. Studying the effects (expressed genes and the associated pathways) of different types of
diets on the different organs/tissues involved in energy balance at different times allow to identify
time-dependent specific signals (such as lipid-specific signals) regulating metabolism homeostasis.

Additional studies have examined the interaction between diet and gene expression regulation.
HF and high-cholesterol (HFHC) diet, and HFHC plus high-sucrose diet [127] have been explored
within the context of differentially expressed genes. Unlike the previous examples, blood RNA analysis
was performed and revealed differential hyperlipidemia gene expression profiles even though levels
of fasting plasma lipids and glucose corresponding to these two diets was similar [127]. This indicates
that gene expression might not reflect phenotypic changes and that corresponding in vivo metabolic
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and biochemical exploration is required to understand gene expression modifications. In addition
to studying the effects of diet itself, it is highly relevant to explore the impacts of drugs that modify
the effects and distribution of nutrients in vivo. For example, Salomäki et al. (2014), showed that
administering metformin (prescribed to regulate glucose blood levels [128]) to pregnant female mice
that were on a HF diet resulted in transcriptome related to mitochondrial ATP production and
adipocytes differentiation of the offspring [129] resulting in an improved metabolic phenotype. From
a therapeutic viewpoint (pharmacology and nutrition), understanding the pathways stimulated or
deactivated depending of the type of diets would allow nutritionists and clinicians to adapt the diet
for their patients based on the therapy they are following or based on their lifestyle to avoid possible
adverse interactions between the diets, therapies, and activated pathways (genes, enzymes, etc.).
This would help mitigate therapeutic failure, or pharmacotoxicity by reducing the drug clearance
(metabolism) that could lead to a toxic accumulation. The goal herein remains to reach and adapt to
the clinical and therapeutic needs.

Finally, the main potential application beyond focusing on HF-diet-induced genes remains the fact
that lipid metabolism-related feedback hormones (mainly leptin) do not have an acute effect. In fact,
their effects develop after a relatively long period of time compared to carbohydrate-induced hormones
(for instance insulin) that are stimulated immediately following a carbohydrate intake. This highlights
the importance of elucidating changes that are both acute and specific to HF diet intake in order to
identify acute signals of lipid intake; based on which therapies (hormonal or pharmacological) can
be developed. In addition, HF diet changed the expression of genes related to neurogenesis, calcium
signaling, and synapse, in the brain cortex [130]. Such ability of the diet to impact neuronal-specific
gene patterns could explain how diet and obesity establishment affect the ability of the brain to control
energy balance and would require comparable studies in the hypothalamic region, the center of
metabolic homeostasis control. Combining the study of changes in the intestinal mucosa (first tissue
that comes in contact with the food) with those in the brain (centers that receive peripheral signals and
control food intake) would provide the best combination to identify acute HF-specific signals of food
intake regulation and, therefore, optimize the therapies based on these axes.

4. Conclusions, Discussion, and Perspectives

Overall, identifying such differentially expressed genes related to exercise and high-fat diet
and their related pathways could suggest potential novel therapeutic targets for obesity treatments
after elucidating the mechanisms linking those genes to the diverse energy metabolism phenotypes.
Functional genomics would, therefore, lead to a new generation of therapeutic approaches that would,
through targeting selected energy balance pathways, mimic the benefits and outcomes of physical
activity, suitable diets, or even hormones.

For the diet, due to the properties of lipids (high caloric density, low satiety effect, etc.), we believe
that one of the best strategies to develop pharmacotherapies for obesity would be to target HF intake at
the appetizer time. Therefore, one of the primary strategies is to identify and study the HF diet-induced
satiety hormone; usually transcriptionally regulated 30 min to 3 h after HF meal and to deliver it at
the time of appetizer in order to control HF intake, obesity, and the related complex diseases and
conditions. Herein, it is important to emphasize that adequate diet control is the key solution for
obesity (especially if combined with exercise [131,132]) and that pharmacological options remain
complementary in selected cases. Regarding identifying pathways of the exercise-induced genes is
important for development of exercise pills (long-term objective) that could therapeutically mimic
the effects of exercise via targeting these “exercise-genes” pathways through pharmacological agents
and, thus, obtain the benefits of exercise without intensive training. This is of a great importance
for individuals who are not able to perform exercise because of physical handicap or diseases like
heart failure.

Importantly, data generated by functional genomics, especially if combined with functional
proteomics and the dynamic-dependent studies of the diverse related pathways will not only provide
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new insight into therapeutic options and research applications but also into clinical implications.
Such implications will cover exercise, HF diet, but also other obesity-related factors such as hormones
which are worth exploring within the functional genomics context.
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Abstract: The role of three-dimensional genome organization as a critical regulator of gene expression
has become increasingly clear over the last decade. Most of our understanding of this association
comes from the study of long range chromatin interaction maps provided by Chromatin Conformation
Capture-based techniques, which have greatly improved in recent years. Since these procedures are
experimentally laborious and expensive, in silico prediction has emerged as an alternative strategy
to generate virtual maps in cell types and conditions for which experimental data of chromatin
interactions is not available. Several methods have been based on predictive models trained on
one-dimensional (1D) sequencing features, yielding promising results. However, different approaches
vary both in the way they model chromatin interactions and in the machine learning-based strategy
they rely on, making it challenging to carry out performance comparison of existing methods.
In this study, we use publicly available 1D sequencing signals to model cohesin-mediated
chromatin interactions in two human cell lines and evaluate the prediction performance of
six popular machine learning algorithms: decision trees, random forests, gradient boosting,
support vector machines, multi-layer perceptron and deep learning. Our approach accurately
predicts long-range interactions and reveals that gradient boosting significantly outperforms the
other five methods, yielding accuracies of about 95%. We show that chromatin features in
close genomic proximity to the anchors cover most of the predictive information, as has been
previously reported. Moreover, we demonstrate that gradient boosting models trained with
different subsets of chromatin features, unlike the other methods tested, are able to produce
accurate predictions. In this regard, and besides architectural proteins, transcription factors are
shown to be highly informative. Our study provides a framework for the systematic prediction of
long-range chromatin interactions, identifies gradient boosting as the best suited algorithm for this
task and highlights cell-type specific binding of transcription factors at the anchors as important
determinants of chromatin wiring mediated by cohesin.

Keywords: machine-learning; chromatin interactions; prediction; genomics; genome architecture
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1. Introduction

Mammalian genomes stretch for more than two meters and are formed by around three billion
base pairs that are tightly packed within the nucleus, which has a width on the order of micrometers.
Strikingly, this level of compaction is compatible with a proper accessibility to the cellular machinery
required for essential metabolic processes such as replication or transcription. Over recent years,
it has become clear that such seemingly counterintuitive events can be explained by the architectural
organization of the genome, which forms 3D structures with several levels of complexity [1,2].
Beyond nucleosome-nucleosome interactions, chromatin loops represent the smallest scale of genome
organization. Loops bring distal genomic loci into close physical proximity and typically range from
one to several hundreds of kilobases [3,4]. On a larger scale, chromosomes are spatially segregated into
structures called topologically associating domains (TADs). TADs are blocks of chromatin where all
pairs of loci interact with each other more frequently than with neighboring regions [5,6]. At a higher
level, the interactions of TADs with one another make up megabase-scale structures that extend
to whole chromosomes and are known as nuclear compartment [7]. Since there is not yet a well
characterized biological delineation between such orders of genome organization, in this study
we will use the term ’loop’ to refer indistinctly to chromatin interactions at any level of this hierarchy.
Accordingly, we will refer to the pair of distal loci that are brought together as ’loop anchors’.

Recent findings have revealed that 3D genome organization is more complex than anticipated [3].
Indeed, genome architecture can vary between cell types and is dynamic during cell differentiation
and development [8]. Evidence also points to an essential role of the 3D genome in the control of gene
expression by allowing communications between promoters and distal enhancers [9–12]. In addition,
the insulator protein CCCTC-binding factor (CTCF) and the ring-shaped cohesin complex have been
shown to highly co-localize both at the borders of TADs and at the anchors of intra-TADs chromatin
interactions in mammalian cells, which likely indicates that these factors work together to shape
chromatin architecture [3,5–7]. A plausible hypothesis of how TADs and loops are formed postulates
that cohesin extrudes DNA loops until it encounters an obstacle such as convergently oriented loop
anchor DNA sequences actively bound by CTCF [13,14]. This hypothesis places cohesin as the main
player in the so-called loop extrusion model [13–16]. Interestingly, recent evidence has revealed that
cohesin is moved to CTCF sites by transcription [17], suggesting that RNA polymerase II (Pol II) might
be a driving force for this mechanism.

Most of the advances in our understanding of how high order genome organization
links to essential cellular metabolic processes comes from the development of Chromatin
Conformation Capture (3C)-based technologies [18], which has provided the scientific community
with high resolution genome-wide chromatin interaction maps for several mammalian cell types.
Despite technical improvements, experimental profiling of such maps not only remains difficult
and expensive, but also requires a remarkably high sequencing depth for the achievement of high
resolution [3,19]. Therefore, in silico predictions that take advantage of the wealth of publicly available
sequencing data emerges as a rational strategy to generate virtual chromatin interaction maps in
new cell types for which experimental maps are still lacking. To date, several studies have been
devoted to predict chromatin loops based on one-dimensional (1D) genomic information with accurate
results [20–25]. In such works, authors have modeled loops using different designs and machine
learning approaches. Accordingly, they reached different conclusions regarding which chromatin
features are most predictive and whether information within the loops (away from the anchors)
contributes to the predictive power.

Here, we model cohesin-mediated chromatin loops using an integrative approach based
on ENCODE 1D sequencing datasets to test the performance of six different machine
learning algorithms: decision trees (DT), random forests (RF), gradient boosting (XGBoost),
Support Vector Machines (SVMs), multi-layer perceptron (MLP) and deep learning Artificial Neural
Network (DL-ANN). We find that XGBoost achieves the best performance, with precision scores
of around 0.95. We also show that, although architectural features at the anchors display the
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greatest predictive power, transcription-associated features accurately predict chromatin loops.
Among these features, transcription factors are the most informative and their contribution resides
mainly at the anchors and varies across human cell lines.

2. Materials and Methods

2.1. Processing Publicly Available Data

The experimental data used in this study is summarized in Table S1. With the exception of Hi-C,
which was used for visualization purposes, the rest of the datasets were batch-downloaded from
ENCODE [26] . BAM files were used for ChIP-seq, RNA-seq and DNase-seq, while tsv tables labeled as
’long range chromatin interactions’ were used for ChIA-PET experiments targeting RAD21. Figures 1
and S1 show genome browser views displaying a selection of these datasets. All the analyses were
performed in K562 and GM12878 cell lines using human assembly hg19.

2.2. Identification of RAD21-Associated Loops

RAD21 loops in K562 were extracted from ENCODE dataset ENCFF002ENO. For the identification
of RAD21 loops in GM12878, two replicates were considered (datasets ENCFF002EMO and
ENCFF002EMQ) and only overlapping loops were retained. We defined overlapping loops as
those that share both anchors, allowing a maximum gap of 2 kb. Following this approach,
we identified 3290 and 5486 loops in K562 and GM12878, respectively. For machine learning
classification, we generated the same number of negative loops for each cell line. In order to
build robust models that were able to accurately separate loops from random genomic regions,
we generated an initial set of negative loops by randomly combining pairs of RAD21 ChIP-seq peaks
(see Figure 2a). Then, loops that overlapped experimental ones were filtered out. Since genomic
distance highly influences chromatin interactions, the resulting set of negative loops were passed
through a regression model trained to capture the distribution of genomic distances between anchors of
experimental loops. Finally, 3290 and 5486 loops were randomly selected from the K562 and GM12878
negative sets, respectively. In this way, the number of positive and negative loops in the final datasets
were equal and with similar genomic distance distributions. Since we used pairs of RAD21 peaks
to generate the initial set of background loops, we examined RAD21 (and CTCF) ChIP-seq reads at
the anchors of our positive and negative loops. We observed a clear read enrichment of both signals
(Figure S1), indicating that final loop sets are adequate for subsequent training.

2.3. Machine Learning Data Matrix

To model loops using chromatin features, we quantified 23 sequencing datasets within and
adjacent to each loop using a modified version of the approach described by Handoko et al. [27].
Given a loop with length L, we extended L base pairs to its left and right and the extended region
(with length 3L) was splitted into 1500 bins (Figure 2b, top). Then, we scored the sequencing
experiments (Table S1) within each bin (Figure 2b, bottom). The scoring was performed by counting
reads that aligned to each bin and normalizing by bin genomic length and sequencing library size.
For each cell line, we obtained a final data matrix with rows representing loops and columns
representing quantification of chromatin features at each bin.

The 23 chromatin feature datasets (Table S1) included marks associated with chromatin
accessibility (DNAse-seq), expression (RNA-seq), RNA Pol2 binding (POLR2A, POLR2AphosphoS5),
active promoters (H3k4me2, H3k4me3, H3k9ac), enhancers (H3k4me1), active gene bodies
and elongation (H3k36me3, H4k20me1), transcriptional repression (H3k27me3, H3k9me3),
architectural components (CTCF, RAD21) and transcription factors (ATF3, CEBPB, JUND, MAX,
REST, SIN3A, SP1, SRF, YY1). The motivation of selecting these datasets was to keep a wide set of
chromatin features representing different molecular events. Only datasets from ENCODE common to
both cell lines were selected.
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2.4. Supervised Learning

In this work, we used six Machine Learning strategies in order to induce a classification model for
the data. Each of the model is applied to a training set and then the prediction models are evaluated
on a test set. We briefly describe each method in the following subsections.

2.4.1. Decision Trees (DT)

We have used the algorithm implementation provided by [28,29]. A decision tree (DT) algorithm
iteratively builds a classification tree by adding a node to the tree. Features are used within internal
nodes in order to classify examples.

A DT algorithm induces a tree by splitting the original dataset into smaller sets based on a test
applied to the features. This process is repeated recursively on each smaller set and is complete when
the small set present in one node presents the same value as the target label or when no more gain in
predictive power is obtained by splitting further. Such a process is known as recursive partitioning.

The features selected depend on a measure used in order to assess the importance of a feature.
The Gini Impurity measure was used, which is defined as:

1 −
n

∑
i=1

p2(ci) (1)

where p(ci) s the probability of class ci in a node. We have also run several experiments on the datasets
used in the paper with the Entropy, and the results were basically the same with the two measures.

In this paper, we used the implementation provided by the library Scikit Learn (Sklearn)
library [28]. The maximum depth parameter has been set to 10. The criterion was set to Entropy,
while Gini is in theory intended for continuous attributes, Entropy is intended for attributes occurring
in classes but since Entropy uses logarithmic functions slower to compute. For the training of the
K562 DT, both criteria were tested and compared.

2.4.2. Random Forests (RF)

This strategy [30] belongs to the family of ensemble learning algorithms, based on a divide and
conquer approach that improves performance. The principle behind ensemble methods is that a group
of weak models are put together to form a stronger model. This is due to the fact that ensemble
strategies reduce variance, improving the prediction power. RF algorithms induce a set of trees,
which are then used in order to produce the final output, using a voting scheme. The trees are built
one at a time. Each tree is obtained using a randomly selected training subset and a randomly selected
subset of features. It follows that the trees depend on the values of an independently sampled input
data set, using the same distribution for all trees.

In this case we also used the implementation provided in [29]. We have set the number of
estimators to 250, even if we noticed that the results show little variation with estimators between 50
and 250. The maximum depth of the trees was set to 8, and the criteria used was the Entropy.

2.4.3. XGBoost

This algorithm, as well as other gradient boosting algorithms such as the well known Gradient
Boosting Method (GBM), sequentially assembles weak models to produce a predictive model [31].
During this sequential procedure, a gradient descend procedure is applied. This procedure is repeated
until a given number of trees has been induced, or when no improvement is registered. An important
aspect of XGBoost is how the algorithm controls over-fitting, which is a a known issue in gradient
boosting algorithms. XGBoost adopts a more regularized model formalization, which allows the
algorithm to obtain better results than GBM. XGBoost is a method that has recently received much
attention in the data science community, as it has been successfully applied in different domains.
This popularity is mostly due to the scalability of the method. In fact, XGBoost can run up to ten times
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faster than other popular approaches on a single machine. Again, we used the Scikit-learn library for
this algorithm. In this case the number of estimators was set to 100, the learning rate to 0.1 and the
maximum depth to 3.

2.4.4. Deep Learning

Deep learning [32] is a subset of machine learning that incorporates computational models and
algorithms that mimic the architecture of biological neural networks in the brain, such as Artificial
Neural Networks (ANNs). In a rough analogy with biological learning system, ANNs consist of
densely interconnected units, called neurons [33]. Each neuron receives several real valued input,
e.g., from other neurons of the network, and produces a single real valued output. The output depends
on an activation function used in each unit, which introduces non-linearity to the output. The activation
function is used only if the input received by a unit is higher than a given activation threshold. If this
is not the case, then no output is produced. Normally, an ANN consists of different layers of neurons.
The term “Deep” refers to the number of such layers and complexity of an ANN. There are three
types of layers: the input layer, the output layer, and the hidden layer (which extracts the patterns
within the data). Therefore, as the data moves from one hidden layer to another, the features are
recombined and recomposed into complex features. Because of this, deep learning works especially
well with unstructured data, but requires a huge volume of training data. Deep learning has proven to
be successful in different applications fields such as acoustics, imaging or natural language processing.

In this paper, we used the Multi-layer Perceptron (MLP) classifier provided by Sklearn library [28].
In particular, for the experiments performed on the K562 cellular line, we used an Alpha (regularization
term) of 0.001, with an adaptive learning rate and a network consisting of 40 layers with 10 neurons
on the first layer. Alpha forces the parameters to have small values for robustness. The optimal
hyper-parameters used to train the MLP classifier for the GM12878 cell dataset were the same as for
the K562 cell, except for the Hidden Layer Sizes which was set to 100 layers, with 20 neurons on the
first layer. These parameters were experimentally determined.

We have also used the implementation offered by Keras library [34]. For K562 loops, we
first tested a neural network made of two hidden layers: Layer 1, 120 neurons, relu activation;
Layer 2, 10 neurons, relu activation; Layer 3 (output), 1 neuron, sigmoid activation. The resulting
accuracy was 0.99 for training and 0.77 for testing, hinting at a possible overfit. We have also
tested the same network architecture with a reduced dataset (removing features associated with
RAD21 and CTCF), and obtained 0.99 for testing and 0.69 for testing. Since it is probable that
the model has overfitted, we have decided to try out a separate architecture on the K562 cell line,
that also included Dropout layers; specifically, the architecture looked like this: Layer 1, 120 neurons,
relu activation; Layer D1, Dropout 0.2; Layer 2, 30 neurons, relu activation; Layer D2, Dropout 0.2;
Layer 3, 10 neurons, relu activation; Layer 4 (output), 1 neuron, sigmoid activation. The results
slightly improved, obtaining for the full dataset on training 0.99 and testing 0.79 (0.02 improvement).
The results for the reduced dataset stayed the same.

For GM12878 loops, we obtained an accuracy of 0.99 on the full dataset for training and 0.81
for testing. When we tried the reduced dataset, the models yielded an accuracy of 0.99 for training
and 0.66 for testing. Given the low difference between the accuracies of an architecture that includes
Dropout layers, we decided not to train GM12878 on a dropout-enabled neural network. Then again,
the proposed architecture probably overfits, but the accuracies obtained stay in line with the those
obtained using other algorithms presented in this paper.

2.4.5. Support Vector Machines (SVM)

This supervised technique tries to find an hyperplane in a n-dimensional space (being n the
number of features), capable of separating the training examples [35]. Several such hyperplanes
may exist, and SVM aims at finding the one that maximazes the distance between data points of
the classes. The hyperplane is basically the classification model, with data falling on one side of the
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hyperplance being assigned a class, while data falling on the other side are assigned the other class.
Data are not always linearly separable, and in these cases, a kernel function is used in order to
transform the original data points with the aim of mapping the original data points into a higher
dimensional space where we can find a hyperplane that can separate the samples.

In this study we used the Radial Basis Function (RBF) kernel. The RBF kernel is an often used
kernel for classification tasks [36]. In particular, the C-value for the RBF function was set to 100,
after having performed several preliminary experiments.

To evaluate the methods, we used four popular measures [37]:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-Score =
2 × Precision × Recall

Precision + Recall
(5)

In the above equation we used the following terminology:

• True Positive (TP): a true positive represents the case when the actual class matches the
predicted class;

• True Negative (TN): a true negative is similar to a true positive, the only difference being that the
actual and predicted classes are part of the negative examples;

• False Positive (FP): a false positive is the case when the actual class negative, but the example is
classified as positive;

• False Negative (FN): similar to false positive, but it this case this refers to the case where a positive
example is classified as negative.

3. Results and Discussion

3.1. Association of Genomic and Epigenomic Features with Chromatin Loops

We started by assessing the genomic and epigenomic landscape of chromatin loops. We used
published ChIA-PET datasets targeting the cohesin complex component RAD21 [38] from two
human cancer cell lines (Table S1), K562 and GM12878, identifying 3,290 and 5,486 chromatin loops,
respectively. 1D sequencing datasets from ENCODE (ENCODE Project Consortium, 2012) were
also collected in order to represent the chromatin features associated with loops and their genomic
neighbourhoods (Figures 1 and S2). As expected, we observed a large colocalization of CTCF and
RAD21 architectural proteins with loop anchors, in agreement with previously reported data [5,39].
On the other hand, whereas the repressive mark H3K27me3 and the gene body mark H3K36me3 were
found to be dispersed along loops and across loop anchors, other regulatory marks were enriched
both at loop anchors and inside the loops. Such is the case of Pol2, open chromatin measured
by DNase-seq and several transcription factors. The same stands for H3K4me1 and H3K4me3,
two well-known markers for enhancers and promoters. These observations suggest that regulatory
features measured by high-throughput sequencing provide a valuable source of information for the
prediction of chromatin loops.
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Figure 1. Chromatin features associated with RAD21 loops in GM12878 cell line. Hi-C interaction
frequencies are shown in the top panel and ChIA-PET interactions are represented as blue arcs
in the second panel. Then, a genome browser view for relevant chromatin features is displayed,
including architectural factors (blue), DNase-seq (black), RNA-seq (yellow), RNA Pol2 (orange),
histone marks (green) and transcription factors (red).

3.2. An Integrative Approach to Predict Chromatin Loops

To integrate sequencing features data into a predictive model of chromatin loops, we applied
the computational framework of Figure 2. We first generated positive and negative sets of
RAD21-associated chromatin loops. We used the experimental loops from the previous section
as the positive set and the negative set was generated by combining pairs of RAD21 ChIP-seq peaks
from ENCODE that do not overlap experimental loop anchors (see Material and Methods). Given the
relative distribution of regulatory marks with respect to chromatin loops (Figure 1), we argued
that these marks may affect loops not only at the anchors but also at the region between them.
Therefore, to comprehensively measure the occupancy of chromatin features within and adjacent to
each loop, we based our strategy on the approach of [27]. Given a loop with length L, we extended L
base pairs to its left and right and the extended region (with length 3L) was partitioned into 1500 bins.
For each bin, 23 high-throughput sequencing experiments (Table S1) were scored, resulting in a data
matrix with rows representing loops and columns representing the scored experiments at each bin.
Finally, we trained and tested classifiers in both cell lines using six machine learning algorithms.
This design based on multi bins allowed us to measure the position-specific ability of sequencing data
to predict chromatin loops with an unprecedented resolution. As a result, we ended up with model
matrices of 34,500 columns and either 3290 (K562) or 5486 (GM12878) rows (Figure 2).
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Figure 2. Illustration of the integrative machine learning schema for the prediction of chromatin loops.
(A) Positive and negative RAD21-associated loops were first identified (see Methods). (B) Then, given a
loop with length L, we extended L base pairs to its left and right and the extended region
(with length 3L) was partitioned into 1500 bins. For each bin, 23 high-throughput sequencing
experiments were scored, resulting in a data matrix with rows representing loops and columns
representing the scored features. (C) Finally, we trained and tested classifiers using six machine
learning algorithms. XGBoost: Gradient boosting; SVM: Support Vector Machines; ANN: Artificial
Neural Networks.

3.3. Model Performance

The final feature matrices were divided into training (80%) and test (20%) and six classification
algorithms were applied: decision trees, random forests, XGBoost, SVM, MLP and DL-ANN.
To evaluate the performance of classification, trained models were applied to the test sets and several
metrics were calculated including accuracy (Acc), precision, recall and F1-score. Accurate predictions
were obtained by the six algorithms, with almost no differences on the performance metrics and
with similar values in both cell lines (Tables 1 and 2). The smallest accuracies were obtained
by DL-ANN, with values of 0.81 and 0.79 for GM12878 and K562, respectively. On the other hand,
XGBoost significantly outperformed the rest of the methods, achieving accuracies of 0.95 and 0.96 for
GM12878 and K562, respectively. As a matter of fact, the other four classification algorithms achieved
very similar performance for GM12878 cell line, with Acc ranging from 0.81 to 0.83, while for K562 they
ranged from 0.82 to 0.87. These results demonstrate that chromatin loops can be accurately predicted
using our integrative approach and indicate that gradient boosting by XGBoost provides the best
performance for this task.

Table 1. Machine learning performance of the proposed models in K562 cell line.

Algorithm Accuracy Precision Recall F1-Score

Decision Trees 0.8698 0.8707 0.8699 0.8698
Random Forests 0.8424 0.8469 0.8425 0.8419

XGBoost 0.9634 0.9638 0.9635 0.9635
SVM 0.8219 0.8224 0.8219 0.8218
MLP 0.8226 0.8231 0.8227 0.8226

Deep learning ANN 0.7930 0.7944 0.7930 0.7928
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Table 2. Machine learning performance of the proposed models in GM12878 cell line.

Algorithm Accuracy Precision Recall F1-Score

Decision Trees 0.8313 0.8314 0.8313 0.8313
Random Forests 0.8262 0.8284 0.8263 0.8261

XGBoost 0.9474 0.9485 0.9475 0.9474
SVM 0.8087 0.8088 0.8088 0.8087
MLP 0.8322 0.8328 0.8323 0.8322

Deep learning ANN 0.8064 0.8065 0.8065 0.8065

3.4. Loop Anchors Are the Most Informative Regions

Next, we explored the most informative features for predicting chromatin loops. The design of our
approach based on Handoko et al. [27] represents each chromatin feature as a 1500-bin array (Figure 2),
which allowed us to comprehensively evaluate the contribution of a given feature according to its
relative position within and at both sides of loops. Among the six methods we compared, DT, RF and
XGBoost assign an importance measure during the training process, providing information on which
repertoire of features are the most relevant in the classification. For this reason, and given that these
algorithms showed better overall performance than SVM and MLP (Tables 1 and 2), the latter were
excluded from this analysis. As expected, binding of architectural components (CTCF, RAD21) showed
the highest predictive power in both cell lines and regardless the learning algorithm (Figures 3 and S3).
We observed that the relative positions of the most informative features are highly biased towards
genomic bins close to loop anchors. This is true for the top 10 important bins of both cell lines
and for the three tested algorithms, suggesting that chromatin information between anchors in only
modestly predictive.

20

50

40

100

Figure 3. Ranking of top 10 important features for the prediction of RAD21 chromatin loops.
Horizontal bars represent relative importances of featured bins. The terms ’left’, ’in’ and ’right’
are used for bins from 1 to 500, 501 to 1000 and 1001 to 1500, respectively. The relative position of the
bins within one of these 3 windows is also included in the feature names.
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Although the three methods overall agreed on the top important features, while for DT the
predictive power is concentrated in ∼10 bins, this is not the case of RF and XGBoost, where it
seemed to be more widely distributed (Figure S3). Among the top 10 important features of each
algorithm in GM12878, bins associated with CTCF and RAD21 binding around loop anchors were
largely predominant (Figure 3, bottom panel). The only exception was a bin associated with the
transcription factor ATF3 at the right anchors, which was identified as the 8th most important feature
by RF. On the other hand, in K562 REST was found together with CTCF and RAD21 among the top 10
important features by the three methods (Figure 3, top panel). Bins associated with this transcriptional
repressor at loop anchors, although less informative, are as frequent as those associated with CTCF
and RAD21.

The contribution of features that do not belong to the top 10 important ones greatly varies from
one method to another. For example, DT and XGBoost reported several bins associated with histone
marks among the top 30 important features in both cell lines, while this was never the case for RF
(Figure S3). On the other hand, RF seemed to assign some predictive importance to DNase-seq and, in a
lesser extent, to YY1, whereas these features were rarely found among the top 30 important features
when using DT and XGBoost. These observations are likely to indicate that the contribution of such
features is negligable compared to the top important ones.

Our design also allowed us to represent the contribution of each chromatin feature according to
its relative position within and at both sides of loops (Figures 4, 5 and S4A–F). In agreement with the
importance analysis, most of the predictive information for the majority of the evaluated chromatin
datasets resides at the anchors and their close genomic vicinity. Besides the architectural components
CTCF and RAD21, this is particularly prominent for DNase I hypersensitivity and transcription factors
(Figures 4 and 5). Altogether, these results suggest that, in addition to architectural components,
transcriptional features at the anchors contribute to chromatin wiring in RAD21-mediated loops.

seq

Figure 4. Position specific importance of selected high-throughput sequencing datasets in GM12878
cell line. Random forests importance score is shown for the 1500 bins corresponding to the most
informative experiments. Coordinates of the x-axis are similar to those of Figure 5. Figure S4D–F
display similar plots for all the tested datasets as well as for Decision Trees and XGBoost algorithms.
CTCF: CCCTC-binding factor
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Figure 5. Position specific importance of selected high-throughput sequencing datasets in K562
cell line. Random forests importance score is shown for the 1500 bins corresponding to the most
informative experiments. Coordinates of the x-axis are similar to those described in Figure 3, with left
and right anchor position represented as red and blue vertical lines, respectively. Figure S4A–C display
similar plots for all the tested datasets as well as for Decision Trees and XGBoost algorithms.

3.5. Removing Architectural Features Has a Modest Effect on XGboost Performance for K562

Given the importance of transcription associated factors in the final predictions, we next
investigated whether these features alone can be used in order to predict chromatin loops. To this aim,
we removed CTCF and RAD21 from the matrices and evaluated models trained with the rest of the
datasets. We observed that the six algorithms decreased their performance, with significant differences
in the acquired predictions and GM12878 showing more pronounced drops (Tables 3 and 4).
The highest decrease was reported by DT in GM12878 cell line, which yielded an accuracy of 0.68,
while when the whole set of features was used, the accuracy achieved was of 0.83 (Table 2).
SVM, MLP and DL-ANN performance in both cell lines also seemed to be drastically affected by
the removal of architectural factors. While these methods exhibited accuracies of 0.79–0.83 in the
previous analysis, these values decreased to 0.66–0.73 after removing CTCF and RAD21 ChIP-seq
data. Although its performance sensibly decreased in GM12878, XGboost was found again to achieve
the best predictions. Strikingly, the performance of this algorithm was almost not affected by the
removal of architectural components in K562 cell line, yielding an accuracy of 0.95 (Table 3). This result
agrees with our previous analysis of relative importance, in which the binding of REST transcription
factor at loop anchors was found to be among the most predictive features. We can then conclude
that, at least in K562, transcription information alone is enough for the prediction of RAD21-mediated
chromatin interactions.

