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ABSTRACT 
 
 

Personalized Medicine: Studies of Pharmacogenomics in Yeast and Cancer  

Bo-Juen Chen 

 

Advances in microarray and sequencing technology enable the era of personalized 

medicine. With increasing availability of genomic assays, clinicians have started to 

utilize genetics and gene expression of patients to guide clinical care. Signatures of gene 

expression and genetic variation in genes have been associated with disease risks and 

response to clinical treatment. It is therefore not difficult to envision a future where each 

patient will have clinical care that is optimized based on his or her genetic background 

and genomic profiles. 

 

However, many challenges exist towards the full realization of the potential personalized 

medicine.  The human genome is complex and we have yet to gain a better understanding 

of how to associate genomic data with phenotype. First, the human genome is very 

complex: more than 50 million sequence variants and more than 20,000 genes have been 

reported. Many efforts have been devoted to genome-wide association studies (GWAS) 

in the last decade, associating common genetic variants with common complex traits and 

diseases. While many associations have been identified by genome-wide association 

studies, most of our phenotypic variation remains unexplained, both at the level of the 

variants involved and the underlying mechanism. Finally, interaction between genetics 

and environment presents additional layer of complexity governing phenotypic variation. 

 



Currently, there is much research developing computational methods to help associate 

genomic features with phenotypic variation. Modeling techniques such as machine 

learning have been very useful in uncovering the intricate relationships between 

genomics and phenotype. Despite some early successes, the performance of most models 

is disappointing. Many models lack robustness and predictions do not replicate. In 

addition, many successful models work as a black box, giving good predictions of 

phenotypic variation but unable to reveal the underlying mechanism.  

  

In this thesis I propose two methods addressing this challenge. First, I describe an 

algorithm that focuses on identifying causal genomic features of phenotype.  My 

approach assumes genomic features predictive of phenotype are more likely to be causal. 

The algorithm builds models that not only accurately predict the traits, but also uncover 

molecular mechanisms that are responsible for these traits. . The algorithm gains its 

power by combining regularized linear regression, causality testing and Bayesian 

statistics. I demonstrate the application of the algorithm on a yeast dataset, where 

genotype and gene expression are used to predict drug sensitivity and elucidate the 

underlying mechanisms. The accuracy and robustness of the algorithm are both evaluated 

statistically and experimentally validated. 

 

The second part of the thesis takes on a much more complicated system: cancer. The 

availability of genomic and drug sensitivity data of cancer cell lines has recently been 

made available. The challenge here is not only the increasing complexity of the system 

(e.g. size of genome), but also the fundamental differences between cancers and tissues. 



Different cancers or tissues provide different contexts influencing regulatory networks 

and signaling pathways.  In order to account for this, I propose a method to associate 

contextual genomic features with drug sensitivity. The algorithm is based on information 

theory, Bayesian statistics, and transfer learning. The algorithm demonstrates the 

importance of context specificity in predictive modeling of cancer pharmacogenomics.  

 

The two complementary algorithms highlight the challenges faced in personalized 

medicine and the potential solutions. This thesis detailed the results and analysis that 

demonstrate the importance of causality and context specificity in predictive modeling of 

drug response, which will be crucial for us towards bringing personalized medicine in 

practice.
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Chapter 1 Introduction 

 

The emergence of high throughput molecular profiling technologies has revolutionized 

biological and clinical research. Array-based assays have been used to measure the 

expression of thousands of genes in a biological system, allowing glimpses of 

transcriptional regulation inside cells. Genetic variants such as single nucleotide 

polymorphisms (SNPs) or structural variants can now be profiled for cohorts of large 

populations (Altshuler et al., 2008; Balding, 2006; Frazer et al., 2009; Metzker, 2010), 

offering unprecedented resolution of genetic variation in populations. Analysis and 

interpretation of these high-throughput data have had groundbreaking influence on the 

field of genetics.  

 

One prospect of these technologies is that of personalized medicine, treatments that are 

tailored for individuals based on genetic background and genomic expression profiles. 

Pioneer studies such as Alizadeh et al. (2000); Kutalik et al. (2008); van de Vijver et al. 

(2002) have demonstrated the possibilities of utilizing gene expression profiles to predict 

prognosis and clinical outcomes. Signatures of gene expression have been identified to 

associate with pathway activation in cancers (Segal et al., 2004). These studies 

demonstrate the predictive values of gene expression profiles to drug response (Bild et al., 

2006) and raise hope for clinical applications. 
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Another approach is genome-wide association studies (GWAS), which have facilitated 

discoveries of association between genetic and phenotypic variation (Wellcome Trust 

Case Control, 2007). Based on the assumption that common variants may underlie 

common diseases, GWAS have demonstrated success for uncovering potential hereditary 

risk factors for diseases such as diabetes (Cox et al., 1999; Diabetes Genetics Initiative of 

Broad Institute of et al., 2007; Scott et al., 2007; Zeggini et al., 2007), Crohn’s disease 

(Barrett et al., 2008; Fisher et al., 2008; Fransen et al., 2010; Mathew, 2008; Wang et al., 

2009) and Parkinson’s disease (Satake et al., 2009; Simón-Sánchez et al., 2009).  

 

In addition to disease associations, genome-wide data imply the possibility of statistical 

pharmacogenomics (Wang et al., 2011). Using GWAS, several genetic variants have 

been associated with response to cardiovascular drugs and treatments of infectious 

diseases (Ge et al., 2009; Suppiah et al., 2009; Takeuchi et al., 2009; Tanaka et al., 2009). 

For example, using genome-wide association, Tanaka et al. (2009) identified genotypes 

of VKORC1 (vitamin K epoxide reductase complex, subunit 1) and CYP2C9 (cytochrome 

P450, family 2, subfamily C, polypeptide 9) that are associated with the effective dose of 

the anticoagulant warfarin.  

 

Pharmacogenomic approaches are currently an active area of research in cancer 

therapeutics (Lee and McLeod, 2011; McLeod, 2013). In a recent study, targeted 

sequencing of 145 genes in colon and non-small cell lung cancers has identified at least 

one genetic variant associated with target therapy in 59% of samples (Lipson et al., 2012). 

Each of these genetic alterations suggests one option of treatments for these individuals. 
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These studies indicate that future clinical strategy may routinely involve evaluation of 

patient genomic profiles in order to optimize treatment. Maximized effectiveness and 

minimized adverse effects both imply an ability to predict patient response in advance. 

For example, a diagnostic score based on a dozen genes has been deployed to predict the 

response to adjuvant endocrine therapy for ER+/HER2+ breast cancer patients (Filipits et 

al., 2011). In colon cancer, testing of KRAS (v-Ki-ras2 Kirsten rat sarcoma viral 

oncogene homolog) mutation is used to predict the efficacy of EGFR (epithelial growth 

factor receptor) inhibitors (Amado et al., 2008; Karapetis et al., 2008). Testing for KRAS 

mutation is now recommended for colon cancer patients before treatment with EGFR 

inhibitors (Allegra et al., 2009; Dietel et al., 2013). Researches for devising such a 

predictive model have been under development (Chen et al., 2009; Chen et al., 2008; 

Huang et al., 2007; Jelier et al., 2011; Lee et al., 2008b; Schadt et al., 2005). 

 

Despite the recent success in genomic medicine, we are still far from the scenario where 

predictive models give optimal, personalized treatments. GWAS results have so far 

explained only the tip of the iceberg for human phenotypic variation (Manolio et al., 2009; 

Purcell et al., 2009; Weedon and Frayling, 2008; Zuk et al., 2012). Moreover, associated 

genomic regions can contain a large number of genes. Identifying the exact causal genes 

for the phenotype is often difficult (Chen et al., 2009). Much of the complex interactions 

between signaling pathways and regulatory networks underlying the phenotypic variation 

remains unknown. In addition, many drugs may elicit a variety of responses beyond the 

intended mechanism of action. The complexity of biological systems can yield 
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unanticipated responses, including drug resistance in cancer (Dietel et al., 2013; 

Rosenzweig, 2012). For instance, lung cancer cells harboring MET (met proto-oncogene) 

amplification have been shown to activate PI3K (Phosphatidylinositide 3-kinases) via an 

alternative route, despite these cells are treated with EGFR inhibitors. The alternative 

route of signaling acts via ERBB3 (v-erb-b2 erythroblastic leukemia viral oncogene 

homolog 3) and confers resistance to EGFR inhibitors such as erlotinib (Bean et al., 2007; 

Engelman et al., 2007). 

 

The complication of drug sensitivity or phenotypic variation aggregates when we 

consider “context.” The effectiveness of targeted therapy in cancers often depends on 

tissue type, cancer type, and mutation status (Bollag et al., 2010; Dietel et al., 2013; 

Heiser et al., 2012). In other words, the complex interactions of cellular signaling are 

modulated by contextual factors such as tissue type and microenvironment (Bissell and 

Labarge, 2005) often resulting in altered response to environmental cues and drugs. In 

yeast, it has also been shown that genetic variation may create context and dictate 

different regulatory programs (Litvin et al., 2009). This additional complexity due to the 

interaction between genetics and context poses a great challenge for biological research 

and for the realization of personalized medicine. 

 

In this thesis, we propose two algorithms to tackle these challenges. In the first, we use a 

yeast dataset to demonstrate how the rich information from gene expression can be 

leveraged to improve predictions of drug response. The critical insight is that, although 

the gene expression profiles are measured before any treatment, they encode information 
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of the regulatory network that governs mechanisms of subsequent drug response. 

Principled by rigorous statistical tests and Bayesian statistics, the algorithm Camelot 

(CAusal Modelling with Expression Linkage for cOmplex Traits) aims to uncover the 

genes that are causal and therefore deterministic of the phenotypic variation. Anchored 

on the interplay between causality and predictability, Camelot builds models from 

genotype and gene expression profiles and is able to accurately predict the response to 

87/94 drugs (Chen et al., 2009).  

 

Camelot’s causal modeling further elucidates how gene expression helps uncover the 

mechanisms underlying complex traits. We show that the expression level of a transcript 

may reveal complicated regulatory mechanisms such as feedback loops, or encode 

genetic effects from multiple loci.  

 

In the second part of the thesis, we tackle the analogous problem in the more complicated 

system of cancer cell lines. We propose a novel algorithm to consider context specificity 

between cancer types for predictive modeling of drug sensitivity. The novelty of the 

algorithm is to transfer knowledge between drugs and tissue types, and therefore enhance 

our capability to identify both predictive features that are shared across cancers and that 

are specific to individual cancer types. We demonstrate the importance of context in 

predictive modeling and the complexity of drug response in cancer. Our results reveal 

that the activities of several pathways are associated with drug sensitivity, elucidating 

potential mechanisms of drug resistance. 
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We believe both studies will shed light onto mechanisms underlying pharmacogenomics. 

Currently, most treatment choices in genomic medicine are made by the profiles of one or 

two genes. Our predictive models suggest the complexity of drug response may be 

associated with many more interactions between pathways. We hope our results will 

contribute to the field, brining closer the realization of personalized medicine in practice.



 

 

7 

Chapter 2 Genetics, genomics and phenotype 

 

2.1 Introduction  

 

Understanding how differences in genotype account for the wide range of phenotypic 

diversity between individuals is one of the fundamental challenges of biology.  With the 

advent of high throughput sequencing, the number of available genotypes is increasing at 

a staggering rate, and we are nearing the point where DNA sequence represents 

individuals rather than organisms, providing a toehold towards answering this question.  

Most traits are determined by multiple genes whose identities are largely unknown; 

therefore the challenge of predicting an individual’s phenome (i.e., spectrum of traits) 

from its genome requires both identification of the genes that influence the trait and 

models that describe how they interact to determine the trait (Gabriel et al., 2002; Maller 

et al., 2006). 

 

Our approach is to combine genotype and gene expression data to associate genetic 

factors with the downstream changes in phenotype. Our premise is that gene expression is 

useful because it integrates information from multiple loci that are individually too weak 

to detect but which, in combination, contribute significantly to the phenotype. Gene 

expression has proven a potent predictor of phenotype, most notably in cancer genomics, 

where gene expression is used to build classifiers that predict response to therapy 

(Alizadeh et al., 2000; Kutalik et al., 2008; van't Veer et al., 2002).   While relatively 
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accurate, these predictors typically consist of >100 genes and do not provide mechanistic 

insight regarding the genes responsible for this response.  Ground breaking approaches in 

the genetics of gene expression (Brem et al., 2002; Cheung and Spielman, 2002) have 

recently been used to show that gene expression can be used to associate genes with 

disease phenotypes (Chen et al., 2008; Emilsson et al., 2008; Mehrabian et al., 2005; 

Schadt et al., 2005), however, these methods only identify the genes involved and do not 

directly predict multi-gene traits from the genotype. 

 

We developed Camelot (CAusal Modelling with Expression Linkage for cOmplex Traits) 

and applied it to genotype, gene expression and phenotype (growth in the presence of 

drug) data from segregants obtained from a cross between two diverse strains of 

Saccharomyces cerevisiae (Brem and Kruglyak, 2005; Perlstein et al., 2007). The 

genotypic differences in these strains manifest in rich phenotypic diversity in the 

segregants. To our knowledge, Camelot is the first method that automatically builds a 

model based on both gene expression and genotype, selects genes that actively influence 

the phenotype and accurately predicts complex quantitative phenotypes.  Having “trained” 

a model, we can use it to accurately predict the growth of a new strain with an entirely 

different genotype.  This is demonstrated by correctly predicting growth, in the presence 

of each of a panel of drugs, for segregants not used during training.  Most importantly, 

the majority of genes used for predicting growth are causal factors. Thus, genetic 

manipulation of these genes (deletion or allele swap, i.e., replacement of the causal gene 

with the same gene from the other parental strain), leads to a change in phenotype (e.g., 

drug resistance/sensitivity) matching our prediction.   
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An important distinguishing feature of Camelot is that it integrates genotype and gene 

expression data, both generated in drug free conditions, to detect causal genes and predict 

the response to an entirely different condition, growth in the presence of a drug. 

Therefore, gene expression of an individual need only be assayed once.  This single gene 

expression profile can be harnessed to analyze the connection between genotype and 

phenotype for a large number of traits that manifest under many different conditions.   

Moreover, the response to a drug can be predicted before treatment, a critical feature for 

clinical application.   

 

Our results demonstrate that Camelot can predict a strain’s response to a drug, for 87/94 

drugs. The inclusion of gene expression data measured in unrelated (drug-free) conditions 

significantly contributes to Camelot’s accuracy in predicting drug response and in its 

ability to detect causal genes involved in this response. We experimentally confirmed 

25/27 of Camelot’s predictions regarding the influence of a specific gene in the response 

to a specific drug.  Our data demonstrate that Camelot is able to identify genes involved 

in drug resistance robustly. 

 

2.2 Datasets 

 

We used a dataset containing genotype and gene expression information from 104 

segregants that arose from the mating of two genetically diverse strains, ‘BY’ and ‘RM’ 

(Brem and Kruglyak, 2005).  The gene expression profiles of 6189 genes were measured 
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in rich media for each segregant (Brem and Kruglyak, 2005).  The phenotype, growth 

yield from each segregant grown in the presence of one of 94 chemicals (‘drugs’) is from 

Perlstein et al. (2007). In total 313 growth conditions (different concentrations of 

chemicals and time points) are considered as phenotype. 

 

For the genotype, we merged adjacent, highly correlated markers, to obtain a total of 526 

markers (Lee et al., 2006). For our analysis we normalized all data to have a mean of zero 

and variance of one.  We compiled a list of candidate gene expression features based on 

two sources.  One contained genes with potential regulatory effects, including 

transcription factors, signaling molecules, chromatin factors and RNA factors as in Lee et 

al. (2009). The other list included genes involved in vacuolar transport, endosome, 

endosome transport and vesicle-mediated transport, since these functions, or cellular 

compartments, are enriched for multi-drug resistance genes (Hillenmeyer et al., 2008). 

We combined these two lists and filtered out genes with SD ≤ 0.2 in expression level, 

obtaining 854 expression profiles which were used as candidate features for all our 

models. GO categories from http://www.yeastgenome.org/ were used to associate genes 

with each category. 

 

The BY and RM strains used in this study are genetically distant, with 0.5% sequence 

diversity between them.  This genetic diversity manifests in significant phenotypic 

diversity. Not only do the strains differ in their response to drugs; each drug has a 

different set of fast and slow growing segregants (Figure 2-1).   
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Figure 2-1: Diversity of drug response.  
Growth in the presence of a subset of drugs is represented by the heat map on the left 
(blue corresponds to low growth yield and yellow to high growth yield). Each row 
represents the data for a single drug (smp10 is 1,9-pyrazoloanthone, DFI is 
diphenyliodonium and SK&F is SK&F 96365) and each column represents a different 
strain/segregant. The red rectangle shows the response of a segregant to the set of drugs 
indicated, known as the ‘phenome’, of the strain. The heat map on the right represents the 
correlation between the responses of the segregants to the drugs (Pearson’s correlation 
coefficient). The rows and columns are in the same order as the rows in the heat map on 
the left. The range in PCC demonstrates that there is considerable diversity in the 
response of the segregants to these drugs; the correlation ranges from strong positive 
correlation (r=0.64) to strong anti-correlation (-0.40). The same scale is used for all 
Figures. 
 

Our goal is to take baseline information about a strain: genotype and gene expression data 

measured from each segregant grown in the absence of drug and to use this to derive a 

quantitative prediction of the strain’s phenome, its response to each drug in a panel of 

drugs.  We seek to identify a small set of features, either genotypic markers or single 

genes (transcripts in the gene expression data) that influence growth in the presence of 

each drug and to explain the observed differences between segregants.  We use the term 

‘causal’ to describe a feature that not only correlates with and predicts the phenotype, but 

which actively influences it.  We define a feature to be ‘causal’ if genetic manipulation of 

this feature, e.g., by allele swap or gene deletion, changes the phenotype, as predicted by 

the model.  
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Chapter 3 Camelot Algorithm 

 

Identifying a predictive model defines a task of selecting a sparse set of features from a 

pool of markers and a precompiled list of transcripts that together predict growth in the 

presence of drug D. While the true relationship may not be linear, we use regularized 

linear models as these can be robustly inferred from the data (Hastie et al., 2001). That is, 

Camelot selects a sparse set of features, markers 𝐿  and transcripts 𝐸  to build a linear 

regression model D ~ 𝐿  + 𝐸 .  

