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Abstract

Conventional market theories are considered to be inconsistent approach in mod-

ern financial analysis. This thesis focuses mainly on the application of sophisti-

cated machine learning and deep learning techniques in stock market statistical

predictability and economic significance over the benchmark conventional efficient

market hypothesis and econometric models. Five chapters and three publishable

papers were proposed altogether, and each chapter is developed to solve specific

identifiable problem(s).

Chapter one gives the general introduction of the thesis. It presents the state-

ment of the research problems identified in the relevant literature, the objective

of the study and the significance of the study. Chapter two applies a plethora

of machine learning techniques to forecast the direction of the U.S. stock mar-

ket. The notable sophisticated techniques such as regularization, discriminant

analysis, classification trees, Bayesian and neural networks were employed. The

empirical findings revealed that the discriminant analysis classifiers, classification

trees, Bayesian classifiers and penalized binary probit models demonstrate signif-

icant outperformance over the binary probit models both statistically and eco-

nomically, proving significant alternatives to portfolio managers. Chapter three

focuses mainly on the application of regression training (RT) techniques to fore-

cast the U.S. equity premium. The RT models demonstrate significant evidence of

equity premium predictability both statistically and economically relative to the

benchmark historical average, delivering significant utility gains. Chapter four

investigates the statistical predictive power and economic significance of financial

stock market data by deep learning techniques. Chapter five give the summary,
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conclusion and present area(s) of further research.

The techniques are proven to be robust both statistically and economically

when forecasting the equity premium out-of-sample using recursive window method.

Overall, the deep learning techniques produced the best result in this thesis. They

seek to provide meaningful economic information on mean-variance portfolio in-

vestment for investors who are timing the market to earn future gains at minimal

risk.
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Chapter 1

Introduction

A notable quest in modern financial literature is the search for more suitable mod-

els that can explicitly model and forecast financial time series data with utmost

precision to guarantee investors future expectation at extremely low volatility. In

this case, the researchers are expected to present models that can significantly

outperformed the conventional financial modelling and forecasting approach. A

number of statistical and econometric models have been applied by various schol-

ars over the years. Although the empirical findings in most situations are proven

to outperformed the conventional approaches but are generally considered to be

weak as compared to a rule of thumb (i.e., at least 50%) especially in sign forecast-

ing and market dynamics (Leitch and Tanner, 1991; Christoffersen and Diebold,

2006; Anatolyev and Gospodinov, 2010; Pönkä, 2016), and hence, the need for

further research in this field of study. The empirical findings in Nyberg (2011,

2013) demonstrates the effectiveness of static and dynamic statistical models in fi-

nancial time series analysis but the resulting predictive power of the models seems

to be weak and required further statistical and economic performance evaluation

measures to affirm the stability in finance. The classification and level estimation

techniques in Leung et al. (2000) greatly provides evidence of useful predictabil-

ity over the conventional financial methodologies known as the benchmark buy

and hold (B&H) trading strategy, with the discriminant classifier emerging as the

superior model in this perspective. The quest for a superior model to forecast

13



equity risk premium out-of-sample comparative to the benchmark historical av-

erage with convincing statistical and economic performance evaluation measures

to a mean-variance portfolio investor, is another crucial debatable research issue

in modern finance (Goyal and Welch, 2003; Campbell and Thompson, 2005, 2007;

Rapach et al., 2007; Neely et al., 2014; Baetje and Menkhoff, 2016; Bai, 2010; Li

and Tsiakas, 2017). Although the statistical and econometric models used in the

afore-mentioned studies demonstrate feasibility and evidence of both statistically

and economically significant predictability but further investigation is required to

authenticate the fate of investors timing the market to maximize profit at minimal

risk.

The earnest expectation of the stock market outcome to mean-variance in-

vestors above the treasury bill rate led to the quest for a meaningful estimate of

excess stock return or equity premium (Campbell, 2008). The equity premium is

the difference between the expected return on the market portfolio (SP500) and

the risk free interest rate. Thus, investors can expect this return from holding

the market portfolio in excess of the return on the 3-month Treasury bills. It is

considered to be the most crucial concept in finance, owing to portfolio alloca-

tion decisions and cost of capital estimates. It is worth noting that the backbone

of investment strategies depends on the ability to predict future returns but the

predictability itself does not necessarily guarantee the investor’s profit from the

trading strategy based on the resulting forecasts (Campbell and Thompson, 2005;

Bai, 2010). An academic debating question in modern review of financial studies

is that: can any other model accurately forecast the equity premium better than

the forecasts from the historical average? Goyal and Welch (2007) have argued

that no other variable beats a simple forecast based on the historical average, and

concluded that the in-sample correlations conceal a systematic failure of the finan-

cial and economic variables out-of-sample. Contrary to this empirical analysis, the

results in Rapach et al. (2007) reveals that despite the failure of the individual

model forecasts to outperform the historical mean forecasts, the combination of

14



the individual model forecasts yield statistically and economically significant gains,

relative to the historical mean, consistently over time. Although some of the in-

dicators used as predictors appeared to be good statistically significant predic-

tors of the equity premium in-sample at some specific horizons but are relatively

poor in the out-of-sample forecasting ability. Fama and French (2002) verified

that the estimates from economic fundamentals especially in the dividend growth

model, appeared to produce lower standard errors resulting to corresponding bet-

ter precision than the estimates from the benchmark historical average model.

The combination approach in Neely et al. (2014) confirmed that both technical

indicators and macroeconomic variables displayed statistically and economically

significant evidence of in-sample and out-of-sample forecasting ability, with the

technical indicators seemingly outperforming the macroeconomic variables. The

empirical analysis suggests that the combination of both technical indicators and

macroeconomic variables will significantly improve the equity risk premium fore-

casts rather than using a single set of the predictor variables alone. However,

the findings require further investigation for either corroboration or refutation.

Following this argument, Baetje and Menkhoff (2016) demonstrated that the pre-

dictive abilities of both indicators seem to possess similar quality when assessed

by their respective long term forecast errors. Unlike the economic indicators that

loses predictive ability on a long run, the technical indicators maintain or increase

stability over time, and hence, the technical indicators consistently outperformed

the economic indicators over time. The application of forecasts combination in

Rapach et al. (2010) confirmed that combination of forecasts yields statistically

and economically significant out-of-sample gains consistently on a long run, com-

pared to the benchmark historical average. Therefore, the forecasts combination

approach in Rapach et al. (2010) appeared to maintain a long run statistical and

economic stability.

However, evaluating the mean squared errors (MSEs) and Sharpe ratios (SRs)

alone, do not provide adequate evidence to justify the superiority of a specific

15



model over other competitive models. Some existing papers focused mainly on

evaluating the model prediction errors, expected returns on portfolio investment

and the corresponding Sharpe ratio. In addition to these parametric measures, Ny-

berg (2011) included the Diebold-Mariano (DM) statistical tests and the Pesaran-

Timmermann (PT) directional predictability tests only in the in-sample case, but

do not investigate the DM among the models in the out-of-sample case. The

benchmark used in the study was the expected return on a portfolio investment

held on a risk-free interest rate, based on the buy and hold trading strategy. Goyal

and Welch (2003), Campbell and Thompson (2005) were mainly concerned with

examining the predictive ability of individual predictor variables relative to the

benchmark historical average, using the out-of-sample statistical goodness of fit

tests and the SRs, whereas Campbell and Thompson (2007); Campbell (2008),

Goyal and Welch (2007) and Rapach et al. (2010) added an important concept

known as the utility gain, which serves as an additional benchmark for comparing

the economic performance of a model to a portfolio investor with a portfolio held

on the risk-free Treasury bill. However, some important concepts such as cumu-

lative returns among others were not included in their studies. It is imperative to

explore adequate statistical predictive and economic significance tests especially in

the out-of-sample forecasting models, to determine superiority among the resulting

models used in the study.

In modern research, the use of machine learning and deep learning techniques

is drawing rapid attention in financial time series analysis. Machine learning is the

study of sophisticated algorithms and mathematical models existing between input

features and target output or to learn and recognize patterns in order to improve

the performance on a specific task typically by computer systems. In this case, the

algorithm builds a model from sample training data and use the resulting model

to make predictions without being explicitly programmed to perform the specific

task. The feasibility of some machine learning techniques in finance (Kumar and

Thenmozhi, 2006; Chen, 2011; Huang and Wu, 2008; Ince and Trafalis, 2007;

16



Pahwa et al., 2017; Patel et al., 2015) with desirable predictive performance had

led to the introduction of more sophisticated learning technique known as deep

learning which have the ability to extract features from a large raw dataset without

relying on prior knowledge of predictors. Day and Lee (2016) described deep

learning as deep neural network, which is a more sophisticated aspect of machine

learning. It is a form of machine learning technique that involved the use of

data to train a model or recognize pattern(s) or label instances in order to make

predictions from new data in a more sophisticated manner (Heaton et al., 2017).

Machine learning and deep learning techniques are shown in empirical literature to

be useful techniques to learn data, recognize patterns such as speech recognition,

and to classify instances such as digital image classification. They appeared to

be useful modern research techniques for analysis in computer science, biology,

medicine, linguistics, physics, statistics, economics and finance.

It is worth noting that the machine learning algorithms/models introduced in

financial and econometric literature do not provide adequate statistical predictive

and economic significant measuring tools for comparing their performances with

the conventional efficient market hypothesis and econometric models. Suffice it

to say that the justification of a predictive model in terms of superiority over the

conventional models in finance depends on both statistical and economic perfor-

mance measures. The findings in Kumar and Thenmozhi (2006), Chen (2011)

and Chen and Hao (2017) are promising, but do not provide adequate statistical

and economic measures to demonstrate the superiority of machine learning tech-

niques over the benchmark approaches in finance. Yoshihara et al. (2014) shows

that recurrent deep neural networks appeared to be more effective approach over

support vector machines (SVM) and deep belief networks when predicting the

trend of stock market, especially when the process is focused on specific period

after a known significant event in financial domain. The analysis provides a con-

troversial superiority of recurrent neural networks over the deep belief network in

this direction. The empirical findings in (Zhao et al., 2017) shows the superior-
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ity of deep learning ensemble with stacked denoising autoencoders for modelling

and forecasting crude oil prices over the bootstrap aggregation and other ma-

chine learning techniques used in the literature. The empirical results in Hu et al.

(2018), Feuerriegel and Fehrer (2016), Heaton et al. (2016) also confirmed that the

application of deep learning techniques in financial analysis seek to outperformed

both the standard methods in finance and the conventional machine learning tech-

niques. Armano et al. (2005) introduced a hybrid genetic-neural architecture to

forecast stock indexes with consideration of realistic trading commission, and ap-

peared to be promising in the selected application task. The empirical findings

also demonstrate evidence of superior outperformance over the benchmark buy

and hold strategy for a large test sample size. Contrary to these analyses, is the

empirical results in Krauss et al. (2017) in which a random forest outperformed

some notable deep learning techniques. It was shown that the random forest out-

performed both deep neural networks (DNN) and gradient boosted trees in the

investigation of statistical arbitrage on SP500, and concluded that a further inves-

tigation by hyper-parameter optimization for the deep neural networks is required

as an area of future research work.

The statement of the problem lies on the provision of superior technique that

can significantly outperform the existing conventional econometric models and to

fill the identifiable research gaps in the existing literature. The objective of this

study is to explore the sophisticated machine learning and deep learning techniques

to model financial stock market data in order to make predictions and evaluate

their performances with robustness, and to demonstrate superior outperformance

of these proposed methodologies in the thesis over the benchmark approaches used

in the existing literature. The study aimed to introduce additional statistical and

economic performance evaluation measures that can authenticate the long-run

effectiveness and consistency of the proposed models in relation to optimistic in-

vestment approach for yielding future gains. Therefore the outcome of this study

shall provide significant statistical and economic information to stock market in-
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vestors and portfolio managers on the need for optimal portfolio assessment with

a view to maximize profit at minimal risk when timing the market. It shall also

fill the identifiable research gaps, enrich empirical literature and present area of

further research to future researchers on the subject matter.
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Chapter 2

Directional Predictability of U.S.

Stock Market Using Machine

Learning Techniques

2.1 Introduction

Stock market participants aim at maximising returns on portfolio investments at

minimal risk. Consequently, forecasting stock market returns has received con-

siderable attention in recent years. The majority of papers have focused on the

forecast accuracy of competing models and examined if there is evidence of pre-

dictability, which can lead to economic gains. However, devising successful trading

strategies is contingent on the directional accuracy of the underlying models. The

literature on directional predictability is sparse, and the empirical findings offer

limited support. For example, the findings in (Chevapatrakul, 2013; Christoffersen

and Diebold, 2006; Nyberg and Pönkä, 2016) provide weak evidence of directional

stock market predictability. Although the predictive power of the models em-

ployed so far are shown to be weak in statistical terms, they seem to provide

economic value. Thus, the emphatic challenge lies in the development of a suit-

able directional predictive model involving the relevant financial and economic

variables.
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The application of some benchmark econometric models used in previous find-

ings are shown to be weak in terms of predictive performance. The introduction of

recursive and alternative rolling windows out-of-sample estimation and forecasting

techniques used by Nyberg (2008, 2011), Pönkä (2016) provide statistically sig-

nificant evidence of the directional predictability of stock market returns, but the

predictive power of the models are shown to be relatively weak, and hence, there

is a need to introduce sophisticated machine learning techniques, as proposed in

this study to improve the predictive task of the models.

This chapter focuses on the application of sophisticated machine learning tech-

niques on binary probit and classification models to forecast the direction of the

U.S. excess stock market returns. The machine learning techniques employed in-

clude classification and regression trees (CART), such as Bagging, Boosting and

Discriminant Analysis classifiers, Bayesian classifiers, Neural Networks and reg-

ularization techniques, such as Ridge, Least Absolute Shrinkage and Selection

Operator (LASSO), and Elastic Net. To compare our findings with the previous

literature, we also include four variants of the benchmark binary probit models,

namely, the static, stepwise static, dynamic and stepwise dynamic models. The

application of CART forecasting models aims to explore all covariates as ensem-

bles to learn the data, train the classification model, recognize patterns, classify

instances and to forecast future binary outcomes. With respect to penalised binary

probit models, it is important to note that the presence of shrinkage penalty vec-

tor norms could result to a bias in coefficient estimates, reduction in the forecast

errors and improvement in predictive performance via the so-called bias-variance

trade off. Thus, the proposal of CART and penalized predictive models in this

chapter aims at yielding superior statistical predictive performance and economic

significance compared to the benchmark econometric models typically employed

in the literature to date.

21



2.2 Literature Review

A notable quest in modern financial econometric literature is the application of

suitable techniques to predict the sign of stock market returns. A review of rele-

vant empirical literature has revealed that the use of econometric models for the

directional predictability of excess stock returns are known to produce weak pre-

dictive power, poor statistical goodness of fit and low predictive accuracies, among

others; see (Pesaran and Timmermann, 1995; Nyberg, 2011; Leung et al., 2000;

Chevapatrakul, 2013; Leitch and Tanner, 1991; Pönkä, 2016), even though the

empirical results seems to provide economic significance.

The previous findings on directional predictability by Anatolyev and Gospodi-

nov (2010), and Hong and Chung (2003) have employed a logistic regression model

to predict the sign of U.S. stock market returns using relevant financial vari-

ables as the key predictors, and their results provide evidence of predictability,

but the overall predictive power is relatively weak, compared to a rule of thumb

(i.e., at least 50%). In an attempt to determine market timing and asset allo-

cation decisions between stocks and risk-free assets, some researchers considered

the role of conditional mean and volatility while predicting the sign of asset re-

turns. Christoffersen and Diebold (2006) have opined that the direction of asset

returns is predictable, as volatility dependence produces sign dependence, so long

as expected returns are nonzero. This notion seems to be true, as other existing

papers have also provided significant statistical evidence of the sign predictability

of the U.S. stock market returns and economic recession status by application of

static, dynamic, autodynamic and error correction models, both in-sample and

out-of-sample (Nyberg, 2011; Kauppi and Saikkonen, 2008; Nyberg and Pönkä,

2016; Nyberg, 2013).

The static and dynamic probit models proposed by Nyberg (2011) to predict

the direction of monthly U.S. excess stock returns recursively appears to have out-

performed the autoregressive moving average with exogenous inputs models (AR-

MAX), vector autoregressive-generalized autoregressive conditional heteroskedas-
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ticity (VAR-GARCH) models, etc. used by previous researchers. The idea was

based on the approach used by Kauppi and Saikkonen (2008), Estrella and Mishkin

(1998) to obtain U.S. economic recession forecasts using variables such as the U.S.

term spread and lagged stock returns, among others.

However, according to the Nyberg (2011) paper, the Estrella’s statistical good-

ness of fit values in the various probit models are very low in all cases. The positive

values of the Sharpe ratios signified that investors are likely to have positive re-

turns on portfolio investments. The percentage of correct matches as a statistical

performance evaluation measure in the existing papers are relatively low, hence

the need to employ more advanced sophisticated models that can yield a better

degree of accuracy with the smallest prediction error.

The underlying challenges associated with the use of financial and economic

variables to predict stock market returns has prompted researchers to introduce

sophisticated statistical or machine learning algorithms to improve the predic-

tive task and the overall performance of the resulting models under consideration.

It is noticeable from the empirical literature that machine learning techniques,

which include Random Forest, Linear Discriminant Analysis (LDA), k-Nearest

Neighbour, Tree-based Classification, Recursive Partitioning, Bagging and Boost-

ing, Logistic Regression, Support Vector Machine (SVM), Ridge Regression, Least

Absolute Shrinkage and Selection Operator (LASSO), Least Angle Regression and

Elastic Nets, are useful for the analysis of financial econometric time series (Roy

et al., 2015; Sermpinis et al., 2017; Li and Chen, 2014; Inoue and Kilian, 2008;

Zhou et al., 2015; Hsu et al., 2008; Park and Sakaori, 2013; Chen, 2016; Stock and

Watson, 2012; Lin and McClean, 2001; Kim and Swanson, 2014; Hajek et al., 2014;

Shen et al., 2014; Pahwa et al., 2017; Swanson and White, 1997). Khaidem et al.

(2016) used the Random Forest method to predict the direction of stock market

prices. The algorithm appears to be robust in predicting the future direction of

the stock market movement, thus minimizing the risk of investment in the stock

market with good predictive accuracy.
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The ridge regression introduced by Hoerl and Kennard (1970), and the least ab-

solute shrinkage and selection operator (LASSO) introduced by Tibshirani (1996)

are found to be useful statistical or machine learning techniques for econometric

models. The ridge regression reduces multicollinearity and minimizes the model

prediction error but does not perform feature selection; the LASSO shrinks the

model coefficients towards zero and performs feature selection and model inter-

pretability. The aim is to introduce bias in the model coefficient estimates and

minimize the prediction error.

