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Abstract

The main goal of this thesis was to help in the identification of genetic
variants that are responsible for complex traits, combining both linear and
nonlinear approaches.

First, two one-locus approaches were proposed. The first one defined
and characterized a novel nonlinear test of genetic association, based on
the mutual information measure. This test takes into account the genetic
structure of the population. It was applied to the GAW17 dataset and
compared to the standard linear test of association. Since the solution of
the GAW17 simulation model was known, this study served to characterize
the performance of the proposed nonlinear methods in comparison to the
linear one. The proposed nonlinear test was able to recover the results
obtained with linear methods but also detected an additional SNP in a gene
related with the phenotype. In addition, the performance of both tests in
terms of their accuracy in classification (AUC) was similar. In contrast,
the second approach was an exploratory study on the relationship between
SNP variability among species and SNP association with disease, at different
genetic regions. Two sets of SNPs were compared, one containing deleterious
SNPs and the other defined by neutral SNPs. Both sets were stratified
depending on the region where the polymorphisms were located, a feature
that may have influenced their conservation across species. It was observed
that, for most functional regions, SNPs associated to diseases tend to be
significantly less variable across species than neutral SNPs.

Second, a novel nonlinear methodology for multiloci genetic association
was proposed with the goal of detecting association between combinations
of SNPs and a phenotype. The proposed method was based on the mutual
information of statistical significance, called MISS. This approach was com-
pared with MLR, the standard linear method used for genetic association
based on multiple linear regressions. Both were applied as a relevance crite-
rion of a new multi-solution floating feature selection algorithm (MSSFFS),
proposed in the context of multi-loci genetic association for complex disea-
ses. Both were also compared with MECPM, an algorithm for searching
predictive multi-loci interactions with a criterion of maximum entropy. The
three methods were tested on the SNPs of the F7 gene, and the FVII levels
in blood, with the data from the GAIT project. The proposed nonlinear
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method (MISS) improved the results of traditional genetic association me-
thods, detecting new SNP-SNP interactions. Most of the obtained sets of
SNPs were in concordance with the functional results found in the litera-
ture where the obtained SNPs have been described as functional elements
correlated with the phenotype.

Third, a linear methodological framework for the simultaneous study of
several phenotypes was proposed. The methodology consisted in building
new phenotypic variables, named metaphenotypes, that capture the joint
activity of sets of phenotypes involved in a metabolic pathway. These new
variables were used in further association tests with the aim of identifying ge-
netic elements related with the underlying biological process as a whole. As a
practical implementation, the methodology was applied to the GAIT project
dataset with the aim of identifying genetic markers that could be related to
the coagulation process as a whole and thus to thrombosis. Three mathema-
tical models were used for the definition of metaphenotypes, corresponding
to one PCA and two ICA models. Using this novel approach, already known
associations were retrieved but also new candidates were proposed as regu-
latory genes with a global effect on the coagulation pathway as a whole.
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Preface

During the last decade, Genome-Wide Association Studies (GWAS) have
become a standard practice in the genetic study of human diseases. Until
2005, the field was mainly a labyrinth, given the bare knowledge on ge-
netic variants and genetic risk factors along the human genome. However,
with the completion of the Human Genome Project in 2003 and the In-
ternational HapMap Project in 2005, researchers now have a set of tools
that make it possible to find the genetic contributions to common diseases.
The first GWAS was reported in 2005, investigating age-related macular
degeneration [151]. It compared 96 patients with 50 healthy controls, and
identified 2 SNPs with significantly different allelic frequencies between the
two groups. However, the start of the era of GWAS is marked with an-
other landmark publication published in Nature in 2007, which has been
considered the first major GWAS [322]. This study, carried out by the Well-
come Trust Case Control Consortium, was the first large and well-designed
GWAS, testing around 400000 SNPs in 14000 cases of seven common di-
seases (coronary heart disease, type 1 diabetes, type 2 diabetes, rheuma-
toid arthritis, Crohn’s disease, bipolar disorder, and hypertension) and 3000
shared controls. It was successful in uncovering many new genes underlying
these diseases. Since then, a large number of GWAS have been published,
which are now reported in several GWAS databases. GWAS have rapidly
grown in scale and complexity, with studies now looking at over a million ge-
netic markers in cohorts approaching hundreds of thousands of individuals.
Nowadays, over 2000 loci have been reported to be significantly and robustly
related with disease risk. However, many discoveries have been detected as
spurious due to various failures on the experimental design. This has lead
to a deep discussion between researchers on the success of GWAS.

One of the main hopes of GWAS was that, as for Mendelian diseases,
it would be able to identify genetic variants involved in complex disea-
ses. So far, it hasn’t really happened. GWAS represent a great investment
which lead to disappointing results. In his review published in the American
Journal of Human Genetics in January 2012, Peter Visscher estimates that
around 500 thousands chips of SNPs have been necessary for carrying out
the GWAS published to date at, on average, 500 dollars per chip, which
lead to a total sum of 250 million dollars invested for GWAS research in the

vii



viii

past decade [308]. If there are a total of around 2000 discoveries, it indicates
that each discovery has cost 125 thousands dollars. Thus it seems that the
number of findings is not in correspondence with the investment.

Moreover, the discordance between SNP discoveries obtained from diffe-
rent GWAS for the same disease suggests that false positives exist in such
results. Actually, this is one of the major problems of GWAS. This is the
reason why, nowadays, the findings from a GWAS are viewed as a preli-
minary prioritization list of candidate relevant SNPs. This list is available
for further analysis using statistical tools that accumulate evidence of ge-
netic association. These secondary analyses are very likely to provide a
strongest prioritization of the results. In their review published in 2010 in
the American Journal of Human Genetics, Cantor et al. highlight three
main strategies for prioritizing SNPs obtained with GWAS [43]. A fre-
quent method for prioritizing GWAS results is to compare several GWAS
via a meta-analysis. Meta-analysis is a standard and validated approach
consisting in the statistical analysis of a collection of analytic results for
the purpose of integrating the findings of each study [72]. In the context
of GWAS, meta-analyses combine comparable test statistics across indepen-
dent studies of the same phenotype, weighting them by the confidence in the
study-specific results. Note that this practice is computationally demanding
since it supposes to repeat the analyses several times. The second approach
for SNP prioritization is to search for epistasis within a single GWAS study,
in order to find stronger results, only revealed when genes interact. As it is
addressed in chapter 7, this strategy consists on revealing combinations of
SNPs significantly associated with the phenotype under study, that should
not be individually relevant. This prioritization alternative consider that
one or more significant interaction provides additional evidence of associa-
tion. The third prioritization approach takes profit on the information from
genetic pathways. This set of methods integrates the results of a GWAS
and the genes in a known molecular pathway to test whether the pathway
is associated with the disorder. As described in chapter 8, this approach
strongly depends on the definition of the pathway selected for providing a
biological instrument for enriching GWAS results [120].

One of the most common and strong cause of false positive findings is
that a massive number of hypothesis tests are conducted simultaneously.
This increases the type I error that occurs when statistical tests are used
repeatedly. There has been no clear consensus about how this problem of
multiple testing should be dealt with. However, it has been proven that the
Bonferroni correction is too much conservative and is not always adequate,
since true disease genetic markers with small effects would be hidden under
the significance level and then lost within the background noise. As a con-
sequence of this, the genetic variants identified through GWAS only explain
a small fraction of the overall genetic variance of disease risk. As McClellan
and King pointed out, it is now assumed that common risk variants fail to
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explain the vast majority of genetic heritability for any human disease [201].
It is suggested that this failure is the result of a wrong initial hypothesis
underlying GWAS. GWAS rely heavily on the ”common disease, common
variant” (CDCV) assumption, which states that the genetic risk for common
disease is mostly attributable to a relatively small number of common ge-
netic variants. However this hypothesis was certainly stated for convenience
considering that the available catalog of human genetic variation (built up by
efforts such as the HapMap project) is largely restricted to common variants.
The first and most obvious candidate to explain the ’missing’ heritability
are rare or low frequency variants, since they are not sufficiently frequent
to be captured by current GWA genotyping arrays. In a discussion con-
ducted in the New England Journal Of Medicine in 2009 about the success
or failure of GWAS, David Goldstein presented a hard criticism to GWAS,
suggesting that a non-trivial fraction of the genetic risk of common diseases
is the result of rare variants and that current GWAS technologies are not
able to unravel the proportion of variation due to rare variants[95]. The
fundamental problem is that genotyping chips are not always able to tag
rare variation. This could be solved with higher-density SNP chips incorpo-
rating variants with lower frequencies. A second candidate to account for
a substantial fraction of human genetic variation could be structural varia-
tion. In the last five years, widespread, large-scale insertions and deletions
of DNA, known as copy number variations (CNVs), have been identified
even in healthy genomes. These variants have been shown to play a role
in variation in human gene expression and in human evolution. However,
the study of CNVs is still in a preliminary stage, since current sequencing
technology only detect a small proportion of CNVs. High-resolution arrays,
containing millions of probes, can be used to explore CNVs in some areas of
the genome. For the complete detection of CNVs from patients and controls,
whole-genome sequencing, preferably using methods with much longer read
lengths will be required.

Definitely, the solution for both alternatives will be large-scale next gene-
ration sequencing projects like the 1000 Genomes Project, which will provide
a complete catalog of every variant in the genomes of both patients and con-
trols. The problem will not lie so much on the sequencing itself but on the
interpretation. Then, new analytical techniques will be required to convert
the data into useful information.

In contrast with the criticisms against GWAS, Visscher makes a deter-
mined defense in favor of GWAS advocating that even if they have failed
in explaining the genetic variation underlying human diseases in their to-
tality, at least they have lead to new discoveries about genes and pathways
involved in complex disorders providing new biological insights [308]. In this
direction, Hardy and Singleton support GWAS with a kind comparison. If
the genetics of complex diseases is comparable to a jigsaw puzzle, we have
put the edges and corners in place thanks to GWAS and now have a frame-
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work to perform an extended and deep analysis to decipher the genetic
architecture of complex disorders. And if this comparison was real, this
thesis would pretend to be a small piece of this puzzle, which major aim
is to provide a methodological environment for novel techniques to genetic
association studies.
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Chapter 1

Introduction

1.1 Thesis Introduction

This thesis is outlined in the field of the genetic study of complex diseases.
With the completion of the Human Genome Project in 2003 and the Inter-
national HapMap Project in 2005, researchers now have a set of research
tools that make it possible to find the genetic contributions to common di-
seases. More recently, even more complete repositories such as the 1000
Genomes project, including rare variants, are becoming very useful for the
characterization of genetic variants correlated to diseases. These tools in-
clude high-throughput genotyping technologies and computerized databases
that contain the reference human genome sequence, a map of human genetic
variation, and a set of algorithms for the analysis of whole-genome samples
for genetic variations that contribute to the onset of certain diseases.

In particular, genome-wide association studies (GWAS) involve rapidly
scanning genetic markers across the whole genome in a population to find
genetic variations associated with a particular disease. The results of GWAS
are useful for researchers to develop better strategies to detect, treat and
prevent the disease. GWAS have been particularly useful in deciphering the
genetic architecture of Mendelian disorders, caused by mutations in a single
locus. However, complex diseases are not controlled by only one locus but
they are influenced by the interaction of multiple loci. In this case, every lo-
cus should only have a minor or moderate individual contribution but should
need to interact with each other in order to exert their influence. Moreover,
complex diseases tend to involve greater difficulties in phenotype definition,
so that several traits may be measured for a disorder or its risk factors.
Sometimes, some of these phenotypes are correlated between them so that
there may be genetic variants affecting several of these traits simultaneously.
These pleiotropic effects are also of great importance in the genetic study of
complex diseases.

The standard procedure for studying genetic association consists in ex-
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ploring the linear correlations and interactions between genetic variants and
physiological traits. Linear regression models are commonly used for mo-
delling the relationship between predictors (genetic loci) and a clinical out-
come (a disease or a related trait). Thus, the behavior of these techni-
ques will strongly depend on the degree of nonlinearity in the mapping
between loci and traits. Nonlinearities can arise when different mutations
lead to the same trait (locus heterogeneity), when mutations are reached by
certain models of dominance, when phenotypes are environmentally deter-
mined, without a genetic compound (phenocopy) or when the dependence
between genetic loci, environment and traits is not governed by linear pat-
terns. Therefore, exploring the nonlinear correlations between genetic va-
riants and clinical traits may provide useful information for understanding
the genetic structure of complex diseases.

1.2 Thesis Objectives

The main goal of this thesis is to help in the identification of genetic variants
that are responsible for complex traits such as cardiovascular diseases. In
particular this thesis aims to propose a nonlinear methodology for genetic
association studies of complex diseases.

In order to achieve this ultimate objective, it can be detached in a set
of underlying goals which would serve as a road map for the development of
this thesis, as described below:

• The first goal of this thesis is to develop a nonlinear test of association
between one genetic variant and one trait or disease. In particular
this thesis aims to apply nonlinear correlation measures from infor-
mation theory. In particular, this includes exploring the properties of
information theoretic measures for their suitable application to genetic
data.

• An adjacent goal of this thesis is to apply the nonlinear methodology to
genetically stratified populations. This implies taking into account the
genetic structure o the population when measuring genetic association
between genetic loci and diseases.

• Another goal of this thesis is to extend the nonlinear test for multi-
loci association, taking into account the effect of the interactions be-
tween several genetic variants in the prevalence of diseases. This im-
plies developing algorithms for the search of multi-loci interactions and
applying them with a nonlinear association criterion.

• In order to consider all the possible ways of interaction between genetic
loci and complex diseases, another purpose of this thesis is to capture
the pleiotropic effects of genetic variants on several traits involved in
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complex diseases. This involves analyzing multiple phenotypes simul-
taneously and studying the association between genetic variants and
their common variability.

• In order to validate the proposed techniques, another goal of this thesis
is to compare them with the traditional linear techniques applied on
real data.

1.3 Thesis Outline

This thesis is organized into 9 chapters arranged into 3 parts. The aim of
the chapters in the first part is to provide an introduction to the subject of
this thesis, to describe the state of the art in this field and to introduce the
basic concepts necessary for a proper understanding of this document. In
particular, chapter 1 is an introduction of this thesis, with the motivation
of the work, its main objectives and the description of its outline, in which
these words are found. Chapter 2 introduces basic terms and concepts in
genetics, setting the biological bases of this work. Chapter 3 offers a review
of methods and algorithms for studying the genetic association between ge-
netic variants and diseases. Finally, chapter 4 introduces the concepts and
quantities in information theory as well as a review of the application of
these measures in Bioinformatics and more specifically to the genetic ana-
lysis of complex diseases. The second part of this manuscript contains four
chapters concerning the original contributions of this thesis. In particular,
chapter 5 contains a descriptive characterization of the datasets used during
this thesis. Chapter 6 focus on studying the relationship between a single ge-
netic marker and a phenotype. This chapter contains an exploratory study
on sequence variability characteristics of markers related to disease, and
proposes a nonlinear methodology for one-locus genetic association based
on information theory. Chapter 7 describes a novel methodology for iden-
tifying the multi-loci genetic association between several markers and one
phenotype also using the mutual information measure. Chapter 8 studies the
association between single genetic variants and several phenotypes involved
in complex diseases. Finally, the third part of this document contains the
conclusions of this thesis, containing a list of the outcome and contributions
provided by this thesis, as well as recommendations for future work.
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Chapter 2

Background

Genetics is the science that studies variations between individuals and their
inheritance. It has attracted the attention of scientists and philosophers
since ancient times. Nowadays, it has emerged into the world of medicine
trying to provide new tools for diagnosis, monitoring and treatment of di-
seases. The different disciplines arising from or related to genetics converge
to the common goal of identifying genetic variants responsible for diseases.
This chapter aims to provide a brief historical overview of the science of ge-
netics as well as to introduce some concepts and terms concerning genetics
for a better understanding of this thesis.

2.1 From Hippocrates to the future

Although genetics is a relatively young discipline, the idea which it is based
on –inheritance– comes from afar. The Greek philosophers already proposed
the first theories about inheritance. Hippocrates theory comes near the later
ideas that Darwin called “pangenesis” which describes that each part of the
body produce hereditary material called “gemmules” collected by gametes.
Aristotle discarded this hypothesis by suggesting that individuals were made
by something he called ‘the substance’, which was found in women, and the
‘form’, which came from men. Aristotle believed that living things gradually
changed from plants through animals, ending in the highest form, humanity.
This was the first time the idea of evolution had been recorded.

However, the history of classical genetics started in the late 1800’s and
the early 1900’s. In 1866, Gregor Johann Mendel, an Austrian Augustinian
monk, published his study on pea plants, where he showed that the inheri-
tance of certain traits followed particular laws [204]. These are now known
as the Mendelian laws of inheritance. Mendel’s work was not given any
attention in the scientific community until the 20th century, when the bases
of genetic science were established. Contemporarily with Mendel, Darwin’s
theory of evolution by natural selection motivated discussions about modes
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of inheritance. Even if Darwin’s own theory of heredity, pangenesis, was
not well accepted, it has served different geneticists around the world to
re-discover Mendel’s theories about inheritance. In 1900 three European
botanists, Hugo De Vries, Carl Correns and Erik Tschermak, published the
results of their respective experiments carried out in the 1890s that corro-
borate Mendel’s experimental results and his conclusions. In particular, De
Vries asserted that “inheritance of specific traits in organisms comes in par-
ticles” and defined this particles with the term “pangenes” [70], what we
now know as genes. Another important contribution of De Vries’ work was
the introduction of the term “mutation” in his “Mutation Theory” [71]. He
stated that new species arise from the preexisting ones in a single generation
by a sudden appearance of marked discontinuous and inheritable variations
that he called mutations. It was not until 1906, when Bateson introduced
the term genetics to define the study of biological inheritance and the science
of variation [19]. All the theories about inheritance and biological variation
proposed in the first decade of the 20th century presented some contradic-
tions in many aspects. In 1918, Ronald Fisher, well known for his contribu-
tions to statistics, initiated a new movement consisting on an unified theory
that integrates all these ideas [84]. In particular, Fisher contributed with
his statistical knowledge for laying the foundations of population genetics,
showing that the observed variation between characters could be the result
of the action of several mutations and that natural selection could change
gene frequencies in a population.

Simultaneously, research in biochemistry was progressing in such a way
that in the second half of the 20th century, genetic research was mainly
redirected to what is now called the DNA era. In 1869, the biochemist
Friedrich Miescher isolated a new substance from the nuclei of white blood
cells. He called it nuclein and now it is known as nucleic acid or more
commonly DNA (DeoxyriboNucleic Acid). DNA is found in each cell of an
organism and is organized into long structures called chromosomes. Diploid
organisms (e.g. humans or most mammals) have two homologous copies of
each chromosome, one inherited from the mother and one from the father,
so that the number of chromosomes is counted in pairs. For example, human
cells contain 23 pairs of chromosomes, 22 pairs of autosomes and one pair
of sex chromosomes, giving a total of 46 chromosomes per cell. In 1919,
Phoebus Levene suggested that DNA basic building blocks are composed by
one of the four nucleotides (adenine, guanine, cytosine and thymine) linked
to a sugar (deoxyribose). He also suggested that these units are linked
through a phosphate group, forming a chain of bases repeated in a fixed
order. However, the structure of this chain was not resolved until 1953,
when James Watson and Francis Crick proposed a double-helix model for
the structure of DNA [320] (Figure 2.1).

In 1958, Francis Crick articulated the central dogma of molecular bio-
logy, a framework for the understanding of the relationship between DNA
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Figure 2.1: The DNA Structure [Image from Wikimedia Commons].

and proteins [64]. In the following years, scientists tried to understand
how DNA controls the protein production. This process is divided into two
steps: (1) the transcription by which the information contained in the DNA
is transferred to a complementary copy of the DNA molecule called messen-
ger RNA (RiboNucleic Acid), and (2) the translation, where the nucleotide
sequence of a messenger RNA is translated to an amino acid sequence that
forms a protein (Figure 2.2). Nowadays, a gene is defined as the portion
of unit of heredity residing on the DNA that codes for a protein or for any
RNA chain that has a function in the organism.

The discovery of the DNA structure and function encouraged researchers
to decipher the entire DNA sequence (genome) of different species. This dis-
cipline is called genomics and started in 1972 when Walter Fiers determined
the sequence of a gene: the gene for Bacteriophage MS2 coat protein and
posteriorly completed the entire genome for this organism [82]. In 1996, the
entire DNA sequence of Saccharomyces Cerevisiae was the first eukaryote
genome sequence to be released. In 2003, after more than a decade of re-
search, the human genome sequencing was completed by an international
consortium of research centers around the world led by the U.S. Depart-
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Figure 2.2: The protein synthesis [Image adapted from the National Human
Genome Research Institute].

ment of Energy and the National Institute of Health. This partnership was
formally initiated in 1990 with the creation of the Human Genome Project
(HGP). The project goals were (1) to determine the sequence of the 3 billion
bases that constitute the complete human genome, (2) to identify the 20.000
to 25.000 human genes and (3) to make them accessible for further biologi-
cal studies. The project was scheduled for 15 years, but fast technological
advances accelerated the process so that a first draft was published in 2001
[59] and in 2003 the human genome sequence was officially completed. It
has been one of the most important milestone for medicine and biology.

The publication of numerous genome sequences, including that for hu-
man, has driven the biosciences into the post-genomic era. In addition to
identifying all the genes in genomes, it is crucial to store and distribute the
information in databases. Advanced computer-based methods are required
for making sense of the mountains of biological data. Bioinformatics (or
computational biology) is the field that handles the data. The term bioin-
formatics is used for almost all computer applications in biological sciences,
and it was originally coined in the mid-1980s for the analysis of sequence
data [15]. One of the first and most important application in Bioinformatics
has been the development of the BLAST (Basic Local Alignment Search
Tool) program, with the aim of comparing a sequence against all the se-
quences of a database in a reasonable time [7]. The problem was already of
a great interest in the 80’s, when databases of sequences were much smaller
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than now, but computers were slower than now as well.
Since then, biological sequence data is accumulating rapidly. Figure 2.3

illustrates this showing the growth of GenBank, the most important se-
quence database. It is observed that the period of accelerated growth coin-
cides with the completion of the HGP, setting the bases for the development
of high-throughput sequencing technologies [20], such as DNA microarrays.

Figure 2.3: Growth of GenBank (from [20]).

DNA microarrays consist in chips with an array of submicroscopic spots
containing a specific DNA sequence. The spots are analyzed using techni-
ques based on DNA hybridization with fluorescence microscopy [252]. More
recently, Next-Generation Sequencing (NGS) platforms have become an
additional alternative to microarrays. These technologies, also referred to as
RNA-seq, consist in applying sequencing technologies to sequences of com-
plementary DNA (cDNA) in order to to get information about a sample’s
RNA content [318]. Thanks to these advances, the cost of sequencing an en-
tire genome has significantly decreased. Although Moore’s Law is reserved
to computing hardware, predicting that computing power would double ev-
ery two years, DNA sequencing costs have followed a similar pattern for
many years, approximately halving each two years, as shown in Figure 2.4.
Nowadays, the cost of a sequencing a genome with NGS is around 6000 dol-
lars and it is predicted that it will presumably be around 1000 dollars per
genome in a not too distant future.

These improvements have made possible the development of initiatives
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Figure 2.4: Evolution of the cost of sequencing a genome [Image from Na-
tional Human Genome Research Institute].

such as the 1000 genomes project. The 1000 Genomes Project is an inter-
national collaboration to sequence 1000 individuals in an effort to produce
the most complete catalog of human genetic variation to date. Building on
the International HapMap Project, the 1000 Genomes Project will utilize
new sequencing technologies to catalog genetic variants. By creating an im-
portant scientific resource, the Project will help to understand the complex
relationship between genetic variation and human health and disease. It re-
presents a major step forward on the road to personalized genomic medicine.
As pointed out by Rossbach and Garcia, the use of next-generation sequen-
cing technologies will improve the quality of life and efficiency of health care
delivered to patients [255]. Nowadays, the value of genome-based approaches
in personalized medicine is not fully explored. Further research is required
to overcome the challenges associated with the translation of genomic know-
ledge into clinical decision-making in terms of patient data, testing proce-
dures, algorithm development and the use of such information in therapy
planning. Only a few personalized-medicine tests have achieved high levels
of clinical adoption to date and are mostly in the field of oncology.

2.2 Genotypes

One of the most striking discoveries originated from the HGP is that any two
human beings are 99.9% identical in their DNA sequence [81]. The remaining
and most interesting 0.1% of the DNA sequence contains the genetic variants
responsible for individual characteristics such as physical appearance or sus-
ceptibility to disease [250]. The main goal of current genetic research is to
find and understand the relationship between the variability found in the
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genome of an individual (genotypic variability) and the differences observed
between individual characteristics (phenotypic variability).

2.2.1 What is a genotype

Each cell of a living being contains the genetic information that characte-
rize him. This information is stored as DNA, a 3 billion-long sequence of
nucleotides (A, T, C and G for Adenine, Thymine, Cytosine and Guanine).
This sequence is a code that contains all the instructions necessary for the
building and maintaining of a creature. Diploid organisms have two copies
of any gene, one inherited from each of its parents, that can present different
forms, called alleles 1. Examples of genotypes at a particular gene and at a
specific locus of a gene are shown in Figure 2.5.

Homologous 

chromosomes 

Gene B  

Locus j 

Gene A  

… ATAG G GTAC … 

… ATAG T GTAC … 

A1 

A1 

Figure 2.5: Two examples of genotypes. At gene A, the individual shows
the genotype A1/A1 because he receives the allele A1 of both of his parents,
whereas at locus j of gene B, this individual shows the genotype G/T because
he receives the allele G from his father and the allele T from his mother.

2.2.2 Genetic variants

Sometimes mutations occur. Mutations refer to any variant in the genetic
sequence among individuals. They may be caused by radiation, viruses as
well as errors that occur during DNA replication, the process of copy of the
DNA occurring in the synthesis phase of the cell cycle. A portion of all ge-
netic variation is functionally neutral in that they do not produce observable
differences between individuals. When mutations cause changes between in-
dividuals, these mutations can be passed to offspring. Due to evolutive
pressure, individuals with certain variants may survive and reproduce more
than individuals with other variants. These mutations are conserved from

1With the purpose of simplifying the notations along this document, the two possible
alleles of an individual for a particular gene or locus are noted A1 and A2. The combination
of alleles that an individual carries is called a genotype and it is represented with a bi-
valued symbol (e.g. A1/A1).
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generation to generation and when they achieve a frequency greater than
1% in the population, they are called polymorphisms. Moreover scientists
consider that genetic variants with a frequency higher than a 5% of the po-
pulation are common variants whereas those that appear in less than 5% of
the population are called rare variants .

There are several types of genetic variants, studied by researchers from
the beginning of the HGP. Small-scale mutations are those that affect a
small region of one or few nucleotides. Among them, the first type of genetic
markers used for studying human diseases were variable numbers of short
DNA sequences repeated in tandem, also called DNA satellites. Differences
in individual bases are the most common type of genetic variation. These
genetic differences are known as Single Nucleotide Polymorphisms, or SNPs.
On the other hand, large scale mutations have been described during the
last few years [148], such as Copy Number Variants, or CNVs.

There are over 800 databases of human genetic variation of which only a
few are most widely used for genetic studies [140]. There is a need to find a
reliable, comprehensive, centralized and public resource on genetic variation.
dbSNP is a repository of reference for genetic variation [274]. However, the
HapMap project has also a central importance. Moreover there is a number
of secondary databases aimed at characterizing variation within or across
human populations.

Nowadays, dbSNP [274] is the major repository of genetic variants. It
was created and hosted by the National Center for Biotechnology Infor-
mation (Bethesda, USA). dbSNP is a reliable, comprehensive, centralized
and public resource on genetic variation and it is integrated to other po-
pular resources such as common genome browsers (NCBI, UCSC, EMBL)
[221, 147, 127]. The database provides information about all the variations
in the human genome such as their location within or around genes, their
functional effects or their population allele frequencies in a variety of popu-
lations. Since 2003, researchers are constantly submitting genetic variants
to this database that are likely to be related to phenotypic variations. In or-
der to manage this constant increasing of the SNP data, dbSNP releases its
content to the public in periodic builds that contain the information given
by a run of the genome assembly and the annotation process of the set of
products generated by that run. Each build is synchronized with a release
of new genome assemblies for each organism and with the last build. SNPs
uploaded in a build can be divided into two categories: submitted SNPs and
reference SNPs. Nowadays (April 2013), the number of SNPs in the build
137 of dbSNP reaches the figure of around 50 million validated SNPs (rs
SNPs) and near than 200 million submitted SNPs (ss SNPs).

The International HapMap Project is an organization that originally
aimed to develop a haplotype map (HapMap) of the human genome [58].
The HapMap is a tool that allows researchers to find genes and genetic va-
riations that affect health and disease. It began as an effort to survey allele
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frequencies among common human genetic variants and across worldwide
populations, but now, it is a key resource for researchers to find genetic
variants affecting health, disease and responses to drugs and environmental
factors and it provides a critical platform of information for large-scale ge-
netic association projects. The project has now progressed through 3 phases:
Phase I (published in 2005), Phase II (published in 2007), and Phase III (re-
leased in 2009). Phase III is the current release of Hapmap. It contains more
than one million SNPs genotype data generated for 1115 individuals from
11 worldwide populations and collected using two platforms (Illumina and
Affymetrix). This genotype information is available for download or can be
viewed through the HapMap or other browsers and within dbSNP records.

The 1000 Genomes Project is an underway initiative based on the success-
ful model of the HapMap Project [307]. It aims to sequence more than one
thousand individual human genomes including many HapMap samples [307].
This project began releasing data in 2009 and will provide an even deeper
resource on human genetic variation, capturing common variation but also
discovering more rare variation than ascertained in earlier HapMap phases.

Among the different types of genetic variants, the most commonly used
for the study of human diseases are microsatellites, SNPs and CNVs, des-
cribed in more detail in next sections.

2.2.2.1 Microsatellites

Satellites are classified as minisatellites or microsatellites according to their
length. Minisatellites, also known as VNTR (Variable Number Tandem
Repeat), are repeated sequences (tandems) of more than 10 nucleotides,
whereas microsatellites, also known as STR (Short Tandem Repeat), are
tandems of less than 10 nucleotides [298].

Microsatellites occur abundantly and at random over most eukaryotic
genomes [115]. This polymorphism is sufficiently stable to be used in ge-
netic analyses. Microsatellites are therefore ideal markers for constructing
high-resolution genetic maps in order to identify susceptible loci involved
in common genetic diseases. One of the most remarkable property of mi-
crosatellites is their heterozygosity. They are highly mutable markers with
often 15 or more alleles in any given population,corresponding to the num-
ber of times the given sequence is repeated. They are usually characterized
with a numerical representation.

Various microsatellite databases can be found, with different purposes.
MICdb contains information on microsatellites occurring in coding and non-
coding regions, such as their frequency, size and repeat sequence [287]. Silk-
SatDb also stores the polymorphism status of different microsatellite loci
[239]. Satellog database catalogues triplet repeats associated with human
disorders [208]. The database named as EuMicroSatdb (Eukaryotic Mi-
croSatellite database) provides a more generic collection of whole genome
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eukaryotic microsatellite data. It stores both simple and compound mi-
crosatellites from 31 eukaryotic genomes assembled by chromosomes [5].

2.2.2.2 Single Nucleotide Polymorphisms

SNPs are single positions in the DNA where there is variability. Generally,
this variability is produced by a mutation during the process of copy of the
DNA. These mutations are mostly substitutions of one base for another,
but they can also be product of the insertion or deletion of a nucleotide.
It is very unlikely that more than one mutation could have occurred at
the same locus during the short human evolution. This is the reason why,
traditionally, SNPs are assumed to be biallelic i.e. they can take only two
forms among the whole population, A1, which is considered the ancestral
allele, and A2, which is considered the mutated allele [212, 35]. Thus, at a
given locus, any individual should have one of the three possible genotypes,
A1/A1, A1/A2, or A2/A2. In the example shown in Figure 2.5, at locus j of
gene B one should have G/G, G/T or T/T. An individual with two identical
alleles (A1/A1 or A2/A2) is called homozygous whereas an individual with
both alleles (A1/A2) is called heterozygous. In Figure 2.5, the individual is
homozygous for gene A (A1/A1) whereas he is heterozygous at locus j of
gene B (G/T).