 

To avoid identifying features that match the training data by chance, our algorithm uses a 

combination of statistical tools including elastic net regularized regression (Zou and 

Hastie, 2005) (Section 3.1.1), non-parametric bootstrap (Efron, 1979) (Section 3.1.2) and 

tests designed to further select only those that are most likely causal (Section 3.2).  The 

selected features are then used to optimize a linear prediction function (Section 3.3).  

Overview of Camelot algorithm is shown in Error! Reference source not found. 
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Figure 3-1: Overview of Camelot.  
The input data includes matched genotype (L) and gene expression (E) data for each 
segregant measured under standard conditions (no drug) and growth yield/drug response 
(D) measured in the presence of a drug.  Each column represents a strain/segregant and 
each row represents a marker feature in the genotype matrix or a transcript feature in the 
gene expression matrix. Camelot outputs a predictive regression model with a small set of 
markers and gene expression features.  In the training phase Camelot takes genotype, 
gene expression and drug response as input, and uses feature selection methods (elastic 
net, bootstrap, the triangle test and model revision) to choose a small set of marker and 
gene expression features that best predict the drug response that are enriched for features 
likely to have a causal influence on the phenotype. Selected sets of features are denoted 
by LCamelot and ECamelot, representing selected markers and transcripts, respectively. A 
linear regression model is then built on LCamelot and ECamelot. In the prediction stage, 
Camelot uses the model built on the training data (regression coefficients  and ) 
and the genotype and expression data for the held-out segregants to predict growth in the 
presence of drug. Following model selection, Camelot takes each selected marker 
(LCamelot ) and uses the zoom-in score to prioritize the likelihood that each gene within the 
linked region is causal. € 

βLC

€ 

βEC
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3.1 Feature Selection 

 

First, Camelot limits the set of possible candidate transcript features to 854 transcripts 

that are not particular to any specific drug, yet are a-priori more likely to be causal based 

on the functional classification of their cognate genes (see Materials and Methods).  

Camelot selects features using a bootstrap procedure on coefficients of regularized 

regression (see Methods). 

 

3.1.1 Regularized linear regression 

 

Our goal is to identify marker and/or transcript features that predict quantitative 

phenotypes (in our case growth in the presence of drugs) using a linear regression model: 

 

 

 

𝐷 = 𝑿∗𝛽∗ Eq. 3.1 
 

where D is the response of each of segregants to the presence of a drug, 𝑿∗ is a matrix 

containing a set of selected features (𝑳∗ and/or 𝑬∗) for each segregant and 𝛽∗ is the vector 

of coefficients associated with markers or transcripts in 𝑿∗.   

 

However, here we want to identify features (𝑿∗) that are not only predictive, but are 

causative for the phenotype.  We consider a gene to be causal if perturbing it  (e.g. allele 

swap, deletion or over-expression) actively results in a change to the phenotype. Our 
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assumption is that predictive features are more likely to be the causal factors underlying 

phenotypic variation.  While correlation does not necessarily imply causation, Camelot 

has a number of procedures that reduce the pool of candidate features towards those more 

likely to be causal.  

 

A biologically plausible model should have a small number of causal factors with a non-

zero weight.  To achieve this goal, we used the elastic net regression method (Zou and 

Hastie, 2005) to select only the most significant features 𝑋∗. In brief, elastic net 

regression solves the following optimization problem: 

 

 

 

𝛽 = argmin! 𝑦 − 𝑿𝛽 !   

subject  to   1− 𝛼 𝛽 ! + 𝛼 𝛽 ! ≤ 𝑡  for  some  𝑡 

Eq. 3.2 
 

 

where y represents response (D),  𝑿 is the feature matrix (containing marker L and/or 

transcript E). Both y and 𝑋 are standardized to mean of 0 and variance of 1.  𝛽 (from here 

we use 𝛽 to denote 𝛽 for simplicity) is the vector of regression coefficients and α and t 

are regularization parameters. The regularization terms reduce over-fitting of the data.  

The constraint enforced by the l1 norm controls sparseness of selected features and l2-

norm prevents an arbitrary choice of only one out of several highly correlated features.  

The latter is especially important in the gene expression domain in which large groups of 

highly correlated features are abundant.  To compute the coefficients 𝛽, we used least 

angle regression (LARS) (Efron et al., 2004), an efficient algorithm for solving this type 

of regularized regression problem. All implementation is in MATLAB (MathWorks), 
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including a modified implementation (Sjöstrand, 2005) of elastic net. Parameters of 

elastic net were chosen using standard cross-validation techniques. 

 

 

3.1.2 Bootstrapping enhances accurate retrieval of causal factors 

 

Because elastic net aims to minimize the fitting error, it often results in models with too 

many features that are not necessarily causal of the phenotype. In order to select robust 

and causal features, we use non-parametric bootstrap with elastic net regression (see 

Feature Selection). Here we evaluate if bootstrapping helps elastic net to select correct 

features using synthetic datasets.  

 

First, we generated several synthetic datasets as follows. We used the LARS 

implementation of elastic net (Efron et al., 2004; Zou and Hastie, 2005) to generate the 

full path of solutions for 20 conditions of growth data (randomly chosen from the original 

data), using a feature pool X, containing both L and E. Then we randomly chose 10 of the 

first 30 features that enter each solution path. Using these 10 features with their 

coefficients from elastic net, we generated the synthetic growth data for each condition. 

We added different levels of noise from Gaussian distribution N(0, σ2), with σ2 = 0.2, 0.4, 

0.6, 0.8, or 1 to the data to mimic the noise found in real data. The advantage of the 

synthetic data is that we know the true features and can therefore get an accurate 

evaluation of Camelot’s ability to retrieve causal features. 
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We applied elastic net to the synthetic growth data with and without bootstrapping. We 

compared the precision of feature retrieval between elastic net and bootstrapped elastic 

net. Precision is defined as the number of true features selected, divided by the number of 

total features selected in the procedure.  

 

 

 

 

 
Figure 3-2: Bootstrap improves precision in retrieving true factors.  
Bootstrapping improves the precision with which true genetic factors can be retrieved 
from a synthetic dataset. Precision obtained using elastic net with bootstrapping (y-axis) 
is compared with that from elastic net without bootstrapping (x-axis). Each dot represents 
a synthetic growth condition. The diagonal line shows where the two models have the 
same precision. Different colored dots represent different levels of noise added to the 
synthetic data. For example, when synthetic growth data contains noise generated from 
Gaussian distribution N(0, 0.2), the precision of stepwise regression to retrieve the true 
factors is limited between 0 and 0.3, while the precision of bootstrapped elastic net ranges 
from 0.5 to 1.0 (with an average of precision 0.8). 
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Figure 3-3: bootstrapped elastic net versus stepwise regression.  
Bootstrapped elastic net retrieves true factors more precisely than stepwise regression. 
Similar to Figure 3-2, precision with which factors are retrieved using elastic net with 
bootstrapping (y-axis) is compared with that from stepwise regression (x-axis). 
Bootstrapping is used to select robust features from elastic net whereas stepwise 
regression takes the top 10 significant features (the exact number of true factors used to 
generate the data). The plot demonstrates the superior precision of bootstrapped elastic 
net compared to that of stepwise regression.  

 

Figure 3-2 shows bootstrapped elastic net has higher precision than elastic net without 

bootstrapping. In addition, we compare bootstrapped elastic net to stepwise regression, 

which is commonly used as a feature selection algorithm for regression problem (used in 

Chen et al. (2008); Emilsson et al. (2008); Mehrabian et al. (2005); Schadt et al. (2005)). 

Figure 3-3 shows the precision retrieved for the synthetic datasets from both methods. 

For almost all the models, bootstrapped elastic net shows dramatically higher precision. 

 

Evaluating our results on the actual drug data (rather than the synthetic set), we compare 

the number of features selected in elastic net with and without bootstrapping. Figure 3-4 
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shows the histograms of number of features selected. Elastic net models without 

bootstrapping include many features (mostly between 10 to 30 features per model). On 

the other hand, bootstrapping significantly reduces the number of features. Most models 

derived from bootstrapped elastic net contain fewer than eight features, which is more 

biologically plausible.   

 

 

 

 
Figure 3-4: Bootstrapping reduces the number of features.  
Histograms of the number of features selected in elastic net without bootstrapping (EN) 
compared to elastic net with bootstrapping (EN+BT). A: Number of features selected 
when only genotype data (L) are used in the feature pool (X). B: As A, but for models 
using genotype (L) and expression data (E) in the feature pool. 

 

3.2 Resolving Causality 

 

Although bootstrapped elastic net helps pruning spurious association between genetic 

factors and the phenotype, the causal roles of the selected predictors are not guaranteed. 
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The models proposed in the previous section involve two types of features: genotype and 

gene expression. For genotype, its causal role is straightforward and therefore when a 

genotype feature is chosen as a predictor, we can assume the causal factor resides in the 

DNA region. However, the causal role of a gene expression predictor is less clear, since 

its association with the phenotype could be due to the influence of its regulating genotype, 

such as mutation. Identification of the causal genes provides insight into the biological 

processes and stresses involved in the response to a drug, and has practical implications 

for identifying alternative drug targets in resistant strains. 

 

Fortunately, the use of gene expression provides clues for us to perform statistical tests to 

dissect the potential causal roles of selected features. In this section, I will present two 

methods for uncovering the causal genetic factors of the phenotype. 

 

3.2.1 Triangle Test 

 

Care must be taken when attributing a causal interpretation to a correlated feature, even 

when the feature acts as a potent predictor (Pearl, 2000). When the feature correlated with 

growth is based on linkage to a DNA marker, the issue of causality is straightforward: the 

observed phenotype is likely influenced by genetic polymorphism within the linked 

region.  However, when the feature is based on correlation between the abundance of a 

transcript and the phenotype, three possibilities exist: (1) the transcript and phenotype 

correlate due to a common cause resulting from DNA variation (Figure 3-5A), (2) DNA 

variation exerts its effect on the phenotype through the transcript, and hence the 
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expression level serves as a mediator of the causal effect from genetic variation on the 

phenotype (Figure 3-5B), or (3) growth rate influences the abundance of the transcript. 

The last case is not considered in this experimental design, as gene expression was 

measured in absence of drug.  Therefore, we developed the triangle test to distinguish 

between the first two cases.  

 

 
Figure 3-5: Correlation versus causality.  
A. Sequence variation at the Chromosome XIV locus is the cause of variation in both 
DHH1 expression and the response to lycorine; however, in this situation DHH1 
expression does not causally influence the drug response. DHH1 was a candidate feature 
for lycorine (correlation coefficient, r=0.44), but failed the triangle test, showing that high 
correlation does not necessarily reflect causality. The heat maps show segregants ordered 
based on response to lycorine. B. Example of a causal chain where polymorphisms in a 
Chromosome XIV locus lead to change in DHH1 expression that results in differences in 
cell growth in the presence of H2O2. DHH1 was chosen as a candidate feature for H2O2 
(r= -0.44) and passed the triangle test with p-value 1.6×10-5. Some notation for all 
Figures: blue ovals represent the genotype of a marker; yellow ovals, drug response; 
green ovals, gene expression; red arrows, the driving edge; black arrows, causal 
relationships and grey arrows, relationships tested in the test.  Red letters indicate the 
type of the selected feature (expression in this case). 
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Figure 3-6: Determine the causal role of gene expression features.  
The triangle test evaluates the likelihood that each transcript feature causally explains the 
phenotype (red edge). It distinguishes between causal chain (left, red edge) and co-
regulation structures (right, grey edge) using permutation testing to evaluate the 
contribution of gene expression controlled for the genotype of L. That is, expression is 
permuted under the allele of the linked genotype. Orange represents RM and blue BY for 
the genotype at the locus.  

 

 

In order to determine if a gene expression predictor is causal, we apply a causality test to 

all transcript features chosen with significant confidence after bootstrapping.  The 

permutation-based triangle test asks: “Is gene expression significantly predictive of the 

growth beyond the contribution of the linked genotype?” (Figure 3-6)  We assume the 

linked DNA marker is causative a-priori and require that the transcript feature remains 

significantly predictive of growth even after the influence of the marker is controlled for. 

While this test does not guarantee that the transcript feature is indeed causal, it identifies 
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transcripts features that are more likely causal and enriches the final selection with causal 

features.  

 

The triangle test is applied to a triplet of marker, transcript and phenotype (Lm, Eg, D) and 

is used to evaluate whether Eg is significantly predictive of D, beyond the contribution of 

Lm. We use permutation testing to evaluate the significance of association between Eg and 

D by permuting Eg fixed under the marker Lm. If the transcript Eg remains significantly 

predictive (even when permuted while keeping the allele at Lm constant), we determine 

that Eg holds additional information beyond that encoded by the marker Lm and is 

therefore more likely to be a causal factor, rather than chosen simply due to its correlation 

to Lm. The association is tested with linear regression; 106 permutations are performed to 

obtain empirical null distributions to assess the significance. We use p-value < 0.002 

(corresponding to FDR = 0.004) as a threshold to determine if Eg is significantly more 

predictive to D than L and therefore Eg is likely a causal factor for D.  

 

We apply the triangle test to each transcript feature Eg selected for the quantitative 

phenotype D (that is,   

€ 

Eg ∈ E
LE ). In order to collect triplets (Lm, Eg, D), we search for 

markers Lm that link to transcript Eg, using the same feature selection procedure 

(bootstrapped elastic net) but with Eg as the response variable (y) and markers (L) as 

features (X). More precisely,   

€ 

Lm ∈ Lg
eL , which is obtained from ‘eL model’ defined as 

 

 

𝐸!~𝑳!!ℒ ,   

𝑳!!" = 𝐿! 𝛾!
!ℒ ! ≥ 0.5,𝑚:index  of  marker},   

Eq. 3.3 
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𝛾!
!ℒ ! = 𝐼 𝛽!

!,!ℒ(!) ≠ 0
!!

!

𝑁! 

where 𝛽!
!,!ℒ(!) is the coefficient for marker m in eL model for bootstrap B. This model 

can be viewed as an eQTL model, in which multiple linkages are detected through 

bootstrapped elastic net regression. We only consider (Lm, Eg, D) as a triplet when the 

two associations (Lm, Eg) and (Lm, D) are significant (p-value < 0.05; such pairs are not of 

high number, since the number of Lm and Eg have been controlled by bootstrapped elastic 

net). The significance of associations (Lm, Eg) and (Lm, D) is determined by 106 

permutations with least square fitting linear regression, in which Lm is used as an 

independent variable and Eg or D is used as a dependent variable. 

 

Moreover, when a transcript feature is tested against multiple markers, we need to test 

whether the transcript is more predictive than the markers in regions near to those under 

consideration. Because genotypes of markers in neighbouring regions are highly 

correlated, neighbouring markers are often chosen as linkages. If we do not correct for 

these linkages, we might conclude, incorrectly, that the transcript feature is causal.  For 

example, assuming we test two triplets (L1, Eg, D) and (L2, Eg, D) where L1 and L2 are 

neighbouring markers, it is possible that Eg shows stronger association to D than L1, but 

not L2. In this case, L2 is more likely to be the causal factor than Eg. In order to determine 

whether Eg passes the triangle test, we require Eg to be more predictive of the phenotype 

than any of the linked neighbouring markers. 

 

Based on the test results, we can define the following sets: 
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𝑬!"#$% = 𝐸!

𝐸! ∈ 𝑬ℒℰ   and  𝐸!  passes  test  for  at  least  
one  set  of  linked  neighboring  markers

 

 

Eq. 3.4 
 

 

 
𝑳!"#$%&'( = 𝐿!

𝐿! ∈ 𝑳!!ℒand  𝐸!  passes  
test  for  the  triplet   𝐿!,𝐸!,𝐷

   

 

Eq. 3.5 
 

where ECause is the set of transcripts that pass the triangle test, that is, those that are likely 

to have a causal effect on the phenotype; and LIndirect is the set of genotype markers that 

link these transcripts. The latter likely have indirect effects on D that are mediated by Eg.  

 

In contrast, ECor is defined as the set of transcripts that fail the test, and LCause as the set 

of markers that link to transcripts in ECor:  

 

 

 

𝑬𝑪𝒐𝒓 = 𝐸!|𝐸! ∈ 𝑬!ℰ   and  𝐸!  fails  test  for  all  involved  triplets    

 

Eq. 3.6 
 

 

 

𝑳𝑪𝒂𝒖𝒔𝒆 = 𝐿!|𝐿! ∈ 𝑳!!"  and  𝐸!  fails  test  for  𝑡ℎ𝑒  𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝐿!,𝐸!,𝐷    

 

Eq. 3.7 
 

This definition implies transcripts in ECor are associated with D due to co-regulation that 

results from upstream sequence variation, and LCause  is likely the sequence variation that 

influences both D and Eg . 

 

We further classify transcripts that pass the triangle test into two categories: weak and 

strong factors.  We classify as strong those transcripts that pass the triangle test for all 



 

 

26 

linked markers.  We classify as weak those transcripts that only pass the triangle test for 

some of their linked markers.   In addition, we use all different combinations of features 

(for example, regulators only or regulators with genotype as the feature pool) to broadly 

access genes related to drug response with the triangle test. All transcripts that pass the 

triangle test are listed in Supplementary Table III in Chen et al. (2009). 

 

While our triangle test evaluates the significance of the association between Eg and D 

conditioned on Lm (i.e. the causal relationship Eg -> D | Lm), we compared our test to 

another test, which assesses the significance of the association between Lm and D 

conditioned on Eg (i.e. the causal relationship Lm -> D | Eg) (see Supplementary Table III 

in Chen et al. (2009)).  Out of the 317 triplets that passed the triangle test, only 12 are 

significant (same FDR as the triangle test) for the test Lm -> D | Eg.  The remaining 305 

triplets are in accordance with the triangle test, Eg explains away the relationship between 

Lm and D and the influence from Lm to D is no longer significant conditioned on Eg.  

These 305 triplets include all cases specifically discussed in the main text. The 12 triplets 

could either be false positives, or more interestingly, suggest true complex cases, in 

which both Lm and Eg have a direct causal effect on D.  In fact, two-third of these 12 

triplets involve a region on chromosome XIV (MKT1 locus), the response to rapamycin, 

and ERG4 or MLP1 transcripts. Previous work has shown the complex influence of 

MKT1 (personal communication), ERG4 (Xie et al., 2005) and MLP1 (Hillenmeyer et al., 

2008) on the resistance to rapamycin, supporting the complex causal relationship that Lm 

exerts an influence on D both through Eg and an additional factor.  
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Figure 3-7: Identify causal gene in a genomic region.  
The zoom-in score for each locus to drug association (red arrow), evaluates the likelihood, 
P(L,E,D), that each gene in the locus causally influences the growth of the strain in 
response to drug, based on its expression (each row represents a gene at the locus and 
each column a segregant; each row represents one gene). 