Exploration of the most informative features in the new DT, RF and XGBoost models reveals
that most of the predictive power resides in transcription factor binding and, to a lesser extend,
DNase I hypersensitivity and Pol II binding (Figures 6 and S5). Again, we observed that the relative
positions of these features were biased towards genomic bins in close proximity to loop anchors.
Although different prediction accuracies were achieved by the three algorithms, overall the sets of
top important features they provided were similar. Since XGBoost yielded the best performance,
we focused on the importances reported by this algorithm. We observed that different transcription
factors govern the contribution of the two cell lines. While bins associated with REST and MAX
were predominant among the top 10 features in K562 (Figure 6, top and right), this was not the case
in GM12878, for which ATF3 and CEBPB (together with DNAse-seq and Pol II) were found to contribute
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most to the predictions (Figure 6, bottom and right). Given the role that chromatin interactions play in
gene regulation, these results agree with distinct gene regulatory programs being maintained through
cell-type specific binding of transcription factors [40,41], and highlights transcriptional features as
important determinants of chromatin wiring mediated by RAD21.

Table 3. Machine learning performance of models trained without architectural factors information in
K562 cell line.

Algorithm Accuracy Precision Recall F1-Score

Decision Trees 0.8257 0.8259 0.8257 0.8257
Random Forests 0.7846 0.7877 0.7846 0.7840

XGBoost 0.9467 0.9469 0.9467 0.9467
SVM 0.7264 0.7264 0.7237 0.7228
MLP 0.7168 0.7202 0.7169 0.7157

Deep learning ANN 0.6872 0.6873 0.6872 0.6871

Table 4. Machine learning performance of models trained without architectural factors information in
GM12878 cell line.

Algorithm Accuracy Precision Recall F1-Score

Decision Trees 0.6806 0.6817 0.6806 0.6805
Random Forests 0.7626 0.7648 0.7627 0.7624

XGBoost 0.8327 0.8334 0.8327 0.8327
SVM 0.7046 0.7068 0.7046 0.7042
MLP 0.7018 0.7061 0.7018 0.7008

Deep learning ANN 0.6608 0.6613 0.6608 0.6608

100 200 30

1030 60

4 80

2 4

(x10  )-3

Figure 6. Ranking of top 10 important features for the prediction of RAD21 chromatin loops using only
features associated with transcription. Horizontal bars represent relative importances as in Figure 3.
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3.6. XGboost Models Achieve Accurate Predictions When Trained with Subsets of Chromatin Features

Since the removal of architectural components yielded different outcomes depending both
on the algorithm type and the cell line, we next explored to what extent specific subsets of
chromatin features provide different prediction abilities. To that aim, we trained and tested DT,
RF and XGBoost models based on the following categories: Architectural (only bins associated
with CTCF and RAD21), TF (bins associated with transcription factors ATF3, CEBPB, JUND, MAX,
REST, SIN3A, SP1, SRF and YY1), Architectural-anchors (CTCF and RAD21 around loop anchors)
and TF-anchors (TF around loop anchors). To only account for information around anchors,
we restricted the model matrices to 100 bins centered at left and right anchors, respectively,
obtaining 200 bins (out of the total 1500 bins; Figure 2b) for each chromatin feature belonging to
the defined categories. As a matter of fact, we also included in the analysis the two categories explored
in previous sections, which we named All (all bins, as in Sections 3.3 and 3.4) and Transcription
(TF + DNase-seq + RNA-seq + histone marks, as in Section 3.5).

For all the evaluated subsets, XGBoost yielded the best performance in both cell lines (Figure 7
and Tables 1–4 and S2–S9), in agreement with our previous observations. We also observed that models
trained with subsets restricted to bins around anchors achieved performance at least as accurate as
those obtained using also bins within the loops, which confirms that genomic information away from
the anchors poorly contributes to chromatin wiring prediction. Overall, different accuracies were
observed for the grouped categories, with GM12878 models being more sensible to subset selection.
In this sense, DT and XGBoost showed a similar behaviour (Figure 7, left and right panels and
Tables 2, 4, S3, S5, S7 and S9). For both algorithms, performance of K562 models were found to be
somehow stable across categories, achieving accuracies of 0.83–0.87 (DT) and 0.94–0.96 (XGBoost)
(Figure 7, left and right panels and Tables 1, 3, S2, S4, S6 and S8). On the other hand, GM12878
models achieved greatly variable predictions for different subsets of features, with TF associated
categories yielding the worst performance (0.660.68 and ∼0.79 for DT and XGBoost, respectively).
Conversely, Architectural categories were found among the most predictive ones, with accuracies of
∼0.85 (DT) and ∼0.93 (XGBoost) (Figure 7, left and right panels and Tables 2, 4, S3, S5, S7 and S9).

Figure 7. Accuracies of the Decision trees (DT), Random forests (RF) and XGBoost models trained with
specific subset of chromatin features in K562 (blue) and GM12878 (red).

Unlike DT and XGBoost, RF performance seemed to be more consistent across cell lines
and categories, with K562 achieving slightly better predictions (Figure 7, center panel and
Tables 1–4 and S2–S9). Architectural associated categories yielded the best performance, with accuracies
of 0.91–0.93 and 0.89–0.91 in K562 and GM12878, respectively. It is worth noting that
Architectural-anchors not only outperformed Architectural category, but also models trained with all
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the datasets (All) in both cell lines. This is also true for DT (Figure 7, left panel), and highlights the
importance of information around anchors for the prediction of long-range chromatin interactions.

As we mentioned before, XGBoost yielded the best predictions (Figure 7, right panel) in both
cell lines. In the case of K562, high accuracies were achieved independently of the selected features,
confirming our observation that, at least in this cell line, not only architectural but also transcription
factors are important determinants of RAD21-associated chromatin wiring.

3.7. Prediction across Cell Types

We next asked to what extend our DT, RF and XGBoost models could be generalized from one cell
line to another. Models trained on GM12878 and applied to K562 yielded overall good performance
when using the whole set of chromatin features (Figure 8, right panel). Again, XGBoost outperformed
the other two algorithms, obtaining an accuracy of 0.9. While DT showed a moderate accuracy
of 0.75, RF seemed to be the worst suited method for cross cell line predictions, yielding an accuracy
of 0.63. When evaluating the subsets of features described in the previous section, different predictive
performance was observed for the grouped subsets. Since these differences were consistent across the
three methods and XGBoost always obtained the best results, we focused our analysis on the accuracies
provided by this algorithm (Figure 8, right panel, grey bar). While models trained with architectural
factors achieved satisfactory accuracies (0.91–0.92), those trained with TF or transcription-associated
features showed only modest prediction abilities (accuracies of 0.65–0.67). Given the overall high
predictive power that transcriptional features showed when trained and applied on the same cell line
(accuracies of 0.79–0.95), these observations highlight that, unlike architectural factors, transcriptional
features are highly cell line specific in the context of chromatin wiring prediction.

Although a similar pattern of performance was observed for the different subsets of features
when we trained models on K562 and applied to GM12878, this time prediction accuracies
dramatically decreased to 0.53–0.64 (Figure 8, left panel). Since the remarkable performance obtained
for models trained and tested on K562 were evaluated on data matrices that were not used for training,
we discard a potential overfiting within this cell line. However, the significant differences observed in
cross cell line applications of GM12878 and K562 models suggest that the latter might be overfitting the
cell line specific chromatin feature associations with RAD21 chromatin wiring. Therefore, although the
results derived from our K562 models are consistent with those obtained using GM12878 and with
previous findings [22–25], we conclude that these models are not adequate for cross cell line predictions.

Figure 8. Cross cell lines accuracies of the DT, RF and XGBoost models trained with specific subset of
chromatin features.
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4. Conclusions

In light of our results, we propose XGBoost as the best suited algorithm for the prediction
of long-range chromatin interactions. According to our data, XGBoost can be used to generate
genome-wide maps of chromatin interactions, and information on a few chromatin features at the
anchors may be enough to yield accurate predictions. For cross cell line application of the predictive
models, architectural factors alone appear to be sufficient, while transcriptional features do not seem
to have enough predictive ability, suggesting that they are highly cell line specific in the context of
chromatin wiring. However, examination of other cell lines and tissues is needed to confirm these
observations. Similarly, constructing generalizing models trained with datasets from several cell lines
would overcome potential overfitting. In addition, analysis of interactions mediated by other proteins
will help to clarify whether the observed performance for RAD21 mediated wiring in K562 can be
generalized. Finally, prediction of de novo long-range chromatin maps genome-wide and subsequent
comparisons with experimental data can be helpful to more comprehensively assess the predictive
power of our strategy, as well as to exploit its full predictive potential.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/9/985/s1.
Figure S1: Top panels show heatmap representations of RAD21 and CTCF ChIP-seq reads enrichment within
10 kb around the anchors (0bp positions) of RAD21-associated chromatin loops. Bottom panels display average
enrichment signals of the corresponding heatmaps. Plots were generated with seqplots [42], which extends or
shrink regions within loops using linear approximation. Figure S2: Chromatin features associated with RAD21
loops in K562 cell line. Panels are those described in Figure 1. Figure S3: Ranking of top 30 important features
for the prediction of RAD21 chromatin loops. Horizontal bars represent relative importances as in Figure 3.
Figure S4: Position specific importances of the whole set of sequencing datasets in K562 (A–C) and GM12878
(D,E) cell lines for DT (A,D), RF (B,E) and XGBoost (C,F). Coordinates of the x-axis are similar to those described
in Figure 3. Figure S5: Ranking of top 30 important features for models trained without architectural factors
information. Figure S6: Position specific importances of the whole set of sequencing datasets in K562 (A–C) and
GM12878 (D,E) cell lines for DT (A,D), RF (B,E) and XGBoost (C,F). Models were trained without architectural
factors information. Figure S7: Ranking of top 30 important features for models corresponding to the described
categories: Architectural (A), TF (B), Architectural-anchors (C) and TF-anchors (D). Table S1: Public data used in
this study. Table S2: Performance of models trained with architectural factors binding information. K562 cell
line. Table S3: Performance of models trained with architectural factors binding information. GM12878 cell line.
Table S4: Performance of models trained with transcription factors binding information. K562 cell line. Table S5:
Performance of models trained with transcription factors binding information. GM12878 cell line. Table S6:
Performance of models trained with architectural factors binding information at loop anchors. K562 cell line.
Table S7: Performance of models trained with architectural factors binding information at loop anchors. GM12878
cell line. Table S8: Performance of models trained with transcription factors binding information at loop anchors.
K562 cell line. Table S9: Performance of models trained with transcription factors binding information at loop
anchors. GM12878 cell line.
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Abstract: At the molecular level, response to an external factor or an internal condition causes
reprogramming of temporal and spatial transcription. When an organism undergoes physiological
and/or morphological changes, several signaling pathways are activated simultaneously. Examples
of such complex reactions are the response to temperature changes, dehydration, various biologically
active substances, and others. A significant part of the regulatory ensemble in such complex reactions
remains unidentified. We developed metaRE, an R package for the systematic search for cis-regulatory
elements enriched in the promoters of the genes significantly changed their transcription in a complex
reaction. metaRE mines multiple expression profiling datasets generated to test the same organism’s
response and identifies simple and composite cis-regulatory elements systematically associated
with differential expression of genes. Here, we showed metaRE performance for the identification
of low-temperature-responsive cis-regulatory code in Arabidopsis thaliana and Danio rerio. MetaRE
identified potential binding sites for known as well as unknown cold response regulators. A notable
part of cis-elements was found in both searches discovering great conservation in low-temperature
responses between plants and animals.

Keywords: meta-analysis; transcription factor; binding sites; genomics; transcriptomics; chilling
stress; CBF; DREB; CAMTA1

1. Introduction

More than two decades have passed since the establishment of whole-genome expression profiling
methods. Nowadays, thousands of transcriptomes are publicly available. Typically, several related
experiments studying the same phenomenon can be found, thus, providing a rich set of material for
analysis. Meta-analysis is applicable to sets of experiments testing the same hypotheses to extract
robust signals and repetitive features that are impossible to derive from the individual experiments.

The typical example of meta-analysis is the definition of robust differentially expressed genes
(DEGs) over many transcriptomic datasets. This approach is widely used in medical genomics to
identify the gene signatures associated with a condition or disease, e.g., in [1–3]. To account for
the most reliable and reproducible gene signatures, different authors applied such meta-analysis
procedures as Fisher’s methods, Stouffer’s method, permutation, or machine-learning procedures.
Recently, a ready-to-use framework GSMA has been developed to solve this task for any problem of
interest [3].

Alternatively, a meta-analysis of transcriptome datasets can help to understand the cis-regulatory
code behind the transcriptional response. The simplest way is to analyze the upstream regions of the
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robust DEGs for overrepresented sequences, e.g., as in [4,5]. However, the way to detect the robust
gene sets might be comprehensive. He and coauthors (2016) analyzed DEGs in nine transcriptomic
datasets on breast cancer: DEGs were identified by Fisher’s method for p-values combination [6].
Subsequent enrichment analysis of motifs in promoters of DEGs was estimated by Fisher’s exact test
and allowed identifying transcription factors associated with breast cancer.

A better way to identify a full set of cis-elements, or a “cistrome”, associated with a transcriptional
response, is a meta-analysis of individual transcriptomes and not the robust DEGs. Authors of the
cis-Metalysis program performed a meta-analysis of transcriptomics data on bee [7]. They revealed
enrichment of transcription factors binding sites in the DEGs and their association with external factors
that cause similar changes in the organism. An interesting approach has been applied to study the
cistrome for iron deficiency response in Arabidopsis (Arabidopsis thaliana) roots [8]. Authors searched
for the enrichment of k-mers in upstream regulatory regions of Fe-responsive genes taken from several
experiments. They applied the machine learning algorithm, Random Forest, to identify enriched
elements in different functional clusters of coexpressed genes revealed. However, on the different
steps of their study, authors used separate tools and approaches aiming at a specific goal of identifying
clusters of Fe-responsive genes regulated by the same pulls of cis-regulatory elements.

The methods for comprehensive meta-analysis of transcription profiles for cis-elements prediction
described above have proven to be powerful in specific studies. However, they were not implemented
in a ready-to-use package. Here, we developed a powerful but versatile pipeline for cistrome-wide
meta-analysis, implemented as a metaRE R package. In this study, we show the performance of
metaRE on cold-stress-responsive and hypothermia-responsive transcriptome datasets in Arabidopsis
and zebrafish.

2. Materials and Methods

2.1. metaRE R Package Structure and Functionality

metaRE R package implements a pipeline to search for consensus sequences enriched in the
promoters of DEGs. Its logic and methodology have been described in our earlier work [9], Here,
we present the R package for the first time. We used C++ to speed up slow components and the
Rcpp package to integrate the C++ code into R [10]. metaRE package performs a five-step analysis:
(1) DEGs identification; (2) cis-regulatory consensus element search; (3) calculation of association
between consensus presence and changes in gene expression; (4) meta-analysis over multiple datasets;
(5) permutation test. The pipeline is detailed below and in Figure 1.

Software with source files, documentation, and example data files are freely available online at
the repository (https://github.com/cheburechko/MetaRE).

2.1.1. DEGs Identification

As an input, metaRE uses transcriptome data. For users’ convenience, we applied GEOquery [11],
limma [12], and edgeR [13,14] packages to identify DEGs in the datasets from the GEO database [15].
metaRE function prepareGEO allows loading and adjusting the preprocessed GEO data frames. Functions
processMicroarray and processRNAcounts could be used to identify DEGs in a single dataset using limma
(microarray and RNA-seq, respectively), functions generate a new table for a particular experiment
with user-defined expression classes. The function preprocessGeneExpressionData can perform the
same analysis for multiple datasets at once, it generates the final data frame GeneClassificationMatrix,
which combines information about DEGs from all experiments in the meta-analysis. Alternatively,
the user can upload a data frame with already processed data on differentially expressed genes.

2.1.2. Cis-Regulatory Consensus Elements Search

Another input data for the metaRE package are the regulatory region sequences in fasta format.
MetaRE uses the Biostrings R package [16] to upload the sequences from BioMart [17]. Next, metaRE

126



Genes 2020, 11, 634

annotates each sequence for the presence of a potential cis-element in the following format. Function
enumerateOligomers searches for all possible k-mers without considering complementarity, e.g., in the
case of hexamers, metaRE searches for 2080 nonredundant hexamers comprising 2016 complementary
pairs and 64 palindromes instead of 4096 possible combinatorial variants. In addition to k-mers, it is
possible to annotate systematically the regulatory regions with the information about all possible
spaced repeats with the same k-mer as a core (enumerateRepeats), spaced bipartite elements with different
k-mers as the cores (enumerateDyadsWithCore). It is also possible to search for a predetermined list of
motifs described with 15 letters IUPAC ambiguity code (enumeratePatterns). For the enumerateRepeats
and enumerateDyadsWithCore functions, it is possible to set maximum and minimum spacer length in
both cases. MetaRE will search for k-mers’ combinations with given spacer length diapason. For all
the functions, the logic remains the same: reverse complement k-mers are considered to be the same
element. Thus, the number of k-mers/bipartite elements/repeats/predetermined motifs in the analysis
is reduced compared to the number of possible combinatorial variants.

The output of the second step of the procedure is a named list of integer vectors. Names are the
consensus sequence; vectors are the indices of genes in which these sequences are present.

Figure 1. Scheme of metaRE modules that implement a five-step pipeline of the search for cis-elements
significantly associated with differential gene expression over multiple datasets. DEGs—differentially
expressed genes. Different modules are highlighted with squares; final sets of p-values are painted
green. Described in the Methods steps are enumerated on the figure.
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2.1.3. Calculation of Association Between Cis-Regulatory Element Presence and Changes in
Gene Expression

At this step, for each k-mer and each experiment, an association with differentially expressed
genes is estimated, separately for all regulation classes. A p-value for the association is calculated
using a 2 × 2 contingency table by Fisher’s exact test [9,18,19]. The test estimates the probability of
getting such an association between two variables in the contingency table. In this case, the variables
are “presence/absence of the k-mer” and “DEG/non-DEG”. In metaRE, the procedure is implemented
by a function calculateMassContingencyTablePvalues. The result is a float matrix of p-values for the
association between the k-mer presence and up/downregulation, where, rows correspond to the k-mers,
columns correspond to the datasets in which cells are calculated p-values.

2.1.4. Meta-Analysis

Function calcMetaAssociation used to combine the p-values calculated for a particular k-mer over
many datasets. MetaRE uses Fisher’s method to calculate meta-p-values (Figure 1, [9]). Due to multiple
testing for many k-mers, calcMetaAssociation also estimates an adjusted p-value, for which the user
can choose one of the following multiple correction methods: Bonferroni, Bonferroni–Holm [20,21],
Benjamini–Hochberg [22], and Benjamini–Yakuteli [23]. Users also can set the cutoff threshold for
adjusted meta-p-value—the k-mers which pass the cutoff are to be tested on Step (5).

2.1.5. Permutation Test

Finally, metaRE applies the permutation test to the k-mers with significantly adjusted meta-p-values.
MetaRE uses the foreach package (CRAN project) for parallel permutation testing. PermutationTest
function shuffles the regulatory regions between the genes and recalculates meta-p-value for each
k-mer in the analysis. We optimized the procedure so that every iteration-run permutationTest stores
the preliminary results in “outfile” and removes the k-mer that will not pass the cutoff threshold.
After performing M permutations, the function computes the permutation p-value for k-mers left in
the analysis as p = (m + 1)/(M + 1), where m is a number of recorded p-values not greater than the
meta-p-value. It also computes adjusted permutation-p-values to consider the multiple testing (for the
amount of k-mers predetermined on Step (4)).

In the end, the k-mers with an adjusted permutation-p-value below the cutoff threshold are
considered to be significantly associated with the differential expression.

2.2. Motifs Comparison

To annotate predicted cis-elements, we used the TOMTOM tool from Meme Suit [24] with the
reference databases DAPv1, PBM, and Cis-BP. The best match with E-value < 0.05 was taken into
the annotation.

2.3. Datasets

Arabidopsis and zebrafish transcriptome datasets on low positive temperature treatment were
retrieved from the GEO database. 22 out of 40 datasets for Arabidopsis thaliana and 16 out of 24 datasets
for Danio rerio passed the quality control for well-clustered replicas giving a sufficient number of DEGs
(see Table S1). The identification of DEGs was made using the Benjamini–Hochberg method [22] to
control the False Discovery Rate (FDR < 0.05).

3. Results

3.1. MetaRE R Package for Cistrome-Wide Association Study

We developed a metaRE R package which identifies the cistrome associated with the case of
study via a meta-analysis of multiple transcriptomic experiments. MetaRE pipeline includes five
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steps: (1) DEGs identification in many transcriptomic datasets, (2) search for cis-regulatory elements in
upstream gene sequences, (3) assessment of the association between cis-regulatory element presence
and the changes in gene expression in each transcriptomic dataset, (4) meta-analysis over multiple
datasets, and (5) permutation test to study the robustness of the prediction. The first step is performed
in metaRE using standard R packages, or the user can upload processed data. At the second step,
metaRE generates the information about the presence/absence of all combinatorially possible nucleotide
sequences of a particular length and structure (encoded in the 15-nucleotide IUPAC alphabet) in a set
of nucleotide sequences (for instance, promoter regions, transcription factors binding regions, etc.).
We considered these short nucleotide sequences as potential regulatory elements of genes’ expression.
Since metaRE performs a search in the promoters which are located in cis-position relative to the genes,
enriched in these promoters’ sequences are predicted as potential cis-acting elements. The package
allows the user to identify potential cis-regulatory elements of different lengths, which could consist of
one element, repeats, or bipartite elements with a variable or fixed spacer and order of elements. In the
third step, metaRE assesses the association between each cis-elements and differential gene expression
in each of the datasets. At the fourth step, metaRE combines the p-values taken from the separate
datasets and highlights which of the cis-elements are systematically overrepresented. In the last step,
metaRE tests the independence of obtained results from external factors by the permutation test.

The main advantage of the metaRE package is that it identifies a reliable and reproducible set of
potential cis-regulatory elements associated with the transcriptional response over many independent
datasets, rather than in a single gene set. The R package can be used for the study cases on any
organism with a sequenced genome. It is possible to adjust the procedure by changing the statistical
tests, thresholds, cis-elements structure, promoters’ length, etc. Other nucleotide sequences could
be used instead of the promoters, e.g., 3′UTRs or ChIP-Seq profiles. Thus, metaRE gives the user
freedom to adjust the package to the particular study, which is essential considering the differences
and quality of raw data, annotation of the genome of different species, and knowledge on the location
of cis-regulatory elements.

MetaRE was tested in several independent studies on different organisms, for instance,
cold-induced zebrafish transcriptomes, dioxin-induced human and mouse transcriptomes,
and auxin-induced Arabidopsis transcriptomes [9]. The application of metaRE was efficient for
all of the cases. Here, we discuss metaRE performance to identify cold-responsive cistrome in
Arabidopsis and zebrafish.

3.2. MetaRE for Identification of Cold-Responsive Cistrome

To demonstrate the utility of the metaRE package, we performed analysis on cold stress-induced
transcriptomes in two model objects from animal and plant fields. All the datasets so far generated
with good quality for Arabidopsis thaliana and Danio rerio (Table S1, [5,25–33]) have been processed
independently using metaRE. On Step (1), metaRE identified DEGs (FDR < 0.05) lists for all of 22 and
16 transcriptomic datasets. We varied the threshold for fold-change from none to 1.5 and 2. As a
result, three summary tables were generated for each organism summarizing information about the
differential transcriptional response.

On Step (2), metaRE loaded Arabidopsis’ and zebrafish’ upstream regulatory regions [−1500; −1]
of protein-coding genes from Ensemble BioMart Database (TAIR10 for Arabidopsis thaliana and GRCz11
for Danio rerio) [17,34]. metaRE annotated the upstream regions by the diversity of nonredundant
k-mers. In this study, we searched for hexa-, hepta-, and octamers.

On Steps (3–5), metaRE identified all k-mers associated with the transcriptional cold stress response,
separately for Arabidopsis and zebrafish. As the number of datasets for Arabidopsis allowed us
to study time-resolved response, these cold-responsive transcriptome datasets were divided into
two groups by the time of response: early response (up to six hours of cold exposure), and late
response (12–24 h of cold exposure). We tried two multiple testing corrections (Bonferroni-Hochberg
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or Bonferroni) and set the stringent threshold for adjusted meta-p-value < 1 × 10−10 and adjusted
permutation p-value ≤ 1 × 10−3.

The summary tables for identified k-mers (Tables S2–S4) suggest that the cistrome size provided
by metaRE depends on the parameter settings. However, the most significantly enriched cis-elements
remain always the same. Noteworthy, to detect any motif associated with downregulation, we had
to get rid of the threshold for fold-change to identify DEGs only by FDR. Despite a more stringent
multiple testing correction applied for heptamers and octamers, metaRE found more of them in this
study, compared to the number of significantly overrepresented hexamers (Tables S2–S4). This was not
the case in another meta-analysis performed by metaRE [9]. We can explain this fact by significant
enrichment of many degenerated A/T-rich motifs in the transcriptional response to cold for both
Arabidopsis and zebrafish (Figure S1; discussed below). To sum up, we recommend performing a
preliminary analysis under different settings to define the most appropriate one. Below we discuss
only the results obtained under the stringent Bonferroni criterium for hexamers.

3.3. Analytics on Cold-Stress-Responsive Cistrome for Arabidopsis thaliana

We detected 95/43 and 10/26 hexamers associated with up- and downregulation in the early/late
cold stress response (Table 1). A strong bias in a cistrome diversity was detected towards the early
activatory response, but apparently, it correlates with many AT-rich elements found overrepresented in
the upstream regions of early cold-responsive genes (even more AT-rich motifs were found in septamers
and octamers; Figure S1; Tables S2 and S3). Another trend is that cold-responsive cistrome has fewer
cis-elements associated with downregulation than with upregulation. With only one exception, E-box
CACGTG, hexamers were explicitly associated with either up- or downregulation.

Table 1. Summary of predicted hexamers associated with cold stress response in Arabidopsis.

Early Response (<6 h) Late Response (>12 h)

Up 95 43
Down 10 26

Without A/T-rich hexamers

Up 25 40
Down 10 26

Next, we applied the TOMTOM tool [24] to annotate the predicted cis-elements associated with
early and late cold response. We were able to annotate more than 65% of detected cis-elements, however,
many AT-rich elements and elements related to downregulation remained unidentified (Tables S2–S3).
Many of the hexamers associated with the cold stress response significantly match the binding sites of
known cold response regulators from CAMTA, AP2/ERF, bHLH, MYB, and bZIP families (Figure 2A)
and this fitness confirms the adequacy of metaRE pipeline.

The binding sites for C-REPEAT BINDING FACTORs (CBFs) transcription factors from AP2/ERF
family (CCGACA, ACCGAC; GCCGAC, CCGACC) were expected to be found as associated with the
transcriptional cold response, as CBFs are the major regulator of cold acclimation [35–38]. However,
CBF binding sites were not the most abundant and significant in early response (Table S2). The most
significantly enriched in early response to cold stress motifs appeared to be: (1) ACGCGT (adjusted
meta-p-value = 5.96 × 10−84), the potential binding sites for CAMTA; (2) CACGTG (p = 1.52 × 10−54),
the G-box bound by bHLH and bZIP transcription factors; (3) ACACGT (p = 2.3× 10−53), the motif
bound by NAC, BES, bZIP, and bHLH transcription factors; (4) ACGTGG (p = 2.65 × 10−52), potential
binding site for bZIP and bHLH; and (5) a group of AT-rich elements (3.47 × 10−11 < p < 2.89 × 10−50).
The involvement of transcription factors bound to (1) – (4) with the cold response was known
beforehand [28,39–44]. However, the fact that they are more relevant to early cold response comparing
CBF binding sites is tempting, as CBF factors were recently shown to be involved in freezing not
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chilling resistance and may not be essential to survive in response to low positive temperatures [33,45].
Potential binding sites for CBFs were found the most significant for the late response to cold (Table S3).

Figure 2. Cis-regulatory elements predicted with metaRE as systematically enriched in upstream
regulatory regions of cold-induced genes in Arabidopsis. (A) Annotation of the hexamers to the known
binding sites of Arabidopsis thaliana with the help of the TOMTOM tool [24]. Only significant best
matches (E-value < 0.05, one per hexamer) were calculated to build the round diagram. (B) Annotation
details for particular hexamers associated with early, late, or both early and late responses. The best
significant matches of the hexamers with the known binding sites associated with downregulation in
response to cold stress.

However, most of the detected AT-rich elements remain unknown; some of these sequences
significantly match (TOMTOM, E-value < 0.05) the known binding sites for HD-ZIP and MYB families
(Table S3, Figure 2B). Although it is not clear if the detected association with HD-ZIP transcription
factors is relevant, the involvement of LHY1 and CCA1 MYB transcription factors into cold stress has
been discussed in several works [39,46–48]. The motifs associated with downregulation were also
poorly annotated. Among the rare examples of annotated motifs associated with downregulation are
GATGAT/ATCATC, the potential binding site of GATA transcription factors (Figure 2B), and a family
of potential TCP-binding motifs (Table S3). These results demonstrate the perspectives of metaRE usage
in the study of the cis-regulatory code behind transcriptional reprogramming in complex reactions.
It allows not only predicting the diversity of involved cis-elements and respective transcription factors
but also ranking them and clarifying their role in certain phases of transcriptional response.

3.4. Analytics on Hypothermia-Related Cistrome for Danio rerio

A similar study for zebrafish yielded 67 hexamers enriched in promoters of hypothermia-induced
genes. As for predicted cold-associated elements in Arabidopsis, most of the zebrafish ones are
associated with upregulation and there are many A/T-rich hexamers (Table S4). The only motif
associated with both upregulation and downregulation is CGGAAG, the potential binding site for
ETS transcription factor Elk1 (E-value < 2.64 × 10−4). In vertebrates, the role of Elk1 transcriptional
activator was widely discussed in relation to many developmental processes [49,50], but not in the
response to the low-temperature stress. In Danio rerio, it was only shown that Elk1 and its homologs
express around the developing bone [51]. Unfortunately, cis-elements and transcription factors from
Danio rerio genome are much less annotated comparing to Arabidopsis. We were not able to annotate
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overlapped hexamers (AAACGT, AACGTT, and ACGTTA), that show the greatest association with the
hypothermia condition, using publicly available data. However, we assume that they compose the
binding site for zebrafish’ transcriptional regulator(s) that mediate the low-temperature responses.