The empirical analysis in Inoue and Kilian (2008) revealed that bagging has

large reductions in prediction mean square errors (PMSEs) in inflation forecast-

ing. Kim and Swanson (2014) suggest that the model averaging does not dominate

other well designed prediction model specification methods, and that the use of

hybrid combination factor and shrinkage methods produced the best predictions

as compared to principal components, bagging, boosting, least angle regression,

among others. On the other hand, the empirical results from Zhou et al. (2015)

showed no statistically significant difference between the best classification perfor-

mance of the models with yearly feature selection guided by data mining techniques

and the one involving domain knowledge; hence, their predictive accuracies seems

to be the same.

The use of the LASSO linear regression model for stock market forecasting

in Roy et al. (2015) using monthly data revealed that the LASSO method yield

sparse solutions and performs extremely well when the number of features is less

than the number of observations, and that the LASSO linear regression model

outperforms the ridge linear regression model. Modelling the market implied rat-

ings using LASSO variable selection techniques in Sermpinis et al. (2017) and

forecasting macroeconomic time series using LASSO-based approaches and their

forecast combinations with dynamic factor models in Li and Chen (2014) all reflect

statistical evidence of the superior predictive power of LASSO.

The outperformance of the aforementioned statistical learning algorithmic tech-
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niques over the benchmark econometric and statistical modelling techniques has

prompted modern researchers to proceed into a more advanced concept, i.e., the

deep learning techniques based on artificial intelligence, which encompasses sup-

port vector machines (SVM) and neural networks (NNET). However, the con-

trasting arguments of various scholars on the predictive performance by SVM

and NNET as compared to the previous literature has placed this notion pending

for further statistical investigation. The application of artificial neural networks

(ANN) in forecasting financial markets and stock prices in Shahpazov et al. (2014)

demonstrated the outperformance of the NNET over previous techniques used in

the existing literature. Again, the findings in de Oliveira et al. (2013) also revealed

that the application of artificial neural networks yielded the minimum mean square

prediction error (MSE) and correct direction rates. Controversially, the analytical

results by Moreno and Olmeda (2007) show that the ANN do not provide evi-

dence of superior performance over the conventional linear models. The findings

in Ding et al. (2013), applying the concept for daily data and market sentiment,

shows the outperformance of SVM over NNET and logistic regression. The SVM

seems to be the most accurate machine learning model for predicting stock market

movement, but the statistical tests do not provide significant statistical evidence

of better performance over NNET and logistic regression. Patel et al. (2015) con-

firmed the outperformance of Random Forest over ANN, SVM and the genetic

algorithm (GA) for input data with continuous values. Ballings et al. (2015) also

presented random forest as the top machine learning algorithm over others and

recommended the inclusion of ensembles in algorithmic sets when predicting the

direction of stock market prices. The findings in Zheng (2006) demonstrated the

superiority of boosting and bagging of NNET over SVM and logistic regression

when forecasting the daily directional movements of stocks.

It is obvious, based on the reviewed existing empirical literature, that machine

learning techniques played an enormous role in financial econometric time series.

Thus, the application of the proposed sophisticated machine learning recursive
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out-of-sample forecasting models for the directional predictability of the U.S. stock

market returns in this paper aimed to yield significant results and outperform the

benchmark econometric models and aimed to enrich the empirical literature for

further relevant scholarly research work.

2.3 Research Methodology

This section gives a detailed theoretical approach to excess stock return modelling

as a binary time series, the static and dynamic binary probit forecasting models;

the application of machine learning techniques which include the Ridge, LASSO

and Elastic Net probit models; the classification and regression trees (CART); fol-

lowed by the forecasting/predictive model performance evaluation for easy com-

parison.

2.3.1 Equity Premium Direction Modelling as a Binary

Time Series

Let Rt be the monthly U.S. excess stock market return over the risk-free interest

rate denoted by rft, and let Ist denote the binary-valued dependent variable. The

sign of the monthly equity premium is modelled as the return sign binary indicator,

as follows:

Ist =


1, if Rt > 0 i.e., positive excess stock market return

0, if Rt ≤ 0 i.e., negative or zero excess stock market return.

(2.1)

Rt is calculated as follows:

Rt = ln
( Pt
Pt−1

)
− rft−1 (2.2)

where Pt is the price of the stock index at period t and rft−1 is the risk-free

interest rate at period t− 1 (Pesaran, 2015; Leung et al., 2000). The distribution
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of the return sign binary indicator Ist conditional on <t−1 follows Bernoulli with

probability pt, as follows:

Ist |<t−1 ∼ Bernoulli(pt),

where <t−1 is the information set of the covariates.

2.3.2 The Static and Dynamic Binary Probit Models

Christoffersen and Diebold (2006) showed that if Rt is distributed as follows:

Rt|<t−1 ∼ N(µ, σ2
t|t−1)

and displays no conditional mean dependence and conditional variance depen-

dence, then there exists a link between the volatility dynamics and the sign

dynamics. The conditional probability of a positive excess stock market return

Probt−1(Rt > 0) is as follows:

Probt−1(Rt > 0) = 1− Γ
( −µ
σt|t−1

)
= Γ

( µ

σt|t−1

)

where Γ(.) is the N(0, 1) cumulative distribution function, and the forecast hori-

zon used is equal to 1. The sign of equity premium is predictable if the conditional

probability of positive equity premium Probt−1(Rt > 0) > 0.5 for a threshold of

0.5, varies with the information set <t−1, which invariably implies a direction of

change in the forecastability or predictability of the equity premium (Chevapa-

trakul, 2013).

Given the conditional expectation Et−1, conditional on the information set

<t−1. The conditional probability of a positive equity premium sign employing
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the binary probit indicator Ist = 1 is as follows:

pt = Et−1(Ist ) = Probt−1(Ist = 1) = Probt−1(Rt > 0) = Γ(Ψt)

where Γ(.) is a standard normal cumulative distribution function.

The static and dynamic binary probit models can be obtained from this direction,

using the fact that the autocorrelation between any two successive numerical values

of the equity premium is statistically negligible.

Thus, the static binary probit forecasting model is defined as follows:

Ψt+1(β) = α + Z′tβ (2.3)

where α is the model intercept;

Zt is k-dimensional covariate vector of predictors of equity premium;

β is k×1 vector of unknown coefficients (Nyberg, 2011; Nyberg and Pönkä, 2016).

Using the uncorrelated assumption Cor.(Ist+1, I
s
t ) = 0, the historical value

of the equity premium sign indicator Ist is included in the static binary probit

forecasting model, which results to the dynamic binary probit forecasting model.

Thus, the dynamic binary probit forecasting model is

Ψt+1(β) = α +

p∑
i=1

ηiI
s
t + Z′tβ (2.4)

where α is the model intercept;

η is an unknown coefficient of the lagged equity premium sign indicator;

Zt is k-dimensional covariate vector of the predictors of equity premium;

β is k × 1 vector of unknown coefficients;

p is the lag order of the equity premium sign indicator (Kauppi and Saikkonen,

2008).

Thus, the benchmark forecasts from the static binary probit model are based
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on the link function:

Prob(Ist+1 = 1|<t) = Γ(α + Z′tβ) (2.5)

and the benchmark forecasts from the dynamic binary probit model are based on

the link function:

Prob(Ist+1 = 1|<t) = Γ(α +

p∑
i=1

ηiI
s
t + Z′tβ) (2.6)

where p ≥ 1 is the lag order (Kauppi and Saikkonen, 2008).

2.3.2.1 Stepwise Variable Selection using Akaike Information Crite-

rion

The stepwise variable selection is a step-by-step selection technique which seeks to

screen the predictive variables of a specific model by an automatic iterative pro-

cedure. It involves a screening process in that in each step, a predictor variable

is considered for inclusion or elimination from the set of predictor variables based

on the significant status determined by an information criterion. In this study,

the bidirectional (forward-and-backward) stepwise approach with the Akaike in-

formation criterion (StepAIC) was used for further investigation of the static and

dynamic binary probit models.

2.3.2.2 Likelihood Estimation of Binary Probit Model Parameters

The parameters of the binary probit models defined in (2.3) and (2.4) can be

estimated by maximum likelihood method. Given the function:

Prob(Ist+1 = 1|<t) = Γ(Ψt+1(β)) (2.7)
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The likelihood function of β is defined as follows:

L(β) =
∏

(Ist+1=1)

Γ
(

Ψt+1(β)
) ∏

(Ist+1=0)

(
1− Γ

(
Ψt+1(β)

))
(2.8)

The log-likelihood function is defined as follows:

lnL(β) =
∑

(Ist+1=1)

Γ
(

Ψt+1(β)
)

+
∑

(Ist+1=0)

(
1− Γ

(
Ψt+1(β)

))
(2.9)

Thus, the maximum likelihood estimator (MLE) of β is obtained as follows:

β̂ML = arg max
β

 ∑
(Ist+1=1)

Γ
(

Ψt+1(β)
)

+
∑

(Ist+1=0)

(
1− Γ

(
Ψt+1(β)

))

where Γ(.) is the standard normal cumulative distribution function (Estrella and

Mishkin, 1998; Pesaran, 2015; Kedem and Fokianos, 2005)

2.3.3 The Penalized Binary Probit Models for Stock Re-

turn Predictability

This section examined the penalized likelihood binary probit models employing

the relevant Ridge, LASSO and Elastic Net structures. The inclusion of a penalty

vector norm in the log-likelihood function of the ordinary binary probit model

results in the penalized binary probit model. It is worth noting that in the penal-

ized likelihood binary probit models, the coefficient estimates are shrunk towards

zero. The regularized biased coefficients are known to have significantly reduced

variances, that could result in smaller forecasting errors.
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2.3.3.1 The Ridge Binary Probit Model

The ridge binary probit model aims to reduce multicollinearity and minimize the

prediction error of the model and is based on the ridge regression introduced

by Hoerl and Kennard (1970). Given the log-likelihood function of the ordinary

binary probit model (2.9), the ridge log-likelihood probit function introduces a

penalty on the `2-norm of β:

lnL(βλ) =
∑

(Ist+1=1)

Γ
(

Ψt+1(β)
)

+
∑

(Ist+1=0)

(
1−Γ

(
Ψt+1(β)

))
−λ

k∑
j=1

β2
j = lnL(β)−λ ‖β ‖2

2

(2.11)

where lnL(β) is the unrestricted log-likelihood function of the probit model; ‖β ‖2
2 =√∑k

j=1β
2
j is the `2-vector norm of β; λ > 0 is the ridge tuning parameter which

controls the amount of regularization of the norm of β.

Thus, the maximum likelihood estimator of the ridge binary probit model is given

by the following:

β̂λRMLE = arg max
β

 ∑
(Ist+1=1)

Γ
(

Ψt+1(β)
)

+
∑

(Ist+1=0)

(
1− Γ

(
Ψt+1(β)

))
− λ

k∑
j=1

β2
j



where β̂λ is the maximizer of the ordinary probit model.

2.3.3.2 The LASSO Binary Probit Model

The Least Absolute Shrinkage and Selection Operator (LASSO) introduced by

Tibshirani (1996) as a shrinkage and selection technique for linear regression mod-

els is extended to binary probit models. The proposed LASSO binary probit model

aims to shrink the probit model coefficients toward zero, yielding bias parameter

estimates, resulting in the model interpretability and identification of the covari-

ates most strongly associated with the equity premium direction.

To obtain the LASSO coefficient β̂λLMLE, the maximization of the log-likelihood
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function of the ordinary binary probit model (2.9) will include a shrinkage penalty

on `1-norm of β. The introduction of the constraint into the probit model is ex-

pressed by incorporating a shrinkage penalty to the log-likelihood of the model.

Thus, the constraint maximization for the log-likelihood becomes:

lnL(βλ) =
∑

(Ist+1=1)

Γ
(

Ψt+1(β)
)

+
∑

(Ist+1=0)

(
1−Γ

(
Ψt+1(β)

))
−λ

k∑
j=1

|βj| = lnL(β)−λ ‖β ‖1

(2.12)

where lnL(β) is the unrestricted log-likelihood function of the probit model; ‖β ‖1 =√∑k
j=1|βj| is the `1-vector norm of β; λ > 0 is the LASSO tuning parameter,

which controls the amount of shrinkage (regularization) of the norm of β.

The vector β̂λLMLE, that maximizes lnL(βλ) is the LASSO binary probit estimator

of β, hence, the LASSO binary probit model coefficient estimates are obtained by

β̂λLMLE = arg max
β

 ∑
(Ist+1=1)

Γ
(

Ψt+1(β)
)

+
∑

(Ist+1=0)

(
1− Γ

(
Ψt+1(β)

))
− λ

k∑
j=1

|βj|



where β̂λ is the maximizer of the ordinary probit model.

2.3.3.3 The Elastic Net Binary Probit Model

The elastic net (EN) is a regularized technique that linearly combines the `1 and

`2 penalties of the LASSO and Ridge. The elastic net probit coefficient estimates

β̂λ,αEMLE are obtained by maximizing the log-likelihood function, which penalized

the size of the model coefficients based on both the `1-vector norm and `2-vector

norm of β, defined by the following:

lnL(βλ,α) =
∑

(Ist+1=1)

Γ
(

Ψt+1(β)
)

+
∑

(Ist+1=0)

(
1−Γ

(
Ψt+1(β)

))
−λ
(

(1−α)
k∑
j=1

β2
j

2
+α

k∑
j=1

|βj|
)

(2.13)
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Thus, the parameter estimates of the elastic net binary probit model will be given

by the following:

β̂λ,αEMLE=

arg max
β

 ∑
(Ist+1=1)

Γ
(

Ψt+1(β)
)

+
∑

(Ist+1=0)

(
1− Γ

(
Ψt+h(β)

))
− λ
(

(1− α)
k∑
j=1

β2
j

2
+ α

k∑
j=1

|βj|
)

where λ and α are the elastic net tuning parameters (Zou and Hastie, 2005). In

this study, the penalty factor α = 0.5 was employed, which results to an elastic

net probit model.

To choose the tuning parameters λ, λ1, λ2 in Ridge, LASSO and Elastic Net,

we need a validation set in which the predictive value of the specific penalized bi-

nary probit model could be compared for various values of the tuning parameter,

and the optimal tuning parameter should be chosen such that the error rate is

minimal. In this study, the best tuning parameter employing cross-validation was

chosen for each model.

2.3.4 Classification and Regression Trees for Stock Return

Predictability

The concept of classification and regression trees (CART) was first introduced by

Breiman et al. (1984), which involves the use of decision tree learning procedures

to build a model that can predict the value of a target variable based on several

input variables. There are many classification algorithms, including decision trees,

rule-based learners, exemplar learners, discriminant functions, neural networks

and Bayesian networks, that are considered to be useful in modern forecasting.

There are also ways of combining them into ensemble classifiers, such as bagging,

boosting, and random forest. The consistent CART models in this study are as

33



follows:

2.3.4.1 Bagging

Bagging or bootstrap aggregating was introduced in 1994 by Breiman (1996) to

improve classification by combining classifications of randomly generated training

datasets, to reduce the biases and variances in a tree-based analysis. Bagging im-

plies fitting a model, including all potential points on the original training set. It

appears to effectively remove the instability of a decision rule by averaging across

resamples and to avoid overfitting (Zheng, 2006).

Let S = {(Z1, y1), (Z2, y2), ..., (Zt, yt), ..., (ZT , yT )} denote the training sample,

where T is the number of observations in the training sample, Zt is a vector

of k covariates, and yt ∈ {−1, 1} indicates a positive or negative return for each t.

The classification into one of the two groups is defined as follows:

Ψ̂(Z) = sign
(
δ̂(Zt)− τB

)
, Ψ̂(Z) ∈ {−1, 1}

where τB is the threshold (cut-off value); δ̂(Zt) is the base classifier that learned

the covariates in the training sample; δ̂(Zt) > τB implies a positive return classi-

fication, while δ̂(Zt) < τB implies a negative return classification (Lemmens and

Croux, 2006).

The decision tree classification score is given by the following:

δ̂(Z) = 2ρ̂(Z)− 1

where ρ̂(Z) is the predicted probability of a positive return estimated by the tree.

For each bootstrap sample S∗b , b = 1, 2, ..., B, a classifier can be estimated assigning

B score functions δ̂∗1(Z), δ̂∗2(Z), ..., δ̂∗b (Z), ..., δ̂∗B(Z).

These functions are afterwards aggregated into a score, as follows:

δ̂bag(Z) =
1

B

B∑
b=1

δ̂b(Z)
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Thus, the final classification is obtained as follows:

Ψ̂bag(Z) = sign
(
δ̂bag(Z)− τB

)
, Ψ̂(Z) ∈ {−1, 1} (2.14)

2.3.4.2 Random Forest

A random forest (RF) classifier, see Breiman (2001), is a specific type of boot-

strap aggregating based on a random subset of the input features (Ballings et al.,

2015; Kumar and Thenmozhi, 2006; Creamer, 2009). A random forest classifier

consists of an ensemble classification algorithm that involves the use of trees as

base classifiers. It consists of a combination of classifiers in which each classifier

contributes an individual vote for assigning the most frequent class to the input

vector Z, defined by the following:

ˆδBRF = majority vote
{
δ̂b(Z)

}B
b=1

(2.15)

where δ̂b(Z) is the class prediction of the bth random forest tree; Z is the input

vector; b = 1, 2, ..., B.

The Gini index approach suggested by Breiman et al. (1984) is a suitable measure

for selecting the best splits which determines the impurity of a given element with

respect to the classes, and hence, it is employed for selecting the best split at each

node.

Given a training dataset S, involving a set of covariates and categorical target

outcome, the Gini index can be computed as follows:

I(τ) =
∑
i

∑
j 6=i

h(δi,S)

|S)|
h(δj,S))

|S)|
(2.16)

where
h(δi,S))

|S)|
is the probability that a selected instance belongs to class δi;

h(δj,S))

|S)|
is the probability that a selected instance belongs to class δj; for i 6=

j (Rodriguez-Galiano et al., 2012). Thus the random forest seek to produce a

measure of proximity between each pair of instances in the classification tree.
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Alternatively, for a given node τ with estimated class probabilities Prob(j|τ), j =

1, ..., J , the node impurity, I(τ), employing the Gini index is defined as follows:

I(τ) =
J∑
j 6=i

Prob(j|τ)Prob(i|τ). (2.17)

The Gini index is minimised when the node is pure (homogeneous) with respect

to one of the classes.

2.3.4.3 Conditional Inference Tree

The conditional inference tree (CTree) enables the use of recursive partitioning

and tree-structured models in a conditional inference framework. The use of the

Gini index to determine the most favourable split induces a selection bias toward

covariates with many possible splits and also cannot distinguish between a signifi-

cant and an insignificant improvement in the information measure. Hothorn et al.