 

 

3.2.2 Zoom-in Score 

 

Transcript features relate to a single gene and hence directly identify the involved gene. 

DNA marker features are better founded in their causal nature, but typically involve large 

chromosomal regions containing tens of genes.  For these features, Camelot uses gene 

expression, to help pinpoint the causal gene within the linked locus. The zoom-in score 

uses gene expression to prioritize the likelihood that each gene within the linked region is 

causal.  Like the triangle test, the zoom-in score is a measure of how well gene 
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expression predicts the phenotype.  Linkage implies that the marker is driving the 

causality; therefore the zoom-in score includes an additional measure for cis-linkage, how 

well the marker predicts the gene expression.  The zoom-in score incorporates both of 

these qualities, as well as conservation of the protein sequence to prioritize genes within a 

locus (Figure 3-7). 

 

To pinpoint the causal variant responsible for the linkage signal, for each marker feature 

selected (LCamelot), we developed a Bayesian prioritization score that ranks genes within a 

linked region according the likelihood of their causal potential.  The method integrates 

three cues: “Is the gene expression a good predictor of drug resistance?” (i.e., if the gene 

expression correlates with the drug response), “Is the gene cis-linked?” (i.e, if the gene 

expression is linked to its own locus), and “how well is the gene sequence conserved?” 

which is consistent with our basic intuition that if nature conserved a residue across 

millions of evolutionary years, its change is more likely to have a causative influence on 

the associated phenotype.  

 

Assume we have marker m linked to D (i.e.

€ 

Lm ∈ L
Camelot ). To calculate the causal 

potential of each gene g located within the region around marker m, we define a zoom-in 

score as follows: 

 

 

𝑃(𝐿!,𝐸!,𝐷) = 𝑃 𝐷 𝐿!,𝐸! 𝑃 𝐸! 𝐿! 𝑃(𝐿!) Eq. 3.8 
 

where Eg and Lg are the expression and genotype of gene g, respectively. Note that Lm can 

be used as an approximation of Lg since gene g is in proximity to marker m. In this model, 
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we assume that sequence variation in gene g affects both Eg and D, and the expression of 

transcript g (Eg ) also affects the phenotype D (Figure 3-7).  

 

The decomposed probability consists of three parts. The first term P(D | Lg, Eg) assesses 

how well D can be explained by both the genotype and expression profile of gene g; the 

second part P(Eg | Lg) scores the degree of cis-linkage, how well Eg is explained by Lg; 

and the last term is the prior probability of g having a causal effect. P(D | Lg, Eg) and 

P(Eg | Lg) are calculated using the probability density function with normal distribution, 

where the mean and variance are estimated using linear regression (D~ Lg+Eg and D~ Eg). 

P(Lg) was estimated based on the conservation of the coding sequence, as follows. 

 

We assume genes with polymorphisms between BY and RM are more likely to affect the 

phenotype, especially if the polymorphisms are in positions where amino-acid residues 

are conserved throughout evolution. Therefore, considering the fungal alignment of 

orthologs (Wapinski et al., 2007), we calculated a conservation score for each 

mismatched/gap in amino-acid sequence between BY and RM based on a quality score 

defined for multiple sequence alignment (Thompson et al., 1997). Let position j in the 

alignment has a mismatch/gap between BY and RM. We define a score sj as follows: 

 

 

 

𝑠! = exp  (−𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑅!,!" ,𝑅!,!" −min 𝐷!,!" ,𝐷!,!" )   Eq. 3.9 
 

where Rj,BY (Rj,RM) is the residue at position j in BY (RM), Dj,BY (Dj,RM) is the distance 

(Thompson et al., 1997) defined for multiple sequence alignment between BY (RM) and 
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other fungal species, and similarity is a similarity metric based on Gonnet PAM 250 

matrix (Benner et al., 1994). 

 

For each gene g, we then define  

 

 
𝑃(𝐿!) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜃 𝑠!

!

) 
Eq. 3.10 

 

where sj is defined as above and θ is a parameter chosen to adjust the distribution of 

P(Lg).  

 

When neighbouring regions were linked to the phenotype, we merged them into a larger 

region and ranked all potential genes within the merged region based on the zoom-in 

score. We calculated the joint probability defined above for each gene residing within 

30,000 base pairs up-/down-stream of a linked region (

€ 

Lm ∈ L
Camelot ). Genes without 

polymorphisms in coding and non-coding regions between BY and RM were disregarded. 

Moreover, when calculating the probabilities, we used the original genotype data (Brem 

and Kruglyak, 2005) (missing values were imputed according to the distance between 

markers) to represent the locus more accurately. That is, instead of using the 526 merged 

markers, Lg was obtained from the nearest locus among the original 2957 markers, 

according the genomic location of g. The three components of decomposed probability 

were weighted so that P(D | Lg, Eg) has the strongest effect and prior P(Lg) the weakest. 

Finally, we ranked genes based on their zoom-in scores in the region. 
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3.3 Build Predictive Model 

 

As we believe the causal factors should provide better predicting power for phenotype 

than non-causal factors, we revise our final feature set based on the results of the triangle 

test.  

 

For a phenotype D, our goal is to obtain the following model 

 

 

 

𝐷 = 𝑳!"#$%&'  𝛽!! + 𝑬!"#$%&'  𝛽!! Eq. 3.11 
 

where LCamelot and ECamelot are sets of genotype from selected marker features and the 

expression of selected transcript features, respectively; and  𝛽!!  and   𝛽!! are the 

associated coefficients.  

 

Considering all the feature sets we have obtained (LL, LLE, LCause, LIndirect, ECause, and 

ECor), we derive LCamelot and ECamelot according to the following criteria: 

 

 

 

𝑳!"#$%&' = (𝑳ℒ ∪   𝑳ℒℰ ∪ 𝑳!"#$%)\𝑳!"#$%&'( Eq. 3.12 
 

 

 

𝑬!"#$%&' = 𝑬!"#$% Eq. 3.13 
 

These criteria are aimed at enriching the final feature set for those that are more likely to 

be causative. Transcripts that pass the triangle test are more likely to act directly, while 
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the linked upstream sequence variation (LIndirect) is likely to be indirect and act through 

ECause. For transcripts (ECor) that fail the triangle test, it is more likely that LCause are the 

common factors responsible for both D and ECor, and the correlation between them. 

 

Including the subset of LCause might introduce markers that are not significantly 

associated with D, so we only include those markers that have selection-frequency   

€ 

γm
L  

larger than 0.3. In addition, neighbouring regions in the final LCamelot are corrected by 

only choosing the one with the highest selection-frequency. Once the final set of features 

have been selected, the regression coefficients were re-optimized using robust regression 

(robustfit function in Matlab).  
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Chapter 4 Results From BYxRM Data 

 

 

We applied Camelot to the previous describe yeast dataset ((Brem and Kruglyak, 2005), 

(Perlstein et al., 2007)), processed as described in Section 2.2. In this Chapter, we will 

first evaluate the performance of Camlot’s prediction (Section 4.1). Then we will discuss 

the biological findings (Section 4.4 and 4.5). In addition, we explain why gene expression 

encodes such rich information for dissection the relationship between genotype and 

phenotype (Section 4.5). 

 

4.1 Cross-Validation analysis demonstrates the robustness of Camelot 

 

Camelot, the elastic net L model and linkage analysis are evaluated with ten-fold cross-

validation: the data are randomly split into ten equal parts. Each part contains growth, 

genotype and expression data for ~10 segregants. Holding out each part as test data, we 

took the rest of the data as training data (~94 segregants), and applied Camelot, elastic 

net, or linkage analysis, to obtain a linear regression model (Section 4.7.4). This model 

was then used to generate predictions for the held-out segregants. Note that no data from 

the test segregants was used during model construction; therefore, ten-fold cross-

validation provides a good way to evaluate the predictions of the models and their 

potential performance on additional new strains. 

 



 

 

34 

 
Figure 4-1: Camelot has superior predictive ability.  
Comparison of prediction methods on held out test data from different models. A. 
Classification accuracy (See Materials and Methods), Camelot compared with linkage 
analysis. Each dot represents a condition (growth yield in the presence of a drug), 
showing the fraction correctly predicted by Camelot (y-axis) and linkage analysis (x-axis). 
Dots above the diagonal indicate the superior performance of Camelot and are colour 
coded to indicate the degree of improvement. B. As A, but the classification accuracy by 
Camelot is compared with that of the elastic-net L model lacking transcript features (See 
Materials and Methods). This demonstrates that for many conditions, the inclusion of 
gene expression features improves Camelot’s performance. C. The top bar represents 
growth in the presence of clomiphene, each column is associated with a different 
segregant (matched horizontal positions within the panel) sorted by growth from low 
(blue) to high (yellow). The observed growth is compared with model prediction from 
linkage analysis, the elastic-net L model and Camelot. The bar marked elastic L 
represents predictions from bootstrapped elastic net regression using genotype alone, and 
the bottom bar represents prediction from Camelot.  Prediction (on test data) improves 
from no detected linkage to most accurate for Camelot. The same scale is used for all 
Figures.  D. As C, but for haloperidol. 
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Elastic net L models are derived in the same way as Camelot models, except that only 

genotype features were allowed in regression. Linkage analysis is performed with 

Wilcoxon rank-sum test to scan the 526 merged markers for genome-wide significant 

linkages (FDR=2%; p<5.6×10-5) (Perlstein et al., 2007).  Linear regression models are 

built on significant linkages using robust regression (robustfit function in Matlab).  

 

We use correlation coefficients to evaluate the prediction as they can be used to assess 

whether the prediction accords with the original growth data. We use both Pearson’s (r) 

and Spearman’s (ρ) correlation coefficients between the predicted response to drug and 

original growth data to evaluate the prediction. In addition, the median of growth data in 

the training set was used in place of the predicted growth if an algorithm failed to 

generate a model (i.e. failed to link or select any features).  

 

In addition, classification accuracy is used to evaluate predictions of models. Growth data 

are discretized into three classes according to their normalized values: resistant to the 

drug (standardised growth > 1), no significant response to the drug (-1≤ standardised 

growth ≤ 1) and sensitive to the drug (standardised growth < -1). Similarly, prediction of 

class for a segregant in the test data is determined by the predicted value from the 

regression model. Predictions of responses to drugs were made based on the predicted 

values from regression models. Accuracy (Acc) is defined as the number of correct 

predictions divided by the total number of segregants tested. 
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Camelot outperforms association and linkage analysis in providing a set of features that 

yield significantly more accurate prediction of drug response (see Figure 4-1, Figure 4-2 

and Figure 4-3).  We found that Camelot’s predictions for growth in the test strains were 

more accurate for 88% of the conditions examined, compared with those obtained using 

standard linkage methods (Figure 4-1A) and in many cases led to a dramatic 

improvement in the accuracy of prediction, e.g., for clomiphene and haloperidol (Figure 

4-1C and D).   

 

4.1.1 Gene expression measured in the absence of drug helps predict drug response 

 

While Camelot’s statistically rigorous feature selection framework contributes to its 

success, so does the use of gene expression data, as evidenced when we compare our 

method with and without the use of expression data (Figure 4-1B-D).  Note that the gene 

expression data was obtained from cells grown in nutrient-rich, non-perturbed conditions, 

whereas the growth data were measured in the presence of different drugs and that the 

expression features chosen differ between drugs.  Therefore, the features selected are 

unlikely to represent genes whose expression merely correlates with rapid growth 

(Airoldi et al., 2009).  

 

The response of segregants to different conditions is heritable (Perlstein et al., 2006), so 

the boost in performance, over genotype alone, gained by using gene expression data 

(generated in the absence of drug) is counterintuitive (Figure 4-1B).  A factor that 

contributes to the accuracy is that transcript features chosen by Camelot typically 
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correlate well with the measured growth yield in the presence of a drug. This success in 

prediction is similar to the success of gene expression based classifiers in predicting 

response to chemotherapy in cancer genomics (van't Veer et al., 2002).  

 

 

 

 

 

Figure 4-2: Comparison of prediction – Pearson correlation.  
All predictions represented in this figure are based on held out test data. A: Camelot 
compared with linkage analysis. Each dot represents a condition (growth yield in the 
presence of a drug), showing the Pearson correlation coefficient between the original 
growth data and the prediction from Camelot (y-axis) plotted as a function of the 
correlation coefficient between the original growth data and the prediction from linkage 
analysis (x-axis). Dots above the diagonal indicate the superior performance of Camelot 
and are color coded to indicate the degree of improvement. B: As A, but the prediction by 
Camelot is compared with that of the elastic-net L model lacking transcript features. 
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Figure 4-3: Comparison of prediction – Spearman correlation.  
Same as Figure 4-2, but Spearman correlation coefficients are used to evaluate the 
models. 

 

 

Taken together, cross-validation provides statistical evidence to support the robustness 

and superior performance of Camelot, compared to linkage analysis and elastic net L 

models, across a number of evaluation metrics. We show that Camelot’s performance is 

robust, and not due to over-fitting, using ten-fold cross-validation. This demonstrates the 

Camelot’s potential to predict the response of unseen strains, since only training data is 

used during cross-validation. 

 

4.2 Identifying features that actively influence the phenotype  

 

As described in Chapter 3, Camelot aims to find a model that is not only predictive, but 

that also identifies genes that are responsible for the phenotypic variation.  Identification 

of these genes provides insight into the biological processes and stresses involved in the 
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response to a drug, and has practical implications for identifying alternative drug targets 

in resistant strains.  

 

When the feature correlated with growth is based on linkage to a DNA marker, the issue 

of causality is straightforward: the observed phenotype is likely influenced by genetic 

polymorphism within the linked region.  However, when the feature is based on 

correlation between the abundance of a transcript and the phenotype, two possibilities 

exist (see Section 3.2.1). In order to test the causality, we apply the permutation-based 

triangle test (Section 3.2.1) to all transcript features chosen with significant confidence 

after bootstrapping.   
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Figure 4-4: Causal role of DHH1 in response to hydrogen peroxide.  
A. Growth yield in the presence of hydrogen peroxide and correlated expression profiles 
for genes in the candidate pool (absolute Pearson correlation coefficients≥0.36, p<2×10-4), 
showing that the expression of multiple genes correlates with growth. Each column is 
associated with a different segregant (matched horizontal position across panel) sorted by 
growth yield (as in Figure 4-1) and gene expression on a red-green scale. GO-based 
filtering reduced the list of 123 candidate transcripts to the 15 genes are shown here. B. 
Growth yield in the presence of H2O2 compared with model prediction from linkage 
analysis, elastic-net L model and Camelot, represented as in Figure 4-1, demonstrating 
superior prediction by Camelot. Camelot chose a Chromosome XIII locus (227254-
243624) and expression of DHH1 as features to predict the drug response, the values for 
each segregant are represented in the same order within the panel. C. The full prediction 
function obtained from Camelot for response to H2O2. DHH1 is selected as a feature and 
confirmed by the triangle test, the Chromosome XIII marker is selected as a feature and 
the zoom-in score identifies ERG6 as the causal gene within the region, fitting with 
reports that over-expression of ERG6 leads to decreased resistance to hydrogen peroxide 
(Khoury et al., 2008). The Chromosome XIV locus is at position 449639-486861. Some 
notation for all Figures: green rectangles (such as ERG6) represent expression of a gene 
within a linked region. D. Averaged OD600 absorbance growth measurements of BY (red) 
and BY dhh1Δ mutant (blue) plotted against twofold dilution series of H2O2.  The error 
bars represent the standard error of the mean for all growth yield data. These data confirm 
the causal effect of DHH1.   
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4.2.1 From Prediction to Mechanism: DHH1’s causal role in response to hydrogen 

peroxide as an example 

 

There are 123 genes whose expression correlates with growth in hydrogen peroxide with 

an absolute coefficient of 0.35 or greater. Of these, Camelot only chose one transcript 

feature, DHH1 (Figure 4-4A): First, Camelot limits the set of possible candidate 

transcript features to 854 transcripts that are not particular to any specific drug, yet are a-

priori more likely to be causal based on the functional classification of their cognate 

genes.  Second, Camelot selects features using a bootstrap procedure on coefficients of 

regularized regression (Section 3.1). Bootstrapping further reduced the list of expression 

features to a single gene, DHH1. In the next stage, Camelot uses the triangle test to test 

the causal role of DHH1 in responses to drugs.  

 

The true value of gene expression comes to light when one focuses not on how resistant a 

strain is, but rather why it is so.  Rather than being a black box predictor, transcript 

features can help shed light on the mechanisms underlying resistance.   DHH1 was 

chosen as a feature for a large number of drugs, so we tested Camelot’s prediction that 

DHH1 plays a causal role in mediating resistance to these drugs.  DHH1 expression is 

negatively correlated with growth in the presence of hydrogen peroxide (correlation 

coefficient r=-0.44) and we tested the prediction that DHH1 influences drug response by 

measuring the growth yield of wild type and dhh1Δ strains in hydrogen peroxide (Figure 
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4-4). The dhh1Δ strain grew better than the wild type, confirming that DHH1 negatively 

influences the phenotype.   

 

This result complements the finding that Dhh1 colocalises with the sequence-specific 

RNA binding protein Puf3 and regulates the abundance of 153 Puf3-bound mRNAs (Lee 

et al., 2009). Puf3 is a factor that binds select nuclear-encoded genes involved in 

mitochondrial biogenesis and likely regulates the transport/translation/stability of these 

messages (Garcia-Rodriguez et al., 2007; Saint-Georges et al., 2008).  These Puf3 bound 

mitochondrial related genes are significantly up-regulated in dhh1Δ strains  (Lee et al., 

2009).  As DHH1 is expressed at a higher level in the BY parent, this strain might have a 

lower capacity for detoxification of the reactive oxygen species produced on hydrogen-

peroxide treatment and a lesser ability to withstand this insult.  Genes annotated for 

mitochondria are upregulated in the RM strain (Litvin et al., 2009) and this strain is 

predisposed towards respiratory growth (Smith and Kruglyak, 2008). 