One-third of hypothermia-related hexamers have been annotated using TOMTOM (E-value < 0.05).
Among them: (1) two groups of AT-rich motifs resembling the binding sites for Dmrt2a (AATTTA,
ATACAT, AATATA, ATAAAT, AATGTA, 2.61 × 10−32 < p < 8.09 × 10−22) and the binding sites
for Homeobox transcription factors (CATAAA, AATTAA, ATAAAA, p < 3.7 × 10−11); (2) potential
binding sites for bHLH transcription factors ACATAT (p = 2.19 × 10−22) and CACGTG (p = 4.4 × 10−17);
(3) potential bZIPs binding sites (CGTCAC, CCGCCA, GACGTA, p < 8.74 × 10−14); (4) ACCAAT,
the binding site for Nfya (p = 5.28 × 10−18), and many others (Table S4). E-box CACGTG,
A/T-reach sequences, and Nfya binding sites have been associated with the cold stress response
in zebrafish earlier [33,52]. Although we have not found in the literature strong evidence for the other
hypothermia-related elements to mediate low-temperature response, this might be due to the fact that
this topic is largely understudied in zebrafish [33].

Unexpectedly, but a notable part of hypothermia-related motifs (27 out of 67) identified by metaRE
for Danio rerio matched those identified as cold-responsive for Arabidopsis. Among them E-box
CACGTG and a group of A/T-rich elements. We discuss this finding further in Section 4.2.

4. Discussion

4.1. metaRE Tool for Identification of Cis-Regulatory Elements Repertoire

The main idea behind the method implemented in the metaRE R package is that if the cis-regulatory
elements are involved in a transcriptional response, then they should be overrepresented in the
promoters of differentially expressed genes. This idea is not new, and there are many approaches
facilitating the analysis of cis-elements overrepresentation within upstream regions of pre-compiled
gene sets, e.g., in [6,53–55]. The pipeline which analyzes cis-elements overrepresentation systematically
and summarizes the output taken from many independent datasets has been still required, these tasks
were solved in the metaRE R package.

The novelty of the metaRE method lies in: (1) taking into account a large number of comparable
transcriptome experiments, and (2) the consideration of enrichment significance for an individual
cis-element. Usually, authors evaluate the enrichment of cis-elements in one or more gene lists
independently; the results of enrichment between the lists are not compared [4,5]. In this case,
information about differences in the degree of enrichment of the same cis-element in different datasets
is leveled, which can lead to over- and underpredictions. The method underlying metaRE solves
this problem.

Separate studies showed that systematic analysis of transcriptome datasets is powerful in the
identification of the cistrome behind a complex reaction [7,8,19]. The basic assumption in these studies,
as well as in the metaRE algorithm, is that only robust and significant cis-element association with
transcriptional response will be detected across multiple, diverse transcriptomic datasets that test
similar experimental variables. This could be considered both as an advantage and as a disadvantage
of the systematic analysis. On the one hand, analysis of several datasets excludes a bias that could be
caused by separate experiments (tissue sampling, treatment duration, concentration, growth conditions,
quality of data, etc.). Thus, meta-analysis would detect the major cis-elements that operate under a
variety of conditions. On the other hand, this approach will miss rare and condition-specific cis-elements.
The latter could be solved by separate analysis of the datasets from experiments performed on different
tissues, so one can have a tissue-specific cistrome. For example, in this study for cold-stress-responsive
cistrome, as well as in [9] for auxin-regulated cistrome, we saw apparent differences in time-resolved
results. If the number of transcriptomes allowed, these differences would be detected for tissue- and
condition-specific reactions.
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Cis-elements enrichment analysis is especially powerful when performed using the position
weight matrices (PWM) for known transcription factors. E.g., using Homer [54], one can yield the
list of exact regulators whose binding sites are overrepresented in the upstream regions of candidate
genes. However, in metaRE we intentionally used a simpler consensus model for identification
of overrepresented elements, making it more versatile and applicable for more organisms. First,
for almost all organisms, including the model ones, the binding sites of most transcription factors
remain unknown. Moreover, only very few organisms have PWMs for at least a hundred transcription
factors (e.g., Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans,
Mus musculus, Homo sapiens) [56]. Second, metaRE could be applied not only to the upstream regions
but to any sequences associated with the genes to find the signals unrelated to transcription factor DNA
binding and not described by PWMs. For example, analyzing the 3’UTR metaRE could help identify
the sites for the miRNA seeds binding. Third, in the present study of cold-responsive cis-elements,
consensus search in metaRE with the subsequent analysis of identified sequences using PWMs for
known transcription factors in TOMTOM [24] was shown to be very fruitful, with more than 65% of the
elements annotated in Arabidopsis. We believe that the hybrid approaches with preliminary screening
for enriched consensuses and subsequent annotation and reanalysis of the data using more powerful
models are in need. Like an approach used in the study to annotate transcription factor binding sites
in Nannochloropsis spp. microalgae [57].

4.2. Hypothermia-Related and Cold-Stress Responsive Cistromes in Zebrafish and Arabidopsis

Here, we employ metaRE in the investigation of widely studied processes, cold stress response,
in which molecular mechanisms are still full of gaps. We performed an analysis using datasets
generated for model objects in plant and animal fields, Arabidopsis, and zebrafish.

For plants, the cold stress response was studied in more detail, so that we were able to infer
more data. Large-scale transcriptome studies showed that the CBF1-3, the major regulators of cold
acclimation, in fact, regulate only a small portion of cold-responsive genes [27,30,45,58] which means
that other regulators may exist. Here, we see that CBFs binding sites are, indeed, not overrepresented
in early cold stress response as the potential binding sites for other transcription factors (Table S2).
CBFs binding sites seemed to be the most overrepresented in the late response (Table S3), which explains
why only a small portion of cold-responsive genes are CBF-regulated. The most significantly enriched
cis-element in early cold stress response detected by metaRE was the potential binding site for CAMTA
(Figure 1, Table S1). CAMTA1-3 are known upstream regulators of CBF1-3, they increase freezing
tolerance via activation of ~15% cold-responsive genes [28,40].

Park et al. (2015) found that, in parallel with CBF genes, 27 other “first-wave” transcription factor
genes were highly upregulated at an early stage of cold treatment. Analysis of gene expression in
transgenic plants overexpressing 11 of these first-wave transcription factors identified four transcription
factors from bZIP family (ZAT12, ZF, ZAT10, and CZF1) and heat-shock factor HSFC1 involved in
the regulation of cold-stress-responsive genes [27,45,59]. metaRE identified bZIP transcription factors
binding sites as one of the most significantly enriched in promoters of early responsive to cold genes
(Figure 2; Table S2), however, their impact was not that big in the late response.

Another interesting result relates to the cis-elements overrepresented in the promoters of
downregulated by cold genes, which regulatory mechanisms are completely unknown. Here, we found
potential binding sites for GATA and TCP transcription factors, as well as many unknown motifs.

A further experimental study is required to clarify the role of predicted unknown cis-elements,
they could be rare versions of transcription factors binding sites, or form the biochemical environment
for transcription factors binding, or be involved in chromatin structure formation. Anyway, to study
these hypotheses experimental investigations are required. The role of candidate genes like GATA,
HD-Zip, TCP, and others in the cold stress response still lacks the total understanding and explanation
which we need to search for with experimental approaches.
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Although we found a great number of transcriptomes generated on zebrafish under suboptimal
temperatures, the mechanisms of cold acclimation for this animal appeared to be largely unknown.
In one of the few studies, a comprehensive analysis of the cis-regulatory code behind the low-temperature
response has been performed [33]. In 16 RNA-Seq experiments, the authors inferred 33 gene clusters
with common or tissue-specific expression patterns and then searched with the DREME tool [60] for
cis-elements overrepresented in the clusters. As a result, they identified 17 octamers, overrepresented
in one of the clusters, and experimentally verified two of them, AG(A/C)AACCA and (C/G)AGTCA.
Here, we have applied an alternative strategy to search for the systematically enriched cis-elements
over the same set of transcriptomes using metaRE. Notably, but not unexpectedly, that the cis-elements
identified by [33] and in the present study were largely different; however, we both detected Nfya
binding sites and a set of A/T-rich elements.

An exciting finding was that cis-elements detected in two separate metaRE studies for Arabidopsis
and zebrafish significantly overlap by 27 hexamers. E-box motif CACGTG was highly overrepresented
in promoters of both hypothermia-induced zebrafish’ and cold-stress-induced Arabidopsis’ genes.
The E-box elements are known to be bound by bHLH transcription factors in many species
including Arabidopsis and zebrafish [61]. In zebrafish, bHLH are involved in the control of
developmental processes, one of which muscle development—is highly influenced by cold exposure [62].
The experimental study of E-box in the promoter of circadian clock gene Per4 showed that the amplitude
of E-box-driven rhythmic expression response to temperature [52].

In both searches, metaRE detected the overrepresentation of A/T-rich sequences. Earlier, we got a
similar result for auxin-regulated cistrome in Arabidopsis [9], but not in other studies (data not shown).
The role of A/T-rich sequences can be different: they might be the parts of A/T-rich transcription factors
binding sites (e.g., for Homeobox Factors), or they might be the TATA-box sequences, or they might
be a part of chromatin landscape. The half of A/T-rich sequences identified for Arabidopsis were
annotated by TOMTOM either as HD-ZIP binding sites or as TATA-boxes. As for Danio rerio, A/T-rich
motifs were recognized as the potential binding sites of ZF (Zinc Finger) and Homeobox transcription
factors. Homeobox transcription factors are known as development regulators [63]. Since exposure
to low-temperatures crucially influences the developmental processes their involvement could be
required. Unannotated AT-rich sequences still can predict a specific epigenetic landscape; in plants,
cold-induced genes show enhanced chromatin accessibility, and a large number of active genes in
cold-stored potato tubers are associated with a bivalent H3K4me3-H3K27me3 mark [64].

Temperature response is one of the basic stress responses with which primitive organisms had
to cope millions of years before the separation of plant and animal kingdoms in evolution. Thus,
we believe that comparative studies of the cis-elements conservation between plants and animals will
help to clarify the mechanisms of low-temperature response. To do that, a more rigorous meta-analysis
study on many organisms is in need. metaRE provides a framework of how this can be studied when a
sufficient number of transcriptomes is generated.
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meta-analysis with metaRE, Table S2: Cis-elements associated with early cold stress response on Arabidopsis,
Table S3: Cis-elements associated with late cold stress response on Arabidopsis, Table S4: Cis-elements associated
with hypothermia on zebrafish.

Author Contributions: Methodology, V.V.M., D.D.N., and P.A.C.; software, P.A.C.; validation and investigation,
V.V.M., D.D.N., P.A.C., and Y.G.S.; writing—original draft preparation, D.D.N. and V.V.M.; writing—review and
editing, V.V.M., D.D.N., P.A.C., and Y.G.S.; visualization, D.D.N., P.A.C., and Y.G.S.; supervision, V.V.M.; funding
acquisition, V.V.M. All authors have read and agreed to the published version of the manuscript.

Funding: metaRE development was funded by Russian Foundation for Basic Research, grant number 18-04-01130,
and by Russian State Budget, project number 0259-2019-0008-C-01. D.D.N. was supported by a PhD sandwich
fellowship from Wageningen Graduate School. The study of cold stress response was supported by Russian
Science Foundation, grant number 18-74-10008.

134



Genes 2020, 11, 634

Acknowledgments: We thank Ivo Grosse, Nadya Omelyanchuk, Jian Xu and Dolf Weijers for fruitful discussions
and inspiration. We are grateful to Viktor Levitsky for consultations on the technical part of the algorithm.
We acknowledge the Center of Shared Facilities “Bioinformatics” in IC&G for providing us an access to high
performance computing facilities.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.;
Chinnaiyan, A.M. Large-scale meta-analysis of cancer microarray data identifies common transcriptional
profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. USA 2004, 101, 9309–9314.
[CrossRef] [PubMed]

2. Phan, J.H.; Young, A.N.; Wang, M.D. Robust Microarray Meta-Analysis Identifies Differentially Expressed
Genes for Clinical Prediction. Sci. World J. 2012, 2012, 1–9. [CrossRef] [PubMed]

3. Shafi, A.; Nguyen, T.; Peyvandipour, A.; Draghici, S. GSMA: An approach to identify robust global and test
Gene Signatures using Meta-Analysis. Bioinformatics 2019, btz561. [CrossRef] [PubMed]

4. Bargmann, B.O.R.; Vanneste, S.; Krouk, G.; Nawy, T.; Efroni, I.; Shani, E.; Choe, G.; Friml, J.; Bergmann, D.C.;
Estelle, M.; et al. A map of cell type-specific auxin responses. Mol. Syst. Biol. 2013, 9, 688. [CrossRef]

5. Vogel, J.T.; Zarka, D.G.; Van Buskirk, H.A.; Fowler, S.G.; Thomashow, M.F. Roles of the CBF2 and ZAT12
transcription factors in configuring the low temperature transcriptome of Arabidopsis: Arabidopsis low
temperature transcriptome. Plant J. 2004, 41, 195–211. [CrossRef]

6. He, H.; Cao, S.; Niu, T.; Zhou, Y.; Zhang, L.; Zeng, Y.; Zhu, W.; Wang, Y.; Deng, H. Network-Based
Meta-Analyses of Associations of Multiple Gene Expression Profiles with Bone Mineral Density Variations in
Women. PLoS ONE 2016, 11, e0147475. [CrossRef]

7. Ament, S.A.; Blatti, C.A.; Alaux, C.; Wheeler, M.M.; Toth, A.L.; Le Conte, Y.; Hunt, G.J.; Guzman-Novoa, E.;
DeGrandi-Hoffman, G.; Uribe-Rubio, J.L.; et al. New meta-analysis tools reveal common transcriptional
regulatory basis for multiple determinants of behavior. Proc. Nat. Acad. Sci. USA 2012, 109, E1801–E1810.
[CrossRef]

8. Schwarz, B.; Azodi, C.B.; Shiu, S.-H.; Bauer, P. Putative cis-Regulatory Elements Predict Iron Deficiency
Responses in Arabidopsis Roots. Plant Physiol. 2020, 182, 1420–1439. [CrossRef]

9. Cherenkov, P.; Novikova, D.; Omelyanchuk, N.; Levitsky, V.; Grosse, I.; Weijers, D.; Mironova, V. Diversity of
cis-regulatory elements associated with auxin response in Arabidopsis thaliana. J. Exp. Bot. 2018, 69, 329–339.
[CrossRef]

10. Eddelbuettel, D. Seamless R and C++ Integration with Rcpp; Springer: New York, NY, USA, 2013;
ISBN 978-1-4614-6867-7.

11. Davis, S.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor.
Bioinformatics 2007, 23, 1846–1847. [CrossRef]

12. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, 47. [CrossRef]

13. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [CrossRef]

14. McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments
with respect to biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [CrossRef]

15. Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 2002, 30, 207–210. [CrossRef]

16. Pagès, H.; Aboyoun, P.; Gentleman, R.; DebRoy, S. Biostrings: Efficient Manipulation of Biological Strings.
R Package Version 2.56.0. 2020. Available online: https://bioconductor.org/packages/release/bioc/html/
Biostrings.html (accessed on 8 June 2020). [CrossRef]

17. Durinck, S.; Moreau, Y.; Kasprzyk, A.; Davis, S.; De Moor, B.; Brazma, A.; Huber, W. BioMart and Bioconductor:
A powerful link between biological databases and microarray data analysis. Bioinformatics 2005, 21, 3439–3440.
[CrossRef]

135



Genes 2020, 11, 634

18. Mironova, V.V.; Omelyanchuk, N.A.; Wiebe, D.S.; Levitsky, V.G. Computational analysis of auxin responsive
elements in the Arabidopsis thaliana L. genome. BMC Genom. 2014, 15, S4. [CrossRef]

19. Zemlyanskaya, E.V.; Wiebe, D.S.; Omelyanchuk, N.A.; Levitsky, V.G.; Mironova, V.V. Meta-analysis of
transcriptome data identified TGTCNN motif variants associated with the response to plant hormone auxin
in Arabidopsis thaliana L. J. Bioinform. Comput. Biol. 2016, 14, 1641009. [CrossRef]

20. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70.
21. Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 1988, 75, 800–802.

[CrossRef]
22. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to

multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [CrossRef]
23. Benjamini, Y.; Yekutieli, D. The Control of the False Discovery Rate in Multiple Testing under Dependency.

Ann. Stat. 2001, 29, 1165–1188.
24. Gupta, S.; Stamatoyannopoulos, J.A.; Bailey, T.L.; Noble, W. Quantifying similarity between motifs.

Genome Biol. 2007, 8, R24. [CrossRef]
25. Guan, Q.; Wu, J.; Zhang, Y.; Jiang, C.; Liu, R.; Chai, C.; Zhu, J. A DEAD Box RNA Helicase Is Critical for

Pre-mRNA Splicing, Cold-Responsive Gene Regulation, and Cold Tolerance in Arabidopsis. Plant Cell 2013,
25, 342–356. [CrossRef]

26. Chiba, Y.; Mineta, K.; Hirai, M.Y.; Suzuki, Y.; Kanaya, S.; Takahashi, H.; Onouchi, H.; Yamaguchi, J.; Naito, S.
Changes in mRNA Stability Associated with Cold Stress in Arabidopsis Cells. Plant Cell Physiol. 2013, 54,
180–194. [CrossRef]

27. Park, S.; Lee, C.-M.; Doherty, C.J.; Gilmour, S.J.; Kim, Y.; Thomashow, M.F. Regulation of the Arabidopsis
CBF regulon by a complex low-temperature regulatory network. Plant J. 2015, 82, 193–207. [CrossRef]

28. Kim, Y.; Park, S.; Gilmour, S.J.; Thomashow, M.F. Roles of CAMTA transcription factors and salicylic acid
in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J. 2013, 75,
364–376. [CrossRef]

29. Lee, B.; Henderson, D.A.; Zhu, J.-K. The Arabidopsis Cold-Responsive Transcriptome and Its Regulation by
ICE1. Plant Cell 2005, 17, 3155–3175. [CrossRef]

30. Jia, Y.; Ding, Y.; Shi, Y.; Zhang, X.; Gong, Z.; Yang, S. The cbfs triple mutants reveal the essential functions
of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 2016, 212,
345–353. [CrossRef]

31. Kilian, J.; Whitehead, D.; Horak, J.; Wanke, D.; Weinl, S.; Batistic, O.; D’Angelo, C.; Bornberg-Bauer, E.;
Kudla, J.; Harter, K. The AtGenExpress global stress expression data set: Protocols, evaluation and model
data analysis of UV-B light, drought and cold stress responses: AtGenExpress global abiotic stress data set.
Plant J. 2007, 50, 347–363. [CrossRef]

32. Schlaen, R.G.; Mancini, E.; Sanchez, S.E.; Perez-Santángelo, S.; Rugnone, M.L.; Simpson, C.G.; Brown, J.W.S.;
Zhang, X.; Chernomoretz, A.; Yanovsky, M.J. The spliceosome assembly factor GEMIN2 attenuates the
effects of temperature on alternative splicing and circadian rhythms. Proc. Natl. Acad. Sci. USA 2015, 112,
9382–9387. [CrossRef] [PubMed]

33. Hu, P.; Liu, M.; Zhang, D.; Wang, J.; Niu, H.; Liu, Y.; Wu, Z.; Han, B.; Zhai, W.; Shen, Y.; et al. Global
identification of the genetic networks and cis -regulatory elements of the cold response in zebrafish.
Nucleic Acids Res. 2015, 43, 9198–9213. [CrossRef] [PubMed]

34. Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the integration of genomic datasets
with the R/Bioconductor package biomaRt. Nat. Protoc. 2009, 4, 1184–1191. [CrossRef]

35. Thomashow, M.F. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms.
Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1999, 50, 571–599. [CrossRef]

36. Gilmour, S.J.; Zarka, D.G.; Stockinger, E.J.; Salazar, M.P.; Houghton, J.M.; Thomashow, M.F. Low
temperature regulation of theArabidopsisCBF family of AP2 transcriptional activators as an early step in
cold-inducedCORgene expression. Plant J. 1998, 16, 433–442. [CrossRef]

37. Zarka, D.G.; Vogel, J.T.; Cook, D.; Thomashow, M.F. Cold Induction of Arabidopsis CBF Genes Involves
Multiple ICE (Inducer of CBF Expression) Promoter Elements and a Cold-Regulatory Circuit That Is
Desensitized by Low Temperature. Plant Physiol. 2003, 133, 910–918. [CrossRef]

136



Genes 2020, 11, 634

38. Novillo, F.; Alonso, J.M.; Ecker, J.R.; Salinas, J. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and
CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad.
Sci. USA 2004, 101, 3985–3990. [CrossRef]

39. Yamaguchi-Shinozaki, K.; Shinozaki, K. Organization of cis-acting regulatory elements in osmotic- and
cold-stress-responsive promoters. Trends Plant Sci. 2005, 10, 88–94. [CrossRef]

40. Doherty, C.J.; Van Buskirk, H.A.; Myers, S.J.; Thomashow, M.F. Roles for Arabidopsis CAMTA Transcription
Factors in Cold-Regulated Gene Expression and Freezing Tolerance. Plant Cell 2009, 21, 972–984. [CrossRef]

41. Kidokoro, S.; Maruyama, K.; Nakashima, K.; Imura, Y.; Narusaka, Y.; Shinwari, Z.K.; Osakabe, Y.; Fujita, Y.;
Mizoi, J.; Shinozaki, K.; et al. The Phytochrome-Interacting Factor PIF7 Negatively Regulates DREB1
Expression under Circadian Control in Arabidopsis. Plant Physiol. 2009, 151, 2046–2057. [CrossRef]

42. Lee, C.-M.; Thomashow, M.F. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation
pathway and freezing tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2012, 109, 15054–15059.
[CrossRef]

43. Maruyama, K.; Todaka, D.; Mizoi, J.; Yoshida, T.; Kidokoro, S.; Matsukura, S.; Takasaki, H.; Sakurai, T.;
Yamamoto, Y.Y.; Yoshiwara, K.; et al. Identification of Cis-Acting Promoter Elements in Cold- and
Dehydration-Induced Transcriptional Pathways in Arabidopsis, Rice, and Soybean. DNA Res. 2012,
19, 37–49. [CrossRef] [PubMed]

44. Jiang, B.; Shi, Y.; Zhang, X.; Xin, X.; Qi, L.; Guo, H.; Li, J.; Yang, S. PIF3 is a negative regulator of the CBF
pathway and freezing tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 2017, 114, E6695–E6702. [CrossRef]

45. Zhao, C.; Zhang, Z.; Xie, S.; Si, T.; Li, Y.; Zhu, J.-K. Mutational Evidence for the Critical Role of CBF Genes in
Cold Acclimation in Arabidopsis. Plant Physiol. 2016, 533. [CrossRef]

46. Agarwal, M.; Hao, Y.; Kapoor, A.; Dong, C.-H.; Fujii, H.; Zheng, X.; Zhu, J.-K. A R2R3 Type MYB Transcription
Factor Is Involved in the Cold Regulation of CBF Genes and in Acquired Freezing Tolerance. J. Biol. Chem.
2006, 281, 37636–37645. [CrossRef]

47. Dong, M.A.; Farre, E.M.; Thomashow, M.F. CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED
HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis.
Proc. Natl. Acad. Sci. USA 2011, 108, 7241–7246. [CrossRef]

48. Kidokoro, S.; Yoneda, K.; Takasaki, H.; Takahashi, F.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Different
Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature.
Plant Cell 2017, 29, 760–774. [CrossRef]

49. Yang, S.-H.; Sharrocks, A.D. Convergence of the SUMO and MAPK pathways on the ETS-domain transcription
factor Elk-1. Biochem. Soc. Symp. 2006, 73, 121–129. [CrossRef]

50. Ducker, C.; Chow, L.K.Y.; Saxton, J.; Handwerger, J.; McGregor, A.; Strahl, T.; Layfield, R.; Shaw, P.E.
De-ubiquitination of ELK-1 by USP17 potentiates mitogenic gene expression and cell proliferation.
Nucleic Acids Res. 2019, 47, 4495–4508. [CrossRef]

51. Felber, K.; Elks, P.M.; Lecca, M.; Roehl, H.H. Expression of osterix Is Regulated by FGF and Wnt/β-Catenin
Signalling during Osteoblast Differentiation. PLoS ONE 2015, 10, e0144982. [CrossRef]

52. Lahiri, K.; Vallone, D.; Gondi, S.B.; Santoriello, C.; Dickmeis, T.; Foulkes, N.S. Temperature Regulates
Transcription in the Zebrafish Circadian Clock. PLoS Biol. 2005, 3, e351. [CrossRef]

53. van Helden, J.; André, B.; Collado-Vides, J. A web site for the computational analysis of yeast regulatory
sequences. Yeast 2000, 16, 177–187. [CrossRef]

54. Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K.
Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required
for Macrophage and B Cell Identities. Mol. Cell 2010, 38, 576–589. [CrossRef] [PubMed]

55. Liu, T.; Ortiz, J.A.; Taing, L.; Meyer, C.A.; Lee, B.; Zhang, Y.; Shin, H.; Wong, S.S.; Ma, J.; Lei, Y.; et al. Cistrome:
An integrative platform for transcriptional regulation studies. Genome Biol. 2011, 12, R83. [CrossRef]

56. Khan, A.; Fornes, O.; Stigliani, A.; Gheorghe, M.; Castro-Mondragon, J.A.; van der Lee, R.; Bessy, A.;
Chèneby, J.; Kulkarni, S.R.; Tan, G.; et al. JASPAR 2018: Update of the open-access database of transcription
factor binding profiles and its web framework. Nucleic Acids Res. 2018, 46, D260–D266. [CrossRef] [PubMed]

57. Hu, J.; Wang, D.; Li, J.; Jing, G.; Ning, K.; Xu, J. Genome-wide identification of transcription factors and
transcription-factor binding sites in oleaginous microalgae Nannochloropsis. Sci. Rep. 2015, 4, 5454.
[CrossRef]

137



Genes 2020, 11, 634

58. Chinnusamy, V.; Zhu, J.; Zhu, J.-K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007,
12, 444–451. [CrossRef]

59. Zhao, C.; Lang, Z.; Zhu, J.-K. Cold responsive gene transcription becomes more complex. Trends Plant Sci.
2015, 20, 466–468. [CrossRef] [PubMed]

60. Bailey, T.L. DREME: Motif discovery in transcription factor ChIP-seq data. Bioinformatics 2011, 27, 1653–1659.
[CrossRef]

61. Chen, Y.-H.; Lee, W.-C.; Cheng, C.-H.; Tsai, H.-J. Muscle regulatory factor gene: Zebrafish (Danio rerio)
myogenin cDNA. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2000, 127, 97–103. [CrossRef]

62. Campos, C.; Valente, L.; Conceição, L.; Engrola, S.; Fernandes, J. Temperature affects methylation of the
myogenin putative promoter, its expression and muscle cellularity in Senegalese sole larvae. Epigenetics
2013, 8, 389–397. [CrossRef] [PubMed]

63. Goulding, M.D.; Gruss, P. The homeobox in vertebrate development. Curr. Opin. Cell Biol. 1989, 1, 1088–1093.
[CrossRef]

64. Zeng, Z.; Zhang, W.; Marand, A.P.; Zhu, B.; Buell, C.R.; Jiang, J. Cold stress induces enhanced chromatin
accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato.
Genome Biol. 2019, 20, 123. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

138



genes
G C A T

T A C G

G C A T

Article

Computational Analysis of Transcriptomic and
Proteomic Data for Deciphering Molecular
Heterogeneity and Drug Responsiveness in Model
Human Hepatocellular Carcinoma Cell Lines

Panagiotis C. Agioutantis 1,2, Heleni Loutrari 2,* and Fragiskos N. Kolisis 1,*

1 Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens,
5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece; panagiout@mail.ntua.gr

2 G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services,
Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str.,
10675 Athens, Greece

* Correspondence: elloutrar@med.uoa.gr (H.L.); kolisis@chemeng.ntua.gr (F.N.K.)

Received: 6 April 2020; Accepted: 2 June 2020; Published: 5 June 2020

Abstract: Hepatocellular carcinoma (HCC) is associated with high mortality due to its inherent
heterogeneity, aggressiveness, and limited therapeutic regimes. Herein, we analyzed 21 human
HCC cell lines (HCC lines) to explore intertumor molecular diversity and pertinent drug sensitivity.
We used an integrative computational approach based on exploratory and single-sample gene-set
enrichment analysis of transcriptome and proteome data from the Cancer Cell Line Encyclopedia,
followed by correlation analysis of drug-screening data from the Cancer Therapeutics Response
Portal with curated gene-set enrichment scores. Acquired results classified HCC lines into two
groups, a poorly and a well-differentiated group, displaying lower/higher enrichment scores in a
“Specifically Upregulated in Liver” gene-set, respectively. Hierarchical clustering based on a published
epithelial–mesenchymal transition gene expression signature further supported this stratification.
Between-group comparisons of gene and protein expression unveiled distinctive patterns, whereas
downstream functional analysis significantly associated differentially expressed genes with crucial
cancer-related biological processes/pathways and revealed concrete driver-gene signatures. Finally,
correlation analysis highlighted a diverse effectiveness of specific drugs against poorly compared to
well-differentiated HCC lines, possibly applicable in clinical research with patients with analogous
characteristics. Overall, this study expanded the knowledge on the molecular profiles, differentiation
status, and drug responsiveness of HCC lines, and proposes a cost-effective computational approach
to precision anti-HCC therapies.

Keywords: hepatocellular carcinoma; transcriptomics; proteomics; bioinformatics analysis;
differentiation; Gene Ontology; Reactome Pathways; gene-set enrichment

1. Introduction

Liver cancer is one of the most frequently occurring life-threatening neoplasms worldwide.
Hepatocellular carcinoma (HCC)—the most predominant type of primary liver cancer (85%
to 90%)—usually arises in the context of inflammatory-induced stress and chronically progressing
liver cirrhosis. Depending on the region of incidence, a wide range of risk factors have been implicated
in the development of HCC. Hepatitis B and aflatoxin B1 exposure are widely associated with HCC
cases occurring in eastern Asia and Sub-Saharan Africa, while hepatitis C, alcohol consumption, and
non-alcoholic fatty liver disease prevail as leading causative factors in the Western world and Japan [1].
Regardless of the potentially implicated risk factors, HCC incidence constitutes a remarkably complex
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multistep process, involving various genomic and epigenomic aberrations leading to an inevitable
molecular heterogeneity [2,3]. Deregulated cell proliferation, increased inflammatory and oxidative
stress, enriched tumor microenvironment, and abnormally active angiogenic switches characterize the
progression of HCC, through the early stage of initiation up to the point of invasion and metastasis [4].