(2006) proposed the conditional inference approach tree where the node split is

selected based on how good the association is between the response and the covari-

ates. The resulting nodes should provide a high association between the response

and the covariates. The significance of the association is investigated by a χ2 test

and the covariate with highest association is selected for splitting. Moreover, mul-

tiple test procedures are applied to determine whether no significant association

between any of the covariates and the response can be stated and the recursion

needs to stop.

In more detail, let Z = (Z1, · · · , Zk) be the k-dimensional vector of covariates

and let y be a categorical response variable. Z is taken from a sample space

Z = Z1 × · · · × Zk. We assume that the conditional distribution of y given Z

depends on the function f of Z as follows:

D(y|Z) = D(y|Z1, · · · , Zk) = D(y|f(Z1, · · · , Zk)).
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Thus, a generic algorithm for recursive binary partitioning for a given learning

sample

Ln = (yi, Z1i, · · · , Zki), i = 1, · · · , n,

can be formulated using non-negative integer valued case weights w = (w1, · · · , wn).

Each node of the tree is represented by a vector of case weights having nonzero

elements when the corresponding observations are elements of the node, and are

zero otherwise. The following steps implement recursive binary partitioning:

1. Test the global null hypothesis of independence between any covariate Z and

the categorical response variable y for case weights w. Stop if this hypothesis

cannot be rejected. Otherwise, select the j-th covariate Zj with the strongest

association to y.

2. Choose a set A ⊂ Zj to split Zj into two disjoint sets of A and Ac. The

case weights wleft and wright determine the two subgroups with wleft,i =

wiI(Zj,i ∈ A) and wright,i = wiI(Zj,i /∈ A), for all i = 1, 2, · · · ,m , where

I(·) is the indicator function.

3. Repeat steps 1 and 2 recursively with the different case weights wleft and

wright, respectively.

2.3.4.4 Conditional Inference Forest

Random forest has been criticised for the bias that results from favouring covari-

ates with many split-points. The conditional inference forest (CForest) is known

to correct this bias by separating the procedure for the best covariate to split on

from that of the best split point search for the selected covariate. The conditional

inference forest is an implementation of the random forest and bootstrap aggre-

gating ensemble algorithms, utilising conditional inference trees as base learners.

To determine the variable importance in conditional inference forests, the vector

of the predictor variables is randomly permuted and the initial association with

the response variable is broken. When the permuted and the non-permuted vari-
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ables are used to predict the response variable for the out of bag observations, the

classification accuracy decreases substantially if the permuted variable is associ-

ated with the response. Hence, the variable importance is the difference in the

prediction accuracy before and after permutation of the variable average over all

trees (Strobl et al., 2008; Das et al., 2009).

Given the out of bag sample B(τ) for a tree τ ∈ 1, ..., ntree . The variable impor-

tance of a single tree is defined as follows:

V arImp(τ ;Zj) =

∑
t∈B(τ) Imp

(
yi = δ(τ ;Zj)

)
|B(τ)|

−

∑
t∈B(τ) Imp

(
yi = δ(τ ;Zj, ηj)

)
|B(τ)|

(2.18)

where Zj is the jth input or predictor variable; yi is the response variable at

observation i; δ(τ ;Zj) represent the predicted classes before the permuting process;

δ(τ ;Zj, ηj) represent the predicted classes after the permuting process (Strobl

et al., 2008).

The raw variable importance score for each of the input variables is the mean

importance over all trees τ ∈ 1, ..., ntree , and can be computed as follows:

V arImp(Zj) =

∑ntree
τ=1 V arImp(τ ;Zj)

ntree
(2.19)

where V arImp(τ ;Zj) are the individual importance scores, computed from ntree

independent bootstrap samples.

That is, the variable importance of any variable is the difference in the prediction

accuracy before and after the permuting process of the variable, averaged over all

τ trees.

2.3.4.5 Adaptive Boosting

Boosting is an ensemble technique aimed at increasing the strength of a weak

learning classifier by improving its accuracy. A boosting algorithm, as proposed

by Schapire (1990), seeks to convert a weak learner into a strong learner. The

38



principle consists of sequentially applying the classifier to adaptively re-weighted

versions of the initial dataset S∗b , b = 1, 2, · · · , B. In each step, the learning at-

tention is focused on modified versions of the data, where the modifications give

more weight, wt, to misclassified points. Once the process has finished, the single

classifiers obtained are combined into a final classifier by weighted majority vote.

In boosting, the predictors are made sequentially rather than independently.

For a real adaptive boosting (AdaBoost), the classification score is defined as

follows:

δ̂b(Zt) =
1

2
ln
( ρ̂∗b(Zt)

1− ρ̂∗b(Zt)

)
where ρ̂∗b(Zt) is the estimated probability in step b, for t = 1, 2, ..., T .

From the weights wt,1 =
1

T
, for t = 1, 2, ..., T ; the weights for the next step b + 1

are updated as follows:

wi,b+1 = wi,b exp(−ytδ̂b(Zt)), t = 1, 2, ..., T

where
∑T

t=1wt,b = 1 and the corresponding probability estimate for the iteration

b+ 1 becomes ρ̂∗b+1(Zt) (Hofner et al., 2014; Lai et al., 2009).

The procedure is repeated for b = 1, 2, ..., B until the final prediction is obtained

as follows:

Ψ̂boost(Z) = sign
[ B∑
b=1

δ̂b(Z)− τB
]
, Ψ̂boost(Z) ∈ {−1, 1} (2.20)

where the threshold τB is a correction term for balanced training sample, which

could be zero (τB = 0) when a proportion sample is used (Lemmens and Croux,

2006).

Given the test set {(Z1, y1), (Z2, y2), ..., (Zt, yt), ..., (ZT , ZT )} with individual

classifier scores δ̂(zt) and the final classification score Ψ̂(Zt) for t = 1, 2, ..., T ;
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then the error rate will be computed as

ER =
1

T

T∑
t=1

I
[
Ψ̂(zt) 6= yt

]

where T is the size of the test sample; I[·] is a binary indicator function.

The main steps of the Adaboost algorithm are as follows (Freund and Schapire,

1996; Alfaro et al., 2013):

1. Initialize the observation weights wt =
1

T
for t = 1, 2, · · · , T .

2. For b = 1, 2, · · · , B:

(a) Fit a classifier δ̂b(Z) to the training data using observation weights wt.

(b) Compute the weighted misclassification error for δ̂b(Z):

errb =
∑T
t=1 wtI[yt 6=δ̂b(Zt)]∑T

t=1 wt

(c) Compute αb = 1
2
ln[1−errb

errb
], where αb is the weight score for b = 1, 2, ..., B

(d) Update the weights wt ← wtexp(αbI[yt 6= δ̂b(Zt)]), for t = 1, 2, · · · , T

and normalize them.

3. Output the final classifier Ψ̂boost(Z) = sign
[∑B

b=1 αbδ̂b(Z)
]
, Ψ̂boost(Z) ∈ {−1, 1}.

Other boosted tree models used in this research include the gradient boosting

machine (GBM), the generalized linear boosting model (GLMBoost) and the Log-

itBoost model.

2.3.4.6 Gradient Boosting

Gradient boosting (GBM) seeks to generate a prediction model in the form of an

ensemble of weak learners such as decision trees, in order to minimize the resulting

classification error.

Let Z = {Z1, Z2, ..., Zk} be k-dimensional set of predictors with target output

40



variable y ∈ {−1, 1}, and a collection of L instances in the form {(y`,Z`); ` =

1, 2, ..., L}. Then we can model a learning prediction function δ̂(Z) : Z −→ y that

minimizes the expectation of the loss function Bloss(y, δ) over the joint distribution

of all ordered pair (y,Z). The predictive classifier function is defined as follows:

δ̂(Z) = argmin
δ(Z)

E[y,Z]Bloss

(
y, δ(Z)

)

where E[y,Z] is the joint expectation of the input vector Z and the target output

y; Bloss

(
y, δ(Z)

)
is the loss function.

The conditional expectation of y given Z is as follows:

E[y|Z] = δ(Z) =
k∑
j=1

θjZj =
k∑
j=1

δj(Zj)

where δ1(Z1), δ2(Z2), ..., δk(Zk) are smooth functions.

We can extend the classifier function by introducing additive model with functions

δj(Zj), j = 1, 2, ....k of all the input variables, defined as follows:

δ(Z) =
k∑
j=1

δj(Zj) =
k∑
j=1

θjΓ(Zj;αj) (2.21)

where θjΓ(Zj;αj) is a weak learner characterized by a parameter vector α =

(α1, α2, ..., αk) and a vector of multiplier θ = (θ1, θ2, ..., θk); δj(Zj) is the weighted

majority vote of the individual weak learners (Guelman, 2012; Son et al., 2015).

Thus, the resulting objective function can be minimized as follows:

min
{θj ,αj}kj=1

L∑
`

Bloss

(
yi,

k∑
j=1

θjΓ(Z`;αj)
)

(2.22)

where Bloss

(
y, δ(Z)

)
is the chosen loss function required to estimate a lack of fit.

Friedman (2001, 2002) laid the groundwork for a new generation of boosting

algorithms. Assume that we are interested in modelling Pr(y = 1|Z = Z) for a
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Bernoulli response variable. The idea is to fit a model of the following form:

λ(Z) = GB(Z) =
B∑
b=1

gb(Z; γb)

where

λ(Z) = log

(
Pr(y = 1|Z = Z)

Pr(y = 0|Z = Z)

)
and γb is parameter vector, which for the trees, captures the identity of the split

variables, their split values and the constants in the terminal nodes.

The main steps of the gradient boosting algorithm are as follows:

1. Start with Ĝ0(Z) = 0, and set the shrinkage parameter ε > 0.

2. For b = 1, 2, · · · , B:

(a) Compute the pointwise negative gradient of the loss function at the

current fit as follows:

rt = −∂L(yt,λt)
∂λt

(b) Approximate the negative gradient by a depth-d tree by solving the

following:

minimiseγ
∑T

t=1(rt − gb(Z; γb))
2.

(c) Update Ĝb(Z) = Ĝb−1(Z) + ĝb(Z), with ĝb(Z) = εg(Z; γ̂b).

3. Return the sequence Ĝb(Z), for b = 1, 2, · · · , B.

2.3.4.7 Generalized Linear Boosting

The generalized linear boosting (GLMBoost) fits a tree based model using a boost-

ing algorithm as opposed to maximum likelihood estimation, which trains the data

with best cross-valided mstop tuning parameter, performs variable selection and

predict future classes. The GLMBoost employs component-wise (generalised) lin-

ear models as base-learners (Bühlmann and Yu, 2003; Bühlmann et al., 2007).

Let Z = (Z1, Z2, ..., Zk)
′ be k-dimensional vector of covariates, from which the
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categorical binary response variable yi ∈ {1, ..., c } can be predicted. Then a

generalized linear model can be fitted as follows:

`(µ̂) = β0 + β1Z1 + ...+ βkZk (2.23)

where µ̂ = E(y|Z) is the conditional expectation of the binary response; ` is the

link function; β is a vector of unknown parameters.

The boosted generalized linear model additionally performs variable selection and

the effects are shrunken toward zero if early stopping (mstop) is applied in the

model (Hofner et al., 2014; Alfaro et al., 2013). The GLMBoost fits simple linear

models separately for each column of the design matrix to the negative gradient

vector, for each boosting iterations, using the best fitting base-learner in the up-

date step.

2.3.4.8 LogitBoost

The LogitBoost is an algorithm used to produce a logistic regression model at ev-

ery node in the classification tree and each node is able to be split using a suitable

splitting criterion (Friedman et al., 2000; Landwehr et al., 2005). It is designed to

train the classification algorithm using stumps or one node decision trees as weak

learners.

Let {(yi,Zi)}Ni=1 be input dataset set with N samples, Zi ∈ Z, yi ∈ y ∈ {−1, 1}.

The binomial log-likelihood loss function of a binary logitboost is defined as fol-

lows:

Bloss(δ) = E
[
− log(1 + eyδ(Z))

]
which varies directly with the classification error and appears to be less sensitive

to noise and outliers.

The weight wi and the working respond Zi in each of the Newton iteration steps
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` = 1, 2, ..., L is defined as follows:


wi = Prob(Zi)(1− Prob(Zi))

Zi =
(yi+1)

2
−Prob(Zi)
wi

for i = 1, 2, ..., N

with initial values wi = 1
N

; Prob(Z) = Prob(y = 1|Z) = 1
2

and δ(Z) = 0 (Ka-

marudin et al., 2017; Qi et al., 2011).

We then fit the function f`(Z) by a weighted least squares regression of yi to

Zi using weights wi, and thereafter we update the committee function and the

corresponding probability based on the following:


δ(Z) = δ(Z) + 1

2
f`(Z)

Prob(Z) = eδ(Z)

eδ(Z)+e−δ(Z)

when all the iterations are exhausted then the model becomes:

δ(Z) =
1

2

L∑
`=0

f`(Z) =
1

2
{0 + f1(Z) + f2(Z) + ...+ fL(Z)}

and the overall classifier is the resulting decision function:

Ψ(Z) = sign{δ(Z)} =


1 if δ(Z) > 0 =⇒ Ψ(Z) belongs to class 1

−1 if δ(Z) ≤ 0 =⇒ Ψ(Z) belongs to class 2

(2.24)

(Li, 2012; Feng et al., 2005).

Thus, the Newton steps for optimization of the loss function seeks to build a ro-

bust classifier by iteratively adding a weak classifier to improve the classification

process.

Alternatively, let {(yi,Zi)}Ni=1 be the input dataset with N samples, Zi ∈ Z,

yi ∈ y ∈ {−1, 1}, and use the transformation y∗ = 1+y
2

to represent the outcome
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with a 0/1 response, and represent the probability of y∗ = 1 with Prob(Z) where

Prob(Z) =
eF (Z)

eF (Z) + e−F (Z)
.

The main steps of the LogitBoost algorithm are as follows:

1. Start with wt = 1/T, t = 1, ·, T , F (Z) = 0, and probability estimates

Prob(Zi) = 1
2
.

2. For b = 1, 2, · · · , B:

(a) Compute the working response ri and the weights wi as follows


wi = Prob(Zi)(1− Prob(Zi))

ri = y∗−Prob(Zi)
wi

(b) Fit the function fb(Z) by a weighted least-squares regression of ri to Zi

using weights wi.

(c) Update F (Z)← F (Z) + 1
2
fb(Z), and Prob(Z) = eF (Z)

eF (Z)+e−F (Z) .

3. Return the classifier sign [F (Z)] = sign
[∑B

b=1 fb(Z)
]

, for b = 1, 2, · · · , B.

2.3.4.9 Recursive Partitioning Algorithm

The recursive partitioning (RPart) algorithm builds a decision tree that attempt

to correctly classify elements of the set by splitting it into subsets based on sev-

eral features. The splitting process continues indefinitely, resulting in newer sub-

samples and terminates after a specific stopping criterion is attained (Cook and

Goldman, 1984).

Let yt be a conditionally distributed dichotomous response variable given the

k predictors, such that the k predictors are elements of a sample space Ω =

Ω1 × Ω2 × .... × Ωk. Then, by tree-structured recursive partitioning, the condi-
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tional distribution of yt given Zt−1 depends on the function:

Ψ(yt|Zt−1) = Ψ(yt|g(Z(t−1)1, Z(t−1)2, ..., Z(t−1)k)) (2.25)

from which the p disjoint cells B1, B2, ..., Bp partitioning the predictor space

Ω = B1 ∪B2 ∪ ..... ∪Bp = ∪pj=1Bj

are obtained; where g(·) is a function of the k predictors (Hothorn et al., 2006).

The fitted model is based on a learning sample with some missing predictors Zt−1,

defined by the following:

`T = {yt;Z(t−1)1, Z(t−1)2, ..., Z(t−1)k; t = 1, 2, ..., T} (2.26)

The recursive algorithm proposed by Zeileis et al. (2008), Hothorn et al. (2006) is

as follows:

1. Fit the model to all observations at once in the initial node and estimate the

unknown parameters by minimizing the objective function;

2. Evaluate the stability or instability of the estimated parameters with respect

to the ordering features;

3. Determine the splitting point that locally optimizes the objective function

using a fixed or adaptive number of splits;

4. Split the node into sub-nodes and repeat the procedure recursively until no

further splitting is feasible.

2.3.4.10 Linear Discriminant Analysis

The discriminant function was first introduced by Fisher (1936). Linear dis-

criminant analysis (LDA) uses Bayes’ theorem to estimate output class prob-
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abilities given the input features, using the assumptions that the input data

Z = (Z1, Z2, · · · , Zk) follow a multivariate Gaussian distribution with a class

specific mean vector µc and a common covariance matrix Sc = S for all c. If

fc(Z) is the class conditional density of the covariates Z, in class y = c, i.e.,

fc(Z) = Prob(Z = Z|y = c), and ψc is the prior probability of class c, then by

Bayes’ theorem, the class posterior probability is given by the following:

Prob(y = c|Z = Z) =
fc(Z)ψc∑C
c=1 fc(Z)ψc

, for c = 1, 2, · · · , C

and Z has a multivariate Gaussian density for each class given by the following:

fc(Z) = (2π)−
p
2 |Sc|−

1
2 exp

(
− 1

2
(Z− µc)′S−1

c (Z− µc)
)
.

The LDA classifier assigns an observation given by Z = Z to the class c given by

the following:

ΨLDA
c (Z) = argmaxc

{
Z′S−1µc −

1

2
µ′cS

−1µc + logψc

}
. (2.27)

For a proof of the above equation, see (James et al., 2013). The word linear in

the LDA classifier stems from the fact that the discriminant function is a linear

function of the input features Z.

2.3.4.11 Quadratic Discriminant Analysis

The quadratic discriminant analysis (QDA) classifier separates multi-class mea-

surements by a quadratic surface. Unlike LDA, in the case of the QDA classifier,

the input features in each class follow a multivariate Gaussian distribution with

a class specific mean vector µc and a class specific covariance matrix Sc, owing to

the heterogeneity of variance-covariance matrices for the various classes (James

et al., 2013; Ou and Wang, 2009).
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The QDA classifier is given by the following:

ΨQDA
c (Z) = argmaxc

(
Ωc(Z)

)
= argmaxc

{
−1

2
log|Sc| −

1

2
(Z− µc)′S−1

c (Z− µc) + logψc

}
.

(2.28)

The QDA classifier obtains its name from the fact that the QDA discriminant

function is a quadratic function of the input features Z.