Table 4-1: DHH1 predictions and validation results 
Prediction Control 

totarol 

H2O2 

valinomycin 

trifluoperazine 

dequalinium Cl 

benzethonium Cl 

hinokitiol 

lycorine 

tamoxifen 

hexylresorcinol 

 

DHH1 is a hub passing the triangle test for six drugs (left column). Five of these were 
tested; validated causal effects are in green, with one false positive listed in red. To assess 
the drug specificity of DHH1 mediated effects, four negative controls were tested (right 
column); confirmed negative predictions are listed in green, one false negative in red. 
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4.2.2 Testing the causal role of transcript features  

 

The abundance of the DHH1 transcript was selected by our bootstrap procedure as a 

feature that predicted the response to 10 different drugs.  After administering the triangle 

test, DHH1 passed as causal for only 6 of these drugs.  These were subsequently 

validated experimentally (Table 4-1, Figure 4-4 and Figure 4-5).  The variability in 

DHH1 expression across segregants arises because of polymorphism in MKT1 

(Chromosome XIV) (Lee et al., 2009), although it is likely that other genetic factors also 

affect DHH1 expression.  We believe that DHH1 expression is influenced by multiple 

genetic factors, that are individually too weak to detect, and that this explains why gene 

expression is so potent in improving prediction accuracy. 

 

We confirmed our predictions for the influence of DHH1 on growth in totarol, 

valinomycin, hydrogen peroxide and trifluoperazine. Benzethoniumchloride was the only 

false positive among the drugs tested (Table 4-1 and Figure 4-5).  We included lycorine, 

hinokitiol, hexylresorcinol and tamoxifen as negative controls to demonstrate that DHH1 

activity is drug specific. Only growth in tamoxifen was influenced by DHH1; indeed 

tamoxifen perturbs mitochondrial function (Cardoso et al., 2001; Tuquet et al., 2000). 

This demonstrates the stringency of our approach which is designed to minimise false 

positives and does not detect all genes that influence drug responsiveness or all drugs 

influenced by a gene. In summary, we confirmed 4/5 of the positive predictions tested 

and 3/4 of the negative predictions for DHH1, demonstrating the drug specificity of our 

predictions.  Although the drugs linked to DHH1 are diverse and include an antibiotic 
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(valinomycin) and an antipsychotic drug (trifluoperazine), they all affect mitochondrial 

function (Evans et al., 2000; Lee et al., 2005; Lee et al., 2008a; Nicolson et al., 1999; 

Nulton-Persson and Szweda, 2001; Safiulina et al., 2006; Sancho et al., 2007; Yip et al., 

2006).  This suggests a possible application of Camelot in predicting the mechanism of 

action of novel drugs.   

 

MGA2, a gene whose product is involved in fatty acid metabolism (Chellappa et al., 2001; 

Jiang et al., 2002; Kandasamy et al., 2004) was identified as another transcript feature 

predictive of growth for six drugs. Three of these (cerulenin, ikarugamycin, and tomatine) 

act by perturbing processes involved in fatty-acid and lipid synthesis and membrane 

permeability (Friedman, 2002; Hasumi et al., 1992; Vance et al., 1972).  Unsaturated 

fatty acids (FA) are essential components of membranes and FA synthesis is effected by 

controlling the stability of OLE1 mRNA.  Ole1 is required for the formation of 

monounsaturated FA precursors (Martin et al., 2007).   Mga2 acts to stabilise or 

destabilise the OLE1 message depending on the conditions (Kandasamy et al., 2004).  

The gene expression data show that in the non-perturbed state MGA2 expression is 

negatively correlated with OLE1 expression (r=-0.54) and positively correlated with the 

drug response.   

 

These examples illustrate the power of Camelot to identify genes that causally influence 

the response to multiple drugs, predict the mechanism of action of drugs and provide 

insight into the underlying biology. 
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Figure 4-5: Growth yield of BY and BY dhh1Δ	  strains	  in	  the	  presence	  of	  drugs.	  	  
Averaged OD600 absorbance growth measurements of BY (red) and BY dhh1Δ	  mutant	  
(blue)	  are	  plotted	  against	  a	  twofold	  dilution	  series for each drug. The causal effect of 
DHH1 was confirmed for our positive predictions, with the exception of benzethonium 
chloride. Negative controls show the specificity of the causal effect. Camelot predicted 
that the response to tamoxifen would be the same for BY and RM. Drugs written in green 
match Camelot’s prediction, whereas drugs written in red do not. 
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4.3 Using gene expression to identify causal genes within a linked region 

 

Transcript features relate to a single gene and hence directly identify the involved gene. 

DNA marker features are better founded in their causal nature, but typically involve large 

chromosomal regions containing tens of genes.  For these features, Camelot uses gene 

expression, to help pinpoint the causal gene within the linked locus. The zoom-in score 

(Section 3.2.2) uses gene expression to prioritise the likelihood that each gene within the 

linked region is causal.  Like the triangle test, the zoom-in score is a measure of how well 

gene expression predicts the phenotype.  Linkage implies that the marker is driving the 

causality; therefore the zoom-in score includes an additional measure for cis-linkage, how 

well the marker predicts the gene expression.  The zoom-in score incorporates both of 

these qualities, as well as conservation of the protein sequence to prioritise genes within a 

locus (Figure 3-7).   

 

Camelot chose two features for hydrogen peroxide, the DHH1 transcript and a region on 

chromosome XIII (locus 227254-243624) containing 88 genes (Figure 4-4C).  The zoom-

in score identified ERG6 as the causal gene within this region, i.e., polymorphism in the 

ERG6 sequence between the BY and RM strains is likely to be responsible for the 

differences in the response to hydrogen peroxide between the parent strains.  Over-

expression of ERG6 leads to decreased resistance to hydrogen peroxide (Khoury et al., 

2008), matching Camelot’s prediction.  These results demonstrate how the triangle test 
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and zoom-in score combine to provide a better understanding of the cellular response to 

each drug. 

 

 

Table 4-2: PHO84 predictions and validation results 
Prediction Control 

doxorubicin 

hexylresorcinol 

haloperidol 

furoxan 

pentachlorophenol 

TCPN 

ebselen 

dichlorophene 

tunicamycin 

To the left are high scoring drugs predicted to be influenced by PHO84, all 6 drug were 
validated including two previously associated with PHO84 (Perlstein et al., 2007)  (light 
green), and 4 new drugs associated with PHO84 (dark green).  To the right are low 
scoring drugs, not expected to be influenced by PHO84, PHO84 had no effect on the 
response for any of the three, validating the ability of the zoom-in score to make positive 
and negative predictions. 

 

 

Similar to linkage analysis (Perlstein et al., 2007), Camelot identified the two largest 

marker hotspots, a region on Chromosome XIII (locus 27644-33681), linked to 25 drugs 

and a region on Chromosome XIV (linked to 12 drugs).  While linkage alone only detects 

large multi-gene loci in this data set, the zoom-in score further identified PHO84 

(Chromosome XIII), as the top ranked causal variant for multiple drugs. Two of these 

drugs, tetrachloroisophthalonitrile and pentachlorophenol, were manually identified and 

verified previously (Perlstein et al., 2007).  PHO84 was top scored for a number of 

additional drugs linking to the Chomosome XIII hotspot, but scored poorly for other drug 



 

 

48 

phenotypes linking to this hotspot. We used the zoom-in score to distinguish which drugs 

are causally influenced by PHO84 and validated these predictions by growing wild-type 

BY and allele-swapped strains (BY strain containing PHO84 with one amino acid 

substitution, L259P, from the RM strain) individually in the presence of one of 9 drugs.  

We included drugs with both positive and negative predictions. Camelot correctly 

predicted both positive and negative responses 9/9 times, demonstrating that the zoom-in 

score can be used to identify which of the Chromosome XIII-linked drug phenotypes are 

causally influenced by the PHO84 allele (Table 4-2, Figure 4-6).  We performed a similar 

analysis for the drugs linking to the Chromosome XIV region and identified 3 drugs 

likely to respond to MKT1 and 3 linked drugs that are unlikely to be affected by MKT1.  

Again Camelot correctly predicted the response to the drugs in an allele swapped (BY 

MKT1-RM) strain 6/6 times (Figure 4-7). These data validate our approach and 

demonstrate that Camelot is also able to capture factors accounting for phenotypic 

variation, using markers as features, for a number of causal genes.  

 

 



 

 

49 

 
Figure 4-6: Validation of Camelot’s PHO84 predictions.  
Averaged OD600 absorbance growth measurements of BY (red) and BY with an allele 
swap for PHO84-RM (blue) are plotted against a twofold dilution series for each drug. 
All positive predictions from Camelot were confirmed, showing PHO84 variant is the 
cause of the difference in response to these drugs between BY and RM. Negative controls 
show the ability of Camelot to distinguish drugs that are not affected by PHO84, even 
though they show significant linkage to the locus. 
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Figure 4-7: Validation of Camelot’s MKT1 predictions.  
Averaged OD600 absorbance growth measurements of BY (red) and BY with an allele 
swap for MKT1-RM (blue) are plotted against a twofold dilution series for each drug. All 
positive predictions from Camelot were confirmed, showing that the MKT1 variant is the 
cause of the difference in response to these drugs between BY and RM. Negative 
predictions were also confirmed showing that Camelot can distinguish drugs that are not 
affected by MKT1, even though they show significant linkage to the locus. 
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Figure 4-8: Causal role of GPB2 in response to drugs.  
A. Strains were grown overnight in YPD medium, diluted to OD600 ~0.2 and plated with 
10-fold dilution on YPD+drug media (see Materials and Methods). The top 3 panels are 
photos of YPD plates containing DMSO (control), E6 berbamine or gliotoxin.  The 
bottom panels are photos of YPD plates containing DMSO or haloperidol.  The results 
show a large difference in drug sensitivity between BY and RM.  The allele-swapped 
strain (BY GPB2-RM) grows at a similar rate to the RM strain. B. Camelot identifies two 
loci (Chromosome I: 1-55329 and Chromosome XIII: 27644-33681) and causal genes 
encoded within these loci, GPB2 and PHO84, that are responsible for the response to 
haloperidol. 

 

 

4.4 GPB2 a new causal gene for multiple drugs.  

 

Both PHO84 and MKT1 have previously been shown to influence phenotypic differences 

between BY and RM, although Camelot successfully linked 4 new phenotypes (response 

to drug) to PHO84 and 3 new phenotypes to MKT1.  To further test Camelot, we looked 

to see whether it could identify new genes, not previously implicated in the differences 

between BY and RM.  One of the strongest signals from our zoom-in analysis comes 

from the locus of Chromosome I:1-55329, which links to growth under a number of 

drugs including haloperidol, E6 berbamine, and gliotoxin. Segregants bearing the RM 
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allele are highly sensitive to these drugs.  GPB2 is consistently the top scored gene at this 

locus for all these drugs.  Sequence alignment showed that GPB2 differs by 10 amino 

acid substitutions between BY and RM and that one of them is highly conserved across 

fungal species (P269L, BY-GPB2 encodes proline and RM-GPB2 encodes leucine).  We 

engineered an allele-swapped strain (BY GPB2-RM), in which the entire BY GPB2 

coding region was replaced with that from the RM strain (see Section 4.7.2) and 

experimentally validated Camelot’s prediction that GPB2 plays a causal role in response 

to these drugs by showing that the BY GPB2-RM strain is more sensitive to the presence 

of E6 berbamine, gliotoxin and haloperidol than the BY strain.  Indeed, the allele-

swapped strain is highly similar to the RM strain on E6 berbamine and haloperidol 

suggesting variation in the GPB2 sequence accounts for much of the difference in the 

response to these drugs (Figure 4-8A). 

 

Gpb2 is an effector of Gα protein Gpa2 and inhibits PKA downstream of Gpa2 which 

increases dependence on cAMP (Harashima et al., 2006; Peeters et al., 2006). Both 

gliotoxin and haloperidol affect the cAMP/PKA pathway. Gliotoxin is a fungicide that 

increases cAMP/PKA activity (Waring et al., 1997) , while haloperidol, a clinical 

antidepressant (dopamine D2 receptor antagonist) increases cAMP/PKA activity in 

striatum (Kaneko et al., 1992; Turalba et al., 2004).  These results support our finding 

that polymorphism in GPB2 has an effect on the response to these drugs and suggests that 

the mechanism of action involves G-protein signaling. Our findings suggest that E6 

berbamine, whose pharmacological effect remains unknown, may also have similar effect 

on the cAMP/PKA pathway. 
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The response to haloperidol, is highly variable among segregants. Although the 

mechanism of action could not be established based on linkage to a large region alone, 

Camelot provided clues by zooming in on GPB2 and PHO84.  These genes were 

subsequently validated as causal for the drug response phenotype (Figure 4-8B).  We 

assessed the combined influence of both genes for growth under haloperidol statistically, 

using data from the segregants.  Strains carrying both RM-PHO84 and BY-GPB2 grow 

better than strains with other combinations of alleles (Figure 4-9) indicating that PHO84 

and GPB2 may function through a common pathway. The involvement of Pho84 as a 

sensor and signalling molecule for phosphate-based activation of PKA (Giots et al., 2003) 

further implicates PKA function in the response to haloperidol.  

 

 

 

 

 
Figure 4-9: Analysis shows GPB2 and PHO84 interact with each other to influence 
the growth in the presence of haloperidol.  
Shown are the genotypes for PHO84 and GPB2, and growth in the presence of 
haloperidol. Segregants with both the PHO84-RM and GPB2-BY alleles have 
significantly better resistance (p-value from Wilcoxon rank-sum test) to haloperidol 
compared with other segregants. 
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4.5 PHO84 gene expression and feedback 

In total, we validated 18/18 predictions made using the zoom-in score, including 9/9 for 

PHO84.   While PHO84 has 2 SNPs between BY and RM in its coding region, there is no 

genetic variation in regulatory regions such as the promoter or 3’ UTR.  Moreover, the 

allele-swap strain, containing only one amino acid substitution (L259P) in the coding 

region of PHO84 in the BY background, recapitulated the growth rate of RM for many of 

the positive drugs tested.  So it is surprising that expression of PHO84, generated in the 

absence of any drugs, could accurately distinguish between drugs that are affected by 

PHO84 and those that are not.  To better understand why this information is encoded in 

the expression data we carried out RT-PCR using strains grown in YPD condition (no 

drug) to monitor PHO84 expression in the BY, RM and the allele-swapped (BY PHO84-

RM) strains.    
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Figure 4-10: Feedback in PHO84 expression.  
A. Expression levels of PHO84 in the BY, RM and the PHO84-RM allele-swapped strain. 
The expression of PHO84 in the allele-swapped and RM strains is similar and 
significantly lower than in BY. The fold difference is calculated relative to the BY strain. 
Since the allele-swapped strain only differs from the BY in the PHO84 coding sequence, 
feedback regulation must act via the PHO84 gene itself.  The error bars represent the 
standard deviation of three replicates.  All RT-PCR experiments were conducted 
independently at least three times.  B. A negative feedback loop regulates expression of 
Pho84 in response to the concentration of intracellular phosphate. When phosphate levels 
are low, Pho84 is expressed and transports inorganic phosphate into the cell, Pho84 is 
repressed as intracellular phosphate levels rise. C. Expression of PHO84 in SC+high 
phosphate media compared with in SC+low phosphate media for each strain. The cells 
were harvested 90 minutes after the addition of phosphate.  The allele-swapped and RM 
strains are repressed to a greater extent than BY in response to the addition of phosphate. 
D. Weak eQTL that influence the expression of PHO84.  These loci are enriched in genes 
involved in phosphate metabolism and phosphate transport. PHO84 expression links to 
regions that contain GTR1, NPP1, PHO84, PHO85, PHO86 and PHO87. The width of 
arrows corresponds to the significance of linkage (p-value for each linkage < 0.01, see 
Materials and Methods). 
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Though the allele-swapped (AS) strain contains BY cis- and trans- regulatory factors, the 

presence of the RM coding region alone (with one amino acid substitution L259P) 

brought the expression of PHO84 in the AS strain down to that of the RM strain (Figure 

4-10A). The difference in expression results from negative feedback that acts via the 

Pho84 protein in high phosphate (Figure 4-10B) (Wykoff et al., 2007).  To quantify the 

degree of negative feedback between strains we used RT-PCR to measure PHO84 

expression under both low and high phosphate conditions. As expected PHO84 

expression is significantly down-regulated in high phosphate, relative to low phosphate in 

all 3 strains (Figure 4-10C).  Nevertheless, the negative feedback is stronger in the RM 

and AS strains (817 and 170 fold change, respectively) relative to the BY strain that only 

goes down 11 fold.  In low phosphate, the gene expression for all 3 strains is similar, 

suggesting that the loop is not active. This implies that the relative strength of the 

negative feedback differs between strains in the high phosphate conditions that activate 

this loop.  

 

We used arsenate, a toxic non-metabolisable phosphate analogue, as an indicator of the 

relative affinity of Pho84 for phosphate.  The RM and AS strains are significantly more 

sensitive to arsenate, suggesting that the RM version of PHO84 is a more efficient 

transporter of phosphate than the BY strain (Figure 4-11).  This effect is mediated by 

Pho84 as addition of methylphosphonate (an inhibitor of Pho84) reverses this phenotype 

(data not shown).  It is likely that the differences in Pho84 function between BY and RM 

are responsible for the observed differences in drug sensitivity. Variation in gene 



 

 

57 

expression serves as an indicator of the variation in protein function, which acts via a 

feedback mechanism; the expression level itself is unlikely to be causal directly.   

The only region that links to PHO84 expression is its own. PHO84 has strong cis-linkage 

with p-value 6.3×10-5. We therefore asked why PHO84 expression might provide 

information beyond that of the presence of the PHO84 allele.   Removing the genome-

wide correction for multiple testing in eQTL, we detect additional regions, each with very 

weak linkage (Supplementary Table V in Chen et al. (2009)). These regions contain 

GTR1, NPP1, PHO85, PHO86 and PHO87, each involved in phosphate 

metabolism/transport that contain multiple non-synonymous coding SNPs.  This suggests 

that many genes associated with phosphate metabolism/transport (enrichment p-value 

7.4×10-6, see Materials and Methods) weakly influence PHO84 and the expression data 

represents the combined influence of these factors (Figure 4-10D).  
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Figure 4-11: Feedback regulation of PHO84 is stronger in RM than BY.  
Abundance of PHO84 for each strain in high and low phosphate media measured using 
RT-PCR. PHO84 is expressed at similar level in all three strains under SC+low 
phosphate conditions. The addition of phosphate results in repression of PHO84 
expression as expected; however, in the allele-swapped and RM strains, PHO84 is 
repressed to a greater extent than in the BY strain. The abundance of the control gene 
(ERV25) is similar for all three strains in high and low phosphate media. 