Traditionally, the standard representation of SNP data was by using
symbols from the alphabet {0, 1, 2} [125]. “1” is used to denote the ho-
mozygous combination with the major allele (A1/A1), and “2” to denote any
combination containing the mutated allele (A1/A2, and A2/A2). Some allele
values may be missing due to experimental reasons and these are denoted by
“0”. Another codification for SNP data can be {0, 0.5, 1} where 0 and 1 are
the homozygous genotypes, and 0.5 the heterozygous [263]. {-1, 0, 1} is also
used for coding SNP data where -1 and 1 are the homozygous ancestral and
mutated combinations and 0 is the heterozygous genotype [113]. Nowadays,
the alphabet {0,1,2,3} is a standard representation of SNP data, where “0”
are missing genotypes, “1” and “3” are both homologous genotypes (“1” for
the most common allele), and “2” for the heterozygous genotype [16].

An alternative approach is to code the alleles in a numerical alphabet (1,
2, 3, 4) instead of (A, T, C, G), coding a SNP locus with an A/C genotype
as 13 [225]. More recently, new methods propose 3-D visualization of SNP
data based on the projection of the data in the complex plane [27]. A vector
of SNP data x[n] = (x[0], x[1], · · · , x[n − 1]) is mapped to a point F1(x[n])
in the complex plane as in equation 2.1.

F1(x[n]) =
n−1∑
j=0

x[j]e−
2πij
n (2.1)

where x[j] is a numerical representation of the j-th SNP.
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Among a given population each of the two alleles of a SNP has a certain
frequency depending on the evolution of the mutation. It is called allele
frequency. Geneticists commonly use the Minor Allele Frequency (MAF )
for studying the distribution of a mutation among a population. The MAF
is the frequency of the less common allele (generally the mutated one A2).
The distribution and allele frequency of mutations as well as their effects on
the population are the keys for the evolution of species. This is described by
the Hardy-Weinberg (HW) principle, which states that if a large population
is free of evolutionary forces, then the allelic frequencies remain constant
over time. No such population exists so that allele frequencies are mostly in
HW disequilibrium [65].

In addition to be differentiated by their allelic frequencies, SNPs differ
from each other by the gene regions that belong to or by their functionality.
It is known that less than 2% of the DNA sequence codes for proteins. Part
of the remaining regions may have a function on the regulation of the gene
expression.

The location of a SNP refers to the region of the genome to which it
belongs. SNPs that fall within a coding region in the gene (exon) are called
cSNPs (c for coding). However, research suggests that most SNPs fall in the
noncoding region of the human genome. Promoter regions are the regions
that precede the genes and where the transcription of the gene and the
posterior translation to a protein is originated. This process regulates the
levels of expression of the gene and hence the levels of the protein [277].
SNPs located in these regions are called rSNPs (r for regulatory). There
is evidence that rSNPs and cSNPs are most likely to affect disease [158].
However SNPs can also be located in introns, regions within a gene that
does not code for proteins.

Otherwisem, cSNPs can contribute to complex disorders in two different
ways, by either changing the structure of a specific protein, or by changing
the abundance of the protein [122]. This is known as the functionality of
the SNPs.

When the SNP does not cause a change in the amino-acid sequence of
the resulting protein, it is called a silent or synonymous SNP. Among SNPs
that produce a change in the resulting protein, called nonsynonymous SNPs,
one can distinguish between missense or nonsense SNPs. If during the trans-
cription, the mutation produce a change in the amino-acid sequence of the
protein, changing its nature or function, it is called a missense mutation.
If a nonsense mutation is transcribed on a premature STOP codon (a non-
sense codon), it will produce a truncated and often nonfunctional protein
[248].

Although the HapMap and dbSNP provide a view of worldwide similari-
ties and differences in allele frequency of human variation, there is a number
of databases aimed at characterizing variation within or across human po-
pulations, including the European SNP database [127], the Japanese SNP
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database (jSNP) [118], the ThaiSNP database [110], SNP@ethnos [130], the
CEPH genotype database [99] and ALFRED [228].

2.2.2.3 Copy-Number Variants

Copy-Number Variants (CNVs) are DNA segments larger than 1kb appea-
ring a variable number of times as copies in a genome. These submicroscopic
structural variants can be a result of insertion, deletion or duplication events.
Recent studies have characterized that CNVs cover around 12% of the hu-
man genome. However, it has been shown that CNVs have a smaller con-
tribution to gene-expression phenotypes than SNPs do [294]. Most CNVs
are benign variants that will not directly cause disease. However, there
are several instances where CNVs that affect critical developmental genes
do cause disease. Recently, genome-wide surveys have demonstrated that
rare CNVs altering genes in neurodevelopmental pathways are implicated in
autism spectrum disorder and schizophrenia [269].

To increase the value of the data, the Database of Genomic Variants
(DGV) was established to house CNVs found in the general population
[132]. The Wellcome Trust Sanger Institute (Hinxton, UK) has developed a
database of CNVs (called DECIPHER) associated with clinical conditions
[83]. Other related CNV databases are the ECARUCA database [79] or the
CNV-DB [301].

2.3 Phenotypes

2.3.1 What is a phenotype

Genetic variants described in previous section are responsible for all the ob-
servable differences between individuals, such as physical appearance and
susceptibility to disease or response to medical treatments. A phenotype
refers to any of these observable and measurable traits or characters of an
individual that results from a genotype. The phenotype definition is a cri-
tical issue in the design of a genetic analysis of a certain disease and it will
strongly depend on the disease under study. For instance, a phenotype can
be a disease in itself or it may be any biological variable that explain or help
to explain human diseases. Diseases that have a genetic compound are called
genetic disorders. Even if all diseases have a genetic component, whether
inherited or resulting from the body’s response to biological stresses, genetic
disorders refers to illnesses caused by abnormalities in genes or chromosomes.
Cancer is a particular disease, due, in part, to a genetic disorder but that
can also be caused by environmental factors.

Phenotypes result from the expression of an organism’s genes. In euka-
ryotes, the accessibility of genes corresponding to large regions of DNA can
depend on its chromatin structure, which can be altered as a result of his-
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tone modifications directed by DNA methylation, ncRNA, or DNA-binding
proteins. Hence, these variations may up or down regulate the expression
of gene. Certain of these modifications that regulate gene expression are
inheritable and are referred to as epigenetic regulation.

This work focus on phenotypes corresponding to gene products, corres-
ponding to the biochemical material, mainly proteins, resulting from the
expression of genes. Proteins dictate virtually every reaction in the cells of
almost all living things; they serve to regulate, facilitate, or directly cause
countless different processes and reactions in most organisms thus are di-
rectly responsible for the observable characteristics of an individual.

As they are biological variables, phenotypes may take values at diffe-
rent domains being divided in discrete phenotypes (when taking two or few
values) or continuous traits (when taking values in a continuous rank).

2.3.2 Genotype-Phenotype models

Nowadays, genetic studies aim to link genetic loci with specific disease phe-
notypes in order to identify disease genes or genetic traits associated with hu-
man diseases. Those genotype–phenotype associations related with human
diseases are being accumulated in such databases as the Online Mendelian
Inheritance in Man (OMIM) [106] and the genetic association database
(GAD) [23] covering over 12 000 genes. These gene-disease association data
should encode intrinsic features of diseases. However, the relationship be-
tween genotype and phenotype is not always straightforward. There exist
four main models that explain how to relate genotypes and phenotypes (Fig-
ure 2.6).

Locus 1 Trait A
Locus 2 Trait A

Locus 3

Locus 1

Trait BLocus 1

Trait C

Trait A

Locus 2

Locus 3

Locus 1

Locus 4

Trait B

Trait C

Trait A

MONOGENIC TRAIT POLYGENIC TRAIT PLEIOTROPY
POLYGENIC TRAITS

+ 
PLEIOTROPY

Mendelian Disease
(Ex: Hemophilia)

Complex Disease
(Ex: Thrombophilia)

Figure 2.6: Different models for the relationship between genotypes and
phenotypes.

Organizing individual disease-gene association data is becoming increa-
singly complicated and the necessity of a global view of relationships among
diseases and genetic components has become essential. In this regard, a con-
ceptual platform to project such associations in its entirety, called the human
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diseasome, has recently been introduced, which links all disease phenotypic
features (human disease phenome) to all known disease genes (human di-
sease genome) [93]. Based on these genetic foundations, human diseases
can be divided into two categories: monogenic and polygenic diseases, also
known as complex diseases.

2.3.2.1 Simple traits

When a trait is only caused by mutations in a single gene, it is called a
simple trait or monogenic trait. It is also known as a Mendelian trait since
all the Mendel’s theories were elaborated under the assumption of a mono-
genic trait. A certain number of human diseases are monogenic, such as
Hemophilia B, that is caused by mutations in the F8 gene that produces
a deficiency of FVIII protein levels in blood. Since carrying the mutations
is directly related with the disease status of an individual, Mendelian di-
seases are usually studied using dichotomous variables, or “case-control”
phenotypes.

A case-control phenotype is a dichotomous variable that takes two possi-
ble values (generally “case” or “control”), indicating whether an individual
carries the disease or not. Generally controls are healthy individuals, not
affected by the the disease under study. This should imply adding a new
source of variability due to secondary traits such as age, gender or environ-
mental factors. An alternative that avoids this problem is to balance both
case and control groups in terms of these variables, for example, selecting as
many men and women in both groups. This favors the posterior statistical
analysis, avoiding other sources of variability between individuals more than
the genetic one. However it may involve selecting controls randomly in the
global population, assuming the risk to choose both affected and unaffected
individuals.

2.3.2.2 Complex traits

Complex traits are caused by the interaction of multiple genes in combi-
nation with lifestyle and environmental factors. These are also known as
multifactorial or polygenic disorders. There exist different types of genetic
interactions. The most common one, epistasis, where the effects of one
gene are modified by one or several other genes, which are sometimes called
modifier genes. However, a given phenotype can also be the result of the
expression of several genes at the same time.

Common traits of physical appearance are polygenic traits. For example,
eyes color is determined by multiple genes coding for the different types of
pigments. Some of the eye-color genes are EYCL1 (a green/blue eye-color
gene located on chromosome 19), EYCL2 (a brown eye-color gene at chro-
mosome 15) and EYCL3 (a brown/blue eye-color gene also at chromosome



2.3. Phenotypes 21

15). In this case the phenotype, the eyes-color, is a discrete variable that
can take few different values (brown, blue, green, etc).

In the last few years it has been demonstrated that most common hu-
man diseases are complex diseases controlled by the interaction of several
genes [37]. These diseases often involve a difficult and subjective diagnosis
so they attracted the attention of worldwide geneticists and epidemiologists
[266, 37]. They tend to involve greater difficulties in phenotype definition.
The genetic heterogeneity is often closely associated with “intermediate”
phenotypes that index some aspects of disease risk and susceptibility. An
intermediate phenotype is a biological variable measured on a continuous
quantitative scale such as weight, height, serum cholesterol levels or plasma
FVIII levels. Furthermore, they are used as signs and symptoms to diagnose
disease [284]. For example, thrombosis is a complex disease caused by the
suppression of the blood circulation in a vein or artery. This is due to altera-
tions of the coagulation process, where a set of proteins ( including FVIII )
in the blood plasma respond in cascade to form fibrin. These proteins are
called coagulation factors and they represent a set of intermediate pheno-
types that may be a good starting point for identifying genes involved in
disease risk. Other examples of complex diseases are diabetes, Alzheimer’s
disease or psychiatric diseases among others [205].

In the global burden of complex diseases, cardiovascular diseases repre-
sent the majority. According to World Health Organization [189], cardio-
vascular diseases are one of leading causes of death in the world. Exam-
ples of common cardiovascular diseases with a strong genetic compound are
coronary disease, stroke, hypertension, hypercholesterolemia, thrombosis or
ischemia.

2.3.2.3 Pleiotropy

Pleiotropy occurs when a single gene controls or influences multiple pheno-
typic traits. Consequently, a mutation in a pleiotropic gene may have an
effect on some or all traits simultaneously. One possible underlying mecha-
nism of pleiotropy is when a gene codes for a protein used by various cells
or having a signaling function on various targets. The influence of the single
gene on different phenotypes can be direct or indirect. An example of a
direct influence of a gene on multiple traits is albinism, where single gene
mutations have effects on different organ systems, such as the integument
system and the eyes, as well as the nervous, hematological, respiratory, and
gastrointestinal systems that may occasionally be affected [46]. Besides, se-
condary or indirect pleiotropy occurs when a single gene might be involved
in multiple pathways. For example, the amino acid tyrosine is needed for
general protein synthesis, and it is also a precursor for several neurotrans-
mitters (e.g., dopamine, norepinephrine), the hormone thyroxine, and the
pigment melanin. Thus, mutations in any one of the genes that affect tyro-
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sine synthesis or metabolism may affect multiple body systems. Related to
this, the classic example of pleiotropy in humans is phenylketonuria (PKU).
This disease can cause mental retardation and reduced hair and skin pig-
mentation, and can be caused by any of a large number of mutations in a
single gene that codes for the enzyme (phenylalanine hydroxylase), which
converts the amino acid phenylalanine to tyrosine [180].

Both direct and secondary types of pleiotropy are not always straight-
forward. Antagonistic pleiotropy refers to the expression of a gene resulting
in multiple competing effects, some beneficial but others detrimental to the
organism. The most common example of antagonist pleiotropy is the p53
gene. This gene helps to avert cancer by preventing cells with DNA damage
from dividing, but it can also suppresses the division of stem cells, which
allow the body to renew and replace deteriorating tissues during aging [253].

2.3.3 Variability among populations

The phenotypic differences observed between individuals of a same family
or population are magnified when they are observed between different po-
pulations, different races and also different species. The total number of
characteristics in the genetic makeup of a species is called genetic diversity
and it serves as a way for populations to adapt to changing environments. A
population is defined as a set of organisms of the same species, that share the
same environment, and that can breed together. The environment exerts a
selective pressure on the individuals of a population by favoring individuals
carrying variations of alleles to be suited for these conditions. Those indivi-
duals are candidates to survive and to produce offspring bearing that allele
and this will lead to a population that will last for more generations. This
is called natural selection.

Geographic location is critical for the genetic differences observed be-
tween populations, due to differences in selective pressure. However chance
has also a role on mutation production due to chromosomal crossover. Dur-
ing meiosis, the alleles of the parents are mixed together to produce the
offspring’s allele. When the alleles of an individual are a random recom-
bination of the alleles of its progenitor, it is due do chance. Genetic drift
is the change in the frequency of an allele in a population due to random
sampling.

Both genetic drift and environment can cause differences among popula-
tions. These differences exist at both genotypic and phenotypic levels. The
study that aims understand the function and evolutionary processes produ-
cing different species and populations is called comparative genomics [107].
Comparative genomics mostly consists on comparing different organisms or
individuals of different populations through their sequences (gene sequences
or protein sequences). Due to the huge amount of data contained within a
single genome and among a large number of organisms’ genomes, computa-
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tional and automatic tools are needed. These tools exploit both similarities
and differences in protein, DNA or RNA sequences of different organisms.
In 1990, Stephen Altschul and colleagues presented the basic local alignment
search tool (BLAST), an application for searching and aligning sequences
using a measure of similarity. Given a sequence, a blast algorithm indexes
the query sequence and scans it against a database of sequences of a large
variety of organisms, selecting those that show similarity scores above a
given threshold [7]. In addition, BLAST includes a statistical framework
for sequence alignment that provided a conceptual basis for understanding
similarity measures, and a method for assessing the statistical significance
of a given alignment.

The information obtained from studying the evolutionary conservation
of DNA sequences between species has been useful in disease gene disco-
very studies [256, 12]. Cross-species sequence comparisons have shown that
the human genome presents common features to other species [107]. The
availability of multiple genomic sequences of different model organisms has
allowed finding information about the selective pressure of polymorphisms
from an evolutionary point of view [126]. It is assumed that sequence con-
servation is a good indicator of functionality. Functional sequences tend
to evolve slowly, and show more conservation than less relevant sequences
[22, 88, 200]. Hence, it is believed that functional genetic variants responsi-
ble for diseases are more conserved among populations and species than less
functional variants [185].
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Chapter 3

State-of-the-art in genetic
association data analysis

A genetic association study aims to find statistical associations between
genotypes (genetic variants) and phenotypes (traits or disease states) and
thus to identify genetic risk factors. Genetic association for complex di-
seases can be tested either with unrelated people or with family-based de-
signs. Both approaches have advantages and disadvantages. Studies of cases
and controls in unrelated individuals are the most commonly used approach
since sufficiently large study populations can be easily assembled without
the need to enroll also family members of the recruited participants. Ho-
wever, a disadvantage of this approach is the confounding effect due to
population admixture. On the other hand, family-based study designs have
the advantage that there is a common genetic background among the fa-
mily members. Thus, the problem of population stratification is bypassed.
Moreover, families tend to be more homogeneous regarding the environmen-
tal factors possibly associated to the disease etiology. However, large enough
samples of well-characterized families are usually more difficult to accumu-
late so that family-based strategies are less commmonly used for assessing
genetic associations of complex diseases.

The first genetic association studies, performed in the 1980’s, used a
candidate gene approach. Such studies examined a single polymorphism or
a set of polymorphisms near a single gene or focused on a candidate region
obtained with prior knowledge. In the 1990s, the development of genome-
wide genetic maps permitted the widespread application of genome-wide
linkage analysis to disease status. However, it has been proved to be largely
unsuccessful for complex traits. The last decade has seen revolutionary
advances in human genetics. With the completion of the human genome
sequence, the identification of large numbers of genetic markers and the
development of rapid high-throughput methods to genotype SNPs together
with new statistical techniques, now permit comprehensive, large-scale asso-
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ciation studies with SNPs to survey genes or regions for variants that con-
tribute to disease susceptibility or other traits of interest. These are known
as Genome-Wide Association Studies (GWAS).

This chapter aims to review the different strategies for genetic association
studies found in the literature. First of all, methods for unrelated individuals
are described, including both one-locus and multi-loci strategies. Besides,
family-based approaches for identifying genetic variants related to diseases
are also revised. In addition, some statistical issues derived from genetic
association studies are also addressed.

3.1 Association Studies for Unrelated individuals

The most commonly used approach for population-based genetic association
analysis are the one-locus association measures. They test the association
between SNPs and disease, looking marker-by-marker and selecting the best
SNP(s) (those that obtain the highest score of association). However, com-
plex diseases are generally dictaed by the interaction of multiple genes jointly
with environmental factors so that in some cases multi-loci analyses may be
more informative than traditional one-by-one SNP association studies. This
section reviews the methods for both one-locus and multi-loci approaches
for the genetic association problem.

3.1.1 One-locus measures of association

One-locus genetic association is generally tested using variable ranking strate-
gies. These approaches measure, for each marker, its association with the
phenotype establishing a ranking of SNPs. Hence best ranked SNPs are
selected. The score attributed to each SNP reveals the significance of its
association with the phenotype and it is evaluated using different statistical
tools.

Traditionally, genetic association studies focus on population-based case-
controls studies. These techniques select SNPs when their allelic frequency
among exposed individuals is higher than among unexposed individuals [34].
However, population based methods also exist for traits that show continu-
ous variation.

The most standard practice consists on measuring the correlation be-
tween genetic variants and phenotypes and evaluating its significance through
a statistical test. Linear statistical models have also been used for measuring
the association between a SNP and a phenotype.

3.1.1.1 Correlation-based statistical tests

Most common measures for case-control studies are based on contingency
tables [263]. The most typical case corresponds to a genotype with 3 possible



3.1. Association Studies for Unrelated individuals 27

values (A1A1, A1A2 and A2A2) and a phenotype with 2 classes (cases and
controls). The resulting contingency table is a 3x2 matrix that displays the
frequency distribution of the variables as in table 3.1.

Table 3.1: An example of contingency table for case-control genetic associa-
tion.

A1/A1 A1/A2 A2/A2

Cases O1 O2 O3

Controls O4 O5 O6

Given a contingency table, statistical tools are available to test the asso-
ciation between the genotype and the phenotype. The most commonly used
are the odds ratio, the χ2 test or the log-likelihood test [263].

The odds ratio is a measure of effect size, describing the strength of
association or non-independence between two binary data values [343]. The
odds ratio (OR) for disease is the ratio of alleles carrying the mutation to
non-carrying in cases compared with that in controls as described in equation
3.1.

OR =
(O2 +O3)O4

O1(O5 +O6)
(3.1)

The χ2 statistic is defined as in equation 3.2.

χ2 ∼
6∑
i=0

(Oi − Ei)2

Ei
(3.2)

where Oi are the observed frequencies and (Ei) the expected value at
each cell [170]. The likelihood ratio test is based on the G-statistic defined
in equation 3.3.

G ∼ 2
6∑
i=0

Oi ln(
Oi
Ei

) (3.3)

For both χ2 and G statistics, given a contingency table, the value of
the statistic is compared to a χ2 distribution and a p-value is obtained that
determines the significance of the dependence between the two variables in
the contingency table (here the genotype and the phenotype).

The Cochran-Armitage test for trend is commonly used as a genetic
association test in case-control studies [55]. It is also based on contingency
tables and strengthen the χ2 test by incorporating the ordering in the effects
of the categories.

In a similar way, other measures for case-control association have been
proposed such as a Hardy-Weinberg Equilibrium (HWE) test that compares
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the HWE between cases and controls as a means of a measure of disease
association [211].

Linear correlation measures can also be applied for measuring the ge-
netic association between genetic variants and both discrete and continuous
phenotypes. The most commonly used measures are linear, such as Pearson
coefficient or Spearman coefficient.

Pearson’s correlation coefficient between a phenotype Y and a SNP S
is defined as the covariance of the two variables cov(S, Y ) divided by the
product of their standard deviations (σS and σY respectively) (equation
3.4).

ρ(S, Y ) =
cov(S, Y )

σSσY
=
E[(S − µS)(Y − µY )]

σSσY
(3.4)

Spearman coefficient is a rank coefficient correlation that measures the
statistical dependence between two variables. It assesses how well the rela-
tionship between two variables can be described using a monotonic function.
It is expressed as in equation 3.5.

ρ = 1−
6

n∑
i=1

(Si − Yi)2

n(n2 − 1)
(3.5)

where n is the number of individuals.

Nonlinear correlation measures based on information theory have also
been used for genetic association but have not been fully explored. In parti-
cular, Ruiz-Maŕın et al. proposed a genetic association test based on the en-
tropy measure[257]. A maximum entropy conditional probability modelling
has been proposed for finding interactions between SNPs and disease [206].
The genetic association between genetic markers and disease has also been
measured with the mutual information [263, 299]. Measures of information
theory are further described in chapter 4.

3.1.1.2 Linear statistical models

Regression is an approach to modelling the relationship between an outcome
(here the phenotype Y ) and a variable (here a SNP S). In linear regression,
data are modeled using linear functions, and unknown model parameters
are estimated from the data. Linear models try to express the relationship
between Y and S by an affine function as described in equation 3.6.

Y ∼ α+ βS + ε (3.6)

where β is called the regression coefficient and it is estimated from the
data, and ε is the error term of the model. A statistical test based on
the t-Student statistic evaluates the significance of β, which represents the
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significance of the association between Y and S. Statistically, this method
is equivalent to the tests defined previously.

For dichotomous phenotypes, regression models are not efficient so that
nonlinear transformations of the output of the linear regression model have
been proposed. The most commonly applied for genetic association is the
logistic regression [18], that consists on applying a logit function on the result
of the linear model. The logistic regression model is defined in equation 3.7.

Y =
1

1 + e−z
(3.7)

where z = α+ βS + ε.
Regression models are often used as explanatory models for genetic asso-

ciation with continuous phenotypes [18]. By contrast, predictive models are
aimed at predicting the effect of the genetic variant on the disease. More-
over, applying predictive models to genetic association is especially interes-
ting for a large number of SNPs, when the methods described previously
become computationally expensive [10].

Predictive modelling is the process by which a model is created or chosen
to try to best predict the probability of an outcome (here a phenotype). The
main aim of predictive models is to estimate the outcome (the phenotype
Y ) from the predictor variables (here a SNP S). The best prediction Ŷ of
Y is the one that minimizes the prediction error ε = |Ŷ − Y |. They can be
applied to both discrete and continuous phenotypes.

Another predictive modelling approach already used for genetic associa-
tion is the random forest analysis, with the aim of identifying SNPs that
may increase the susceptibility to disease [39]. A random forest is a collec-
tion of trees generated by a modified tree-growing algorithm [33]. The class
(here case or control) of an observation (here an individual) is predicted by
assigning this observation to a terminal node based on its predictive values
(here the genotype). A SNP that differentiates between cases and controls
is found by quantifying how much it contributes to the predictive accuracy
of a random forest.

3.1.1.3 Genetic recombination and Linkage Disequilibrium

Linkage is the tendency of genes or other DNA sequences at specific loci
to be inherited together as a consequence of their physical proximity on a
single chromosome. Genetic recombination occurs when two homologous
chromosomes exchange parts of their DNA. This often happens in gametes
so that new combinations of alleles can be passed on to the next generation.
Recombination occurs at random. A haplotype is a combination of alleles,
generally at adjacent locations (loci) on a chromosome that are transmitted
together. A haplotype may be one locus, several loci, or an entire chromo-
some depending on the number of recombination events that have occurred
between a given set of loci.
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Two SNP loci may share a certain amount of correlation, that is, they
are linked. Sometimes, it is possible to predict the allele at one SNP position
based on the allele at the other locus. This happens more frequently when
positions are close to each other and so are inherited together, without being
separated by recombination. If the prediction accuracy is 100%, these two
SNPs are said to be fully linked. More often, the allele knowledge at one
locus gives some partial information about the allele at the other, and then
they are said to be in linkage disequilibrium (LD). Non-random associations
between polymorphisms at different loci are measured by the degree of LD.

The basic component of LD metrics is the difference between the ob-
served and the expected frequencies of a haplotype assuming no statistical
association. If A and B are two loci with two alleles A1, A2 and B1, B2

respectively, the linkage disequilibrium between A and B is D is measured
as defined in equation 3.8 [172].

D(A,B) = pA1B1 − pA1pB1 (3.8)

where pA1 is the frequency of allele A1 at locus A, pB1 is the frequency
of allele B1 at locus B, and pA1B1 is the frequency of the A1B1 combination.
However, the most commonly used measures for describing LD are D′ and
r2 (equations 3.9 and 3.11) [171, 87].

D′ =
|D|
Dmax

(3.9)

where

Dmax =

{
min (pA1pB2 , pA2pB1) if D ≥ 0

min (pA1pB1 , pA2pB2) if D < 0
(3.10)

r2 =
D

pA1pB1pA2pB2

(3.11)

In a set of SNPs with elevated LD, there is redundant information so
that it is possible to select a representative SNP and use it to infer remaining
SNPs. This SNP is called a tag-SNP and the methodology is called tag-SNP
selection [296]. Current approaches for tag-SNP selection can be classified
as ‘block-based’ and ‘block-free’ methods [317]. Block-based algorithms ini-
tially define haplotype blocks at distinct chromosomal regions of elevated
LD and subsequently select the corresponding tag- SNPs [337]. Block-free
methods use flexible networks of SNPs and exploit the inter-marker depen-
dencies within these networks [104]. Tag-SNP selection based on LD mea-
sures can be seen as a filtering procedure in the sense that it allows to reduce
the dimensionality of SNP data. Given that recently microarrays chips can
genotype the order of 1 million SNP, these techniques may be useful as a
preprocessing step in a genetic association study.
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Note that most of the LD measures described above can also be used
as correlation measures in a genetic association test, as described in section
3.1.1.1. It has also been suggested that the information in LD is also useful
for association studies since genetic association can be detected by compa-
ring LD patterns between cases and controls [332]. Actually this strategy
is often considered as a multi-loci approach for genetic association as it
analyses multiple loci simultaneously. However, the more general goal of
multi-loci association studies is to analyze the interactions existing between
several loci, being those in LD or not.

3.1.2 Feature selection methods for multi-loci association

As described in section 2.3.2.2, genetic diseases may be polygenic, that is
they are caused by the interaction of several mutations at different loci.
These multiple and combinatorial interactions are difficult to detect with
traditional statistical methods. This is the reason why the development
of computational and statistical methods to face this problem is of clinical
interest. As many other fields in bioinformatics, genetic association and
linkage studies require to use techniques from other engineering sciences.
Genetic association can be approached from a pattern recognition point of
view. Actually, finding association between several genetic markers and a
phenotype can be seen as a feature selection (FS) procedure, in the sense of
selecting genetic variants associated to the phenotype. These methods can
be split in two basic aspects: the relevance criterion that determines how
well a set of SNPs represents the observed variability in the phenotype and
the search method used in the selection algorithm [105].

This section aim to be a review on Feature Selection algorithms and its
application in bioinformatics. There exist in the literature several consider-
ations to characterize FS algorithms [136, 210]. Among them, three criteria
are used for this characterization: the general scheme of the algorithm, the
evaluation measure or the relevance criterion, and finally the search organi-
zation.

3.1.2.1 General Scheme of a Feature Selection Algorithm

The FS problem is an inductive machine learning process and it is widely
used for pattern recognition. Given a set S of n candidate features, a feature
selection algorithm (FSA) selects the subset S∗ of features that performs
better under a certain FS criterion measure Φ [136]. The optimal solution
to the FS problem requires to make an exhaustive search, looking at all the
possible combinations of features, which is computationally unfeasible.

The relationship between a FSA and the inductive method used for eva-
luating the usefulness of the obtained subset of features can take three diffe-
rent forms: filter, wrapper and embedded.
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A filter approach does not depend on the evaluation measure used for
determining the optimality of features subsets. The relevance of features is
assessed by looking only at the intrinsic properties of the data. Generally,
these methods take place before of the FSA itself. In most cases, a relevance
score is calculated for each feature and low-scoring features are removed. Las
Vegas Filter (LVF) [178] is an algorithm that generates random subsets of
features (S) and evaluates its relevance by measuring the consistency of the
features in S through a specific criterion. This procedure is repeated until
the minimum consistent set of features (S∗) is found [178]. LVF is the first
in a family of algorithms called Las Vegas algorithms that are new versions
of this algorithm by improving some of its characteristics [210]. RelieF
is another family of filter algorithms that avoid an heuristic search [149].
The key idea of RelieF algorithms is to estimate the quality of attributes
according to how well they distinguish between instances that are near to
each other. Given a feature Si chosen randomly, the algorithm searches
for its two nearest neighbors: one from the same class, called nearest-hit
(Hi), and the other from a different class, called nearest-miss (Mi). Then
an attribute able to separate Si and Hi has a low relevance whereas an
attribute that separates Si and Mi has a high relevance. RelieF algorithms
return a weighted version of the original feature set S [309].

Wrapper FS methods use the learning algorithm as a subroutine. The
relevance of features sets is calculated according to the evaluation measure
that characterize itself the FSA. Wrapper FSA are the most commonly used
for the problem of genetic association and they will be described in section
3.1.2.3.

For embedded FSA, the evaluation method has its own FSA. Traditional
machine learning tools such as decision trees or Artificial Neural Networks
are included in this scheme [209]. In particular, Neural Networks have been
used for multi-loci interaction detection [206].

3.1.2.2 Evaluation method

In the context of a genetic association study, the evaluation measure of a
FSA should look at the relationship between genetic variants and a pheno-
type. Some of these measures have already been described in section 3.1.1.1.
In particular, relevance criteria of a FSA may evaluate the statistical signifi-
cance of the association between features (SNPs) and the response variable
(the phenotype), which is generally measured through a correlation measure.
This relevance criterion helps the search organization method to decide, at
each step, the optimality of a feature subset.

3.1.2.3 Search organization

A FSA can be single-solution or multi-solution. The former type of FSA
only find a single solution, the best suboptimal subset of features, whereas
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multi-solution FSA store a queue of possible suboptimal sets of features.
Besides of this consideration, FS strategies can be classified depending on
their search organization that can be sequential or random.

Sequential algorithms are the most commonly used. They work in an
iterative manner, adding or removing features to the selection set by using
forward and backward steps respectively. The most common variants are
called Sequential Forward Selection (SFS) and Sequential Backward Selec-
tion (SBS) [89]. These are single-solution FSA that start with an initial fea-
ture subset (the empty one in SFS or the total one in SBS) and iteratively
add (for SFS) or remove (for SBS) features until the optimal solution or
the termination criterion are met. This strategy does not take into account
the correlations between features and may produce the effect of finding re-
dundant sets of features. In order to avoid this problem, algorithms that
combine forward and backward steps have been proposed. Plus r - take
away l algorithm combines r SFS and l SBS [289]. Afterwards, floating
algorithms were introduced (SFFS: Sequential Forward Floating Selection;
SBFS: Sequential Backward Floating Selection) [281]. Floating algorithms
do not depend on the r and l parameters but combine forward and backward
steps dynamically.

