28 research outputs found

    Sistema baseado em técnicas de compressão para o reconhecimento de dígitos manuscritos

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesO reconhecimento de dígitos manuscritos é uma habilidade humana adquirida. Com pouco esforço, um humano pode reconhecer adequadamente em milissegundos uma sequência de dígitos manuscritos. Com o auxílio de um computador, esta tarefa de reconhecimento pode ser facilmente automatizada, melhorando um número significativo de processos. A separação do correio postal, a verificação de cheques bancários e operações que têm como entrada de dados dígitos manuscritos estão incluídas num amplo conjunto de aplicações que podem ser realizadas de forma mais eficaz e automatizada. Nos últimos anos, várias técnicas e métodos foram propostos para automatizar o mecanismo de reconhecimento de dígitos manuscritos. No entanto, para resolver esta desafiante questão de reconhecimento de imagem são utilizadas técnicas complexas e computacionalmente muito exigentes de machine learning, como é o caso do deep learning. Nesta dissertação é introduzida uma nova solução para o problema do reconhecimento de dígitos manuscritos, usando métricas de similaridade entre imagens de dígitos. As métricas de similaridade são calculadas com base na compressão de dados, nomeadamente pelo uso de Modelos de Contexto Finito.The Recognition of Handwritten Digits is a human-acquired ability. With little e ort, a human can properly recognize, in milliseconds, a sequence of handwritten digits. With the help of a computer, the task of handwriting recognition can be easily automated, improving and making a signi cant number of processes faster. The postal mail sorting, bank check veri cation and handwritten digit data entry operations are in a wide group of applications that can be performed in a more e ective and automated way. In the recent past years, a number of techniques and methods have been proposed to automate the handwritten digit recognition mechanism. However, to solve this challenging question of image recognition, there are used complex and computationally demanding machine learning techniques, as it is the case of deep learning. In this dissertation is introduced a novel solution to the problem of handwritten digit recognition, using metrics of similarity between digit images. The metrics are computed based on data compression, namely by the use of Finite Context Models

    Sistema de gestão de energia baseado em AI/ML para comunidades de energia renovável

    Get PDF
    The need for a reorganization of the energy market, with the goal of reducing the energy consumption from non-renewable sources, led to the creation of Renewable Energy Communities, which allow their members to share their produced and stored energy among themselves. The present work proposes a study of a management system of this community, using AI/ML techniques for the energy consumption forecast. It is predicted that, with the use of these techniques, the management system will be able to decrease the electricity bill of the community, or the reduction of energy consumption from the distri-bution grid.A necessidade de reorganização do mercado de energia, com o objetivo de re-duzir o consumo de energia de fontes não renováveis, levou à criação de Co-munidades de Energia Renovável, que permitem que os seus membros parti-lhem a sua energia produzida e armazenada entre si. O presente trabalho pro-põe um estudo sobre um sistema de gestão desta comunidade, usando técnicas de AI/ML para a previsão do consumo de eletricidade. Prevê-se que, com a uti-lização destas técnicas, o sistema de gestão conseguirá diminuir o preço da fatura de eletricidade da comunidade, ou a redução do consumo de energia pro-veniente da rede de distribuição.Mestrado em Engenharia Informátic

    On the predictability of U.S. stock market using machine learning and deep learning techniques

    Get PDF
    Conventional market theories are considered to be inconsistent approach in modern financial analysis. This thesis focuses mainly on the application of sophisticated machine learning and deep learning techniques in stock market statistical predictability and economic significance over the benchmark conventional efficient market hypothesis and econometric models. Five chapters and three publishable papers were proposed altogether, and each chapter is developed to solve specific identifiable problem(s). Chapter one gives the general introduction of the thesis. It presents the statement of the research problems identified in the relevant literature, the objective of the study and the significance of the study. Chapter two applies a plethora of machine learning techniques to forecast the direction of the U.S. stock market. The notable sophisticated techniques such as regularization, discriminant analysis, classification trees, Bayesian and neural networks were employed. The empirical findings revealed that the discriminant analysis classifiers, classification trees, Bayesian classifiers and penalized binary probit models demonstrate significant outperformance over the binary probit models both statistically and economically, proving significant alternatives to portfolio managers. Chapter three focuses mainly on the application of regression training (RT) techniques to forecast the U.S. equity premium. The RT models demonstrate significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. Chapter four investigates the statistical predictive power and economic significance of financial stock market data by deep learning techniques. Chapter five give the summary, conclusion and present area(s) of further research. The techniques are proven to be robust both statistically and economically when forecasting the equity premium out-of-sample using recursive window method. Overall, the deep learning techniques produced the best result in this thesis. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk

    Doctor of Philosophy

    Get PDF
    dissertationNeuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. However, the extremely anisotropic resolution of the data makes segmentation and tracking across slices difficult. Furthermore, the thickness of the slices can make the membranes of the neurons hard to identify. Similarly, structures can change significantly from one section to the next due to slice thickness which makes tracking difficult. This thesis presents a complete method for segmenting many neurons at once in two-dimensional (2D) electron microscopy images and reconstructing and visualizing them in three-dimensions (3D). First, we present an advanced method for identifying neuron membranes in 2D, necessary for whole neuron segmentation, using a machine learning approach. The method described uses a series of artificial neural networks (ANNs) in a framework combined with a feature vector that is composed of image and context; intensities sampled over a stencil neighborhood. Several ANNs are applied in series allowing each ANN to use the classification context; provided by the previous network to improve detection accuracy. To improve the membrane detection, we use information from a nonlinear alignment of sequential learned membrane images in a final ANN that improves membrane detection in each section. The final output, the detected membranes, are used to obtain 2D segmentations of all the neurons in an image. We also present a method that constructs 3D neuron representations by formulating the problem of finding paths through sets of sections as an optimal path computation, which applies a cost function to the identification of a cell from one section to the next and solves this optimization problem using Dijkstras algorithm. This basic formulation accounts for variability or inconsistencies between sections and prioritizes cells based on the evidence of their connectivity. Finally, we present a tool that combines these techniques with a visual user interface that enables users to quickly segment whole neurons in large volumes

    A study on the prediction of flight delays of a private aviation airline

    Get PDF
    The delay is a crucial performance indicator of any transportation system, and flight delays cause financial and economic consequences to passengers and airlines. Hence, recognizing them through prediction may improve marketing decisions. The goal is to use machine learning techniques to predict an aviation challenge: flight delay above 15 minutes on departure of a private airline. Business and data understanding of this particular segment of aviation are revised against literature revision, and data preparation, modelling and evaluation are addressed to lead towards a model that may contribute as support for decision-making in a private aviation environment. The results show us which algorithms performed better and what variables contribute the most for the model, thereafter delay on departure.O atraso de voo é um indicador fulcral em toda a indútria de transporte aéreo e esses atrasos têm consequências económicas e financeiras para passageiros e companhias aéras. Reconhecê- los através de predição poderá melhorar decisões estratégicas e operacionais. O objectivo é utilizar técnicas de aprendizagem de máquina (machine learning) para prever um eterno desafio da aviação: atraso de voo à partida, utilizando dados de uma companhia aérea privada. O conhecimento do contexto do negócio e dos dados adquiridos, num segmento singular da aviação, são revistos à luz das literatura vigente e a preparação dos dados, a modelização e respectiva avaliação são conduzidos de modo a contribuir para uma ferramenta de apoio à decisão no contexto da aviação privada. Os resultados obtidos revelam quais dos algoritmos utilizados demonstra uma melhor performance e quais as variáveis dos dados obtidos que mais contribuem para o modelo e consequentemente para o atraso à partida