 

4.6 Discussion 

 

We systematically applied Camelot to predict growth of 104 yeast strains in the presence 

of one of a panel of 94 diverse drugs.  Camelot consistently performed well and 

successfully built robust predictive models for 87/94 drugs.  It is intriguing that a single 

gene expression profile measured in the absence of any drugs empowered the prediction 

of traits under novel conditions (+drugs) that are dramatically different from the 

perturbation-free conditions used for expression profiling.  
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The models constructed by Camelot are not “black box” predictors, but explain the 

variation in phenotype between the segregants by identifying the genes that influence the 

phenotype.  We use gene expression data to pinpoint causal variants within large linked 

regions and to identify genes, outside linked regions, whose change in expression 

mediates the drug response. For each feature type (transcript and marker) we took the two 

largest hubs (i.e., a gene associated with many drugs) and systematically validated 

Camelot’s predictions.  We also identified a new causal gene GPB2, and linked it to a 

number of drugs including the anti-depressant haloperidol.  25/27 predictions of causal 

factors associated with response to a drug were confirmed demonstrating that our method 

is robust. By incorporating signal from gene expression, Camelot not only identifies the 

causal genes driving the phenotype, but also provides insights into changes in the 

underlying regulatory network and the mechanisms involved.  For example, the results 

from Camelot suggest a role for mitochondria in response to a number of drugs.  

Identification of a transcript feature does not necessarily mean that the amount of 

transcript is responsible for the difference in phenotype between the strains.  In the case 

of DHH1 (whose coding sequence is identical in BY and RM) it is likely that a difference 

in DHH1 expression accounts for variation in the regulation of mitochondrial biogenesis 

genes between individual segregants and that this influences the drug response.  However, 

for PHO84, it is likely variation in Pho84 function that accounts for the differences in 

drug sensitivity and that gene expression varies through a feedback mechanism that 

“reports” the difference in protein function.  We note that a large number of the detected 

linkages between BY and RM involve feedback loops, including AMN1, HAP1, HAP4 

and ZAP1 (Ronald et al., 2005), This could explain why expression frequently helps in 
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the identification of differences in protein function, including in human genetics, where 

strong cis-eQTLs have been identified for genes whose cognate proteins harbour 

functional variation associated with human disease, e.g. SORT1 associated with lipid 

metabolism (Willer et al., 2008) and multiple genes associated with metabolic traits 

(Emilsson et al., 2008). 

 

Others have demonstrated how integrating genotype and gene expression data can be 

used to better understand the relationship between genotype to phenotype in populations 

and towards understanding disease (Chen et al., 2008; Emilsson et al., 2008; Mehrabian 

et al., 2005; Schadt et al., 2005) and the predictive value of gene expression towards 

classifying phenotype (Alizadeh et al., 2000; Golub et al., 1999; Huang et al., 2007; 

Kutalik et al., 2008; van't Veer et al., 2002).  However, to our knowledge, Camelot is the 

first approach to both quantitatively predict phenotype and identify genes that causally 

affect the phenotype.  Central to Camelot is the interplay between causality and 

predictability; causal genes are better predictors and good predictors are more likely to be 

causal.  Optimization of Camelot for both goals concurrently results in the model’s 

exceptionally robust performance across an unprecedented number of complex traits. 

 

Camelot uses gene expression data generated under control conditions to predict the 

phenotype in a new condition. The additional power gained from gene expression is 

remarkable given that the gene expression and genotype data used here were generated in 

the absence of drugs, two years before the generation of the growth (drug) data in another 

laboratory (Brem and Kruglyak, 2005; Perlstein et al., 2007).  This shows that our results 
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are based on a robust phenomenon and represent an inherent characteristic of the 

segregants. They are compatible with our work demonstrating that genetic variation alters 

cell state and predisposes the segregants towards different cellular responses (Litvin et al., 

2009).  We propose that gene expression is useful because it integrates information from 

multiple loci that are individually too weak to detect but which, in combination, 

contribute significantly to the phenotype (Figure 4-10D).  In this way, the combined 

influence of a large number of weak linkages (many of which are undetectable) can 

explain a large part of the heritable variation and as a consequence, gene expression data, 

generated under reference conditions, helps in predicting the response of segregants to 

new drugs. Three explanations are likely, the gene expression data might reflect (i) 

whether the cell is ‘prepared’ to tolerate a particular type of insult (Tagkopoulos et al., 

2008), (ii) genetic variation in the regulatory network and the manner in which it is 

perturbed in response to the conditions, or (iii) genetic variation in protein function via 

feedback loops. We expect that one or more of these explanations, describe the situation 

for distinct phenotypes, genes and conditions.      

 

Camelot’s integration of genotype and gene expression not only enhances its ability to 

pinpoint causal genes, but can potentially identify the mechanism of action and the 

biological processes involved, thereby expanding the number of drug targets, e.g., by 

identifying a connection between Dhh1 and mitochondria.  Our method therefore has 

immediate application for identifying alternative or novel drug targets, for example in 

drug resistant pathogens. Our approach is highly robust and is applicable to other 

phenotypes and species including humans. For example, genotype and gene expression 
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data generated from each patient in the non-perturbed (non-diseased or non-drugged) 

state prior to the onset of disease could be used to predict outcomes (positive or negative 

responses to a drug or adverse reactions) in response to the therapeutic interventions 

under consideration. A critical feature is that appropriate drugs/interventions could be 

predicted for the healthy individual before a drug is administered. While the statistical 

and algorithmic improvement required accommodating a genome of greater scale and 

complexity carries a heavy statistical burden, Camelot provides another step towards the 

realization of personalised medicine, as well as highlighting the power to be gained by 

exploiting gene expression data for this application. 

 

 

4.7 Materials and Methods 

4.7.1 Validation Growth Experiments  

 

Strains used in this study are listed in Table 4-3. The MKT1-SK1 (D55N) and PHO84 

(L259P) allele-swapped strain is as described (Deutschbauer and Davis, 2005; Perlstein et 

al., 2007). The dhh1Δ strain was a gift from Liz Miller (Columbia University).  MKT1, 

PHO84 and dhh1Δ, growth yield experiments were performed in multi-well (96- or 384-

well) plates as described in (Perlstein et al., 2007). Serial dilutions were carried out in 

replicate, and the resulting growth yield and IC50 values generated using GraphPad 

Prism (v. 4.01). 
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For plate assays, overnight cultures of cells were grown in YPD medium at 30°C, diluted 

to OD600~0.1 and plated at 10 fold dilutions on YPD plates containing DMSO or DMSO 

+ drug. Plates were incubated at 30°C or room temperature for 1 to 2 days for GPB2 or 5 

days for the arsenate assay. Final concentrations of drugs were as (Perlstein et al., 2007), 

For GPB2: gliotoxin (15.3µM), E6-berbamine (16.5µM) and haloperidol (66.6µM).  For 

PHO84: arsenate was used at a final concentration of 2mM and methylphosphonate at 

10mM as Mouillon and Persson (2005).   

 

 

 

Table 4-3: Strains used 
Strain Background Genotype Reference/source 

FY1333 BY4724 Mat alpha leu2Δ0 ura3Δ0 (Kanta et al., 

2006) 

HCY413 BY Mat a leu2Δ0 ura3Δ0 This study* 

RM11-1a  RM Mat a leu2Δ0 ura3Δ0 

ho::KanMX 

(Yvert et al., 

2003) 

HCY503 RM Mat alpha leu2Δ0 ura3Δ0 

ho::KanMX 

This study* 

HCY467 BY Mat a leu2Δ0 ura3Δ0 GPB2RM This study 

YAD350 BY Mat alpha his3Δ0 leu2Δ0 

lys2Δ0 ura3Δ0 MKT1(D30G) 

(Deutschbauer 

and Davis, 2005) 

BY4722 L259P BY Mat alpha leu2Δ0 ura3Δ0 

PHO84 (L259P) 

(Perlstein et al., 

2007) 

*Made by switching the mating types of FY1333 and RM11-1a respectively. 
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4.7.2 Generation of the GPB2RM allele-swapped strain 

 

The mating type of BY4724 was first switched to generate HCY413 using a plasmid that 

expresses HO from a GAL promoter. BY strains harbouring the GPB2 coding sequence 

from RM11-1a were generated using the Delitto Perfetto method of Storici and Resnick 

(Storici et al., 2003; Storici and Resnick, 2006). The GPB2 coding sequence and 5’UTR 

were sequenced to confirm that the coding sequence of the allele-swapped strain matched 

that of RM, while the upstream region remained that of BY.   Primers used in this study 

are listed in Table 4-4. 

 

 

4.7.3 RT-PCR of PHO84 

 

RT-PCR experiments were carried out to quantify the abundance of the PHO84 transcript. 

Total RNA was prepared using the Ambion RiboPureYeast kit according to the 

manufacturers instructions, with the exception that 10µg sample was digested twice each 

for 1 hour at 37°C with 2U DNase I. cDNA was made using the Stratagene AffinityScript 

kit and random primers.  RT–PCR was performed on a Chromo4 machine (BioRad) using 

iQ SYBR Green Supermix (Biorad) and primers listed in Table 4-4. Data were scaled to 

ERV25 (Pfaffl, 2001)).  
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For the low and high phosphate conditions, overnight cultures were washed twice with 

sterile distilled water and used to inoculate SC medium containing low phosphate 

(250µM). After at least two doublings cultures were split in two and phosphate was 

added to 15mM final (‘high phosphate’) to one flask.  The cultures were grown for a 

further 80 minutes before harvesting.  Phosphate media was made using YNB – 

potassium phosphate (Sunrise Science) supplemented with amino acids, glucose, 

ammonium sulphate and potassium phosphate.  Potassium chloride (10mM) was added to 

low phosphate media. 

 

Table 4-4: Primers used 
Name Sequence (5’ to 3’)  Use 

ERV25_F ttcgtgttgcgtttactgct RT-PCR 

ERV25_R gtgtctcttaatctctcctctct RT-PCR 

GPB2_F ccgtcggcgttgccttatt RT-PCR 

GPB2_R agtctgtcgacttggagatctt RT-PCR 

BY.GPB2_pGSKU_F taaagattgtgattcattggcaggtccattgtcgcattactaaatcataggctagg 

gataacagggtaatttggatggacgcaaagaagt 

PCR  

BY.GPB2_pGSKU_R ttatattctactactaaacaaagtttacaaagtgaaagcattgaaaactgccttttt 

cgtacgctgcaggtcgac 

PCR 

5'UTR.GPB2_F cgataagacggaatagaatagtaaagattgtgattcattggc PCR  

BY3'UTR.RMGPB2ORF_R ctactactaaacaaagtttacaaagtgaaagcattgaaaactgctttttatgcac 

taggatttacactag 

PCR 

MKT1_F ttggttgggcaagaaagatt RT-PCR 

MKT1_R tttcgcagcatttagctcct RT-PCR 

PHO84_F ctttgttctgtgtcatcggttt RT-PCR 

PHO84_R agttggttggcttaccgtct RT-PCR 
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4.7.4 Statistical Analysis  

 

Camelot, the elastic net L model and linkage analysis are evaluated with ten-fold cross-

validation (n=93~94). Elastic net L models are derived in the same way as Camelot 

models, except that only genotype features were allowed in regression. Linkage analysis 

is performed with Wilcoxon rank-sum test to scan the 526 merged markers for genome-

wide significant linkages (FDR=2%; p<5.6×10-5) (Perlstein et al., 2007).  Linear 

regression models are built on significant linkages using robust regression (robustfit 

function in Matlab). Classification accuracy is used to evaluate predictions of models. 

Growth data are discretized into three classes according to their normalized values: 

resistant to the drug, no significant response, and sensitive to the drug. Predictions of 

responses to drugs were made based on the predicted values from regression models. 

Classification accuracy (Acc) is defined as the number of correct classifications divided 

by the number of test data. 

 

The significance of the interaction between PHO84 and GPB2 alleles is assessed by 

Wilcoxon rank-sum test, where segregants with both the PHO84-RM and GPB2-BY 

alleles are treated as one sample and the other segregants as another independent sample.  

Enrichment of phosphate metabolism/transport-related genes (GO annotation) in the 

linked regions shown in Figure 6D was calculated using the hypergeometric distribution. 

Each linked marker was expanded to 40kb for the purposes of enrichment analysis.  The 
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linkages for PHO84 gene expression were obtained with Wilcoxon rank-sum test (p < 

0.01).   
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Chapter 5 Drug Sensitivity in Cancer Cell Lines 

5.1 Introduction 

 

Personalized medicine for human disease is a holy grail in modern clinical care. 

Clinicians envision that they can determine the optimal treatments for each individual 

patient based on his or her genomic profiles. With the recent advances in microarray and 

next-generation sequencing technologies, the prospects of personalized medicine look 

brighter than ever (Altelaar et al., 2013). Many efforts have been devoted to associate 

genomic profiles with diseases and clinical outcomes. For example, a large collection of 

gene expression profiles of human cell lines treated with chemical compounds has been 

used to associate gene signature with diseases and drugs (Lamb et al., 2006). Recently, a 

study reported that by monitoring an individual over 14 months with multiple molecular-

omics profiling, they were able to predict the onset diabetes (Chen et al., 2012). 

 

The use of genomics data to improve clinical treatment is perhaps most studied in cancer. 

Many pioneer studies have shown how one can use signatures of gene expression to 

predict clinical outcome for individual patients (Alizadeh et al., 2000; Kutalik et al., 2008; 

van't Veer et al., 2002). However, primary tumors are experimentally intractable for 

many functional studies. Collections of human cancer cell lines therefore provide an 

excellent system for us to study the genomic characteristics of cancers and how these 

characteristics can be associated with drug sensitivity (Heiser et al., 2012; Weinstein, 

2006). Recently, two large collections of drug screens and genomics profiles of cancer 
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cell lines have been published (Barretina et al., 2012; Garnett et al., 2012). Such 

resources are invaluable for the study of pharmacogenomics in cancer. Indeed, the two 

studies accompanying the data have shed light into how some drugs are potent for 

specific cancer types or cancers with specific mutations.  

 

These data also offer the opportunity to develop methods that can be used in a 

personalized medicine scenario. By associating genomic features with drug sensitivity in 

cancer cell lines, we may build models based on the associated features to predict the 

drug response of an individual (Heinemann et al., 2013; McLeod, 2013). Moreover, 

attribution of drug sensitivity to genomic features allows us to understand the mechanism 

of drug action and discover the underlying reasons for resistance to the treatment.  

 

A key challenge towards  linking genetic characteristics to drug sensitivity is the role of 

context in biological systems. It has long been known that interaction between genetics 

and context, such as environment and tissues, plays an important part in phenotypic 

variation (Dimas et al., 2009; Emilsson et al., 2008; Gerke et al., 2010). It is as if 

environment or tissues condition cells to activate different regulatory mechanisms, 

providing the context for diverse cellular phenotypes in addition to the influence of 

genetics. For example, regulation of gene expression has been shown to have patterns 

specific to tissues and cell-types (Dimas et al., 2009; Fu et al., 2012; Nica et al., 2011; 

Price et al., 2011). In tumorigenesis, diverse patterns of mutation, gene expression, and 

epigenetic regulation have also been observed in cancer-specific or tissue-specific 

manner (Bissell and Labarge, 2005; Wolff et al., 2010). For example, germ-line 
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mutations in DNA-repair genes BRCA1 or BRCA2 are mostly associated with breast and 

ovarian cancers, but rarely other tumors. Several hypotheses have been proposed to 

explain such tissue specificity (Monteiro, 2003). In addition, many studies have shown 

the induction of the tumor suppressor p53 and the regulation of its targets can be cell-type, 

tissue-type and stress dependent (Bouvard et al., 2000; Fei et al., 2002; Feng et al., 2007). 

Another example is the tissue- and gender-dependent mutation frequency of the 

oncogenic PIK3CA: higher frequency of mutation is observed in females than in males in 

colon cancers but not in breast cancers (Benvenuti et al., 2008). 

 

This context dependency of tumorigenesis impacts the efficacy of treatment. For example, 

PLX4732, a RAF inhibitor targeting oncogenic BRAFV600E, is a potent treatment for 

melanoma patients with the mutation (Bollag et al., 2010). However, colon cancer 

patients with the same mutation do not respond to PLX4732 (Kopetz et al., 2010). It is 

therefore important to take into account such context specificity, created by cancer types, 

when we analyze the genomics of drug sensitivity.  

 

Studies of such context-specificity may be the key to understanding the variation of drug 

response. Recent reports have shown that though BRAF is mutated frequently in both 

cancers, colon cancer expresses higher EGFR than melanoma. The difference of EGFR 

expression between these two cancers may mediate the drug resistance to PLX4732 in 

colon cancer (Corcoran et al., 2012; Prahallad et al., 2012). Moreover, the expression of 

EGFR in melanoma may also contribute to the variation of response to PLX4732. It is the 
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understanding of such variation that can help us make accurate predictions of response to 

treatments.  

 

It is no surprise that predictive models built with the consideration of context perform 

better than those without. For example, models built using only melanoma data give 

better prediction for drug sensitivity of melanoma samples than those built using data of 

mixed cancer types (Barretina et al., 2012). This argues that we should focus on one 

cancer type for predictive models for drug sensitivity. While such strategy allows us to 

avoid confounding influence of context, it constrains us to the data of a small number of 

samples. This poses a great challenge for model learning due to lack in statistical power. 

 

We utilize common grounds between cancer types to overcome this paucity of data. For 

examples, basal-like breast cancer and ovarian cancer shares many molecular signatures 

(Cancer Genome Atlas, 2012). Shared tumor-associated antigens (Chi et al., 1997) and 

dysregulated pathways (Prickett and Samuels, 2012) have been also reported in 

melanoma and glioma.  

 

Taking advantages of common genomic features, which may be shared between similar 

cancer types, we propose an algorithm that builds predictive models by selecting genomic 

features that are shared between cancer types, or are specific only in some cancer types. 

By pooling samples of similar cancer types together, we increase the power to uncover 

biomarkers predictive of drug sensitivity. Meanwhile, we take context-dependency into 
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account by allowing only genomic features that contribute predictive effects to specific 

types of cancers.  