Randomized methods depend on a random element that could produce
different sets on every run. Random search or genetic algorithms are exam-
ples of randomized wrapper approaches also widely used for feature selec-
tion. Genetic algorithms (GA) are based on the mechanics of biological
evolution such as inheritance, mutation, natural selection, and recombina-
tion (or crossover). In a GA approach, a given feature subset is represented
as a binary string (a “chromosome”) of length n with a zero or one in posi-
tion i denoting the absence or presence of feature i in the set. Initially many
possible solutions (chromosomes) are randomly generated to form an initial
population. A proportion of this population is selected to breed a new gene-
ration. Each chromosome is selected through a fitness-based process where
fitter solutions are more likely to be selected. New generations are generated
iteratively using genetic operators: crossover or recombination and muta-
tion. This generational process is repeated until a termination condition has
been reached that can be the optimality of the solution, a fixed number of
generations reached or any other criteria [276].

Moreover, noteworthy on its own is the Branch and Bound algorithm
(BB), the only “optimal” FS algorithm that avoids an exhaustive search
[218]. The algorithm is very efficient because it avoids exhaustive enumera-
tion by rejecting suboptimal subsets without direct evaluation and guaran-
tees that the selected subset yields the globally best value of any criterion
function Φ. The optimality of this algorithm is guaranteed only when φ is
monotone. The search space is structured as a tree, called a search tree,
which is dynamically constructed top-down during the running of the BB
algorithm. The search process begins at the root node, the complete fea-
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ture set S, and continues by eliminating one feature each time to produce
its successors (smaller subsets Si). This step is called branching since its
recursive application defines a tree structure. The bounding step consists in
computing upper and lower bounds for the optimal value of Φ(x) within a
given subset Si. Whenever a node’s evaluation value is found to be less than
or equal to the bound, the sub-tree rooted from this node will be pruned,
because there is no chance that a better target subset could exist in the sub-
tree. Several versions of the BB algorithm constitute a family of methods
for feature selection [67].

One of the main characteristics of feature selection algorithms is their
high computational cost. Table 3.2 compares the time complexity of the
algorithms described above [159]. It is observed that suboptimal algorithms
(SFFS, SFBS and BB) present an exponential time complexity. GA im-
proves the performance of such algorithms by not exploring all the feature
space.

Table 3.2: Time complexity of Feature Selection algorithms (From [159]).

Algorithm Time Complexity

SFS, SBS Θ(n2)
SFFS, SBFS O(2n)
BB O(2n)
GA Θ(1)(Θ(n))

3.1.2.4 Feature Selection in Bioinformatics

In bioinformatics, FS has been applied with several purposes. As it will
be specifically described in section 3.1.3, FS has been applied for genetic
association. Moreover, FSA have been applied to many modelling tasks
in bioinformatics going from sequence analysis over microarray analysis to
literature mining [262].

In the sequence analysis domain, FS has been applied for the prediction
of subsequences (coding potential prediction), for the prediction of proteins
from their sequences, for the recognition of promoter regions [57] and for the
recognition of certain signals or motifs in the DNA sequence, such as binding
sites for proteins and also in the context of gene prediction, for example for
splice site prediction [146].

FS has also been used for microarray analysis. Because of the high di-
mensionality of most microarray analyses, fast and efficient FS techniques
such as univariate filter methods have attracted most attention [166]. Uni-
variate selection methods have certain restrictions such as not taking into
account gene-gene interactions. Thus, researchers have proposed multiva-
riate techniques that try to capture these correlations between genes [31].
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However, wrapper methods have also been used in gene selection such as
sequential search [134, 224], or GA [227, 139].

Text and literature mining is an emerging field in bioinformatics. The
extraction and interpretation of biological results are not always easy to
deal with. Recently, researchers have found that mining certain keywords in
the literature may help for carrying out this task. Actually the application
of FS algorithms is common in the field of text classification [85]. More
particularly, in bioinformatics, FS has also been used in order to search
relevant publications for manual database annotation [74].

3.1.3 Algorithms for Genetic Association Studies

Until the advent of technologies that allow the genotyping of hundred of
thousands of genetic markers spread along the whole genome, genetic studies
where limited to a small number of genes. Nowadays, high-throughput tech-
nologies enable individual genotyping of more than 106 SNPs using arrays.
Effective storage, handling and analysis of this amount of data represent a
challenge to modern computational and statistical genetics.

Traditionally, most Genome Wide Association (GWA) algorithms avai-
lable in the scientific community have been based on a one-locus strategy
which is computationally feasible for genome wide data. They differ on the
evaluation method used for the SNP selection strategy. Linear regressions
are widely used. For example, GenABEL is a commonly used R package that
facilitates data quality control and rapid single-SNP GWA analysis using li-
near regressions [16]. Plink is a GWA software that uses either linear or
logistic regression, depending on whether the phenotype is a quantitative or
binary trait [244]. Merlin can test for association between a SNP and one or
more quantitative traits by using a LOD score test or a likelihood-ratio test
[1]. The Helix Tree module from Golden Helix also proposes different strate-
gies for GWAS, such as the χ2 test, linear or logistic regressions and others
[94]. SNPassoc is also an R package for whole genome genetic association
studies using linear or logistic regressions [96, 280].

Since it is computationally unfeasible to explore all the possible combina-
tions of SNPs in a GWA scheme, filtering of SNPs has become a standard in
genome wide tools. Most one-locus methods use or can be used as a prelimi-
nary step of a GWAS by filtering irrelevant SNPs and reducing the number of
candidate SNPs. Nevertheless, computational methods from machine lear-
ning have been applied for genome-wide filtering of SNPs [214]. Filter FS
algorithms such as RelieF have been used for this purpose [234, 182, 213].
Classification or decision trees are widely used for modelling the correlation
between one or more features (here SNPs) and a discrete response variable
(here a case-control phenotype). For example, random forests have been
used for detecting gene-gene interactions at a genome-wide scale [39], as
described in section 3.1.1.2. Furthermore, tag-SNP selection is also an al-
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ternative for reducing the number of candidate SNPs. These methods use a
clustering of SNPs in terms of their LD and select a representative SNP for
each cluster [41, 225]. Feature selection has been used for tag-SNP selection
using LD [45, 105], Multiple Linear Regression [114] or sequential search
[234].

Multifactor Dimensionality Reduction (MDR) has been used to identify
potential interacting loci in several phenotypes [62]. This technique consists
on finding combinations of SNPs that are related with a case-control pheno-
type. MDR reduces the dimensionality by converting a multivariate multi-
loci model to a one-dimensional model, by classifying genotypical classes as
either high risk or low risk according to the ratio of cases and controls in
each class. Brinza et al. proposed a FS algorithm based on a combinatorial
search for finding disease-related multi-SNP combinations [34]. Evolutio-
nary algorithms have been also used for the selection of SNPs [128, 270].
Filter algorithms, relieF, a tuned version of relieF (tuRF) and a combina-
tion of relieF with random forests have been used for genome wide analysis
[62]. PCA-BCIT, a PCA-based bootstrap algorithm, has also been proposed
in the context of finding gene-disease association [231]. Moreover a sequen-
tial FS method based on relevance chains has also been proposed for finding
multi-SNPs sets related with a phenotype [68]. Exhaustive search has also
been applied in the context of multi-loci genetic association [311].

3.2 Family based studies

First genetic association studies were designed with familiar data and for a
long time they have been the standard practice in genetic studies of human
diseases [162]. In particular, first and simplest approaches were based on
trios, consisting of one offspring and its two parents [286]. Later, sib-pairs
analysis was introduced [232]. Sib-pairs, pairs of brothers or sisters, tend
to present more homogeneity of age and environment than other pairs of
relatives, and they are relatively easy to ascertain [157]. However these me-
thods have been extended to small pedigrees (nuclear families) and more
recently to large pedigrees (extended families) [29]. Family-based studies
take into account the dependence of the genetic information between rela-
tives and use it in order to explore both within-family and between-family
information. An important advantage of family-based studies is that they
are robust against population admixture and stratification [247]. This sec-
tion will review different strategies for dealing with familiar data in the
study of genetic association between genetic variants and diseases. The two
existing approaches are genetic linkage analysis and association studies.
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3.2.1 Genetic similarity between individuals

Most family-based methods come from the idea of estimating the genetic
similarity between individuals at a specific marker. All measures of related-
ness are based on the concept of identity by descent (IBD), a key concept
in quantitative genetics. Two alleles are said to be identical by descent if
they are identical copies of the same ancestral allele. The probability that
two alleles of two relatives are IBD is called the kinship coefficient. It is a
measure of the degree of genetic relatedness of two individuals. For example,
the kinship coefficient between identical twins is 0.5 it is 0.25 between fa-
ther and son. The matrix that contains these probabilities for a given locus
and for all the pairs of individuals is called the kinship matrix or also IBD
matrix. These matrices express the genetic relatedness among individuals
at a particular locus [157]. There exist several methods in the literature for
the estimation of IBD coefficients (πi,j) but the simplest one is defined in
equation refeq:ibd.

πi,j = k1/2 + k2 (3.12)

where k1 and k2 are the probabilities that individuals i and j share 1
and 2 alleles IBD respectively [315].

In practice, the number of alleles shared by IBD at a given locus is
difficult to be ascertained because the allelic measurements of the parents are
not always available. The genotypic distance between relatives can also been
inferred using Identity-By-State (IBS) probabilities, that is the probabilities
that two individuals share an allele, regardless of its ancestral origin [29].
Figure 3.1 shows a particular pedigree where , individuals 4 and 5 share

Figure 3.1: An example of pedigree.
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allele A2 IBD because they are copies of the allele of their common father.
However, they share the allele A1 IBS but not IBD because they are identical
but provide from a different mother.

Sometimes, one can establish the genetic similarity between individuals
directly from counting the number of alleles shared IBD or IBS between
individuals and avoiding the corresponding probability estimation. The
computation of probability estimates is usually costly, specially for high
dimensional IBD matrices, so that different methods for the estimation of
IBD or IBS matrices have been proposed [26]. Deterministic approaches
based on regression methods have been proposed [26, 238] whereas LOKI
is a stochastic method based on Markov-Chains Monte-Carlo simulations
[116].

3.2.2 Linkage methods

Linkage studies consist in evaluating the statistical evidence of the co-segre-
gation of a marker loci with a trait in a family. Relatives who share a
particular trait will also share alleles at markers surrounding the gene(s)
influencing this phenotype, and vice versa.

The most commonly used linkage methods are the Hasseman and Elston
regression and the Variance Components Analysis (VCA).

Haseman and Elston [109] were the first to describe a widely used method
to map human quantitative trait loci (QTLs). This method is based on a
regression model between the differences for the trait between two relatives
and the estimated proportion of alleles shared IBD at a marker (equation
3.13).

E(∆2
j ) = α+ βΠj (3.13)

where ∆2
j is the squared phenotypic difference between j-th pair of rela-

tives, and Πj is the proportion of marker alleles shared IBD for this pair. If
the slope β is significantly negative, there is a QTL linked to the marker.

Variance Components (VC) linkage analysis is an extension of the Hase-
man and Elston regression for extended families. In VC, the cosegregation
of the linked markers with a trait locus is used to decompose inter-individual
variability into linked and unlinked components of variance. In particular,
the variance of the phenotype (Y ) can be expressed as a linear polygenic
model by means of the variance of the effect loci (QTLs) and the variance
of the environmental conditions [9]. A quantitative phenotype Y can be
expressed as a linear function of the overall mean µ, the effect of n QTL’s
qi and the environmental deviation e as in equation 3.14.

Y = µ+
n∑
i=1

qi + e (3.14)
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Assuming that qi and e are uncorrelated random variables, the variance
of Y is expressed in equation 3.15.

σ2
Y =

n∑
i=1

σ2
qj + σ2

e = σ2
G + σ2

e (3.15)

where σ2
G is the genetic variance. Hence, the covariance between two

individuals’ phenotypes (Y1 and Y2) is defined in equation 3.16.

Cov(Y1, Y2) =
n∑
i=1

π12iσ
2
qi (3.16)

where π12i is the proportion of alleles shared IBD between the the two
individuals at locus i. This covariance can be approximated by equation
3.17.

Cov(Y1, Y2) ≈ 2φσ2
G (3.17)

where 2φ = E[π12i] is the expected kinship coefficient.

The covariance matrix (Ω) of a general pedigree can be estimated by
generalizing the bivariate covariance as in equation 3.18.

Ω ≈
n∑
i=1

Πiσ
2
qi + 2Φσ2

G + Iσ2
e (3.18)

where Πi is the IBD matrix for the locus qi, 2Φ is the expected kinship
matrix, and I is the identity matrix.

The null hypothesis in VC methods for mapping QTL’s is that the addi-
tive genetic variance due to the QTL is zero. This hypothesis is contrasted
using a statistical test. The most commonly used is the likelihood ratio
statistic or LOD Score test [6]. This test compares the likelihood of this
model with that of a model in which the variance due to the i-th QTL
is estimated. When multiple QTLs are jointly considered, the resulting
likelihood-ratio test statistic has a more complex asymptotic distribution
that is still a mixture of χ2 distributions.

Several softwares for family-based genetic association are based on a lin-
kage approach both with Hasseman and Elston regressions and with VC
analysis. This is the case of Merlin [1]. SOLAR (Sequential Oligogenic Lin-
kage Analysis Routines) is a software package that uses a multipoint VC
model for general pedigrees [6]. LAMP also handles familiar data using lin-
kage analysis [173]. LOKI also performs linkage analyses based on oligogenic
models [116].

Linkage studies generally focus on microsatellites since they examine
large number of families and see when the alleles of specific markers are
inherited together with a phenotype in more cases than not. Microsatellites
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are good markers for studies of genetic linkage because they have a high
heterozygosity. This means that allelic identity-by-descent can be readily
established (unlike with bi-allelic SNPs) and linkage can be easily determined
[336]. In contrast, family-based association tests generally use SNPs.

3.2.3 Association tests

The simplest family-based association design the Transmission Disequilib-
rium Test (TDT) [286]. TDT is an association test for the presence of linkage
between a genetic marker and a trait. It was first used with genotype data
from trios, which consist of an affected offspring and his or her two parents
for the detection of genetic variants related to Mendelian diseases [162]. The
principle of TDT is to determine which marker alleles are transmitted to the
affected offspring. The TDT compares the observed number of alleles that
are transmitted with those expected to be transmitted assuming Mendelian
laws. Given n affected offsprings and their 2n parents and 2 alleles of a
genetic locus (A1 and A2), a 2x2 contingency table is established as in Table
3.3.

Table 3.3: The TDT contingency table.

Non-Transmitted allele
Transmitted allele A1 A2 Total

A1 w x w+x
A2 y z y+z

total w+y x+z 2n

Thus, a statistic test is defined under the hypothesis that two heterozy-
gous parents (case x and y) are independent. The TDT statistic compares
the proportions x/(x+ y) and y/(x+ y) and is adjusted to a χ2 distribution
as expressed in equation 3.19.

χ2 ∼ (x− y)2

(x+ y)2
(3.19)

The FBAT approach is a generalization of the TDT for general pedigrees
[247]. If X and P denote the genotypes of the offspring and its parents
respectively and T the offspring’s trait, the covariance statistic used in the
FBAT test is defined as in equation 3.20.

U =
∑
ij

Tij · [Xij − E(Xij |Pi)] (3.20)

where i indexes the pedigree and j indexes the offsprings, and where
E(X|P ) is the expected value of X under the null hipothesis.
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Other extensions of the TDT have been proposed for applying it to com-
plex diseases schemes. For example, the Pedigree Disequilibrium Test (PDT)
has been developed for the analysis of linkage disequilibrium in general pedi-
grees [194]. The Quantitative Pedigree Disequilibrium Test (QPDT) is a
generalization of PDT for quantitative traits [339]. ParenTDT is an exten-
sion of TDT that also incorporates parental phenotype information. Many
family based association software integrate the TDT or any of these exten-
sions, such as Plink [244] or UNPHASED [75].

In addition, there are family-based association tests directly based on
the polygenic model proposed in equation 3.14 [163, 51].

Finally, combined linkage and association strategies have been proposed
[230]. These applications require that family relationships and linkage be
appropriately accounted for in the association test. MERLIN, ILINK and
LAMP include such strategies [173].

3.3 Genetic association studies in multiphenotypic
schemes

In many cases, complex diseases are not dictated by a single trait but several
symptoms appear at the same time to determine the syndrome or disease.
All these symptoms that describe the disease are part of a collection of bio-
logical variables. These can be from physiological traits to certain proteins’
levels in blood going through the expression levels of the genes that code for
these proteins.

To understand the genetic basis of such diseases, each trait is often se-
parately tested for association with one or more markers. However, if a
locus affects two or more traits, a single-trait study may lose the power to
detect a pleiotropic effect. In the past decade, both genetic association and
linkage researches have focused on statistical and computational techniques
for extending the traditional study of genetic association between one geno-
type and one phenotype to polygenic and multiphenotypic schemes [202].
In particular, the simultaneous analysis of multiple traits in the context of
linkage mapping of quantitative trait loci (QTL) has attracted much atten-
tion. Several strategies have been followed and commonly applied for the
analysis of multiple traits. The first consists on combining several univariate
tests, one for each trait [326, 329]. Generalizations of the Maximum Likeli-
hood (ML) method commonly used for linkage analyses have been proposed
[6, 138, 154]. The most common strategy, which is integrated in the majority
of genetic association softwares is the multivariate regression (MR) [153]. It
generalizes the common genetic association test based on linear regressions
[16, 101, 42, 155]. However, both generalizations (ML and MR) present a
common drawback. Although they can be applied to multiple traits, a large
number of correlated traits requires the simultaneous estimation of too many
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parameters, restraining its practical use.

An alternative approach is based on the transformation of the original
traits to a reduced number of canonical variables [191, 324]. This category
of techniques is included in a larger family of methods of phenotypic dimen-
sionality reduction [203]. This approach is often implemented in two steps.
First, new canonical phenotypic variables are generated. Next, a classical
single trait genetic analysis is used to test the association between candidate
loci and the canonical variable. The most common technique for the canon-
ical transformation of multiple traits is the Principal Component Analysis
(PCA) [323, 163, 150].

This is especially interesting when studying the genetic compounds of
a collection of phenotypes related between them. This occurs when the di-
sease under study results from a metabolic process, where a set of proteins
respond in cascade within a given pathway until they cause a physiologi-
cal change that correspond to the syndrome. For example, Mathias et al.
propose to study several platelet function phenotypes, tightly involved in
coronary artery disease [197]. In such cases, it has already been proposed to
define new canonical variables in representation of sets of related phenotypes
[52, 197, 47]. These new variables should meet two main requirements. The
first one is that it should explain the largest possible proportion of the co-
variance between the phenotypes. Second, the canonical variable should be
able to capture the common activity of the metabolic pathway under study
and so recovering the dimensions of the entire syndrome [278, 190]. Using
PCA allows reaching these conditions since it consists on a canonical trans-
formation on the data where the new variables are the eigenvectors of the
covariance matrix and so they capture a certain amount of common variance
among the different variables. In particular, Mathias et al., propose to use
PCA for determining a set of independent factors explaining the phenotypic
covariance between phenotypes biologically related to the platelet function.
These new variables are used in further genetic analyses as new phenotypes
in both genetic association and linkage analyses in order to identify genetic
loci susceptible to be related to the common activity of the collection of
original phenotypes.

3.4 Statistical issues in genetic association studies

GWAS are an important advance in discovering genetic variants influencing
disease but also have important limitations, including their potential for
false-positive and false-negative results and for biases related to the selection
of study participants and genotyping errors. Due to the availability of many
SNPs, GWAS must utilize very large sample sizes, which at the same time
highlights their statistical limitations, leading to false positive findings. This
is the most important drawback of GWAS and it is common to all the
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methods proposed previously. The main sources of spurious findings in
GWAS are multiple testing problems and population stratification. Another
important pitfall of GWAS is their lack of replication or validation. This
can be dealt using some enrichment tools such as prioritization criteria. In
this section, statistical methods to address these issues are described.

3.4.1 Multiple testing

Nowadays, thanks to recent technological advances, investigators can test
the association between up to a million SNPs and disease phenotypes. In
addition, some analyses study multiple and often correlated phenotypes and
use multiple methods of statistical analysis, including different models or
models with different covariates. When a genetic association study includes
multiple genetic loci, multiple phenotypes, and multiple methods of evalua-
ting associations between genotype and phenotype, it involves the testing
of an enormous number of hypotheses, which implies a risk of inflation of
the type I error rate (i.e. the probability of falsely claiming a positive asso-
ciation when it is not true) [279]. It becomes even more evident in Next
Generation Sequencing.

The existing methods for the correction of multiple testing can be divided
into two main categories, those limiting the number of tests to be performed
and those adjusting the results for the number of tests. Since all the existing
methods for correcting for multiple testing have strengths and weaknesses,
there is not a clear consensus about how it should be dealt with [187].

The simplest correction for multiple testing is the Bonferroni adjustment,
consisting on multiplying the nominal p-values by the total number of tests
performed. This method assumes that the set of tests are independent.
A refinement of the Bonferroni procedure has been proposed for the case
where SNPs are in linkage disequilibrium [226]. It consists on estimating
the effective number of independent SNPs, those that are not in linkage
disequilibrium, and multiplying it by the nominal p-values. Because the
effective number of independent SNPs is always less than or equal to the total
number of SNPs tested, this method is less conservative than the Bonferroni
procedure.

Permutation testing is an alternative way to adjust for multiple testing
in genetic association studies. The basic principle of this is to permute the
phenotype(s) with respect to the genotype(s) among observations, remov-
ing any association between phenotypes and genotypes but retaining the
correlation among phenotypes and among genotypes, resulting from LD,
within an individual. The minimum p-value of the original association tests
is compared with a distribution of the p-values obtained from repeating this
process thousands of times [53]. However this procedure is computationally
intensive since it requires generating about 10000 permutations for achieving
a significance threshold of 0.01 and about 1000 permutations for achieving
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a threshold of 0.05, which is the less restrictive alternative.

As an alternative, False Discovery Rate (FDR) control is a statistical
method used in multiple hypothesis testing to correct for multiple compari-
sons [24]. Given a list of statistically significant findings, FDR procedures
are designed to control the expected proportion of incorrectly rejected null
hypotheses (”false discoveries”). FDR controlling procedures exert less con-
servative control over false discovery compared to the previously described
family-wise error rate procedures (such as the Bonferroni correction). This
increases power at the cost of increasing the rate of type I errors. FDR
strategies have been used for multiple testing correction in GWAS [260, 76].

With related individuals, the dependence among relatives’ genotypes
can also contribute to the correlation between tests. Methods for multiple
testing correction in these cases have been proposed [319].

3.4.2 Population stratification

In genetic studies, associations between genotypes and phenotypes may be
confounded by unrecognized population structure and/or admixture. Stud-
ies have shown that even in European populations, which are thought to be
relatively homogeneous, population stratification exists and can affect the
validity of association studies [179].

When no evolutionary agents are affecting a population, the population
is in Hardy-Weinberg equilibrium, that is haplotype probabilities and conse-
quently allelic frequencies are constantly distributed within the population
and are not changing from generation to generation. When, by contrast, the
population is stratified, the HWE is violated and individuals may present
different allelic frequencies depending on the subpopulation they belong to.
In the context of genetic association studies, the differences found between
the allele frequencies of cases and controls may be due to the population
structure rather than a true association of the locus with the disease, intro-
ducing a statistical bias to the test [174]. This has become one of the most
important pitfalls in genetic association studies.

There exist two main strategies to deal with population stratification,
the early approach of the genomic control and the structured association
tests. One one hand, genomic control is a family of methods for detecting
and/or correcting for stratification based on the genome-wide inflation of
association statistics with an inflation factor obtained from a set of random
markers that are not associated with the phenotypes of interest. On the
other hand, structured association methods explicitly infer genetic ancestry
providing an effective correction for population stratification.

When the population structure is not known, the easiest way to correct
for stratification would be to adjust the association model for any covariate
that may be related to the population structure, such as ethnicity or geo-
graphic location. However the most standard procedure is to ascertain the
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genetic structure of the population by looking at the genetic correlations
between individuals. This should be done by computing the kinship matrix,
that measures the pairwise genetic distance between individuals. This ma-
trix corresponds to the IBD matrix defined in section 3.2.1. Actually, when
using familiar data, the effect of population stratification is easily controlled
since they already contemplate the genetic population structure.

Once the kinship matrix is obtained, most methods use these correlations
for assigning them to discrete clusters (subpopulations) and then segment
the association analyses within each subpopulation. This method requires
a computational effort that depends strongly on the number of clusters in
which the individuals are assigned. It has been shown that in an asso-
ciation study with a sufficiently large number of markers and individuals,
subjects can be partitioned into genetic clusters that match with the major
geographic areas, where individuals from intermediate geographic locations
have a mixed membership in the clusters that correspond to neighboring
regions [254].

The most standard and traditional practice for detecting and correcting
genetic association studies for the population structure is to use STRUC-
TURE, a model-based algorithm specifically designed for population struc-
ture inference [243]. The algorithm assumes a model in which there are K
populations (where K may be unknown), each of which is characterized by a
set of allele frequencies at each locus. Individuals in the sample are assigned
(probabilistically) to populations using a Bayesian approach.

However improved methods have been proposed that are commonly
based on principal-component analysis (PCA) method and multidimensional-
scaling (MDS) method [313]. The PCA method identifies principal compo-
nents that represent the population structure based on genetic correlations
among individuals. The MDS method detects genetic similarities among
individuals by obtaining the optimal dimension, lower than the original di-
mension of the data, so that the distance is preserved [174]. The MDS
method has been combined with a clustering algorithm for grouping sub-
jects into a variable number of clusters applying a clustering method over
the subject coordinates in the new vectorial space [175].

Once the population structure (P ) is ascertained, the standard proce-
dure is to introduce it in the association test as a covariate. For instance
in linear regression tests of association such as the proposed in the software
GenABEL, P is introduced as a covariate in a mixed linear regression stra-
tegy [331]. The simple linear regression model described in section 3.1.1.2 is
adapted as a mixed effects model as described in equation 3.21. Even if it
remains an unanswered question, researchers suggest that population effects
should be treated as fixed effects rather than random effects, since they are
the same for all samples [240].

Y ∼ α+ βS + γP + u+ ε (3.21)
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where Y is the phenotypes matrix, S is the genotype matrix, α, β and
γ the regression coefficients of the fixed effects (genotype and population
effects) and u represent the random effects, assumed to be normally dis-
tributed with var(u) = KVg where K is the kinship matrix and Vg is the
genetic variance.

The use of these techniques may help to avoid or at least reduce the
number of false positive findings. In order to ascertain the true positive
among the remaining positives, enrichment tools for GWAS are useful such
as prioritization criteria.

3.4.2.1 Enrichment tools for Genome-Wide Association Stud-
ies

In addition to the false positive findings, an important drawback of current
genetic association studies is their difficulty of replication and validation.
Thus, prioritization criteria are needed to be established in order to rank
candidate SNPs [28]. Most of these criteria can be used both as prioritization
techniques and as a tool for analyzing and interpreting GWAS results. As,
an example, meta-analysis is one of the most commonly used method for
validating GWAS results.

Prioritization of SNPs may also entail adding biological knowledge to
the system and use it for discarding irrelevant SNPs [199]. Biological infor-
mation about the SNP. This information is found at SNP databases such as
dbSNP [274], ensemble attributes of SNPS that can be used for prioritize
them can be found in the genotypic data, the genetic context of the SNP, or
previous established associations [235]. In the genetic context of a SNP, se-
veral features may be relevant such as the SNP location (the gene it belongs
to), the chromosomal region, the SNP functional class (its functional loca-
tion within a gene) or the overlap of the SNP with a Transcription Factor
Binding Site (TFBS) or a splice site. The SNP evolutionary conservation
can also be used as a prioritization criterion [261].

Recently, information from Protein-Protein Interaction (PPI) networks
have been used to prioritize candidate genes [165, 176]. There usually are
several biochemical pathways that are believed to play an important role in
the development of certain disease. Selecting genes in these pathways using
gene-gene interaction analysis may reduce the number of interactions tests to
be performed. The prioritization is based on the idea that a gene that codes
for a protein that interacts with other proteins might be a good candidate
for interacting with other genes [214]. Thus one can only look for interac-
tions among SNPs in genes with many PPI. Moreover, this information is
also useful for scoring SNPs by looking both at the number of connections
of the protein coded by the gene under study and at the strength of the
PPI network. PPI networks are usually built based on pathway knowledge
in public databases. The most commonly used is the Gene Ontology (GO),
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which provides a controlled vocabulary that can be applied to all eukaryotes
even as knowledge of gene and protein roles in cells [11]. Several studies have
recognized similarity in GO annotation as one of the strongest predictors for
protein interaction. GO annotation-driven interaction inference is based on
the observation that proteins localized to the same cellular compartment or
that that share a common biological process are more likely to interact and
then to be predictive for PPI. Nowadays, prioritization tools based on PPI
networks integrate KEGG, BioCarta, or other pathway databases in order
to more efficiently examine the genes in a network context [314]. In particu-
lar, the Kyoto Encycopledia of Genes and Genomes (KEGG) offers a large
database of pathways that have been curated by hand, and annotated to the
KEGG orthologies, which are similar to the semantic ontologies proposed
by the Gene Ontology Consortium [143].
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Chapter 4

Information Theory

4.1 Historical Background

The most fundamental quantity in information theory is the entropy, the
measure of information. The entropy of a physical system is the minimum
number of bits needed to fully describe the detailed state of the system. It
was firstly introduced in 1865 by Rudolf Clausius in the field of thermody-
namics [54]. According to the second law of thermodynamics, the entropy
is the degree of randomness in any system and it always increases or remain
constant. Acccording to Clausius, the entropy change (∆S) of a thermody-
namic system absorbing a quantity of heat (∆Q) at an absolute temperature
T is simply the ratio between the two as described in equation 4.1.

∆S =
∆Q

T
(4.1)

Between 1872 and 1875, Ludwig Boltzmann suggested that this quantity
corresponds to the number of molecular degrees of freedom of the system.
Boltzmann was able to show that the number of degrees of freedom of a
physical system can be easily linked to the number of microstates Ω of that
system. And it comes with a relatively simple expression from a mathema-
tical point of view [32] (equation 4.2).

S = k · logΩ (4.2)

where k = 1.38062 · 10−23 joule/kelvin is the Boltzmann constant and Ω
the amount of states the system has.

The information theory is a branch of mathematics originated by the
publication of Claude E. Shannon’s classic paper “A Mathematical Theory
of Communication” in 1948 [272]. The main question motivating Shannon’s
work was how to design communication systems to carry the maximum
amount of information and how to correct for distortions on the lines. In his
revolutionary paper, Shannon proposed a qualitative and quantitative model
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of communication. He introduced the concept of a channel, consisting of a
sender (a source of information), a transmission medium (with noise and dis-
tortion), and a receiver (whose goal is to reconstruct the sender’s messages).
In order to quantitatively analyze the transmission through the channel he
also introduced a measure of the amount of information in a message. To
Shannon, the amount of information was closely related to the chance of a
message to be transmitted. A message is very informative if the chance of
its occurrence is small. If, in contrast, a message is very predictable, then
it has a small amount of information. This measure of information, that he
called entropy, only depends on the statistical properties of the information
source, independently of the kind of information it transmits. In his work,
Shannon managed to mathematically quantify the concept of “information”,
defining the measure of entropy, as it is known nowadays. Shannon’s entropy
of a system represents the amount of uncertainty one particular observer has
about the state of this system. Moreover, Shannon’s mathematical formu-
lation of the entropy was inherited as well by the measure of uncertainty
proposed by Hartley in 1928 [108].

Even if Shannon is considered the father of information theory, previous
works proposed measures that were later associated to this discipline. It is
the case of the Kullback-Leibler (KL) divergence, introduced by Solomon
Kullback and Richard Leibler in 1951 [160]. The KL divergence is nowadays
the stem of information theoretic measures.

While Shannon never referred to his work as information theory, this
new branch of mathematics attracted the attention of many scientists with
theoretical and applied viewpoints. It is noteworthy to mention that Rényi
proposed a framework that generalizes Shannon’s and Kullback-Leibler’s
quantities [251].

Information theory constituted the theoretical fundamentals of digital
communications systems. Later it has been exported to other branches
of engineering as well as to physics, statistics or economics among others.
In biomedical engineering, measures of information theory have been used,
among others, in medical imaging [236] or in the study of heart rate dynamics
[305, 124]. Information theory has also been applied in bioinformatics, as it
will be described in section 4.4.

4.2 Measures of information Theory

Central quantities of information are the entropy (the information in a ran-
dom variable) and the mutual information (the amount of information in
common between two random variables). Both measures are obtained with
a logarithmic expression depending on the probability mass functions of
the random variables. The choice of logarithmic base determines the unit
of information theoretic (IT) measures. The usual unit of information is
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the bit, based on the binary logarithm. However the natural logarithm is
increasingly used for computational reasons, and in this case, the unit of in-
formation measures is the nat. The unit of measures based on the common
logarithm is the ban.