2.3.4.12 Regularized Discriminant Analysis

The regularized discriminant analysis (RDA) introduces regularization into the

estimates of the covariance matrices and allows the shrinkage of the separate

covariance matrices of QDA toward a common covariance, as in LDA. In this

sense, RDA is a compromise between LDA and QDA. The regularized covariance

matrices have the form:

Sc(λ) = λSc + (1− λ)S

where S is the pooled covariance matrix used in the LDA; Sc is the class specific

covariance matrix of the input features used in the QDA; and λ is a non-negative

tuning parameter that controls the degree of shrinkage of the individual class

covariance matrix estimates toward the pooled estimates. Here, λ ∈ [0, 1] allows

a continuum of models between LDA and QDA and needs to be specified. In

practice, λ can be chosen employing cross-validation. Biasing the class covariance

matrices toward commonality is not the only way to shrink them. An additional

convex combination allows Sc itself to be shrunk toward a scaled identity matrix,

using the shrinkage parameter γ as follows:

Sc(λ, γ) = (1− γ)Sc(λ) + γ
1

d
tr[Sc(λ)]I

where 1
d

tr[Sc(λ)] is the mean of the diagonal elements of Sc, (λ), so it is the mean

variance of the class input features. The RDA classifier is given by the following:

ΨRDA
c (Z) =

{
(Z− Z̄)′S−1

c (λ, γ)(Z− Z̄k) + log|Sc(λ, γ)|
}

(2.29)
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where λ is the cross-validated parameter that controls the degree of shrinkage

of the individual class covariance matrix estimates toward the pooled estimates

and γ is an additional regularization parameter that controls shrinkage toward a

multiple of the identity matrix for a given value of λ (Friedman, 1989).

2.3.4.13 Heteroscedastic Discriminant Analysis

The heteroscedastic discriminant analysis (HDA) is a generalized method of the

LDA in that its feature space transformation does not require the imposition of

equal within-class covariance assumptions as compared to the standard LDA. The

HDA classifier is capable of handling different covariance structures of the class

distributions (Kumar and Andreou, 1998).

Let
{

Zi

}N
i=1

denote a sequence of k-dimensional feature vectors, with each vector

belonging to a single class j ∈ {1, ..., C}, and let y denote a categorical response

variable. If Nj, µj and Σj represent the sample count, mean and covariance,

respectively, of the jth class, then the between-class matrix M can be extracted

in the following form:

M =
1

N

C∑
j=1

Njµjµ
′
j − µµ′

where µ′j is the transpose of µj of the jth class; µ is a vector of overall means.

The HDA objective function seeks to find a projection matrix, denoted by β, that

maximizes the likelihood in the Jacobian transformation space y = β′Z under the

normality assumption, such that the ratio of the determinants:

Ω(β) =
|βMβ′|N∏C
j=1 |βΣjβ′|Nj

(2.30)

is maximized, where β′ is the transpose of β (Huang et al., 2000; Szepannek et al.,

2009).
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The HDA classifier is then given by the following:

ΨHDA(β) = argmax
β

log
{

Ω(β)
}

= argmax
β

{ C∑
j=1

−Njlog|βΣjβ
′|+Nlog|βMβ′|

}
(2.31)

where M is the between-class matrix. See Kumar and Andreou (1998) for further

details.

2.3.4.14 Sparse Discriminant Analysis

The sparse LDA introduces projection techniques that imposes zero entries in the

feature matrix, aimed at reducing the dimensionality to produce a final parsi-

monious model. The sparse discriminant function involves the inclusion of an `1

penalty norm in the optimal scoring problem which results in the optimization

problem, follows:

maxβjβ
′
jSβj−ηβj1 subject to β′j(Sw+Ω)βj = 1, β′j(Sw+Ω)βm = 0 for all m < j

(2.32)

where βj is the discriminant vector of class j, Ω is a positive definite matrix; Sw is

the within class covariance matrix. The jth sparse discriminant analysis solution

pair (θj, βj) is obtained by solving the problem, as follows:

minβj ,θj

{
yθj − Zβj

2 + ηβ′jΩβj + λβj1

}
(2.33)

subject to
1

n
θ′jy
′yθj = 1 and θ′y′yθm = 0 for all m < j

and the sparse LDA is as follows:

ΨSparseLDA(θ, β) = argmin
βj ,θj

{ 1

n
‖yθj − Zβj‖2 + ηβ′jΩβj + λ‖βj‖1

}
(2.34)

where y is a vector of dummy variables for the jth classes; θj is a j-vector of scores;

n is the sample size; η and λ are non-negative tuning parameters (Clemmensen

et al., 2011). Thus, the `1 penalty norm on βj results in sparsity when the tuning
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parameter λ is large.

2.3.4.15 High Dimensional Discriminant Analysis

The high dimensional discriminant analysis (HDDA) is another important exten-

sion of the LDA most feasible for a dimensionality reduction model involving many

features as compared to the sample size, and in which the LDA is weak in perfor-

mance. Let Γi be an orthogonal matrix of eigenvectors of a covariance matrix Si;

let Φi be the basis from the eigenvectors of Si, and assuming the class conditional

densities follows Gaussian N (µi,Si) for all i = 1, ..., c. Then, the class conditional

covariance matrix Ωi, is defined by the following:

Ωi = Γ′iSiΓi

where Ωi is diagonal matrix with two distinct eigenvectors ui and vi, ui > vi.

If Πi(Z) = Γ̂iΓ̂
′
i(Z − µi) + µi represents the projection of the input vector Z on

the affine space i, then the cost function will be as follows:

θi(Z) =
‖µi − Πi(Z)‖2

ui
+
‖Z− Πi(Z)‖2

vi
+ di lnui + (k − di) ln vi − 2 lnπi (2.35)

where ui =
σ2
i

αi
and vi =

σ2
i

1− αi
with αi ∈ {0, 1} and σi > 0 for all i = 1, ..., c; k

is the k-dimensional input vector; di is the ith diagonal of Γi (Bouveyron et al.,

2007).

The posterior probability is defined as follows:

Prob(i|Z) =
e
−

1

2
θi(Z)

∑c
j=1 e

−
1

2
θj(Z)

for i 6= j (2.36)

Thus, the maximum likelihood estimators of ui and vi are, respectively, as follows:

ûMLE
i =

1

di

di∑
j=1

$i,j and v̂MLE
i =

1

k − di

k∑
j=di+1

$i,j
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where $i,1 ≥ $i,2 ≥ ... ≥ $i,k are the eigenvectors of Ŝi.

Following this approach, the maximum likelihood estimators of αi and σ2
i are

α̂MLE
i =

v̂i
ûi + v̂i

and (σ̂2
i )
MLE =

ûiv̂i
ûi + v̂i

2.3.4.16 Distance Weighted Discrimination

The distance weighted discrimination (DWD) was introduced by Marron et al.

(2007) to tackle high-dimensional datasets and to specifically improve the per-

formance of support vector machines. It employs the concept of maximization,

thereby maximizing the existing gap between an ordered pair of classes to make

them more separable, introducing harmonic mean of the distances of all data vec-

tors to the separating hyperplane (Huang et al., 2012). Given the training dataset

{(yi,Zi)}Ni=1 with k-dimensional vector of covariates Z, y the binary response vari-

able y ∈ {−1,+1}, let di = (Z′iw + θ)yi +αi be the distance of the ith data vector

to the separating hyperplane. Then, the DWD is obtained by the following:

argmin
w,θ,αi

N∑
i=1

( 1

di
+C(αi)

)
subject to di = (Z′iw+ θ)yi +αi; di, αi ≥ 0; ∀ ||w||2 ≤ 1

(2.37)

where αi is a positive slack variable included to boost the positivity of di; w is the

weight vector (Qiao and Zhang, 2015). The slack variable serves as a correction

measure, which corresponds to the amount of misclassification for the ith vector.

Thus, the DWD binary linear classification process employs gap minimization to

improve the separability of the two classes and the minimization of the misclassi-

fication error.

2.3.4.17 k Nearest Neighbour

The k nearest neighbour (kNN) is used for classifying objects based on the closest

training instances in the feature space.

Given the training data set {(Z1, y1), (Z2, y2), · · · , (ZL, yL)} in which an object is

to be classified based on a majority being assigned to the class most common to
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its corresponding k nearest neighbours. Then, the Euclidean distance between

instances i and j is defined as follows:

dEuclid(i, j) =

√√√√ L∑
`

( |yi`−j`|
r`

)2

=

√( |yi1−j1|
r1

)2

+
( |yi2−j2|

r2

)2

+ ...+
( |yiL−jL|

rL

)2

(2.38)

where r` denotes the maximum range of attribute `; ` = 1, 2, ..., L.

When k nearest neighbours with known classification are picked for an unclassified

instance `, then a combined classification approach that combines the classifica-

tions from the k nearest neighbours will predict the next class for `, and so on.

The instance ` is classified as belonging to class y, using the average distance

measure if

1

k1

∑
i∈y(`,k)

dEuclid(i, `) <
1

k2

∑
i∈N(`,k)

dEuclid(i, `) (2.39)

where k = k1 + k2; k1 is the number of instances belonging to class y in the k

nearest neighbours; k2 is the number of instances belonging to class N in the k

nearest neighbours (Huang et al., 2008; Su, 2011)

The k can be chosen by cross-validation, and the kNN model does not depend on

the prior probabilities of the classes (Imandoust and Bolandraftar, 2013; Nayak

et al., 2015).

2.3.4.18 Naive Bayes

The Naive Bayes classifier combines the Bayes model with a decision rule, and a

common rule is to pick the most probable hypothesis, which is known as maximum

posterior decision rule (Ou and Wang, 2009).

Given the training set {(Z1, y1), (Z2, y2), · · · , (ZT , yT )} and using the assumption

that the features Zc are independent given a class y = j such that fj(Z) =∏p
c=1 fjc(Z) are functional class labels with kernel smoothing estimates of the

function fjc(.) from the training set.
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Then the Naive Bayes classifier is as follows:

ΨNB(Z) = argmaxj {fj(Z)ψj} (2.40)

where ψj is estimated from the sample proportion.

2.3.4.19 Learning Vector Quantization

The learning vector quantization (LVQ) algorithm (Kohonen, 1995; Ripley, 1996),

is an artificial neural network designed to enable one to construct a modified

training set iteratively. The modified training sets are called codebooks. Let’s

consider the LVQ1 process based on Kohonen (1995). Assume that a number of

codebooks mi are placed into the input space to approximate various domains of

the input vector Z by their quantized values. Usually several codebook vectors

are assigned to each class of Z values, and Z is then decided to belong to the same

class to which the nearest mi belongs. Let c = argmin(||Z − mi||), define the

nearest mi to Z, denoted by mc.

Values for the mi that approximately minimize the misclassification errors in

the above nearest-neighbor classification can be found as asymptotic values in

the following learning process. Let Z(t) be a sample of input and let the mi(t)

represent sequences of the mi in the discrete-time domain. The basic LVQ1 process

is defined by:

mc(t+ 1) = mc(t) + α(t)[Z(t)−mc(t)] (2.41)

if Z and mc belong to the same class,

mc(t+ 1) = mc(t)α(t)[Z(t)−mc(t)] (2.42)

if Z and mc belong to different classes, and

mi(t+ 1) = mi(t) (2.43)
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for i not in c. Here 0 < α(t) < 1, and α(t) may be constant or decrease monoton-

ically with time.

2.3.4.20 Neural Network

The neural network (NNET) is a system made up of a number of simple highly

interconnected processing elements, which process information by their dynamic

state response to external inputs. The NNET consists of layers made up of inter-

connected nodes that contain the activation function (Caudill, 1989; Ripley, 1996).

The NNET layers are as follows:

Input 7−→ Hidden 7−→ Output

Given an input vector of covariates Z, and a categorical output y. Then, a neural

network can be modelled in the following form:

xj = Γ(θ0,j + θ′jZ) for j = 1, 2, ..., p

ŷk = Ψ(β0,k + β′kZ) for k = 1, 2, ..., q

where Γ(x) = 1
1+e−x is the sigmoid activation function, used to introduce a nonlin-

earity at the hidden layer. The parameters θj,l and βk,j are known as the weights

and define linear combinations of the input vector Z and hidden unit output x.

The intercepts θ0,j and β0,k are known as biases. The function Ψ permits a final

transformation of the output and a typical choice for binary classification is the

inverse logit function.

Let L(θ, β) be defined as follows:

L(θ, β) =
N∑
i=1

k∑
j=1

(yik − ŷik)2

55



then their respective partial derivatives will be as follows:

∂Li

∂βk,j
= −2(yik − ŷik)δ′k(β′kxi)xij

and

∂Li

∂θj,l
= −2

q∑
k=1

(yik − ŷik)δ′k(β′kxi)βk,jΓ′(θ′jxi)xil

where the superscript i is the ith component, for j = 1, 2, ..., p and k = 1, 2, ..., q;

θ
′

is the transpose of θ; β′ is the transpose of β; N is the number of components.

Thus, the gradient updates corresponding to the (s+ 1)th iteration with learning

rate τs by back propagation, resulting in the following:

β
(s+1)
k,j ⇐= βsk,j − τs

N∑
i=1

∂Li

∂βsk,j
(2.44)

θ
(s+1)
j,l ⇐= θsj,l − τs

N∑
i=1

∂Li

∂θsj,l
(2.45)

where τs is the learning rate (Caudill, 1989; Ou and Wang, 2009).

2.3.5 Statistical and Economic Performance Evaluation

2.3.5.1 Correct Prediction Ratio

In this case, a 2 x 2 square matrix of contingency table for cross-classifying the

actual and predicted outcomes in each of the two categorical pairs is constructed

before computing the correct prediction ratio or simply the ’hit ratio’ for the

direction of change in the stock market return.

The correct prediction ratio (CPR) is defined as follows:

CPR = CPupward + CPdownward =
1

T

T∑
t=1

I(τ̂t = τt)
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where CPupward =

∑T
t=1 I(τ̂t = 1)I(τt = 1)∑T

t=1 I(τt = 1)
is the proportion of correct predictions

for the upward moves; CPdownward =

∑T
t=1 I(τ̂t = 0)I(τt = 0)∑T

t=1 I(τt = 0)
is the proportion of

correct predictions for the downward moves; I(.) is a binary indicator function

which takes the value 1 when the argument in the parenthesis is true and 0 when

it is false, based on the 0.50 threshold; τ̂t is the predicted value and τt is the actual

value (Chevapatrakul, 2013).

The CPR lies between 0 and 1, (0 ≤ CPR ≤ 1) and it is usually expressed in

percentage.

2.3.5.2 The Pesaran-Timmermann Directional Predictability Test

This test was first proposed by Pesaran and Timmermann (1992) and was im-

proved by Granger and Pesaran (2000) for evaluating directional forecasting or

predictability performance and market timing. The null hypothesis H0, which is

”No statistically significant directional predictability” against the alternative hy-

pothesis HA, which is ”There is statistically significant directional predictability”

can be tested based on the Pesaran-Timmermann test statistic, as follows:

PT =

√
TKS( τ̄I(1− τ̄I)

Ī(1− Ī)

)0.5

asymptotically∼ N(0, 1)

where KS = TR − FR is the Hanssen-Kuiper skill score; TR =
Îuu

Îuu + Îdu
is

the true or hit rate; FR =
Îud

Îud + Îdd
is the false rate; T is the sample period in

months;

and the forecasts’ classifications are again obtained from the 2 x 2 contingency

table showing:

Îuu =
T∑
t=1

I(Ît = 1, It = 1);
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Îud =
T∑
t=1

I(Ît = 1, It = 0);

Îdu =
T∑
t=1

I(Ît = 0, It = 1);

Îdd =
T∑
t=1

I(Ît = 0, It = 0);

where u is an upward signal (It = 1) and d is a downward signal (It = 0); I(.) is

an indicator function taking the values 0 and 1; Ī is the sample mean of the sign

indicator values It computed in the T −month sample period; Ît is the predicted

excess stock return sign indicator; It is the actual or realized excess stock return

sign indicator; τ̄I = ĪTR+ (1− Ī)FR (Nyberg, 2011; Granger and Pesaran, 2000;

Bergmeir et al., 2014)

Thus, the PT test statistic as stated above has the asymptotic standard normal

distribution under the null hypothesis H0 of no directional predictability.

2.3.5.3 Confusion Matrix Metrics

The confusion matrix consists of true positives (TP), false positives (FP), false

negatives (FN) and true negatives (TN). In this study, we use the following met-

Positive (Predicted) Negative (Predicted)
Positive (Actual) TP FN
Negative (Actual) FP TN

Total = TP + TN + FP + FN; where TP = true positives, FN = false negatives, FP = false positives, TN = true negatives

Table 2.1: The Confusion Matrix

rics to evaluate the accuracy and correctness of the classification models:

Accuracy =
TP + TN

TP + TN + FP + FN
.

Note that the accuracy of prediction equals the correct prediction ratio (CPR).

Precision =
TP

TP + FP
.
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Sensitivity =
TP

TP + FN
.

Specificity =
TN

TN + FN
.

F1Score =
2

1

Sensitivity
+

1

Precision

=
2TP

2TP + FP + FN
.

Kappa Statistic: The kappa statistic, denoted by κ, is computed as follows:

κ =
p0 − pe
1− pe

= 1− 1− p0

1− pe

where p0 is the relative observed agreement among the raters; pe is the hypothetical

probability of chance agreement, which can be obtained from the following:

pe =
1

N2

∑
m

nm1nm2

for categories m with N items and nmi is the number of times rater i predicted

category m.

McNemar’s Test: The McNemar’s test, as introduced by McNemar (1947),

is used in this paper to investigate the marginal homogeneity between the row and

column marginal frequencies in the 2 × 2 confusion matrix. The null hypothesis

of marginal homogeneity (that is the two outcomes are marginally equiprobable)

against the alternative hypothesis that they differ in probabilities is defined as

follows:

H0 : Prob(FN) = Prob(FP )

HA : Prob(FN) 6= Prob(FP )

The McNemar
′
s test statistic is defined as follows:

χ2 =
(FN − FP )2

FN + FP
∼ χ2

1(α).

Thus, the McNemar’s test statistic is asymptotically chi-square distributed with
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1 degree of freedom at the α% significance level.

2.3.5.4 Economic Performance Evaluation

Evaluating the economic performance of a forecasting model is of great importance

to a profit oriented portfolio investor. Consider the following trading strategy: Let

Probt(Rt+1 > 0) be the estimated probability of a positive excess stock return for

the period t + 1. Then the trading strategy or decision rule can be expressed as

follows:

If Probt(Rt+1 > 0) > 0.5, then purchase the stock index.

Else if Probt(Rt+1 > 0) ≤ 0.5, then purchase the treasury bill.

The performance of the constructed portfolios is evaluated over the out-of-sample

period (1991 to 2016: T=312 months) using a plethora of performance measures.