Despite existing surveillance protocols for cirrhotic patients, HCC is often diagnosed in
advanced stages, resulting in limited applicable treatments or effective therapies. Moreover, HCC
chemopreventive strategies are additionally hampered by the aforementioned innate molecular
heterogeneity of the disease. To date, only a handful of available treatment regimens have been
proven effective (first-line options sorafenib and lenvatinib, along with second-line options regorafenib,
cabozantinib, and ramucirumab), and only to some extent [4]. Therefore, it is of the utmost importance
to identify novel biomarkers and potent drug agents to address the miscellaneous characteristics
of HCC cases. Cancer cell lines have been extensively used during the last decades as valuable
research model systems. Although not ideal in portraying the physiological and molecular traits of
patients’ malignancies, they have enabled a plethora of low-cost experiments towards the genomic
and functional characterization of cancers [5]. Furthermore, diverse well-characterized cell lines could
provide a convenient platform for pharmacogenomic studies deciphering the molecular complexity of
tumors in association with drug-specific sensitivity [6,7].

To this end, in the present work, we aimed to shed light on the distinct/shared molecular features
of 21 widely used human HCC cell lines (HCC lines), and to investigate their potential connection
to drug efficiency. Our strategy implemented a thorough bioinformatics exploratory and functional
enrichment analysis of publicly available transcriptomic and proteomic data from HCC lines, along
with a correlation analysis of existing drug-response data to defined molecular signatures. Furthermore,
tumors from HCC patients were characterized accordingly by analyzing gene expression data from
the Cancer Genome Atlas (TCGA). Acquired results provided information on (a) potentially discrete
subtypes amongst the investigated HCC lines, mainly dictated by their molecular resemblance (or
not) to normal hepatocytes; (b) differentially expressed genes (DEGs) and differentially expressed
proteins (DEPs) representative of inherent cancer heterogeneity; (c) biological processes and pathways
significantly related to DEGs; and (d) HCC-subtype-specific sensitivity/resistance to drugs. Overall,
the present work sets the basis of a computational platform for the integration and analysis of
publicly accessible -omics and drug-screening data from tumor cell lines—and eventually tissue
specimens—enabling the development of patient-tailored anti-cancer medications.

2. Materials and Methods

2.1. Data Acquisition and Pre-Processing

Publicly available transcriptomic and proteomic data were obtained from the Cancer
Cell Line Encyclopedia (CCLE) database [7] (https://portals.broadinstitute.org/ccle/data).
Gene-centric RMA-normalized mRNA expression (CCLE_Expression_Entrez_2012-09-29.gct),
reverse-phase protein array (RPPA-CCLE_RPPA_20181003.csv), and HCC line annotation
(CCLE_sample_info_file_2012-10-18.txt) data were downloaded. The RPPA data file contained
median-centered log2-normalized relative protein expression values as previously described [8].
Out of all the total cancer cell line entries in the CCLE database, 23 liver cancer cell lines with
available microarray gene expression data and RPPA protein expression data were extracted. Two cell
lines—namely SNU398 and NCIH684—were excluded from subsequent analyses, the former due to
the highly anaplastic nature of the cells [9], and the latter because it originates from primary colon
cancer metastasized to the liver. Remaining liver cancer cell lines included 20 HCC lines and SKHEP1,
a widely used liver adenocarcinoma cell line of endothelial origin [10]. SKHEP1 has been sporadically
used in HCC-associated studies, despite recent recommendations [11].

Drug-screening data containing area under concentration–response curve (AUC) sensitivity
measurements for 481 drugs, regarding 15 of the extracted cell lines, were obtained from the Cancer
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Therapeutics Response Portal (CTRPv2, https://portals.broadinstitute.org/ctrp.v2.1/) [12]. AUCs are
based on percentage viability scores compared to dimethyl sulfoxide (DMSO)-treated cells [13]. Drugs
with missing values for three or more cell lines were subsequently discarded. To conclude, 21 HCC lines
(Table 1) with corresponding gene expression (18,900 genes) and protein/phosphoprotein expression
(214 proteins/phosphoproteins) data were studied. For the vast majority of cell lines, additional
drug-screening sensitivity data for 344 compounds were investigated.

Table 1. HCC lines with available gene and protein/phosphoprotein expression data used in
data analysis.

Cell Line Name Cancer Type Cell Line Name Cancer Type Cell Line Name Cancer Type

HEP3B217 HCC JHH4 HCC SNU387 HCC

HEPG2 HCC JHH5 HCC SNU423 HCC

HLF HCC JHH6 HCC SNU449 HCC

HUH1 HCC JHH7 HCC SNU475 HCC

HUH7 HCC LI7 HCC SNU761 HCC

JHH1 HCC PLCPRF5 HCC SNU878 HCC

JHH2 HCC SKHEP1 Adenocarcinoma SNU886 HCC

Blue font indicates cell lines with drug sensitivity data available from the Cancer Therapeutics Response Portal
(CTRPv2) and used in pharmacogenomic analysis. HCC: Hepatocellular carcinoma

Finally, gene-expression RNA-seq data from the TCGA HCC cohort [14] were downloaded as
gene-level raw expression values produced by RSEM [15] (LIHC.uncv2.mRNAseq_raw_counts.txt)
from the Broad Institute portal (https://gdac.broadinstitute.org/) along with corresponding clinical
information. Raw gene expression values were appropriately normalized using the TMM (trimmed
mean of M values) normalization method [16] and transformed in log2 scale.

2.2. Exploratory Analysis of Transcriptomic and Proteomic Data

Pairwise Pearson’s correlation coefficients were computed between each pair of HCC lines, based
on the expression of the 500 genes with the largest cross-sample variation (median absolute deviation)
and the expression of 214 available proteins/phosphoproteins, respectively. Graphical displays of
correlation matrices were produced using the corrplot package in R.

Principal component analysis (PCA) was performed using the dedicated PCA function from the
mixomics R package [17]. Optimal univariate k-means clustering was conducted by implementing the
Ckmeans.1d.dp package in R [18]. The core function of this package performs one-dimensional (1D),
weighted or unweighted, k-means clustering and provides the optimal number of clusters using the
Bayesian information criterion (BIC) [19]. HCC line weights were considered equal (weight = 1.0).

Single-sample gene-set enrichment analysis (ssGSEA) scores were computed against curated
gene-sets (C2) from MSigDB by implementing the GSVA package in the R environment [20]. ssGSEA
defines an enrichment score that represents the degree of absolute enrichment of a gene-set in each
sample within a given dataset [21]. Essentially, ssGSEA enrichment scores signify the degree to which
genes in a particular gene-set are coordinately up- or downregulated within a given sample.

A recently published epithelial-to-mesenchymal transition (EMT) gene expression signature [22]
consisting of 239 genes —215 epithelial and 24 mesenchymal markers— was further used to enhance the
exploratory data-analysis process. More specifically, hierarchical clustering (average linkage, Euclidean
distance) was performed based on the EMT signature, to support/supplement PCA-identified clusters.

2.3. Between-Group Differential Gene and Protein Expression Analysis

Between-group gene and protein differential expression analyses were conducted by implementing
the limma package in R [23]. Genes with overall very low expression were filtered out, while the full
set of available proteins/phosphoproteins was used. Regarding the identification of DEGs, the treat
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function [24], which tests for significance relative to fold-change thresholds, was implemented. Genes
with an adjusted p-value< 0.1 (Benjamini–Hochberg correction) and |fold-change| > 1.2 were considered
DEGs. Proteins/phosphoproteins with an adjusted p-value < 0.1 (Benjamini–Hochberg correction) after
moderated t-tests implemented through the eBayes function, were considered differentially expressed
as well. Volcano plots illustrating identified DEGs and DEPs were created using the EnhancedVolcano
package in R [25]. Scaled gene/protein expression values were used in heatmap illustrations for
individual HCC lines regarding identified DEGs and DEPs.

2.4. Functional Enrichment Analysis of Differentially Expressed Genes

Reactome Pathway and Gene Ontology (GO) enrichment analysis of DEGs was conducted
using Bioinfominer [26,27], a bioinformatics tool that delivers unsupervised, fast, and integrative
interpretation of -omics experiments. This tool accepts lists of genes and performs enrichment analysis
along with prioritization of detected systemic processes, ultimately resulting in a compact signature
consisting of systemic processes and their hub driver-genes. This signature constitutes a deconvoluted
projection onto biological networks of hierarchical structure (ontologies, Reactome Pathway database),
corrected for biases as well as other inconsistencies. The significance threshold for altered biological
processes/pathways was set at a corrected hypergeometric p-value of 0.05.

Testing for enrichment of curated gene-sets (C2) from MSigDB amongst the between-group
differential gene expression data was performed using the camera function [28] in the limma package, a
competitive gene-set test procedure based on the idea of taking into account the intergene correlation
to adjust the gene-set test statistic. Statistically significant enriched gene-sets were controlled at an
adjusted FDR = 0.05 threshold, after Benjamini–Hochberg correction for multiple testing.

2.5. Drug-Specific Sensitivity in Association with Differentiation Status of HCC lines

Drug-sensitivity AUC measurements available for 15 of the HCC lines (Table 1, blue font) were
correlated with their enrichment scores for a specific/selected (SU_LIVER) gene-set, in an attempt
to elucidate differentiation-status-associated drug-sensitivity. Lower AUC sensitivity measurements
corresponded to an enhanced drug effect against cell line viability. Liver-like well-differentiated cell
lines were characterized by higher enrichment scores than the poorly differentiated ones; therefore,
positive correlations highlighted drugs more effective against poorly differentiated cell lines, while
negative correlations drugs more effective against well-differentiated ones. Drugs with a p-value < 0.05,
an adjusted p-value < 0.3 (after Benjamini–Hochberg correction), and |Spearman’s ρ| > 0.5 were
considered to be significantly correlated with the investigated enrichment score.

2.6. HCC Tumor Clustering Based on SU_LIVER Gene-Set Expression Data From TCGA

HCC patients (n = 354) with available gene-expression data and documented histological grades
were extracted from the downloaded TCGA RNA-seq dataset. A total 224 samples have been
characterized as well/moderately differentiated tumors of Grade 1 and Grade 2 (G1+G2), while 130
samples have been characterized as poorly/undifferentiated tumors of Grade 3 and Grade 4 (G3+G4).
Hierarchical clustering (Ward linkage, Euclidean distance) of the 354 patients was conducted based on
the scaled expression of all 58 genes involved in the SU_LIVER gene-set. Subsequently, a χ2 test in
the R environment was conducted to test for a possible association between the formed clusters and
histological grading.

3. Results

3.1. HCC Lines Clustered into Two Distinct Differentiation Subtypes

The present study focused on the global comparison of 21 patient-derived HCC lines for which
gene and protein/phosphoprotein expression data are publicly available (Table 1). An initial correlation
matrix analysis based on (i) the expression of 500 genes exhibiting the largest cross-sample variation
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(Figure S1) and (ii) the abundance of all 214 proteins/phosphoproteins offered from the RPPA dataset
(Figure S2) notably showed that some of the examined cell lines shared a higher similarity compared
to others. Further investigation of these results by PCA, using the same subset of 500 genes, revealed
a clear spread of HCC lines across PC1, explaining 33% of variance amongst samples (Figure 1A).
Subsequent 1D k-means clustering performed on the PC1 scores of HCC lines indicated two optimal
discrete clusters across PC1 (Figure 1B, Figure S3) which notably corresponded to a “high PC1 score”
cluster and a “low PC1 score” cluster, respectively.

Figure 1. Gene-based principal component analysis (PCA) and clustering of HCC lines (A) PCA
on 500 genes with the largest cross-sample variation. PC1 (x-axis) versus PC2 (y-axis) for 21 HCC
lines indicated by blue color. Dashed horizontal and vertical lines mark zero values of PC1 and PC2,
respectively. (B) The two optimal k-means clusters based on PC1 scores as identified by the Bayesian
information criterion (BIC). All HCC lines were treated as equally weighted.

Compared to the microarray gene expression data, RNA-seq data retrieved from CCLE provided
almost identical results for the examined HCC lines in gene-based PCA (Figure S4). Most importantly,
a high cross-platform Pearson correlation (mean value 0.85 ± 0.01 standard deviation) was found for
all 21 same-cell-line pairs (e.g., HEPG2RNAseq – HEPG2microarray), based on the expression of 16,667
genes found to be shared within the two datasets.

In order to highlight the biological background underlying this discrete cell-line grouping across
PC1, we subsequently computed the ssGSEA scores against curated gene-sets from MSigDB, based
on calculated PC1 loadings (Table S1). Interestingly, a “Specifically Upregulated in Liver” gene-set
(SU_LIVER), containing genes upregulated specifically in human liver tissue [29], was identified as

143



Genes 2020, 11, 623

one of the top gene-sets with positive enrichment scores. Additionally, individual cell-line enrichment
scores for each particular gene-set were computed by ssGSEA (Table S2). After examining and
evaluating many HCC-related top enriched gene-sets regarding their ability to predict PC1 scores,
we focused on SU_LIVER, as this gene-set exhibited the best predictive performance. We performed
1D k-means clustering, which again highlighted two optimal clusters (Figure 2A, Figure S5), a “high
SU_LIVER score” and a “low SU_LIVER score” cluster, respectively. Subsequent correlation of PC1
scores with the individual cell-line SU_LIVER enrichment scores revealed that 86% of observed PC1
variance was explained by that term (Pearson’s r = 0.93, R2 = 0.86, p-value = 1.874 × 10–9). Cell lines
included in both the “high SU_LIVER score” and “high PC1 score” clusters were therefore considered
to be liver-like and well-differentiated, while the ones belonging in both the “low SU_LIVER score”
and “low PC1 score” clusters were characterized as poorly differentiated (Figure 2B).

Figure 2. Specifically Upregulated in Liver (SU_LIVER) clustering of HCC lines and PC1-SU_LIVER
correlation. (A) The two optimal k-means clusters based on computed cell line ssGSEA SU_LIVER
enrichment scores as identified by the BIC. All HCC lines were treated as equally weighted. (B) PC1
score correlation (Pearson’s) with individual cell-line enrichment scores for the SU_LIVER gene-set.
Cell lines included in the “high SU_LIVER score”/“high PC1 score” clusters were identified as liver-like
and well-differentiated (green circles), while the ones in the “low SU_LIVER score”/“low PC1 score”
clusters were characterized as poorly differentiated (purple circles). Yellow circles indicate ambiguous
cell lines.

Results for only two cell lines, namely LI7 and PLCPRF5, were conflicting, because their PC1
score clustering opposed their SU_LIVER enrichment score clustering; therefore, these cell lines were
characterized as ambiguous.

We subsequently used a recently published EMT gene expression signature to further challenge the
proposed differentiation-associated stratification of test HCC lines, since EMT is a process highly related
to the differentiation/de-differentiation status of cancer cells [29]. Notably, the hierarchical clustering of
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HCC lines —as depicted in the corresponding heatmap— unveiled again their classification into two
main groups, based on the EMT gene expression signature pattern, while additionally identified JHH1
as a rather ambiguous cell line of discrete nature (Figure 3). This clustering generally corroborated the
differentiation groups demonstrated in Figure 2B.

Figure 3. Heatmap illustrating the hierarchical clustering of cancer cell lines (columns) based on the
epithelial-to-mesenchymal transition (EMT) signature of 239 genes (rows). Scaled values indicate
relative downregulation (green color) or upregulation (red color) of gene expression. Cell lines are
annotated by color, based on the clusters that were predicted by the SU_LIVER enrichment scores
shown in Figure 2B.

Finally, PCA based on protein/phosphoprotein RPPA expression data showed that the clustering
of HCC lines was widely consistent, not only at the gene but also at the protein expression level
(Figure 4) and further confirmed the discrete/ambiguous nature of the JHH1 cell line. Based on these
findings, JHH1 along with LI7 and PLCPRF5 were considered to be ambiguously characterized in
the context of this study and were therefore excluded from downstream analyses, in order to get
a more straightforward and comprehensive grasp of distinct differentiation-associated molecular
characteristics amongst the remaining HCC lines.
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Figure 4. PCA based on all 214 protein/phosphoprotein reverse-phase protein array (RPPA)
expression data. PC1 (x-axis) versus PC2 (y-axis). Cell lines are annotated by color, based on
the gene-expression-derived clusters that are predicted by the SU_LIVER enrichment scores shown in
Figure 2B.

3.2. Differential Gene and Protein Expression between Poorly and Well-Differentiated HCC Lines

Between-group differential gene and protein expression analysis was subsequently carried out
to investigate the molecular basis underlying the distinct classification of the examined HCC lines.
The volcano plots shown in Figure 5A,B depict the number of DEGs and DEPs respectively, between
poorly and well-differentiated liver-like HCC lines. Considering the latter as controls, since they
undoubtedly uphold molecular features closer to functional normal hepatocytes, we accordingly
identified a significant differential expression of 935 genes (462 upregulated and 473 downregulated)
and 16 proteins (10 upregulated and 6 downregulated). Full lists of DEGs and DEPs are provided
in Tables S3 and S4. Additionally, heatmaps illustrating the scaled expression values of HCC lines
regarding identified DEGs and DEPs are provided in Figures S6 and S7, respectively, offering a
comprehensive representation of individual cell-line expression patterns irrespective of assigned
control group.

Figure 5. Cont.
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Figure 5. Volcano plots illustrating differentially expressed genes (DEGs) (A) and differentially
expressed proteins (DEPs) (B) in poorly differentiated versus well-differentiated HCC lines. Red
and green dots represent up- and downregulated genes/proteins, respectively; grey dots represent
non-statistically-significant altered genes/proteins. Horizontal dashed lines indicate a statistical
threshold corresponding to an adjusted p-value of < 0.1; x-axis: mRNA log2 fold-change (A) or RPPA
log2 fold-change (B), y-axis: p-value in negative log10 scale.

Identified DEPs included downregulated proteins ECADHERIN, HER3, FASN, BRAF, CHK2, and
phospho-BRAF, along with upregulated proteins CAVEOLIN1, PAI1, PAXILLIN, PEA15, PKCALPHA,
AKT, NF2, FRA1, ANNEXIN1, and phospho-MAPK1/MAPK3. Pairwise total protein–mRNA
relationships were investigated, excluding only for this analysis the two phosphorylated DEPs
(MAPK_PT202Y204 and BRAF_PS445). For the majority of observed DEPs (HER3, ECADHERIN,
BRAF, NF2, PAXILLIN, AKT, ANNEXIN1, PEA15, PAI1, FRA1, CAVEOLIN1) corresponding genes
(ERBB3, CDH1, BRAF, NF2, PXN, AKT3, ANXA1, PEA15, SERPINE1, FOSL1, CAV1) were also found to
be differentially expressed. A noteworthy observation was made concerning AKT: out of the three
genes encoding for the corresponding isoforms—namely AKT1, AKT2, and AKT3 (all detected by
a single antibody in applied RPPA procedures [8])—only the expression of AKT3 was significantly
upregulated. Furthermore, mRNA expression fold-changes positively correlated with the respective
total protein expression changes (Figure 6, Pearson’s r = 0.78, R2 = 0.61, p-value = 0.00458). The genes
encoding the remaining DEPs (FASN, CHK2, and PKCALPHA) were either not identified as DEGs
based on the predefined criteria, or were not included in the starting list of available genes.

Figure 6. Pairwise Pearson correlation between identified DEPs (total proteins) and their corresponding
DEGs. x-axis: mRNA log2(fold-change) of DEGs, y-axis: RPPA log2(fold-change) of DEPs. Protein–gene
pairs are represented by their corresponding HGNC gene symbol.
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3.3. Differentially Enriched Biological Processes/Pathways and Hub Driver-Gene Signatures between Poorly
and Well-Differentiated HCC Lines

To better comprehend the molecular basis underlying the classification of the examined HCC lines
into two distinct differentiation subtypes, DEGs were next subjected to downstream functional GO and
Reactome Pathway enrichment analysis to reveal potentially implicated biological processes/pathways.
By implementing the Bioinfominer software, a total of 114 significantly enriched GO biological processes
and 28 additional biological Reactome pathways were identified (Tables S5 and S6). Figure 7 depicts
the top 30 enriched GO terms, ranked by their corrected hypergeometric p-values, while Figure 8 shows
all Reactome-Pathway-enriched terms. Recurring biological features were easily identifiable in both
enrichment datasets, as in fact terms associated to wound healing, blood coagulation and hemostasis,
fibrinolysis and clotting cascades, extracellular matrix (ECM) organization, platelet activation, and cell
migration and motility were commonly observed. Furthermore, terms related to altered metabolism
along with lipid/cholesterol homeostasis were assertively present.

Figure 7. Top 30 significantly enriched Gene Ontology (GO) biological process terms, ranked by their
hypergeometric corrected p-value in negative log10 scale (x-axis). Gene enrichment is also presented in
total gene numbers, right after each GO term.

Figure 8. Significantly enriched Reactome Pathway terms ranked by their hypergeometric corrected
p-value in negative log10 scale (x-axis). Gene enrichment is also presented in total gene numbers, right
after each Reactome Pathway term.

Apart from the typical enrichment analysis, we exploited the Bioinfominer’s ability to aggregate
ontologically similar/interconnected enriched terms and prioritize them in the context of systemic

148



Genes 2020, 11, 623

processes for both GO and Reactome Pathway database vocabularies. A compact signature of hub
driver-genes implicated in these prioritized systemic processes was produced in each case. As a result,
systemic processes derived from the GO biological process and Reactome Pathway enrichment analyses
were inferred and are presented in Figures S8 and S9, respectively. Prioritized systemic processes, as
expected, included biological terms commonly encountered in both enrichment analyses, highlighting
aforementioned recurring features such as fibrinolysis, hemostasis, platelet activation, wounding, ECM
structure, and metabolism as core affected systemic processes, amongst others. Derived signatures of
driver-genes associated with the recorded systemic processes are presented in Table 2 (41 hub genes,
GO-based gene signature) and Table 3 (21 hub genes, Reactome-Pathway-based gene signature).

Table 2. Bioinfominer gene signature (poorly versus well-differentiated cell lines) based on implicated
GO systemic processes. The signature consisted of 41 hub driver-genes, which are presented along
with their corresponding number of implicated systemic processes and log2(fold-changes).

Gene Symbol Gene Name Systemic Processes log2 (Fold-Change)

APOA1 apolipoprotein A1 19 –5.81

APOE apolipoprotein E 14 –4.11

APOA2 apolipoprotein A2 12 –8.62

CAV1 caveolin 1 12 3.67

SERPINF2 serpin family F member 2 12 –2.43

TGFB2 transforming growth factor beta 2 11 2.84

AGTR1 angiotensin II receptor type 1 11 –2.95

ANXA1 annexin A1 11 3.14

AGT angiotensinogen 10 –5.06

APOH apolipoprotein H 10 –7.09

FGF2 fibroblast growth factor 2 10 2.84

SCARB1 scavenger receptor class B member 1 10 –1.57

APOC3 apolipoprotein C3 10 –4.89

APOC1 apolipoprotein C1 10 –5.47

THBS1 thrombospondin 1 10 2.21

APOB apolipoprotein B 9 –6.71

NRP1 neuropilin 1 9 1.80

FGG fibrinogen gamma chain 9 –6.37

FGA fibrinogen alpha chain 9 –5.49

FGB fibrinogen beta chain 9 –4.93

SERPINE1 serpin family E member 1 9 2.98

CEACAM1 carcinoembryonic antigen related cell
adhesion molecule 1 8 –2.67

DYSF dysferlin 8 1.76

NR1H4 nuclear receptor subfamily 1 group H
member 4 8 –4.08

TSPO translocator protein 8 2.48

CPB2 carboxypeptidase B2 8 –5.98

HNF4A hepatocyte nuclear factor 4 alpha 8 –1.24

XBP1 X-box binding protein 1 8 –1.38

ANGPTL3 angiopoietin like 3 7 –3.90

NR1H3 nuclear receptor subfamily 1 group H
member 3 7 –1.42

FLNA filamin A 7 2.32

F2 coagulation factor II, thrombin 7 –5.12

BAD BCL2 associated agonist of cell death 7 0.96
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Table 2. Cont.

Gene Symbol Gene Name Systemic Processes log2 (Fold-Change)

LIPC lipase C, hepatic type 7 –4.24

GAS6 growth arrest specific 6 7 2.39

VTN vitronectin 7 –5.08

FGFR1 fibroblast growth factor receptor 1 7 1.49

ARG1 arginase 1 7 –2.79

CYBA cytochrome b-245 alpha chain 7 –3.33

SULT1E1 sulfotransferase family 1E member 1 4 –2.07

ACOX1 acyl-CoA oxidase 1 4 –1.10

Table 3. Bioinfominer gene signature (poorly versus well-differentiated cell lines) based on implicated
Reactome Pathway systemic processes. The signature consisted of 21 hub driver-genes, which
are presented along with their corresponding number of implicated systemic processes and log2

(fold-changes).

Gene Symbol Gene Name Systemic Processes log2(Fold- Change)

APOA1 apolipoprotein A1 5 –5.81

APOA2 apolipoprotein A2 4 –8.62

APOB apolipoprotein B 4 –6.71

ALB albumin 4 –8.42

SERPINC1 serpin family C member 1 3 –2.66

GNG11 G protein subunit gamma 11 3 3.24

GNG12 G protein subunit gamma 12 3 2.41

FGG fibrinogen gamma chain 3 –6.37

FGA fibrinogen alpha chain 3 –5.49

F2 coagulation factor II, thrombin 3 –5.12

KNG1 kininogen 1 3 –1.82

APOE apolipoprotein E 3 –4.11

NR1H3 nuclear receptor subfamily 1 group H member 3 3 –1.42

GAS6 growth arrest specific 6 3 2.39

PROC protein C, inactivator of coagulation factors Va
and VIIIa 3 –3.25

A2M alpha-2-macroglobulin 3 –5.26

SERPIND1 serpin family D member 1 3 –5.60

F5 coagulation factor V 3 –4.30

ACOX1 acyl-CoA oxidase 1 3 –1.10

PRKACB protein kinase cAMP-activated catalytic
subunit beta 3 1.11

TF transferrin 3 –8.73

Additional gene-set enrichment analysis using the R function camera [28] provided further
complementary information about the differentiation-associated characteristics beyond the obtained
GO and Reactome Pathway results, based on the differential expression analysis data between the
two identified groups of HCC lines and against curated (C2) gene-sets from MSigDB. Complete
gene-set enrichment results are provided in Table S7, and included an important number of statistically
significant enriched gene-sets, along with the projected enrichment direction in each set (genes
either up- or downregulated in poorly differentiated cell lines). Poorly differentiated HCC lines
were characterized by downregulation of gene expression associated with epithelial liver-like traits
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(HSIAO_LIVER_SPECIFIC_GENES, SU_LIVER) [30,31] and various metabolic processes. In contrast,
these HCC lines significantly overexpressed genes associated with Slug-related EMT initiation
(ANASTASSIOU_CANCER_MESENCHYMAL_TRANSITION_SIGNATURE) [32], along with hypoxia
(ELVIDGE_HYPOXIA_UP) [33] and migration (WU_CELL_MIGRATION) [34]. In addition, camera
results unveiled a connection amongst HCC line subtypes and the three distinct molecular subclasses
identified by Hoshida et al. [35] in HCC tissues (Subclasses S1, S2 and S3). The top 35 statistically
significant gene-sets, ranked by their p-value, are illustrated in Figure 9.

Figure 9. Top 35 gene-set enrichment terms as identified by camera testing, ranked by their p-value in
negative log10 scale (x-axis).

3.4. Cell Line Differentiation Status Correlated with Drug-Specific Sensitivity

We next attempted to associate the drug-specific response of examined HCC lines with their
differentiation status by correlating available drug-sensitivity AUC measurements with SU_LIVER
enrichment scores. The volcano plot illustrated in Figure 10 demonstrates significant correlations (either
positive or negative) between AUC measurements and SU_LIVER enrichment scores for 34 out of the
344 investigated drugs. Poorly differentiated cell lines were significantly more sensitive compared to
well-differentiated ones against 11 investigated drugs, while, conversely, well-differentiated cell lines
were relatively more sensitive against a panel of 23 investigated drugs, including but not limited to
various tyrosine kinase inhibitors (TKIs). Table S8 provides a full listing of the correlation analysis
results for all 344 studied drugs.
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Figure 10. Volcano plot depicting drugs characterized by a statistically significant correlation between
area under concentration–response curve (AUC) response measurements and SU_LIVER enrichment
scores. Green dots represent drugs that were more effective against well-differentiated cell lines
compared to poorly differentiated ones, while red dots mark drugs that were relatively more effective
against poorly differentiated HCC lines. Grey dots indicate drugs without a significant correlation
between their effect and the differentiation status of cell lines. The horizontal dashed line marks the
highest p-value corresponding to an adjusted p-value < 0.3, whereas the two vertical dashed lines mark
Spearman’s ρ values equal to –0.5 and 0.5; x-axis: Spearman’s ρ, y-axis: p-value in negative log10 scale.

3.5. SU_LIVER-Based Clustering of HCC Patients Associated with the Assigned Tumor Grade

In order to explore the potential connection between acquired results from examined HCC lines
and HCC patients’ data, we next tried to compare the differentiation characteristics of 354 tumors from
the HCC TCGA cohort by hierarchical clustering based on the expression of SU_LIVER gene-set, as
this was the main gene-set applied throughout the exploratory, ssGSEA, and drug screening analyses
in HCC lines. Heatmap representation of the results (Figure 11) revealed two main obvious clusters.
One major cluster consisted of 237 mostly well/moderately differentiated tumors (nG1+G2 = 172,
nG3+G4 = 65) that generally overexpressed SU_LIVER genes, and a second smaller cluster contained
117 mostly poorly/undifferentiated tumors (nG1+G2 = 52, nG3+G4 = 65) that overall exhibited lower gene
expression levels. Notably, as shown by the χ2- test, there was a statistically significant association
(p-value = 2.41 × 10-7) between the formed clusters and the assigned tumor histological grading, a
clear indicator of the degree of tumor differentiation.
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Figure 11. Heatmap illustrating the hierarchical clustering of HCC tumors (columns) based on the
full set of SU_LIVER genes (rows). Scaled values indicate relative downregulation (green color) or
upregulation (red color) of gene expression. HCC tumors are annotated by color according to their
documented histological grade (G1+G2 versus G3+G4).

4. Discussion

The use of current systems biology methodologies has greatly advanced the global investigation
of intertumor heterogeneity in connection to drug-specific sensitivity/resistance, paving the way for the
evolution of future therapeutic breakthroughs, including biomarker-driven treatments and precision
medicine [6,22,36,37]. To this end, we applied an entirely computational approach implementing a
multi-level bioinformatics analysis of publicly available transcriptomic, proteomic, and drug-screening
datasets which enabled us to explore the molecular diversity of a large panel of established HCC lines
and its association to drug responsiveness.