Let introduce some notations that applies for the following sections. X
and Y denote random variables. p(X) and p(Y ) are their marginal proba-
bility mass function and p(X,Y ) is the joint probability mass function.

4.2.1 Entropy

The entropy is a measure of uncertainty associated with a random variable
X. It quantifies the expected value of the information contained in a specific
realization of the random variable as expresssed in equation 4.3.

H(X) = E(I(X)) =

N∑
i=1

p(xi)I(xi) = −
N∑
i=1

p(xi)logp(xi) (4.3)

where I(xi) = − log p(xi) is the information content of the realization
xi.

The expression p log p, tend to be equal to zero whenever p = 0 (equation
4.4).

lim
p→0+

p log p = 0 (4.4)

Figure 4.1 shows the behavior of the entropy as a function of the proba-
bility in the case of a binary variable.
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Figure 4.1: H(p) as a function of p.

Figure 4.1 shows a concave curve that equals 0 when the random variable
is deterministic (p = 0 or p = 1) and that takes its maximal value when
p = 1

2 , which corresponds to the maximal uncertainty or randomness.
Rényi’s entropy is a parametric generalization of the Shannon’s entropy

as defined in equation 4.5.
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Hα(X) =
1

1− α
log

N∑
i=1

p(xi)
α (4.5)

where α is the Rényi parameter. When α tends to 1, Rényi’s entropy
corresponds to the Shannon entropy.

If, in contrast, X is a continuous random variable, its differential entropy
is defined replacing the sum by an integral as in equation 4.6.

H(X) = E(I(X)) =

∫
χ
p(x) log p(x)dx (4.6)

where p(x) is the probability density function defined on the domain χ.

The joint entropy of two discrete random variables measures the infor-
mation they share. If X and Y are two random variables, their joint entropy
is defined as the entropy of their pairings (X,Y ) as in equation 4.7.

H(X,Y ) = −
N∑
i=1

p(xi, yi)logp(xi, yi) (4.7)

The joint entropy of two random variables is lower than the sum of their
entropies.

H(X,Y ) ≤ H(X) +H(Y ) (4.8)

When the variables are independent(i. e., p(X,Y ) = p(X)p(Y )), the
joint entropy reaches it upper bound , being equal to the sum of the en-
tropies.

When a variable X is conditioned by another variable Y , the conditional
entropy is expressed as in equation 4.9.

H(X|Y ) = −
N∑
i=1

p(xi, yi) log
p(xi, yi)

p(yi)
(4.9)

The conditional entropy can also be expressed as in equation 4.10.

H(X|Y ) = H(X,Y )−H(Y ) (4.10)

4.2.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is a central measure in information
theory since it sets the basics for the definition of almost all the IT quantities.

The KL divergence measures the similarities between two probability
distributions p and q. It is generally used for comparing a “true” distribution
of data or theoretical distribution (p) with a model or approximation of p
(q).
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The KL divergence between two distributions p(X) and q(X) of a dis-
crete random variable X is defined in equation 4.11) whereas the KL diver-
gence between p(X) and q(X) when X is a continuous random variable is
defined in equation 4.12.

DKL(p(X), q(X)) =

N∑
i=1

p(xi) log
p(xi)

q(xi)
(4.11)

DKL(p(X), q(X)) =

∫
χ
p(x) log

p(x)

q(x)
dx (4.12)

One of the most important properties of the KL divergence is its non-
negativity as described in equations 4.13 and 4.14.

DKL(p(X), q(X) ≥ 0 (4.13)

DKL(p(X), q(X) = 0 ⇐⇒ p = q (4.14)

Actually, the KL divergence is often intuited as a metric but it does
not fulfill the symmetry condition (the KL divergence between p and q is
generally not the same as between q and p). Moreover it does not fulfill the
triangle inequality.

The KL divergence can be decomposed as follows:

DKL(p(X), q(X)) =

N∑
i=1

p(xi) log p(xi)−
N∑
i=1

p(xi) log q(xi) (4.15)

where the first term is the opposite of the entropy of X.

4.2.3 Mutual information

The mutual information between two discrete random variables X and Y
was defined by Shannon as in equation 4.16.

I(X;Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(4.16)

where p(x,y) is the joint probability distribution function and p(x) and
p(y) the marginal distributions of X and Y respectively.

Mutual information can be also expressed as the Kullback-Leibler diver-
gence between the joint distribution p(X,Y ) and the product distribution
p(X)p(Y ) as in equation 4.17.

I(X;Y ) = DKL(p(X,Y ), p(X)p(Y )) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(4.17)
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For continuous random variables, the mutual information is defined as
in equation 4.18.

I(X;Y ) =

∫ ∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdx (4.18)

The mutual information can be also interpreted as the reduction of the
entropy due to conditioning as expressed in equation 4.19.

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ) (4.19)

Figure 4.2 shows a Venn diagram that relates information theoretic mea-
sures between them.

Figure 4.2: A Venn diagram relating IT quantities.

The non-negativity (equations 4.20 and 4.21) and the symmetry (equa-
tion 4.22) are remarkable properties of the mutual information.

I(X;Y ) ≥ 0 (4.20)

being

I(X;Y ) = 0 ⇐⇒ Xand Y are independent (4.21)

I(X;Y ) = I(Y ;X) (4.22)

As for the KL divergence, the mutual information cannot be considered
a distance in the mathematical sense since it does not fulfill the triangle
inequality. However both measures are commonly used as measures of simi-
larity between variables.
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4.3 Estimation of information theoretic measures

The computation of IT measures encounters two major problems.

On one hand, in the case of continuous variables, one has to deal with
the computation of the integral. Computationally, integrals are estimated
by partitioning its domain in several intervals and applying Riemann sums
to each interval. This produces an error in the resulting IT quantities. The
discretization of continuous variables for applying the discrete IT measures
is an alternative, even if it also produces an error.

On the other hand, the most critical issue concerns the sample size. In
real applications of IT measures, researchers work with data of finite sample
size. Applying IT measures to finite data involves estimating the function of
a probability distribution from a finite set of samples. Since IT measures are
defined from real distributions, the use of probability distributions estimated
from a finite sample of data lead to erroneous values for IT quantities.

Schneider et al. proposed an estimation for the sampling error in the
entropy measurement [265]. Given a DNA position, if na, nc, ng and nt are
the numbers of A’s, C’s, G’s and T’s in this site and Pa, Pc, Pg and Pt are
the frequencies of each base in the genome, then the probability of obtaining
a particular combination of na to nt (called nb) is estimated as in equation
4.23.

Pnb =
n!

na!nc!ng!nt!
Pnaa Pncc P

ng
g Pntt (4.23)

where n = na +nc +ng +nt. Pnb is the probability of obtaining the entropy
Hnb defined as in equation 4.24.

Hnb = −
∑

(
nb
n

) log(
nb
n

) (4.24)

Finally the sampling error is defined in equation 4.25.

SE =
∑
nb

PnbHnb (4.25)

Thus IT measures are needed to be corrected for this error. An alter-
native to this is to estimate IT measures by taking to account the bias
produced by the finite sample size.

This section aims to review the different strategies for estimating IT
measures. In particular this review focus on three main strategies to tackle
this problem, Bayesian estimators for the entropy measure, Taylor-based
estimations for the mutual information measure and Information Theoretic
Learning (ITL), a nonparametric framework for the estimation of informa-
tion theoretic measures.
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4.3.1 Bayesian estimators

Traditionally, probability estimators are based on empirical estimations of
the frequencies by counting observations. However, several methods for
correcting the bias that it supposes are proposed. Among others, Bayesian
estimators will be reviewed in this section, as they are the most important
and most commonly used [111].

The empirical estimation of the frequencies pi = p(xi) is also called ma-
ximum likelihood (ML), “plug-in” or “naive” estimation and it corresponds
to the classical inference of the frequencies, done by frequentist statisticians
from the countings of the observations 4.26.

p̂ML
i =

ni
n

(4.26)

where ni is the number of counted observations and n is the total number
of counts.

Given this estimation of the frequencies, the maximum likelihood esti-
mator of the entropy and mutual information is expressed in equations 4.27
and 4.28.

ĤML = −
n∑
i=1

p̂ML
i logp̂ML

i (4.27)

ÎML(X,Y ) = ĤML(X) + ĤML(X) + ĤML(X,Y ) (4.28)

Even if they are unbiased, the estimations of the frequencies p̂ML
i down-

wardly biases the estimate ĤML of the entropy, because ĤML is defined
by a concave-downward function, so that the average estimate derived from
a range of estimates of the frequencies p̂ML

i is less than the value of ĤML

given by equation 4.27. This is the reason why other estimators such as the
Miller-Madow (MM) estimator use bias correction as in equation 4.29 [207].

ĤMM = ĤML +
m̂− 1

2n
(4.29)

where m̂−1
2n is a first order bias correction and where m̂ is the number of

bins with nonzero probability.

The Chao-Shen (CS) entropy estimator [49] is another entropy estimator,
based on the Good Turing bias correction for the empirical estimation of the
frequencies described in equation 4.30.

p̂GTi = (1− m1

n
)p̂ML
i (4.30)

where m1 is the number of bins with ni=1. This correction is used for
estimating the entropy as in equation 4.31.
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ĤCS = −
n∑
i=1

p̂GTi logp̂GTi
(1− (1− p̂GTi )n)

(4.31)

The Bayesian approach for the entropy estimation consist on a Bayesian
regularization of frequencies. The premise of Bayesian statistics is to incor-
porate prior knowledge, along with a given set of current observations, in
order to make statistical inferences. The prior information could come from
operational or observational data, from previous comparable experiments
or from engineering knowledge. Using the Dirichlet distribution with para-
meters ai as a prior, the resulting posterior distribution is also Dirichlet as
described in equation 4.32.

p̂Bayesi =
ni + ai
n+A

(4.32)

where

A =
n∑
i=1

ai (4.33)

The consequent entropy estimator is defined in equation 4.34.

ĤBayes = −
n∑
i=1

p̂Bayesi logp̂Bayesi (4.34)

Depending on the choice of ai, the Bayesian entropy estimator receives
a different name as described in table 4.1 [111]. Note that when ai=0, it
corresponds to the empirical estimator. The most commonly used estimator
is the Schürmann and Grassberger estimator, when ai = 1/n, [267].

Table 4.1: Bayesian estimators and their prior definition.

ai Entropy estimator

0 Empirical (ML)
1
2 Krichevsky-Trofimov
1 Laplace’s prior estimation
1
n Schürmann-Grassberger√
n
n minimax prior estimation

In addition, the NSB and James-Stein estimators are entropy estima-
tors that can be seen as special Bayesian estimators. The NSB estimator
proposed by Nemenman, Shafee and Bialek uses a prior that is a Dirichlet
mixture with infinite components [222]. The James-Stein (JS) entropy esti-
mator is based on a plug-in shrinkage type of estimation of the frequencies
[111]. With certain shrinkage conditions, this estimation corresponds to a
Bayesian estimator.
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4.3.2 Taylor-based estimation

Information theoretic estimates are distributed according their probability
density functions, as any other random variable. Occasionally, the know-
ledge of the entire distribution of information-theoretic measures is desirable,
even for the statistical assessment of the estimates. Actually, finding an ex-
act expression for the distribution of a mutual information estimator is a
non-trivial problem because of its nonlinearity. An alternative for doing this
is to approximate the expression for the mutual information by a second-
order Taylor series [92]. Consider the mutual information as defined in 4.16.
After expanding it into a second order Taylor series, the mutual information
I(X;Y ) can be approximated as in equation 4.35.

Î(X;Y ) =
1

2ln2

∑
x

∑
y

(p(x, y)− p(x)p(y))2

p(x)p(y)
(4.35)

Note that this expression is similar to the χ2 statistic variable described
in equation 4.36.

X2 =
∑
x∈X

∑
y∈Y

(nij − (ni·n·j)/N)2

(ni·n·j)/N
(4.36)

X2 follows a χ2 distribution with (|X| − 1)(|Y | − 1) degrees of freedom
when X and Y are independent.

Equations 4.36 and 4.35 lead to establish the relationship between Î(X;Y )
and X2 as in equation 4.37.

X2 = 2N ln2Î(X;Y ) (4.37)

Based on these assumptions, Goebel et al. demonstrated that the estima-
tor of the mutual information between two independent or conditionally in-
dependent random variables (Î(X;Y )) follows a gamma distribution, whereas
for dependent variables it follows a non-central gamma distribution [92].

If X and Y are independent random variables with |X| and |Y | reali-
zations respectively, Î(X;Y ) follows a gamma distribution as in equation
4.38.

Î(X;Y ) ∼ Γ(
1

2
(|X| − 1)(|Y | − 1),

1

N ln2
) (4.38)

with mean and variance given by equations 4.39 and 4.40 respectively.

E[Î(X,Y )] =
(|X| − 1)(|Y | − 1)

2N ln2
(4.39)

E[Î2(X,Y )]− E2[Î(X,Y )] =
(|X| − 1)(|Y | − 1)

2N2ln22
(4.40)
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If X, Y, Z are random variables with X and Y conditionally independent
given Z, Î(X;Y |Z) also follows a gamma distribution as in equation 4.41.

Î(X;Y |Z) ∼ Γ(
|Z|
2

(|X| − 1)(|Y | − 1),
1

N ln2
) (4.41)

If, in contrast, X and Y are statistically dependent, Î(X;Y ) follows a
non-central gamma distribution as in equation 4.42.

Î(X;Y ) ∼ γ(
1

2
(|X| − 1)(|Y | − 1),

1

N ln2
, λ) (4.42)

where λ = I(X,Y ) is the non-centrality parameter.

As mentioned, this approximation is useful when one needs to assess the
independence of two random variables through the statistical significance of
the mutual information between them. Given a significance level α (usually
α=0.05), the significance of an observed value of the mutual information
between two variables X and Y (Î(X;Y )) is obtained by comparing Î(X;Y )
with the corresponding quantile of the statistical distribution (here, the
Gamma distribution). This comparison lead to a p-value that determines
the significance as in equation 4.43.

p = Γ1−α(
1

2
(|X| − 1)(|Y | − 1),

1

N ln2
) (4.43)

4.3.3 Nonparametric estimation and Information Theoretic
Learning

Information Theoretic Learning (ITL) was introduced in 1999 in the con-
text of adaptative filtering in machine learning [241]. This theory is based on
nonparametric approximations of the Rényi’s entropy and mutual informa-
tion for solving problems of dimensionality reduction or feature extraction,
among others.

In ITL, the probability densities are estimated using Parzen windowing
with Gaussian kernels.

Let Hα(X) be the Rényi’s entropy, which can also be written with an
expectation operator as in equation 4.45.

Hα(X) =
1

1− α
log

∫ ∞
−∞

pαX(x)dx

=
1

1− α
logEX [pα−1

X (X)] (4.44)

≈ 1

1− α
log

1

N

N∑
j=1

pα−1
X (xj)
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Given the Parzen estimate of the probability density function pX(x),
defined in equation 4.45, the resulting Rényi’s entropy is expressed as in
4.46.

p̂X(x) =
1

N

N∑
i=1

κσ(x− xi) (4.45)

Ĥα(X) =
1

1− α
log

1

N

N∑
j=1

(
1

N

N∑
j=i

κσ(xj − xi))α−1

=
1

1− α
log

1

Nα

N∑
j=1

(
N∑
j=i

κσ(xj − xi))α−1 (4.46)

The Rényi’s entropy can also be expressed as in equation 4.48 as a func-
tion of the information potential defined in equation 4.47.

Vα(X) =

∫ ∞
−∞

pαX(x)dx =
1

Nα

N∑
j=1

(

N∑
j=i

κσ(xj − xi))α−1 (4.47)

Hα(X) =
1

1− α
logVα(X) (4.48)

Principe et al. extend this nonparametric approximation for estimating
the entropy to the estimation of quadratic mutual information [241].

This kernel-based framework for IT measures estimation allows the lear-
ning machine to learn not only directly from the data but also making use
of information contained in the probability density function. This approxi-
mation is specially useful in the context of optimization. In particular, one
of the most powerful optimization criteria is the maximum entropy principle
(MaxEnt) enunciated by Jaynes [137].

4.4 Information Theory in Bioinformatics

Information theoretic estimations have been widely used with a large range
of applications in statistical mechanics, physical sciences, economics and
engineering, and more particularly in Bioinformatics [144]. Surprisingly,
Shannon himself initiated his scientific research applying mathematics to
study how different trait combinations propagate through several genera-
tions in his PhD thesis [271]. Later he shifted his focus towards the area
of digital communications where he developed his theory of information.
In molecular biology, the concept of information also plays a central role.
Biologists frequently speak about information in different contexts, inclu-
ding information content in heritability, information conservation among the



4.4. Information Theory in Bioinformatics 61

members of species, information content of the gene (exons, introns,...). In
a certain manner, information is the subject of the so called Central Dogma
of Molecular Biology, which states that the biologic information flows from
DNA towards proteins. This section aims to review the applications of IT
measures to bioinformatics. For an organization purpose, four main areas of
research have been revised separately, such as DNA sequence analysis, gene
mapping and proteins sequence analysis.

4.4.1 DNA sequence analysis

One of the earliest applications of IT measures to genetics has been the
characterization of the information content along a DNA sequence or across
several sequences. The information content in genomes is related with the
randomness, or conversely, the regularity, of the sequence [2]. The entropy
provides a quantitative, additive and conservative measure of information
describing the statistical properties of the sequences [330]. The entropy is
obtained by ascertaining the probabilities with which symbols are found on
a sequence and it determines the average information per symbol for a given
kind of DNA [91].

The information content of DNA sequences has been calculated for va-
rious organisms. The result of aligning several sequences is represented by
a consensus sequence that contains the most common nucleotide or amino
acid at each position within the sequence. Schneider and Stephens pro-
posed a graphical representation of the information content in a sequence
after its alignment with multiple sequences called sequence logos [264]. This
representation is based on the measure of redundancy, that normalizes the
decrease of uncertainty (or entropy) at a given site as in equation 4.49.

R = 1− H

Hmax
(4.49)

where Hmax is the maximum entropy for the same number of states.

In a sequence logo, the total height at a given position is proportional to
the information of the site, represented by the redundancy (or information)
of the site, whereas the height of each nucleotide letter is proportional to its
frequency (or conservation across sequences). Figure 4.3 shows an example
of a sequence logo.

Studying the information content of genomic sequences has been useful
for motif finding and especially in the context of the characterization of bin-
ding sites (BS), sites where transcription factors (TF) bind [292]. Schneider
et al. first introduced the information content and more specifically the
redundancy measure to the problem of TF-binding site recognition [265].
This constituted a theoretical framework followed by other researchers in
this area of study [198, 233, 156].



62 Chapter 4. Information Theory

1 2 3 4 5 6 7 8

Position

0

0.5

1

1.5

2

In
fo

rm
at

io
n 

co
nt

en
t

Figure 4.3: An example of a sequence logo.

Another problem related to DNA content recognition is the differentia-
tion of coding and noncoding regions, i. e. the content recognition of coding
regions. Several techniques were developed to extract information about
the coding or noncoding status of the DNA. These techniques are generally
based on finding differences in some statistical patterns between both [77].
It has been demonstrated that the mutual information in coding and non-
coding sequences shows different patterns, being higher in coding regions
than in noncoding regions [98]. This is an encouraging observation for the
use of mutual information in DNA content recognition. However, this task
involves using a distance measure for determining the similarity between
a content sequence (e. g. an exon of a known genome) and an unknown
sequence. Although it does not fulfill the conditions to be a metric, the
mutual information can be converted to a bounded distance by normalizing
it and subtracting it from one [102]. This approximation showed positive
results obtaining a correct content recognition performance [69].

The problem of DNA classification is highly related to the DNA con-
tent recognition. Both of them rely on compression algorithms that them-
selves are based on distance measures. DNA classification aims to predict
structural characteristcs of a test sequence of DNA given only the sequence
of nucleotides, and no other information about the sequence [181]. DNA
classification algorithms take advantage on content recognition techniques
for identifying structural DNA properties from the comparison with other
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sequences. Traditionally this task has been approached using inductive lear-
ning methods such as artificial neural networks. These techniques attempt
to form models from a collection of training data that can be used to predict
future data. The majority of these methods constructs the classifier treating
each nucleotide within a sequence separately. However, in DNA classifica-
tion it is important to take into account the ordering of the nucleotides and
the repetitions of subsequences. This is the reason why compression-based
algorithms are known to be efficient. Using DNA compression, common
subsequences are detected and replaced by shorter codes. Applying IT mea-
sures for compression purposes has been widely explored [344, 102, 69]. In
this case the distance measure must be a metric so that other normalizations
of the mutual information are proposed that guarantee the fulfillment of the
triangle inequality [332, 102, 176, 333].

Most of these distance measures have been also used in other contexts
such as the clustering of gene expression patterns [145]. Gene expression
refers to the process by which information from a gene is use d in the syn-
thesis of a functional gene product. The detection of associations between
gene expression patterns and genotypes is a major challenge of current ge-
netic research. It belongs to the area of study called gene mapping.

4.4.2 Gene mapping

The term gene mapping often refers to the detection of genes related to
disease, or more specifically to the identification of genotypes (genes) related
to phenotypes (traits). Gene mapping may be approached from different
directions. This section reviews the different ways to discover candidate
genes using IT measures.

Mutual information-based distances such as those used for DNA classifi-
cation have been used for differentiating gene expression profiles [245, 152].
Moreover, there are also been used in clustering algorithms applied to gene
expression data in order to identify gene expression patterns and associate
them to some genetic variant [145, 242, 73].

IT measures have also been used in the context of analyzing gene-gene
interactions or gene-environment interaction [327, 297]. This is specially
interesting for the study of complex disorders, where it is known that the
combination of several genes and environmental factors are responsible for
disease. In particular, a novel measure of information, called k-way interac-
tion information (KWII) is defined based on the entropy measure [48].

Finally, IT measures have also been used in association gene mapping.
In particular measures of linkage disequilibrium (LD) have been proposed
based on the mutual information measure [338, 334]. Moreover, the mutual
information measure has been also used in genetic association, for measuring
the direct correlation between a genetic factor (a genotype or gene expression
levels) and a trait or a disease [68, 224, 299]. In particular, Dawy et al. use
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the mutual information for detecting direct association between genotypes
and phenotypes [68].

4.4.3 Amino-acid sequence analysis

As well as for genetic sequences, IT measures have been applied to proteins’
sequences of amino-acids. Mutual information based similarity measures
have been applied to proteins for measuring common structures of different
protein sequences or even common patterns within the same sequence. For
instance, BLOSUM (BLOcks of Amino Acid SUbstitution Matrix) matrices
are built using a scoring measure very similar to the mutual information
[117, 78].

An IT framework has also been proposed for protein structure prediction,
called the GOR method [90]. The GOR method studies the correlations
between amino-acids within the same sequence, which is useful to detect the
interactions between amino-acids that defines the secondary structure of the
proteins [2].

Measures from information theory have also been applied in studies of
protein-protein interaction networks, through semantic similarity measures.
Semantic similarities between proteins are obtained using biomedical ontolo-
gies, namely the Gene Ontology (GO). They are mainly used to compare
genes and proteins based on the similarity of their functions rather than on
their sequence similarity [186, 314, 195, 196].
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Chapter 5

Datasets

Before entering in detail with the original contributions of this thesis, the
present chapter is disposed to describe the datasets involved in the develop-
ment of the proposed methodology. In particular, the research presented in
this dissertation has been carried out with two main datasets of different di-
mensions and characteristics. On one hand, the dataset provided in the 17th
Genetic Analysis Workshop has been used for the characterization of a non-
linear methodology for detecting genetic association, as described in chapter
6. The high dimensionality of this dataset has been exploited for comparing
multiple association tests at a genome wide scale. On the other hand, the
GAIT (Genetic Analysis of Idiopatic Thrombophilia) project dataset, pro-
vided by the Hospital de la Santa Creu i Sant Pau de Barcelona, has been
used in the rest of the research. The most interesting characteristic of this
dataset is its specific design for the study of thrombosis, including a large
and varied collection of both genotypic and phenotypic data related to the
disease. This make it suitable for the study of both polygenic and multiphe-
notypic scenarios, as it will be described in chapters 7 and 8 respectively.

5.1 The 17th Genetic Analysis Workshop dataset

5.1.1 The 1000 Genomes Project

The Genetic Analysis Workshops (GAWs) are a collaborative effort among
researchers worldwide to evaluate and compare statistical genetic methods
and relevant to current analytical problems in genetic epidemiology and
statistical genetics. For each GAW, topics are chosen that are relevant
to current analytical problems in genetic epidemiology, and sets of real or
computer-simulated data are distributed to investigators worldwide. Results
of analyses are discussed and compared at meetings held in even-numbered
years. In particular, the 17th edition of the GAW was yielded in 2010. The
data distributed for GAW17 is a “mini-exome” scan, using real sequence
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data for several hundred genes donated by the 1000 Genomes Project and
simulated phenotypes.

The genomes of approximately 2 thousands individuals of each of the
five major population groups (populations in or with ancestry from Europe,
East Asia, South Asia, West Africa and the Americas) from different world-
wide populations were sequenced. In particular the GAW17 mini exome is
a selection of sequence variants designated as ‘functional’ and phenotypes
simulated to produce a disease trait and related quantitative risk factors
influenced by multiple genes with a variety of underlying genetic models.
Although exome scans are becoming increasingly popular in complex di-
sease genetics, GAW17 is many analysts’ first encounter with large scale
exon sequence data and it provides opportunities to develop and test ana-
lytical tools and approaches that could shape the standards for analysis of
the upcoming wave of exome data set.

Table 5.1: Geographical populations of the GAW17 dataset.

Ancestry Population Number of individuals Total

European

Utah residents (CEPH - 1) 45

156
CEPH - 2 45

Tuscan 62
Tuscan - 2 4

Asian
Denver Chinese 87

321Denver Chinese - 2 20
Han Chinese - 1 25
Han Chinese - 2 36
Han Chinese - 3 48

Japanese - 1 31
Japanese - 2 41
Japanese - 3 33

African
Luhya - 1 90

220
Luhya - 2 18
Yoruba - 1 40
Yoruba - 2 47
Yoruba - 3 25

TOTAL 697

5.1.2 Sample description

The GAW17 data contains two data sets. One contains the genotypes and
phenotypes of 697 unrelated individuals, selected from the 1000 Genomes
Project. In this dataset, there are 327 males and 370 females with ages from
16 to 91. The second dataset also consists of 697 individuals but organized
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in 8 extended families (351 males and 346 females with the same rank of
ages that the first dataset). The 202 founders in the family dataset were
chosen at random from the set of unrelated individuals.

The individuals of the GAW17 data belong to 13 geographical popula-
tions as described in table 5.1.

5.1.3 Genotypes

SNP genotypes were obtained from the sequence alignment files provided by
the third pilot study of the 1000 Genomes Project [307]. The alignments
were done using as the reference genome sequence a male human genome,
for both male and female sequences. Some genotypes were missing due to in-
complete sequence coverage in some individuals, because the 1000 Genomes
Project genotypes were not phased. There is a total of 24487 SNPs, all of
which are autosomal, located in 3205 genes. Many of the SNPs are rare va-
riants, i.e. mutations with a low Minor Allele Frequency (only one mutated
individual or equivalently a MAF of 0.07%).

5.1.4 Phenotypes

The phenotypes simulation model was build using 3 quantitative risk fac-
tors (Q1, Q2 and Q4), simulated as normally distributed variables. Disease
affection was simulated using a liability model described in equation 5.1 with
a 30% of affected people in the distribution. All SNP effects are additive
on each of the four phenotypes. The design of the simulation model was
based on the knowledge of biological pathways and statistical predictions
regarding the potential deleteriousness of coding variants. A collection of
genes, which sequence data was available in the 1000 Genomes Project, and
that belong to particular pathways were selected. However, the phenotype
simulations were done independently of the population origin of the 1000
Genome Project participants.
Genes influencing Q1 come primary from the Vascular Endothelial Growth
Factor (VEGF) pathway, those influencing Q2 are primarily related to car-
diovascular disease risk and inflammation, and those influencing latent di-
sease liability also come primarily from VEGF (a different section of the
pathway from the genes selected for Q1). Information on predicted dele-
teriousness was used to select functional variants. The functional variants
include both rare and common alleles and a range of effect sizes, with most
having small effects but a few having large effects that should be reliably
detectable in most replicates of the data set. Some genes contain a single
functional variant and others contain many. Environment was taken into
account in the simulation model. There are environmental correlations be-
tween Q1 and Q2 and latent liability. Values of Q1 are higher in smokers. Q2
is not influenced by age, sex, or smoking. Q4 is lower in smokers, decreases



70 Chapter 5. Datasets

with age, and is lower in females.

Whereas Q1 and Q2 are correlated with the latent liability to disease,
Q4 is protective. A normally distributed latent liability trait was simulated
using the model described in equation 5.1. This latent liability trait is also
higher in smokers and increases with age.

Liability to disease = latent liability +Q1 +Q2−Q4. (5.1)

The genes and SNPs related to the quantitative traits, Q1 and Q2, and
to the liability to disease are described in tables A.1, A.2 and A.3, shown in
Appendix A.

The quantitative trait Q1 is influenced by 39 SNPs in 9 genes (table
A.1). It can be observed that the Minor Allele Frequencies (MAFs) of the
SNPs range from 0.07% (only one copy of the minor allele) to 16.5%.

13 genes containing 72 SNPs are influencing Q2 (table A.2). SNPs’ MAF
range from 0.07% to 17.07%. None of the genetic variants influencing Q4
are included in the GAW17 dataset. The liability to disease is influenced by
51 SNPs in 15 genes, with MAFs from 0.07% to 25.8% (table A.3).

The trait simulation was carried out 200 times, generating a total of 200
replicates for both data sets. The four simulated traits, Q1, Q2, Q4, and
the affected as well as the smoking status varies across the replicates.

5.2 The Genetic Analysis of Idiopatic Thrombophilia
Project

5.2.1 Thrombosis

The Genetic Analysis of Idiopatic Thrombophilia (GAIT) project is a mo-
dern family-based genetic study started in 1995 in the Hospital de la Santa
Creu i Sant Pau, with the goal of discovering the genetic factors underlying
thrombosis risk. Thrombosis is a one of the most morbid cardiovascular
diseases. It is a common cause of mortality or morbidity in industrialized
countries. It is known that the causes of thrombosis include environmental
influences such as smoking or oral contraceptive treatment, as well as mul-
tiple genes with varying effects involved in determining the susceptibility to
thrombosis ([285]). Ischemia and venous or arterial thromboses are com-
plex diseases caused by a blood clot or an obstruction that blocks the blood
circulation in a vessel (vein or an artery).

5.2.2 Sample description

The GAIT Project sample was recruited between 1995 and 1997 by the
Unitat d’Hemostàsia i Trombosis of the Hospital de la Santa Creu i Sant Pau
in Barcelona, Spain. The sample consists of 398 individuals in 21 extended
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spanish families. The inclusion criterion required the families to have more
than 10 living individuals in at least 3 generations. 12 families were selected
with a person affected of Idiopatic Thrombophilia. The remaining families
were selected without regarding the phenotypes. Among the 398 subjects,
97 individuals were founders (subjects without parents in the study). The
sample is approximately balanced in gender (46% males and 54% females).
The age of the subjects ranges from less than one year to 88 years, with a
mean of 37.7 years.

5.2.3 Genotypes

The GAIT sample was genotyped for both SNPs and microsatellites. On
one hand, SNPs genotyping was performed using the Illumina Infinium 317k
Beadchip. A total of 318 104 SNPs genotypes were measured. SNPs with a
call rate lower than 90%, a minor allele frequency (MAF) lower than 2.5%
and a false discovery rate when checking for Hardy-Weinberg Equilibrium
of more than 20% were filtered out. After quality control, 266966 SNPs
remained for analysis [38].

On the other hand, microsatellites were obtained using the ABI-Prism
genotyping set MD-10, spaced at a density of 9.5 cMs. A total of 363 highly
informative microsatellite DNA markers were typed. The PCR products
were analyzed on PE 310, PE 377, and PE 3700 automated sequencers and
were genotyped using the PE Genotyper software. The average heterozy-
gosity of these markers was 0.79 [282].

There exist several approaches for dealing with missing values in geno-
type data. Most imputation methods proposed in the literature are based
on using haplotypes for inferring missing values at a given locus.[66, 341].
Since it was not the main scope of this thesis and given that haplotypic
information is not always available in SNP datasets, the chosen option in
this thesis was another common strategy for dealing with missing values that
consists on omitting the missing observation, assuming the cost of increasing
the sampling error.