First, we consider the realized returns of the constructed portfolios. Let rp,t+1 be

the realized return of the portfolio at time t+ 1. The average or expected return

(ER) within the out-of-sample period, the cumulative return at the end of the

period, and the volatility of the portfolio can be computed. It is imperative to

compare the return per unit of risk by using the Sharpe Ratio.

Sharpe Ratio

Let’s consider the Sharpe Ratio (SR) which standardizes the realized returns with

the risk of the portfolio. The SR is computed through the following model:

SRp =
E(rp)− E(rft)√

V ar(rp)
,

where rp is the average realized return of the portfolio over the out-of-sample

period; rft is the risk-free interest investment rate; V ar(rp) is the variance of the

portfolio over the out-of-sample period.

Optimally, portfolios with high Sharpe ratios are most preferable to portfolios with

low Sharpe ratios, owing to the fact that the higher the Sharpe ratio the higher

the return and the lower the volatility.
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Maximum Drawdown

A portfolio measure associated with the sustainability of the portfolio losses is the

maximum drawdown (MaxDD) which broadly reflects the maximum cumulative

loss from a peak to a following bottom. MaxDD is defined as the maximum

sustained percentage decline (peak to trough), which has occurred in the portfolio

within the period studied. MaxDD up to time T is the maximum of the drawdown

over the history of the specific variable under consideration. It is computed as

follows:

MaxDDp = max
T0≤t≤T−1

[ max
T0≤j≤T−1

(PVj)− PVt],

where PV denotes the portfolio value; T0, T denote the beginning and end of the

evaluation period, respectively.

Omega Ratio

The Omega ratio, as a risk-return performance measure of a portfolio investment

introduced by Keating and Shadwick (2002), gives the probability weighted ratio

of gains versus losses for a stipulated threshold return target. We first define the

n-th lower partial moment (LPMn) of the portfolio return and the kappa function

Kn, and used the concept to compute Omega, Sortino and the Upside Potential

respectively, see (Harlow and Rao, 1989; Sortino and Van Der Meer, 1991; Sortino

and Price, 1994) for detail studies. The n-th lower partial moment (LPMn) of the

portfolio return is defined as follows:

LPMn(rb) = E[((rb − rp)+)n]

where rb is the benchmark return.

The Kappa function Kn(rb) is defined as follows:

Kn(rb) =
E(rp)− rb
n
√
LPMn(rb)

for n = 1, 2, ...
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Thus, the Omega ratio is computed from the following formula:

Omega(rb) = K1(rb) + 1

Sortino Ratio

Unlike the Sharpe ratio, which penalizes both upside and downside volatility

equally, the Sortino ratio penalizes only the returns that fall below a user spec-

ified target. The Sortino ratio measures the risk adjusted return of a portfolio

investment. It can be computed from the following formula:

S(rb) = K2(rb)

Like the Sharpe ratio, the higher the Sortino ratio, the better the risk adjusted

performance and vice versa.

Upside Potential

Upside Potential is a measure of the return of an investment relative to the minimal

acceptable return. The upside potential is calculated as follows:

UP (rb) =
E[(rp − rb)+]√
LMPM2(rb)

The economic importance of the upside cannot be overemphasized. It is not only

indicating an investor’s potential gain in value but also judges the success of a

portfolio manager’s performance comparative to a benchmark.

Additionally, I investigate the tail-risk of the different proposed models. A

CVaR of λ% at the 100(1-α)% confidence level means that the average portfolio

loss measured over 100α% of worst cases is equal to λ% of the wealth managed by

the investor. To compute VaR and CVaR, we use the empirical distribution of the

portfolio realized returns. VaR and CVaR are calculated at the 95% confidence

levels.

In this study, the U.S. 3-month interest rate for the risk-free rate rft and for the

benchmark rate of return (rb) necessary for the calculation of Omega, MaxDD
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and S were employed.

2.4 Data Analysis and Discussion

2.4.1 Sources of Data and Variables

The data used in this chapter are obtained from Amit Goyal’s webpage1, cover-

ing monthly observations ranging from January 1960 to December 2016. These

variables, presented in Table 2.2, have been used in the existing literature quite

extensively for predictability of the equity premium, see (Rapach et al., 2010; Ny-

berg, 2011; Meligkotsidou et al., 2014, 2019) among others. The total number of

observations is T = 684. An out-of-sample period of T2 = 312 monthly obser-

vations ranging from January 1991 to December 2016 has been employed for the

evaluation of the forecasting performance. The forecast horizon denoted by h is

one month ahead for each of the forecasting models.

In the out-of-sample method, the parameters of the forecasting models are es-

Table 2.2: The Financial Variables used for the Study

Indicator Time Series Variable

Equity Premium EquityPrem
Default Return Spread DFR
Excess Stock Return ESR
Short Term Interest Rate ∆ShortR
Long Term Yield ∆LongR
Term Spread TermSpr
Inflation ∆Infl
Return Spread ReturnSpr
Yield Spread Y ieldSpr
Book to Market Value BMV
Net Equity Expansion NEE
Dividend Price Ratio DPR
Earning Price Ratio EPR
Stock Variance SV ar

timated recursively using an expanding window of observations, in which the fit-

ted models are estimated using data from the start date of the dataset to the

present time and obtain a one month-period-ahead forecast. The procedure is

1www.hec.unil.ch/agoyal/
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repeated iteratively until the end of the forecast sample period is attained. In the

CART techniques, each classification model is trained, pre-processed the training

dataset in a closed centre and scale form, tuned the parameter(s) of each model

by cross-validation and resampling, determining the variable importance before

making the out-of-sample forecasts. The resampling approach seeks to determine

the values of each of the model parameters (if any) and uses the best tuning

parameter(s) based on fitted in-sample accurate measures to produce the out-of-

sample forecasts. In each model, the best tuning parameter(s) were used to run

the out-of-sample forecasts recursively, and their respective performance evalua-

tion measures were obtained. All computations in this study were obtained using

R software and the associated packages (Kuhn et al., 2008; Kuhn, 2012, 2015) and

https://topepo.github.io/caret/available-models.html, see Tables 2.3 and 2.4.

2.4.2 Statistical Performance Evaluation Results

The statistical performance evaluation results for the proposed techniques in this

chapter, presented in Tables 2.3 and 2.4, are shown to be promising, owing to

the empirical evidence of useful predictability. The out-of-sample positive class

return forecasts are depicted in Figures 2.1 to 2.6. In the benchmark binary pro-

bit models, the predictive accuracy of the static binary probit model involving

all covariates appeared to be very low with insignificant evidence of PT direc-

tional predictability, and the kappa statistic is extremely poor, indicating a poor

inter-rater agreement between the actual and predicted values. Whereas the ap-

plication of stepwise variable selection by the Akaike information criterion (AIC)

on the static model seeks to improve the predictive accuracy, it does not provide

statistically significant evidence of directional predictability and the kappa statis-

tic is still low. The dynamic binary probit, which includes the lagged excess stock

return indicator together with the other predictor variables, produced a slightly

better predictive accuracy as compared to the static probit.
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Again, the application of stepwise variable selection by AIC on the dynamic

probit results in a slight increase in the predictive accuracy and the result equals

the result of the stepwise static binary probit. The analysis of the static and

dynamic binary probit models revealed that a parsimonious approach is prefer-

able to incorporating many predictors in the models. The replication of the static

and dynamic binary probit models used in the previous findings, as shown in

the existing literature, such as in Nyberg (2011), had confirmed the feasibility of

these models for excess stock return directional predictability. Interestingly, the

empirical analysis of the static and dynamic binary probit models in this chap-

ter produced predictive accuracy (CPRs) equivalent to the CPRs of these models

demonstrated by Nyberg (2008), Nyberg (2011) and investigate other important

statistical performance measures, such as the kappa statistic, which determines

inter-rater agreement between the actual results and the forecasts, and the Mc-

Nemar’s test for the detection of marginal homogeneity or equiprobability.

Turning to penalized binary probit models, the inclusion of penalty vector

norm(s) in the ordinary binary probit models revealed a good improvement in

predictive performance of the models. Specifically, the ridge, LASSO and elastic

net provide higher predictive accuracy, which outperformed the benchmark binary

probit models, with Ridge being statistically significant at 0.1%, EN at 1% and

LASSO at 5%, with better inter-rater agreement between the actual results and

the forecasts, as judged by the kappa statistic, and McNemar’s pvalue evidence of

marginal heterogeneity. The penalized probit models also produced better preci-

sion, specificity, sensitivity and F1 scores compared to the ordinary probit models.

The ridge produced a better predictive accuracy and other statistical performance

evaluation measures than the LASSO and elastic net, outperforming both the

LASSO and the elastic net in this direction. Overall, the presence of the `1 and

`2 penalty vector norms in the binary probit models appeared to improve the

predictive task and the overall performance of the resulting models.

The models employed for forecasting the direction of the U.S. stock market
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Binary Probit Models
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Figure 2.1: Graphical Representation of the Out-of-Sample Positive Class Return
Forecasts
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Penalized Binary Probit Models
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Figure 2.2: Graphical Representation of the Out-of-Sample Positive Class Return
Forecasts continued
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Best Discriminant Analysis Classifiers

Time

O
ut

−
O

f−
S

am
pl

e 
P

os
iti

ve
 R

et
ur

n 
C

la
ss

 F
or

ec
as

ts

1990 1995 2000 2005 2010 2015

0.
0

0.
2

0.
4

0.
6

0.
8

HDDA_Classifier

QDA_Classifier

RDA_Classifier

Figure 2.3: Graphical Representation of the Out-of-Sample Positive Class Return
Forecasts
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Best Bagging & Boosting Classifiers
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Figure 2.4: Graphical Representation of the Out-of-Sample Positive Class Return
Forecasts continued
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Bayesian Classifiers
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Figure 2.5: Graphical Representation of the Out-of-Sample Positive Class Return
Forecasts continued
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kNN, DWD & NNET
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Figure 2.6: Graphical Representation of the Out-of-Sample Positive Class Return
Forecasts continued
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in this chapter demonstrate both the feasibility of the models and significant evi-

dence of outperformance over the benchmark probit models. With the exception

of LogitBoost, neural networks, LDA and HDA, all other classifiers in this chapter

are shown to have outperformed the benchmark binary probit models by statis-

tical performance evaluation measures. In more detail, seven of the proposed

methods outperform the benchmark probit models at 0.1%, five methods at 1%

and four methods at 5%. It is noticeable that the introduction of the stepwise

variable selection concept in the LDA model improved the predictive task and

the resulting statistical performance of the LDA model, whereas the introduc-

tion of the stepwise concept in the QDA model worsened the predictive task and

overall performance of the QDA model. The empirical analysis in this study con-

firmed the superior outperformance of random forest (RF) over other forest based

classification models in financial analysis, as shown in Ballings et al. (2015). Bag-

ging and boosting, as demonstrated by Zheng (2006) in other aspects of stock

market analysis, also appeared to have outperformed the neural networks in this

study. Unlike the benchmark binary probit models, the three sophisticated ma-

chine learning classification models, i.e., random forest, HDDA and QDA, provide

fair inter-rater agreement between the actual results and the forecasts, as shown

by their respective kappa statistic. The HDDA appeared to produce the best

out-of-sample statistical performance evaluation results, followed by naive Bayes,

and the QDA, with significant evidence of outperformance. Overall, the HDDA is

the best model for predicting the direction of the U.S. stock market in terms of

statistical measures of predictability.

2.4.3 The Economic Performance Evaluation Results

As in the statistical case, the economic performance evaluation results, presented

in Tables 2.5 and 2.6, also revealed that the dynamic binary probit model pro-

duced better cumulative returns, Sharpe ratio (SR), MaxDD, Omega, Sortino

Ratio and Upside Potential than the static binary probit, and the stepwise vari-
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able selection cases by AIC, in each case, appeared to yield even better economic

evaluation results than the ordinary case. The penalized binary probit models

(ridge, LASSO and elastic net) produced better cumulative returns, SR, MaxDD,

Omega, Sortino and Upside than the ordinary binary probit models and, hence,

demonstrate economically significant evidence of outperformance over the bench-

mark binary probit. For example ridge has SR equal to 0.642 while the static

probit has SR equal to 0.271. Interestingly, all the penalized binary probit mod-

els outperformed the benchmark static and dynamic binary probit models in this

chapter. Again, the ridge outperformed the LASSO and elastic net in terms of the

economic significance measure and seems to provide better economic information

on future investment outcomes to a stock market investor than the LASSO and

elastic net. All the CART models that are shown to be promising in terms of

statistical predictability in this chapter are also shown to be promising in terms of

economic significance to portfolio investors. The effectiveness of Bagging (Boot-

strap Aggregating), Boosting, Trees, Forests, Naive Bayes Discriminant Analysis

models and other ensembles that were demonstrated to be useful in other concepts

of financial analysis are also shown to be useful in forecasting the direction of the

U.S. excess stock market returns and providing portfolio investors with better eco-

nomic significance about the future outcome of investments in the stock market.

The Random Forest method produced the highest SR (0.643) among the bagging

and boosting models and by far greater than the static probit model (0.271). It is

worth noting that a best performing model in terms of the statistical measure may

not necessarily reflect the best performance in the economic significance measure.
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Contrary to the statistical performance analysis, the HDDA does not corre-

spondingly provide the best economic performance result; instead the QDA pro-

duced the highest cumulative return, SR, Omega, Sortino and Upside with a cor-

responding least MaxDD. QDA gives SR equal to 1.077 (almost four times the SR

of static probit), while HDDA produces SR equal to 0.831. Although the HDDA

also demonstrates good evidence of economic significance and appeared to have

outperformed the other models in terms of some useful economic performance eval-

uation measures, another suitable benchmark comparative measure of economic

significance on portfolio investment by investors is to compare the expected return

on portfolio investment produced by the model with a buy and hold trading strat-

egy of the SP500 index. In this case, we see that the simple probit models do not

outperformed the buy and hold strategy. However, the penalized probit models

and the prominent CART models (for example, HDDA, QDA, RDA and Naive

Bayes) outperformed the buy and hold strategy, providing higher risk-adjusted

returns.

Interestingly, the prominent CART models used in this chapter have econom-

ically outperformed the benchmark binary probit models and the buy and hold

trading strategy with a significant margin. Overall, the QDA appeared to be the

best economically significant model for forecasting the direction of the U.S. stock

market out-of-sample.

2.5 Conclusion

The analysis of the benchmark binary probit models in this chapter corroborates

the empirical findings in previous studies, especially in Nyberg (2008), Nyberg

(2011). In this chapter, additional statistical and economic performance evaluation

measures were introduced to investigate the long-run usefulness of these models

in the financial stock market.

The empirical analysis in this chapter revealed that the proposed sophisticated

machine learning techniques outperformed the benchmark binary probit models
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both statistically and economically. In terms of the statistical predictive accuracy,

the best penalized binary probit model outperformed the best binary probit model

by 5.5% and the best CART model outperformed the best binary probit model by

7.4%.

In terms of statistical performance evaluation measures, the HDDA appeared

to be the best model for forecasting the direction of the U.S. stock market in this

chapter, owing to its highest predictive accuracy with minimum misclassification

error (MCE) and other resulting statistical measures. Adding to the previous

analysis in the existing financial and econometric literature, the Kappa statistic

was used in this chapter to investigate the inter-rater agreement between the actual

values and forecasts produced by the various models. The Kappa statistic revealed

that there is no inter-rater agreement between the actual values and the forecasts

obtained by the static and the dynamic binary probit models. Interestingly, the

RF, QDA and HDDA proposed in this chapter provide evidence of fair inter-rater

agreement between the actual values and the forecasts produced by the models.

However, the QDA appeared to be the best model in terms of the measures of

economic significance in this chapter. The QDA seems to provide more economic

value to guarantee the success of a portfolio manager in the stock market than the

other models used in this chapter.

Overall, the HDDA is the best model for forecasting the direction of the U.S.

stock market out-of-sample in terms of statistical predictability measures, while

the QDA is the best economically significant model for a portfolio investor whose

utmost goal is to minimise risk and maximize profit, based on the empirical ana-

lytical findings in this chapter.

2

2This chapter is published in a reputable international journal, as follows:
Iworiso, J. & Vrontos, S. (2019). On the Directional Predictability of Equity Premium Using
Machine Learning Techniques. Journal of Forecasting, 1-21. https://doi.org/10.1002/for.2632
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Chapter 3

Forecasting the U.S. Equity

Premium with Regression

Training Techniques

3.1 Introduction

The out-of-sample predictability of equity premium is a major confrontational re-

search issue with controversial views among scholars in empirical finance. The

challenge about expectation of the stock market delivery to mean-variance in-

vestors above the treasury bill rate led to the quest for a meaningful estimate of

the equity premium (Campbell, 2008). The historical average model is seen as an

old-fashioned efficient market theory for forecasting the equity premium, owing to

the inconsistent forecasts comparative to the real-time market setting. Empirical

literature have documented that several financial and economic variables used as

potential predictors can only forecast the equity premium in-sample but are unable

to deliver significantly superior out-of-sample forecasts relative to the benchmark

global historical average out-of-sample forecasts, and hence the research question:

can anything consistently beat the historical average out-of-sample? (Campbell

and Thompson, 2005; Goyal and Welch, 2007). The historical average is used as

a benchmark for comparing the performance of any model whose forecasts are es-
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timated via expanding or rolling window in an out-of-sample fashion, from which

the relevant statistical measures of forecastability can be evaluated. In this re-

gard, any model whose relevant statistical measures outperformed those obtained

with the benchmark historical average is said to beat the historical average out-

of-sample.

This chapter focuses mainly on the application of sophisticated regression train-

ing (RT) techniques to forecast the U.S. monthly equity premium out-of-sample

recursively. It involves the training of a regression model which comprises all

relevant financial and economic variables rather than using fewer or individual

variables, and then using the resulting sophisticated model together with the best

tuning parameters to forecast the equity premium. We employed a broad cate-

gories of regression models, which includes, kitchen sink linear model, partial least

squares regression, kernel-based regularized least squares, support vector regres-

sion, relevance vector regression, regularized or penalized regression, components

regression, Gaussian processes regression, regression splines, rule-based regression,

nearest neighbour, projection pursuit, and neural networks. A major advantage

of the RT techniques is that all predictor variables are regarded as important

variables before preprocessing in the course of training the model and the result-

ing fitted or trained model decides variable importance associated with the final

cross-validated model.

The application of these RT forecasting models in this perspective is expected

to beat the old-fashioned benchmark historical average. Hopefully, the output of

this study will enrich empirical literature and fills the research gap by addressing

the controversial arguments between scholars on the predictive ability of financial

and economic predictor variables in forecasting the U.S. equity premium out-of-

sample relative to the benchmark historical average. In particular, the significant

RT out-of-sample forecasting models among these RT models aimed to provide

meaning information to a mean-variance portfolio investor in a real-time setting

who optimally reallocates a monthly portfolio between equities and risk-free trea-
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sury bill.