    INTEGRATING KANO MODEL WITH DATA MINING TECHNIQUES TO ENHANCE CUSTOMER SATISFACTION

    Get PDF
    The business world is becoming more competitive from time to time; therefore, businesses are forced to improve their strategies in every single aspect. So, determining the elements that contribute to the clients\u27 contentment is one of the critical needs of businesses to develop successful products in the market. The Kano model is one of the models that help determine which features must be included in a product or service to improve customer satisfaction. The model focuses on highlighting the most relevant attributes of a product or service along with customers’ estimation of how these attributes can be used to predict satisfaction with specific services or products. This research aims at developing a method to integrate the Kano model and data mining approaches to select relevant attributes that drive customer satisfaction, with a specific focus on higher education. The significant contribution of this research is to improve the quality of United Arab Emirates University academic support and development services provided to their students by solving the problem of selecting features that are not methodically correlated to customer satisfaction, which could reduce the risk of investing in features that could ultimately be irrelevant to enhancing customer satisfaction. Questionnaire data were collected from 646 students from United Arab Emirates University. The experiment suggests that Extreme Gradient Boosting Regression can produce the best results for this kind of problem. Based on the integration of the Kano model and the feature selection method, the number of features used to predict customer satisfaction is minimized to four features. It was found that either Chi-Square or Analysis of Variance (ANOVA) features selection model’s integration with the Kano model giving higher values of Pearson correlation coefficient and R2. Moreover, the prediction was made using union features between the Kano model\u27s most important features and the most frequent features among 8 clusters. It shows high-performance results

    Methods to Improve the Prediction Accuracy and Performance of Ensemble Models

    Get PDF
    The application of ensemble predictive models has been an important research area in predicting medical diagnostics, engineering diagnostics, and other related smart devices and related technologies. Most of the current predictive models are complex and not reliable despite numerous efforts in the past by the research community. The performance accuracy of the predictive models have not always been realised due to many factors such as complexity and class imbalance. Therefore there is a need to improve the predictive accuracy of current ensemble models and to enhance their applications and reliability and non-visual predictive tools. The research work presented in this thesis has adopted a pragmatic phased approach to propose and develop new ensemble models using multiple methods and validated the methods through rigorous testing and implementation in different phases. The first phase comprises of empirical investigations on standalone and ensemble algorithms that were carried out to ascertain their performance effects on complexity and simplicity of the classifiers. The second phase comprises of an improved ensemble model based on the integration of Extended Kalman Filter (EKF), Radial Basis Function Network (RBFN) and AdaBoost algorithms. The third phase comprises of an extended model based on early stop concepts, AdaBoost algorithm, and statistical performance of the training samples to minimize overfitting performance of the proposed model. The fourth phase comprises of an enhanced analytical multivariate logistic regression predictive model developed to minimize the complexity and improve prediction accuracy of logistic regression model. To facilitate the practical application of the proposed models; an ensemble non-invasive analytical tool is proposed and developed. The tool links the gap between theoretical concepts and practical application of theories to predict breast cancer survivability. The empirical findings suggested that: (1) increasing the complexity and topology of algorithms does not necessarily lead to a better algorithmic performance, (2) boosting by resampling performs slightly better than boosting by reweighting, (3) the prediction accuracy of the proposed ensemble EKF-RBFN-AdaBoost model performed better than several established ensemble models, (4) the proposed early stopped model converges faster and minimizes overfitting better compare with other models, (5) the proposed multivariate logistic regression concept minimizes the complexity models (6) the performance of the proposed analytical non-invasive tool performed comparatively better than many of the benchmark analytical tools used in predicting breast cancers and diabetics ailments. The research contributions to ensemble practice are: (1) the integration and development of EKF, RBFN and AdaBoost algorithms as an ensemble model, (2) the development and validation of ensemble model based on early stop concepts, AdaBoost, and statistical concepts of the training samples, (3) the development and validation of predictive logistic regression model based on breast cancer, and (4) the development and validation of a non-invasive breast cancer analytic tools based on the proposed and developed predictive models in this thesis. To validate prediction accuracy of ensemble models, in this thesis the proposed models were applied in modelling breast cancer survivability and diabetics’ diagnostic tasks. In comparison with other established models the simulation results of the models showed improved predictive accuracy. The research outlines the benefits of the proposed models, whilst proposes new directions for future work that could further extend and improve the proposed models discussed in this thesis

    Razvoj metod strojnega učenja za identifikacijo kozmičnih delcev ekstremnih energij ter njihova implementacija pri iskanju fotonov ekstremnih energij s površinskimi detektorji Observatorija Pierre Auger