5.2.4 Phenotypes

During the coagulation process, a set of proteins in the blood plasma respond
in cascade to form fibrin clots. These proteins are referred to as coagulation
factors. The physiological cascade that underlies the pathological endpoint
of thrombosis is complex, can be divided in different pathways, the coagula-
tion and fibrinolysis pathways as described in figure 5.1. In particular, the
coagulation cascade is divided itself in three pathways, the intrinsic path-
way or contact activation pathway, the extrinsic pathway or tissue factor
pathway, and the final common pathway. The fibrinolysis pathway acts in
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Figure 5.1: The coagulation cascade.

parallel of the coagulation pathway, and is also involved in the fibrin forma-
tion.

In addition of these phenotypes, other measures were recorded for each
individual in the GAIT study including, among others, biochemical variables
of the homocysteine metabolism, measures related to lipids, iron metabolism
phenotypes or proteins of the complement system. In total, 85 phenotypes
were available for each individual in the GAIT sample.

5.2.5 The coagulation factor VII

Levels of coagulation factors in blood represent a set of intermediate phe-
notypes that may be a good starting point for identifying genes involved in
disease risk for thromboses and ischemia. It has been demonstrated that
some of the coagulation factors have a genetic compound and show signifi-
cant heritability ([285]). For example, Factor V Leiden is a variant of factor
V produced by a mutation on the gene that codes this protein (F5). Factor
V Leiden is the most common hereditary disorder of the coagulation process
([290]). It has also been published that coagulation Factor VII (FVII) has
a genetic effect on disorders of hemostasis ([283]). The genetic variability in
F7 gene is the most responsible for observed phenotypic variations in FVII
levels. This is the reason why a part of this thesis has been developed focus-



5.2. The Genetic Analysis of Idiopatic Thrombophilia Project 73

ing on the coagulation factor VII and the gene that codes for it, the F7 gene
(chapter 7). Extended genetic studies on the F7 gene serve as a reference
to validate the methodology proposed in this work. The F7 gene is located
at the segment 13q34, on the chromosome 13 of the human genome. It is
about 13000 bases long among which around 50 polymorphisms have been
identified as described in figure 5.2.

Figure 5.2: The F7 gene polymorphisms.

One part of the study has been developed using the founders. For this
sample, levels of the FVII phenotype follow a normal distribution with mean
121.6 and standard deviation 29. On the other hand, a sib-pairs analysis
has been performed. The 345 pairs of sibs from the GAIT study were used
in this part of the study.
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Chapter 6

Single Point Genetic
Association

As the name suggests, the main goal of genetic association tests is to detect
association between genetic polymorphisms and traits or diseases. However,
as it has been described in section 2.3.2, the causal-effect relationship be-
tween genotypes and phenotypes is not always straightforward. Actually in
the majority of complex diseases, other two situations are often observed:
multiple SNPs can be related with a same phenotype or a single locus can
be related with several phenotypes. In this thesis, these three scenarios have
been taken into account that correspond to the next three chapters.

This chapter focuses on studying the genetic study between polymor-
phisms and diseases looking at single point mutations, one-by-one. It has
been approached from two different points of view. On one hand, a nonli-
near test for one-locus genetic association studies was proposed, based on
the mutual information measure. On the other hand, an exploratory study
was carried out on the relationship between SNP variability among species
and SNP association with disease, at different genetic regions.

6.1 A nonlinear test for genetic association

6.1.1 Linear versus nonlinear association measures

Genetic association studies consist on identifying genetic polymorphisms
that are related with susceptibility to disease. A common procedure for
genetic association is to apply correlation measures to relate the variability
among individuals at a given SNP site with the phenotypic variability. Tra-
ditionally, this has been done using linear measures as it has been described
in section 3.1.1.1.

However, these measures are only sensitive to linear relationships be-
tween two variables, so that they are not always able to capture all the
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possible types of correlation between a SNP and a phenotype.
When a genotype is correlated with a phenotype, the correlation is not

necessarily linear, especially when the model of dominance is not the most
common one, where one allele is dominant over the other. Figure 6.1 shows
two examples of linear (a) and nonlinear (b) dependences between a SNP
and a phenotype, corresponding to two different models of dominance (dom-
inant and additive models respectively). The figure was built with real data
corresponding to two SNPs of the F7 gene and the phenotype corresponding
to the FVII levels in blood. In order to graphically represent the pheno-
typic variability given a genotypic status, box-plots were used to describe
the dispersion of FVII levels for each allele combination. It is observed in
Subfigure 6.1.a that FVII levels increase for individuals carrying the muta-
tion. This follows a common model of dominance, where the mutation effect
is dominant over the ancestral allele one. In this case a clearly linear ten-
dency is observed between the two variables. In contrast, in Subfigure 6.1.b,
it is observed that homozygous individuals for this particular SNP show
higher levels of FVII in blood than heterozygous subjects. It corresponds
to a particular additive model, where both alleles are co-dominant.
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Figure 6.1: Examples of possible dependencies between a SNP and a con-
tinuous phenotype.

Linear regression models are defined under certain assumptions requi-
ring the errors to be independent and identically distributed (i.i.d.), ho-
moscedastic and normally distributed. When applying linear regression to
genetic association, the most compromising requirement is the normality of
the errors’ distribution and their i.i.d.. Violation of these conditions often
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arise either because (a) the distributions of the dependent and/or inde-
pendent variables are themselves significantly non-normal, and/or (b) the
variables are not linearly correlated.

Linear regression is also sensible to extreme allele frequencies in geno-
typic data, corresponding SNPs where both alleles have nearly the same
frequency or to to rare variants (those with a very low MAF). In particular
it has been demonstrated that rare variants result in much false discovery
rate in traditional genetic association studies than common variants [300].
When only one individual in the population carries one allele, it can be seen
as an outlier and it can bias the results of association, making it significant
while it is actually not, as illustrated in figure 6.2.
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Figure 6.2: The impact of extreme MAFs in linear regression.

The interest on applying nonlinear measures to genetic association is
aroused by the need of solving the aforementioned constraints of linear me-
thods. One option to deal with these problems is to use the mutual infor-
mation measure, a nonlinear correlation measure from information theory.

The main advantage of applying mutual information is that it detects
both linear and nonlinear correlations between genotypes and phenotypes,
without making any assumptions on the data. Figure 6.3 illustrates how
mutual information captures both linear and nonlinear correlations between
generic variables built in a synthetic problem, in comparison to linear corre-
lation. It is observed that, when the two variables are linearly related both
Pearson’s correlation and mutual information measures detect the corre-
lation (Subfigures 6.3.a and 6.3.b), whereas only the mutual information
detects nonlinear relationships between two variables (Subfigures 6.3.c and
6.3.d). In Subfigures 6.3.e and 6.3.f, none of the measures detects any corre-
lation.

It is known that most genetic association are very sensitive to outliers
[300]. However, it has been shown that the sensitiveness of the mutual
information measure to outliers is lower than for standard measures of de-
pendencies between variables [242].
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(a)

ρ  = 1

MI = 3.43

(b)

ρ  = 0.99

MI = 1.75

(c)

ρ  = −0.01

MI = 1.7

(d)

ρ  = 0.06
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ρ  = −0.04
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ρ  = −0.06

MI = 0.56

Figure 6.3: The Pearson correlation coefficient(ρ) and the mutual informa-
tion (MI) in different cases. (a) and (b) reflects situations where the two
variables are linearly correlated, (c) and (d) exemplify nonlinear correlations
between the two variables and (e) and (f) reflect randomly related variables.

Another advantage of applying mutual information to genetic association
is that it doesn’t involve making any numerical representation of genotypic
symbols, since it only needs to estimate the frequency of each item, inde-
pendently of its nature.

6.1.2 The mutual information as a measure of genetic asso-
ciation

In the context of genetic association, the mutual information has been
applied to measure the general correlation between a SNP and a pheno-
type.
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The mutual information I(S, Y ) between a SNP S and a phenotype Y
is defined in equation 6.1.

I(S, Y ) =
∑
S

∑
Y

p(S, Y ) log
p(S, Y )

p(S)p(Y )
= H(S) +H(Y )−H(S, Y ) (6.1)

Traditional genetic association studies have been developed with bi-
nary phenotypes corresponding to a disease affection state (affected/non
affected). However for the study of complex diseases, one have to deal with
intermediate phenotypes that are usually continuous variables. Since the
mutual information was originally defined for discrete variables, its applica-
tion to genetic association with continuous phenotypes implies estimating
the expression defined in equation 6.2.

I(S, Y ) =

∫
Y

∑
S

p(S, Y )log
p(S, Y )

p(S)p(Y )
dy (6.2)

The most common approach for estimating I(S, Y ) is to partition the
continuous values into discrete bins [291]. In any case, the discretization pro-
cess overestimates the mutual information values. The different techniques
of discretization can be divided into two main strategies. “Range discretiza-
tion” methods distribute the samples into bins of equal width. In contrast,
in “quantile discretization” each bin receives equal number of samples. The
bin-width varies according to the data values it contains. In this case, the
resulting histogram shows a rectangular shape, corresponding to a uniform
distribution which may be away from the true distribution of the data.
This equiprobability scenario maximizes the entropy values. In order not to
overestimate I(S, Y ), this option was discarded. The most important aspect
of range discretization is the definition of the number of bins of the resul-
ting histogram or equivalently its bin width. Ideally, it should be chosen so
that the histogram displays the essential structure of the data. The choice
of that parameter is of difficult validation [86]. Several methods have been
proposed for determining the optimal value of this parameter, such as the
Sturges’ rule [295] or the Scott’s Rule [268]. However it has been suggested
that even if these rules lead to a good performance of the histogram, they
are not consistent to large samples. In order to overcome this inconsistency,
an extension of the Scott’s rule has been proposed, based on kernel density
estimates [312].

Given X = {X1, X2, ..., Xn} a random variable and f(X) its density
function, Scott’s formula states the following rule for determining the opti-
mal bin-width of an histogram ĥ (equation 6.3).

ĥ =
3.49σ̂

n
1
3

(6.3)

where σ̂ is an estimate of the standard deviation. Wand presented an
estimation of the optimal bin-width, the one which maximizes its asymptotic
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performance, with an optimal Mean Integrated Square Error (MISE). For
doing this, the Scott’s formula described in equation 6.3 is expressed as in
equation 6.4.

ĥ = (
6

−ψ2n
)

1
3 (6.4)

where

ψr ≡ E{f (r)(X)} =

∫ ∞
−∞

f (r)(x)f(x)dx (6.5)

Then, a kernel density estimation of ψr is carried out as in equation 6.6.

ψ̂r(g) = n−2g−r−1
n∑
i=1

n∑
j=1

K(r){(Xi −Xj)/g} (6.6)

where K is an r − th order kernel function and g the bandwidth of the
kernel, which is estimated using a normal scale estimator of ψr [273].

Generally, this kernel-based method discretizes the data in a quite high
number of bins that guarantee obtaining a good approximation of the real
structure of the data. However, I(S, Y ) is sensitive to this number of bins.
The highest is the number of bins, the most the mutual information is over-
estimated [100].

6.1.2.1 The problem of finite samples

In addition to the overestimation of I(S, Y ) due to the phenotype discretiza-
tion, the mutual information is also sensitive to finite sample effects. In par-
ticular, when the sample size is finite, the probability density functions need
to be estimated, adding a positive bias on the information theoretic quanti-
ties. This is a critical issue when applying the mutual information measure
to real data. Several approaches have been proposed for solving or correcting
this effect, as described in chapter 4. In this section a more detailed descrip-
tion of the strategy used in this thesis is exposed. I(S, Y ) was implemented
using three estimation methods. Among the several approaches for the es-
timation of I(S, Y ) described in section 4.3.1, few of them were selected for
a comparative analysis. In particular the chosen procedures were the em-
pirical probability estimation, the Miller-Madow estimator, which uses an
asymptotic correction of first order bias, and the Schurmann-Grassberger
estimator, a Bayesian estimator of information theoretic measures using a
Dirichlet probability distribution for the estimation of the frequencies as a
prior.

The first approximation used for estimating I(S, Y ) was the empirical
estimation of the frequencies pi = p(xi), which corresponds to the classical
inference of the frequencies from the countings of the observations. This is
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Figure 6.4: The mutual information of polymorphisms in the F7 gene,
against the phenotype (FVII levels in blood) with different estimation
techniques.

the most standard procedure and the simplest as well. Note that it does not
apply any correction for solving the finite sample size problem.

The empirical estimator of the mutual information (ÎML(S, Y ) is ob-
tained as described in equation 4.28. The Miller-Madow estimator for the
entropy measure is defined as in equation 4.29. The Schurmann-Grassberger
(SG) estimator was selected among the family of Bayesian estimators for
information-theoretic measures described in section 4.3.1, since it is the most
commonly used. Among the Dirichlet priors enumerated in table 4.1, the es-
timation of the frequencies as defined in equation 4.32 for the SG estimator
results as in equation 6.7.

p̂SGi =
ni + 1/n

n+A
(6.7)

The resulting estimator of the entropy is expressed in equation 6.8.

ĤSG = −
n∑
i=1

p̂SGi logp̂SGi (6.8)

Figure 6.4 compares the mutual information of the SNPs of the F7 gene
against the FVII levels in blood, for the three selected estimations. It is
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observed that for almost every SNP, the highest value of mutual information
values is obtained with the SG estimator whereas the lowest one corresponds
to the MM estimator, where the empirical estimation falls in-between the
two former estimators. This suggests that the SG is the most sensitive to
overestimations, whereas the MM estimator reduces these effects substan-
tially, even underestimating MI values.

In any case, a statistical test is necessary to determine if a positive mutual
information value denotes a true association or it is only due to finite sample
size effects or to the discretization process. This statistical test assumes a
null hypothesis as true, in this case the hypothesis of non association between
a SNP and a phenotype. A test statistic is then computed in function of the
data. The sampling distribution of this statistic is called the null distribution
and allows to compute p-values, which indicate if the null hypothesis should
be accepted or rejected. A p-value lower than the significance threshold
(generally 0.05) indicates that the null hypothesis should be rejected.

Often the most difficult part of applying a statistical test is to determine
the null distribution. Most parametric tests are easily describable mathe-
matically. However, one of the main drawbacks of the proposed nonlinear
statistical tests is that the null distribution is unknown. The best analytical
approximation for the null distribution (D0) of I(S, Y ) has been proposed
in Dawy et al. as expressed in equation 6.9 [68].

D0 ∼ Γ(k, θ) (6.9)

where k = 1
2(|S| − 1)(|Y | − 1) is the shape parameter of the gamma

distribution and θ = 1
N ln2 is its scale parameter and |S| and |Y | are the

number of symbols of S and Y respectively.

As it is described in equation 6.9, this distribution is modulated by the
number of genotypic symbols which is straightly related to the MAF. The
number of genotypic symbols decreases when the MAF is low, specially for
finite samples. However, most of the heritability not explained in genetic
association studies is caused by rare variants, so that SNPs with very low
MAFs are of great importance and should be treated carefully [177]. The
analytical approximation proposed by Dawy et al. does not contemplate the
case of rare variants, so that this approximation is not always suitable in
the context of genetic association.

Szymczak et al. propose a permutation-based procedure to generate
an empirical null distribution, which seems to be preferable [299]. This
approach consists on building an empirical distribution from permutations of
the original data and obtaining a significance level associated to the original
mutual information value comparing it to this distribution. The resulting
p-value indicates how significantly positive the mutual information is [86].

Since the permutation-based approach is computationally expensive, a
synthetic experiment was developed in order to adjust D0 to the fittest an-
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alytical probability distribution. D0 was obtained by generating random
copies of one of the two variables. In order to preserve the allelic frequen-
cies of the random sample, those were obtained by surrogating the SNPs,
destroying its individual order so that the allelic frequencies are respected.
For this experiment, D0 was obtained using the empirical estimation of
I(S, Y ) (ÎML(S, Y )).

In order to adjust an analytical expression of D0, two parameters were
taken into account in the experiment, the allelic frequencies and the number
of bins in the discretization process. Random SNPs with different allele
frequencies going from 0.1% to 50% were generated, as well as a random
gaussian phenotype that was discretized with different numbers of bins going
from 5 to 15.

Figure 6.5 shows a particular case of D0 generated with permutations
of the samples using surrogate data. The best fitted gamma distribution
is also shown (dashed line). In this case, it is observed that the gamma
distribution is a good adjustment of the empirical null distribution of the
mutual information. This figure was generated using a synthetic SNP with
a MAF of 0.005 and a phenotype discretized to 8 bins.

However, the null distribution is strongly dependent on both the MAF
of the SNP and the phenotype discretization number of bins. Figure 6.6
shows the dependence of the mutual information null distribution to the
Minor Allelic Frequencies of the SNPs. The gamma distributions fitted to
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Figure 6.5: The mutual information null distribution. The solid line re-
presents the empirical null distribution and the dashed line corresponds to
an adjusted gamma distribution. Here the shape and scale of the gamma
distribution were fitted to k = 9 and θ = 346 respectively.
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the empirical null distributions corresponding to SNPs with different allelic
frequencies were generated.

It is observed that the distribution varies in function of the MAF. Ho-
wever, as shown in figure 6.7, the relationship between the parameters of
the gamma distribution and the allelic frequencies does not follow any clear
pattern. Figure 6.7 shows that for low MAFs, both the shape and the scale
parameters are out of the range of values obtained for the remaining MAFs.
This indicates that this approximation is not suitable to this problem.

On the other hand, the dependence of the mutual information null dis-
tribution to the number of bins in the discretization of the phenotype was
studied. Null distributions were obtained for phenotype discretization with
a number of bins going from 5 to 15. It is observed in figures 6.8 and 6.9 that
in a similar manner than with the allelic frequencies, the mutual information
null distribution depends on the number of bins in the discretization of the
phenotype. On one hand, it is observed that the number of bins has a lower
impact on the appearance of the null distribution than the MAF, but in the
same manner than for the MAF, this dependence can not be explained with
simple models.

It has been shown that it is not possible to characterize an analytical
expression for the null distribution of the mutual information, especially for
SNPs with low MAFs. Thus, it is still more convenient to use the empirical
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Figure 6.6: The mutual information null distribution for different allelic
frequencies.
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Figure 6.7: The relationship between the shape k and scale θ parameters of
the distribution of mutual information against the Minor Allelic Frequencies
(MAFs).
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Figure 6.8: The mutual information null distribution for different binnings
of the phenotype.

null distribution of the mutual information by using surrogate data at the
cost of increasing the computing time.
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of the distribution of mutual information against the number of bins in the
discretization of the phenotype.

6.1.3 A mutual information-based test of genetic association
for stratified populations

As described in section 3.4.2, the population structure may be taken into
account in the genetic association test. In the same manner that the popu-
lation structure P is introduced in the linear regression tests of association,
as described in equation 3.21, a mutual information-based test is proposed
that takes P into account. This test is based on the conditional mutual
information measure.

The conditional mutual information I(S, Y |P ) measures the association
between the genotypes S and the phenotypes Y , at each level of P as ex-
pressed in equation 6.10.

I(S, Y |P ) =
∑

P p(P )
∑

S

∑
Y p(S, Y |P )log p(S,Y |P )

p(S|P )p(Y |P )

= H(S, P ) +H(Y, P )−H(S, Y, P )−H(P )

(6.10)

This stratification of I(S, Y ) allows to detect the association between
the genotype S and phenotype Y even if they are both conditioned by a
third variable, in this case the population structure P . Computing the
conditional mutual information as defined in equation 6.10 is equivalent to
make a pondered sum of I(S, Y ) within each subpopulation as in equation
6.11.

I(S, Y |P ) =

np∑
i=1

p(Pi)I(S, Y |P = Pi) (6.11)

where np is the number of subpopulations. I(S, Y |P ) is also affected
by a bias due to finite sample size, introduced as many times as I(S, Y ) is
computed (here np times). Thus, the use of a statistical test for ensuring the
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veracity of an association is even more justified in the case of the conditional
mutual information. In order to assess the statistical significance of the
association measured by I(S, Y |P ), the following statistical test based on
surrogate data is proposed.

For each candidate SNP Sj , the test of genetic association with the
phenotype Y consists on computing Ij = I(Sj , Y |P ) and comparing it to
the mutual information null distribution D0 = {I(Sr;Y |P ) : r = 1..Nc}
given by the mutual information of Nc random copies Sr of the Sj obtained
using surrogate data. A kernel density estimator is applied on this vector
of mutual information values in order to estimate D0. The resulting p-
value indicates if the association measured with the mutual information is
statistically significant. The p-value is obtained by integrating the resulting
D0 density function from the Ij value and comparing it with the total area
under the D0 density function curve. For reaching a significance level of
0.05, the length of the D0 has been set to Nc = 1000.

6.1.4 Methodology

The nonlinear test proposed previously was applied to the GAW17 dataset.
Validating a genetic association test is an intricate task, since it is difficult to
ascertain if an association really exists or it has been found by chance. This
is called the jackpot effect [97]. Actually, the only way to know if a positive
result obtained with a new association technique is reliable is through a func-
tional analysis in the laboratory. In order to know if a test correctly detects
a polymorphism with an effect on a phenotype, an alternative is to make
use of synthetic models that emulate the biological relationships between
genes and phenotypes. This is the main goal of using the GAW17 dataset,
since both the simulation model and the SNPs related to the phenotypes
are known. In particular, the proposed association test was applied to the
Q1 phenotype, since it is the phenotype with more associated SNPs. The
list of the SNPs related with the phenotype Q1, included in the simulation
model of the GAW17 dataset is described in table A.1 (appendix A).

6.1.4.1 Pre-processing

This study was carried out using the first replicate of the GAW17 dataset
containing unrelated individuals. In order to ascertain the population struc-
ture (P), the kinship matrix of genetic distances between individuals was ob-
tained using Identity-By-State methods [29]. Multidimensional-scaling was
applied to the similarity matrix defined by IBS distances in order to obtain
a low-dimensional representation of the individuals. In this case, the num-
ber of dimensions was set to 8. In the new bi-dimensional vectorial space,
the individuals were represented by vectors of principal coordinates. Then,
a k-means clustering algorithm was applied to group subjects into separate
clusters. The number of clusters that best represent the structure of the
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data was obtained by looking at three clustering indexes, the Dunn index,
the Hubert’s gamma coefficient and the WB ratio [103]. The Dunn index
attempts to identify compact and well separated clusters by maximizing the
ratio between the minimum separation and the maximum diameter of the
clusters. The Hubert’s gamma coefficient measures the correlation between
distances. It takes values from 0 to 1, where 0 means that clusters are not
separated and 1 means that clusters are well-separated. Finally, the WB
ratio measures the quotient between the similarity average within a cluster
and the similarity average between clusters.

Figure 6.10 shows these indexes in function of the number of clusters
used in the k-means algorithm. It is observed that the Dunn’s index was
maximized and the WB was minimized for 6 clusters, whereas the Hubert’s
gamma coefficient was maximized for 3 clusters. According to other works
published in the proceedings of the GAW17, the balance was decanted to
use 3 clusters [112, 21].

Figure 6.11 represents the individuals in the new vectorial space, orga-
nized in 3 clusters. Figure 6.11 was obtained with a bi-dimensional PCA
for visualizing the clustering of the MDS of 3 dimensions. It is observed
that this configuration allowed to separate the subjects depending on their
ancestry.

The resulting vector that indicates the subpopulation (P ) to which the
individuals belong was included in the association analyses, considering it

Figure 6.10: Clustering statistics for different number of subpopulations.
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Figure 6.11: Graphical representation of the individuals and their member-
ship to the 3 clusters.

as a covariate in the linear regression model, and as a stratification variable
using the conditional mutual information measure I(S, Y |P ).

In addition, the data was subjected to a quality control procedure, ex-
cluding individuals with individuals with too high autosomal heterozygosity
(FDR rate threshold of 0.01) and with too high IBS (IBS threshold of 0.99.
SNPs that were out of Hardy-Weinberg Equilibrium were also discarded
(FDR threshold of 0.1). Finally, a total of 684 individuals and 19915 SNPs
were used for the study.

6.1.4.2 Genetic association tests

The nonlinear mutual information-based genetic association test proposed
in section 6.1.2 was applied using the three aforementioned estimation me-
thods for Î(S, Y |P ), the empirical estimation (EMP), the Miller-Madow
(MM) asymptotic correction of the empirical estimation and the Schurmann-
Grassberger (SG) estimator. The resulting three nonlinear tests were com-
pared with the traditional linear test contemplating population stratification
based on mixed linear regression models proposed in the GenABEL software
(GA) as described in equation 3.21 [16]. This association test returns a p-
value corresponding to the significance of the linear regression between the
genotype and the phenotype, taking into account the population stratifica-
tion.

In summary, four tests of association (three nonlinear tests and the con-
ventional linear test) were applied to the GAW17 dataset and in particular
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for testing the association of SNPs with the phenotype Q1. The Q1 pheno-
type was deprived of the variability due to age, gender and smoking status.
through a linear regression model (equation ).

The residuals from the linear regression model described in equation 6.12
were used as the phenotype in the following association scans, since theyonly
contain the variability due to the Q1 phenotype. The Q1 phenotype was
discretized with the optimal number of bins obtained using kernel-based
methods described in section 6.1.2, corresponding to 16 bins.

Q1 ∼ sex + SMOKE + age (6.12)

6.1.5 Results and discussion

The results obtained with the four proposed tests of association for the Q1
phenotype of the GAW17 were contrasted with the corresponding answers
found in table A.1. Since the answers were already known, whenever the
test detected an association it was possible to determine if this association
was correctly detected or not. Table 6.1 lists the SNPs correctly associated
with the Q1 phenotype, for each of the four methods.

Table 6.1: SNPs correctly detected by the four test.

Method SNPs Gene SNP type Chromosome MAF p-value

EMP

C4S1884 KDR Nonsynonymous 4 0.020803 3.48 · 10−2

C4S4935 VEGFC Nonsynonymous 4 0.000717 4.7 · 10−4

C13S522 FLT1 Nonsynonymous 13 0.027977 1.12 · 10−17

C13S523 FLT1 Nonsynonymous 13 0.066714 1.03 · 10−17

C14S1734 HIF1A Nonsynonymous 14 0.012195 2.13 · 10−2

MM C13S399 FLT1 Nonsynonymous 13 0.000717 4.63 · 10−2

SG

C4S4935 VEGFC Nonsynonymous 4 0.000717 4.7 · 10−4

C13S522 FLT1 Nonsynonymous 13 0.027977 1.56 · 10−17

C13S523 FLT1 Nonsynonymous 13 0.066714 8.07 · 10−19

C14S1734 HIF1A Nonsynonymous 14 0.012195 1.6 · 10−2

GA

C4S1884 KDR Nonsynonymous 4 0.020803 5.7 · 10−3

C4S4935 VEGFC Nonsynonymous 4 0.000717 1.4 · 10−4

C13S522 FLT1 Nonsynonymous 13 0.027977 0
C13S523 FLT1 Nonsynonymous 13 0.066714 0
C14S1734 HIF1A Nonsynonymous 14 0.012195 3.2 · 10−3

It is observed that the best results were obtained when using the non-
linear test based on the empirical estimation of the mutual information
(EMP) and the GenABEL software (GA). Both tests detect association for
exactly the same SNPs, confirming that the proposed nonlinear method is
able to replicate the results obtained with standard linear regressions. In
both cases, only 5 of the 39 SNPs associated with the phenotype Q1 were
detected. Figure 6.12 shows a qualitative description of the p-values of all
the positives SNPs for both the EMP and GA tests as well as their MAF.
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Figure 6.12: p-value and MAF distribution of the SNPs associated with the
phenotype Q1 for the proposed nonlinear test with the empirical estimation
of the mutual information measure (EMP) and for the conventional linear
association test (GA).

From top to bottom, the first two figures represent the negative logarithm of
the p-values for each test respectively, as well as the threshold corresponding
to a p-value of 0.05, represented by the red line. The third figure shows the
MAF of each SNP, with a threshold line set to 0.01, the value that discrim-
inate current polymorphisms with rare variants. The SNPs were ordered
according to their MAF.

Figure 6.12 shows a clear correspondence between the MAF of the SNPs
and their p-value with both methods. In particular, it is observed that
significant SNPs correspond to SNPs with a MAFs higher than 1% and
conversely, SNPs presenting extremely low MAFs are not detected by any
of the tests.

SNP C4S4935 is an exception, since it has been detected, even with a
very low MAF (0.000717). This variant belongs to the V EGFC, being the
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KDR VEGFC FLT1 HIF1A HIF3A 

Figure 6.13: Manhattan plot for the nonlinear genetic association test based
on the empirical estimation of the mutual information.

only variant found in this gene that had an important role in the simulation
model for the Q1 phenotype of the GAW17 dataset. In particular, the Q1
phenotype model was build with genes of the Vascular Endothelial Growth
Factor (VEGF) pathway. Thus, this variant should have a clear relation
with the phenotype.

It is also observed that the significance levels were similar for both tests
for the correctly detected SNPs.

Figure 6.13 shows the results obtained with the proposed nonlinear test
using the empirical estimation of the mutual information. Peaks of signifi-
cance were found in chromosomes 4, 13 and 14 corresponding to the true
positives presented in table 6.1, concretely the genes KDR, VEGFC, FLT1
and HIF1A. It is worth mentioning that the nonlinear test also detects signi-
ficance in chromosome 19. In particular, SNP C19S4840 (MAF 0.0007) was
detected, located in the HIF3A gene. Even if this particular SNP is not asso-
ciated with the Q1 trait, the HIF3A gene appears in table A.1, suggesting
that SNP C19S4840 could be in LD with one of the SNPs belonging to
HIF3A appearing in table A.1. In addition, the HIF3A gene belongs to the
VEGF pathway.

An advantage of using the GAW17 dataset is that the characterization
of the nonlinear test can be seen as a classification problem since it is done
by counting how many positives and negatives are correctly detected and
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Figure 6.14: ROC curve of the four association tests.

discarded respectively. In particular, the true positives correctly detected
are called true positives (TP), whereas the positives not detected (those
classified as negatives) are called false negatives (FN). In contrast the neg-
atives detected as positives are called false positives (FP) and the negatives
correctly detected are called true negatives (TN). Based on these countings,
the concepts of sensitivity and specificity are often used for evaluating the
performance of the classification procedure. The sensitivity, also known as
the true positive rate (TPR), is the proportion of detected positive SNPs
(TP) with all the real positive SNPs (TP+FN). It can be seen as the pro-
bability that the test is positive given that the SNP is associated with the
phenotype. The relationship between sensitivity and specificity, as well as
the performance of the classifier, can be visualized with a Receiver operating
Characteristic (ROC) curve, a graphical plot of the sensitivity, or true posi-
tive rate versus the false positive rate (1 - specificity), for a binary classifier
system as its discrimination threshold is varied.

A more general analysis of the performance of the four association tests
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Table 6.2: Performance in classification of the four methods. TP and
(TP+FP) were counted for a significance threshold of 0.05.

Method TP TP+FP AUC

EMP 5 724 0.6592
MM 1 736 0.6599
SG 4 725 0.6630
GA 5 839 0.6661

was carried out. The ROC curves of each test were generated. The accuracy
of each method was measured by the area under the ROC curve. An area of
1 represents a perfect test, whereas an area of 0.5 represents a worthless test.
Figure 6.14 shows the ROC curves of the four tests, while table 6.2 shows
the number of true positives, the number of SNPs detected as positives (TP
+FP) found for each method for a significance threshold of 0.05, as well as
the AUC of each method.

It is observed that for a significance level of 0.05, the method that ob-
tained less false positives was the proposed nonlinear method with the em-
pirical approach for the estimation of the mutual information measure. Ho-
wever, it is observed that, in terms of the AUC, none of the tests presented a
good performance, obtaining in the four cases similar results (AUC ∼ 0.66).

6.2 Effect of genetic regions on the correlation be-
tween single point mutation variability and
morbidity

6.2.1 The importance of SNP location

The functional class of a polymorphism, the genomic regions where it occurs
or the comparison with other species may provide useful information for
characterizing its influence on physiological affections [28, 135, 249]. In
particular, Adie et al. propose using sequence based features for prioritizing
SNPs to study cross-species sequence similarities for identifying relevant
SNPs [3]. The availability of multiple genomic sequences of different model
organisms has made it possible to ascertain information about the selective
pressure of polymorphisms [126, 36]. For example, it has been demonstrated
that functional regions of the genome are preserved in different organisms
throughout evolution and thus present a low variability across species [40,
342, 185, 183]. Nowadays, the evolutionary conservation of genetic sequences
has been incorporated into prioritization tools [341, 223].