Exploratory data analysis and a subsequent ssGSEA approach on DNA microarray data led
to the classification of investigated cell lines into two main subgroups mainly defined by their
respective differentiation status: a group of poorly and a group of well-differentiated cell lines
overexpressing genes that are specifically upregulated in normal human liver tissues, and therefore
were considered to retain a liver-like epithelial molecular profile. Notably, this subgrouping of HCC
lines proved to be highly consistent at the proteome level and was further supported by hierarchical
clustering based on an EMT gene signature. As EMT is a process highly implicated in tumor
cell de-differentiation [29,38], this result provided complementary information to the differentiation
profiling of HCC lines. It is recognized that high-grade poorly differentiated tumors are characterized by
increased aggressiveness and poor prognosis [39]; consequently, histological grading of HCC presents an
important prognostic marker along with various other molecular traits [40]. Although epithelial and/or
mixed epithelial–mesenchymal characteristics are no longer considered to be completely disentangled
from aggressive phenotypes [41], there is strong evidence that EMT is tightly associated with increased
HCC growth and metastasis [42]. For this reason, several recent endeavors have generated and/or
surveyed transcriptome and proteome data in various cancer cell line models —including HCC— in
order to identify expression patterns connected to differentiation/EMT-related characteristics [6,22,36];
hence, the present work aspired to contribute accordingly. As a matter of fact, the differential gene
and protein expression analysis conducted in order to explore the distinctive molecular background
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of poorly versus well-differentiated HCC lines highlighted 935 DEGs and 16 DEPs. Notably, the
expression of almost all the genes encoding the identified DEPs was also accordingly modified, thus
indicating that the observed changes in protein levels were attributed to a diverse transcriptional
regulation of the corresponding genes. The most outstanding DEP findings included downregulation
of the important epithelial/EMT marker ECADHERIN (CDH1) [43] and upregulation of CAVEOLIN1
(CAV1) [44] and PAI1 (SERPINE1) [45], both associated with increased aggressiveness, invasion,
and metastasis.

Subsequent functional enrichment analyses of identified DEGs against GO and Reactome Pathway
databases were performed to efficiently elucidate significantly associated biological processes and
pathways, while acquired enrichment data were further aggregated by Bioinfominer to identify core
systemic biological processes/pathways and hub driver-gene signatures. Results from both ontological
databases commonly revealed a specific pattern of differentially regulated processes and pathways
involved in wound healing, hemostasis, coagulation, platelet dynamics, fibrinolysis, ECM remodeling,
and cell migration/motility, as indicated by the high recurrence of relevant terminologies in the
lists of the top 30 significantly enriched GO biological processes, and of 28 Reactome Pathway
terms. Notably, the majority of these processes/pathways are biologically inter-connected and are
either directly or indirectly associated with cancer progression, invasive/metastatic potential and
overall aggressiveness. Tumors are often characterized as wounds that do not heal, constantly
remodeling the stroma cells’ microenvironment and reorganizing ECM. This complex procedure
involves provisional biological mechanisms that include inflammatory responses, clotting cascade
activation, fibrin formation and fibrinolysis, angiogenesis, and enhanced vasculature [46,47]. Therefore,
the attained deregulation of relevant processes/pathways in poorly compared to well-differentiated
HCC lines is highly indicative of their augmented malignant capacity and offers useful information
about the roles of implicated genes. Moreover, terms related to altered/impaired metabolism (especially
of lipids, cholesterol/steroids, and lipoproteins)—a well-established cancer hallmark sustaining
cancer cell growth and proliferation [48]—were evidently present in both functional enrichment lists,
pointing out the significant role of metabolism-related genes and functions in defining the differential
characteristics of HCC subtypes, in agreement with a recent metabolism-focused study on liver
cancer [49]. Bioinfominer analysis proposed two distinct hub driver-gene signatures (each based on
GO and Reactome Pathway results, respectively) involving molecular agents playing major roles in
multiple underlying biological mechanisms. A number of genes, including several metabolism-related
apolipoproteins and fibrinogens, commonly appeared in both signatures (APOA1, APOA2, APOB,
FGG, FGA, F2, APOE, NR1H3, GAS6, ACOX1). Interestingly, GAS6 upregulation emerged as a
prominent factor in poorly differentiated HCC lines, implicated in a variety of systemic ontological
terms. This finding, along with the observed overexpression of AXL and SNAI2 (Slug), points to
a key role for Gas6/Axl pathway, known to promote invasion and migration in HCC through Slug
activation [50]. Moreover, AXL acts as a crucial regulator of cancer-related EMT [51]; particularly
in HCC, the cooperation between Gas6/Axl and TGF-β signaling pathways appears to be crucial
in differentiation, EMT, and the advancement of invasion [52]. Suitably, the TGF-β pathway was
represented in the respective GO-derived hub gene signature by upregulated TGFB2 gene, while other
TGF-β signaling-associated genes were identified as DEGs as well, including overexpressed TGFB1.
Both TGFB1 and TGFB2 are recognized as being heavily linked to EMT and tumor progression [38,53].
Additional noteworthy driver DEGs included in hub gene signatures were those known to be involved
in fibrinolysis and platelet degranulation, such as SERPINE1 (upregulated) and A2M (downregulated).
SERPINE1, along with the identified (overexpressed) DEGs PLAU and PLAUR, is centrally implicated
in cancer angiogenesis [54], while A2M possesses antitumorigenic properties [55]. Furthermore, FGF2
along and its corresponding receptor FGFR1 (both upregulated) were also found in the identified hub
driver-gene signatures. It is well established that FGF2/FGFR signaling deregulation is associated
with aggressive tumor phenotypes and drug resistance [56], features recurrently linked to the poorly
differentiated HCC subtypes. Additionally, HNF4A’s (downregulated) characterization as a distinctive
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molecular player between differentiation states of examined HCC lines was in fact anticipated, due to
the pivotal role of this transcription factor in liver function and hepatocyte differentiation [57]. Finally,
the ontological term “biological oxidations”—widely associated with oxidative stress and fatty acid
metabolism in HCC [58]—was also demonstrated as systemic core process in the Reactome Pathway
data, represented by GNG11, GNG12, ACOX1, and multiple apolipoprotein genes.

Complementary information regarding potentially implicated biological mechanisms was
subsequently gathered by performing supplementary gene-set enrichment analysis against curated
datasets from MSigDB based on differential expression analysis data. Results once again highlighted a
more aggressive phenotype for poorly differentiated HCC lines. It is worth noting that this group of
HCC lines shared common upregulated genes with the S1 HCC subtype identified by Hoshida et al.
in primary HCC—characterized by mesenchymal characteristics/active TGF-β signaling—while the
group of better-differentiated ones resembled subtypes S2 and S3, retaining a more hepatocyte-like
phenotype while overexpressing certain hepatoblast markers like AFP and EPCAM [35].

Lastly, the association of HCC differentiation status with drug sensitivity/resistance—explored
by correlating cell line SU_LIVER enrichment scores with drug efficacy measurements for a panel
of compounds—resulted in the identification of drugs that were more effective against poorly than
well-differentiated cell lines, and vice versa. HCC lines in the well-differentiated group proved
to be more sensitive than their counterparts against a larger number of investigated drugs/agents,
including several TKIs such as those targeting EGFR (erlotinib), IGF1R (linsitinib, BMS-536924,
BMS-754807), or other kinases (linifanib, masitinib, imatinib). EMT has been identified as a major
contributor of acquired resistance against EGFR-TKIs in non-small-cell lung cancers [59], while
protein-level pan-cancer studies have highlighted an EMT-status-dependent efficacy of several EGFR
inhibitors and other targeted therapies [37]. Interestingly, as both genes were overexpressed in poorly
differentiated cell lines, FGF2/FGFR1 activation in non-small-cell lung cancer has been proposed as
an important EGFR-TKI-resistance-acquisition mechanism [60]. Furthermore, the present results for
IGF1R and MDM2 inhibitors corroborated those of a recent study on numerous cancer liver cell lines
providing experimental evidence of an augmented efficacy of IGF1R inhibitor linsitinib as well as
of MDM2 inhibitor nutlin-3 against liver cancer lines with prominent hepatoblast/hepatocyte-like
characteristics [36], thus supporting the validity of our approach. Additionally, the natural
compound epigallocatechin-3-monogallate was identified as being comparatively more effective
against well-differentiated HCC lines, in full agreement with previous studies highlighting HEP3B and
HEPG2 cell lines as particularly responsive against that nutraceutical [61,62].

On the other hand, a smaller portion of examined drugs displayed an enhanced efficacy against
the poorly differentiated group in comparison to well-differentiated HCC lines. Among them, it is
worth discussing the role of three compounds, namely the retinoic acid receptor β (RARB) agonist
AC55649, the SPHK1 inhibitor SKI-II, and the PKM2 activator ML203. All-trans retinoic acid (ATRA),
a known pan-retinoic receptor agonist, has been found to regulate EMT and inhibit migration in
breast cancer via the TGF-β pathway [63], a notion that might support the use of RARB agonists
against poorly differentiated HCC with TGF-β-dependent EMT features. As for SPHK1, it is known
to induce EMT in hepatoma cells through the promotion of CDH1/ECADHERIN degradation [64],
and thus, SPHK1-inhibitors could be a reasonable option against mesenchymal-like HCC. Finally,
PKM2 activation through ML203 presents an interesting prospect, since PKM2—a metabolic enzyme
in glycolysis—is attracting growing attention due to a manifold possible involvement in cancer
progression [65]. It has been shown that PKM2 activity is negatively regulated by the increased
presence of CD44 (a known cancer biomarker), and this effect mediates the aggressive glycolytic
phenotype of colon cancer cells [66]. Notably, the CD44 gene was one of the most significantly
upregulated DEGs in poorly differentiated HCC lines. It is thus possible that the compound ML203
could counteract the hampered PKM2 activation by overexpressed CD44, and therefore inhibit the
glycolytic phenotype of poorly differentiated HCC.
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Although our analysis was entirely based on data from HCC lines, the acquired information of
drug sensitivity in poorly and well-differentiated cell lines might be of clinical relevance for HCC
patients with characterized tumor differentiation profiles. To this end, tumors from 354 patients from
the HCC TCGA cohort were stratified on the basis of SU_LIVER gene-set expression data into two
clusters statistically significant for tumor grade, one with samples generally displaying high/moderate
differentiation and overexpression of SU_LIVER genes, and one with overall poorly/undifferentiated
tumors and lower SU_LIVER gene expression levels. Since HCC patient clustering corroborated
with the corresponding stratification of HCC lines into poorly and well-differentiated groups, the
present TCGA investigation (a) broadened the reliability of SU_LIVER genes-based clustering as an
informative analysis that significantly correlates gene expression pattern with the differentiation status
of HCC lines and—very importantly—of patient tumors as well, and (b) in conjunction with the
aforementioned drug-sensitivity data for HCC lines (also based on SU_LIVER enrichment scores),
may offer preliminary clues in future clinical research for predicting drug efficiency in HCC patients
possessing analogous gene expression characteristics and histological grade. However, it should be
noted that cell-line models—lacking crucial interactions with immune/stromal cells and surrounding
ECM—are not perfect representations of in vivo tumors and thus, cannot fully recapitulate the wide
spectrum of tumor heterogeneity and consequently their response to drugs.

Certainly, the availability and the constantly growing volume of several types of -omics and
drug-screening data in multiple public resources make their computational integration and investigation
of their biological/clinical relevance a real challenge in ongoing cancer research. Focusing on
HCC—in addition to the currently presented analysis of transcriptomic and proteomic data—future
studies exploiting available genomics data, including DNA alterations, especially in genes and
gene-expression-regulatory elements, as well as evaluating metabolome variations, are required in
order to provide further insights into the mechanisms underlying HCC heterogeneity. Preliminary
bioinformatics analysis by our group, which was based on accessible data for coding-gene mutations
and copy-number variations (deletions/amplifications) in HCC lines provided some interesting initial
observations that merit further investigation.

5. Conclusions

The present work, by using a thorough in silico analysis of publicly available transcriptomic,
proteomic, and drug-screening data, classified a large panel of HCC lines into two representative
differentiation subtypes of either higher or lower differentiation status, each exhibiting a discrete
sensitivity pattern against numerous evaluated drugs. Furthermore, the identification of two hub driver
DEGs signatures across informative ontology/pathway databases provided evidence on functionally
significant biomarkers, thus offering a starting basis for mechanistic and pharmacogenomic studies.
Overall, the described methodologies provide a comprehensive cost-effective computational framework,
able to be applied in any model cancer cell lines as long as relevant -omics and drug-screening data
are accessible in dedicated repositories, which allows the investigation of inherent tumor molecular
diversity and the design of therapeutic regimes effective for each cancer subtype.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/6/623/s1,
Figure S1: Correlation matrix for HCC line pairs based on the expression of the 500 genes with the largest
cross-sample variation, Figure S2: Correlation matrix for HCC line pairs based on the expression of 214
proteins/phosphoproteins, Figure S3: BIC results for optimal number of k-means clusters based on PC1 scores,
Figure S4: PCA of HCC lines based on CCLE RNA-seq gene expression data, Figure S5: BIC results for optimal
number of k-means clusters based on computed cell-line ssGSEA SU_LIVER enrichment scores, Figure S6: Heatmap
illustrating the scaled expression values of HCC lines regarding identified DEGs, Figure S7: Heatmap illustrating
the scaled expression values of HCC lines regarding identified DEPs, Figure S8: GO systemic processes and
involved hub genes, Figure S9: Reactome Pathway systemic processes and involved hub genes, Table S1: ssGSEA
scores based on PC1 loadings, Table S2: ssGSEA scores for individual cell lines, Table S3: List of DEGs, Table S4:
List of DEPs, Table S5: GO enrichment results, Table S6: Reactome Pathway enrichment results, Table S7: Gene-set
enrichment results from camera, Table S8: Drug-response correlation with SU_LIVER enrichment score results.
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Abstract: Gene networks have arisen as a promising tool in the comprehensive modeling and
analysis of complex diseases. Particularly in viral infections, the understanding of the host-pathogen
mechanisms, and the immune response to these, is considered a major goal for the rational
design of appropriate therapies. For this reason, the use of gene networks may well encourage
therapy-associated research in the context of the coronavirus pandemic, orchestrating experimental
scrutiny and reducing costs. In this work, gene co-expression networks were reconstructed
from RNA-Seq expression data with the aim of analyzing the time-resolved effects of gene
Ly6E in the immune response against the coronavirus responsible for murine hepatitis (MHV).
Through the integration of differential expression analyses and reconstructed networks exploration,
significant differences in the immune response to virus were observed in Ly6EΔHSC compared to
wild type animals. Results show that Ly6E ablation at hematopoietic stem cells (HSCs) leads to
a progressive impaired immune response in both liver and spleen. Specifically, depletion of the
normal leukocyte mediated immunity and chemokine signaling is observed in the liver of Ly6EΔHSC

mice. On the other hand, the immune response in the spleen, which seemed to be mediated by an
intense chromatin activity in the normal situation, is replaced by ECM remodeling in Ly6EΔHSC mice.
These findings, which require further experimental characterization, could be extrapolated to other
coronaviruses and motivate the efforts towards novel antiviral approaches.

Keywords: gene co-expression network; murine coronavirus; viral infection; immune response;
data mining; systems biology

1. Introduction

The recent SARS-CoV-2 pandemic has exerted an unprecedented pressure on the scientific
community in the quest for novel antiviral approaches. A major concern regarding SARS-CoV-2 is the
capability of the coronaviridae family to cross the species barrier and infect humans [1]. This, along with
the tendency of coronaviruses to mutate and recombine, represents a significant threat to global health,
which ultimately has put interdisciplinary research on the warpath towards the development of a
vaccine or antiviral treatments.

Given the similarities found amongst the members of the coronaviridae family [2,3], analyzing the
global immune response to coronaviruses may shed some light on the natural control of viral infection,
and inspire prospective treatments. This may well be achieved from the perspective of systems biology,
in which the interactions between the biological entities involved in a certain process are represented
by means of a mathematical system [4]. Within this framework, gene networks (GN) have become

Genes 2020, 11, 831; doi:10.3390/genes11070831 www.mdpi.com/journal/genes161



Genes 2020, 11, 831

an important tool in the modeling and analysis of biological processes from gene expression data [5].
GNs constitute an abstraction of a given biological reality by means of a graph composed by nodes and
edges. In such a graph, nodes represent the biological elements involved (i.e., genes, proteins or RNAs)
and edges represent the relationships between the nodes. In addition, GNs are also useful to
identify genes of interest in biological processes, as well as to discover relationships among these.
Thus, they provide a comprehensive picture of the studied processes [6,7].

Among the different types of GNs, gene co-expression networks (GCNs) are widely used in the
literature due to their computational simplicity and good performance in order to study biological
processes or diseases [8–10]. GCNs usually compute pairwise co-expression indices for all genes.
Then, the level of interaction between two genes is considered significant if its score is higher than
a certain threshold, which is set ad hoc. Traditionally, statistical-based co-expression indices have
been used to calculate the dependencies between genes [5,7]. Some of the most popular correlation
coefficients are Pearson, Kendall or Spearman [11–13]. Despite their popularity, statistical-based
measures present some limitations [14]. For instance, they are not capable of identifying non-linear
interactions and the dependence on the data distribution in the case of parametric correlation
coefficients. In order to overcome some of these limitations, new approaches, e.g., the use of information
theory-based measures or ensemble approaches, are receiving much attention [15–17].

Gene Co-expression Networks (GCNs) have already been applied to the study of dramatic impact
diseases, such as cancer [18], diabetes [19] or viral infections (e.g., HIV) in order to study the role of
immune response to these illnesses [20,21]. Genetic approaches are expected to be the best strategy to
understand viral infection and the immune response to it, potentially identifying the mechanisms of
infection and assisting the design of strategies to combat infection [22,23]. The current gene expression
profiling platforms, in combination with high-throughput sequencing, can provide time-resolved
transcriptomic data, which can be related to the infection process. The main objective of this approach
is to generate knowledge on the immune functioning upon viral entry into the organism, which means
mean a perturbation to the system.

In the context of viral infection, a first defense line is the innate response mediated by interferons,
a type of cytokines which eventually leads to the activation of several genes of antiviral function [24].
Globally, these genes are termed interferon-stimulated genes (ISGs), and regulate processes like
inflammation, chemotaxis or macrophage activation among others. Furthermore, ISGs are also
involved in the subsequent acquired immune response, specific for the viral pathogen detected [25].
Gene Ly6E (lymphocyte antigen 6 family member e), which has been related to T cell maturation and
tumorogenesis, is amongst the ISGs [26]. This gene is transcriptionally active in a variety of tissues,
including liver, spleen, lung, brain, uterus and ovary. Its role in viral infection has been elusive due to
contradictory findings [27]. For example, in Liu et al. [28], Ly6E was associated with the resistance to
Marek’s disease virus (MDV) in chickens. Moreover, differences in the immune response to mouse
adenovirus type 1 (MAV-1) have been attributed to Ly6E variants [29]. Conversely, Ly6E has also been
related to an enhancement of human immunodeficiency viruses (HIV-1) pathogenesis, by promoting
HIV-1 entry through virus–cell fusion processes [30]. Also in the work by Mar et al. [31], the loss of
function of Ly6E due to gene knockout reduced the infectivity of Influenza A virus (IAV) and yellow
fever virus (YFV). This enhancing effect of Ly6E on viral infection has also been observed in other
enveloped RNA viruses such as in West Nile virus (WNV), dengue virus (DEN), Zika virus (ZIKV),
O’nyong nyong virus (ONNV) and Chikungunya virus (CHIKV) among others [32]. Nevertheless,
the exact mechanisms through which Ly6E modulates viral infection virus-wise, and sometimes even
cell type-dependently, require further characterization.

In this work we present a time-resolved study of the immune response of mice to a coronavirus,
the murine hepatitis virus (MHV), in order to analyze the implications of gene Ly6E. To do so, we have
applied a GCN reconstruction method called EnGNet [33], which is able to perform an ensemble
strategy to combine three different co-expression measures, and a topology optimization of the final
network. EnGNet has outscored other methods in terms of network precision and reduced network
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size, and has been proven useful in the modeling of disease, as in the case of Human post-traumatic
stress disorder.

The rest of the paper is organized as follows. In the next section, we propose a description of
related works. In Section 3, we first describe the dataset used in this paper, and then we introduce
the EnGNet algorithm and the different methods used to infer and analyze the generated networks.
The results obtained are detailed in Section 4, while, in Section 5, we propose a discussion of the results
presented in the previous section. Finally, in Section 6, we draw the main conclusions of our work.

2. Related Works

As already mentioned, gene co-expression networks have been extensively applied in the
literature for the understanding of the mechanisms underlying complex diseases like cancer,
diabetes or Alzheimer [34–36]. Globally, GCN serve as an in silico genetic model of these pathologies,
highlighting the main genes involved in these at the same time [37]. Besides, the identification of
modules in the inferred GCNs, may lead to the discovery of novel biomarkers for the disease under
study, following the ’guilt by association’ principle. Along these lines, GCNs are also considered
suitable for the study of infectious diseases, as those caused by viruses to the matter at hand [38]. To do
so, multiple studies have analyzed the effects of viral infection over the organism, focusing on immune
response or tissue damage [39,40].

For instance, the analysis of gene expression using co-expression networks is shown in the work
by Pedragosa et al. [41], where the infection caused by Lymphocytic Choriomeningitis Virus (LCMV) is
studied over time in mice spleen using GCNs. In Ray et al. [42], GCNs are reconstructed from different
microarray expression data in order to study HIV-1 progression, revealing important changes across
the different infection stages. Similarly, in the work presented by McDermott et al. [43], the over- and
under-stimulation of the innate immune response to severe acute respiratory syndrome coronavirus
(SARS-CoV) infection is studied. Using several network-based approaches on multiple knockout mouse
strains, authors found that ranking genes based on their network topology made accurate predictions
of the pathogenic state, thus solving a classification problem. In [39], co-expression networks were
generated by microarray analysis of pediatric influenza-infected samples. Thanks to this study, genes
involved in the innate immune system and defense to virus were revealed. Finally, in the work by
Pan et al. [44], a co-expression network is constructed based on differentially-expressed microRNAs
and genes identified in liver tissues from patients with hepatitis B virus (HBV). This study provides
new insights on how microRNAs take part in the molecular mechanism underlying HBV-associated
acute liver failure.

The alarm posed by the COVID-19 pandemic has fueled the development of effective prevention
and treatment protocols for 2019-nCoV/SARS-CoV-2 outbreak [45]. Due to the novelty of SARS-CoV-2,
recent research takes similar viruses, such as SARS-CoV and Middle East Respiratory Syndrome
coronavirus (MERS-CoV), as a starting point. Other coronaviruses, like Mouse Hepatitis Virus (MHV),
are also considered appropriate for comparative studies in animal models, as demonstrated in the work
by De Albuquerque et al. [46] and Ding et al. [47]. MHV is a murine coronavirus (M-CoV) that causes
an epidemic illness with high mortality, and has been widely used for experimentation purposes.
Works like the ones by Case et al. [48] and Gorman et al. [49], study the innate immune response
against MHV arbitrated by interferons, and those interferon-stimulated genes with potential antiviral
function. This is the case of gene Ly6E, which has been shown to play an important role in viral
infection, as well as various orthologs of the same gene [50,51]. Mechanistic approaches often involved
the ablation of the gene under study, like in the work by Mar et al. [31], where gene knockout was used
to characterize the implications of Ly6E in Influenza A infection. As it is the case of Giotis et al. [52],
these studies often involve global transcriptome analyses, via RNA-seq or microarrays, together with
computational efforts, which intend to screen the key elements of the immune system that are required
for the appropriate response. This approach ultimately leads experimental research through predictive
analyses, as in the case of co-expression gene networks [53].

163



Genes 2020, 11, 831

3. Materials and Methods

In the following subsections, the main methods and GCN reconstruction steps are addressed. First,
in Section 3.1, the original dataset used in the present work is described, together with the experimental
design. Then, in Section 4.1, the data preprocessing steps are described. Subsequently in Section 3.3,
key genes controlling the infection progression are extracted through differential expression analyses.
Finally, the inference of GCNs and their analysis are detailed in Sections 3.4 and 3.5, respectively.

3.1. Original Dataset Description

The original experimental design can be described as follows. The progression of the MHV
infection at genetic level was evaluated in two genetic backgrounds: wild type (wt, Ly6Efl/fl) and
Ly6E knockout mutants (ko, Ly6EΔHSC). The ablation of gene Ly6E in all cell types is lethal, hence the
Ly6EΔHSC strain contains a disrupted version of gene Ly6E only in hematopoietic stem cells (HSC),
which give rise to myeloid and lymphoid progenitors of all blood cells. Wild type and Ly6EΔHSC

mice were injected intraperitoneally with 5000 PFU MHV-A59. At 3 and 5 days post-injection (d p.i.),
mice were euthanized and biological samples for RNA-Seq were extracted. The overall effects of MHV
infection in both wt and ko strains was assessed in liver and spleen.

In total 36 samples were analyzed, half of these corresponding to liver and spleen, respectively.
From the 18 organ-specific samples, 6 samples correspond to mock infection (negative control), 6 to
MHV-infected samples at 3 d p.i. and 6 to MHV-infected samples at 5 d p.i. For each sample,
two technical replicates were obtained. Libraries of cDNA generated from the samples were sequenced
using Illumina NovaSeq 6000. Further details on sample preparation can be found in the original
article by Pfaender et al. [54]. For the sake of simplicity, MHV-infected samples at 3 and 5 d p.i. will be
termed ’cases’, whereas mock-infection samples will be termed ’controls’.

The original dataset consists of 72 files, one per sample replicate, obtained upon the mapping
of the transcript reads to the reference genome. Reads were recorded in three different ways,
considering whether these mapped introns, exons or total genes. Then, a count table was retrieved
from these files by selecting only the total gene counts of each sample replicate file.

3.2. Data Pre-Processing

Pre-processing was performed using the EdgeR [55] R package. The original dataset by
Pfaender et al. [54] was retrieved from GEO (accession ID: GSE146074) using the GEOquery [56] package.
Additional files on sample information and treatment were also used to assist the modeling process.

By convention, a sequencing depth per gene below 10 is considered neglectable [57,58].
Genes meeting this criterion are known as low expression genes, and are often removed since they add
noise and computational burden to the following analyses [59]. In order to remove genes showing less
than 10 reads across all conditions, counts per million (CPM) normalization was performed, so possible
differences between library sizes for both replicates would not affect the result.

Afterwards, Principal Components Analyses (PCA) were performed over the data in order to
detect the main sources of variability across samples. PCA were accompanied by unsupervised
k-medoid clustering analyses, in order to identify different groups of samples. In addition,
multidimensional scaling plots (MDS) were applied to further separate samples according to their
features. Last, between-sample similarities were assessed through hierarchical clustering.

3.3. Differential Expression Analyses

The analyses of differential expression served a two-way purpose, (i) the exploration of the
directionality in the gene expression changes upon viral infection, and (ii) the identification of
key regulatory elements for the subsequent network reconstruction. In the present application,
differentially-expressed genes (DEG) were filtered from the original dataset and proceeded to the
reconstruction process. This approximation enabled the modeling of the genetic relationships that are
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considered of relevance in the presented comparison [60–62]. In the present work mice samples were
compared organ-wise depending on whether these corresponded to control, 3 d p.i. and 5 d p.i.

The identification of DEG was performed using the Limma [63] R package, which provides
non-parametric robust estimation of the gene expression variance. This package includes Voom,
a method that incorporates RNA-Seq count data into the Limma workbench, originally designed
for microarrays [64]. In this case, a minimum log2-fold-change (log2FC) of 2 was chosen, which
corresponds to four fold changes in the gene expression level. P-value was adjusted by Benjamini-
Hochberg [65] and the selected adjusted p-value cutoff was 0.05.

3.4. Inference of the Gene Networks: EnGNet

In order to generate gene networks the EnGNet algorithm was used. This technique, presented in
Gómez-Vela et al. [33], is able to compute gene co-expression networks with a competitive performance
compared other approaches from the literature. EnGNet performs a two-step process to infer gene
networks: (a) an ensemble strategy for a reliable co-expression networks generation, and (b) a greedy
algorithm that optimizes both the size and the topological features of the network. These two features of
EnGNet offer a reliable solution for generating gene networks. In fact, EnGNet relies on three statistical
measures in order to obtain networks. In particular, the measures used are the Spearman, Kendall and
normalized mutual information (NMI), which are widely used in the literature for inferring gene
networks. EnGNet uses these measures simultaneously by applying an ensemble strategy based on
major voting, i.e., a relationship will be considered correct if at least 2 of the 3 measures evaluate the
relationship as correct. The evaluation is based on different independent thresholds. In this work,
the different thresholds were set to the values originally used in [33]: 0.9, 0.8 and 0.7 for Spearman,
Kendall and NMI, respectively.

In addition, as mentioned above, EnGNet performs an optimization of the topological structure of
the networks obtained. This reduction is based on two steps: (i) the pruning of the relations considered
of least interest in the initial network, and (ii) the analysis of the hubs present in the network. For this
second step of the final network reconstruction, we have selected the same threshold that was used
in [33], i.e., 0.7. Through this optimization, the final network produced by EnGNet results easier to
analyze computationally, due to its reduced size.

3.5. Networks Analyses

Networks were imported to R for the estimation of topology parameters and the addition
of network features that are of interest for the latter network analysis and interpretation. These
attributes were added to the reconstructed networks to enrich the modeling using the igraph [66]
R package. The networks were then imported into Cytoscape [67] through RCy3 [68] for examination
and analyses purposes. In this case, two kind of analyses were performed: (i) a topological analysis
and (ii) an enrichment analysis.

Regarding the topological analysis, clustering evaluation was performed in order to identify
densely connected nodes, which, according to the literature, are often involved in a same biological
process [69]. The chosen clustering method was community clustering (GLay) [70], implemented
via Cytoscape’s ClusterMaker app [71], which has yielded significant results in the identification of
densely connected modules [72,73]. Among the topology parameters, degree and edge betweenness
were estimated. The degree of a node refers to the number of its linking nodes. On the other
hand, the betweenness of an edge refers to the number of shortest paths which go through that edge.
Both parameters are considered as a measure of the implications of respectively nodes and edges in
a certain network. Particularly, nodes whose degree exceeds the average network node degree, the so
called hubs, are considered key elements of the biological processes modeled by the network. In this
particular case, the distribution of nodes’ degree network was analyzed so those nodes whose degree
exceeded a threshold were selected as hubs. This threshold is defined as Q3 + 1.5 × IQR, where Q3 is
the third quartile and IQR the interquartile range of the degree distribution. This method has been
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widely used for the detection of upper outliers in non-parametric distributions [74,75], as it is the case.
However, the outlier definition does not apply to this distribution since those nodes whose degree are
far above the median degree are considered hubs.

On the other hand, Gene Ontology (GO) Enrichment Analysis provides valuable insights on the
biological reality modeled by the reconstructed networks. The Gene Ontology Consortium [76] is a
data base that seeks for a unified nomenclature for biological entities. GO has developed three different
ontologies, which describe gene products in terms of the biological processes, cell components or
molecular functions in which these are involved. Ontologies are built out of GO terms or annotations,
which provide biological information of gene products. In this case, the ClusterProfiler [77] R package,
allowed the identification of the statistically over-represented GO terms in the gene sets of interest.
Additional enrichment analyses were performed using DAVID [78]. For both analyses, the complete
genome of Mus musculus was selected as background. Finally, further details on the interplay of the
genes under study was examined using the STRING database [79].