    Get PDF
    Despite their discovery already more than a century ago, Cosmic Rays (CRs) still did not divulge all their properties yet. Theories about the origin of ultra-high energy (UHE, > 10^18 eV) CRs predict accompanying primary photons. The existence of UHE photons can be investigated with the world’s largest ground-based experiment for detection of CR-induced extensive air showers (EAS), the Pierre Auger Observatory, which offers an unprecedented exposure to rare UHE cosmic particles. The discovery of photons in the UHE regime would open a new observational window to the Universe, improve our understanding of the origin of CRs, and potentially uncloak new physics beyond the standard model. The novelty of the presented work is the development of a "real-time" photon candidate event stream to a global network of observatories, the Astrophysical Multimessenger Observatory Network (AMON). The stream classifies CR events observed by the Auger surface detector (SD) array as regards their probability to be photon nominees, by feeding to advanced machine learning (ML) methods observational air shower parameters of individual CR events combined in a multivariate analysis (MVA). The described straightforward classification procedure further increases the Pierre Auger Observatory’s endeavour to contribute to the global effort of multi-messenger (MM) studies of the highest energy astrophysical phenomena, by supplying AMON partner observatories the possibility to follow-up detected UHE events, live or in their archival data

    Evolutionary design of deep neural networks

    Get PDF
    Mención Internacional en el título de doctorFor three decades, neuroevolution has applied evolutionary computation to the optimization of the topology of artificial neural networks, with most works focusing on very simple architectures. However, times have changed, and nowadays convolutional neural networks are the industry and academia standard for solving a variety of problems, many of which remained unsolved before the discovery of this kind of networks. Convolutional neural networks involve complex topologies, and the manual design of these topologies for solving a problem at hand is expensive and inefficient. In this thesis, our aim is to use neuroevolution in order to evolve the architecture of convolutional neural networks. To do so, we have decided to try two different techniques: genetic algorithms and grammatical evolution. We have implemented a niching scheme for preserving the genetic diversity, in order to ease the construction of ensembles of neural networks. These techniques have been validated against the MNIST database for handwritten digit recognition, achieving a test error rate of 0.28%, and the OPPORTUNITY data set for human activity recognition, attaining an F1 score of 0.9275. Both results have proven very competitive when compared with the state of the art. Also, in all cases, ensembles have proven to perform better than individual models. Later, the topologies learned for MNIST were tested on EMNIST, a database recently introduced in 2017, which includes more samples and a set of letters for character recognition. Results have shown that the topologies optimized for MNIST perform well on EMNIST, proving that architectures can be reused across domains with similar characteristics. In summary, neuroevolution is an effective approach for automatically designing topologies for convolutional neural networks. However, it still remains as an unexplored field due to hardware limitations. Current advances, however, should constitute the fuel that empowers the emergence of this field, and further research should start as of today.This Ph.D. dissertation has been partially supported by the Spanish Ministry of Education, Culture and Sports under FPU fellowship with identifier FPU13/03917. This research stay has been partially co-funded by the Spanish Ministry of Education, Culture and Sports under FPU short stay grant with identifier EST15/00260.Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: María Araceli Sanchís de Miguel.- Secretario: Francisco Javier Segovia Pérez.- Vocal: Simon Luca

    Machine Learning Methods Applied to the Prediction of Pseudo-nitzschia spp. Blooms in the Galician Rias Baixas (NW Spain)

    Get PDF
    This work presents new prediction models based on recent developments in machine learning methods, such as Random Forest (RF) and AdaBoost, and compares them with more classical approaches, i.e., support vector machines (SVMs) and neural networks (NNs). The models predict Pseudo-nitzschia spp. blooms in the Galician Rias Baixas. This work builds on a previous study by the authors (doi.org/10.1016/j.pocean.2014.03.003) but uses an extended database (from 2002 to 2012) and new algorithms. Our results show that RF and AdaBoost provide better prediction results compared to SVMs and NNs, as they show improved performance metrics and a better balance between sensitivity and specificity. Classical machine learning approaches show higher sensitivities, but at a cost of lower specificity and higher percentages of false alarms (lower precision). These results seem to indicate a greater adaptation of new algorithms (RF and AdaBoost) to unbalanced datasets. Our models could be operationally implemented to establish a short-term prediction system
    corecore