3.2 Literature Review

The predictability of equity premium is drawing a keen interest in modern finan-

cial and econometric research. By definition, the equity premium is the difference

between the expected return on the market portfolio (SP500) and the risk free

interest rate. It is the return that investors can expect from holding the mar-

ket portfolio in excess of the return on the 3-month Treasury bills. In finance,

it is considered to be the most important concept owing to portfolio allocation

decisions and cost of capital estimates. The backbone of investment strategies de-

pends on the ability to predict future returns but the forecastability itself does not

necessarily guarantee the investor’s profit from the trading strategy based on the

resulting forecasts (Campbell and Thompson, 2005; Bai, 2010). Thus the quest for

a reasonable precise estimate of the equity risk premium by a number of scholars

in the financial business cycle.

Several empirical literature have demonstrated evidence in forecasting equity

premium and evaluating their performance in an attempt to determine both sta-

tistical and economic significance, see among others (Polk et al., 2006; Goyal and

Welch, 2007; Campbell and Thompson, 2007; Della Corte et al., 2010; Kellard

et al., 2010; Baur and Löffler, 2015; Aye et al., 2016; Kolev and Karapandza,

2017; Avdis and Wachter, 2017). A notable argument in this perspective, over the

years, is the critical examination of any other predictive model that can signifi-

cantly outperform the so-called benchmark historical average forecasting model.

One of the academic debating questions in modern review of financial studies is

that: can any other empirical model accurately forecast the equity premium bet-

ter than the forecasts from the historical mean? Goyal and Welch (2007) have

argued previously that no other variable beats a simple forecast based on the his-

torical mean, owing to the fact that in-sample correlations conceal a systematic
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failure of the financial and economic variables out-of-sample. Contrary to this

view, the analysis made by Rapach et al. (2007) reveals that despite the failure

of the individual model forecasts to outperform the historical mean forecasts, the

combination of the individual model forecasts yield statistically and economically

significant gains, relative to the historical mean, consistently over time. Although

some of the indicators used as predictors appeared to be good statistically signifi-

cant predictors of the equity premium in-sample at some specific horizons but are

relatively poor in the out-of-sample forecasting ability. Fama and French (2002)

on the other hand, verified analytically that the estimates from economic fun-

damentals especially the dividend growth model, produced lower standard errors

resulting to better precision than the estimates from the historical average model.

The variety and inconsistency in performance as shown by different scholars could

be traceable to the choice of predictor variables, the frequency of the dataset (an-

nually, quarterly, monthly, weekly or daily), the estimation period, the forecast

horizon and the specific models used by the researcher.

The notion on poor predictive performance of these variables in existing litera-

ture prompt Goyal and Welch (2003) to investigate the cause of the poor predictive

ability using dividend ratio as a typical predictor variable. The finding clarifies

that the poor predictive ability is mainly caused by instability of parameters in the

models. The in-sample tests provide better explanatory power than the counter-

part, and hence, a good in-sample performance does not necessarily imply a good

out-of-sample performance. Notwithstanding the out-of-sample weak explanatory

power, they seems to be economically meaningful for investors. Controversial to

some existing literature in U.S. financial studies, Kellard et al. (2010) have demon-

strated statistical evidence that the UK dividend ratios possess some predictive

ability for equity premium, and that FTSE All-Share dividend ratios have rela-

tively strong forecasting power than the S&P500 dividend ratios over the whole

sample period. Campbell and Thompson (2007) argued that the empirical models

can produce useful out-of-sample forecasts by restricting the model parameters.

83



Comparative to this argument, the kitchen sink regression models incorporating

the relevant financial and economic variables do not only fail to beat the uncon-

ditional benchmark historical mean in a statistically significant approach for over

three decades; also underperformed the prevailing forecasting model especially in

the out-of-sample case, and concluded that the underperformed models could not

guarantee investors with profitable information to time the market (Goyal and

Welch, 2007).

The exploration of economic variables versus technical analysis is another cru-

cial discourse in forecasting equity premium. The findings made by Neely et al.

(2010) suggests that both economic fundamental and moving average rules provide

statistical and economic significant evidence of forecasting gains in different pro-

portions which appeared mostly in the U.S. business cycle recession periods. The

resulting evidence for the forecasting gains produced by both techniques seems to

be significant to a mean-variance investor. Neely et al. (2014) confirmed that both

technical indicators and macroeconomic variables displayed statistically and eco-

nomically significant evidence of in-sample and out-of-sample forecasting ability,

with the technical indicators seemingly outperforming the macroeconomic vari-

ables. The empirical analysis suggests that the combination of both technical

indicators and macroeconomic variables will significantly improve the equity risk

premium forecasts rather than using either of the two information only. As a

follow-up to the robustness of this finding, Baetje and Menkhoff (2016) argued

that the predictive abilities of both indicators seem to possess similar quality

when assessed by their respective long term forecast errors. Unlike the economic

indicators that loses predictive ability on a long run, the technical indicators main-

tain or increase stability over time, and hence, the technical indicators consistently

outperformed the economic indicators over time. The empirical findings in Rapach

et al. (2010) confirmed that combination of forecasts yields statistically and eco-

nomically significant out-of-sample gains consistently on a long run, as compared

to the benchmark historical average. Thus, the forecasts combination approach
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maintains a long run statistical and economic stability in this direction.

In an attempt to determine the role of macroeconomic risk to the declining na-

ture of the equity premium, Lettau et al. (2007) argued that a decline in macroe-

conomic risk leads to a fall in future equity risk premium, resulting to a boom

in stock prices in the model economy. The introduction of economic constraints

on the sign of coefficients and return forecasts, and the imposition of statistical

constraints through shrinkage estimators in the out-of-sample models by Li and

Tsiakas (2017) appeared to outperformed both the models conditioning the eco-

nomic fundamentals and technical indicators. Lee et al. (2015) added that the

asymptotic properties constrained local historical mean estimators appeared to

minimize the asymptotic variance and the mean squared errors. The substan-

tial nonlinearity is controlled by the local historical mean, and the local positive

constraint improves the equity premium out-of-sample forecasts.

The application of bagging (bootstrap aggregation) to smooth parameter re-

strictions (positivity of the regression coefficients and positivity of the forecasts)

by Hillebrand et al. (2009), Hillebrand et al. (2014) produced lower forecast errors

than the forecast errors from the simple restricted and benchmark historical aver-

age models. In light of the empirical analysis in Rapach et al. (2010), Hillebrand

et al. (2014) added that although simple forecasts combination do consistently

well, but are not best at all times, owing to the noticeable improvement by in-

troduction of bagging constraints. This led to the recommendation that forecasts

combination could be improved by bagging. The outperformance of some notable

techniques over the benchmark historical average, as mentioned in the existing

literature suggests that the regression training techniques will play enormous role

in forecasting the U.S. monthly equity premium. The application of sophisticated

regression training techniques in this research is proposed to fill the identifiable

gaps in the existing empirical literature, and to yield more consistent recursive

out-of-sample forecasts with significant economic gains. Thus, the outcome of this

research shall enrich empirical literature on forecastability of future equity pre-
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mium and to guarantee investor’s profit in the financial market.

3.3 Methodology

3.3.1 The Historical Average

Given a univariate time series {yt}Tt=1, with yt denoting the monthly equity pre-

mium. The historical average (HA) model is defined as follows:

yt+1 = β + εt+1 (3.1)

where β is a parameter representing the intercept; εt is a zero mean disturbance

term; t = 1, 2, ..., T (Campbell and Thompson, 2005; Lee et al., 2015). The least

squares estimator (LSE) of the historical average is as follows:

β̂HALSE =
1

T

T∑
t=1

yt

which implies that the forecast for ŷT+1 is given by:

ŷT+1|T =
1

T

T∑
t=1

yt

where β̂HALSE is the parametric estimator of β.

3.3.2 The Least Squares Regression Training

3.3.2.1 Kitchen Sink Model

Given a training dataset {yt, xt,1, xt,2, ..., xt,k}Tt=1 of T statistical units, then a

kitchen sink predictive linear model takes the form:

yt+1 = β0 + β1xt,1 + β2xt,2 + ...+ βkxt,k + εt+1 t = 1, 2, ..., T (3.2)
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where yt+1 is the equity premium at t + 1 (Rapach et al., 2010); xt,1, xt,2, ..., xt,k

are the predictor variables available at the end of t used to predict yt+1; β0 is a

constant term representing the intercept; β1, β2, ..., βk are the model coefficients;

εt+1 is a zero mean disturbance term (Goyal and Welch, 2007).

The above model can be represented in matrix form, as follows:

y = Xβ + ε (3.3)

where y is a T × 1 vector of observed values; X is T × (k+ 1) matrix of predictor

variables; β is (k + 1) × 1 dimensional parameter vector; ε is T × 1 zero mean

vector of disturbances.

If the parameters β = (β0, β1, ..., βk) are estimated by OLS, then the linear model

(LM) forecasts can be obtained from the resulting kitchen sink predictive model:

ŷT+h(β̂
OLS) = X′T+h−1β̂

OLS (3.4)

where β̂OLS = (X′X)−1X′y is the OLS estimate of β.

3.3.2.2 The Partial Least Squares

The partial least squares (PLS) regression finds a set of latent vectors or compo-

nents that performs a simultaneous decomposition of X and y with the constraint

that these components explain as much as possible the covariance between X and

y. The latent vectors obtained from X are used to predict y, where X is T × k

matrix of T inputs and y is T × 1 vector of response values.

Following the decomposition of X and y as a product of common set of orthogonal

factors and a set of specific loadings, the predictor variables are decomposed as

follows:

X = SL′ with S′S = I (3.5)
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where I is the T × T identity matrix; S is the T × k score matrix; L is the non-

orthogonal loading matrix with column vector of loadings k (Abdi, 2010).

Given two sets of weights w and w∗, associated with a linear combination of the

columns of X and y, to attain maximum covariance. Our aim is to obtain a first

pair of latent vectors s and u in the form:

s = Xw and u = yw∗ (3.6)

with constraints w′w = 1, s′s = 1 and s′u is maximal; where w denotes the k× 1

weight vector; s and u denote the T × 1 latent vectors respectively. When the

first latent vector is obtained, it will be subtracted from both X and y and the

procedure is re-iterated until it becomes a null matrix.

Using the nonlinear iterative partial least squares (NIPALS) algorithm, we create

two matrices E = X and F = y, which are then column centred and normalized;

where E is T × k matrix of T inputs and F is T × 1 vector of responses. The

NIPALS algorithm takes the form (Rosipal and Trejo, 2001; Abdi, 2010):

Step 1: randomly initialize u (estimate X weights)

Step 2: w = E′u (estimate X factor scores and normalize)

Step 3: s = Ew, s← s
||s|| (estimate y weights)

Step 4: w∗ = F′s (estimate y scores)

Step 5: u = Fw∗, u← u
||u||

Step 6: repeat steps 2 and 5 until s converges

Step 7: deflate matrices E and F in the form E = E− s`′ and F = F− bsw∗′

where b = s′u is the value of b used to predict y from s; ` = E′s represent the

factor loadings for X.

The vectors s,u,w,w∗ and ` are then stored in the corresponding matrices and

the scalar b is stored as a diagonal element of the regression coefficients β.
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If E becomes a null matrix, then the whole set of latent vectors is obtained,

otherwise the procedure is re-iterated from step 2 onward.

Thus, the response variable is predicted using the resulting regression model:

ŷ = SβΛ′ = XβPLS with βPLS = (L′+)βΛ′ (3.7)

where L+ is the T × k matrix of the Moore-Penrose pseudo-inverse of L (Abdi,

2010); βPLS is a k × 1 vector of the diagonal matrix of the PLS regression coeffi-

cients; Λ = (w∗1, w
∗
2, ..., w

∗
k)
′ is a k × 1 vector of weights.

KernelPLS

Consider a nonlinear transformation function of the k-dimensional input variables

x into a feature space F , defined by Φ : x ∈ Rk → Φ(x) ∈ F , where Φ is an

T × k matrix of regressors. The kernel PLS algorithm is obtained by modifying

the NIPALS algorithm using the matrix Φ of mapped input data (Rännar et al.,

1994; Rosipal and Trejo, 2001):

Step 1: randomly initialize u

Step 2: s = ΦΦ′u, s← s
||s||

Step 3: w∗ = y′s

Step 4: u = yw∗, u← u
||u||

Step 5: repeat steps 2 and 5 until s converges

Step 6: deflate ΦΦ′ matrix and y vector respectively in the form: ΦΦ′ = (Φ −

ss′Φ)(Φ− ss′Φ)′ and y = y− ss′y.

We can apply the kernel trick Φ(xi)
′Φ(xj)

′ = Γ(xi, xj), where ΦΦ′ represents

the k × k kernel Gram matrix Γ of the cross dot product between all mapped

input data points {Φ(xi),Φ(xj)}ki,j=1. The deflation of the ΦΦ′ = Γ matrix after
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extraction of s component is as follows:

Γ← (I − ss′)Γ(I − ss′) = Γ− ss′Γ− Γss′ + ss′Γss′ (3.8)

where I is an k-dimensional identity matrix.

The matrix of the regression coefficients will take the form:

B = Φ′U(S ′ΓU)−1S ′y (3.9)

and the prediction on the test data takes the form:

ŷ = ΦB = ΓU(S ′ΓU)−1S′y = SS′y (3.10)

where the last part of the equation follows from the fact that the matrix of the

components S may be expressed as S = ΦR with R = Φ′U(S′ΓU)−1; U is T × k

matrix of extracted components (Rosipal and Trejo, 2001).

Thus, the solution of the kernel PLS regression is as follows:

PLSkernel(x, π) =
k∑

i,j=1

πiΓ(xi, xj) (3.11)

where πi = U(S′ΓU)−′S′y is a k × 1 vector of partial least square estimators;

Γ(xi, xj) = e−
||xi−xj ||

2

σ2 , ||xi − xj|| is the Euclidean distance between xi and xj,

σ2 ∈ R+ is the bandwidth of the kernel function.

The wide kernel PLS (WideKernelPLS) takes the same form as the kernel PLS

but differs in the number of components (ncomp) used as tuning parameter(s) of

the model. The ncomp in the WideKernelPLS is usually less than the ncomp from

the kernel PLS.
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SparsePLS

The objective function for the first sparse PLS direction vector can be formulated

by adding an `1 penalty norm constraint to the PLS model (3.6), with modification

to obtain the following:

max
w

(w′Mw) subject to w′w = 1, |w| ≤ α (3.12)

where M = X′yy′X is a T × T matrix and α determines the amount of sparsity.

In order to obtain a sufficiently sparse solution, a generalization can be made that

achieves the sparsity by imposition of an `1-penalty norm onto a surrogate of the

direction vector w∗, instead of the original direction w, while keeping w and w∗

close to each other, and it takes the form (Chun and Keleş, 2010):

min
w,w∗
{−κw′Mw+(1−κ)(w∗−w)′M(w∗−w)+α1||w∗||1+α2||w∗||22} subject to w′w = 1

(3.13)

where κ is a thresholding parameter which represents the weight factor; α1 and

α2 are the parameters regulating the amount of sparsity; ||w∗||1 is the `1-penalty

norm which encourages the sparsity on w∗; ||w∗||2 is the `2-penalty norm which

addresses the potential singularity in M when solving for w∗.

We can obtain a solution of the generalized SPLS by alternatively iterating be-

tween solving for w when w∗ is fixed and solving for w∗ when w is fixed.

In the first case, the objective function becomes:

min
w
{−κw′Mw + (1− κ)(w∗ −w)′M(w∗ −w)} subject to w′w = 1 (3.14)

and when 0 < κ < 1
2
, then we obtain:

min
w
{(Z′w− κ̂Z′w∗)′(Z′w− κ̂Z′w∗)} subject to w′w = 1 (3.15)
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where Z = X′y is a T × 1 vector and κ̂ = (1−κ)
(1−2κ)

(Chun and Keleş, 2010).

Thus the resulting constrained least squares problem can be solved via the method

of Lagrange multipliers and the solution is as follows:

w = κ̂(M + α∗I)−1Mw∗ (3.16)

where the multiplier α∗ is the solution of w∗′M(M + αI)−2Mw∗ = κ̂2.

Following Zou et al. (2006), for κ = 1
2
, the objective function reduces to −w′Mw∗

and the solution is w = Uv′, where U and v are obtained from the singular value

decomposition of Mw∗.

In the second case in which we solve for w∗ when w is fixed, the minimization

problem becomes:

min
w∗
{(Z′w∗ − Z′w)′(Z′w∗ − Z′w) + α1||w∗||1 + α2||w∗||22} (3.17)

which is equivalent to the naive elastic net optimization problem proposed by Zou

and Hastie (2005). It can be solved efficiently via the least angle regression algo-

rithm proposed by Efron et al. (2004) when the expression Z′w replaces y in the

naive elastic net.

3.3.2.3 The Kernel-Based Regularized Least Squares

Let Γ be T × T symmetric kernel matrix whose ith and jth entry is denoted

by γ(xi,xj), measuring the pairwise similarities between each of the k covariate

vectors xi,xj. Let (β1, β2, ..., βT )′ be T × 1 vector of choice coefficients and let

y = (y1, y2, ..., yT )′ be T × 1 vector of the outcome values. Then a mathematical

relationship in the training dataset exists in vector form (Hainmueller and Hazlett,
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2013):

y = Γβ =



γ(x1, x1) γ(x1, x2) · · · γ(x1, xT )

γ(x2, x1) γ(x2, x2) · · · ...

...
...

. . .

γ(xT , x1) γ(xT , x2) · · · γ(xT , xT )





β1

β2

...

βT


(3.18)

We can employ the regularization proposed by Tychonoff (1963) to consider both

model fit and the model complexity by choosing:

argmin
ψ∈H

T∑
t=1

(
L(yt, ψ(xt))

)
+ λR(ψ) (3.19)

where L(yt, ψ(xt)) is a loss function which computes how wrong the function is at

each observation; H is hypothesis space of possible functions; R is a regularizer

measuring the complexity of the function ψ; and λ ∈ R+ is a parameter that

determines the trade off between the model fit and complexity.

By choosing L as the squared loss function, and the regularizer R as the square

of the `2-norm, we obtain:

〈ψ, ψ〉H = ||ψ||2Γ =
∑
i

∑
j

βiβjγ(xi,xj) = β′Γβ (3.20)

(Schölkopf et al., 2002; Ferwerda et al., 2017).