4. Results

The reconstruction of gene networks that adequately model viral infection involves multiple
steps, which ultimately shape the final outcome. First, in Section 4.1, exploratory analyses and
data preprocessing are detailed, which prompted the modeling rationale. Then, in Section 4.2,
differential expression is evaluated for the samples of interest. Finally, networks reconstruction
and analysis are addressed in Section 4.3. At the end, four networks were generated, both in an organ-
and genotype-wise manner. A schematic representation of the GCN reconstruction approach is shown
in Figure 1.
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data
integration

Biological
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Network
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topology,
GO enrichmentdata
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liver wt
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spleen wt
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inferred networks

Figure 1. General scheme for the reconstruction method. The preprocessed data was subjected
to exploratory and differential expression analyses, which imposed the reconstruction rationale.
Four groups of samples were used to generate four independent networks, respectively modeling the
immune response in the liver, both in the wt and the ko situations; and in the spleen, also in the wt and
the ko scenarios.

4.1. Data Pre-Processing and Exploratory Analyses

In order to remove low expression genes, a sequencing depth of 10 was found to correspond to an
average CPM of 0.5, which was selected as threshold. Hence, genes whose expression was found over
0.5 CPM in at least two samples of the dataset were maintained, ensuring that only genes which are
truly being expressed in the tissue will be studied. The dataset was Log2-normalized with priority to
the following analyses, in accordance to the recommendations posed in Law et al. [64].

The results of both PCA and k-medoid clustering are shown in Figure 2a. Clustering of the
Log2-normalized samples revealed clear differences between liver and spleen samples. Also, for each
organ, three subgroups of analogous samples that cluster together are identified. These groups
correspond to mock infection, MHV-infected mice at 3 d p.i. and MHV-infected mice at 5 d p.i. (dashed
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lines in Figure 2a). Finally, subtle differences were observed in homologous samples of different
genotypes (Figure A1).

f

3

ko

(a) (b) (c)
Figure 2. (a) PCA plot of the Log2-normalized counts for the exploratory analysis of all samples under
study. The metric used for k-medoid partitioning was the Euclidean distance. Both replicates are
included. Two groups, respectively corresponding to liver and spleen samples, are clearly differentiated.
Dashed lines were added for improved visualization of the different groups that are distinguished
within each organ. Organ-specific PCA for (b) liver and (c) spleen samples. Both replicates are included.
PCA suggests the progressive nature of the MHV infection, where groups corresponding to mock
infections, 3 d p.i. and 5 d p.i. are distinguished in varying degrees. Differences between controls and
cases are more evident in liver samples. Figure 2a legend is the same for Figure 2b,c.

Organ-specific PCA revealed major differences between MHV-infected samples for Ly6EΔHSC

and wt genotypes, at both 3 and 5 d p.i. These differences were not observed in the mock infection
(control situation). Organ-wise PCA are shown in Figure 2b,c. The distances between same-genotype
samples illustrate the infection-prompted genetic perturbation from the uninfected status (control)
to 5 d p.i., where clear signs of hepatitis were observed according to the original physiopathology
studies [54]. On the other hand, the differences observed between both genotypes are indicative of the
role of gene Ly6E in the appropriate response to viral infection. These differences are subtle in control
samples, but in case samples, some composition biass is observed depending on whether these are
ko or wt, especially in spleen samples. The comparative analysis of the top 500 most variable genes
confirmed the differences observed in the PCA, as shown in Figure A2. Among the four different
features of the samples under study: organ, genotype, sample type (case or control) and days post
injection; the dissimilarities in terms of genotype were the subtlest.

In the light of these exploratory findings, the network reconstruction approach was performed
as follows. Networks were reconstructed organ-wise, as these exhibit notable differences in gene
expression. Additionally, a main objective of the present work is to evaluate the differences in the
genetic response in the wt situation compared to the Ly6EΔHSC ko background, upon the viral infection
onset in the two mentioned tissues.

For each organ, Log2-normalized samples were coerced to generate time-series-like data,
i.e., for each genotype, 9 samples will be considered as a set, namely 3 control samples, 3 case samples
at 3 d p.i. and 3 case samples at 5 d p.i. Both technical replicates were included. This rational design
seeks for a gene expression span representative of the infection progress. Thereby, control samples
may well be considered as a time zero for the viral infection, followed by the corresponding samples at
3 and 5 d p.i. The proposed rationale is supported by the exploratory findings, which position 3 d p.i.
samples between control and 5 d p.i. samples. At the same time, the reconstruction of gene expression
becomes robuster with increasing number of samples. In this particular case, 18 measuring points are
attained for the reconstruction of each one of the four intended networks, since two technical replicates
were obtained per sample [80].
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4.2. Identification of Differentially-Expressed Genes Between Wild Type and Ly6EΔHSC Samples

The differential expression analyses were performed over the four groups of 9 samples explained
above, with the aim of examining the differences in the immune response between Ly6EΔHSC and wt
samples. Limma - Voom differential expression analyses were performed over the Log2-normalized
counts, in order to evaluate the different genotypes whilst contrasting the three infection stages:
control vs. cases at 3 d p.i., control vs. cases at 5 d p.i. and cases at 3 vs. 5 d p.i. The choice of a
minimum absolute log2FC ≥ 2, enabled considering only those genes that truly effect changes between
wt and Ly6EΔHSC samples, whilst maintaining a relatively computer-manageable number of DEG for
network reconstruction. The latter is essential for the yield of accurate network sparseness values,
as this is a main feature of gene networks [5].

For both genotypes and organs, the results of the differential expression analyses reveal that MHV
injection triggers a progressive genetic program from the control situation to the MHV-infected scenario
at 5 d p.i., as shown in Figure 3a. The absolute number of DEG between control vs. cases at 5 d p.i.
was considerably larger than in the comparison between control vs. cases at 3 d p.i. Furthermore, in all
cases, most of the DEG in control vs. cases at 3 d p.i. are also differentially-expressed in the control vs.
cases at 5 d p.i. comparison, as shown in Figure 4.
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Figure 3. (a) Absolute numbers of DEG in the different comparisons (b) Ratio of up- and downregulated
DEG in the different performed comparisons. Three comparisons were performed: control vs.
case samples at 3 d p.i., control vs. case samples at 5 d p.i. and case samples at 3 vs. 5 d p.i. ko refers to
Ly6EΔHSC samples.

Regarding genes fold change, an overall genetic up-regulation is observed upon infection.
Around 70% of DEG are upregulated for all the comparisons performed for wt samples, as shown
in Figure 3b. Nonetheless, a dramatic reduce in this genetic up-regulation is observed, by contrast,
in knockout samples, even limiting upregulated genes to nearly 50% in the control vs. cases at 3 d p.i.
comparison of liver Ly6EΔHSC samples. The largest differences are observed in the comparison of
controls vs. cases at 5 d p.i (Figures A3 and A4). These DEG are of great interest for the understanding
of the immune response of both wt and ko mice to viral infection. These genes were selected to filter
the original dataset for latter network reconstruction.

The commonalities between wt and ko control samples for both organs were also verified through
differential expression analysis following the same criteria (Log2FC > 2, p value < 0.05). The number
of DEG between wt and ko liver control samples (2) and between wt and ko spleen control samples (20)
were not considered significant, so samples were taken as analogous starting points for infection.
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(a) DEG liver wt (b) DEG liver ko (c) DEG spleen wt (d) DEG spleen ko

Figure 4. Euler diagrams showing the overlapping of DEG between the three possible contrast
situations: control vs. cases at 3 d p.i. (red), control vs. cases at 5 d p.i. (yellow) and cases at 3 d p.i. vs.
cases at 5 d p.i. (blue) ko refers to Ly6EΔHSC samples. These comparisons were performed both organ
and genotype-wise considering four groups of samples: (a) liver wt, (b) liver Ly6EΔHSC, (c) spleen wt,
(d) spleen Ly6EΔHSC.

4.3. Reconstruction and Analysis of Gene Networks

As stated above, the samples were arranged both organ and genotype-wise in order to generate
networks which would model the progress of the disease in each scenario. GCNs were inferred
from Log2-normalized expression datasets. A count of 1 was added at log2 normalization so the
problem with remaining zero values was avoided. Each network was generated exclusively taking
into consideration their corresponding DEG at control vs. cases at 5 d p.i., where larger differences
were observed. Four networks were then reconstructed from these previously-identified DEG for liver
wt samples (1133 genes), liver ko samples (1153 genes), spleen wt samples (506 genes) and spleen ko
samples (426 genes). This approach results in the modeling of only those relationships that are related
to the viral infection. Each sample set was then fed to EnGNet for the reconstruction of the subsequent
network. Genes that remained unconnected due to weak relationships, which do not overcome the set
threshold, were removed from the networks. Furthermore, the goodness of EnGNet-generated models
outperformed other well-known inference approaches, as detailed in Appendix B.

Topological parameters were estimated and added as node attributes using igraph, together with
Log2FC, prior to Cytoscape import. Specifically, networks were simplified by removing potential loops
and multiple edges. The clustering topological scrutiny of the reconstructed networks revealed neat
modules in all cases, as shown in Figure A5. The number of clusters identified in each network, as well
as the number of genes harbored in the clusters is shown in Table A1.

As already mentioned, according to gene networks theory, nodes contained within the same cluster
are often involved in the same biological process [5,81]. In this context, the GO-based enrichment
analyses over the identified clusters may well provide an idea of the affected functions. Only clusters
containing more than 10 genes were considered, since this is the minimum number of elements
required by the enrichment tool ClusterProfiler. The results of the enrichment analyses revealed that
most GO terms were not shared between wt and ko homologous samples, as shown in Figure 5.

In order to further explore the reconstructed networks, the intersection of ko and wt networks of a
same organ was computed. This refers to the genes and relationships that are shared between both
genotypes for a specific organ. Additionally, the genes and relationships that were exclusively present
at the wt and ko samples were also estimated, as shown in Figure A6. The enrichment analyses over the
nodes, separated using this criterion, would reveal the biological processes that make the difference
between in Ly6EΔHSC mice compared to wt ones. The results of such analyses are shown in Figure A7.

Finally, the exploration of nodes’ degree distribution would reveal those genes that can be
considered hubs. Those nodes comprised within the top genes with highest degree (degree > Q3 + 1.5
× IQ), also known as upper outliers in the nodes distribution, were considered hubs. A representation
of nodes’ degree distribution throughout the four reconstructed networks is shown in Figure 6.
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These distributions are detailed in Figure A8. This method provided four cutoff values for the degree,
24, 39, 21 and 21, respectively for liver wt and ko, spleen wt and ko networks. Above these thresholds,
nodes would be considered as hubs in each network. These hubs are shown in Tables A2–A5.

(a) (b)
Figure 5. Enrichment analyses performed over the main clusters identified in wt and ko networks of
(a) liver and (b) spleen networks. Gene ratio is defined by the number of genes used as input for the
ernichment analyses associated with a particular GO term divided by the total number of input genes.
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Figure 6. Boxplots representative of the degree distributions for each one of the four reconstructed
networks. Identified hubs, according to the Q3+ 1.5× IQR criterion, are highlighted in red. The degree
cutoffs, above which nodes would be considered as hubs, were 24, 39, 21 and 21, respectively for liver
wt, liver ko, spleen wt and spleen ko networks. Note degree is represented in a log scale given that the
reconstructed networks present a scale-free topology.
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5. Discussion

In this work four gene networks were reconstructed to model the genetic response MHV
infection in two tissues, liver and spleen, and in two different genetic backgrounds, wild type and
Ly6EΔHSC. Samples were initially explored in order to design an inference rationale. Not only did the
designed approach reveal major differences between the genetic programs in each organ, but also,
between different subgroups of samples, in a time-series-like manner. Noticeably, disparities between
wt and Ly6EΔHSC samples were observed in both tissues, and differential expression analyses revealed
relevant differences in terms of the immune response generated. Hereby, our results predict the impact
of Ly6E ko on HSC, which resulted in an impaired immune response compared to the wt situation.

5.1. Exploratory Analyses Revealed a Time-Series Llike Behaviour on Raw Data, Assisting Network Reconstruction

Overall, results indicate that the reconstruction rationale, elucidated from exploratory findings,
is suitable for the modeling of the viral progression. Regarding the variance in gene expression
in response to virus, PCA and K-medoid clustering revealed strong differences between samples
corresponding to liver spleen, respectively (Figure 2a). These differences set the starting point for the
modeling approach, in which samples corresponding to each organ were analyzed independently.
This modus operandi is strongly supported by the tropism that viruses exhibit for certain tissues, which
ultimately results in a differential viral incidence and charge depending on the organ [82]. In particular,
the liver is the target organ of MHV, identified as the main disease site [83]. On the other hand,
the role of the spleen in innate and adaptive immunity against MHV has been widely addressed [84,85].
The organization of this organ allows blood filtration for the presentation of antigens to cognate
lymphocytes by the antigen presenting cells (APCs), which mediate the immune response exerted by T
and B cells [86].

As stated before, PCA revealed differences between the three sample groups on each organ: control
and MHV-infected at 3 and 5 d p.i. Interestingly, between-groups differences are specially clear for liver
samples (Figure 2b), whereas spleen samples are displayed in a continuum-like way. This becomes
more evident in organ-wise PCA (Figure 2), and was latter confirmed by the exploration of the top
500 most variable genes and differential expression analyses (Figure A2). Furthermore, clear differences
between wt and Ly6EΔHSC samples are observed in none of these analyses, although the examination
of the differential expression and network reconstruction did exposed divergent immune responses
for both genotypes.

5.2. Differential Expression Analyses Revealed Significant Changes between Wild Type and Knockout Samples

The differential expression analyses revealed the progressive genetic response to virus for both
organs and genotypes (Figures 3a and 4). In a wt genetic background, MHV infection causes an overall
rise in the expression level of certain genes, as most DEG in cases vs. control samples are upregulated.
However, in a Ly6EΔHSC genetic background, this upregulation is not as prominent as in a wt
background, significantly reducing the number of upregulated genes (Figure 3b). Besides, the number
of DEG in each comparison varies from wt to Ly6EΔHSC samples.

Attending at the DEG in the performed comparisons, for both the wt and ko genotypes, liver cases
at 3 d p.i. are more similar to liver cases at 5 d p.i. than to liver controls, since the number of DEG
between the first two measuring points is significantly lower than the number of DEG between control
and case samples at 3 d p.i. (Figure 4a,b). A different situation occurs in the spleen, where wt cases at
3 d p.i. are closer to control samples (Figure 4c), whereas ko cases at 3 d p.i. seem to be more related to
cases at 5 d p.i. (Figure 4d). This was already suggested by hierarchical clustering in the analysis of the
top 500 most variable genes, and could be indicative of a different progression of the infection impact
on both organs, which could be modulated by gene Ly6E, at least for the spleen samples.

Moreover, the results of the DEG analyses indicate that the sole knockout of gene Ly6E in
HSC considerably affects the upregulating genetic program normally triggered by viral infection
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in wild type individuals (in both liver and spleen). Interestingly, there are some genes in each organ
and genotype that are differentially expressed in every comparison between the possible three sample
types, controls, cases at 3 d p.i. and cases at 5 d p.i. These genes, which we termed highly DEG,
could be linked to the progression of the infection, as changes in their expression level occur with days
post injection, according to the data. The rest of the DEG, show an uprise or fall when comparing two
sample types, which does not change significantly in the third sample type. Alternatively, highly DEG,
shown in Table A6, exhibited three different expression patterns: (i) Their expression level, initially
low, rises from control to cases at 3 d p.i. and then rises again in cases at 5 d p.i. (ii) Their expression
level, initially high in control samples, falls at 3 d p.i. and falls even more at 5 d p.i cases. (iii) Their
expression level, initially low, rises from control to cases at 3 d p.i. but then falls at cases at 5 d p.i.,
when it is still higher than the initial expression level. These expression patterns, which are shown
in Figure A9, might be used to keep track of the disease progression, differentiating early from late
infection stages.

In some cases, these genes exhibited inconsistent expression levels, specially at 5 d p.i. cases,
which indicates the need for further experimental designs targeting these genes. Highly DEG
could be correlated with the progression of the disease, as in regulation types (i) and (ii) or by
contrast, be required exclusively at initial stages, as in regulation type (iii). Notably, genes Gm10800
and Gm4756 are predicted genes which, to date, have been poorly described. According to the
STRING database [79], Gm10800 is associated with gene Lst1 (Leukocyte-specific transcript 1 protein),
which has a possible role in modulating immune responses. In fact, Gm10800 is homologous to
human gene PIRO (Progranulin-Induced-Receptor-like gene during Osteoclastogenesis), related to
bone homeostasis [87,88]. Thus, we hypothesize that bone marrow-derived cell lines, including
erythrocytes and leukocytes (immunity effectors), could also be regulated by Gm10800. On the other
hand, Gm4756 is not associated to any other gene according to STRING. Protein Gm4756 is homologous
to Human protein DHRS7 (dehydrogenase/reductase SDR family member 7) isoform 1 precursor.
Nonetheless and to the best of our knowledge, these genes have not been previously related to Ly6E,
and could play a role in the immune processes mediated by this gene.

Finally, highly DEG were not found exclusively present in wt nor ko networks, instead, these
were common nodes of these networks for each organ. This suggests that highly DEG might be
of core relevance upon MHV infection, with a role in those processes independent on Ly6EΔHSC.
Besides, genes Hykk, Ifit3 and Ifit3b; identified as highly DEG throughout liver Ly6EΔHSC samples were
also identified as hubs in the liver ko network. Also gene Saa3, highly DEG across spleen Ly6EΔHSC

samples was considered a hub in the spleen ko network. Nevertheless, these highly DEG require
further experimental validation.

5.3. The Ablation of Ly6E in HSC Results in Impaired Immune Response as Predicted by Enrichment Analyses

The enrichment analyses of the identified clusters at each network revealed that most GO terms
are not shared between the two genotypes (Figure 5), despite the considerable amount of shared
genes between the two genotypes for a same organ. The network reconstructed from liver wt samples
reflects a strong response to viral infection, involving leukocyte migration or cytokine and interferon
signaling among others. These processes, much related to immune processes, are not observed in its ko
counterpart.

The liver wt network presented four clusters (Figure A5a). Its cluster 1 regulates processes related
to leukocyte migration, showing the implication of receptor ligand activity and cytokine signaling,
which possibly mediates the migration of the involved cells. Cluster 2 is related to interferon-gamma
for the response to MHV, whereas cluster 3 is probably involved in the inflammatory response mediated
by pro-inflammatory cytokines. Last, cluster 4 is related to cell extravasation, or the leave of blood
cells from blood vessels, with the participation of gene Nipal1. The positive regulation observed across
all clusters suggests the activation of these processes. Overall, hub genes in this network have been
related to the immune response to viral infection, as the innate immune response to the virus is the
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mediated by interferons. Meanwhile, the liver ko network showed three main clusters (Figure A5b).
Its cluster 1 would also be involved in defense response to virus, but other processes observed in the
liver wt network, like leukocyte migration or cytokine activity, are not observed in this cluster nor the
others. Cluster 2 is then related to the catabolism of small molecules and cluster 3 is involved in acids
biosynthesis. These processes are certainly ambiguous and do not correspond the immune response
observed in the wt situation, which suggests a decrease in the immune response to MHV as a result of
Ly6E ablation in HSC.

On the other hand, spleen wt samples revealed high nuclear activity potentially involving
nucleosome remodeling complexes and changes in DNA accessibility. Histone modification is a type
of epigenetic modulation which regulates gene expression. Taking into account the central role of the
spleen in the development of immune responses, the manifested relevance of chromatin organization
could be accompanied by changes in the accessibility of certain DNA regions with implications in the
spleen-dependent immune response. This is supported by the reduced reaction capacity in the first
days post-infection of Ly6EΔHSC samples compared to wt, as indicated by the number of DEG between
control and cases at 3 d p.i for these genotypes. The spleen wt network displayed three clusters
(Figure A5c). Cluster 1, whose genes were all upregulated in Ly6EΔHSC samples at 5 d p.i. compared to
mock infection, is mostly involved in nucleosome organization and chromatin remodelling, together
with cluster 3. Cluster 2 would also be related to DNA packaging complexes, possibly in response to
interferon, similarly to liver networks. Instead, in spleen ko most genes take part in processes related to
the extracellular matrix. In the spleen ko network, four clusters were identified (Figure A5d). Cluster 1
is related to the activation of an immune response, but also, alongside with clusters 2 and 4, to the
extracellular matrix, possibly in relation with collagen, highlighting its role in the response to MHV.
Cluster 3 is implied in protease binding. The dramatic shut down in the ko network of the nuclear
activity observed in the spleen wt network, leads to the hypothesis that the chromatin remodeling
activity observed could be related to the activation of certain immunoenhancer genes, modulated by
gene Ly6E. In any case, further experimental validation of these results would provide meaningful
insights in the face of potential therapeutic approaches (See Appendix A for more details).

The exploration of nodes memebership, depending on whether these exclusively belonged to wt
or ko networks or, by contrast, were present in both networks, helped to understand the impairment
caused by Ly6EΔHSC. In this sense, GO enrichment analyses over these three defined categories
of the nodes in the liver networks revealed that genes at their intersection are mainly related to
cytokine production, leukocyte migration and inflammatory response regulation, in accordance to the
phenotype described for MHV-infection [89]. However, a differential response to virus is observed in
wt mice compared to Ly6E-ablated. The nodes exclusively present at the wt liver network are related
to processes like regulation of immune effector process, leukocyte mediated immunity or adaptive
immune response. These processes, which are found at a relatively high gene ratio, are not represented
by nodes exclusively present in the liver ko network. Additionally, genes exclusively present at the
wt network and the intersection network are upregulated in case samples with respect to controls
(Figure A6a), which suggests the activation of the previously mentioned biological processes. On the
other hand, genes exclusively-present at the liver ko networks, mostly down-regulated, were found to
be associated with catabolism.

As for the spleen networks, genotype-wise GO enrichment results revealed that the
previously-mentioned intense nuclear activity involving protein-DNA complexes and nucleosome
assembly is mostly due to wt-exclusive genes. Actually, these biological processes could be pinpointing
cell replication events. Analogously to the liver case, genes that were found exclusively present in the
wt network and the intersection network are mostly upregulated, whereas in the case of ko-exclusive
genes the upregulation is not that extensive. Interestingly, the latter are mostly related to extracellular
matrix (ECM) organization, which suggest the relevance of Ly6E on these. Other lymphocyte antigen-6
(LY-6) superfamily members have been related to ECM remodelling processes such as the Urokinase
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receptor (uPAR), which participates in the proteolysis of ECM proteins [90]. However and to the best
of our knowledge, the implications of Ly6E in ECM have not been reported.

The results presented are in the main consistent with those by Pfaender et al. [54], who observed
a loss of genes associated with the type I IFN response, inflammation, antigen presentation, and B cells
in infected Ly6EΔHSC mice. Genes Stat1 and Ifit3, selected in their work for their high variation in
absence of Ly6e, were identified as hub genes in the networks reconstructed from liver wild type and
knockout samples, respectively. It is to be noticed that our approach significantly differs to the one
carried out in the original study. In this particular case, we consider that the reconstruction of GCN
enables a more comprehensive analysis of the data, potentially finding the key genes involved in the
immune response onset and their relationships with other genes. For instance, the transcriptomic
differences between liver and spleen upon Ly6E ablation become more evident using GCN.

Altogether, the presented results show the relevance of gene Ly6E in the immune response against
the infection caused by MHV. The disruption of Ly6E significantly reduced the immunogenic response,
affecting signaling and cell effectors. These results, combining in vivo and in silico approaches, deepen in
our understanding of the immune response to viruses at the gene level, which could ultimately assist
the development of new therapeutics. For example, basing on these results, prospective studies on
Ly6E agonist therapies could be inspired, with the purpose of enhancing the gene expression level
via gene delivery. Given the relevance of Ly6E in SARS-CoV-2 according to previous studies [54,91],
the overall effects of Ly6E ablation in HSCs upon SARS-CoV-2 infection, putting special interest in
lung tissue, might show similarities with the deficient immune response observed in the present work.

6. Conclusions

In this work we have presented an application of co-expression gene networks to analyze
the global effects of Ly6E ablation in the immune response to MHV coronavirus infection. To do
so, the progression of the MHV infection on the genetic level was evaluated in two genetic
backgrounds: wild type mice (wt, Ly6Efl/fl) and Ly6E knockout mutants (ko, Ly6EΔHSC) mice. For these,
viral progression was assessed in two different organs, liver and spleen.

The proposed reconstruction rationale revealed significant differences between MHV-infected wt
and Ly6EΔHSC mice for both organs. In addition we observed that MHV infection triggers a progressive
genetic response of upregulating nature in both liver and spleen. In addition, the results suggest that
the ablation of gene Ly6E at HSC caused an impaired genetic response in both organs compared to wt
mice. The impact of such ablation is more evident in the liver, consistently with the disease site. At the
same time, the immune response in the spleen, which seemed to be mediated by an intense chromatin
activity in the normal situation, is replaced by ECM remodeling in Ly6EΔHSC mice.

We infer that the presence of Ly6E limits the damage in the above mentioned target sites.
We believe that the characterization of these processes could motivate the efforts towards novel
antiviral approaches. Finally, in the light of previous works, we hypothesize that Ly6E ablation
might show analogous detrimental effects on immunity upon the infection caused by other viruses
including SARS-CoV, MERS and SARS-CoV-2. In future works, we plan to investigate whether
the over-expression of Ly6E in wt mice has an enhancement effect in immunity. In this direction,
Ly6E gene mimicking (agonist) therapies could represent a promising approach in the development of
new antivirals.

Author Contributions: Conceptualization, F.M.D.-C. and F.G.-V.; methodology, F.M.D.-C. and F.G.-V.; software,
F.M.D.-C. and F.G.-V.; validation, F.M.D.-C. and F.G.-V.; Visualization, F.M.D.-C., F.G.-V., M.G.-T., F.D.; data
curation, F.M.D.-C. and M.G.-T.; writing-original draft preparation, F.M.D.-C., D.S.R.-B., F.G.-V. and M.G.-T.;
writing-review and editing, F.M.D.-C., F.G.-V., M.G.-T., D.S.R.-B. and F.D.; supervision, F.G.-V. and F.D.; project
administration, F.G.-V. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Pablo de Olavide University: Scholarships for Tutored Research, V Pablo
de Olavide University’s Research and Transfer Plan 2018-2020 (Grant No. PPI1903).

Conflicts of Interest: The authors declare no conflict of interest.

174



Genes 2020, 11, 831

Appendix A. Figures and Tables

Figure A1. Multidimensional Scaling (MDS) plots showing main differences between individual
samples according to the four features these present: organ procedence, genotype, sample type
(mock infection or MHV-infected) and days post injection.
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Figure A2. Top 500 most variable genes in (a) liver and (b) spleen samples. Log2-normalization was
applied over the Counts per Million (CPMs) in order to properly compare distributions. Variance
estimation reaffirms the homogenity of control vs. case samples. Overall, differences are also observed
between 3 and 5 d p.i. case samples.
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(a) (b)

(c) (d)

Figure A3. Volcano plots showing the differentially-expressed genes (DEG) that proceeded to the
analyses. DEG were filtered by log2FC ≥ 2 and adjusted p value ≤ 0.05. These comparisons were
performed both organ and genotype-wise: (a) liver wt, (b) liver ko, (c) spleen wt, (d) spleen ko. ko,
Ly6EΔHSC.

Figure A4. UpSet plot representing the commonalities between the 12 differentially-expressed genes
(DEG) groups identified in differential expression analyses. The comparison of controls vs. samples at
5 d p.i. comprised the greatest number of genes for all sample types.
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Table A1. Number of DEG used as input to EnGNet for network reconstruction and their latter
distribution in inferred networks. Genes that were not assigned to a cluster (or were comprised in
minoritary clusters) were not taken into consideration for enrichment analyses.

Liver wt Liver ko Spleen wt Spleen ko

Input genes 1133 1153 506 426
Network genes 1118 1300 485 403
Cluster 1 262 284 180 109
Cluster 2 218 379 255 190
Cluster 3 579 624 36 77
Cluster 4 59 25
Unconnected/minor clustered 0 13 14 2

Figure A5. Inferred networks for (a) liver wt (1118 nodes, 16,281 edges, 4 clusters), (b) liver ko
(1300 nodes, 15,727 edges, 3 clusters), (c) spleen wt (485 nodes, 4042 edges, 3 clusters), (d) spleen ko
(403 nodes, 4220 edges, 4 clusters). Nodes are colored according to log2FC, upregulated genes in
blue, downregulated genes in red. Clusters are numbered from left to right. Node size is represented
according to node’s degree. Edge transparency is represented according to edge weight. Networks are
displayed using the yfiles organic layout [92].
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Figure A6. Networks resulting from the organ-wise merging of (a) wt and (b) ko samples. From left to
right, nodes are displayed in circles depending on whether genes are contained exclusively at the wt,
in the intersection between the ko and wt networks and in the ko network exclusively. Nodes are sorted
and colored according to log2FC, upregulated genes in blue, downregulated genes in red. Node size is
represented according to node’s degree.

(a)
Figure A7. Cont.
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(b)
Figure A7. Enrichment analyses based on node exclusiveness of (a) liver and (b) spleen networks.
wt refers to nodes exclusively present at those networks reconstructed from wt samples; ko refers to
nodes exclusively present at networks reconstructed from Ly6EΔHSC samples; both addresses shared
nodes between wt and ko networks. Gene ratio is defined by the number of genes used as input for the
ernichment analyses associated with a particular GO term divided by the total number of input genes.

(a) (b)
Figure A8. Cont.
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(c) (d)
Figure A8. Distribution of node’s degree throughout the networks reconstructed from (a) liver wt
samples, (b) liver ko samples, (c) spleen wt samples and (d) spleen ko samples. The distribution trendline
is shown in red. Nodes that are not present in the zoomed area are considered hubs. Note degree
distributions do not fit a normal distribution (Shapiro–Wilk normality test, p-value < 0.05).

Table A2. Hubs identified in the network reconstructed from liver wt samples. Degree cutoff: 24.
Reg. regulation.

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000034593 1 1033 up Myo5a myosin VA

ENSMUSG00000000982 3 1006 up Ccl3 chemokine (C-C motif) ligand 3

ENSMUSG00000030745 2 997 up Il21r interleukin 21 receptor

ENSMUSG00000032322 3 989 up Pstpip1 proline-serine-threonine
phosphatase-interacting protein 1

ENSMUSG00000079227 3 975 up Ccr5 chemokine (C-C motif) receptor 5

ENSMUSG00000031304 3 957 up Il2rg interleukin 2 receptor,
gamma chain

ENSMUSG00000069268 3 940 up Hist1h2bf histone cluster 1, H2bf

ENSMUSG00000027071 1 938 down P2rx3 purinergic receptor P2X,
ligand-gated ion channel, 3

ENSMUSG00000019232 3 929 down Etnppl ethanolamine phosphate
phospholyase

ENSMUSG00000032643 3 921 up Fhl3 four and a half LIM domains 3

ENSMUSG00000033763 3 904 down Mtss2 MTSS I-BAR domain containing 2

ENSMUSG00000032094 1 887 up Cd3d CD3 antigen, delta polypeptide

ENSMUSG00000050896 3 883 up Rtn4rl2 reticulon 4 receptor-like 2

ENSMUSG00000067219 4 801 down Nipal1 NIPA-like domain containing 1

ENSMUSG00000110439 3 780 down Mup22 major urinary protein 22
ENSMUSG00000004105 2 743 down Angptl2 angiopoietin-like 2

ENSMUSG00000081650 1 713 up Gm16181 -

ENSMUSG00000050395 2 538 up Tnfsf15 tumor necrosis factor (ligand)
superfamily, member 15

181



Genes 2020, 11, 831

Table A2. Cont.