 

In the next chapter, we propose an algorithm that aims to build predictive models for drug 

sensitivity of similar cancer types.  Contrary to previous methods that assume all samples 

have the same predictive features, we also explicitly learn if the samples of a subtype 

have different mechanism contributing to the phenotype. For data with multiple subtypes 

of samples, the algorithm also identifies the relevant subtype that dictates the context 

specificity. This suggests that it could be applied to data such as breast cancer where 

multiple subtypes have known to respond treatment differently (Heiser et al., 2012).  

 

 

5.2 Datasets and Goals 

 

Our goal is to devise a model that can predict drug sensitivity from genomic profiles of a 

tumor, taking into account cancer or tissue types. Here, cancer or tissue types act as 

context to influence the predictive programs of drug sensitivity. We aim to identify 

predictive features for drug sensitivity that are shared across context and predictors that 

are specific only for a certain context.  

 

We take the data from Cancer Cell Line Encyclopedia (Barretina et al., 2012) to study the 

association between drug sensitivity and both shared and context-specific genomic 

features among cancers. Data from CCLE includes large collection of cell lines (n=504) 
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of various cancers and tissue types. The cell lines were treated with one of 24 drugs at 

various concentrations. Sensitivity to each drug was characterized for each cell line from 

the growth under the influence of the drug. For our analysis, two phenotypes are 

considered for each compound: concentration that inhibits 50% of proliferation (IC50) 

and activity area above the curve fitted from the drug response data (ACT). In addition, 

mutation, copy number and gene expression profiles of the cell lines are used for the 

analysis. Three sets of data are extracted from the CCLE collection, including samples of 

breast carcinoma, ovary carcinoma, melanoma, glioma, and samples derived from 

haematopoietic and lymphoid tissues (see Section 7.2.1 for details).  

 

In the next chapter, we will first describe the split-regression algorithm. Statistical 

analysis of the algorithm will be discussed in Chapter 7 and biological results from the 

CCLE datasets will be discussed in Chapter 8. 
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Chapter 6 Split-Regression Algorithm 

 

Our aim is to identify relevant genomic features that are predictive of the phenotype, drug 

sensitivity. As in the problem posed in Chapter 2 and Camelot algorithm described in 

Section 3.1, the key to build a predictive model for drug response is to select relevant 

features from the genomic profiles.  

 

As we know, context plays an important role in biology. Cells of a person share the same 

genetic information, and yet each tissue is dramatically different from each other. Even 

when two tumors have the same mutations, the clinical outcome may be very different. 

For example, BRAFV600E is frequently observed in both melanoma and colon cancers, but 

the BRAF inhibitor PLX4732 only inhibits tumor growth in melanoma patients 

(Corcoran et al., 2012; Prahallad et al., 2012). Moreover, the context relevant to the 

response to a drug may not be known in advance.  

 

Due to the confounding influence of cancer and tissue types, we cannot simply apply 

linear regression or a Camelot-like algorithm to the data (Chapter 3). One straightforward 

solution is to limit the analysis to one cancer type at a time, since this will constrain the 

analysis within a context. The caveat with this strategy is that then the sample size is too 

small. For example, all cancers in the CCLE collection have fewer than 40 samples with 

drug sensitivity data, except non-small-cell lung cancer and melanoma. The lack of 

statistical power, due to small sample size, is exacerbated by the size and complexity of 
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the human genome. Compared to the yeast data described in Section 2.2 (~100 yeast 

strains and about 6000 genes in yeast genome), the human genome contains more than 

20,000 genes and 60 million DNA variants. This makes the feature selection a very 

challenging problem. 

 

In order to gain statistical power and still account for some context specificity, we pool 

samples of similar cancer types together for the analysis. The assumption is similar 

cancer types might share similar mechanisms contributing to drug sensitivity, as well as 

specific mechanisms to each cancer.  We developed an algorithm that aims to uncover 

predictive features that are shared across contexts and features that are predictive only a 

certain context.  A context can be a cancer type, tissue type, or cancer subtype. We refer 

to this context as the relevant subtype that separates individuals into two groups where 

the predictive program of drug sensitivity can be different.  

 

The intuition behind our algorithm is based on transfer learning theory (Raina et al., 

2006). First, because we learn models from samples of similar cancers, we essentially 

share the information between cancers by assuming they may share the same genomic 

features responsible for drug sensitivity. This is what enables us to retain enough samples 

to learn predictive models for sensitivity to each drug.  

 

Second, we transfer information between drugs. We assume that if two drugs induce 

similar response, their predictive programs would be similar as well. For examples, if two 

drugs induce highly correlated phenotypes and we have observed gene A as a predictor 
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for sensitivity to one drug, it is more likely gene A is also predictive for the other drug. 

Therefore, we can boost the learning power of our algorithm by sharing model 

information between the phenotypes.  

 

Here we employ L0-norm regularized regression to select features. L0-norm regularized 

regression has properties well founded in information theory and Bayesian statistics, and 

has recently shown to perform excellently in prediction tasks (Dhillon et al., 2011). In 

this chapter, a brief background of L0-norm regularized regression is presented in Section 

6.1, followed by details of our algorithm extended from L0-norm regularized regression 

(Section 6.2 and 6.3). Finally, statistical analysis of our algorithm on simulated and 

CCLE data are presented in Chapter 7. 

 

 

6.1 Background: L0-norm regularized regression 

 

There is a large family of regularized regression that aims to obtain a sparse 

model. They usually follow the form: 

 

 min
!

𝑦 − 𝑋𝛽 ! + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝛽  Eq. 6.1 
 

where y is the phenotype (ℝ!×!), X is the feature matrix (ℝ!×!) and 𝛽 is a vector of 

coefficients (ℝ!×!) for the regression model. The goal is to obtain a sparse solution to 

optimize Eq. 6.1 via enforcement of the regularization function 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝛽 .  
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Ideally, the penalty function should be a function of the number of nonzero entries in 𝛽. 

This corresponds to an L0-norm penalty function: 

 

 min   
!

𝑦 − 𝑋𝛽 ! + 𝑓( 𝛽 !) Eq. 6.2 
 

where 𝑓( 𝛽 !) is a function of L0-norm of ß.  

 

However, Eq. 6.2 is difficult to optimize, as it is a NP-hard problem (Dhillon et al., 2011; 

Natarajan, 1995). Many approximate penalty functions have been proposed. For example, 

lasso (Tibshirani, 1996) uses L1 norm as its penalty function whereas elastic net (Zou and 

Hastie, 2005) uses a combination of L1- and L2-norm. The relaxation of penalty function 

makes them convex problems and therefore can be solved analytically. Characteristics of 

these two algorithms in feature selection are described in Section 3.1.1.  

 

However, algorithms based on Eq. 6.2 can be very powerful. They correspond well with 

information theory and have a straightforward Bayesian interpretation. From an 

information theoretic perspective, the L0 norm penalty can be interpreted as the model 

description length. That is, when an entry in 𝛽 is nonzero, we can describe it with 

log2(p)+2 bits, where log2(p) bits are used to identify the index of the nonzero entry, and 

2 bits are used to encode the actual coefficient (Dhillon et al., 2011). The optimization 

problem Eq. 6.2 then corresponds to finding a model of minimum description length 

(MDL) (Rissanen, 1978, 1999), minimizing the fitting error while constraining the 

complexity of the model.  
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From Bayesian viewpoint, each feature has 1 𝑝 probability to be selected and have a 

nonzero coefficient (Cover and Thomas, 2012). This corresponds to a non-informative 

prior over the feature space while the minimization of sum of square errors correspond to 

the maximum of likelihood (Bickel and Li, 1977): 

 

 max
!

    log  𝑃 𝑦 𝑋,𝛽 + log𝑃 𝛽  Eq. 6.3 
 

where 𝑃 𝑦 𝑋,𝛽 ~𝑁 𝑦 𝑋𝛽,𝜎!  with σ2 as the variance of random noise. The solution to 

Eq. 6.3 is equivalent to an MAP (maximum a posteriori) estimate.  

 

Despite the lack of a closed form solution, L0-norm regularization has several advantages. 

First, the algorithm is nonparametric, since the sparse selection of predictors is guided by 

the minimum description length principle. Second, the correspondence between MDL 

(Eq. 6.2) and Bayesian prior (Eq. 6.3) lends the flexibility to adjust the belief of a feature 

being relevant or not. That is, we can employ different prior probabilities over 𝛽 to 

present our beliefs or preferences in features selection. The prior probability would be 

translated into number of bits required to encode each 𝛽, and therefore allows us to select 

features using the MDL principle. Third, a greedy algorithm has been recently proposed 

to obtain a solution to Eq. 6.2 and the resulting models are demonstrated to have 

excellent performance (Dhillon et al., 2011). The implementation of greedy search lends 

the capability for the algorithm to search for the relevant predictors in the large space 

spanned from the interaction of genomics and context. In the following section, we will 

see how to extend Eq. 6.2 to allow the encoding of context-specificity into the model. 
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Figure 6-1: Concept of split-regression.  
Two cancer types may have different genomic factors that are predictive of drug 
sensitivity. For example, the drug sensitivity of melanoma samples can be predicted by 
mutation of M and gene expression of A and S, whereas in glioma, expression of gene S 
and B are the predictors. Split-regression takes advantage of pooling samples together to 
gain statistical power, identifying both shared (gene S) and context-specific features (A, 
B and M). In cases where the relevant context is unknown, the algorithm searches for the 
best “split”, if any, to separate samples into two groups. 

 

 

6.2 Extended Model to Consider Context Specificity: Split-Regression 

 

Here we consider samples that may be a mixture of two populations, for example, a 

collection of cell lines of two cancer types. If these two cancer types share similar 

molecular characteristics, some genomic features may be predictive of drug sensitivity in 

both cancers. For example, because basal-like breast cancer and ovarian cancer have 

similar genomic signatures, it is likely same predictors can be used to predict drug 

sensitivity in both cancers.  When we pool samples of these two cancers together, we 

increase the power to uncover predictors that have weak effects on drug sensitivity. 
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Additionally, cancer-specific genomic features may be responsible for the drug response 

in each cancer. In order to capture this, we extend Eq. 6.2 to  

 

 
min

!,!!,!!!,!!!
(𝑦! − 𝑥!"𝛽!!

!

!

− 𝛿 𝑧!" = 1 𝑥!"𝛽!!!
!

!

  
!

!

− 𝛿(𝑧!" = 0)𝑥!"𝛽!!!
!

!

)!

+ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑡 + 𝑓( 𝛽! !)

+ 𝑓( 𝛽!! !)+ 𝑓( 𝛽!! !) 

Eq. 6.4 
 

 

where 𝑧!" is  a binary variable representing if sample i  is of cancer type t, and 𝛿(. ) is an 

indicator function that returns 1 when sample i is of the cancer type queried.  𝛽!  are the 

coefficients for shared genomic features, whereas 𝛽!! and 𝛽!! are the coefficients for 

cancer-type-specific features. 

 

Note that we also select t in addition to 𝛽!∙ .  The optimal t represents the relevant subtype, 

the best classification of samples, which allows us to optimize Eq. 6.4. Samples in a 

dataset may be classified in various ways. By treating 𝑧!" as binary we can extend the 

variable z to represent many different classifications of samples. For example, in breast 

cancer, we can classify if a sample “is of basal subtype or not” or “is of luminal subtype 

or not.” This translates into two binary variables. The binary representation also allows 

classifications to be hierarchical or overlapping.  
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As the subtype variables are binary, we also refer to the relevant subtype as a “split.” It 

indicates the subtype splits the samples into two groups, each of which may have its own 

set of predictors. We refer to the regression problem in Eq. 6.4 as split regression. Figure 

6-1 illustrates the concept of split regression. 

 

The regularization terms in Eq. 6.4 correspond to the penalty term in Eq. 6.2. As we use 

MDL to guide the feature selection, we need to decide a coding scheme to describe the 

features. Assuming no prior knowledge or preference for feature selection, we encode 

each feature using the same number of bits. For each subtype t, log2(T) bits are required 

to index t among all T classifications. For each coefficient in 𝛽!, 𝛽!! or 𝛽!!, we only 

need to describe those that are non-zero in the model. Each nonzero coefficient requires 

log2(p) bits to index the genomic features among all p features. In addition, two bits are 

used to encode the actual coefficient1 (Dhillon et al., 2011). These coding costs 

correspond to uniform prior probabilities of these variables being relevant or not (Section 

6.1). 

 

 

6.3 Transferring Knowledge Between Phenotypes 

 

Biological datasets are often of small sample size. This poses as a challenge for statistical 

analysis, since the power of computational methods largely relies on sample size. Here, 

                                                

1 In the actual implementation, two additional bits is used for each 𝛽!∙  to specify whether 
it is in 𝛽!, 𝛽!! or 𝛽!!. 
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we take advantage of the similarity between multiple drug responses. That is, when two 

drugs induce similar drug response across samples, we hypothesize their predictive 

programs would share common features. This approach is termed transfer learning. The 

idea behind transfer learning is that by sharing information between similar phenotype 

data, we increase statistical power to detect the features that are predictive of similar 

drugs. For example, the activity area data (Section 5.2) of samples are highly correlated 

among the drugs of the same family (Figure 6-2), such chemotherapy drugs paclitaxel, 

topotecan, and irinotecan. It is very likely the same genomic features are predictive of 

sensitivity to these drugs. 
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Figure 6-2: Similarity between phenotype data.  
The symmetric matrix represents Pearson correlation coefficients between the responses 
of each pair of drugs. The data is from CCLE. Activity area data of samples treated with 
each drug are used to calculate the correlation coefficients. Responses to drugs targeting 
EGFR (laptinib, erlotinib, ZD-6474, and AZD0530) are highly correlated. 

 

 

Transfer learning is therefore a technique that allows the algorithm to boost the 

confidence of feature selection for similar drugs. In our algorithm, this means the cost of 

a feature can be adjusted to reflect the probability of it being chosen to model the 

response to a drug. For example, if a feature is chosen for two similar phenotypes, it is 

more likely to be a relevant predictor for another similar phenotype. With this knowledge, 

we can change the penalty of this feature to reflect the probability of this feature being 

predictive of drug sensitivity.  
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In order to transfer the knowledge between phenotypes, we adopt an iterative learning 

procedure: we obtain approximate solutions to Eq. 6.4 in the first iteration, where each 

feature has the same penalty (uniform prior, Section 6.2). In the following iterations, the 

penalty of each feature for each phenotype is adjusted according to the frequency of the 

feature being selected in the previous iterations. The outline of this iterative learning 

procedure is described in Table 6-1.  

 

 

Table 6-1: Outline of Transfer Learning in the Algorithm 
for each y in Y 

estimate 𝛽 y with uniform prior; 

do until stop 

estimate prior Py(β) for each y based on 𝛽 Y; 

for each y in Y 

estimate 𝛽 y with Py(β); 

repeat; 

 

 

6.3.1 Estimation of Prior 

 

In Section 6.1 we describe a mapping between MDL and a Bayesian prior. The penalty of 

each feature can be interpreted as −log  (𝑃 𝛽! ). This mapping allows us to adjust the 

penalty by a prior 𝑃 𝛽!  learned from the previous iteration. Specifically, we estimate the 

prior for phenotype y by 
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𝑃! 𝛽! ≠ 0 =

𝑤!"𝑓!" + 𝑎!
!!!

𝑤!"!
!!! + 𝑏

 
Eq. 6.5 

 

 

where k enumerates phenotype, 𝑓!"is the frequency of feature j being selected for 

phenotype k in the previous iteration, a and b are hyper-parameters of a non-informative 

beta prior to regulate this Bernoulli distribution, and 𝑤!" is a similarity score between 

phenotypes y and k. We refer to 𝑓!" as the relevant frequency of feature j for phenotype k. 

 

Eq. 6.5 represents our belief of a feature j being relevant to phenotype y. This belief is 

iteratively updated according to models learned in the previous iteration and the 

similarity between the phenotypes.  

 

Similarly, the penalty of the relevant subtype t for phenotype y corresponds to  

 

 
𝑃! 𝑡  𝑖𝑠  𝑡ℎ𝑒  𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  𝑠𝑢𝑏𝑡𝑦𝑝𝑒 =

𝑤!"𝑓!" + 𝑎!
!!!

𝑤!"!
!!! + 𝑏

 
Eq. 6.6 

 

 

where 𝑓!" represents the frequency of subtype t being chosen as the relevant subtype for 

phenotype k. 

 

It is straightforward to estimate 𝑃!(𝛽!! ≠ 0) with Eq. 6.5, using 𝑓!"!  (the relevant 

frequency of feature j for phenotype k across all samples).  𝑃!(𝛽!!! ≠ 0) and 𝑃!(𝛽!!! ≠

0) can be derived similarly from Eq. 6.5 for subtype-specific features. Ideally, 
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𝑃!(𝛽!!! ≠ 0) and 𝑃!(𝛽!!! ≠ 0) should be estimated for each possible subtype t. However, 

when the number of possible subtypes T is large, it is impractical to estimate all the priors 

and infeasible to keep them in memory if the number of features p is large. Nevertheless, 

assuming the transference only occurs between similar phenotypes, we approximate 

𝑃!(𝛽!!! ≠ 0) and 𝑃!(𝛽!!! ≠ 0) with Eq. 6.5 using 𝑓!"!  (the relevant frequency of feature j 

for phenotype k for samples of subtype t) regardless of which subtype t is chosen as 

relevant in each run. 

 

 

6.3.2 Estimation of Relevant Frequency of Features  

 

In Eq. 6.5, 𝑓!" is either 0 or 1, since feature j can only be selected or not for phenotype k. 

To obtain a better estimation of 𝑓!", we use bootstrapping techniques (Efron, 1979). For 

each iteration, we subsample the cell lines multiple times, with replacement, and obtain 

𝛽′𝑠 for each sampling. Thus, 𝑓!" can be now estimated from the multiple bootstrapping 

results:  

 

 
𝑓!" =   

𝐼(𝛽!!" ≠ 0)!
!!!

𝐵  
Eq. 6.7 

 

 

where B is the number of bootstrapping runs,  𝛽!!" is the coefficient of feature j for 

phenotype k in bootstrapping run l and  𝐼 .  is an indicator function that returns one when 
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the criterion in the function is satisfied. Compared to a single run, bootstrapping allows 

us to estimate the relevant frequency of features robustly.  