Even though the sequence variability across different organisms has been
studied widely and correlated with functionality, studies based on morbidity
are rare [40, 165, 30]. Note that SNP functionality refers to the altering effect
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the mutation has on the resulting protein, whereas SNP morbidity refers
to its association to disease. The standard practice for studying morbidity
consists of comparing two groups of SNPs, generally deleterious SNPs (SNPs
related to disease) against neutral SNPs (SNPs for which no associations to
disease are known).

Most studies on cross-species variability focus on SNP functionality and,
more specifically, on functional SNPs [3, 126, 40, 129, 4]. SNP functiona-
lity could bias the results if it is not taken into account (i. e., a positive
correlation could be due to functionality instead of morbidity).

However, it is widely assumed that deleterious genes are conserved across
species more than neutral ones are [184, 161].

Functional SNPs are mainly located in exons (regions that code for pro-
teins). However, there are different types of SNPs in exonic regions. Sy-
nonymous SNPs, those that do not change the resulting protein, are not
functional. In contrast, nonsynonymous SNPs, those that modify the amino
acid sequence of the resulting protein, are clearly functional. Among non-
synonymous SNPs, one may distinguish between nonsense and missense mu-
tations. A nonsense mutation produces a premature stop codon and the
resulting protein is consequently truncated. Missense mutations produce a
change in an amino acid of the protein sequence, with a variable effect on
its function depending on the region of the protein affected and on the char-
acteristics of the new amino acid. Noncoding sequences are found either
in introns or in regulatory regions (such as promoters or other near-gene
regions). It is known that mutations in regulatory regions may also have
a certain functionality, given that they affect protein regulation and conse-
quently its structure or abundance. Moreover, the effect of these changes
on the nucleotide sequences could vary considerably, depending on the re-
gulation mechanism. These mutations are also functional, so they have also
been the object of study in comparative genomics research [193, 183]. Such
studies generally focus on only one functional class, either coding or regu-
latory SNPs, but they do not take the two categories into account, even
separately [165]. Moreover, SNPs located at other genetic regions (neither
coding nor regulatory regions) should also have a certain effect on genetic
disorders, even if they are not functional [25, 119].

Studies on sequence variability are usually applied to sequences that
span entire genes or in the sequence of amino acids of the resulting protein
[129, 3, 4]. Other works have already been carried out on SNP resolution
[342, 12, 335, 44]. In particular, Asthana et al. proposed to differentiate
variability patterns at different regions by looking at nucleotide sequence
variability across species [12].

On the other hand, tools for scoring the cross-species variability of a set
of homologous sequences from different organisms are based on similarity
measures. Traditionally, cross-species sequence similarities have been mea-
sured through the rate of evolution [121]. Nowadays, standard measures
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of sequence variability across species are based on this measure. Genomic
Evolutionary Rate Profiling (GERP) is the current reference for measuring
evolutionary similarity between sequences of different organisms [60]. This
measure depends on an estimation of the sequence similarities using a ma-
ximum likelihood-based method. This estimation relies on the phylogenetic
tree that represents the inferred evolutionary relationships between the diffe-
rent species or other entities. Furthermore, information-theoretic measures
have also been used for evaluating the variability between sequences of diffe-
rent species without depending on the phylogenetic dependencies between
these organisms [304, 316]. In particular, the Shannon Entropy [272] is a
measure of variability that has already been applied in comparative genomics
[142, 316], usually for measuring the variability of amino acid sequences of
different species.

6.2.2 An overview of the study

The main goal of this study was to observe the different patterns of va-
riability of SNP sequences and their morbidity, for SNPs in different ge-
netic regions. Specifically, a set of deleterious SNPs were compared with
a set of neutral SNPs to statistically differentiate their patterns of variabi-
lity across species and identify a common pattern of variability for disease-
related SNPs. It is clear that functionality will impact on sequence varia-
bility. In order to explore this effect, this study proposed considering se-
parately the SNPs belonging to different genetic regions and with different
functional effects. Instead of differentiating the SNP cross-species variabi-
lity patterns between different regions or functionalities, one of our study
goals was to analyze the differences of sequence variability between delete-
rious and neutral SNPs for each functional category, one by one. Cross-
species comparisons were carried out at nucleotide resolution, concretely,
using reduced-length sequences of nucleotides located around SNPs.

The methodology followed for carrying out this study is divided in four
specific steps. First of all, SNP data was collected. The second step consists
on finding homologous sequences, given the local sequence of a SNP. After-
wards, the sequence variability for each SNP was measured using Shannon’s
entropy. Finally, a statistical analysis was applied for comparing the entropy
values between deleterious SNPs and neutral SNPs.

6.2.3 Data Collection

SNP data for Homo sapiens was acquired from the dbSNP database [274] in
its Build 130. This database is the main public repository for genetic varia-
tion within and across species. It contains several features on SNPs that can
be obtained using the Entrez SNP search tool. A variety of queries can be
used for searching SNPs by ID, gene name, organism, genetic region, func-
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Figure 6.15: SNP rs28936408 is an example of class “Intron + Missense”.
It is positioned in chromosome 4 sequence (data and figure obtained from
NCBI Sequence Viewer).

tion class, or even annotations to clinical databases. In particular, dbSNP
includes annotations to the Online Mendelian Inheritance in Man (OMIM)
database, which is a catalog of all the known diseases with a genetic com-
ponent as well as the corresponding relevant genes in the human genome.
Looking at OMIM-related genetic markers has become a standard practice
for comparing behaviors between deleterious and neutral SNPs [40, 165, 30].

Our deleterious SNPs were obtained by making a query at dbSNP for
all the human SNP variants annotated in the OMIM database. The result
of this search produced a sample containing 3658 SNPs located at different
genetic regions and having different functional effects, as shown in table 6.3.

The dbSNP database contains SNPs of an unknown functional class
and SNPs associated with more than one functional class. The former
correspond to SNPs that have not been classified in any functional cat-
egory in the dbSNP database. The different annotations a SNP has in
terms of functional classes could correspond to different open reading frames
or could be due to alternative splicing. Figure 6.15 illustrates this phe-
nomenon, showing a SNP cataloged in 2 categories (Intron and Missense).
The polymorphism has been included in this class because, on the one hand,
it is located in the intronic region of the ”paired-like homeodomain 2”
gene (GeneID: 5308, PITX2) for the sequences corresponding to isoforms
a (NM 153427.1/NP 700476.1) and b (NM 153426.1/NP 700475.1) of the
protein; and, on the other hand, it belongs to the sequence of isoform c at
the first intron of the (NM 000325.5/NP 000316.2) gene. For this protein,
sequence changes imply changes in the amino acid sequence (L→Q).

Both deleterious and neutral SNP samples were stratified in a balanced
manner to avoid introducing an additional bias in the statistical test. The
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stratification by genetic region and functionality of the deleterious sample
is described in table 6.3. To avoid small sample issues, only categories with
more than 15 SNPs were considered. The SNPs corresponding to categories
with fewer than 15 SNPs were removed from the sample, yielding a final set
containing 3568 SNPs.

Table 6.3: Number of deleterious SNPs for each genetic region or functional
category.

Genetic region and functional class n

Intron 648
Nonsense 176
3´ UTR 31
Coding-Synonymous 114
5´ UTR 15
Missense 2204
Near gene 5´ 64
Intron + Missense 45
Near gene 5´+ Missense 40
Near gene 5´ + Intron 21
Unknown 210

The neutral sample contained dbSNP SNPs with no OMIM annotations.
These SNPs were selected randomly among all the dbSNP SNPs not anno-
tated in OMIM yet maintaining the same functional stratification as the one
described in table 6.3 for SNPs from the deleterious sample. No limitations
on the allele frequencies were used.

The sequence associated with a given SNP spanned a region of variable
length around the locus. Both the sequence and the SNP position within
this sequence were stored for each SNP.

R software [246] (version 2.8.1) was used for data acquisition, by making
automatic queries at dbSNP through eUtils, a set of tools for accessing NCBI
databases remotely [219].

6.2.4 Search of homologies

The second stage of the methodology applied a BLAST algorithm for sear-
ching homologous sequences. Given a SNP sequence acquired in the previous
step, this stage consisted of searching a set of homologous sequences against
the non-redundant nucleotide database (nr/nt), the largest database avai-
lable through BLAST. The species considered in this database are attached
as supplementary material. This was accomplished with version 3.7 BLAST
[8]. A local blastn algorithm was applied, under its version 2.2.21. The
expectation value threshold was set to a lower significant value of E = 0.05.
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The variability between a set of homologous sequences was analyzed in
further steps to compare both samples.

The sequences of nucleotides extracted from the NCBI database varied
in length. As it was assumed that SNPs occurred in every 200 to 1000 base
pairs, the length of the SNP sequence had to oscillate within this interval
[169]. However, the a priori chance of finding homologies between sequences
is also known to be proportional to sequence length [8]. Consequently, the
SNP sequences were cut to a common length of 300 nucleotides in order to
guarantee finding enough homologous sequences for measuring variability
and to maintain the statistical power around the SNP. Polymorphic sites
were codified following the IUPAC code [63] so as not to influence the search
for homologies with any of the possible alleles.

For each SNP sequence in both samples, the blastn algorithm returned an
alignment of homologous sequences corresponding to nucleotide sequences
of different organisms.

6.2.5 Measuring the SNP variability among species

The cross-species sequence variability of each SNP was computed by applying
the entropy measure to the columns of the matrix of homologous sequences.
Let S be the column of the matrix corresponding to the position of the SNP
within the original sequence; the entropy H of S is given by (6.13).

H = −
N∑
i=1

p(Si) · log2p(Si) (6.13)

where N is the number of possible symbols for the SNP S (here N = 4 for
A, T, C or G) and where p(Si) is the probability of having the symbol i at S
[272]. The entropy measures the disorder found at the SNP position. High
entropy values correspond to SNPs with a high variability across species,
whereas SNPs totally preserved along evolution will present null entropy
values.

Every matrix of sequences had a finite sample size corresponding to the
number of homologous sequences. This was translated to an error in the
probability estimation error using the nucleotide frequency that led to an
error in the entropy measurement as defined in equation 4.25. If this sam-
pling error (SE) is greater than the difference of entropies between sets, the
statistical comparison between samples will be unreliable. To avoid this
bias, the SE on the computation of the entropy was estimated for different
sample sizes, corresponding to the number of sequences, using the methodo-
logy proposed in Schneider et al. [265]. Given that the expected number of
homologous sequences is low, the exact approach of the SE estimation was
applied. Figure 6.16 shows the SE jointly with the mean difference (MD) of
the entropies. Figure 6.16 was obtained using all SNPs from both samples,
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but the decision on the optimal number of sequences needed to satisfy the
required conditions for the statistical test was determined for each class se-
parately, as follows. The optimal number of sequences corresponds to the
one that reaches a maximum MD and the maximum gap between the MD
and the SE. It can be observed in igure 6.16 that, starting from 50 homolo-
gous sequences, the SE was lower than the MD. In this example, this value
also corresponded to the threshold of statistical significance in the statisti-
cal test comparing both means (p-value < 0.05). The optimal number of
sequences was determined for each functional class to guarantee test accu-
racy, as shown in table 6.4. In the example shown in figure 6.16 the optimal
number of sequences was 54, the value that reached a compromise between
a minimum SE and a maximum MD. In this case, this optimal value also
guarantees maximum significance in the statistical test described as follows.
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Figure 6.16: Mean Differences (MD) of the entropies between the two sets,
Sampling Error (SE) in the entropy computation, estimated as in [265] and
- log (p-value) in the statistical test comparing both means, for different
sample sizes (number of homologous sequences).
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6.2.6 Statistical analysis

A Mann-Whitney U -test is applied to the entropy values for comparing
deleterious and neutral SNP samples, where the null hypothesis was that
the probability distributions of the two samples were equal. The alternative
hypothesis was that the distribution of one sample was greater than the
other. It required the two samples to be independent, and the observations
to be ordinal or continuous measurements. In this case, a one-sided test was
performed, where the null hypothesis stated no difference between the means
of the entropy of the two samples and the alternative hypothesis stated that
the mean of the entropy for the neutral SNPs was greater than that for the
deleterious sample, meaning that neutral SNPs showed a higher variability
across species than SNPs related to disease. The Mann-Whitney test was
applied for each of the 11 groups defined previously. An additional test was
applied to each of the two samples globally to observe the general tendencies
of the samples. Specifically, an analysis of variance was carried out through
a Kruskal-Wallis test.

6.2.7 Results

The study on the cross-species variability of disease-related SNPs compared
with neutral SNPs showed significant differences between the entropy val-
ues for both sets. Without taking into account functional stratification, the
morbid set was found less variable than the control set (p-value=1.8×10−10,
under a Kruskal-Wallis test). It can be observed in figure 6.17 that, on ave-
rage, the entropy of the neutral SNPs was higher (µ = 0.68) than the entropy
of deleterious SNPs (µ = 0.57). This reflects the fact that disease-related
SNPs are better preserved across species than SNPs selected randomly, as
expected. The results obtained for each of the categories are described qua-
litatively in figure 6.17 and quantitatively in table 6.4.

Near-gene 5´ SNPs were observed not to present significant differences
between the two samples. However, the mean of the entropies of neutral
SNPs tended to be higher than the mean of deleterious SNPs, referring to
a lower variability for disease-related SNPs (Figure 6.17). The near-gene 5´
region corresponded to a region of variable length located within 2 kb 5´ of
a gene but not in the transcript for the gene [220]. Hence, this region may
include variations of uncertain functionality. This functional diversity of
SNPs at 5´ UTR regions may imply difficulties in statistical differentiation
of SNPs according to their association with disease.

SNPs in 5´ UTR presented significant differences between samples. De-
leterious SNPs presented a mean entropy lower than that of neutral SNPs
(p-value = 5 × 10−3). Consequently, one can establish that disease-related
SNPs in the 5´ UTR region show lower cross-species variability than neutral
SNPs in the same region. The five prime untranslated region (5´ UTR) set
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Table 6.4: Results obtained for the different functional classes. For each
class, the optimal number of homologous sequences selected is shown, as
well as the p-value of the comparison between the two samples and the
descriptive statistics within each sample.

category Number of sequences p-value Deleterious SNPs Neutral SNPs
# SNPs µ± sd # SNPs µ± sd

NEAR GENE 5´ 27 0.08 38 0.36± 0.48 36 0.49± 0.49
5´ UTR 13 5× 10−3 15 0.71± 0.38 15 1.04± 0.27

CODING SYNONYMOUS 55 0.61 9 0.95± 0.65 34 0.92± 0.46
NONSENSE 56 0.09 7 0.55± 0.47 17 0.82± 0.49
MISSENSE 57 1.1× 10−9 783 0.57± 0.45 479 0.758± 0.42
INTRON 52 6.4× 10−3 134 0.45± 0.48 178 0.57± 0.48

INTRON + MISSENSE 55 0.23 24 0.82± 0.37 7 1± 0.42
NEAR GENE 5´ + MISSENSE 22 0.04 38 0.32± 0.43 32 0.51± 0.52
NEAR GENE 5´ + INTRON 51 0.8 5 0.48± 0.26 5 0.35± 0.26

3´ UTR 33 0.79 16 0.79± 0.58 14 0.58± 0.49
UNKNOWN 44 8× 10−4 102 0.59± 0.47 178 0.75± 0.39

ALL 54 1.8× 10−10 1217 0.57± 0.44 1217 0.68± 0.41

contains sequences that may be a hundred or more nucleotides long prece-
ding the gene. It is a specific section of messenger RNA (mRNA) resulting
from transcription but not translated as proteins. It usually contains regu-
latory sequences such as binding sites. It has already been demonstrated
that 5´ UTR are sequences preserved across different organisms and that
they contain functional SNPs [217]. In this study, morbid SNPs in 5´ UTR
were also found to be less variable across species than neutral SNPs.

Synonymous SNPs located in coding regions did not show significant
differences between sets. Moreover, the mean entropy of deleterious SNPs
tended to be higher than that of neutral SNPs, denoting that disease-related
SNPs located at these regions show higher cross-species variability than neu-
tral SNPs (Figure 6.17), although results for this set may have lost signi-
ficance due to the small sample size. It is known that coding regions are
preserved throughout evolution. Given that they do not affect the resulting
protein amino acid chain, silent mutations found in these regions presuma-
bly show high variability across species regardless of their association with
disease.

For nonsense mutations, the results show that neutral SNPs tended to
have, on average, higher entropy than deleterious SNPs, indicating that
disease-related SNPs were less variable across species than neutral SNPs
(Figure 6.17), although this difference was not statistically significant. Here,
the small sample size affected the results obtained by the statistical test, de-
creasing its statistical power. Moreover, the results showed that the entropy
of neutral SNPs was, on average, higher than that of deleterious SNPs, indi-
cating that disease-related SNPs are less variable across species than neutral
SNPs (Figure 6.17). As well as silent mutations, nonsense mutations are
likely to be preserved whatever their association to disease.

It can be seen in tables 6.3 and 6.4 that the majority of disease-related
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Figure 6.17: Comparison of the statistical distribution of the sequence va-
riability (entropy) for SNPs in both samples for each functional class.

SNPs belonged to the missense category. For this functional class, delete-
rious SNPs were significantly less variable across species than neutral SNPs
(p-value = 1.1 × 10−9). This category unbalanced the global sample and
was the factor most responsible for the statistical difference obtained when
comparing both samples globally. Missense SNPs correspond to the most
functional sort of mutation, as they modify the amino acid chain of the re-
sulting protein. It has already been demonstrated that missense SNPs show
significantly lower variability across species [193] but, in this study, this low
variability was also associated with the deleterious condition of missense
SNPs.

The intron category constituted the second most abundant functional
class for disease-related SNPs. For SNPs in intronic regions, significant
differences were found between neutral and deleterious samples, the former
showing a lower entropy, corresponding to lower variability across species.
Genetic disorder studies usually focus on coding regions; however, it is
known that even if intronic SNPs are not as studied as missense mutations,
intronic SNPs may also be related to disease. It was shown in this study
that low entropy values for these SNPs may characterize their association
with disease.

For SNPs labeled at both intron and missense regions, Figure 6.17 shows
that disease-related SNPs tended to be less variable across species than
neutral SNPs. However, these differences were not statistically significant,
but results for this set may have lost significance due to small sample size.

SNPs located at both near-gene 5´ and missense regions related to di-
sease were significantly less variable than neutral SNPs, showing lower en-
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tropy. Actually, this category showed the same pattern as missense SNPs,
which indicates that the additional annotation to the near-gene 5´ region
does not affect the results.

SNPs located at both near-gene 5´ and intron regions did not present
significant differences in the entropy comparison due to the limited sample
size. This category was not representative because it contained just 5 SNPs.

SNPs at the 3´ UTR region did not present significant differences be-
tween samples. However, it was observed that neutral SNPs tended to show
lower entropy and were thus less variable across species than deleterious
SNPs (Figure 6.17). Just as with the 5´ UTR, a 3´ UTR is a specific section
of messenger RNA (mRNA) resulting from transcription but not translated
as proteins. It is located right after the last codon of the gene. These regions
are believed to contain regulatory elements such as binding sites and they
have been demonstrated to be deeply preserved in vertebrates [50]. Surpris-
ingly, the results obtained in this study go in the opposite direction, perhaps
due to the small sample size.

SNPs of unknown functionality presented significant differences between
samples. The data in table 6.4 reveal that disease-related SNPs presented
a significantly lower entropy (µ = 0.59) than neutral SNPs (µ = 0.75), the
former being less variable across species than the latter. This observation
takes on added importance, as it links morbidity with low sequence variabi-
lity across species for any SNPs.

As expected, a clear tendency was observed showing that disease-related
SNPs showed lower entropy values than neutral SNPs. For functional classes
such as missense SNPs or SNPs in 5´ UTR, as well as for SNPs of unknown
provenance and SNPs at intron regions, the entropy differences were statisti-
cally significant. For some classes, our suboptimal sample size did not make
it possible to draw any conclusions. For SNPs of clearly or ambiguous func-
tionality, their morbidity was significantly associated with low cross-species
sequence variability.

6.3 Concluding remarks

In this chapter, two approaches to the one-locus genetic analysis of human
diseases were studied. On one hand a nonlinear one-locus test of genetic
association was proposed. On the other hand, an exploratory study on the
sequence properties of SNPs related to diseases was carried out for SNPs
located at different genomic regions.

In section 6.1, a one-locus nonlinear test of genetic association was pro-
posed based on the mutual information measure that takes into account
the genetic structure of the population. This nonlinear test was applied
using three approximations for the estimation of the mutual information
measure, the empirical one (EMP), the Miller-Madow estimator (MM) and
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the Schurmann-Grassberger estimator (SG). The resulting three nonlinear
tests were compared to traditional linear models proposed in the GenABEL
software (GA) and were applied to the GAW17 dataset. Since the solution
of the GAW17 simulation model is known, this study served to characterize
the performance of the proposed nonlinear test in comparison to the stan-
dard genetic association tests based on linear regressions.

It was first demonstrated with synthetic data that the mutual informa-
tion captures both linear and nonlinear correlations between variables. In
its application to the GAW17 dataset, the proposed nonlinear test not only
replicated the results found with linear regressions but also detected a SNP
in a gene correlated with the phenotype, suggesting that it could be in lin-
kage disequilibrium with a true positive SNP within the same region. It
was also shown that the performance of the nonlinear tests in terms of their
accuracy in classification (AUC) was similar for the four tests. The low
performance results obtained with the four tests were caused by a high false
positive rate, which decreases the performance (AUC) of the association
test. This is a generic drawback in all the association tests. The high false
positive rate may depend on different aspects of the study design. In this
case, it could possibly be originated from the high number of rare variants,
or by the direct application of the association test on SNP data, without
taking into account any enrichment tool, neither prioritization criteria. In
order to improve this aspect, it is emplaced as future work to extend the
definition of the nonlinear test in terms of Renyi’s divergences with the aim
of better detecting rare variants. Moreover, in order to differentiate between
markers that are truly related with disease and those found by chance, the
search of additional criteria for prioritizing the biological relevance of SNPs
has become a common practice in genetic research. Prioritization criteria
may look at other polymorphisms’ features that could determine their func-
tionality.

In particular, the study proposed in the section 6.2 revealed that explor-
ing the SNP sequence variability among species may discriminates delete-
rious SNPs from neutral SNPs. In this study, a methodology was developed
for studying SNP cross-species sequence variability in order to evaluate the
polymorphism region effect on the possible correlation between SNP se-
quence variability and the SNP association with disease. The methodology
was based on the definition of two sets, one containing deleterious SNPs and
the other defined by neutral SNPs. Both sets were stratified depending on
the region where the polymorphism is located and its functionality, a fea-
ture that may have influenced the evolution of species. It was observedthat
deleterious SNPs tend to be less variable across species than neutral SNPs.
For most functional classes, these differences were shown to be statistically
significant. This study was only a preliminary exploratory analysis of the
SNP variability among species. It indicates that SNP sequence variability
among species may help to discriminate deleterious SNPs from neutral SNPs



106 Chapter 6. Single Point Genetic Association

at different genetic regions. The characterization of a prioritization criterion
based on this observation to support genetic association studies is proposed
as future work.



Chapter 7

Multi-Loci Genetic
Association

7.1 Combinatorial effects of SNPs

The technique described in chapter 6 facilitated the identification of several
human genes where there are mutations that lead to Mendelian diseases.
However, they are not always useful for studying complex diseases that are
product of the interaction of many loci and the environment. For such disea-
ses, multi-loci analysis is expected to be more powerful than the traditional
locus-by-locus SNP association studies ([34]), detecting even more interac-
tions. Sometimes, the combination of two of more-loci may provides more
information about the phenotype than only one single SNP.

This is illustrated in figure 7.1, where the statistical significance of the
correlation between pairs of SNPs of the F7 gene and the FVII levels in
blood is plotted as well as the individual correlation of each SNP with the
phenotype. This figure was generated using the nonlinear method based on
information theory described in section 6.1.2. The central matrix represents
the significance of the mutual information of each pair of SNPs and the
phenotype, where significant combinations are shown with a black square.
On the left side of the matrix, an histogram with the statistical significance of
the mutual information between each SNP and the phenotype is represented.
Significant SNPs are also represented with a black square. On the right side
of the plot, an LD matrix is represented in order to evaluate if SNPs are in
linkage disequilibrium with each other.

It can be observed that SNPs rs9604025 and rs510335 are not indivi-
dually significantly correlated with the phenotype, whereas the combination
of these two SNPs is significantly related with the phenotype (red square).
Furthermore, SNP rs510335 is a relevant SNP cited in many works related
to the factor VII. The rare T allele is associated with lower plasma concen-
trations of FVII protein and fully activated FVII molecules [306]. The LD
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Figure 7.1: Two-loci interactions between SNPs. The histogram on the left
represents the significance of the correlation of each individual SNP with
the phenotype. The matrix at the center shows the statistical significance
of adding the SNPs in files to the SNPs in columns (black squares represent
significant combinations of SNPs) and LD figure on the right represents the
r2 LD measure between each pair of SNPs.

plot shows that these SNPs do not present a significant correlation.

Figure 7.1 shows an example where a SNP related to a phenotype is not
detected through traditional one-locus techniques but it can be detected in
combination with another polymorphism, which helps to manifest its asso-
ciation with the phenotype. Since it is observed with SNPs in the same
gene, it can be deduced that this may presumably occur recurrently, espe-
cially when looking at SNPs in different genes, where epistatic effects may
favor this situation [215]. Epistasis, the interaction between genes, has been
widely undervalued in the context of genetic association studies. Traditional
association algorithms most often look for individual genes with large im-
pacts on a single phenotype. However it frequently results in spurious and ir-
reproducible results because network interactions are not taken into account
[303]. Thus, statistical methods to incorporate SNP-SNP interactions in an
association study are needed. Various approaches have been proposed and
shown to be superior to SNP-by-SNP association analysis. Most of them are
based on multiple regression models [61]. However, other approaches have
also been proposed using different learning algorithms[340, 311, 206].

The aim of this chapter is to describe a novel multi-loci genetic associa-
tion method, based on information theory. The methodology proposed in
chapter 6 was adapted for building a nonlinear multi-loci association test.
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7.2 A nonlinear multi-loci association test

7.2.1 A feature selection problem

As mentioned in section 3.1.2, finding association between sets of genetic
variants and a phenotype can be seen as a feature selection (FS ) proce-
dure, in the sense of selecting genetic variants with a relevance criterion of
association with the phenotype.

In order to perform a multivariate SNP subset selection, wrapper and
embedded feature selection methods are the most adequate. As described
in section 7.1, the “best” set of SNPs (the most significantly related to
the phenotype) does not always contain the best individual SNPs. Thus, a
multi-solution approach seems to be appropriate allowing to obtain all the
possible combinations of SNPs associated with phenotypes and not to omit
possible combinations of SNPs associated with diseases. Sequential feature
selection algorithms have been considered and compared to an embedded
algorithm based on a greedy search proposed by Miller et al. [206].

The principal disadvantage of applying a sequential forward or backward
selection algorithms (SFS and SBS) is that they do not take into account
the correlations between features and may produce the effect of finding re-
dundant sets of features. When two SNPs with a similar variability among
individuals are selected together, the selection set contains twice the same
information about the phenotype. This occurs generally when SNPs are
inherited together in the same haplotype. In order to avoid this problem,
algorithms that combine forward and backward steps have been proposed.
Floating variants of SFS and SBS were introduced in order to combine for-
ward and backward steps dynamical. These are sequential forward floating
selection (SFFS) and sequential backward floating selection (SBFS). The
difference between these two algorithms is that SFFS starts with an empty
set and first applies a forward selection step, adding features to the selection
set, whereas SBFS starts with the total set of features and first applies a
backward step, eliminating features from the selection set. However, as it
is explained in section 7.2.2.2.1, a few number of SNPs are enough for ex-
plaining the information of the phenotype. Thus, if starting with the total
set of SNPs, any of the SNPs in the set should be removed by a backward
selection procedure. This implies starting as many new searches as SNPs in
the selection set at each step, which is computationally demanding. Thus,
it makes more sense to start with an empty set and keep adding features
than starting with the total set (47 SNPs) and remove features, since it
guarantees reaching the optimal sets with fewer search steps.

Here, a multi-solution version of the SFFS algorithm (MSSFFS ) was
proposed. The multi-solution strategy consisted in starting a new search
for each significant SNP. The MSSFFS algorithm returned multiple sets of
SNPs that are able to represent the information of the phenotype. Floating
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algorithms combine forward and backward steps as described in figure 7.2.
Forward steps add relevant features whereas backward steps allow to deflate
the selection set, removing the redundant SNPs. The MSSFFS algorithm
starts with a forward step applied to the empty set.

The algorithm returns sets of SNPs that, together, show a significant
correlation with the phenotype, but that do not share redundant information
one with each other. Thus, SNPs appearing in the same set may have a
different variability among individuals, and so they are expected to belong
to different haplotypic regions.

The main structure of the developed MSSFFS algorithm is described in
figure 7.2.

1. Initialization of the set S = {}.

2. Forward step: For each available SNP Si, the p-value associated to
the gain of information produced when adding this sNPs to the feature
set is computed according to a given relevance criterion.

3. For each significant SNP, a new forward search (2) is started from the
new set S = S + {Si}. The forward step (2) is repeated whereas there
are significant SNPs.

4. Backward step: For each SNP Si in S, the p-value associated to the
loss of information when removing Si from S is computed.

5. For each non-significant SNP, a new backward search (4) is started from
the new set S = S − {Si}. The backward step (4) is repeated whereas
there are nonsignificant SNPs and the set S has more than one SNP.

6. Go to step 2.

7. If there are neither significant SNPs in step 3 nor non-significant SNPs
in step 5, the search is stopped.

Figure 7.2: The MSSFFS algorithm for genetic association.

The methodology described above was compared to the MECPM me-
thodology ([206]). MECPM is an available algorithm based on the maxi-
mum entropy principle. This algorithm applies a greedy search based on a
Maximum Entropy model induction. MECPM ’s key features are: (i) inter-
actions are added one at a time; (ii) coding models (dominant, recessive)
are considered for each of the SNPs in a set; (iii) for each set, candidates are
evaluated by increasing order; (iv) only small features subsets are considered
for achieving a low-complexity method (first or second order interactions).
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7.2.2 Relevance criteria

The MSSFFS was applied with two relevance criteria. Both of them aim
to determine if the gain of information produced by one SNP on a set of
previously selected SNPs is significant. The first one corresponds to the stan-
dard practice for multi-loci association based on multiple linear regression
models [114]. Besides a novel multivariate nonlinear method based on infor-
mation theory was proposed for multi-loci genetic association.

7.2.2.1 Linear method

The linear method was chosen since it is a reference method for selecting
multiple SNPs correlated with the phenotype. It consists on a multiple
linear regression model (MLR) model that measures the linear dependencies
between variables based on multi-linear regressions [114]. MLR tries to
fit a model that represents the linear relations existing between a set of
independent variables S = {Si} (here Si are SNPs), and an observed variable
(for instance the phenotype Y ) as in (7.1).

Y = β0 + β1 · S1 + . . .+ βn · Sn + ε (7.1)

where βi are the regression coefficients and ε is the error of the model.
The method estimates the values of βi that minimize ε. Each coefficient (βi)
represents the individual contribution of a SNP (Si) for the prediction of Y .

7.2.2.1.1 Individual SNP correlation with the phenotype
Given a set of SNPs S, the gain of information provided by a SNP Si about
the phenotype Y is represented by the regression coefficient βi. The statis-
tical significance of this correlation is determined by a Student’s t statistical
test. The null hypothesis supposes the nullity of the corresponding regression
coefficient (βi = 0). Given a set of SNPs S and a SNP Si, a t-Student test
over the regression coefficient βi was used to determine if Si, individually,
adds information about the phenotype Y respect to S.

7.2.2.1.2 SNPs set correlation with the phenotype
The significance of the correlation of the total set (S + Si) was obtained
using a Fisher hypothesis test (F-test). In this case, the null hypothesis
supposes the nullity of the slope of the regression line, i.e. all the regression
coefficients at the same time, ({βi} = 0). The resulting p-value was used to
determine if all the SNPs ({Si}i=1···n), jointly have a significant predictive
linear capacity over the phenotype Y . Once a SNP set was obtained, the
F-test was used to determine if it is significantly linearly correlated, as a set,
with the phenotype Y .
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7.2.2.2 The mutual information-based method

7.2.2.2.1 Multivariate mutual information measures

The purpose of the multivariate mutual information measure is to de-
termine the amount of information shared by several variables. The mutual
information between two SNPs Si and Sj and a phenotype Y can be defined
as in equation 7.2.