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000038067 1 220 up Csf3 colony stimulating factor 3
(granulocyte)

ENSMUSG00000026104 2 90 up Stat1 signal transducer and activator
of transcription 1

ENSMUSG00000037965 2 66 up Zc3h7a zinc finger CCCH type
containing 7 A

Table A3. Hubs identified in the network reconstructed from liver Ly6EΔHSC samples. Degree cutoff:
39. Reg. regulation.

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000029445 2 800 down Hpd 4-hydroxyphenylpyruvic acid
dioxygenase

ENSMUSG00000037071 3 781 down Scd1 stearoyl-Coenzyme A desaturase 1

ENSMUSG00000041773 3 773 up Enc1 ectodermal-neural cortex 1

ENSMUSG00000075015 3 760 up Gm10801 -

ENSMUSG00000021250 3 742 up Fos FBJ osteosarcoma oncogene

ENSMUSG00000031618 3 735 down Nr3c2 nuclear receptor subfamily 3,
group C, member 2

ENSMUSG00000022419 1 732 down Deptor DEP domain containing
MTOR-interacting protein

ENSMUSG00000033610 3 700 down Pank1 pantothenate kinase 1

ENSMUSG00000024349 3 667 up Tmem173 transmembrane protein 173

ENSMUSG00000006519 3 666 up Cyba cytochrome b-245, alpha polypeptide

ENSMUSG00000035878 3 666 down Hykk hydroxylysine kinase 1

ENSMUSG00000054630 2 652 down Ugt2b5 UDP glucuronosyltransferase 2
family, polypeptide B5

ENSMUSG00000041757 3 639 down Plekha6 pleckstrin homology domain
containing, family A member 6

ENSMUSG00000053398 3 620 up Phgdh 3-phosphoglycerate dehydrogenase

ENSMUSG00000022025 3 555 down Cnmd chondromodulin

ENSMUSG00000029659 2 482 up Medag mesenteric estrogen dependent
adipogenesis

ENSMUSG00000062380 2 461 up Tubb3 tubulin, beta 3 class III

ENSMUSG00000069309 3 408 up Hist1h2an histone cluster 1, H2an

ENSMUSG00000034285 3 399 down Nipsnap1 nipsnap homolog 1

ENSMUSG00000027654 3 355 up Fam83d family with sequence similarity 83,
member D

ENSMUSG00000073435 2 355 down Nme3 NME/NM23 nucleoside diphosphate
kinase 3

ENSMUSG00000021062 2 336 up Rab15 RAB15, member RAS oncogene family

ENSMUSG00000037852 3 271 up Cpe carboxypeptidase E

ENSMUSG00000096201 2 260 up Gm10715 -

ENSMUSG00000022754 2 245 up Tmem45a transmembrane protein 45a

ENSMUSG00000038233 1 239 down Gask1a golgi associated kinase 1A
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Table A3. Cont.

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000043456 2 236 up Zfp536 zinc finger protein 536

ENSMUSG00000095891 2 168 up Gm10717 -

ENSMUSG00000096688 1 126 down Mup17 major urinary protein 17

ENSMUSG00000099398 2 115 up Ms4a14 membrane-spanning 4-domains,
subfamily A, member 14

ENSMUSG00000025002 1 99 down Cyp2c55 cytochrome P450, family 2,
subfamily c, polypeptide 55

ENSMUSG00000074896 1 91 up Ifit3 interferon-induced protein with
tetratricopeptide repeats 3

ENSMUSG00000062488 1 86 up Ifit3b interferon-induced protein with
tetratricopeptide repeats 3B

ENSMUSG00000029417 1 78 up Cxcl9 chemokine (C-X-C motif) ligand 9

ENSMUSG00000057465 1 77 up Saa2 serum amyloid A 2

ENSMUSG00000050908 2 69 up Tvp23a trans-golgi network vesicle protein 23A

ENSMUSG00000030142 1 63 up Clec4e C-type lectin domain family 4,
member e

ENSMUSG00000038751 1 61 down Ptk6 PTK6 protein tyrosine kinase 6

ENSMUSG00000068606 1 40 up Gm4841 predicted gene 4841

Table A4. Hubs identified in the network reconstructed from spleen wt samples. Degree cutoff: 21.
Reg. regulation.

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000019505 2 365 up Ubb ubiquitin B

ENSMUSG00000094777 2 358 up Hist1h2ap histone cluster 1, H2ap

ENSMUSG00000057729 3 326 up Prtn3 proteinase 3

ENSMUSG00000056071 1 323 up S100a9 S100 calcium binding protein A9
(calgranulin B)

ENSMUSG00000025403 2 308 up Shmt2 serine hydroxymethyltransferase 2
(mitochondrial)

ENSMUSG00000023132 2 290 up Gzma granzyme A

ENSMUSG00000078920 2 284 up Ifi47 interferon gamma inducible
protein 47

ENSMUSG00000037894 1 274 up H2afz H2A histone family, member Z

ENSMUSG00000035472 2 247 down Slc25a21 solute carrier family 25 (mitochondrial
oxodicarboxylate carrier), member 21

ENSMUSG00000009350 1 244 up Mpo myeloperoxidase

ENSMUSG00000103254 1 234 up Ighv1-15 -

ENSMUSG00000069274 1 230 up Hist1h4f histone cluster 1, H4f

ENSMUSG00000028328 2 223 down Tmod1 tropomodulin 1

ENSMUSG00000094322 1 128 up Ighv9-4 -

ENSMUSG00000094124 1 114 up Ighv1-74 -

ENSMUSG00000094546 1 68 up Ighv1-26 -
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Table A5. Hubs identified in the network reconstructed from spleen Ly6EΔHSC samples. Degree cutoff:
21. Reg. regulation

Ensembl ID Cluster Degree Reg. Symbol Description

ENSMUSG00000027715 2 353 up Ccna2 cyclin A2

ENSMUSG00000024742 3 349 up Fen1 flap structure specific endonuclease 1

ENSMUSG00000024640 2 347 up Psat1 phosphoserine aminotransferase 1

ENSMUSG00000040026 2 338 up Saa3 serum amyloid A 3

ENSMUSG00000039713 2 327 down Plekhg5
pleckstrin homology domain
containing, family G (with RhoGef
domain) member 5

ENSMUSG00000075289 4 322 down Carns1 carnosine synthase 1

ENSMUSG00000067610 2 309 down Klri1 killer cell lectin-like receptor
family I member 1

ENSMUSG00000031503 1 305 up Col4a2 collagen, type IV, alpha 2

ENSMUSG00000095700 3 298 up Ighv10-3 -

ENSMUSG00000076613 3 287 up Ighg2b -

ENSMUSG00000051079 2 282 down Rgs13 regulator of G-protein signaling 13

ENSMUSG00000036027 2 268 down 1810046K07Rik RIKEN cDNA 1810046K07 gene

ENSMUSG00000027962 1 225 up Vcam1 vascular cell adhesion molecule 1

ENSMUSG00000049130 1 184 up C5ar1 complement component 5a receptor 1

ENSMUSG00000066861 1 35 up Oas1g 2′-5′ oligoadenylate synthetase 1G

Table A6. Highly DEG. List of DEG that are differentially-expressed for every of the comparisons
performed: control vs. cases at 3 d p.i., control vs. cases at 5 d p.i. and cases at 3 vs. 5 d p.i. Memb,
membership to the group of samples genes belong; ko, Ly6EΔHSC samples. Reg. Type refers to the three
expression patterns observed, described in Section 5.

Ensembl ID Symbol Description Memb. Reg. Type

ENSMUSG00000032487 Ptgs2 prostaglandin-endoperoxide synthase 2 liver wt 1

ENSMUSG00000029816 Gpnmb glycoprotein (transmembrane) nmb liver wt 1

ENSMUSG00000035385 Ccl2 chemokine (C-C motif) ligand 2 liver wt 1

ENSMUSG00000035373 Ccl7 chemokine (C-C motif) ligand 7 liver wt 1

ENSMUSG00000015437 Gzmb granzyme B liver wt 1

ENSMUSG00000038037 Socs1 suppressor of cytokine signaling 1 liver wt 1

ENSMUSG00000026839 Upp2 uridine phosphorylase 2 liver ko 2

ENSMUSG00000075014 Gm10800 - liver ko 1

ENSMUSG00000040660 Cyp2b9 cytochrome P450, family 2,
subfamily b, polypeptide 9 liver ko 2

ENSMUSG00000056978 Hamp2 hepcidin antimicrobial peptide 2 liver ko 2

ENSMUSG00000073940 Hbb-bt hemoglobin, beta adult t chain liver ko 2

ENSMUSG00000052305 Hbb-bs hemoglobin, beta adult major chain liver ko 2

ENSMUSG00000025473 Adam8 a disintegrin and metallopeptidase domain 8 liver ko 1

ENSMUSG00000056973 Ces1d carboxylesterase 1D liver ko 2

ENSMUSG00000025317 Car5a carbonic anhydrase 5a, mitochondrial liver ko 2

ENSMUSG00000050578 Mmp13 matrix metallopeptidase 13 liver ko 1

ENSMUSG00000049723 Mmp12 matrix metallopeptidase 12 liver ko 1
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Table A6. Cont.

Ensembl ID Symbol Description Memb. Reg. Type

ENSMUSG00000035878 Hykk hydroxylysine kinase 1 liver ko 2

ENSMUSG00000069917 Hba-a2 hemoglobin alpha, adult chain 2 liver ko 2

ENSMUSG00000009350 Mpo myeloperoxidase liver ko 1

ENSMUSG00000109482 Gm4756 - liver ko 2

ENSMUSG00000060807 Serpina6 serine (or cysteine) peptidase inhibitor,
clade A, member 6 liver ko 2

ENSMUSG00000079018 Ly6c1 lymphocyte antigen 6 complex, locus C1 liver ko 1

ENSMUSG00000074896 Ifit3 interferon-induced protein with
tetratricopeptide repeats 3 liver ko 3

ENSMUSG00000062488 Ifit3b interferon-induced protein with
tetratricopeptide repeats 3B liver ko 3

ENSMUSG00000032808 Cyp2c38 cytochrome P450, family 2,
subfamily c, polypeptide 38 liver ko 2

ENSMUSG00000025004 Cyp2c40 cytochrome P450, family 2,
subfamily c, polypeptide 40 liver ko 2

ENSMUSG00000042248 Cyp2c37 cytochrome P450, family 2,
subfamily c, polypeptide 37 liver ko 2

ENSMUSG00000067225 Cyp2c54 cytochrome P450, family 2,
subfamily c, polypeptide 54 liver ko 2

ENSMUSG00000054827 Cyp2c50 cytochrome P450, family 2,
subfamily c, polypeptide 50 liver ko 2

ENSMUSG00000001131 Timp1 tissue inhibitor of metalloproteinase 1 liver ko 1

ENSMUSG00000015437 Gzmb granzyme B spleen wt 1

ENSMUSG00000022584 Ly6c2 lymphocyte antigen 6 complex, locus C2 spleen wt 1

ENSMUSG00000040026 Saa3 serum amyloid A 3 spleen ko 1

(a)
(b)

Figure A9. Cont.
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(c) (d)
Figure A9. CPM-normalized expression values of highly DEG identified across (a) liver wt samples,
(b) liver ko samples, (c) spleen wt samples and (d) spleen ko samples. Dashed lines separate samples
from the three groups under study: controls, cases at 3 d p.i. and cases at 5 d p.i. Note sample order
within same group is exchangeable.

Appendix B. Validation of the Reconstruction Method

The reconstruction method employed in this case study was validated against other thee
well-known inference methods: ARACNe [93], WGCNA [94] and wTO [95]. The output of each
reconstruction method, using default values (including EnGNet) was compared to a gold standard
(GS), retrieved from the STRING database.

Four different GSs were taken into consideration, since these were reconstructed from the DEG
that were identified in the comparison of control vs. case samples at 5 d p.i., as shown in Section 4.2.
These DEG were mapped to the STRING database gene identifiers selecting Mus musculus as model
organism (taxid: 10090). A variable percentage of DEG (6–20%) could not be assigned to a STRING
identifier, and were thus removed from the analysis. The interactions exclusively concerning the
resulting DEG in each case were retrieved from the STRING database. These interaction networks
would serve as GSs. The mentioned DEG (without unmapped identifiers) would also serve as input
for the four reconstruction methods to be compared.

The ARACNe networks were inferred using the Spearman correlation coefficient following the
implementations in the minet [96] R package. In this case, mutual information values were normalized
and scaled in the range 0–1. On the other hand, the WGCNA networks were reconstructed following
the original tutorial provided by the authors [97]. The power was defined as 5. Additionally, the wTO
networks were built using Pearson correlation in accordance to the documentation. Absolute values
were taken as relationship weights. Finally, EnGNet networks were inferred using the default
parameters described in the original article by Gómez-Vela et al. [33]. For the comparison, the Receiver
operating characteristic (ROC)-curve was estimated using the pROC [98] R package. ROC curves are
shown in Figure A10.
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Figure A10. Receiver operating characteristic (ROC) curves for the four datasets obtained in our study
using different reconstruction methods. Sensitivity is the true positive rate: TP/(TP + FN). Specificity
is the true negative rate: TN/(TN + FP). TP, true positive; TN, true negative; FN, false negative; FP,
false positive.

The area under the ROC curve (AUC) was also computed in each case for the quantitative
comparison of the methods, as shown in Figure A11a. The AUC compares the reconstruction
quality of each method against random prediction. An AUC ≈ 1 corresponds to the perfect classifier
whereas am AUC ≈ 0.5 approximates to a random classifier. Thus, the higher the AUC, the better
the predictions. On average, EnGNet provided the best AUC results, whilst maintaining a good
discovery rate. In addition, EnGNet provided relatively scarce networks compared to WGCNA,
as shown in Figure A11b. This is considered of relevance given that sparseness is a main feature of
gene networks [7].
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(a) (b)
Figure A11. (a) Comparison of the average area under the ROC curve (AUC) for the four reconstruction
methods under comparison across the four used datasets. On average, EnGNet outperformed the
other three methods in terms of AUC. (b) Size comparison of the inferred networks. EnGNet exhibited
competitive results in terms of network size, providing considerably sparser networks than WGCNA’s.
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Abstract: The majority of genetic variants affecting complex traits map to regulatory regions of
genes, and typically lie in credible intervals of 100 or more SNPs. Fine mapping of the causal
variant(s) at a locus depends on assays that are able to discriminate the effects of polymorphisms or
mutations on gene expression. Here, we evaluated a moderate-throughput CRISPR-Cas9 mutagenesis
approach, based on replicated measurement of transcript abundance in single-cell clones, by deleting
candidate regulatory SNPs, affecting four genes known to be affected by large-effect expression
Quantitative Trait Loci (eQTL) in leukocytes, and using Fluidigm qRT-PCR to monitor gene expression
in HL60 pro-myeloid human cells. We concluded that there were multiple constraints that rendered
the approach generally infeasible for fine mapping. These included the non-targetability of many
regulatory SNPs, clonal variability of single-cell derivatives, and expense. Power calculations based on
the measured variance attributable to major sources of experimental error indicated that typical eQTL
explaining 10% of the variation in expression of a gene would usually require at least eight biological
replicates of each clone. Scanning across credible intervals with this approach is not recommended.

Keywords: eQTL; CRISPR-Cas9; single-cell clone; fine-mapping; power

1. Introduction

Genome-wide association studies (GWAS) over the past decade have been highly successful in
identifying tens of thousands of loci influencing disease risk [1–3], but the fine mapping of causal
variants has failed to keep pace. Exhaustive studies of Crohn’s disease and type 2 diabetes associations,
for example, indicate that the average credible interval size for hundreds of loci remains over 100 SNPs,
and fewer than 15% of the loci have been reduced to a single high-confidence causal polymorphism [4,5].
This gap in knowledge impedes both the understanding of the biological functions of risk loci and
the progress in clinical genetic risk assessment. There are three main challenges to fine mapping.
First, the haplotype structure of the human genome ensures that multiple SNPs lie in high linkage
disequilibrium (LD) with the peak association signal so that it is rarely possible to promote one variant
as causal on statistical evidence alone. Second, it is now clear that at least one-third of loci harbor
multiple independent associations, most with overlapping credible intervals [4–6]. Third, the majority
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of the risk loci are located in non-coding regions of genes [7,8], where they exert their function through
regulation of gene expression. Tools for predicting the function of such causal variants generally have
low predictive value [9,10].

Moderate-to-high throughput methods are needed to prioritize likely causal variants by
experimentally monitoring their effects on gene expression [11]. Two broad classes of approaches have
been described: massively parallel reporter assays and genome editing. Massively parallel reporter
assays a couple of short segments of potentially regulatory DNA to guide barcodes, which are transcribed
following transfection into cells or animals. Sequencing approaches allow identification of under- or
over-represented barcodes, indicating differential expression due, for example, to polymorphisms.
Genome editing approaches now most commonly use CRISPR-Cas9 to introduce short insertions,
deletions, and substitutions into targetable regions across the whole genome. RNA sequencing or other
functional readouts, such as fluorescence of a reporter gene, can be used to monitor the impact of specific
variants. Recent CRISPRi and CRISPRa pooled screening assays utilize catalytically dead/inactivated
Cas9 enzymes (dCas9) that bind to but do not cut the target site. These modified Cas9s have their
endonuclease activity removed, but they are still able to bind to the target sites where they contribute
to inhibition or activation of gene expression via fused effector domains, such as KRAB (CRISPRi) and
VP64 (CRISPRa). They have enabled high-throughput screening of genomic elements, influencing
transcription [12] and cellular phenotypes [13–16], with single-cell transcriptome readout. However,
the majority of these strategies screen regulatory intervals rather than individual SNPs, so they are not
appropriate for fine-mapping causal variants.

Here, we showed the feasibility of gene-centric single-cell clonal analysis, focusing on a handful
of genes known to influence the risk of inflammatory bowel disease (IBD) through modulation of
gene expression in immune cells. Specifically, we chose to examine four genes with evidence for two
independent cis-expression Quantitative Trait Loci (eQTL) intervals each, as well as GWAS-significant
associations with IBD. The CDGSH iron-sulfur domain 1, CISD1, and serologically defined colon cancer
antigen 3, SDCCAG3, genes are associated with both ulcerative colitis and Crohn’s disease [17,18].
The autocrine motility factor receptor, AMFR, encodes a glycosylated transmembrane receptor that is
also an E3 ubiquitin ligase, knockdown of which in the acute monocytic leukemia cell line, THP-1,
induces cell cycle arrest and apoptosis, indicating a critical role for AMFR in cell proliferation [19].
NFXL1 is one of the most up-regulated genes in IL-4 induced macrophages [20].

We used an experimental strategy for targeted SNP evaluation wherein microdeletions targeting
candidate eSNPs were introduced by CRISPR-Cas9 and then isolated as single-cell clones on a
uniform genetic background. Although homology-directed repair (HDR) would provide a more
precise evaluation of allelic replacement, the low efficiency relative to non-homologous end joining
(NHEJ) and expectation that indels might have larger effects led us to use NHEJ in these experiments.
We chose the HL60 cell line, a pro-myelocytic lineage, which can be induced to undergo differentiation
toward neutrophil- or monocyte-like fate, allowing the evaluation of SNP effects in different cell
types. Given the challenges in demonstrating conclusively the impacts of a single causal variant,
we discussed sources of experimental variance encountered with this strategy, including batch, clonal,
and differentiation effects, and used these to derive realistic power estimates for dissection of causal
variants. Comparing these estimates with empirically defined eQTL effect sizes, we concluded that
this approach is generally incapable of resolving most regulatory associations to single causal variants.

2. Materials and Methods

2.1. eGenes, Candidate eSNPs, and Control SNP Selection

The eGenes CISD1 and SDCCAG3 were chosen due to the colocalization of eQTL signals and
association with inflammatory bowel disease [21]. NFXL1 and AMFR were included as they are
essential for myeloid cell differentiation. Candidate eSNPs were selected from one of at least two
independent eQTL credible intervals at each locus identified in a multiple eQTL studies using stepwise
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conditional regression [6] in two large peripheral blood microarray datasets—the Consortium for
the Architecture of Gene Expression (CAGE) [22] and Framingham Heart Study (FHS). They were
also confirmed to be eQTL in monocytes [23]. It remains possible that they are not actually active in
HL60 cells or their derivatives, and our experiments should be interpreted with this in mind. We also
evaluated each SNP in the credible interval with Combined Annotation Dependent Depletion (CADD)
score [24] and evolutionary probability (EP) [25]. In each credible interval, we chose the SNP with
the lowest p-value, named as “Top SNP”, SNPs with low evolutionary probabilities (EP) of the minor
allele and (or) high CADD scores, named as “Both” and “High CADD”, respectively (Table 1). We also
picked SNPs as negative controls with no eQTL signals and in linkage equilibrium with the top SNP,
named as “Control”. Conditional eQTL profiles can be visualized using our eQTL Hub shiny browser
at http://bloodqtlshiny.biosci.gatech.edu/.

Table 1. Guide RNAs and target SNPs. Each guide RNA targets on the “SNP”, which is within a
credible set of “gene”. The effect size (z-score) of each SNP from the eQTLGen browser [26]. “Top SNP”
is the SNP with the lowest p-value in the credible set. Several criteria were used to predict the likelihood
of candidate SNPs: “High CADD” is the SNP with high CADD (Combined Annotation Dependent
Depletion) score that has a high level of deleteriousness of its variants, including Indel variants; “Top”
is the SNP with the strongest signal of eQTL-mapping; “Both” is the SNP with both high CADD score
and low evolutionary probabilities (EP) of the minor allele; “Control” is the negative control SNP in
high linkage disequilibrium (LD) with the top SNP but low CADD and normal EP.

gRNA Gene Top SNP SNP Z-Score Type Genome Location Coding Region

RG14 SDCCAG3 rs10870171 rs3812594 −34.60 High CADD Exon of SEC16A Yes
RG16 CISD1 rs4397793 rs4397793 −23.84 Top Intron of TFAM No
RG17 CISD1 rs4397793 rs648138 −70.54 Control Intergenic of TFAM No
RG19 CISD1 rs2590375 rs2590363 −100.37 Both Intron of IPMK No
RG20 CISD1 rs2590375 rs1416763 −100.27 Both Intron of CISD1 No
RG26 NFXL1 rs116521751 rs321622 −63.35 Both Intron of NIPAL1 No
RG34 AMFR rs8060037 rs8060037 −14.09 Top Intron of NUDT21 No

2.2. SNP-Targeting and gRNA Screening Design

The chromosomal position of each candidate SNP in reference genome hg19 was obtained from
the dbSNP database [27] by searching their RSID. The sequences flanking the targeted SNP were
fetched from the NCBI Reference Sequence (RefSeq), providing a gRNA screening window [28]. In each
window, all the 19-base sequences followed by the correct Streptococcus pyogenes Cas9 protospacer
adjacent motif (PAM) sequence (NGG) were collected as candidate gRNAs. gRNAs with GC rate over
80% or less than 10% were filtered out to assure better-cutting performance, and only the gRNAs with
a distance of cut site to targeted SNP not more than 10 nucleotides were selected for off-target effect
analysis. The in silico predictions of their off-target effects were tested using COSMID [29]. The online
tool is available through https://crispr.bme.gatech.edu/.

2.3. Single-Cell Clone Generation

HL60 (ATCC, Manassas, VA, USA, CCL-240) and HL60/S4 (ATCC, Manassas, VA, USA, CRL-3306)
cells were grown in suspension at 2 × 105 to 1 × 106 cells/mL in RPMI-1640 with 10% FBS, 2 mM
L-glutamine, and 100 μg/mL normocin. After culturing for 18 h to 24 h, cells were pelleted at 200 g for
3 min. Used media was collected and filtered to obtain conditioned media. Bulk cell suspensions were
serially diluted on a 96-well plate with conditioned media to facilitate cell growth. Statistically, there
were wells that only had a single-cell. Alternatively, some single-cell clones were generated by sorting
bulk cells by flow cytometry on a BD FacsAria Fusion with 100-micron nozzle at 37 ◦C and seeded
onto each well of a 96-well plate with the same conditioned media.
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2.4. Myeloid Lineage Differentiation

The differentiation of cells into neutrophils was achieved by culturing with 1 μM retinoic acid
(RA) [30]. Cells were seeded 18 h before treatment at 2× 105 cells/mL. HL60 cells were treated for 4 days,
and HL60/S4 were treated for 2 days. During differentiation, cell density and viability were checked
every 24 h to maintain 2 × 105 to 1 × 106 cells/mL cell density. Additional culture media with RA was
added if needed. Cells treated with the same volume of ethanol were used as a negative control.

Differentiation of cells into monocytes was achieved by culturing with 100 nM α1,
25-dihydroxyvitamin D3 (D3) dissolved in ethanol [31]. Cells were seeded at 1.5 × 105 cells/mL at least
18 h before treatment. Both HL60 cells and HL60/S4 were treated for 3 days. During differentiation, alive
cell density was checked and normalized every 24 h to maintain 2.5 × 105/mL cell density. Additional
culture media with D3 was added if required. Cells treated with the same volume of ethanol were
used as negative controls.

2.5. Flow Cytometry

After collection, cells were washed with PBS twice at room temperature. Cells under neutrophil
differentiation were then incubated with 7-aminoactinomycin D (7-AAD) (ThermoFisher Scientific,
Waltham, MA, USA, cat. No. A1310) and PE-conjugated mouse anti-human CD11b (clone ICRF44)
(BD Biosciences, San Jose, CA, USA, cat. No. 557321) or PE-conjugated isotype control mouse mAb
(clone: MOPC-21) (Biolegend, San Diego, CA, USA, cat. No. 400112) for 40 min at 4 ◦C in the dark.
Samples were analyzed by BD FacsAria Fusion with a 100-micron nozzle at 4 ◦C. Cells under monocyte
differentiation were incubated with V450 mouse anti-human CD14 (BD Biosciences, San Jose, CA, USA,
cat. No. 560349) and adenomatous polyposis coli (APC) mouse anti-human CD71 (BD Biosciences,
San Jose, CA, USA, cat. No. 551374) or V450 mouse IgG2b (BD Biosciences, San Jose, CA, USA, cat. No.
560374) and APC mouse IgG1 (BD Biosciences, San Jose, CA, USA, cat. No. 555751) for isotype control.
Samples were analyzed by BD FACSMelody at 4 ◦C. All data were analyzed with FlowJo software
v10.6.1 downloaded from https://www.flowjo.com/.

2.6. Immunofluorescence

After collection, cells were washed with PBS twice at room temperature. Then, cells were incubated
with Hoechst-33342 (ThermoFisher, Waltham, MA, USA, cat. No. H3570) for 10 to 15 min at 37 ◦C
in the dark. Ten microliters of the cell suspension were used to make a slide, which was sealed with
clear nail polish. UV excitation and microscopic imaging were done on an Olympus IX73 inverted
microscope system.

2.7. RNA Isolation

Cells were grown in suspension at 2 × 105 to 1 × 106 cells/mL in RPMI-1640 with 10% FBS, 2 mM
L-glutamine, and 100 μg/mL normocin. Cells were seeded at 2 × 105 cells/mL 18 h to 24 h before
extraction. Each clone had two biological replicates, except bulk HL60/S4. One million cells from each
sample were collected by centrifuging at 300 g for 5 min. Total RNA was isolated and purified by
RNeasy Plus Mini Kit (Qiagen, Hilden, Germany, cat. Nos. 74,134 and 74,136). Quality control of RNA
samples was assessed with a Bioanalyzer 2100 instrument (Agilent, Santa Clara, CA, USA).

2.8. Bulk RNA-Seq and Differential Gene Expression Analysis

cDNA library preparation for single-cell clones was performed using Illumina TruSeq Stranded
Sample Preparation, Low Sample (LS) Protocol. Sequencing was performed on an Illumina HiSeq
2500 at Georgia Tech, generating 100 bp paired-end libraries with an average of 51.8 million paired
reads per sample. Library preparation for differentiated cells was performed using the NEBNext
Ultra II Directional RNA Library Prep Kit for Illumina (New England BioLabs, Ipswich, MA, USA,
cat. No. E7760S). Sequencing was performed on Illumina NextSeq, high output, generating 75 bp
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paired-end libraries with an average of 36 million paired reads per sample. The gene expression data
is available at the Gene Expression Omnibus (GEO) under the accession code GSE135507.

RNA-Seq quality control was initiated with Trim Galore, which was used to trim the 13 bp
Illumina standard adapter (‘AGATCGGAAGAGC’) by default, after which quality control was
reported by FastQC. Reads were mapped to the hg38 human reference genome by STAR [32], and on
average, the mapped reads were 90% of total reads. Aligned sequencing reads were counted with the
intersection-strict mode in HTSeq [33] to get read counts for each gene. Scale factors of each sample
were computed using the trimmed mean of the M-value (TMM) algorithm in the R package, edgeR [34].
Raw read counts were normalized by scale factors and then transformed into log2 counts per million
reads (CPM). Genes were kept if expressed in at least three samples. A total of 11,746 genes were kept
in single-cell clone RNA-Seq, while 13,485 genes were kept in differentiated cell RNA-Seq.

Differential gene expression analysis was conducted in edgeR with generalized linear models to
contrast the effects of each treatment group. Pairwise comparisons between control and neutrophil
derivative, control and monocyte derivative, as well as within each clone of each type of cell, were
performed. Likelihood ratio tests were assessed to obtain lists of differentially expressed genes and
following Benjamini-Hochberg false discovery rate correction.

Gene ontology analysis was performed using ToppFun [35]. By uploading a list of differentially
expressed genes (FDR< 0.001) from the differential gene expression analysis into the website, functional
enrichment features were listed, including pathways, Gene Ontology (GO) terms, and phenotypes.
Gene ontology analysis was also performed by enrichR [36,37], with four sets of differentially expressed
genes (FDR < 0.001) uniquely in HL60 monocyte (968 genes), HL60/S4 monocytes (521 genes), HL60
neutrophils (1462 genes), and HL60/S4 neutrophils (2275 genes).

Principal component analysis (PCA) was performed on 17 single-cell clone samples and
47 differentiated cell samples by “prcomp” function in R, with default settings. Principal variance
component analysis (PVCA) was performed in JMP Genomics 8 (SAS Institute, Cary, NC, USA), which
sums the weighted proportions of each variance component associated with covariates of interest in
order to estimate the overall contribution of biological and technical factors to the gene expression
variation. Plots were plotted with R package, ggplot2.