 

In next chapter we will evaluate the models obtained by split-regression. First we will 

demonstrate the algorithm can accurately retrieve relevant features in simulated data 

(Section 7.1). Then, details of applications to CCLE data are described in Section 7.2. 
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Chapter 7 Statistical Analysis of Split-Regression 

7.1 Simulation 

 

We generated a synthetic dataset to test the proposed algorithm. In order to generate the 

data, the algorithm is first applied to CCLE blood cancer samples (n=70) where seven 

binary subtypes are defined  (Section 7.2.1). Mutation and gene expression features are 

used and 100 bootstrapping datasets are drawn to train the models for activity area of 

each drug (Section 7.2.1). The whole training and bootstrapping procedure is repeated for 

ten iterations, and the priors (Eq. 6.5) are updated after each iteration. 0.15 is used as a 

frequency cutoff to select features after the final iteration. One phenotype did not have 

any features passing the threshold, so it is dropped from further analysis. 

 

Of 23 phenotypes, 6 are set to have only shared features among all samples. That is, no 

subtype-specific features are used to simulate the sensitivity data for the 6 drugs. This is 

to test if the algorithm would only select shared features or if it would be biased to select 

subtype-specific features. The number of features used to synthesize phenotypes ranges 

from 2 to 11, excluding intercepts. After the features are selected, the coefficients are 

estimated using ridge regression with 𝜆 = 0.01: 

 

 min   
!

𝑦 − 𝑋𝛽 ! + 𝜆 𝛽 !
! Eq. 7.1 

 

The choice of ridge regression is to regularize the coefficients of collinear features. 
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Gaussian-distributed noise is added to the simulated phenotypes. The noise is drawn from 

𝑁(0,𝜎!), where 𝜎! = 𝜀!𝜎!!, proportional to the variance (𝜎!!) of synthetic data. 𝜀! is set 

to 0.2, 0.4 ,0.6, and 0.8 to generate different levels of noise.  

 

The algorithm is then applied to the simulated data. 100 bootstrapping datasets are drawn 

for modeling during each iteration, and 10 iterations are repeated to adjust the prior 

according to Eq. 6.5. The final model for each phenotype is determined by the relevant 

frequency of a feature (Eq. 6.7). For the relevant subtype, only the one with the 

maximum relevant frequency passing a predefined threshold, 𝜃, is considered significant 

and as the final relevant subtype. Three different threshold values, 0.3, 0.5 and 0.8, are 

used for 𝜃 to see the effects of the threshold. 

 

In order to evaluate the algorithm, three metrics are calculated: split accuracy, precision 

and recall. Split accuracy is defined as: 

 

 
split  accuracy  =  

𝐼(𝑡! = 𝑡!)!
!!!

𝐾  
Eq. 7.2 

 

   

where 𝑡! is the relevant subtype retrieved for phenotype k and 𝑡! is the true relevant 

subtype used to synthesize the phenotype. 

 

Precision and recall are defined for each synthetic phenotype k: 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛! =

𝐼(𝑓!" ≥ 𝜃  𝑎𝑛𝑑  𝛽!! ≠ 0)!
!!!

𝐼(𝑓!" ≥ 𝜃)!
!!!

 
Eq. 7.3 

 

 

 
𝑟𝑒𝑐𝑎𝑙𝑙! =

𝐼 𝑓!" ≥ 𝜃  𝑎𝑛𝑑  𝛽!! ≠ 0!
!!!

𝐼 𝛽!! ≠ 0!
!!!

 
Eq. 7.4 

 

 

where 𝜃 is the threshold for relevant frequency, 𝑓!" is the relevant frequency of feature j, 

and 𝛽!! is the coefficient used to synthesize the phenotype. Here 𝛽.! includes both shared 

and subtype-specific features. Intuitively, precision measures how many of the selected 

features are truly relevant whereas recall indicates how many relevant features are 

recovered. There is usually a trade-off between precision and recall. For example, a 

lenient algorithm can select as many features as possible to achieve high recall, but its 

precision would be low. In biology, high precision is often desired since it implies low 

false positive rate.   

 

 

7.1.1 Effects of transfer learning 

 

Figure 7-1 shows the split accuracy and Figure 7-2 shows the precision and recall of the 

results from the simulated data. For clear illustration, the precision and recall is averaged 

across all phenotypes. The figures show the evaluation metrics as a function of iterations. 

We can see that all three metrics improve after the first iteration. Interestingly, the 

improvement often stops after three to five iterations. After three to five iterations, split 
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accuracy and recall remain the same. For precision, there is a dependency between the 

number of iterations and the threshold chosen for the relevant frequency. When a 

conservative threshold is chosen (𝑓 ≥ 0.8), precision increases and stabilizes through 

iterations. However, when a lenient threshold is applied (𝑓 ≥ 0.3 or 0.5), precision starts 

to deteriorate after two or three iterations. This is caused by a problem called negative 

transfer (Caruana, 1998), meaning the transfer learning could actually negate the 

performance of models. This indicates that as we adjust the feature prior after each 

iteration, we also decrease the penalty for many features that are not relevant for the 

simulated phenotype. The sharing between phenotypes reinforces this adjustment of prior 

after each iteration. As a result, false positives start to be selected in bootstrapping runs. 

When a lenient threshold is applied to the relevant frequency to determine significance of 

features, these false positives would be chosen. This behavior is also emphasized when 

the noise level increases. 
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Figure 7-1: Accuracy of identifying the relevant subtypes (splits) in the synthetic 
data.  
The colored lines depict the accuracy of identifying the subtypes used to generate the data, 
as a function of the number of iterations. In order to decide if a chosen subtype is robust 
among bootstrapping runs, three different thresholds are used for the frequency of a 
subtype being chosen among bootstrapping runs. Only the most frequently chosen 
subtypes that pass the threshold are called relevant. Each panel shows the results from 
data with different levels of noise. 

 
Figure 7-2: Retrieval scores of relevant features for the synthetic data.  
Precision (top) and recall (bottom) are used to evaluate the retrievals of features used to 
generate the synthetic data. The scores are plotted as a function of the number of 
iterations. Similar to Figure 7-1, three different thresholds are used for the frequency of a 
feature being regarded as relevant after the bootstrapping runs. 
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7.1.2 Effects of bootstrapping 

 

Figure 7-3 shows the comparison of precision and recall from models with and without 

bootstrapping. The compared models are from the first iteration, in order to control for 

the effect of transfer learning.  

 

As shown in the figure, bootstrapping significantly increases the precision of the 

algorithms regardless of the threshold for the relevant frequency. Recall also benefits 

from bootstrapping when a lenient threshold is applied to relevant frequency. However, 

as the threshold increases, the algorithm becomes conservative so recall benefits little 

from bootstrapping in the first iteration. This is remedied by the following iterations as 

shown in Figure 7-2. 
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Figure 7-3: Effects of bootstrapping on precision.  
For each phenotype, the precision from the first iteration without bootstrapping (x-axis) is 
plotted against that from bootstrapped models (y-axis). Each dot represents a phenotype, 
colored according to the noise level added. A. A threshold of 0.3 is applied to the relevant 
frequency to determine significant features. B. Similarly as A., but a threshold of 0.5 is 
applied. C. and D. Recalls are plotted instead of precisions.  

 

 

7.1.3 Comparison with elastic net 

 

Barretina et al. (2012) and Garnett et al. (2012) applied elastic net regression to all 

samples. To evaluate the effect of considering context specificity, we applied elastic net 

to the synthetic data. For elastic net, 10-fold cross-validation is used to choose the 

parameters that optimize mean square errors (Barretina et al., 2012). The Matlab 
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implementation of elastic net, lasso, is used here . The range of 0.2 to 1 with increment of 

0.1 is used for selecting the parameter alpha, which controls the ratio of L1 to L2 norm 

penalty (alpha=1 means no L2 norm penalty is used).  The second parameter lambda, 

which controls sparsity, is chosen from the smallest to the largest possible values that 

give non-empty models. 100 bootstrapped runs of elastic net are applied to the each 

synthetic phenotype with the optimal parameters. All seven possible subtypes are treated 

as binary features and included for model training. For evaluation, we calculate precision 

and recall for elastic net models. Since elastic net does not select subtype-specific 

features, we simply evaluate the models regardless of subtype specificity.  

 

Figure 7-4 shows the comparison of precision and recall obtained from the split-

regression algorithm and elastic net. Although many models from the first iteration of the 

split-regression algorithm have zero precision (Figure 7-4A), most of them outperform 

elastic net after the second iteration (Figure 7-4B). However, in exchange for high 

precision and hence low false positive rate, the split-regression is more conservative than 

elastic net. As a result, its recall is not as good as elastic net (Figure 7-4C and D). This is 

also due to the fact that elastic net has the capability to select collinear features. Since the 

features used including gene expression, highly correlated features are expected. The 

results from Figure 7-4 suggests elastic net selects many more correlated features than the 

split-regression algorithm to achieve high recall, and therefore suffers from low precision. 
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Figure 7-4: Comparison between split-regression and elastic net.  
Bootstrapped elastic net (bt EN) is compared to bootstrapped split-regression (bt Split). A 
threshold 𝑓 ≥ 0.5  is applied to call significant features. A. The precision of each 
phenotype from bt EN (x-axis) is plotted against that from bt Split after the first iteration 
(y-axis). Each dot represents a phenotype, colored by the noise level added. B. As in A, 
but the precisions of bt Split are from the second iteration. C. and D. The recalls from 
both algorithms are plotted in the same manner, with the data of bt Split from the first 
iteration in C. and that from the second iteration in D. 

 

 

The results from the simulation validate the correctness and robustness of the proposed 

algorithm. It also sheds lights on the effects of bootstrapping and transfer learning. These 

results suggest the algorithm is relatively conservative due to the sparsity constraints. 

This is important since false positives can be costly in biology, especially when we want 

to pursue experiments to validate the roles of the selected features. 
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However, the split-regression algorithm also suffers a similar issue as L1-norm 

regularized regression lasso. They cannot handle collinear features well. Correlated 

features would compete with each other during bootstrapping and decreases their relevant 

frequency to the phenotype. This argues for a lenient threshold for the relevant frequency. 

We will discuss this in the next section when the algorithm is applied to the real data. 

 

 

7.2 Predictive Modelling for Drug Sensitivity from CCLE Data 

7.2.1 Data Processing 

 

Three sets of data are extracted from the CCLE collection. The first set includes breast 

carcinoma (n=27) and ovary carcinoma (n=25) samples because of the genomic 

similarities between basal-like breast cancers and high-grade serous ovarian cancers 

(Cancer Genome Atlas Research, 2011). The second set includes malignant melanoma 

(n=38) and glioma (n=25) samples. Melanocytes and neuroglia are both embryologically 

derived from ectoderm. Shared tumor-associated antigens (Chi et al., 1997) and 

dysregulated pathways (Prickett and Samuels, 2012) have been reported in melanoma and 

glioma. In addition, high similarity between samples of central nervous system and skin 

tissues is shown in the projection of samples on principal components derived from gene 

expression profiles (Figure 7-5). Therefore, it is possible that these two cancers share 

some biological pathways or genomic features contributing to drug sensitivity. For these 

two datasets, only one possible “split” is allowed, as we consider the cancer type provides 
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context governing the underlying mechanism of drug sensitivity. We refer to these two 

sets as CCLE-BreastOvary and CCLE-SkinGlioma hereafter.  

 

 

 
Figure 7-5: Similarity of gene expression profile between central nervous system 
and skin samples.  
Samples are projected to the first two principal components (PC1 and PC2) using 
principal component analysis with gene expression profiles. Samples of other tissues are 
omitted in the figure for clarity. 
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Table 7-1: Sample classification used as subtypes in CCLE-Blood. 
Subtype No. samples Cancer types included 

ALL 10 acute lymphoblastic leukaemia, B or T cell 

AML 10 acute myeloid leukaemia 

NHL 28 non-Hodgkin lymphoma 

NHL-B 22 non-Hodgkin lymphoma (B-cell) 

DLBCL 10 diffuse large b cell lymphoma 

Plasma 14 plasma cell myeloma 

Haema 15 haematopoietic neoplasm   

Each subtype is defined by a binary classification. Only samples of the cancer types 
included are treated as samples of the subtype. Subtypes are not mutually exclusive. 
Haema subtype is defined for samples of haematopoietic neoplasm, as opposed to 
samples of lymphoid neoplasm. 

 

The third set of samples extracted from CCLE includes cell lines derived from 

haematopoietic and lymphoid tissues (n=70). This set includes samples of many different 

subtypes, including ALL (acute lymphoblastic leukemia), AML (acute myeloid 

leukemia), CML (chronic myeloid leukemia), plasma cell myeloma, and etc. Seven 

binary classifications are defined for samples and treated as potential relevant subtypes 

for the analysis (Table 7-1). This set of data is designated as CCLE-Blood in the 

following text. 

 

Processed mutation and copy number data of the cell lines are obtained from the CCLE 

website (http://www.broadinstitute.org/ccle/home). Raw data of gene expression 

microarray are processed as follows. Samples are processed together with MAS5 

algorithm (Hubbell et al., 2002). Probes that are annotated to hybridize to multiple genes 

are discarded. Signals are then log transformed, and then we discard probes that have low 
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(< 6) or high (> 15.5) values in more than 20% of the samples in a dataset. Principal 

component analysis is applied to z-scores for the remaining probes. Outlier samples are 

identified from the projection of samples on the first three principal components. Log-

transformed data are then normalized according to the 75th percentile within each sample. 

Finally, values of probes hybridized to the same gene are averaged to derive expression 

of the gene.  

 

Since samples may be very resistant to the drug at the screened concentration in the 

CCLE data, many samples did not reach 50% inhibition of growth (Barretina et al., 2012) 

and hence do not have valid IC50. Therefore, when more than 80% of samples do not 

have valid IC50 of a drug, the IC50 phenotype of the drug is excluded from the analysis. 

IC50 values are then log transformed and treated as phenotype for modeling. Activity 

area (ACT) above the growth curve is treated as another phenotype associated with the 

drug sensitivity.  

 

To limit the search space of predictors, we compile lists of genes associated with each 

cancer from literature and the Disease database (Frankild and Jensen). Only mutation, 

copy number and gene expression of the genes associated with the analyzed cancers are 

included as potential predictors. Moreover, mutation data of genes with <10% mutated 

samples or wild types are excluded. For gene expression, genes with variance < 0.2 are 

filtered. For copy number, genes with variance < 0.15 are filtered. Table 7-2 summarizes 

the number of phenotypes, features, and available samples in each dataset. 
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Table 7-2: Summary of datasets for analysis. 
Dataset No. phenotypes No. features No. samples 

CCLE-BreastOvary 39 492 35-52 

CCLE-SkinGlioma 33 248 45-63 

CCLE-Blood 44 278 50-70 

No. samples is a range since the availability of phenotype data depends on each drug. 

 

 

7.2.2 Evaluation of Predictive Models  

 

We applied split-regression to the datasets CCLE-SkinGlioma, CCLE-BreastOvary, and 

CCLE-Blood. The details of data processing are described in Section 7.2.1. For each 

dataset, ACT (activity area above drug response curve) and log-transformed IC50 

(concentration at which 50% inhibition occurs) are used as phenotypes. Drugs that are 

inactive or induce small variation in response are filtered. Mutation, copy number and 

gene expression data of a pre-compiled list of genes are used as features to predict the 

phenotypes (see Section 7.2.1).  

 

Ten-fold cross-validation is used to evaluate the prediction. During each “fold”, 9/10 of 

samples are used to learn predictive models for the phenotype, and predictions are made 

for the 1/10 of samples held out during training. The procedure is repeated ten times so 

that predictions for all samples are obtained. For split-regression, features are selected 

through 10 iterations of transfer learning and 100 bootstrapping runs (Section 6.3). 
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Features with relevant frequency ≥ 0.3 after each iteration of transfer learning are used to 

build regression model to predict the test samples. This allows us to evaluate the 

performance of the algorithm at the end of each iteration. The use of the lenient threshold 

0.3 is to compensate for lack of ability to include collinear features. Ridge regression is 

used to obtain regression coefficients of the selected features (Eq. 7.1).  

 

For comparison, elastic net models are evaluated with the samples in the abovementioned 

ten-fold cross-validation. The subtypes used in split-regression are included as features. 

The two parameters of elastic net are selected within each “fold” using a nested ten-fold 

cross-validation optimizing mean square errors. 100 bootstrapping runs are also applied 

using the optimal parameters to select the final set of features. Same threshold for the 

relevant frequency is used to obtain the features. Predictions of test samples are made 

using models obtained by ridge regression (Eq. 7.1).  

 

Both models are evaluated with Pearson and Spearman correlation coefficients between 

the predictions and the phenotype data. When an algorithm fails to select any feature for a 

phenotype, the average of training data is used as prediction. 

 

First we observe the effects of transfer learning in split-regression (Figure 7-6). 

Predictions are improved through iterations, especially between the first two iterations. 

This is because uniform prior is used in the first iteration and the algorithm fails to obtain 

models for many phenotypes. However, the performance is improved through the 

following iterations. As the information of models is exchanged between similar 
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phenotypes, priors of features being relevant are adjusted. The algorithm starts to obtain 

relevant features, and the correlation coefficients are improved. The improvement 

generally stops after four to five iterations. 

  

Figure 7-7 to Figure 7-9 shows the comparisons between split-regression and elastic net. 

Predictions from elastic net correlate better with the phenotypes than those from the first 

iteration of split-regression. However, after transfer learning, split-regression outperforms 

elastic net for most phenotypes in CCLE-Blood (Figure 7-7) and CCLE-SkinGlioma 

datasets (Figure 7-8), although the performances of the two algorithms are comparable 

for CCLE-BreastOvary data (Figure 7-9).  

 

 

 
Figure 7-6: Effect of transfer learning.  
Spearman’s correlation coefficients between predictions and phenotypes are plotted as a 
function of iterations. Blue dots illustrate the trend of mean performance, and grey dots 
represent the performance of each phenotype in each iteration. 
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Figure 7-7: Comparison between split-regression and elastic net using CCLE-Blood 
data.  
Predictions are obtained via 10-fold cross-validation. Each dot represents the prediction 
score of a phenotype from elastic net (x-axis) and split-regression (y-axis). Predictions 
from the 1st, 2nd, 5th, and 10th iterations of split-regression are compared to elastic net. 