The hypothesis space H is the space of functions defined by y = Γβ, and the

optimization problem results to:

β∗ = argmin
β∈Rk

(y− Γβ)′(y− Γβ) + λβ′Γβ (3.21)

for which y∗ = Γβ∗ gives the fitting approximation, and the conditional expec-

tation function E[y|X,λ] holds for a fixed λ (Ferwerda et al., 2015, 2017). This

minimization is equivalent to a ridge regression.

Thus a closed-form solution is obtained from the optimization problem by taking

the first derivative of the objective function with respect to β, and solving the
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resulting first order conditions, which eventually gives:

β∗ = (Γ + λI)−′y (3.22)

where I is a T × T identity matrix.

The radial basis and polynomial kernel functions of the KRLS are as follows:

Γ(xi,xj) =


e−
‖xi − xj‖2

η2
, radial basis function

(xi · x′j + 1)d, polynomial function

(3.23)

where η denotes the kernel parameter; d denotes the kernel degree for the polyno-

mial.

3.3.3 The Support Vector Regression

The support vector regression (SVR) is an extension of support vector machines

(SVM) proposed by Boser et al. (1992).

Let {(xt, yt)}Tt=1 be a training data set with {(xt)}Tt=1∈ Rk as observation samples

of k predictor variables, and {(yt)}Tt=1∈ R as observation samples of the response

variable, for t = 1, 2, ..., T . Then there exists a linear relationship of the form:

f(x) = w′ϕ(x) + b∗ (3.24)

where w is the weight vector; x is a vector of regressors; b∗ is a bias constant term

(Kazem et al., 2013).

The task is to train the model to learn the data using a training sample and

obtain the final model that can generalize the entire population. In this sense, the
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parameters of the SVM model are estimated by minimizing:

min
b∗∈R

{
1

2
‖w‖2 + λ

T∑
t=1

(τt + τ ∗t )

}

subject to


yt − (w′ϕ(x) + b∗ ≤ ε+ τt

and

(w′ϕ(x) + b∗ − yt ≤ ε+ τ ∗t ; τt, τ
∗
t ≥ 0

where ‖w‖ is the Euclidean weight vector norm; λ is the regularization constant

determining the trade off between the training error and model complexity; τt, τ
∗
t

are slack variables controlling the model via the penalty factor, λ; ε is the tube

size of the SVM model (Nalbantov et al., 2006; Plakandaras et al., 2015).

The minimization of the objective function of the SVR model can be represented

as a maximization problem in dual form:

max

{
−1

2

T∑
t,s=1

(αt − α∗t )(αs − α∗s)Γ(xt,xs) +
T∑
t=1

(αt − α∗t )yt − ε
T∑
t=1

(αt + α∗t )

}

subject to 0≤ αt, α
∗
t ≤ λ;

∑T
t=1(αt−α∗t ) = 0, 1 = 1, 2, 3, ...T for the inequalities.

where Γ(xt,xs) is the kernel function; αt and α∗t are non zero Lagrangian multi-

pliers representing the solution to dual maximization problem (Nalbantov et al.,

2006). The kernel function results to an inner product, which can be extended to

other kernel functional forms.

Thus, the minimization of the objective function results to the following regression

estimates:

f(x) =
T∑
t=1

(α∗t − αt)Γ(xt,xs) + b∗ (3.25)

The minimization of the objective function can be done via the sequential min-

imal optimization (SMO) algorithm, see (Wen et al., 2018):
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The SMO Algorithm for Support Vector Regression
Input =⇒ a training set with T data point

Output =⇒ an optimal weight vector w

Step 1: Initialize wt and Ft, for t← 1 to T

Step 2: wt ← 0, Ft ← ytλ

Step 3: Repeat 1 and 2

Step 4: Search for Fu and determine u

Step 5: Compute kernel values Γu

Step 6: Search for Fv and determine v

Step 7: Compute kernel values Γv

Step 8: Update wu and wv

Step 9: Update F

Step 10: Search for Fmax

Step 11: Until Fu < Fmax

The distinct kernels for the SVM are as follows:

Γ(xi,xj) =


x′ixj, linear function

e−ψ ‖xi − xj‖2, radial basis function

(ψx′ixj + η)d, polynomial function

(3.26)

where ψ, η are kernel parameters; d is the degree of the polynomial in the polyno-

mial kernel function (Plakandaras et al., 2015).

3.3.4 Relevance Vector Regression

The relevance vector machine (RVM) applied multi kernel functions to a sparse

linear model employing Bayesian inference to obtain parsimonious solutions for

regression and probabilistic classification.
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Let {(x1,=1), (x2,=2), ...,xt, (=t), ..., (xT ,=T )} be a training data set for RVM

learning process, where {xt}Tt=1∈ Rk denotes the k-dimensional input vector of

predictors and {=t}Tt=1∈ R denotes the target outputs. The regression function of

the RVM consisting of linear combination of the weighted kernel functions is as

follows:

= = y(x; w) =
T∑
t=1

wtΓ(x,xt) + w0 (3.27)

where w is a T ×1 vector of weight parameters; Γ(x,xt) is a kernel basis function;

w0 is a bias term (Cummins et al., 2015; Lou et al., 2016).

The likelihood of all the data is obtained from the following product:

Pr(=|σ2) = (2πσ2)

T

2 exp

(
−||= − Φw||2

2σ2

)
(3.28)

where w = (w0, w1, w2, ..., wT )′; Φ = (φ(x1), φ(x2), ..., φ(xT ))′; and

φ(xj) = [1,Γ(xj,x1),Γ(xj,x2), ...,Γ(xj,xT )]′.

Let αt be separate hyperparameter for each of the weight parameters wt, so that

the weight prior will be defined as follows:

Pr(w|α) =
T∏
t=0

αt√
2π
exp

(
−αtw2

t

2

)
for α = (α1, α2, ..., αT ) (3.29)

The posterior distribution over all the unknown parameters can be obtained from

the Bayes’ rule:

Pr(w, α, σ2|=) =
Pr(=|w, α, σ2)Pr(w, α, σ2)

Pr(=)
(3.30)

Let x∗ be a new test vector of predictor, then we can obtain a prediction for the

corresponding target =∗ in terms of the predictive distribution, defined as follows:

Pr(=∗|=) =

∫
Pr(=∗|w, α, σ2)Pr(w, α, σ2|=)dwdαdσ2 (3.31)
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The posterior Pr(w, α), σ2|=, can be decomposed as follows:

Pr(w, α), σ2|= = Pr(w|=, α, σ2)Pr(α, σ2|=) (3.32)

The posterior distribution over the weights is defined as follows:

Pr(w|=, α, σ2) =
Pr(=|w, σ2)Pr(w|α)∫
Pr(=|w, σ2)Pr(w|α)

= (2π)
−
(T + 1

2

)
|Σ|
−

1

2 exp

(
−(w− µ)′Σ−1(w− µ)

2

)
(3.33)

where µ = σ−2ΣΦ′= is the posterior mean; Σ = (D + σ−2Φ′Φ)′ is the posterior

covariance; D = diag(α0, α
1, ..., αT ) (Tipping, 2001; Huang and Wu, 2008; Lou

et al., 2016; Zhou et al., 2017). Thus, the estimated value of RVM model weights

is the maximum posterior (MP) estimate of the weights.

The marginal likelihood for the hyperparameter can be obtained by integrating

the weights, as follows:

Pr(=|α, σ2) = (2π)
−
T

2 |Σ|
−

1

2 exp

(
−=′Σ−1=

2

)
(3.34)

where Σ = σ2I + ΦD−1Φ.

Our aim is to maximize the likelihood for the hyperparameters with respect

to α and σ2. For a new vector of predictors x∗, the predictive distribution can be

computed as follows:

Pr(αMP , σ
2
MP ) = arg maxα,σ2 Pr(α, σ2|=) (3.35)

and the probability distribution for the corresponding output is:

Pr(=∗|=, αMP , σ
2
MP ) =

∫
Pr(=∗|w, αMP , σ

2
MP )Pr(w, αMP , σ

2
MP |=)dw (3.36)
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where both terms in the integrand are Gaussian; and MP is maximum posterior

(Lou et al., 2016).

Thus, we obtained the final predictions as follows:

Pr(=∗|=) ≈ N(=∗|y∗, σ2
∗) and y∗ = µ′Φ(x∗) (3.37)

where σ2
∗ = σ2

MP+Φ(x∗)
′ΣΦ(x∗); and Φ(x∗) = [1,Γ(x∗,x1),Γ(x∗,x2), ...,Γ(x∗,xT )].

The multiple kernel functions of the RVM are as follows:

Γ(ϕi(x), ϕj(x)) =



〈ϕi(xt), ϕj(xt)〉, linear function

e−
‖ϕi(xt)− ϕj(xt)‖2

η2
, radial basis function

(ϕi(xt) · (ϕj(xt))′)d, polynomial function

(3.38)

where η denotes the kernel parameter; d denotes the kernel degree for the polyno-

mial.

The algorithm for the RVM training and forecasting procedures suggested by

Nicolaou et al. (2012) can be summarized as follows:

The Algorithm for Relevance Vector Regression
Training Stage: training set {(xt, yt)}Tt=1, t = 1, 2, ..., T

Step 1: Obtain output features yv
t

Step 2: Construct basis matrix Ωw,u =
(

Ωw|Ωv
u

)
(a) Apply kernel Γw to obtain Ωω for input feature x

(b) Apply kernel Γu to obtain Ωv
u for output feature yv

Step 3: Using marginal likelihood maximization

(a) Determine the hyperparameters (θ, µ, σ2)

(b) µ = σ2ΣΩ′w,uS and Σ =
(
σ2Ω′Ω +D

)−′
Forecasting Stage: validation set

Step 4: Obtain output features yv
∗
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Step 5: Forecast and estimate the variance

(a) S∗ = µ′w,u

[
Ωw(x∗)|Ωu(yv

∗ )
]

(b) σ2
∗ = σ2 +

[
Ωw(x∗)|Ωu(yv

∗ )
]′

Σ
[
Ωw(x∗)|Ωu(yv

∗ )
]

3.3.5 The Regularized or Penalized Regression

3.3.5.1 The Ridge

The ridge regression model aimed to reduce multicollinearity owing to the presence

of `2−penalty norm and the cross-validated tuning parameter, λ1, which regulates

the amount of shrinkage imposed on the model coefficients.

Using the training set {(xt,1, y1), (xt,2, y2), ..., (xT,k, yT )}, and by imposition of ridge

constraints, the model parameter estimates will be obtained by minimizing the

objective function

T−1∑
t=1

(yt+1 − β0 −
k∑
j=1

βjxt,j)
2 subject to

k∑
j=1

β2
j ≤ s1 for s1 ∈ λ1 (3.39)

which is a convex optimization problem, hence the solution has a closed form

(James et al., 2013).

The ridge model parameter estimates will be:

β̂Ridge = argmin
β∈Rk+1

{
T−1∑
t=1

(yt+1 − β0 −
k∑
j=1

βjxt,j)
2 + λ1

k∑
j=1

β2
j

}

=⇒ β̂Ridge = (X′X + λ1Ik)
−1X′y

which is always invertible, and hence non-singular (Ahn et al., 2012); where X

is the T × k matrix of covariates; λ1

∑k
j=1 β

2
j = λ1 ‖β‖2

2 is the shrinkage penalty;∑k
j=1 |β2

j | = ‖β‖2
2 is the `2−norm of the vector β; λ1 > 0 is the ridge tuning
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parameter; β0 is the intercept; β1, β2, ..., βk are the ridge coefficients; Ik is a k × k

identity matrix; k is the number of parameters to be estimated; T is the sample

size; j = 1, 2, ..., k.

Thus, the ridge forecasts are obtained from the resulting forecasting model:

ŷRidget+1|T (β̂Ridge) = X′tβ̂
Ridge (3.40)

where

β̂Ridge = argmin
β∈Rk+1

{
T−1∑
t=1

(yt+1 −X′tβ)2 + λ1

k∑
j=1

β2
j

}

β is (k + 1) × 1 vector of unknown parameters, including the intercept; T is the

sample size.

The ridge forecasts converges to the sample mean for large values of tuning pa-

rameter, λ1:

ŷRidget+1|T →
1

T − 1

T∑
t=2

yt when λ1 →∞.

The Forward - Backward Ridge

We also employed the forward-backward (FOBA) ridge which is an extension of

the ridge model. The FOBA is a regularization model that implements the for-

ward and backward or both directional sparse learning algorithms for the ridge

regression model. In this case, % ∈ (0, 1) controls how likely the steps are to be

taken, determing either addition or deletion of a variable in the rdige model. The

FOBA method takes a backward step when the ridge penalized risk increase is

less than % times the ridge penalized risk reduction in the corresponding forward

step, and vice versa.
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3.3.5.2 The Least Absolute Shrinkage and Selection Operator

The least absolute shrinkage and selection operator (LASSO) as introduced by

Tibshirani (1996) aimed to shrink the model coefficients toward zero, hence per-

forming both variable selection and model interpretability, owing to the presence

of `1−penalty norm. The LASSO does not admit a closed-form solution because

of the `1-penalty which makes it nonlinear in the y′ts; hence the constraint mini-

mization of the LASSO is a quadratic programming problem whose solution can

be obtained by efficient approximation.

The LASSO model parameter estimates are obtained by minimizing the objective

function:

T−1∑
t=1

(yt+1 − β0 −
k∑
j=1

βjxt,j)
2 subject to

k∑
j=1

|βj| ≤ s2 for s2 ∈ λ2 (3.41)

where λ2 > 0 is the LASSO tuning parameter; β0 is the intercept; β1, β2, ..., βk are

the LASSO coefficients;
∑k

j=1 |βj| = ‖β‖1 is the `1−norm of the vector β (Sagaert

et al., 2018).

The LASSO model parameter estimates will be:

β̂LASSO = argmin
β∈Rk+1

{
T−1∑
t=1

(yt+1 − β0 −
k∑
j=1

βjxt,j)
2 + λ2

k∑
j=1

|βj|

}

where λ2

∑k
j=1 |βj| = λ2 ‖β‖1 is the shrinkage penalty; and β̂LASSO → β̂OLS as

λ2 →∞

Thus, the LASSO forecasts are obtained from the resulting LASSO forecasting

model:

ŷLASSOt+1|T (β̂LASSO) = X′tβ̂
LASSO (3.42)
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where

β̂LASSO = argmin
β∈Rk+1

{
T−1∑
t=1

(yt+1 −X′tβ)2 + λ2

k∑
j=1

|βj|

}

where X is the T × k matrix of covariates; β is (k + 1) × 1 vector of unknown

parameters, including the intercept; T is the sample size; λ2 controls the amount

of shrinkage (Elliott et al., 2013; Mart́ıNez-Mart́ıNez et al., 2011).

3.3.5.3 The Relaxed Least Absolute Shrinkage and Selection Operator

The relaxed least absolute shrinkage and selection operator (RELAXO) is a gen-

eralization of the LASSO for linear regression.

Let λ and α be two separate parameters for controlling model selection and shrink-

age estimation. The RELAXO estimator can be defined for λ ∈ [0,∞) and

α ∈ (0,∞] as follows:

β̂RELAXO = argmin
β∈Rk+1

{
T−1∑
t=1

(yt+1 −X′t{β · 1Sλ})2 + αλ |β|1

}

where Sλ is the set of predictor variables selected by LASSO estimator; 1Sλ is

the indicator function on the set of predictor variables; αλ |β|1 is the shrinkage

penalty for the RELAXO (Meinshausen, 2007). It can be expressed as follows:

{1Sλ}k =


0, k/∈ Sλ

βk, k/∈ Sλ
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Let L(β) be the negative log-likelihood under the parameter β, then the general-

ized RELAXO estimator takes the form (Meinshausen, 2007):

β̂RELAXO = argmin
β∈Sλ

{L(β) + αλ |β|1}

Thus, the RELAXO forecasts are obtained from the resulting RELAXO forecasting

model:

ŷRELAXOt+1|T (β̂RELAXO) = X′tβ̂
RELAXO (3.44)

where

β̂RELAXO = argmin
β∈Rk+1

{
T−1∑
t=1

(yt+1 −X′t{β · 1Sλ})2 + αλ |β|1

}

where β is (k + 1)× 1 vector of unknown parameters, including the intercept; Sλ

is the set of predictor variables selected by LASSO estimator; 1Sλ is the indicator

function on the set of predictor variables.

3.3.5.4 The Elastic Net

The elastic net, as proposed by Zou and Hastie (2005) combines both the `1 and `2

penalty vector norms, and tends to eliminate extreme solutions. Thus the elastic

net model parameter estimates are obtained by minimizing the objective function

that includes the ridge and LASSO shrinkage penalties subject to both constraints,

which results to:

β̂ElNet = argmin
β∈Rk+1

{
T−1∑
t=1

(yt+1 − β0 −
k∑
j=1

βjxt,j)
2 + λ2

( k∑
j=1

(1− λ1)β2
j + λ1|βj|

)}
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where λ1 is the ridge tuning parameter; λ2 is the LASSO tuning parameter (Wu

and Yang, 2014).

It is worth noting that the Elastic Net is Ridge if λ1 = 0; it is LASSO if λ1 = 1

and it is strictly convex if
λ2

λ1 + λ2

> 0 (Bai and Ng, 2008)

Therefore, the elastic net forecasts are obtained from the elastic net forecasting

model:

ŷElNett+1|T (β̂ElNet) = X′tβ̂
ElNet (3.45)

where

β̂ElNet = argmin
β∈Rk+1

{
T−1∑
t=1

(yt+1 −X′tβ)2 + λ2

( k∑
j=1

(1− λ1)β2
j + λ1|βj|

)}

β is (k + 1) × 1 vector of unknown parameters including the intercept; and X is

the T × k matrix of covariates.

3.3.5.5 The Least Angle Regression

The least angle regression (LARS), introduced by Efron et al. (2004) is a machine

learning model selection algorithm for fitting linear regression models to high di-

mensional data. There is similarity between the LARS algorithm and forward

stepwise regression, and the parameter estimates are increasing in an equiangu-

lar direction to each of the corresponding correlations associated with the model

residuals.

The LARS algorithm adapted from Alfons et al. (2016) and Efron et al. (2004) is

summarized as follows:
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• Begin with all coefficients βj = 0;

• Determine the predictor Xt most correlated with the response variable yt;

• Increase the coefficient βj in the direction of the sign of its correlation;

• Increase (βj, βm) in their joint LS direction until another predictor Xs has

as much correlation with the residual, where βm is a coefficient for j 6= m

and j,m = 1, 2, ..., k; and k is the number of covariates;

• Continue until all predictors are in the model.