2.9. Variant Calling

Variants were called by GATK [38,39] best practice RNA-seq short variant discovery (SNPs
and Indels). Raw RNA-seq reads were mapped to hg19 by STAR [32]. “SplitNCigarReads” was
used to split reads that span introns and hard clip mismatching overhangs. Variants were called by
“HaplotypeCaller” with default settings. Due to the high false-positive rate of calling variants from
RNA-seq data, the “VariantFiltration” function was used to filter potential false-positive calls. Clusters
of at least three SNPs within a window of 35 bases were excluded, and calls with read depth lower
than 50 were filtered. Moreover, the variant calls were only included if they were consistent in the two
biological replicates of the same clone, and only exonic polymorphisms were counted.

2.10. Fluidigm qRT-PCR

Fluidigm real-time qPCR was conducted on a 48× 48 nanoscale microfluidic chip with 48 EvaGreen
probes targeting transcripts of the CRISPR targeted genes, as well as a representative set of lymphoid
and myeloid cell marker genes [40], and housekeeping genes. The 48 array samples included single-cell
clone CRISPR-edited HL60/S4 from two batches and experimental controls. A total of 2304 qRT-PCR
assays with 30 amplification cycles were conducted in parallel according to the manufacturer’s protocol.
The average Ct value was computed at the exponential phase of each PCR amplification reaction.
Since large Ct values correspond, counter-intuitively, to low expression, modified expression values
were computed as the Ct values subtracted from 30 (the maximum number of PCR cycles), and
the negative outputs were set as 0. This results in a range from null to 30, where each increment,
in theory, represents a doubling of initial transcript abundance. To clean up the data, samples with
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more than 40 unexpressed genes and probes expressed in less than 5 samples were removed. Processed
expression data and sample phenotypic information are provided in Tables S1 and S2, respectively.
We noted that numerous studies have established the high sensitivity of Fluidigm relative to standard
qRT-PCR [41–43] and that all expression levels were in the normal range of detection and not subject to
drop-out seen with very low abundance transcripts.

2.11. Plasmid Construction

The SpyCas9 expressing plasmid pX330-U6-Chimeric_BB-CBh-hSpCas9 [44] (Addgene plasmid
#42230) was a gift from Dr. Feng Zhang. The pX330 vector was digested by BbsI. For each designed
gRNA sequence, a pair of annealed oligos was cloned into the vector before the gRNA scaffold and
after the U6 promoter. All clones were validated by Sanger sequencing (Eurofins Genomics, Louisville,
KY, USA).

2.12. CRISPR-Edited Single-Cell Clones Generation

A total of 2 × 105 HL60/S4 clone 3 cells and 1 μg of pX330 plasmid per nucleofection reaction
(program CA-137, solution SF) were electroporated using the Lonza Nucleofector 4-D based on
the manufacturer’s protocol. One microgram of pmaxGFP™ vector per nucleofection reaction was
co-transfected as the reporter. The cells were cultured at 37 ◦C for 72 h after nucleofection, and the
GFP-positive cells were sorted individually by BD FACSMelody to make single-cell clones following
standard protocols. Post-sorting, cells were grown for a week before harvesting and DNA extraction.
DNA was extracted using Quick-DNA Miniprep Plus Kit (Zymo Research, Irvine, CA, USA, cat.
No. D3024) following the manufacturer’s protocol. For each target locus, a PCR product was amplified
from the genomic DNA of cells modified by CRISPR-Cas9 and analyzed by Sanger sequencing (Eurofins
Genomics, Louisville, KY, USA). The genotype of clones selected in this study is shown in Table S3a,
and the number of clones screened and the mutations observed per clone are shown in Table S3b.

2.13. Power Simulation Studies

Power analysis was performed using the mixed model power expression utility in JMP Genomics
(SAS Institute, Cary, NC, USA). We created a design file with duplicates of 10 guide RNAs and
designated one guide as the causal variant. Additional random effect options for representing batch
effects (distributing the guides across into two batches of 5) and clone effects (where the causal variant
was represented by two different clones) allowed modeling of the impact of these additional sources
of variance. We assessed power at α = 0.05, 0.01, and 0.001 for effect sizes of the causal variant in
increments of 0.1 standard deviation units (sdu) between 0 and 2, assuming experiments with 2, 4, 8,
or 16 replicates of each guide. Batch and clone effects were assumed to be 0.1 or 0.2 sdu. For additional
analysis, three of the guides were assumed to affect gene expression, modeling the situation where
multiple linked variants account for an eQTL effect.

3. Results

3.1. Effect of Clonal Variability on Gene Expression in HL60 Cells

Since genetic screens are best performed in uniform genetic backgrounds under conditions where
environmental variation can be carefully controlled, we started by evaluating the magnitude of the
effect of biological and technical factors on gene expression in HL60 cells. HL60 is a pro-myeloid cell
line derived from a person with acute promyelocytic leukemia [45,46]. It is known to be homozygous
for a TP53 deletion and a CDKN2A premature stop codon and heterozygous for an NRAS missense
substitution. The main factors of interest were (i) batch effects, (ii) HL60 sub-type, (iii) clonal
heterogeneity, and (iv) differentiation status. A derivative known as HL60/S4 has been isolated,
which is reported to more efficiently differentiate into myeloid derivatives, such as neutrophils and
macrophages [47]. Given the almost 40 years in culture, we reasoned that point mutations that are
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likely to affect overall gene expression might have accumulated, and, to control this, we isolated three
single-cell clones (labeled 1 through 3) of HL60 and four single-cell clones (labeled a through d) of
HL60/S4. Differences in growth rates among clones and relative to the bulk parental line were noted.

Clonal variability in gene expression was monitored by bulk RNA-seq of two batches for each of
the seven single-cell clones and two parental lines. Figure 1a plots the first two principal components
(PC) of expression of 11,746 expressed genes detected with an average depth of over 50 million
paired-end 100 bp reads per sample. PC1 separated the two HL60 sub-types unambiguously, and 85%
of the variance attributable to the first five PC (86.8% of total variance) was between HL60 and HL60/S4
cells. Individual clones separated along PC2 with relatively little separation between replicates, with
the parental lines taking intermediate values. Just 14% of the variance was among clones, but residual
replicate effects accounted for less than 1% of it (Figure 1b). These results confirmed that single-cell
clones were likely genetically differentiated, implying that, as far as possible, CRISPR-Cas9 editing
should be performed on a purified clone.

Figure 1. Heterogeneity of gene expression in single-cell clones and myeloid lineage differentiated
clones. (a) Principal component analysis (PCA) of bulk RNA sequencing of parental single-cell clones
and bulk cells. PCA was performed on a normalized log2 CPM count expression matrix of 17 samples
from HL60- and HL60/S4-generated single-cell clones. Each dot represents 17 samples, two biological
replicates for each clone and bulk, except for HL60/S4 bulk. Samples are colored by clones: warm
color dots are samples from HL60/S4 cell lines, while cold color dots are samples from HL60 cell lines.
PC1 separated samples by cell type, explaining 57.6% of the total variation. PC2 separated samples by
clones, representing 9.8% of the total variation. (b) Principal variance component analysis showed the
weighted average proportion of each variance component—cell type (85.4%), clone (14.3%), and residual
(0.3%)—all of which explained variance captured by the first five principal components (86.8% of total
variance). The majority of the total expression variance of single-cell clones was explained by cell type
and clone variance components. (c) Principal component analysis of bulk RNA sequencing of myeloid
lineage differentiated clones, performed by normalized log2 counts per million (CPM) expression matrix.
Each dot represents 47 samples from differentiated monocytes and neutrophils and undifferentiated
control cells, two biological replicates for each stimulation on each clone. Clone d was excluded due to
sequencing error. Samples are colored by cell type and differentiation lineages: monocytes are green,
neutrophils are blue, and control cells are red. To distinguish the original cell type of each sample,
HL60 cells are dark colors, and HL60/S4 cells are light colors. (d) Principal variance component analysis
showed the weighted average proportion of each variance component—original cell type (38.5%),
differentiated type (36.8%), clone (8.1%), and residual (16.6%)—all of which explained variance captured
by the first five principal components (83.9% of total variance). The 16.6% of unexplained variance
might be from the variance of biological replicates and cultural differences between two labs.
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The extent of genetic differentiation of single-cell clones was evaluated by calling genotypes
directly from the RNA-seq data. Given that false-positive calls are elevated due to errors induced by the
reverse transcriptase during cDNA preparation, and that allele-specific expression causes SNP ratios
not observed in genomic DNA sequence data, we applied variant hard filtering in GATK. Clusters of
at least three SNPs within a window of 35 bases were excluded, the variant calls were only included if
they were consistent in the two biological replicates of the same clone, and only exonic polymorphisms
were counted. On average, each of the HL60 single-cell clones differed from the bulk consensus
sequence at 103 of the 7482 single nucleotide variants (SNVs) (1.38%), passing our hard filters. A little
over fifty percent more divergence and 166 of 7104 SNVs (2.34%) were uniquely observed in HL60/S4
pairwise clonal comparisons with the bulk HL60/S4 consensus. Furthermore, approximately 3% of the
total SNVs were different in the comparison of bulk HL60/S4 and HL60 lines and their derivatives,
indicating that there was considerable genetic variability both between the two lines and in single-cell
clones. Similar findings have been reported [48] in an analysis of somatic mutation accumulation in a
cancer cell line.

Next, we asked how consistent chemical-induced differentiation is across clones. Each of the
single-cell clones, with the exception of HL60/S4 clone d, was treated with 1 μM retinoic acid
for 4 days (HL60) or 2 days (HL60/S4) in order to generate neutrophil-like cells or with 100 nM
α1,25-dihydroxyvitamin D3 for 3 days in order to generate monocyte-like cells. Figure S1 shows
characteristics of the cells stained with Hoechst to monitor changes in the morphology of the nucleus,
7-AAD to monitor cell viability, and CD11b, a neutrophil marker. Growth conditions were chosen to
optimize the balance of cell differentiation and viability, which also varied among clones. As previously
reported [47], HL60/S4 cells more readily differentiated toward neutrophil fate than did HL60 cells.
Figure S2 confirms initiation of CD14 expression, as well as the loss of CD71, both markers of monocyte
fate, to similar degrees in both bulk HL60 and HL60/S4, though variation among clones of HL60 was
also seen (also Table S4a,b), including variability of cell surface marker expression at baseline.

As with the untreated clones, gene expression was again observed to vary substantially between
the two sub-types and among clones, with a generally uniform response to treatment and relatively
small differences between replicates (Figure 1c). In a joint analysis, HL60/S4 cells tended to have more
positive values of PC1 and negative values of PC2 than HL60, and the overall cell-type accounted for
38.5% of the variance captured by the first five PC (83.9% of total variance). Neutrophils occupied an
intermediate position between monocytes and undifferentiated cells along both PC axes, and cell fate
captured 36.8% of the variance. At baseline, HL60/S4 cells appeared to be more divergent from the
derived neutrophil-like and, especially, monocyte-like cells than were HL60 from their derivatives.
Clonal differences remained significantly higher than replicate effects.

In total, 5885 and 3319 genes (FDR< 0.0001) were identified that were differentially expressed before
and after monocyte and neutrophil lineage differentiation across all clones of two cell types—HL60
and HL60/S4—respectively.

After differentiation, HL60/S4-derived monocyte cells were more transcriptionally divergent from
their parental cells than were HL60-derived monocytes: 7381 monocytic differentially expressed genes
were detected in HL60/S4, compared with 4167 genes in HL60. B2M, a neutrophil-specific differentiation
marker, was one of the 4167 genes that were differentially expressed in the neutrophil-derived clone
a, clone b, and HL60 bulk cells. There were 5079 differentially expressed genes in the monocyte
derivatives of HL60, including the transcription factors CEBPE, specifically in clone c derivatives, and
PU.1 in clone b derivatives. Similar gene markers were also documented in a time course of myeloid
differentiation [45], although we observed a higher number of differentially expressed genes at the
terminal differentiated stage of monocytes than neutrophils, whereas the opposite pattern was found
at 6 h post-differentiation [49].

Differences in the degree of inter-clonal differentiation were also detected (Figure S3). For the
monocyte derivatives, 1781 genes were differentially expressed relative to undifferentiated cells in all
of the clones of the two cell types, and these were enriched in cell cycle, neutrophil degranulation,
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and rRNA processing pathways. On the other hand, 968 genes were uniquely differentially expressed
in the HL60 clonal comparisons, also showing enrichment for neutrophil degranulation and innate
immune system pathways. Gene ontology (GO) and pathway analysis was performed by Toppfun, and
the significant GO terms and pathways (Bonferroni corrected p-value < 0.00001) for these 968 genes are
listed in Figure S4. Similarly, for neutrophil lineage differentiation, 413 differentially expressed genes
were shared by HL60 and HL60/S4, enriched for neutrophil degranulation, innate immune system
activity, interleukin-10 signaling, chemokine signaling, and cytokine signaling pathways. There were
1462 and 2275 clonal-specific differentially expressed genes in HL60 clones and HL60/S4 clones,
respectively, engaging pathways involved in cell cycle and mitochondrial function, and translation
and rRNA processing were also enriched. Significant GO terms and pathways (Bonferroni corrected
p-value < 0.00001) for HL60 and HL60/S4 are shown in Figures S5 and S6, respectively. Gene ontology
enrichment analysis of uniquely differentially expressed genes was also performed using the gene set
enrichment tool Enrichr [36,37], with results summarized in Figure S7.

Taken together these results implied that single-cell clones differ in basal gene expression, and
although they respond similarly to treatment with retinoic acid or vitamin D3, clonal differences need
to be accounted for when evaluating the effect of CRISPR-Cas9 mutagenesis of regulatory regions of
target genes.

3.2. Isolation and Evaluation of CRISPR-Edited Single-Cell Clones

We selected seven SNPs in four genes for our initial evaluation of the effect of NHEJ-based CRISPR
mutagenesis in HL60/S4 clone 3 as a uniform genetic background. SDCCAG3, NFXL1, and AMFR were
each targeted for a single peak eQTL SNP detected by whole blood gene expression, whereas CISD1
was targeted with four SNPs in one credible eQTL interval. Potential off-target sites of each gRNA
with up to two mismatches are provided in Table S5. With genome-wide bioinformatic screening,
none of the potential off-target sites were located in coding regions, and the gRNAs had no extra
perfect match other than the designed target site. Bulk transfection efficiency was 24.8% based on the
percentage of cells expressing GFP signal. GFP-positive cells were considered capable of uptaking
plasmid vectors and were single-cell sorted to enrich the edited cells. Of all expanded GFP-positive
single-cell clones, 23 out of 166 had obtained Indels, eight of which had removed the target SNP at
both allelic copies, while the remainder affected sequences immediately adjacent to the target SNP or
only had SNP removal in one allele.

RNA-seq would be prohibitively expensive for comparing gene expression on the scale of dozens
of multiple replicated clones, so we next evaluated the potential of high throughput nanoscale
quantitative RT-PCR to detect subtle differences in transcript abundance. A 48 × 48 Fluidigm chip was
designed, facilitating the measurement of 48 genes (including the four targets, housekeeping controls,
and various markers of expression in diverse immune cell type) in 48 samples. The HL60/S4 parental
cell line and eight clones were chosen for profiling, one for each guide RNA, and each was grown in
duplicate in suspension for 18–24 h, with half the sample frozen down for storage, and the other half
used for RNA preparation from fresh cells.

For ease of interpretation, we subtracted the Ct value for each measurement from the number of
PCR cycles, 30, resulting in expression values where high values corresponded to high expression.
Figure 2a shows that this resulted in a bimodal distribution of gene expression measures, with the
smaller peak representing low-abundance transcripts. There was a major difference in the profiles of
the frozen and fresh cells, accounting for almost two-thirds of the variance explained by the first five
PCs (99.1%) (Figure 2b). To correct for this batch effect, we used Combat, which also standardized the
data to a mean of zero and standard deviation of one (Figure 2c). On this scale, most of the variance
was now among samples, whereas 9% of first five PCs (99.1%) distinguished clones by which gene was
targeted, and 9% was due to differences among gRNAs for CISD1 (Figure 2d). This implied either
that single-gene knockouts affected the expression of a substantial number of other genes, in each
clone, or that there was substantial variability among clones that by chance correlated with the nature
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of the guide RNA. We also observed that normalized CISD1 expression was lower in cells edited by
each of the four gRNAs targeting CISD1 than in the untreated control parental cell line (Figure 2e).
Clone RG17 affected a control SNP in high LD with the peak eQTL but with low CADD score [24,50]
and high evolutionary probability [25] of the alternate allele and was the only clone not significantly
different from the parental line. However, since it is unlikely that each of the other three sites causally
influences gene expression, this result served as a further caution that the process of transfection with
CRISPR reagents itself might influence cell growth and gene activity.

Figure 2. Quantification of gene expression by Fluidigm qRT-PCR and analysis of the variance
components. Kernel density plot of standardized gene expression from each sample, color-coded by
batches, before (a) and after (c) removing batch effect. Before (b) and after (d) batch effect correction,
principal variance component analysis showed the weighted average proportion of each variance
component: batch 65.3%, 0%, respectively; target gene 5.6%, 9.2%, respectively; gRNA 3.2%, 9.2%,
respectively; residual 25.8%, 81.6%, respectively. All of the components explained variance captured by
the first five principal components (99.1% and 99.1% of the total variance, respectively). (e) Expression
of CISD1. Pairwise t-tests were used to evaluate the difference between CRISPR-Cas9-edited samples
(RG16, RG17, RG19, and RG20) and negative controls. RG16, RG19, and RG20 were significantly
different from the negative control. * denotes p-value < 0.05; ns, not significant.

Similarly, inconsistent results were obtained for the other three genes, as summarized in Figure 3
and Figure S8. Each panel shows box-and-whisker plots for each of the seven guide RNAs and control
HL60/S4 cells, with the mean and interquartile range of nine single-cell clones measured with two
different PCR probes for three of the genes and one for SDCCAG3. In no case was the expression the
most extreme for the guide RNA corresponding to the linked gene. For example, AMFR expression
was highest in cells carrying a mutation in the RG16 guide, disrupting a candidate regulatory site in
CISD1, whereas AMFR expression itself was, on average, the closest to expression in the control cells.
Disregarding the control, there were also no cases where the appropriate guide RNA was significantly
different from the remaining guides. These results implied either that the selected SNPs were not
causal or that the effect sizes of causal variants were too small relative to the observed experimental
variability to detect differential expression.
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Figure 3. Quantification of all targeted gene expression in all CRISPR-Cas9-edited single-cell clones
by Fluidigm qRT-PCR (Tables S1 and S2). HPRT and GAPDH are housekeeping controls. Single-cell
clones were grouped by guide RNA, and the expression of seven probes is shown as boxplot across all
clones within each guide RNA group. Clones with the same genotype in each guide RNA group are
colored-coded. A pairwise t-test was done to test the difference between CRISPR-Cas9-edited clones
and HL60/S4 negative control. * denotes p-value < 0.05; ns, not significant.

3.3. Simulation Studies to Establish Power of Fluidigm-Based Single-Cell Regulatory Assessment

We used these results to guide our design and interpretation of power calculations for experiments
designed to determine the effect of single regulatory site disruption. Our baseline scenario assumed
targeting of 10 polymorphisms in a single credible interval in which a single eQTL was assumed to
account for at least 10% of the variance in transcript abundance at the locus. Such an eQTL corresponded
to a difference of approximately 1 standard deviation unit (sdu) in a quantitative assay, such as Fluidigm
qRT-PCR or RNA-seq. Given that most single-cell CRISPR-edited clones are heterozygous, it also
corresponded to a substitution effect whereby the mutant allele increased or decreased the measured
transcript by 1 sdu. We used the mixed model power calculator in JMP-Genomics (Cary, NC) to
evaluate the sample size needed to detect an effect of this magnitude, given varying levels of clonal
variation, batch effects, and mutation differences.

For the baseline scenario, where there are neither batch nor clonal effects, 80% power to demonstrate
that one SNP had an effect that was at least 1 sdu different from the other nine SNPs was achieved
with eight replicates of each of the ten clones (Figure 4a,f). Sixteen replicates would enable detection of
an effect as small as 0.7 sdu, but four replicates would only be powered to detect a substitution effect
of 1.5 sdu. However, the experimental data indicated that individual clones generally did vary, as a
consequence of genetic background effects if the transfected cell line was not isogenic, or due to growth
differences among aliquots. Modeling these differences as a random effect of just 0.2 sdu among the ten
clones demonstrated a dramatic reduction in power to detect the main effect (Figure 4b,g). With eight
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replicates, only an effect size of 1.7 sdu was reliably detected, though 40% power was still obtained
for an effect size of 1 sdu. Doubling the size of the experiment only slightly improved the power,
whereas four replicates only facilitated the detection of effect sizes of 2 sdu. If we further considered
the scenario with a batch effect whereby half the clones had an additional random effect of 0.2 sdu
(perhaps because they were grown at a different time), then power reduced yet again, as expected
(Figure 4c,h).

Figure 4. Power curves of Fluidigm-based single-cell clone regulatory assessment of simulation studies.
(a–e) diagrams of five different scenarios and the corresponding panels (f–j) show the power calculations
for exceeding a nominal p-value of 0.05, with blue, red, green, and brown curves representing 2, 4, 8,
and 16 technical replicates of each clone, respectively. The y-axis is the power from 0 to 100 percent,
and the x-axis is the effect size of eQTL in the standard deviation unit.

A perhaps more realistic scenario is where different edits of the same polymorphic site also have
different impacts on gene expression. This could either be because the precise nature of the deletion
matters or because the independent clones have slightly different growth properties. We modeled
this scenario by allowing for two different clones representing the causal variant, also with a 0.2 sdu
random effect difference, the same as the effect of the other nine guide RNAs. In this case (Figure 4d,i),
80% power was never achieved, so it would take greater levels of replication, at least, of the putative
causal variant to see a substitution effect in the range of 1 sdu.

A related situation was where more than one of the polymorphisms in the credible interval was
responsible for the eQTL effect—for example, three sites in high LD might each account for 0.33 sdu,
summing to a combined effect of 1 sdu. To model this, we set three of the guide RNAs to be causal,
with the other seven non-functional but retained 0.2 sdu differences among clones. Figure 4e,j show
that power was greater than the same scenario with one causal variant and approximately the same as
with one causal variant and no differences among the remaining clones. Power was actually greater
with fewer replicates (red and blue curves), but, with eight replicates, 80% power still only detected
an effect size of 1 sdu, which was three times larger than the presumed individual effect sizes of the
contributing causal variants.

4. Discussion

Multiple studies have recently reported good success in mapping regulatory intervals using
high throughput approaches in human cells. A previous study [51] scanned across over 100 kb of
regulatory DNA in the TP53 and ESR1 genes using positive selection for proliferation to enrich cells
with aberrantly low expression of the target transcription factors, defining several intervals enriched
for signals that overlap with transcription factor binding sites. This approach is, however, dependent
on the ability to select on the locus, and similar to methods that sort on the basis of an engineered
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selectable fluorescence protein [52], only identifies high-impact sites without necessarily discriminating
effects of polymorphic sites. Another approach [53] used CRISPRa to map enhancer elements by virtue
of activation of regulatory protein-DNA interactions, filtering a handful of short DNA stretches from
hundreds of kb of intergenic sequence in the IL-2RA gene, but again without the ability to resolve
which of the SNPs in a credible interval are responsible for an eQTL. Expression CROP-seq is powered
to fine-map eSNPs with 10%–20% effect size within credible intervals by characterizing hundreds
of CRISPR/Cas9 genetically mutated single-cell transcriptomes in parallel [54]. Tewhey et al. first
demonstrated the utility of massively parallel reporter assays, including the ability to discriminate
between alleles at a pre-defined site [55]. Their results and findings from others [56,57] implied that at
least 5% of all polymorphisms in regulatory DNA had the potential to regulate target gene expression.
The concern remains though that such effects may be artifacts of short reporter genes assayed outside
the context of chromatin and complex regulatory interactions.

Our approach instead borrows from classical quantitative genetic screens in model organisms,
such as Drosophila and yeast. The objective was to create a panel of genetic perturbations in an
isogenic background, evaluating the quantitative impact of each variant relative to the frequency
distribution of effects of all other perturbations. For example, p-element insertion screens cleanly
identified dozens of genes, influencing aging, bristle number, and aspects of fly behavior [58,59]. Closer
to our experiments, another study [60] engineered a tiling path across the regulatory region of the TDH3
gene in Saccharomyces cerevisiae and used flow cytometry to quantify gene expression of hundreds of
strains, drawing inferences about the impact of stabilizing selection on transcription. We reasoned that
a similar approach should be powerful for moderate-sized laboratories without extensive experience
in human cell culture. Even though we, and others, have successfully documented regulatory effects
of CRISPR-Cas9-mutagenized candidate mutations of large effect [61,62], the results here applied to
typical moderate-effect size eQTL do not support this as a general protocol. The remainder of the
discussion deals with multiple constraints on the effectiveness of single-cell clone-based screening to
dissect credible regulatory intervals in human cell lines.

The first constraint is variability in the mutability of targeted regulatory sites. Our approach
was mainly limited in three ways: the requirement of nearby PAM sequences and the short distance
between the cut site and targeted SNP, the variable efficiency of different gRNAs, and the distinct
Indel pattern for each SNP-targeted gRNA. We started with a list of 250 candidate polymorphisms,
approximately 10 each in two independent eQTL intervals of 13 genes, but discovered that only
two-thirds of these were suitable CRISPR targets, either because there was no nearby PAM sequence or
the target was in repetitive DNA for which it was not possible to design a guide RNA with a unique
target sequence. Up to 20% of the remaining sites were predicted to have high probability off-target
sites elsewhere in the genome, which might not matter for a scan of cis-acting effects but was not ideal.
Subsequently, we chose 10 sites as a pilot and screened an average of 24 single-cell clones for each site
(23.9 ± 6.7) by Sanger sequencing of the targeted region. As shown in Table S3b, the pilot group had
an average of four clones, each with Indels on both alleles (3.8 ± 1.8). The ratio of clones with Indels
on both alleles varied from 0% (RG11) to 25% (RG16) so that the theoretical maximum SNP removal
rate was different in each gRNA-treated group. RG14, 17, 19, 20, and 34 all had designed cut <5 bp to
the targeted SNP, but their percentage of SNP removal on both alleles varied from 0% to 16%, which
could be due to variations in the size of Indel mutations, as previously observed [63]. That is to say,
many of the CRISPR-induced mutations removed or inserted one or a few nucleotides either side of
the polymorphic site without disrupting the polymorphism itself. We concluded that obtaining at least
four different clones for a minimum of 20 sites associated with a credible eQTL interval would typically
require screening of 500 clones following various iterations of guide RNA design, with less than 100%
success and at considerable expense. Allelic replacement by CRISPR-mediated homologous repair
would be even more difficult. There are more potential optimizations that may help researchers deal
with this constraint. Further optimization can be done in transfection, such as the co-transfection ratio
of two plasmids. It is possible that different cell lines would have higher efficiency of mutagenesis.
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Other CRISPR/Cas9 delivery methods, such as lentivirus transduction, can also be beneficial for more
efficient screening.

The second constraint is clonal variability. We started by addressing a major concern with human
cell lines, which is the mutational accumulation in culture. Previous studies [48] showed that tumor
cell lines diverge genetically in as few as a dozen passages, resulting in divergent drug responses
and gene expression profiles. Accordingly, single-cell cultures of HL60 and the derivative HL60/S4
cell lines are different at the DNA sequence level and have significantly different transcriptomes,
both with and without chemical stimulation of differentiation. For a considerable proportion of
genes, these differences are of a similar order of magnitude as expected eQTL effects, namely, 20% to
50% differences in normalized abundance. While this observation strongly supports the decision
to mutagenize a single-cell clone, genetic differences may not actually be the major source of clonal
variation. Mammalian, including human, cells are much more difficult to culture than yeast or bacteria,
as thawed aliquots of frozen lines are well known to differ in growth rates and viability. The technical
replicates in Figure 1 were all grown in parallel, so did not capture this type of batch effect, which we
had not sought to quantify. However, we noted that the parallel culture of the nine mutant clones
analyzed was made difficult by variable growth rates and that some thaws failed to grow at all,
requiring the expansion of new aliquots. Consequently, batch effects of single-cell clones are a hidden
but likely considerable source of gene expression variability.

A third constraint is an expense. Assuming that the cost of RNA sequencing, including cell culture,
RNA preparation, library construction, and quality control, could be reduced to $100 a sample using, for
example, 3′ tagging, an experiment with eight replicates of 20 clones would still cost $16,000. Instead,
we adopted a nanoscale quantitative RT-PCR approach, the 48 × 48 Fluidigm array. Each of the data
points in Figure 3 was actually the average of four technical replicate qRT-PCR reactions on one plate at
the cost of just $1.20 per assay (not including culture and RNA preparation). Technical repeatability is
very high with repeated measures typically within 10%, also allowing measurement of dozens of genes
simultaneously, so Fluidigm, or similar methods like Nanostring, provides a feasible approach in theory.

However, the fourth constraint, statistical power, emerged as the most serious impediment.
A typical eQTL explains between 10% and 20% of the variance in expression of the gene it influences,
which corresponds approximately to each allele increasing or decreasing transcript abundance between
0.5 and 1 standard deviation units. We modeled the power to detect such an effect in 80% of experiments,
given the variance components observed in our experiments, and found that in the best-case scenario,
eight biological replicates would be needed to reliably detect a 1 sdu effect. However, with the
addition of modest batch effects, subtle guide RNA differences within a locus, and small differences
between different mutations induced by the same clone, power dropped considerably. All such effects
are apparent in Figure 3, suggesting that the single clone analyses, while demonstrably capable of
discriminating very large regulatory effects of 2 or more sdu, are not generally likely to be detected with
this approach. It is possible that cell lines other than HL60 may provide more repeatable results than
those described here, which may improve power under some circumstances. In this sense, independent
valuation of the magnitude of batch effects for different cell lines under different growth conditions may
be advisable, though we doubt that it will make single-cell mutagenesis an optimal screening approach.

Finally, a fifth constraint is an assumption that each eQTL can be reduced to a single eSNP. This is
the parsimonious assumption and fits readily with the conception that regulatory SNPs exert their
effects by altering the binding affinity for a specific transcription factor. Even though most eQTL
span 100 or more polymorphisms in a credible interval, the general assumption is that prioritizing
variants according to functional criteria and evolutionary conservation, using scores, such as CADD or
LINSIGHT, reduces the search space to fewer than ten candidates. However, given that these variants
are in tight linkage disequilibrium with similar frequencies [10], if they have similar functional scores,
then it is possible that the observed univariate eQTL effect is actually due to the summation of two
or smaller contributing effects. Under this scenario, the power to detect multiple causal variants is
also reduced.
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These considerations and the overwhelmingly negative results of our experiments lead us to the
recommendation not to pursue single clone-based profiling as a general approach to the fine mapping
of regulatory variants. Despite the conceptual limitation that effects are evaluated outside the context
of normal chromatin, massively parallel reporter assays seem to be more powerful and subject to less
experimental constraint.
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