I(Si, Sj ;Y ) = H(Si, Sj)−H(Si, Sj |Y )

= H(Si, Sj) +H(Y )−H(Si, Sj , Y ) (7.2)

It can be generalized to the case of n SNPs S1, . . . , Sn as in equation 7.3.

I(S1, . . . , Sn;Y ) = H(S1, . . . , Sn)−H(S1, . . . , Sn|Y )

= H(S1, . . . , Sn) +H(Y )−H(S1, . . . , Sn, Y ) (7.3)

with

H(S1, . . . , Sn) =
n∑
i=1

H(S1, . . . , Si−1, Si+1 . . . , Sn) (7.4)

Equation 7.4, indicates that the multivariate entropy measure is compu-
tationally hard to implement. In order to avoid this problem, it is possible to
use that considers the set of several SNPs as a single random variable with
symbolic values that are the concatenation of the symbols of each SNP.
This approach does not affect the entropy measures. The joint probability
density function of n SNPs, is not affected because each combination of
symbols maintains its frequency. The mutual information between a set of
SNPs S = S1, . . . , Sn and a phenotype Y is described in equation 7.5

I(S, Y ) =
∑∑

p(S, Y )log2

(
p(S, Y )

p(S)p(Y )

)
= H(S) +H(Y )−H(S, Y ) (7.5)

An important property of the mutual information sets that no other
variable can contain more information about another variable than itself
(equation 7.6).

I(S, Y ) ≤ max{H(S), H(Y )} (7.6)

Moreover, in a similar manner than with univariate information theoretic
measures, the finite sample size affects the multivariate mutual information
measure.
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The mutual information between a set of SNPs and a phenotype a
monotonous function, being strictly monotonous when the sample size is
finite (equation 7.7).

I(S + {Si}, Y ) ≥ I(S, Y ) (7.7)

or, equivalently, the increase of information ∆I supposed by adding a
SNP to a set is always positive due the finite sample size effects.

∆I = I(S + {Si}, Y )− I(S, Y ) ≥ 0 (7.8)

The properties of the multiple information presented in equations 7.6
and 7.8 reveal that the mutual information between multiple SNPs and a
phenotype will grow as the number of SNPs increases, reaching and never
exceeding the information (entropy) of the phenotype, as shown in figure
7.3a. Consequently, the information of the phenotype will be recovered with
only few SNPs, even random, especially when the sample size is small.

Figure 7.3 shows the evolution of the I(S, Y ) as the number of SNPs in
S increases. On one hand, figure 7.3a shows schematically the evolution of
I(S, Y ) when using totally random SNPs, whereas figure 7.3b shows the real
behaviour of I(S, Y ) when adding randomly the SNPs of the F7 gene, where
Y represents the FVII levels in blood. Figure 7.3 evidences that adding a
SNP Si to the selection set S, even if Si is totally random, always suppose
a positive gain of information as described in equation 7.8, due to finite
sample size effects. The curve represent the amount of information I(S, Y )
about the phenotype explained by sets of SNPs S of different sizes. Moreover
it will never exceed the entropy the phenotype (H(Y )). It is observed in
figures 7.3a and 7.3b that sooner or later I(S, Y ) converges to H(Y ). When
the mutual information of a set of SNPs reaches the entropy value of the
phenotype, it has reached his maximum. This is the limit of the multiple
SNP genetic association.

As it corresponds to a real case, it can be observed that the curves
have a more staggered appearance in figure 7.3b. In this particular case,
the information of the phenotype H(Y ) is recovered only with 8 SNPs of
the F7 gene, even if they are selected randomly. That is, with sets of 8
SNPs of the F7 gene, one is able to recover the information about the
phenotype (the FVII levels in blood) and adding more SNPs to this set will
not be translated into a relevant gain of information. This indicates that,
in this particular case, it is not necessary to look at more than eighth-order
interactions when searching combinations of SNPs that provide information
about this phenotype.

The characterization of this minimal number of SNPs necessary to re-
cover the information of the phenotype determines the shape of the signifi-
cance region. In a similar manner than in chapter 6 with the null distribution
characterization, it was not possible to identify systematically the minimal
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number of SNPs that describes a phenotype, since it is strongly influenced
by the allelic frequencies of the SNPs as well as on the number of discretiza-
tion bins of the phenotype. In this case, the curve of Figure 7.3a delimitates
the region of significance of I(S, Y ), that is the region where the gain of in-
formation ∆I produced when adding a new SNP is higher than if a random
SNP would have been added. This region is represented by the striped area.
When multiple SNPs S = {S1, . . . Sn} are associated with a phenotype Y ,
their mutual information I(S, Y ) is expected to belong to the barred area.
Thus, the main goal of the proposed nonlinear test is to find sets of SNPs
that satisfies this condition, computing the mutual information statistical
significance.

(a) Schematical representation of
an empirical case with totally
random SNPs.

(b) A real case: the 49 SNPs of the
F7 gene randomly selected.

Figure 7.3: The evolution of the mutual information for sets of SNPs as the
number of SNPs in the set increases.

7.2.2.2.2 Single SNP significance
As for one-locus genetic association, the method proposed for evaluating the
increase of information about the phenotype produced by a SNP on a given
set of SNPs consisted on generating a null distribution. Given a set of pre-
viously selected SNPs S and a candidadte SNP Si, the mutual information of
the set resulting from adding Si to S (Ii = I(S+{Si}, Y )) is compared with a
null distribution of mutual information ({Ir = I(S + {Sr}, Y ) : r = 1..Nc})
obtained by generating surrogate copies Sr of Si. The resulting P-value
helps to decide if the SNP Si provides a significant gain of information ∆Ii
about the phenotype Y . The surrogate data technique was used for generat-
ing the mutual information in order to respect the allelic frequencies of the
SNPs, that influence the evolution of the mutual information between mul-
tiple SNPs and the phenotype. This method has been called MISS (Mutual
Information Statistical Significance).

Figure 7.4 illustrates this procedure. It is shown that at each step, a
candidate SNP is compared to a particular null distribution in order to



7.2. A nonlinear multi-loci association test 115

1 2

I(S,Y) where S= {S1, …, Si}

N N+1
i

ΔIN+1
Ir

IN+1

Region of significance

H(Y)

Figure 7.4: Single SNP Mutual Information Statistical Significance.

determine its singular statistical significance. However, the significance of
the whole set is expected to be in the significance region.

7.2.2.2.3 SNPs set significance
Once a set of SNPs is selected, another statistical test was applied in order
to determine if the selection set of SNPs, jointly, have a significant mutual
information against the phenotype. This test consisted in comparing the
mutual information of the set against the phenotype I(S, Y ) with a null dis-
tribution of mutual information ({Ir = I(S, Yr) : r = 1..Nc}) generated with
Nc surrogate copies of the phenotype. The resulting p-value determines if
the selection set, as a set, is significantly related with the phenotype.

7.2.3 The MISS package

The set of functions and algorithms developed for this study were integrated
in a package for the R statistical language (R Development Core Team,
2005). This package is called MISS and the version 0.2 is already built
and available. The MISS library contains a documentation that includes
examples of the use of the described algorithm and its underlying functions
using a SNP dataset. MISS allows for parallel and distributed computing
through MPI. Parallel implementation has been coded on top of snow R-
package, authored by (Tierney et al., 2004). The code is available at http:
//www.sisbio.recerca.upc.edu/R/MISS_0.2.tar.gz.

http://www.sisbio.recerca.upc.edu/R/MISS_0.2.tar.gz
http://www.sisbio.recerca.upc.edu/R/MISS_0.2.tar.gz
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7.3 Results

The proposed floating feature selection algorithm was applied with the two
described criteria, the linear one (MLR) and the nonlinear one (MISS ). Both
methodologies were compared to a third approach, the MECPM methodo-
logy, that uses a greedy search based on a nonlinear criterion of maximum
entropy.

The three methodologies were applied at a local scale, in particular to the
study of the F7 gene. The 93 founders from the GAIT database (section
5) were used for this comparison. The phenotype, corresponding to the
FVII levels in blood, was discretized using the kernel-based discretization
method described in section 6.1.2. In particular, the factor FVII levels in
blood were discretized in 8 categories. Besides that, the MECPM algorithm
was tested both with the phenotype discretized using kernel functional and
with a two-classes quantization. The approach giving the best results was
selected, which corresponds to a binary phenotype.

Besides, in order to compare and evaluate the performance of the al-
gorithms in detecting interactions of SNPs in a closed environment, the
described methodologies were also applied to a synthetic dataset. This
dataset was generated from two polymorphisms of the F7 gene (rs491098
and rs36208414). A phenotype was synthetically generated from the infor-
mation of these SNPs through an epistatic multiplicative model ([188]). The
multiplicative property of the epitstatic model involves that the correlation
between the synthetic phenotype and the two selected SNPs, as a set, is
nonlinear. The dataset was completed by random SNPs generated by surro-
gating the remaining SNPs of the F7 gene. The surrogate technique allowed
to destroy the individual order in the SNPs variables, which guarantees ran-
domness. The knowledge of this dataset was used to ascertain if the applied
methodologies were able to detect the correlation between the interaction of
the two selected SNPs and the phenotype, without assuming the intrinsic
properties of the F7 gene.

Table 7.1 shows the results obtained by the three methods for the real
dataset corresponding to SNPs in the F7 gene and the FVII levels in blood.

It can be observed in table that MLR found more sets of SNPs (N = 151)
than MECPM (N = 62) and than MISS (N = 48). Sets obtained with MLR
contained more SNPs (n = 6) than MISS (n = 2) and MECPM which
found single SNPs related with the phenotype and did not find higher order
interactions of SNPs predicting FVII levels in blood. MISS needed less
SNPS for recovering the variability of the phenotype in exchange of finding
less significance (p-values of 10−2) than MLR.

Most of the SNPs obtained in the three cases are reported in the litera-
ture as functional variants related with FVII concentrations.

The SNPs’ sets obtained using MLR were similar to each other since they
contained common SNPs. The SNPs that made the sets different (rs762636,
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Table 7.1: Results obtained by the different methods for the real dataset.

Method MLR MISS MECPM

N 151 48 62

n 6 2 1

P-value 10−7 10−3 10−1∗

Relevant
sets of
SNPs

rs762636a,b

rs36208415a

rs36208416a
+


rs1755685a,b

rs6041
rs36208763a

rs36209564a

rs36208755
rs3093266

rs493833

+ { rs9604025a

rs561241a,b,d,f

rs491098a rs762636a,b

rs510335a,b,e,h rs493833

rs491098a

rs493833

rs561241a,b,d,f

rs6041
rs36209569

+ { rs36209564a

rs36208416a

rs36209763a

rs36208070a,b,e,f,g

rs762636a,b

rs36208415a

rs36208416a

rs510317a,c

+

{
rs36209564a

rs36208755
rs36209569
rs36208763a

rs3093266

rs510335a,b,e,h

rs564965a

rs36208415a

rs510317a,c

rs36209567a

N represents the number of sets obtained and n the average number of SNPs in a set. P-values are the order of
magnitude of the obtained p-values and relevant sets of SNPs are those that present most statistical significance.
Each row on the left side of the columns represent a set of SNPs whereas SNPs in curly brackets are common
SNPs appearing in all sets at the left of the +.
∗ Classification error rates are shown instead of p-values, as MECPM does not provide significance levels.
a [283], b [258], c [306], d [328], e [192], f [325], g [80], h [237]

rs36208415, rs36208416 and rs510317) contain similar information about
the phenotype. These SNPs appear in [283] in the same cluster of SNPs
with a high probability of posterior effect on the phenotype, and are located
in the promoter region or in splice sites as shown in figure 5.2.

The SNPs’ sets obtained using MISS also contained information common
to several of them. SNPs that made the sets different (rs491098, rs510335,
rs561241) appear in the same cluster of SNPs in [283]. Moreover, both
SNPs rs493833 and rs491098 belong to the fifth intron of the F7 gene 5.2.
It is important to remark that the sets obtained with the proposed floating
search algorithm contained SNPs that do not give redundant information
about the phenotype but that complement each other. SNPs appearing
in the same set may not belong to the same haplotype and can belong to
different regions of the gene as they do not show significant r2 in the LD
plot in figure 7.1.

Most of the SNPs found with MECPM are reported in the literature as
functional polymorphisms related with the phenotype. However, as it has
been previously mentioned, MECPM was designed only for detecting first
and second order SNP interactions. This is the reason why the sets of SNPs
obtained with this methodology only contained one SNP per set.

The combination of SNPs described in section 7.1, corresponding to the
SNPs rs510335 and rs9604025, was not detected using existing multi-loci
techniques (MLR and MECPM ). It can be observed that using the MISS
methodology, SNPs rs9604025 and rs510335 were not individually signi-
ficantly correlated with the phenotype, whereas the combination of these
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Table 7.2: Results obtained for the simulated datasets.

MLR MISS MECPM

N 1 4 7
n 1 3 1

SNPs detected SNP ∗1 (SNP1, SNP2)∗ SNP1, SNP2
∗ denotes that SNPs were always detected, independently of the size of the dataset.

two SNPs is significantly related with the phenotype (red square). SNP
rs9604025 appears in [283] as a functional variant related to FVII levels.
SNP rs510335 is a relevant SNP cited in many works related to the fac-
tor VII. The rare T allele is associated with lower plasma concentrations of
the FVII protein and fully activated FVII molecules [306]. Moreover, the
LD plot presented in figure 7.1 showed that these SNPs did not present a
significant correlation. Here, it is shown that the effects of this SNP only
became apparent when it was combined with SNP rs9604025. This reflects
the importance of looking at SNP interactions when designing a genetic
association study.

The simulation study was developed to validate the performance of our
methodology in detecting true interactions between SNPs and a phenotype
defined by an epistatic multiplicative model. For each method, 6 datasets
of different size were built, corresponding to matrices of 5, 10, 15, 20, 25
and 50 SNPs and 85 samples. The datasets contained 2 SNPs correlated
with a simulated phenotype, whereas the remaining SNPs were randomly
generated, being not related with the phenotype.

Table 7.2 shows the results obtained with the simulated datasets. The
two real SNPs were labeled as SNP1 and SNP2. Results shown in table 7.2
are averages of the results obtained as changing the dimension of the dataset.
For this experiment it is not worth to list the obtained sets of SNPs, so only
the detection of any of the real and relevant SNPs is annotated.

It is observed that MLR detected one of the SNPs, as an individual set,
regardless of the size of the dataset. MECPM found several SNPs as indi-
vidual sets, including the two selected SNPs. In contrast, for each dataset
size, MISS always found sets containing both SNPs, sometimes in combina-
tion with an other random SNP. Neither MLR nor MECPM found the true
positive corresponding to the combination of the first 2 SNPs whereas MISS
was able to detect this interaction. However, this accuracy was obtained
by increasing the complexity and sacrificing the computational performance
of the algorithm. This was not a critical point for local association studies
like this but it may become severer in a Genome-Wide Association Study
(GWAS).

In order to evaluate the computational cost required when applying MISS
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with respect to the other methods, table 7.3 shows the CPU time corres-
ponding to each method. All computations were performed on a 12 Intel
E7310 processors (4Mb Cache 1.60GHz) with 32Gb random access memory.
MISS was launched using snow on MPI mode over the 12 nodes and the
computing time presented corresponds to the total computing time employed
by all CPUs involved. In order to make a fair comparison, the three me-
thods were applied with conditions that benefits their performance. The
MECPM was applied to a binary phenotype, giving faster and better re-
sults whereas with MLR and MISS it was discretized in 8 categories using
[312]. In contrast, the parameters of MISS were also adjusted in benefit of
obtaining a right detection with the minimum computational cost. Thus,
the null distribution has been generated with Nc = 100 surrogate copies.
The computational cost of the real dataset corresponding the 47 SNPs of
the F7 gene is also presented.

Table 7.3: Comparison of the three methods using the synthetic dataset and
the real F7 founders dataset (∗).

size of the dataset CPU time (in s)
MLR MISS MECPM

5 0.2 50 44
10 0.3 77.9 103
15 0.5 90.6 475
20 0.7 130.1 914
25 0.8 237.5 1705
50 2.8 335 9500

47∗ 238 36828.5 9300

It can be observed that the use of MISS slowed down the floating search
algorithm in comparison with MLR. However MISS was faster than MECPM
for the simulated dataset. For the real dataset, MISS was computationally
more expensive due to the dependence of the parameters of the null distri-
bution generation that were larger for real data.

7.4 Extension to sib-pairs analysis

Paralelly to the study described in section 7.2, a sib-pairs analysis was deve-
loped with the 345 pairs of sibs selected from the GAIT database. Generally,
family studies are based on comparing the genotypic information of two in-
dividuals within the same family. The first approach was to establish a
genotypic distance by determining if two individuals share 0, 1 or 2 alleles
Identical-by-Descent (IBD) at a given position ([157]). Two alleles are IBD
if one is a copy of the other or if both of them are copies of the same an-
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cestral ([321]). In practice, it is not always possible to estimate the number
of alleles shared IBD at a given position because the allelic measurements
of the ancestors are not always available. Identity-by-State (IBS) methods
also estimate the genotypic differences between sib pairs. Two alleles are
IBS if there are the same allele, regardless of their ancestral origin. The IBS
methodology estimates a probability distribution of sharing 0, 1 or 2 alleles
IBS by looking at the allelic frequencies ([29]). For avoiding the computing
of these probabilities, the genotypic distance was established directly from
the number of alleles shared IBS, as follows. The distance between two
identical homozygous genotypes (e.g. A1A1 and A1A1) was set to d=0. The
distance between an homozygous and an heterozygous genotype (e.g. A1A1

and A1A2) was set to d=1. The distance between two opposite homozygous
genotypes (e.g. A1A1 and A2A2) was set to d=2. For quantitative traits, the
number of alleles IBS that two sibs share should present a correlation with
the difference of their phenotypes. Thus, the genotypic distance, computed
for each sib pair and each SNP of the F7 gene, was compared with the phe-
notypic distance computed as the difference between the FVII levels of each
individual. The variable of phenotypic differences was discretized with the
methodology described in [312], concretely in 16 categories. The methodo-
logy described in section 7.2 was identically applied in a sib-pairs analysis,
considering the IBS values between pairs at each SNP as genotypes and
the phenotypic differences as the phenotype. Actually, only the MSSFFS
algorithm was applied with both linear and nonlinear criteria, given that sib-
pairs IBS data format is incompatible with the genotypic format required
by the MECPM algorithm. Table 7.4 shows the results obtained using the
MSSFFS algorithm with both MLR and MISS methods.

It can be observed that for sib-pairs data, MLR only found 3 sets of
SNPS whereas MISS found 50 sets, a similar number than using unrelated
individuals. As for the population-based study, sets obtained using MLR
contained more SNPs (n = 4) than sets obtained with MISS (n = 3). In
contrast, MISS obtained higher p-values than MLR in the sib-pairs analysis,
whereas using only founders, MLR presented higher levels of significance
than MISS.

It can be observed that results obtained with founders were different than
results obtained using the sib-pairs. Most of these differences are due to the
differences in the datasets, containing different samples and so, different
genotypic and phenotypic measures. Contrarily to the genotypic variability,
the variance of the phenotypic differences of the sib-pairs was higher (V =
1159.7) than the variance of the phenotypes of the founders (V = 826.3).
This variability can only be expressed through the combinations of SNPs.
This combinations were more easily found using MISS (50 combinations
obtained) than using MLR (only 3 combinations). These intrinsic differences
in the variability of genetic data between individuals may also influence the
results. The large variability present in founders genetic data may increase
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the false positive discovery ([164]). This is observed with the high values of
N and n, especially with MLR. MISS was more conservative as it found a
similar number of SNP sets for both datasets (N ∼ 50).

As for unrelated individuals, SNPs sets obtained with MLR were also
similar to each other, being differentiated by SNPs rs762636, rs762635 and
jointly by rs2774033 and rs6039. SNPs rs762736 and rs762635 are in the
same cluster in [283] while SNP rs6039 appears in another cluster. Most
of the sets obtained using MISS were composed by SNPs that appear in
different clusters in [283], giving different information about the phenotype.
In particular, SNP rs36209567, also known as A294V, appeared in several
sets and is located in the ninth exon of the F7 gene, producing an amino
acid change in the resulting protein from an Alanine to a Valine. SNP
rs36208758 is also located in the third exon but it is a missense mutation
that does not produce any amino acid change in the resulting protein as
illustrated in figure 5.2.

Table 7.4: Results obtained using MSSFFS with both MLR and MISS for
the sib-pairs analysis.

Method MLR MISS

N 3 50

n 4 3

P-value 10−6 10−18

Relevant
sets of
SNPs

[
rs762636a,b

rs564965a

rs9604025a

rs36209567a

[
rs1755685a

rs762636a,b

rs36209567a

[
rs1755685a

rs510317a,c

rs36209567a[
rs762635a,b

rs564965a

rs9604025a

rs36209567a [
rs564965a

rs36209567a

rs36208070a,b,e,f,g[ rs2774033
rs564965a

rs9604025a

rs36209567a

rs6039a,b

[
rs510317a,c

rs36209567a

rs36208758
rs564965a

N represents the number of sets obtained and n the average number of SNPs in a set. P-values are the order of
magnitude of the obtained p-values and relevant sets of SNPs are those that present most statistical

significance. Each set is presented in square brackets.
a [283], b [258], c [306], d [328], e [192], f [325], g [80], h [237]



122 Chapter 7. Multi-Loci Genetic Association

7.5 Discussion

In this chapter, a novel methodology, called MISS was proposed. It is a mul-
tivariate nonlinear method for multi-loci genetic association with the goal
of detecting association between combinations of SNPs and a phenotype.

Similarly than in chapter 6, the proposed method was based on the sta-
tistical significance of the mutual information gain produced by a SNP on a
set of previously selected SNPs about a phenotype under study. This method
was applied as a novel relevance criterion of a new a multi-solution floating
feature selection algorithm (MSSFFS ), proposed in the context of multi-loci
genetic association for complex diseases. MISS was compared with MLR, a
standard linear method used for genetic association, also applied as a rele-
vance criterion of the same feature selection algorithm, and with MECPM,
an algorithm for searching predictive multi-loci interactions with a criterion
of maximum entropy. The different methods were tested with SNPs of the
F7 gene, and the FVII levels in blood, with the data from the GAIT sample
using both only unrelated individuals and sibpairs in two paralel studies. As
the study was a local association analysis focused on the F7 gene, functional
studies about F7 polymorphisms were used to validate the results.

The proposed nonlinear method (MISS ) improved the results of tradi-
tional genetic association methods, detecting new SNP-SNP interactions.
Most of the obtained sets of SNPs were in concordance with the functional
results found in the literature where the obtained SNPs have been described
as functional elements correlated with the phenotype. The results presented
in [283] were confirmed by the same group in [258] by functional assays.
Moreover, some of these results have been also replicated by association
analysis and/or functional assays in [306], [328], [192], [325], [80] and [237].
Moreover, through a particular case it was shown that a specific SNP known
to be related to FVII levels in blood, the rs510335 SNP, was not detected
using one-locus association tests but its effect on the phenotype only became
apparent when it was combined with another SNP that is not individually
significantly related with the phenotype either. Moreover, this particular
combination was only detected using MISS but not when applying the other
referenced methods.

On one hand, this confirms that multi-loci association improved the re-
sults obtained with one-by-one SNP association strategies, showing that
combinations of SNPs may contain information about the phenotype that
single SNPs are not able to capture. On the other hand, the proposed nonli-
near method (MISS ) was not only able to recover the results the traditional
linear regressions but it also improved them, finding correlations between
genotype and phenotype not detected with the other tested methodologies.

The originality of this method lies in three specific aspects: (1) the
multi-solution characteristic of the feature selection algorithm, (2) the floa-
ting strategy of the search algorithm and (3) the generation of the null
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distribution of the mutual information of multiple SNPs and a phenotype.
The multi-solution strategy allows to find several relevant interactions be-
tween loci, including those interactions that may be hidden behind the most
significant one. However this involves an higher computational cost of the
algorithm. The floating search solves the problem of finding redundant SNPs
in the same set, removing at each step of the algorithm the uninformative
SNPs from the selection set.

In order to evaluate and compare the performance of the poroposed
algorithms, the three methodologies were also applied in a controlled envi-
ronment through a synthetic dataset. This dataset was generated using a
multiplicative epistatic model from two real SNPs for the simulation of a
phenotype. Remaining SNPs were generated randomly. The nonlinear asso-
ciation between the combination of the two real SNPs and the phenotype
was been detected using the MISS methodology, proving its capacity for
finding true associations with respect to the other methods. However, this
accuracy was obtained at the cost of an increased computational task of the
algorithm that should be improved for its use in genome-wide association
studies or for its application to other diseases or phenotypes. This improve-
ment involves finding an analytical expression for the mutual information
null distribution, which is out of the scope of this thesis, and it also invites
to apply suboptimal feature selection algorithms, such as genetic algorithms
or the Branch and Bound strategy, and compare its computational efficiency
with the proposed floating feature selection algorithm, which is emplaced as
future work.
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Chapter 8

Genetic Association in
multiphenotypic schemes

8.1 Introduction

First genome-wide association studies were carried out on two sets of indi-
viduals, one healthy control group and one case group affected by a disease.
Nowadays, genome-wide association studies for complex diseases are often
conducted on collections of patients in which multiple quantitative traits
are recorded. These traits, also known as intermediate phenotypes, ge-
nerally correspond to variables collected as risk factors for this particular
syndrome. Some regulatory elements may jointly affect several phenotypes
belonging to the same metabolic pathway. When it occurs, it is particularly
interesting to study the traits as a whole in order to identify these genetic
elements related with the entire underlying pathway. For example, a mas-
ter regulatory gene is a single gene whose expression is both necessary and
sufficient to trigger activation of many other genes in a coordinated fashion,
such as transcription factors or other enhancers.

This chapter presents a methodological guide for the simultaneous ana-
lysis of several phenotypes that interact together within a given biologi-
cal pathway. In particular, the method is illustrated with the coagulation
cascade, with the aim of identifying regulatory genes related to thrombo-
sis. The methodology is based on the definition of canonical phenotypes,
named metaphenotypes, that capture the covariance among the different
phenotypes involved in the coagulation pathway, thus explaining the joint
regulation or activity of the phenotypes involved in it. The hypothesis of
this work is that applying genetic analysis to this new variable will lead to
identify regulatory genes that could affect the whole pathway or part of it,
by regulating its components.
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8.2 Methodology

The proposed methodological framework consists in building new pheno-
typic variables, called metaphenotypes, that capture the joint activity of
sets of phenotypes involved in any metabolic pathway. In order to deter-
mine the pleiotropic effects of genetic variants on this set of phenotypes, the
metaphenotypes are considered as new phenotypic unities and are subjected
to genetic analyses. The methodology was divided in three steps. Firstly,
the a data cleaning procedure was performed and the set of phenotypes
defining the pathway under study were selected. Afterwards, the metaphe-
notypes were build. Finally, genetic analyses were performed with these new
variables.

8.3 Data pre-processing.

8.3.0.1 Genotypic data cleaning.

The study proposed in this chapter was developed for the analysis of throm-
bosis disease, using the GAIT project sample, described in chapter 5. The
following quality control procedure was performed on the genotypic data.
Individuals with a low call rate (< 0.5%), a too high IBS (> 0.95%) and a too
high heterozygosity (FDR < 1%) were removed from the sample. In addi-
tion, markers with a low call rate (< 0.95%) and a low MAF (< 0.0064%)
were also discarded. A total of 96 individuals and 18439 SNPs were removed
from the study. A clean dataset containing 364 individuals and 277191 SNPs
was obtained for further analyses. This procedure was implemented in R
using the GenABEL package [16].

8.3.0.2 Phenotypic data imputation.

The phenotypic dataset was imputed in order to avoid missing data. The im-
putation was carried out with a bayesian PCA method (bPCA) [288]. This
technique applies PCA on incomplete data and uses it to impute missing
values. bPCA uses a Bayesian estimation method to calculate the likeli-
hood of imputed values. In particular, the methodology was applied using
3 principal components. This optimal number of principal components for
this dataset was determined by cross validation on the captured variance.
Two parameters were used for this, the NRMSEP (Normalized Root Mean
Square Error in Prediction) and the Q2. The NRMSEP normalizes the root
mean square standard deviation (RMSD) between the original data and
the imputed data using the variable-wise variance. In contrast, Q2 is the
cross-validated correlation parameter and can be interpreted as the ratio of
variance that can be predicted independently by the PCA model. Low Q2
values indicate that the PCA model only describes noise and that the model
is unrelated to the true data structure.
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Figure 8.1: NRMSEP and Q2 cross-validation parameters determining the
optimal number of components in bpca.

Figure 8.1 shows the NRMSEP and Q2 parameters for different numbers
of components. It is observed that the minimum value for the NRMSEP
error parameter and the maximum of Q2 parameter are both obtained with
3 components.

8.3.0.3 The phenotypes involved in the coagulation pathway

Among the collection of 80 phenotypes available for the GAIT sample, 32
phenotypes involved in the coagulation pathway were selected in order to
study their joint activity within this metabolic process. These phenotypes
were selected as they are defined in the literature [167]. Table 8.1 lists the
phenotypes included in multiphenotypic models defined in the next section.
In order to facilitate the biological interpretation of further results, each
phenotype has been associated to the particular pathway of coagulation it
belongs to, corresponding to the extrinsic pathway, or tissue factor path-
way, the intrinsic pathway, or contact activation pathway and the common
pathway of coagulation and the fibrinolysis pathway, as described in Figure
5.1.
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Table 8.1: Phenotypes involved in the coagulation pathway.

Pathway Phenotype

Extrinsic Factor VII (FVII)
Tissue Factor (TF) or Factor III (FIII)
Tissue factor Pathway Inhibitor (TFPI)

Intrinsic Factor XII (FXII)
Factor XI (FXI)
Factor IX (FIX)
Factor VIII (FVIII)
von Willebrand Factor (FvW)
Protein C (PC)
Protein S Total (PST)
Protein S Free(PSF)
Protein S Functional Total(PSFT)
Protein S Free Ratio (psfR)
Histidine-rich Glycoprotein (HRG)
Prekalikrein
P-selectin (PSEL)

Common Factor II (prothrombin) (FII)
Factor V (FV)
Factor X (FX)
Factor XIII (FXIII)
Factor XIII activated (FXIIIa)
Fibrinogen (FIB)
Antithrombin (AT)
Heparin Cofactor II (HC2)

Fibrinolysis Plasminogen
Plasminogen Activator Inhibitor (PAI)
Plasminogen Tissue Activator (TPA)
Urokinase-type plasminogen activator (u-PA)

8.3.1 Metaphenotype construction

8.3.1.1 An index of joint activity

As they respond in cascade in the coagulation pathway, the 32 phenotypes
selected for this study may show a common pattern of activity. Moreover it
is known that the genes coding for the different coagulation factors share a
joint ancestry, so that there may also exist some regulatory elements jointly
affecting them. In order to capture the information shared by the 32 coa-
gulation phenotypes, the concept of ”metaphenotype” is proposed.

A metaphenotype is defined as a synthetic phenotypic variable obtained
from a set of real phenotypes through a given mathematical model. This
new variable should be able to capture the structure of the original data
with the goal of describing them as a whole.

Here, several metaphenotypes were characterized to describe the several
phenotypes involved in the coagulation cascade. These variables aim to
capture the variability shared by the phenotypes belonging to the pathway.
In order to determine the pleiotropic effects of genetic variants on this set
of phenotypes, these variables are considered as new phenotypic unities.
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Identifying genetic variants related with these metaphenotypes may help to
ascertain the genetic bases of the complete metabolic process.

Two mathematical models were used for building the metaphenotypes,
Principal Component Analysis (PCA) and Independent Component Ana-
lysis (ICA). Both of them transform the original data in a new subspace,
generally of lower dimension. In both cases, the components correspond to
the new system of coordinates. In PCA, the components are obtained with
the criterion of maximizing the proportion of the phenotypic covariance.
On the other hand, in ICA, the components are obtained with a criterion
of maximizing the independence of their projections, in order to ensure that
the different components obtained are mutually independent in a complete
statistical sense [302]. PCA has been widely used in statistics for feature
extraction and more particularly it has already been used in the context
of the genetic analysis of multiphenotypic schemes [197]. In contrast, ICA
has been employed in a wide range of potential applications in telecommu-
nications or medical signal treatments but it is still not commonly used in
statistics and has not been applied in multiphenotypic problems.

8.3.1.2 Principal Component Analysis

The PCA methodology consists on using an orthogonal transformation to
convert a set of observations of possibly correlated variables (here the phe-
notypes of the coagulation pathway), into a set of values of uncorrelated
variables called principal components. Each principal component is a linear
combination of the original variables. In PCA, the criterion used for select-
ing the components is based on maximizing the covariance of the original
data captured by the components. The principal components correspond to
the basis vectors of the new system of orthogonal axes and their dimension-
ality is generally the same than the original data, even if the variance of the
original data is usually explained by the first few principal components.