 
Figure 7-8: Comparison between split-regression and elastic net using CCLE-
SkinGlioma data.  
Annotations are the same as Figure 7-7. 
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Figure 7-9: Comparison between split-regression and elastic net using CCLE-
BreastOvary data.  
Annotations are same as Figure 7-7. 
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features are chosen according to their relevant frequency in bootstrapping runs. Figure 

7-10 shows the comparison of prediction performances when the number of features is 

controlled to be similar in the two algorithms. We observe that elastic net performs 

slightly better than before when model size is controlled. This corresponds to a more 

stringent threshold than 0.3 for elastic net. However, we can still see that many models in 

CCLE-Blood and CCLE-SkinGlioma still outperform elastic net in prediction. 

 

 

 

 
Figure 7-10: Comparison between split-regression and elastic net when model size is 
controlled.  
Elastic net is controlled to have similar number of features as split-regression. 
Annotations are same as Figure 7-7. 
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Figure 7-11: Influence of context specificity.  
Features from split-regression are obtained and used as shared features for all samples 
regardless of context. Annotations are similar as Figure 7-7, except x-axis corresponds to 
models with consideration of context. 
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after a few iterations. This is similar to the decrease of precision in our simulation after 

too many iterations are passed (Figure 7-2).  

 

 

7.3 Discussion 

 

Both the simulation and results from CCLE data elucidate the importance of context 

specificity in cancer pharmacogenomics. We propose an algorithm, split-regression, to 

include context specificity in linear regression.  Split-regression is a principled approach, 

based on both information theory and Bayesian statistics. The employed regularization 

enforces a strong constraint on sparsity. Indeed, we show split-regression is more 

conservative than elastic net.  

 

The application to CCLE data shows how important context can affect model learning. 

Using split-regression, we can pool samples of similar cancer types and learn both shared 

features and cancer-type specific features. This not only sheds lights on the common 

genomic features conferring phenotypic variation across cancer types, but may also 

reveal the relevant subtype governing the context specificity. For example, the relevant 

context is unclear in CCLE-Blood where seven categorizations of samples are defined. 

Split-regression is designed to uncover the relevant subtype, or split, that dictates context-

specific predictive programs for drug sensitivity. We will see examples of this in the next 

chapter.  
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Chapter 8  Context Specificity of Drug Sensitivity in Cancer  

 

Identifying biomarkers to predict prognosis or response to treatments can improve health 

care and enhances our understanding of the biological mechanism underlying the efficacy 

of drugs. In this chapter, we discuss the predictive features that are associated with a few 

highlighted drugs and their implication in drug sensitivity between cancer types. 

 

Here we run split-algorithm on the same datasets using all samples. The final model is 

obtained from the last (10th) iteration and a threshold of 0.3 is applied to the relevant 

frequency to determine if a predictor is significant. Description of data and features used 

are described in Section 7.2.1. 

 

 

8.1 Expression of JAK3 and AKT1 Are Predictive of Sensitivity to HDAC 

Inhibitor Panobinostat in Haematological Malignancy  

 

Panobinostat, a histone deacetylase inhibitor (HDAC), is a potential treatment for 

haematological malignancy (Deangelo et al., 2013; Lemoine et al., 2012; Lemoine and 

Younes, 2010; Prince et al., 2009). Recently, a study showed that panobinostat inhibits 

JAK/STAT pathway activity in Hodgkin lymphoma cell lines, and that the reduced 

pathway activity may lead to cell death (Lemoine et al., 2012). However, the study also 
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showed that panobinostat treatment leads to activation of mTOR (mammalian target of 

rapamycin) via reducing phosphorylation levels of AMP-activated protein kinases2.  

 

Our algorithm suggests copy number of JAK2 (Janus kinase) as a predictor of sensitivity 

(IC50) to the drug for all CCLE-Blood samples. Moreover, the algorithm chooses the 

split “plasma cell myeloma or not” to separate the samples into two groups, where high 

expression of JAK3 predicts high sensitivity in myeloma samples; and high expression of 

AKT1 (v-akt murine thymoma viral oncogene homolog 1) and VAPA (vesicle-associated 

membrane protein-associated protein A) predict increased sensitivity in non-myeloma 

samples (Figure 8-1). The selection of JAK2/3 and AKT1 suggests the roles of 

JAK/STAT and PI3K pathways in the response induced by panobinostat. 

 

Interestingly, for the ACT of panobinostat, the algorithm chooses another split “non-

Hodgkin lymphoma (B-cell) or not” (NHL-B). Expression of CDK2 (cyclin-dependent 

kinase 2) is selected as a predictor only for non-Hodgkin lymphoma (B-cell), whereas 

expression of DOT1L (DOT1-like, histone H3 methyltransferase) is selected for the rest 

of samples (Figure 8-1).  

 

The predictive power of DOT1L suggests an association between histone methylation and 

inhibition of HDAC. DOT1L plays a key role in leukemia associated with MLL (mix 

lineage leukemia) fusions (Bernt et al., 2011; Chi et al., 2010; Slany, 2009). The product 

of MLL fusion genes can recruit DOT1L, which leads to aberrant histone methylation 

                                                

2 adenosine monophosphate-activated protein kinase. 
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marks and drives leukemogensis (Guenther et al., 2008; Krivtsov et al., 2008; Nguyen et 

al., 2011). Recently a research group used connectivity map (Lamb et al., 2006) to 

identify panobinostat as a treatment for MLL-rearranged infant acute lymphoblastic 

leukemia (Stumpel et al., 2012). Surprisingly, the HDAC inhibition restored DNA 

methylation in the promoters of selected proto-oncogenes and down-regulated the 

expression of both fused-MLL and the proto-oncogenes. In our model, high expression of 

DOT1L predicts increasing sensitivity to panobinostat for non-NHL-B samples, 

suggesting those with high level of DOT1L expression have increased histone 

methylation, which could be restored by panobinostat. 

 

For the drug response to panobinostat, our models imply two possible classifications of 

samples that govern the underlying key predictors that are associated with the drug 

mechanism. Each of these models indicates the context of predictability for the drug 

response in a cancer-type or cell-type specific manner. 
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Figure 8-1: Predictive features of sensitivity to panobinostat in CCLE-Blood.  
Split-regression identifies two different splits of samples for ACT and IC50 phenotypes, 
respectively. All features are gene expression profiles except JAK2, which is a copy 
number feature. Yhat is the prediction from leave-one-out procedure, where all samples 
but one are used to obtain regression coefficients. The coefficients are then used to make 
prediction for the held-out sample. It is repeated for prediction of all samples. 

 

8.2 Gene Expression Suggests Activities of PI3K, MAPK and NF-κB 

Pathways Are Predictive of Sensitivity to Paclitaxel in Melanoma and Glioma 

Cell Lines 

 

Paclitaxel targets tubulin and stabilizes the microtubule, leading to defect in cell division. 

Sensitivity to paclitaxel has been associated with PI3K (Bava et al., 2011; Nguyen et al., 

2004), MAPK (Bacus et al., 2001; Boldt et al., 2002) and NF-κB pathways (Mabuchi et 

al., 2004; Nguyen et al., 2004; Patel et al., 2000). Both melanoma and glioma cell lines in 

CCLE show a wide range of sensitivity to paclitaxel (ACT ranges from 3 to 7). Split-

regression selects both shared and cancer type-specific features for the phenotype ACT of 

paclitaxel. Expression of both AKT1 and WT1 (Wilms tumor 1) are selected as shared 

predictors (Figure 8-2). Interestingly, expression of DUSP14 (dual specificity 

phosphatase) is selected for only glioma samples whereas mutation of PTEN 
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(phosphatase and tensin homolog), and expression of DUSP6 and USP6 (ubiquitin 

specific peptidase 6) are selected for melanoma samples. The selection of AKT1 and 

PTEN suggests the regulation of PI3K/AKT pathway may be predictive of resistance to 

paclitaxel in melanoma cells. Additionally, transcription of DUSP6 (dual specificity 

phosphatase 6) is regulated by ERK (Bermudez et al., 2010; Patterson et al., 2009). 

Expression of DUSP6 is therefore a predictor of MAPK activity. Its overexpression has 

been reported in melanoma with BRAFV600E mutations (Bloethner et al., 2005). Recent 

studies also associate expression of DUSP6 with sensitivity to the chemotherapy agent 

cisplatin (Li and Melton, 2012) and the antidiabetic drug metformin (Martin et al., 2012). 

Our algorithm selects DUSP6 as a melanoma-specific predictor, suggesting aberrant 

MAPK activity may confer resistance to paclitaxel in melanoma.  

 

Selection of DUSP14 as glioma-specific feature is intriguing since DUSP14 encodes an 

atypical DUSP (Patterson et al., 2009). DUSP14 modulates ERK activity and negatively 

regulates proliferation in pancreatic β-cell (Klinger et al., 2008). In our model high 

expression of DUSP6 and DUSP14 is predictive of resistance to paclitaxel in melanoma 

and glioma, respectively. Both DUSP6 and DUSP14 suggest high levels of MAPK 

activity may be involved in paclitaxel resistance. Indeed, several studies have shown that 

paclitaxel-induced apoptosis depends on the MAPK pathway. Inhibition of ERK activity 

could increase sensitivity to paclitaxel in many cancers including colon, lung, and 

cervical cancers (Bava et al., 2011; Nguyen et al., 2004).  
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WT1, Wilm’s tumor 1, is a transcription factor playing roles in regulation of growth and 

apoptosis. It has been implicated as both an oncogene and a tumor suppressor in many 

cancers (Hartkamp et al., 2010; Wagner et al., 2003). The aberrant expression of WT1 is 

associated with proliferation in both melanoma (Wagner et al., 2008; Zamora-Avila et al., 

2007) and glioma cell lines (Clark et al., 2007; Clark et al., 2010). Intriguingly, WT1 

negatively regulates transcription of IGF-1R (insulin-like growth factor I receptor) and 

activity of IGF-1R signaling can in turn activate MAPK and PI3K pathways (Pollak, 

2008). From our model, active IGF-1R signaling is inferred from low expression of WT1, 

which predicts resistance to paclitaxel. Indeed, inhibition of IGF-1R has been implicated 

in sensitivity to paclitaxel in non-small cell lung cancer (Spiliotaki et al., 2011) and breast 

cancer (Beech et al., 2001).  

 

On the other hand, predictors for the IC50 phenotype of paclitaxel include the expression 

of NOTCH1 (shared), CXCR4 (shared), PDGFRA, PI3KCA1 and REL (melanoma-

specific) (Figure 8-2). Close inspection suggests CXCR4 may be a glioma-specific 

predictor. It is chosen as a shared or glioma-specific feature with similar frequency (0.35 

for shared and 0.33 for glioma). The expression of CXCR4 (chemokine receptor 4) has 

been associated with invasiveness in glioma (Ehtesham et al., 2013) and resistance to 

paclitaxel in stem-cell-like glioblastoma (Liu et al., 2006). The selection of PDGFRA and 

PI3KCA1 again suggests the association between PI3K and the toxicity of paclitaxel in 

the two cancers. Moreover, NOTCH1 and REL (member of NF-κB) implicate the role of 

NF-κB in sensitivity to the drug. High expression of both NOTCH1 and REL are 

associated with increasing sensitivity in melanoma samples.  
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Together our model suggests PI3K, MAPK and NF-κB pathway activities are predictive 

of sensitivity to paclitaxel in melanoma and glioma, with different genes in the pathways 

modulating the responses in each cancer. It also suggests that complex mechanisms and 

cross-talk between these pathways could underlie the resistance to paclitaxel toxicity. 

 

 

 

 
Figure 8-2: Predictive features of sensitivity to paclitaxel in CCLE-SkinGlioma.  
Similar as Figure 8-1, all features are gene expression profiles except PTEN mutation. 

 

8.3 Resistance Predictor WT1 May Suggest Combined Therapy 

 

Resistance to therapy is a major challenge for cancer treatment. Often resistance to drugs 

is associated with aberrant pathway activities. As several genes in our models seem to 

serve as proxies to pathway activity, we ask if the association between expression of 
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genes and drug resistance may suggest combinatorial treatments. The assumption is, if a 

gene is predictive of hyper-activation of an oncogenic pathway and is associated with 

resistance to a drug, inhibition of the pathway may overcome the resistance and sensitize 

individuals to the original therapy. 

 

In CCLE-SkinGlioma dataset, low expression of WT1 is associated with resistance to 

paclitaxel, topotecan, and irinotecan for all samples. All three drugs are cytotoxic agents 

used in chemotherapy. Both topotecan and irinotecan target DNA topoisomerases. Since 

low expression of WT1 implies high activation of IGF-1R, inhibition of IGF-1R may 

overcome the resistance to these chemotherapeutic agents. Indeed, beneficial effects of 

combining IGF-1R inhibitors with paclitaxel has been reported in non-small cell lung 

cancers (Goto et al., 2012; Gualberto et al., 2011; Spiliotaki et al., 2011), with topotecan 

in Wilms tumor cells (Bielen et al., 2012), and with irinotecan in colon cancers (Calzone 

et al., 2013; Flanigan et al., 2010). For glioma, inhibition of IGF-1R is shown to enhance 

the sensitivity to etoposide, which also targets topoisomerase (Yin et al., 2005).  

 

 

8.4 Discussion 

 

Context specificity plays an important role in biology. It allows cells with the same 

genetic information to differentiate into diverse cell types for various physiological 

functions. In cancer, context specificity may influence response to treatment. For 

example, a mutation in BRAF is observed among different tumors, but BRAF-targeted 
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therapy does not work in all cancers (Corcoran et al., 2012; Kopetz et al., 2010; Prahallad 

et al., 2012). This is because the regulatory programs and signaling pathways have 

contextual activities that assert a strong influence on phenotype. 

 

Context presents an even greater challenge for understanding tumor biology and 

treatment when we consider that multiple subtypes are often found in the “same” cancer 

type. For example, subtypes of breast cancer can have very different response to the same 

treatment (Heiser et al., 2012). The complication of context gets exacerbated when 

signaling pathways are rewired in different cancers. This may explain why often a potent 

therapy works for some patients but fails to alleviate tumor progression in others. These 

challenges emphasize the need for personalized medicine: treatments are tailored 

specifically for a patient sample in the context of its genomic profile.  

 

Current efforts to screen drug sensitivity of large collections of cancer cell lines 

(Barretina et al., 2012; Garnett et al., 2012) provide a model system for personalized 

medicine.  However, since the number of samples of each cancer type is limited, 

computational analysis either has to neglect context specificity or is underpowered by 

sample size. Furthermore, for cases where the relevant subtypes are not clear, we cannot 

separate samples into groups for model learning; a naïve approach would have to ignore 

contextual effects.  

 

In order to tackle this problem, we propose an algorithm that explicitly accounts for 

context specificity. The algorithm aims to identify predictive features that are shared 
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among all samples, and features that are context-specific. For data where the relevant 

subtype is unknown, the algorithm seeks the relevant classification of samples, if any, to 

provide context specificity. Hence, we can pool samples of similar cancer types together, 

benefitting from the sample size to uncover shared features and meanwhile searching for 

context-specific features to predict drug sensitivity. 

 

Our results demonstrate the importance of context. We show that dependence of drug 

sensitivity on MAPK pathway activity can manifest in expression of distinct genes in 

melanoma and glioma. In CCLE-Blood data where the relevant subtype for drug 

sensitivity is unknown, split-regression learns the relevant classifications of samples to 

reveal the effects of context. Interestingly, the NHL-B (non-Hodgkin lymphoma, B-cell) 

is the relevant subtype chosen for most phenotypes, followed by NHL (non-Hodgkin 

lymphoma) and Plasm (plasma cell myeloma). Table 8-1 lists the frequency of each 

classification chosen as the relevant subtype. The result may suggest different 

mechanisms and drug responses in the lineages of haematopoietic malignancy.  

 

Table 8-1: Number of phenotypes associated with subtypes. 
Sample classification Number of phenotypes associated 

NHL-B 15 

NHL 7 

Plasm 7 

AML 6 

Haema 5 

DLBCL 3 

ALL 1 
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Transfer learning in our algorithm not only boosts the learning power, but may also help 

reveal relations between drugs and pathways. In CCLE-Blood data, expression of CRKL 

is selected as a predictor to response to 17-AAG (target: HSP90), erlotinib (EGFR), L-

685458 (gamma-secretase), LBW242 (XIAP), lapatinib (EGFR), and nilotinib (ABL). 

CRKL is a substrate of BCR-ABL and plays an important role in leukemia (Hamilton et 

al., 2006; Sattler and Salgia, 1998). The Pearson’s correlation coefficients between the 

ACT of these drugs range from 0.24 to 0.54, suggesting different degrees of similarity 

between them. It also implies the responses to these drugs may be mediated by the 

activities of EGFR, Notch, and BCR-ABL signaling pathways and perhaps the cross-talk 

between them. Interestingly, treatments combining nilotinib or17-AAG with imatinib 

(Gleevec, targeting BCR-ABL) have shown some synergistic effects in leukemia patients 

(Gorre et al., 2002; Hawkins et al., 2005; Radujkovic et al., 2005; Weisberg et al., 2007). 

 

The association between WT1 and chemotherapeutic agents indicates that IGF-1R 

pathway activity underlies the drug response to those compounds. Indeed, distributed 

pathway activities have been associated with drug resistance, even in the case of targeted 

therapy (Rosenzweig, 2012). It will be interesting how one can use the predictive model 

to not only suggest the efficacy of a drug, but also recommend potential combinatorial 

treatment. 

 

Our split-regression algorithm currently only supports one split, that is, only two groups 

of samples in a model. However, the heterogeneity and similarity between samples may 
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not just be limited to such simplified binary classifications. While we can increase the 

number of splits in a model, the complexity and search space also increase tremendously. 

Nevertheless, since the algorithm is based on information theory, implementation with 

heuristic and greedy search will allow flexible handling of such complex models. It is 

therefore feasible to extend the algorithm to consider multiple subtypes in a model, if the 

number of available samples provides sufficient statistical power.  

 

New technologies and data collection give us the prospect of pharmacogenomics, but the 

complexity of the human genome, inter- and intra-cellular interactions present great 

challenge. In this thesis, we present two complimentary methods for modeling 

phenotypic variation with genomic features. Both methods are shown to be powerful to 

take on difficult problems and reveal interesting biological insight into drug sensitivity. 

These methods demonstrate the principles of computational modeling for drug sensitivity, 

highlight the challenges of personalized medicine and indicate potential solutions. 

As various functional and genomic data such as siRNA screening (Cheung et al., 2011; 

Luo et al., 2008) are made available, our methods can be easily extended to integrate 

information from different data types. We believe such computational modeling will 

become more common, and will provide the foundation for the future of personalized 

medicine. 
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