The mathematical model underlying the metaphenotype obtention is
described as follows. LetX be the matrix of phenotypes, of sizeM×N where
M is the number of individuals and N the number of phenotypes involved
(here 32). Each measurement in this N -dimensional space is defined by a
point. The purpose of PCA is to introduce a new set of n orthogonal axes
(generally n ≤ N) in such a way that the projection of the original data
on the first principal axis shows the highest variance, the second highest
variance component is projected on the second principal axis, and so on, with
the remaining variance being shown along the remaining axes. These axes
are referred to as principal component axes or simply principal components.

The original phenotypes X may be expressed as a linear combination of
the principal components in the new axis system, as defined in equation 8.1.

X = T> · P> + ε (8.1)
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where T are the linear coefficients, also called scores, and P are the
weight of the phenotypes, also called loadings, and where ε denotes the
residual error.

The principal components are orthogonal to each other so they are un-
correlated and do not contain redundant information. They are obtained by
diagonalizing the covariance matrix of the original phenotypes. The eigen-
vectors are the loadings of the PCA, and they correspond to the direction
of the principal components. Each eigenvalue is proportional to the portion
of the variance captured by the corresponding component.

8.3.1.3 Independent Component Analysis

While the goal in PCA is to maximize the covariance of the data, the goal
of ICA is to minimize the statistical dependence between the basis vectors.
As for the PCA model, the original phenotypes X can be expressed as a
linear combination of the independent components as in equation 8.2.

X = AS + ε (8.2)

where A are the linear coefficients, or weights, and S are the independent
components and where ε denotes the residual error.
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Figure 8.2: Cumulative proportion of variance captured by the principal
components. Red lines represent two thresholds corresponding to 85% and
100% used for determining the suitable number of components to be used
in ICA.

Unlike PCA, the basis vectors in ICA are neither orthogonal nor ranked
in order. Also, there is not a closed form expression to find ωi that maximize
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the independence of the components xi. To do so, S are expressed as in
equation 8.3.

S = WX (8.3)

The independence of the components is guaranteed by finding W that
maximizes the nongaussianity of S. Measures of nongaussianity are com-
monly applied for ICA algorithms such as the kurtosis or the negentropy
[131]. Otherwise, other criteria exist such as a maximum likelihood crite-
rion or the minimization of the mutual information between components.
Among the several existing ICA algorithms, the fastICA procedure was
applied, using a particular approximation of the negentropy measure for
maximizing the nongaussianity. FastICA was selected due to its desirable
properties when compared with other existing ICA methods [131].

The employed fast ICA algorithm does not include any criterion for de-
termining how many components represent the dynamic structure of the
data. As other ICA implementations, it previously applies a PCA to the
data in order to ensure that the components are uncorrelated. Generally, the
number of components of ICA is determined by the number of components
in PCA. Since there is not a standard practice to determine this number of
components, two strategies were explored. On one hand, a cross-validation
approximation of the selection of the optimal number of components in PCA
was considered [141]. This strategy determined that the optimal number of
components was 15. On the other hand, a criterion based on the proportion
of variance captured by the principal components was established. Figure
8.2 shows the proportion of variance captured by the principal components
for the PCA applied to the original coagulation phenotypes. This criterion
selected 30 components since it is the value for which the cumulate pro-
portion of variaance achieves the 100% of the total variance. Thus, ICA
was applied twice, with 15 and 30 components respectively, as suggested by
these two criteria.

8.3.2 Genetic Analyses

The third part of the methodology consists in finding genetic association
between genetic variants and the new phenotypic variables defined by the
metaphenotypes.

A traditional GWAS design for familiar data was carried out [46]. This
methodology is an extension of the traditional test of association based on
linear regressions when individuals are correlated. It fits a simple variance-
components model to the data which provides a vector of fitted values of
the phenotype and an estimate of the variance-covariance matrix for each
family [17]. The polygenic mixed model defined in equation 8.4 was applied
for each metaphenotype with the age and gender covariables for testing
the association as they present a significant correlation with almost all the
metaphenotypes.
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Yi ∼ µ+
∑
j

βjcji +Gi + εi (8.4)

where Yi is the metaphenotype, µ is the overall mean, βj is the estimate
of the j-th covariate, cji is the j-th covariate, Gi is the random additive
polygenic effect (breeding value) which variance is defined as ΦσG where Φ is
the kinship matrix and σG is the additive genetic variance due to polygenes.
Finally εi are the residuals of the model.

GWAS were performed for each metaphenotype with GenABEL (v. 1.7-
3) in R.

8.4 Results and discussion

A total of 77 metaphenotypes were obtained with the different methods
described in section 8.3.1. 32 of them correspond to the 32 components
extracted from PCA. The remaining metaphenotypes correspond to the ap-
plication of the ICA algorithm with 15 and 30 components respectively. 12
of them presented significant results in association. These results are sum-
marized in table 8.2. Presented significance levels correspond to adjusted
p-values [16].

The results obtained for the 12 metaphenotypes presented in table 8.2
have been studied in more detail. The full results of the GWAS are plotted
in even-numbered Figures 8.3 to 8.25.

In order to graphically describe the metaphenotypes, the coagulation
cascade is plotted using a simple graph, where each coagulation pheno-
type is represented by a node whose color is determined proportionally
to its contribution to the corresponding metaphenotype. This contribu-
tion was measured by the loading values of the trait in the corresponding
model, representing the weight of the trait within the metaphenotype. Odd-
numbered Figures 8.4 to 8.26 show the graph of the coagulation cascade for
the metaphenotypes.

For both the 8-th and the 9-th components of the PCA model, SNP
rs9898 was found to be significantly associated with the metaphenotype, in-
dicating that it may be related with the entire coagulation process. rs9898
is located in the HRG, the functional gene of the Histidine Rich Glycopro-
tein, a protein involved in the coagulation pathway, and more specifically in
the intrinsic pathway of the coagulation. This SNP is reported to be related
with thrombosis [216, 123]. As observed in figures 8.4 and 8.6, in both cases
the HRG protein has a high weight in the corresponding metaphenotype. In
the case of the 8-th component, HRG has a low negative weight, whereas
for the 9-th the component, it has a high positive weight. This result was
expectable, since the obtained association signal may be majorly explained
by this specific phenotype.
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For the 10-th component, rs2731672, the only SNP located in the F12
showed a strong signal of association (p-value of 1.48×10−11). It is observed
in Figure 8.8 that the FXII protein has a dominant negative weight in this
metaphenotype. As before, this result was predictable.

For the 22-nd component, rs1553514, located in the CNTN5 gene was
significant. However this gene has no apparent relation with the coagulation
process.

For the 23-rd component of PCA, rs11057761 obtained a significant p-
value (2.14 × 10−07). This is an intergenic SNP between SCARB1 and
NCOR2 genes. SCARB1 corresponds to the Scavenger receptor class B,
member 1. It is a a plasma membrane receptor for high density lipopro-
tein cholesterol (HDL). The encoded protein mediates cholesterol transfer
to and from HDL. HDL reportedly functions as a cofactor to the anticoagu-
lant activated protein C (APC) in the degradation of factor V [229]. On the
other hand NCOR2 (nuclear receptor co-repressor 2) is a transcriptional
co-regulatory protein that serves as a repressive co-regulatory factor (co-
repressor) for multiple transcription factor pathways, such as the HDAC,
SIN, HNF4A and JUN transcription factor families. It is noteworthy that
HNF4A transcription factor has an important role in the transcription con-
trol of coagulation factors [133]. JUN also regulates several genes related
to the coagulation. Among them, the gene PLAU (Plasminogen activator)
has a direct relation with the coagulation cascade. In addition, JUN regu-
lates three interleukins (ILB1, IL2 and IL6 ), related with the coagulation as
markers of inflammation [293, 56] and five genes of the MMP family, related
with arteriosclerosis [310, 275].

In addition, looking at protein-protein interactions, JUN was found close
to the coagulation cascade, concretely at distance 2 from FV. The distance
JUN to the coagulation pathway was defined as the minimum distance from
the candidate gene to all genes in the pathway, where the distance between
two genes is the length of the shortest path from one gene to the other in the
PPI network. The gene that separates them is CSNK2A1, a protein kinase
that phosphorilates the FV, inducing FV inhibition from Protein C. AT the
same time, CSNK2A1 also phosphorilates JUN. Then, JUN and FV could
be competitors substrates of the CSNK2A1.

In order to illustrate the obtained results, Figure 8.29 shows the coagu-
lation pathway adapted from the KEGG database with the paths relating
the candidate genes with the coagulation cascade. Added paths were repre-
sented with a dashed line as they are only partially detailed.

For the ICA model built with 30 components, significant associations
were found for 5 components. For the 2-nd component, SNP rs17255413
obtained a p-value of 4.26×10−09. This SNP is located in the BOC gene (cell
adhesion molecule-related/down-regulated by oncogenes). It codes for a cell
surface receptor of the immunoglobulin/fibronectin type III repeat family
involved in myogenic differentiation. Despite the low MAF of the SNP
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(0.007), the BOC gene shows plausibility to be related with coagulation,
since cell adhesion molecules have much to do with the activation of the
coagulation process [168, 13]. For the 15-th component, rs6687825 and
rs6691481 located in the UBR4 gene were found to be associated with the
metaphenotype. The UBR4 (Ubiquitin Protein Ligase E3 Component N-
Recognin 4) is a component of the N-end rule pathway with apparently no
relation to the coagulation process. However, several miRNA were found in
this genomic region, with plausibility to be in LD with the SNP. MiRNA are
small non-coding RNA molecule that have transcriptional functions on some
specific target genes. In particular, one of these miRNAs, miRNA-4695,
targets the F8 gene expression. It is in concordance with Figure 8.16 where
it is observed that FVIII has an important weight in this metaphenotype.
Finally, for the 22-nd component, rs867186, located in the PROCR (Protein
C receptor), obtained a p-value of association of 1.12 × 10−08. This result
is in concordance with Figure 8.18, where it is observed that the protein C
has an important weight in this metaphenotype. Significant association of
SNPs in PROCR have been previously reported [14].

Four of the components obtained using an ICA model of 15 components
presented significant results in GWAS. For the 3-rd component, 4 SNPs
were found in the same region of chromosome 3 that have a strong evidence
of genetic association with the metaphenotype (p-value 9 × 10−18 for SNP
rs9898). As described for the 8-th component of PCA, this SNP belongs to
the HRG gene and is related to the coagulation and with thrombosis disease.
However, in this case the result is more surprising since, as observed in Figure
8.20, the HRG protein has a neutral weight in this metaphenotype.

In addition, for this metaphenotype, two SNPs belonging to the KNG1
gene (Kininogen-1)showed significant association. KNG1 has been pre-
viously reported as a genetic determinant related to the coagulation since
it plays an important role on both FXI and FXII activations [259]. Given
that these two proteins have not an important weight in this component,
the result is especially interesting suggesting that KNG1 could have a more
global effect on the coagulation cascade.

For the 4-th component, SNP rs17255413, located in the BOC gene
presents a significant score of association. This SNP was also found with
the 2-nd component of the ICA applied with 30 components.

For the 10-th component, where the FXII protein has an important
weight, the only SNP of the F12 is recovered in GWAS (p-value 1.05×10−14).

It is observed that two reported results are obtained using both PCA and
ICA with 15 components. In order to compare the results, the relationship
between both metaphenotypes was graphically represented in Figures 8.27
and 8.28. In both figures, the metaphenotypes obtained using both methods
are compared in terms of the weights and the scores of the models. The
loadings of the associated protein were plotted in red. Individual scores wee
differentiated in color by the genotype they carry at the obtained SNP.
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In both cases, the scores of both models show a moderate, yet significant
correlation (p-value 2× 10−16). However, in the case of the HRG, the load-
ings are not related, whereas for the F12, an evident correlation is observed
in Figure 8.28. In the former case, as previously commented, HRG has an
important contribution in the metaphenotype extracted with PCA, whereas
it does not have a particularly relevant weight in the metaphenotype ex-
tracted from ICA. This confirmed the validity of the proposed methodology,
showing its capacity to capture the propagating effect of the HRG in the
coagulation cascade.

Table 8.2: Significant SNPs obtained in GWAS for different metapheno-
types. For each metaphenotype, the SNPs with an adjusted p-value lower
than 1×10−06 are presented, jointly with their MAF and their chromosomic
region and the closest gene to the loci.

Method Component SNP Chromosome MAF Gene p-value

PCA

8 rs9898 3 0.35 HRG∗ 1.02× 10−07

9 rs9898 3 0.35 HRG∗ 4.26× 10−08

10 rs2731672 5 0.17 F12∗ 1.48× 10−11

22 rs1553514 11 0.25 CNTN5 4.21× 10−07

23 rs11057761 12 0.29 SCARB1, NCOR2 2.14× 10−07

ICA
30 components

2 rs17255413 3 0.007 BOC 7.6× 10−09

rs2037516 2 0.1 DSU 6.47× 10−07

15 rs6687825 1 0.12 UBR4 5.81× 10−07

rs6691481 1 0.17 UBR4 6.43× 10−07

rs4747989 10 0.07 CAMK1D 5.81× 10−07

22 rs867186 22 0.1 PROCR∗ 1.12× 10−08

rs3795149 20 0.02 C20orf135 3.28× 10−07

rs6062561 20 0.02 TPD52L2 3.37× 10−07

ICA
15 components

3 rs9898 3 0.35 HRG∗ 9× 10−18

rs3733159 3 0.34 FETUB 6.58× 10−09

rs1621816 3 0.24 KNG1∗ 4.96× 10−08

rs1403694 3 0.32 KNG1∗ 6.72× 10−07

4 rs17255413 3 0.007 BOC 2.62× 10−08

5 rs3113727 4 0.24 COL25A1 3.83× 10−07

10 rs2731672 5 0.17 F12∗ 1.05× 10−14

∗ Previously reported genes related to the coagulation pathway.
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Figure 8.3: GWAS for the 8-th component of the PCA model.

Figure 8.4: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 8-th component of
the PCA model.
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Figure 8.5: GWAS for the 9-th component of the PCA model.

Figure 8.6: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 9-th component of
the PCA model.
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Figure 8.7: GWAS for the 10-th component of the PCA model.

Figure 8.8: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 10-th component of
the PCA model.
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Figure 8.9: GWAS for the 22-nd component of the PCA model.

Figure 8.10: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 22-nd component of
the PCA model.
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Figure 8.11: GWAS for the 23-rd component of the PCA model.

Figure 8.12: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 23-rd component of
the PCA model.
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Figure 8.13: GWAS for the 2-nd component of the ICA model built with 30
components.

Figure 8.14: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 2-nd component of
the ICA model built with 30 components.
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Figure 8.15: GWAS for the 15-th component of the ICA model built with
30 components.

Figure 8.16: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 15-th component of
the ICA model built with 30 components.
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Figure 8.17: GWAS for the 22-nd component of the ICA model built with
30 components.

Figure 8.18: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 22-nd component of
the ICA model built with 30 components.
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Figure 8.19: GWAS for the 3-rd component of the ICA model built with 15
components.

Figure 8.20: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 3-rd component of
the ICA model built with 15 components.
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Figure 8.21: GWAS for the 4-th component of the ICA model built with 15
components.

Figure 8.22: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 4-th component of
the ICA model built with 15 components.
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Figure 8.23: GWAS for the 5-th component of the ICA model built with 15
components.

Figure 8.24: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 5-th component of
the ICA model built with 15 components.
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Figure 8.25: GWAS for the 10-th component of the ICA model built with
15 components.

Figure 8.26: Graphical representation of the contribution of each coagulation
phenotype on the metaphenotype corresponding to the 10-th component of
the ICA model built with 15 components.
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Figure 8.27: Relationship between the metaphenotypes corresponding to
the 8-th component of the PCA model and the 3-rd component of the ICA
model built with 15 components, related with the SNP rs9898 in the HRG
gene.
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Figure 8.28: Relationship between the metaphenotypes corresponding to the
10-th component of the PCA model and the 10-th component of the ICA
model built with 15 components, related to the SNP rs2731672 in the F12
gene.
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Figure 8.29: Graph relating the candidate genes to the coagulation cascade
[Adapted from Kegg [143]].

8.5 Concluding remarks

In this chapter, a novel methodological framework was proposed for the
simultaneous analysis of multiple intermediate phenotypes involved in com-
plex diseases. As a practical implementation, the methodology was applied
to the GAIT project dataset, with the aim of identifying genetic markers
involved in thrombosis.

The methodology consisted in building new canonical phenotypic varia-
bles, named metaphenotypes, that capture the joint activity of the inter-
mediate phenotypes involved in the coagulation pathway. Three different
mathematical models were built for the definition of the metaphenotypes.
First a PCA was carried out obtaining 32 metaphenotypes corresponding to
the components of the model. In addition, a novel methodology in this field,
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ICA, was applied. Two ICA were performed using 30 and 15 components
respectively, obtaining a total of 45 new metaphenotypes.

Among the 77 metaphenotypes, 12 presented significant results in GWAS.
The obtained results can be classified into two categories, those previously
reported and those conforming new plausible candidates to be related to the
coagulation process as a whole.

Most of the previously reported results correspond to metaphenotypes
in which one particular protein has a significant contribution in comparison
with the others. In these cases, as expected, the top hits from the GWAs
correspond to SNPs located in the genomic region of the main contributing
protein. For example, for two of the metaphenotypes with an important
contribution of the FXII, significant scores obtained in GWAS correspond
to the only SNP belonging to the F12 gene.

In contrast, for the metaphenotype corresponding to the 3-rd component
of the ICA applied with 15 components, 3 significant SNPs were found in
a region of the chromosome 3 containing the HRG and KNG1 genes. Both
genes have already been related to thrombosis. However, this particular
metaphenotype is not specifically oriented to the related coagulation pheno-
types, suggesting an unknown global effect of the gene on the coagulation
pathway as a whole.

On the other hand, a SNP from the intergenic region between NCOR2
and SCARB1 showed a significant association with the metaphenotype
corresponding to the 23-rd component of the PCA. NCOR2 is a co-regulatory
gene that regulates several families of transcription factors. Among them
two transcription factors were detected to be specifically related to the coa-
gulation cascade (coded by genes HNF4A and JUN ). Thus, NCOR2 seems
to be a possible candidate to have a global regulatory function on the coa-
gulation pathway has a whole. It has been proposed to biologists for further
functional analyses.

The novelty of this work lies in addressing the genetic analysis of throm-
bosis and of the coagulation phenotypes from a multidimensional perspec-
tive, defining new indexes of joint activity of this metabolic process. Using
this approach we were able to retrieve already known associations but also
to propose new candidates with evidence to have a global regulatory effect
on the multiple coagulation phenotypes.
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Chapter 9

Conclusions

This chapter aims to summarize the issues addressed in this dissertation
and the contributions that were made towards their solution. This thesis re-
search is focused on the genetic study of complex diseases and in particular
on genetic association studies, with the goal of studying statistical asso-
ciations between genetic polymorphisms and phenotypes or disease states
leading to the identification of potential genetic risk factors. The original
goal of this thesis was to develop nonlinear methods for carrying out genetic
association studies for complex diseases. In section 9.1 we enumerate the
original contributions proposed in this direction and in section 9.2 we sketch
some future directions to improve this work.

9.1 Original Contributions

• A critical review on genetic association methods was performed. This
survey revealed that the methods used for genetic association studies
are mainly linear. This motivated the goal of addressing the genetic
association problem through nonlinear methods. In this direction, a
review on information-theoretic measures and their application to ge-
netic research was also carried out, indicating that mutual information
would be an appropriate measure for genetic association.

• An exploratory study was carried out to explore the properties of the
sequence variability of the SNPs related to disease. A statistical ana-
lysis comparing the SNP sequence variability between SNPs related
to disease and neutral SNPs at different genetic regions was carried
out. The results showed that for most of the regions, SNPs related to
disease tend to be less variable across species than neutral SNPs. This
observation was in concordance with previous results showing that
functional genetic regions tend to be more conserved across species
than nonfunctional regions.
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• A nonlinear test for one-locus genetic association was designed and
characterized, based on the mutual information as a measure of asso-
ciation. Three different estimations for the mutual information mea-
sures were considered. The statistical significance of an association was
determined with the design of a statistical test based on a null distri-
bution of mutual information. The proposed association test took into
account the genetic stratification of the population. This novel me-
thodology was compared with the standard procedure in genetic asso-
ciation based on linear regressions. The obtained results were neutral,
showing that the proposed nonlinear methodology is able to recover the
results obtained with standard linear models. The proposed metho-
dology is sensible to false-positive findings in a similar manner than
traditional techniques, obtaining performances of the same order of
magnitude in terms of classification.

• The methodology employed in the one-locus test was applied in a
multi-loci association study. In this case a novel multi-solution floating
feature selection algorithm was proposed for the search of multi-loci
interactions related with a given phenotype. The mutual information-
based association test was defined as the relevance criterion of the al-
gorithm. With a comparison purpose, the feature selection algorithm
was applied with the traditional genetic association measure based on
linear regressions. Both strategies were compared to MECPM, an ex-
isting multi-loci association algorithm. This study was performed with
the SNPs of the F7 gene. The results obtained using this methodology
were consistent with the information found in in the literature in seve-
ral functional analysis on the F7 gene. Moreover, the results obtained
improved the results from traditional methods found in the literature.
An important result was to find combinations of SNPs significantly
associated with the phenotype, while individually they did not show a
statistically significant association. Although the proposed nonlinear
test obtained neutral results at a one-locus scale, it obtained positive
and relevant results for detecting multi-loci interactions.

• The set of routines developed for the multi-loci genetic association
procedure were integrated in an R package called MISS (Mutual In-
formation Statistical Significance), which is available at http://www.
sisbio.recerca.upc.edu/R/MISS_0.2.tar.gz.

• A novel methodological framework was proposed for addressing the
genetic analysis of complex diseases from a multidimensional point of
view. The methodology consisted in building new phenotypic varia-
bles, named metaphenotypes, from a set of phenotypes involved in a
given biological process or disease. As a practical implementation, the
methodology study was applied to the phenotypes of the coagulation

http://www.sisbio.recerca.upc.edu/R/MISS_0.2.tar.gz
http://www.sisbio.recerca.upc.edu/R/MISS_0.2.tar.gz
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pathway for the GAIT project data. 77 metaphenotypes were obtained
corresponding to the application of one PCA and two ICA with 15 and
30 components respectively. Among them only 12 obtained significant
results in genetic association. Some of the results corresponded to al-
ready known associations but new candidates were also proposed as
master regulatory genes witha global effect on the coagulation process
as a whole.

9.2 Future extensions

This section aims to analyze the principal limitations of the research per-
formed in this thesis and to propose future research directions.

In this work, a nonlinear genetic association test was proposed. The first
characterization of this test showed that it is able to compete with other ge-
netic association tests, even if some optimizations could be necessary to
improve its performance. Genetic association tests, and in particular the
proposed method have some difficulties to detect rare variants. In order
to improve the performance of the proposed methodology in these cases, it
could be interesting to apply parametric measures of information theory that
may be more sensible to low MAFs such as the Renyi divergence measures.
Moreover, another limitation of one-locus genetic association studies and in
particular of the proposed nonlinear test is the false positive findings. We
also propose as a future extension of this work the application of prioritiza-
tion criteria for complementing the results found with the association test.
These criteria may help to determine the genetic variants really related to
the phenotype. We propose to incorporate protein-protein interaction net-
works in order to prioritize the genes that are related with a given biological
process. It would also be interesting to expand the exploratory study on the
cross-species sequence variability and to establish a prioritization criterion
based on the premise that relevant SNPs may be less variable across species
than neutral SNPs.

A floating feature selection algorithm was proposed in this thesis for
multi-loci genetic association studies. This algorithm was applied with two
different criteria, the standard linear regression-based association criterion
and a nonlinear criterion based on the mutual information measure, as
for the one-locus association test. Both experiments were compared with
MECPM, a methodology for multi-loci association based on entropy maxi-
mization and using a greedy search procedure. In order to extend this study,
it would be interesting to apply both the linear and nonlinear relevance cri-
teria within other feature selection algorithms, that would be suboptimal
but faster. As for the one-locus test, the characterization of the analytical
expression for the mutual information null distribution would considerably
optimize the performance of this methodology.
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Regarding the methodology proposed in chapter 8, for the genetic study
of multiphenotypic schemes, the main extensions we propose lies in the
definition of the metaphenotypes. On one hand, in the present study the
metaphenotypes were defined with all the phenotypes involved in the coagu-
lation pathway. As a future extension of this work we propose to define the
metaphenotypes looking at reduced sets of original phenotypes of the coagu-
lation or also of other related processes. The second extension concerns the
methodology used for building the metaphenotype. In this work, the novel
ICA methodology was applied with two number of components selected ac-
cording to two different criteria. We propose as future work to establish a
unique and robust criterion for the selection of the number of components
in ICA in order to protocolize this novel methodological framework.



Appendix A

The GAW17 dataset
simulation model

The following tables explain the simulation model for the phenotypes of the
GAW17 dataset, showing the genes and SNPs influencing each phenotype.
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Table A.1: Genes and SNPs with effects on Q1.

Gene SNP MAF

ARNT C1S6533 0.0115
ARNT C1S6537 0.0007
ARNT C1S6540 0.0014
ARNT C1S6542 0.0022
ARNT C1S6561 0.0007

ELAVL4 C1S3181 0.0007
ELAVL4 C1S3181 0.0007

FLT1 C13S320 0.0014
FLT1 C13S399 0.0007
FLT1 C13S431 0.0172
FLT1 C13S479 0.0007
FLT1 C13S505 0.0007
FLT1 C13S514 0.0007
FLT1 C13S522 0.028
FLT1 C13S523 0.0667
FLT1 C13S524 0.0043
FLT1 C13S547 0.0007
FLT1 C13S567 0.0007
FLT4 C5S5133 0.0014
FLT4 C5S5156 0.0007

HIF1A C14S1718 0.0007
HIF1A C14S1729 0.0022
HIF1A C14S1734 0.0122
HIF1A C14S1736 0.0007
HIF3A C19S4799 0.0007
HIF3A C19S4815 0.0007
HIF3A C19S4831 0.0007
KDR C4S1861 0.0022
KDR C4S1873 0.0007
KDR C4S1874 0.0007
KDR C4S1877 0.0007
KDR C4S1878 0.165
KDR C4S1879 0.0007
KDR C4S1884 0.021
KDR C4S1887 0.0007
KDR C4S1889 0.0007
KDR C4S1890 0.0022

VEGFA C6S2981 0.0022
VEGFC C4S4935 0.0007
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Table A.2: Genes and SNPs with effects on Q2.

Gene SNP MAF

BCHE C3S4834 0.0007
BCHE C3S4836 0.0007
BCHE C3S4856 0.0007
BCHE C3S4859 0.0022
BCHE C3S4860 0.0007
BCHE C3S4862 0.0007
BCHE C3S4867 0.0007
BCHE C3S4869 0.0007
BCHE C3S4873 0.0029
BCHE C3S4874 0.0007
BCHE C3S4875 0.0007
BCHE C3S4886 0.0007
BCHE C3S4880 0.0014
GCKR C2S354 0.0122
INSIG1 C7S5132 0.0007
INSIG1 C7S5133 0.0007
INSIG1 C7S5144 0.0007

LPL C8S442 0.0158
LPL C8S476 0.0007
LPL C8S530 0.0014

PDGFD C11S5292 0.0086
PDGFD C11S5299 0.0007
PDGFD C11S5301 0.0007
PDGFD C11S5302 0.0014
PLAT C8S1741 0.0036
PLAT C8S1742 0.0007
PLAT C8S1758 0.0014
PLAT C8S1770 0.0007
PLAT C8S1772 0.0014
PLAT C8S1773 0.0014
PLAT C8S1799 0.0057
PLAT C8S1811 0.0014
RABR C3S635 0.0007
RABR C3S679 0.005
SIRT1 C10S3048 0.0022
SIRT1 C10S3050 0.0022
SIRT1 C10S3058 0.0007
SIRT1 C10S3092 0.0007
SIRT1 C10S3093 0.0007
SIRT1 C10S3107 0.0007
SIRT1 C10S3108 0.0007
SIRT1 C10S3109 0.0007
SIRT1 C10S3110 0.0022

SREBF1 C17S1007 0.0022
SREBF1 C17S1009 0.0007
SREBF1 C17S1024 0.0043
SREBF1 C17S1030 0.0007
SREBF1 C17S1043 0.0043
SREBF1 C17S1045 0.0036
SREBF1 C17S1046 0.0029
SREBF1 C17S1048 0.0014
SREBF1 C17S1055 0.0014
SREBF1 C17S1056 0.0007
VLDLR C9S367 0.0007
VLDLR C9S376 0.0029
VLDLR C9S377 0.0014
VLDLR C9S391 0.0007
VLDLR C9S430 0.0007
VLDLR C9S443 0.0014
VLDLR C9S444 0.0014
VLDLR C9S497 0.0007
VNN1 C6S5378 0.0057
VNN1 C6S5380 0.1707
VNN3 C6S5412 0.0007
VNN3 C6S5426 0.033
VNN3 C6S5439 0.0007
VNN3 C6S5441 0.0983
VNN3 C6S5446 0.0007
VNN3 C6S5448 0.0007
VNN3 C6S5449 0.0104
VWF C12S181 0.0007
VWF C12S211 0.0057
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Table A.3: Genes and SNPs with effects on disease liability.

Gene SNP MAF

AKT3 C1S11396 0.0007
BCL2L11 C2S2286 0.0007
BCL2L11 C2S2288 0.0029
BCL2L11 C2S2307 0.0007
ELAVL4 C1S3181 0.0007
ELAVL4 C1S3182 0.0007

HSP90AA1 C14S3630 0.0007
HSP90AA1 C14S3695 0.0007
HSP90AA1 C14S3704 0.0036
HSP90AA1 C14S3706 0.2583

NRAS C1S5748 0.0007
PIK3C2B C1S9164 0.0014
PIK3C2B C1S9165 0.0007
PIK3C2B C1S9172 0.0043
PIK3C2B C1S9173 0.0014
PIK3C2B C1S9174 0.0007
PIK3C2B C1S9189 0.0065
PIK3C2B C1S9200 0.0007
PIK3C2B C1S9222 0.0007
PIK3C2B C1S9250 0.0014
PIK3C2B C1S9266 0.0029
PIK3C2B C1S9267 0.0022
PIK3C2B C1S9306 0.0007
PIK3C2B C1S9320 0.0007
PIK3C2B C1S9333 0.0007
PIK3C2B C1S9346 0.0007
PIK3C2B C1S9373 0.0007
PIK3C2B C1S9391 0.0007
PIK3C2B C1S9423 0.0007
PIK3C2B C1S9432 0.0108
PIK3C2B C1S9445 0.0007
PIK3C2B C1S9446 0.0007
PIK3C2B C1S9449 0.0007
PIK3C2B C1S9455 0.0029
PIK3C2B C1S9457 0.0007
PIK3C3 C18S2475 0.0007
PIK3C3 C18S2492 0.0172
PIK3R3 C1S2919 0.0007
PRKCA C17S4578 0.1664
PRKCA C17S4581 0.0007
PRKCB1 C16S1894 0.0007

PTK2 C8S4825 0.0007
PTK2 C8S4839 0.0007

PTK2B C8S886 0.0007
PTK2B C8S900 0.0014
PTK2B C8S909 0.0014
RRAS C19S4929 0.0014
RRAS C19S4997 0.0014
SHC1 C1S7061 0.0065
SOS2 C14S1381 0.0007
SOS2 C14S1382 0.0036
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SNP Sets Selection under Mutual Information Criterion, Application
to F7/FVII Dataset. 30th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBS), (2008).

• H. Brunel, A. Perera, A. Buil Demur, M. Sabater-Lleal, J.C. Souto,
J. Fontcuberta, M. Vallverdu, J.M. Soria and P. Caminal. Floating
Feature Selection for multiloci association of quantitative traits in sib-
pairs analysis. 8th IEEE International Conference on BioInformatics
and BioEngineering (BIBE), (2008).

• H. Brunel, A. Perera, A. Buil, M. Sabater-Lleal, J.C. Souto, J. Fontcu-
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P. Caminal and A. Perera. MISS: a non-linear methodology based on
mutual information for genetic association studies in both population
and sib-pairs analysis. Bioinformatics, 26(15):1811-1818, (2010).

• H.Brunel, R. Massanet, A. Martinez, J.M. Soria and A. Perera. Metafenoti-
pos: una herrramienta para estudios de asociación genética en contex-
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