The LARS2 is a special improved case of the LARS that uses step as the tun-

ing parameter instead of fraction. The LARS2 adopts an infinitesimal forward

stagewise regression approach in that each of the covariate is examined from the

set of covariates in the model. The step as a model tuning parameter serves as

a step-by-step tool, determining the inclusion or exclusion of each covariate, and

hence the stepwise selection approach. Suppose the response variable is to be

determined by a linear combination of a subset of potential covariates, then the

LAR2 algorithm will provide a suitable means of producing an estimate about the

covariate(s) to be included together with their respective coefficients.

3.3.6 Components Regression

3.3.6.1 The Principal Component Regression

The principal component regression (PCR) is based on principal component anal-

ysis aimed at dimensionality reduction of a given multivariate dataset.

Let y = {yt}Tt=1 be a T × 1 vector of observed outcomes and X = {xt,j}t=T,j=kt=1,j=1 be

a T × k data matrix of observed covariates. Then a PCR can be performed from

a principal component analysis (PCA) on the centered data matrix X.

Let X = P∆Q′ represent the singular value decomposition of X;
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∆k×k = diag(w1,w2, ...,wk) with w1 ≥ w2 ≥ ... ≥ wk ≥ 0 representing the non-

negative singular values of X, such that the columns of Pk×k = (p1, p2, ..., pk) and

Qk×k = (q1, q2, ..., qk) are orthonormal sets of vectors respectively, representing the

left and right singular vectors of X (Ince and Trafalis, 2007; Mor-Yosef and Avron,

2019).

Then QΛQ′ gives a spectral decomposition of X ′X; Λk×k = diag(ϑ1, ϑ2, ..., ϑk)

equal to

diag(w2
1,w

2
2, ...,w

2
k)=∆2; ϑ1 ≥ ϑ2 ≥ ... ≥ ϑk ≥ 0 represent the non-negative

eigenvalues of X ′X; and column(Q) represent the corresponding orthonormal set

of eigenvectors.

We can obtain the jth principal component represented by Xqj and the jth PCA

loading respectively, corresponding to the jth largest principal value ϑj for each

j ∈ {1, 2, ..., k}.

If θ̂k = (Z ′kZk)
−1Z ′ky ∈ Rk is the OLS vector of estimated coefficients with

Zk = XQk = (Xq1, Xq2, ..., Xqk), then for any m ∈ {1, 2, ..., k}, the final PCR

estimator of β based on the first m principal components is obtained as follows:

β̂m = Qmθ̂m ∈ Rk (3.46)

(Olivieri, 2018).

The super principal component regression (superpc) is a special case of the

principal component regression (PCR) that uses a selected subset of the covari-

ates based on connectivity with the target outcome.

3.3.6.2 Independent Component Regression

Independent component regression (ICR) is a useful model for separating a mul-

tivariate signal into additive subcomponents.
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Given a multivariate data matrix X = (xt,1, xt,2, ..., xt,k)
′ with latent components

c = (c1, c2, ..., cT )′, T ≥ k. Then the task is to systematically transform the

observed multivariate data X, using an unknown mixing matrix Ψ, in the form:

c = ΨX

into an observable vector of maximal statistically independent components ct,

measured by some independent functions (c1, c2, ..., cT ), and assuming linear noise-

less holds. Then the components of the observed multivariate data matrix X are

generated as the sum of the independent components cs, s = 1, 2, ..., T weighted

by the mixing weights αt,s such that:

x(t) = Φc =
T∑
s=1

αscs = α1c1 + α2c2 + ...+ αscs + ...+ αT cT (3.47)

where αs = (α1, α2, ..., αT )′ represent the T ×1 basis vector; Φ represent the T ×k

mixing matrix whose entries obtained from the basis vector αs; c = (c1, c2, ..., cT )′

represent the T × 1 latent components (Matilainen, 2018).

Generally, the independent components are obtained by the product of the un-

known mixing matrix Ψ and the multivariate data matrix X, resulting to the

model:

y = ΨX

where y = (yt), t = 1, 2, ..., T is T × 1 response values and yt represent the sta-

tistically independent components; Ψ is the unknown mixing matrix obtained by

the inverse of mixing matrix Φ: Ψ = Φ−1; X is the T × k matrix of covariates (Lu

et al., 2009; Tang, 2019).

Thus, the non-Gaussianity of the independent components is defined by the neg-

entropy:

J(y) = S(yGaussian)− S(y) (3.48)
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where yGaussian is the Gaussian random vector such that Cov(yGaussian) = Cov(y);

S is the entropy of a random vector y with density function ξ(y), defined by:

S(y) = −
∫ ∞
−∞

ξ(y) log ξ(y)dy

Using the approximation proposed in Lu et al. (2009), the neg-entropy above

results to:

J(y)[E(G(y))− E(G(u))]2 (3.49)

where G(y) is an exponential function of y, defined by G(y) = e
−

1

2
y2

; y is a

standard Gaussian distributed variable; u is a random variable having the same

standard Gaussian distribution form; E(·) and E(·) denote the expected value of

y and u respectively.

3.3.7 Gaussian Processes Regression

Let x = (x1, x2, ..., xk)
′ be input vector of covariates and y denotes the response

variable. Then the Gaussian process can be modelled as a distribution over a

function Γ, which maps the input space , to <:

Γ :−→ <

such that for any finite subset S ⊂, its marginal distribution Φ(Γ(x1),Γ(x2), ...,Γ(xk))

is a multivariate normal distribution (Rasmussen, 2004).

By parameterization, let µx denotes the mean function and Ω(xi,xj) denotes the

covariance function, such that:

Γ(x) ∼ Gaussian(µx,Ω(xi,xj))⇒ Γ|X ∼ N(µx,Ω(xi,xj))

where Γ is a vector valued function; µx is the mean function; Ω(xi,xj) is the k×k

covariance matrix, for Ωi,j = Ω(xi,xj) = Cov(xi,xj).
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If y denote an observation with a Gaussian distribution noise ε ∼ N(0, σ2
k).

Then the resulting Gaussian process regression model is as follows:

y = Γ(x) + ε; ε ∼ N(0, σ2
k) (3.50)

The joint distribution of the training and test outputs denoted respectively by

y and Γ∗, with zero mean function will be:

 y

Γ∗

 ∼ N

(
0,

Ω(X,X) + σ2
kIk Ω(X,X∗)

Ω(X∗, X) Ω(X∗, X∗)

)

where X is a design matrix for the training data; X∗ is a design matrix for the

test data (Singh, 2016; Sheng et al., 2018).

The predictive distribution can be obtained by conditioning Γ∗ on X, y and

X∗:

Γ∗|X, y,X∗ ∼ N(µ̂Γ∗ , σ̂Γ∗)

where µ̂Γ∗ = Ω(X∗, X)[Ω(X,X)+σ2
kIk]

−1y is the estimated mean; σ̂Γ∗ = Ω(X∗, X∗)−

Ω(X∗, X)[Ω(X,X) + σ2
kIk]

−1Ω(X,X∗) is the estimated variance. Thus, the mean

prediction is a linear combination of the noisy observation.

The kernel functions of the Gaussian processes regression (GPR) are as follows:

Γ(xi,xj) =



∑M
m=1 σ

2
mxi,mxj,m, linear function

e
−

1

2

( r
m

)2

, radial basis function

(xi · x′j + σ2
0)d, polynomial function

(3.51)

where m > 0 is a length-scale parameter for i, j,m = 1, 2, ..., k; r denotes a radius

vector with the same or different number of dimensions as the input covariates x;
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d denotes the kernel degree for the polynomial function (Rasmussen, 2006).

3.3.8 Regression Splines

The multivariate adaptive regression splines (MARS), as introduced by Friedman

(1991) is a non-parametric regression technique for handling non-linearities and

interactions between covariates in a regression model.

Given a k-dimensional vector of covariates x = (x1, x2, ..., xk)
′ and a response

variable y, related in the form:

y = φ(x) + ε (3.52)

where ε is a normally distributed error term. A flexible model can be estimated

by reflected pairs, known as piecewise linear basis functions:

(x− τ)+ =


x− τ, if x > τ

0, otherwise

and

(τ − x)+ =


τ − x, if x < τ

0, otherwise

where + denotes the positive part; τ denotes the breaking or knot point (Kooper-

berg, 2006; Koc and Bozdogan, 2015).

Let T be the sample size for the training set, then a reflected pairs for each predic-

tor variable {xj}kj=1 with breaking points at each observed values {x = xt,j}t=T,j=ki=1,j=1

of the specific variable can be formed, and the resulting set of all possible reflected
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pairs with their respective breaking points is defined as:

S =
{

(xj − τ)+, (τ − x)+|τ ∈ {xt,j}t=T,j=kt=1,j=1

}

The MARS employed the functional covariates in the set S, and their product

(for multivariate case), instead of the original covariates, to form the approximate

model:

φ(x) = δ0 +

p∑
`=1

δ`W`(x), ` ∈ {1, 2, ..., p} (3.53)

where W`(x) is a weighted sum of basis function from S; ` is the number of basis

functions in the resulting model; δ` represent the constant coefficients; δ0 represent

the intercept (Zhang and Goh, 2016).

For the avoidance of trademark infringements, some open source implemen-

tations of MARS are referred to as Earth, with alternative usage method values

bagEarth for bagging MARS, and gcvEarth for generalized cross-validated MARS

used as a form of regularization to trade off goodness of fit against the model

complexity.

3.3.9 Cubist Regression

The cubist regression, as introduced by Quinlan et al. (1992) is a rule-based re-

gression model in which a tree is grown where the terminal leaves contain linear

regression, and extensive models are built based on covariates used during previ-

ous splits.

Given the regression model at each terminal node of the regression tree, then the

covariates can be made recursively and the tree is reduced to a set of decision rules

drawn from the top to bottom of the regression tree, see Kuhn et al. (2016) for

the computational details. Thus the learning and decision rules can be eliminated

by pruning or pairwise combination.

112



Model committees are usually created by generating a sequence of rule-based

models similar to boosting approach. The training set outcome is adjusted based

on the prior model fit and then builds a new set of rules using pseudo response

(Boston and Kuhn, 2000; Zhou et al., 2019):

The kth committee model uses an adjusted response defined by:

y
(k)
t = 2y

(k−1)
t − ŷ(k−1)

t

New samples can be predicted using each model once the full set of committee

models are created. Thus the final rule-based prediction is the simple average of

the individual model predictions.

For the neighbour based adjustment approach, the k most similar neighbours

are determined from the training set when predicting a new sample, thus resulting

to:

ŷ =
1

k

k∑
κ=1

ωκ

[
(sκ − ŝκ) + ŷ

]
(3.54)

where sκ is the observed outcome for a training set neighbour; ŝκ is the model

prediction of that neighbour; ωκ is a weight calculated using the distance of the

training set neighbours to the new sample (Boston and Kuhn, 2000).

The nearest neighbours are determined using Manhattan distances and neighbours

are only included if they are not over the average distance, and are from the pre-

diction sample.

3.3.10 k Nearest Neighbour

Using the ordering training pairs from the set of data points

(y,x) = {(y1, x1), (y2, x2), ..., (yT , xT )}, with x = (x1, x2, ..., xk)
′ representing a

vector of covariates and y = (y1, y2, ..., yT )′ representing a vector of values for the
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response variable. Then the nearest neighbour estimator is the mean function

value of the nearest neighbours, obtained as follows:

ŷ(x) =
1

kT

kT∑
t=1

yt(x) (3.55)

where yt is the response variable at t; x is the vector of covariates;

{(y1, x1), (y2, x2), ..., (yT , xT )} is a reordering of the data points according to in-

creasing distances ||xi−xj|| of the x
′
s to xj ; kT is the number of neighbours from

the data points in N(x) (Biau et al., 2012; Altman, 1992).

It is worth noting that kNN involves the introduction of weighted average, in

which the weight of each neighbour depeneds on its closeness to a query point, as

follows:

ŷ(x) =
1

ζ

∑
xj∈N(x)

d(xi,xj) · y(xj) (3.56)

where ζ is a normalization factor; d(xi,xj) is the Euclidean distance between xi

and xj.

The weights can be assessed by computing the inverse of the squared Euclidean

distance, as follows (Leon and Curteanu, 2015; Luken et al., 2019):

wd(xi,xj) =
1

d(xi,xj)2
=

1

||xi − xj||2
(3.57)

Thus, the nearest neighbour estimator is obtained as follows:

ˆy(x) =

∑
xj∈N(x) wd(xi,xj)y(xj)∑

xj∈N(x) wd(xi,xj)
(3.58)

where wd(xi,xj) is the weight function.

The kNN algorithm uses a the weighted average of k nearest neighbours,

weighted by the inverse of their distances. Thus, the algorithm can be summarized

as follows:
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1. Compute the Euclidean distance from the query instance to the labelled

instances;

2. Reoder the labelled instances by increasing distance;

3. Determine a heuristically optimal k of nearest neighbours based on mean

squared error, by cross-validation;

4. Compute the inverse distance weighted average with the k nearest neigh-

bours.

3.3.11 Projection Pursuit Regression

The projection pursuit regression (PPR), developed by Friedman and Stuetzle

(1981), is an extensive additive model whose first task is to project the data

matrix of covariates in the optimal direction before the application of smoothing

functions to the covariates.

Let (y,x) = {(yi,xt)}Tt=1 be a training data set in a finite dimensional space and

let Φ : R −→ R be a collection of smooth hyperparameter functions which maps

R to R. Then yt and xt are related in the form (Lingjaerde and Liestøl, 1998;

Matilainen, 2018):

yt = θ0 +

q∑
j=1

Φj(β
′
jxt) + εt (3.59)

where yt is the response variable; xt is a k-dimensional vector of covariates; Φj is

a collection of q initially unknown smooth functions; βj is a vector of q unknown

parameters; q is a hyper parameter.

Thus, the PPR estimators can be obtained by minimizing the error function:

min
Φj ,βj

ξ(εt) =
T∑
t=1

{(
yt −

q∑
j=1

Φj(β
′
jxt)

)2
}
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If we consider each pair (Φj, βj) individually, and fixing all other parameters,

to dtermine the residual, then the unaccounted variance of the output of those

parameters is defined as follows:

rt = yt −
∑
`6=j

Φ`(β
′
`xt) (3.60)

The minimization of the error function becomes as follows:

min
Φj ,βj

ξ(εt) =
T∑
t=1

{(
rt − Φj(β

′
jxt)

)2
}

where rt is an approximation function used to transform the optimization problem

to a closed-form (Matilainen, 2018).

Thus, the resulting PPR estimator of the optimal βj is as follows:

β̂PPRj ' argmin
βj

∥∥∥Â−Xθj∥∥∥2

∆
= (X ′∆X)−1X ′∆Â (3.61)

where ∆ is diagonal matrix; Â is a vector of stack target observations; X is the

T × q matrix of covariates.

3.3.12 Neural Networks Regression

Let (X,y) be a training data set in a finite dimensional space, such that a function

Υ maps X to y:

Υ : X −→ y
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according to a particular learning rule. Then Υ(x) is a neuron network, expressed

as a composition of a decomposable function ηj(x), with nonlinear weights ωj, in

the form:

Υ(x) = Γ

{
k∑
j=1

ωjηj(x)

}
= Γ

(
ω1η1(x), ω2η2(x), ..., ωkηk(x)

)

where Γ(·) is the activation function; ω = (ω1, ω2, ..., ωk) is a vector of weighted

parameters; η(x) = (η1(x), η2(x), ..., ηk(x)) is a vector of composition functions

(Samarasinghe, 2016).

According to Specht (1991), the aim of generalized neural networks is to en-

hance data splitting into training and test sets, such that every training sample

represents a sample mean to a radial basis neuron. For the purpose of model

training and forecasting in this study, the most extensively used neural network

is the single hidden-layer feed-forward networks.

The predictive model for the generalized neural network is as follows:

y(x) =

∑k
j=1 ωjΓ(x,xj)∑k
j=1 Γ(x,xj)

(3.62)

where y(x) is the predicted value for the input vector x; ωj is the activation for

the pattern layer neuron at j; Γ(x,xj) is the radial basis function with Gaussian

kernel exp(− Θj

2σ2
), for Θj = (x,xj)

′(x − xj) is the squared Euclidean distance

between the training samples xj and the input x. See Liu et al. (2015) for further

detail.

3.3.12.1 Quantile Regression Neural Network

Let Xi(t) be a vector of predictor variables and let y(t) be the response variable

outputs from a quantile regression neural network. The output from `th hidden

layer node denoted by η`(t) can be deduced by applying a hyperbolic tangent with
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a sigmoid transfer function to the inner product between Xi(t) and the hidden

layer weights ω
(h)
i,` together with the hidden layer bias β

(h)
` , in the form:

η`(t) = tanh
( I∑
i=1

Xi(t)ω
(h)
i,` + β

(h)
`

)
(3.63)

and the estimate of the conditional τ -quantile is defined as:

ŷτ (t) = Γ
( L∑
`=1

η`(t)ω
(⊗)
` + β(⊗)

)
(3.64)

where ω
(⊗)
` are the output layer weights; β(⊗) is the output layer bias; Γ(·) is the

output layer transfer function.

Thus the linear quantile regression parameter estimates of a quantile regression

neural network with a single layer node can be obtained from the following:

ŷτ (t) = Γ
( I∑
i=1

ω
(⊗)
1 ω

(h)
i,1 Xi(t) + β

(h)
1 ω

(⊗)
1 + β(⊗)

)
(3.65)

(Pradeepkumar and Ravi, 2017; Cannon, 2011).

If the number of predictor variables I and the number of hidden layers nodes L in a

quantile regression neural network appeared to be complex thereby overfitting the

training data, then the concept of weight decay regularization will be introduced to

prevent overfitting. The weight decay regularization seek to penalize large weights

(ω −→ ∞) in the input hidden layer of the model by inclusion of a quadratic

penalty term to the error function:

ξ(α)
τ =

1

T

T∑
t=1

ρ(α)
τ

(
y(t)− ŷτ (t)

)
+ λ

1

I, L

I∑
i=1

L∑
`=1

(
ω

(h)
i,`

)2

(3.66)

where ρ
(α)
τ is a tilted absolute function; λ > 0 is a constant that controls the

amount of regularization in the weight decay term (Cannon, 2011).

The neural networks (NNET) can be applied in different forms. In this study,
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the feasible NNET regression were implemented using the caret built packages for

regression training (RT). The method value avNNet implements the feed-forward

neural network RT model in which the multiple networks are averaged (AVNNET);

the method value pcaNNet implements the neural networks RT model applied with

principal component (PCANNET) for dimensionality reduction.

3.3.13 Statistical and Economic Performance Evaluation

3.3.13.1 Traditional Measures of Forecast Accuracy

The traditional measures used to determine the forecasting accuracy of each model

include the mean squared error (MSE), root mean squared error (RMSE), mean

absolute error (MAE) and mean absolute percentage error (MAPE) respectively.

They can be computed as follows:

MSE =
1

T

T∑
t=1

(yt − ŷt)2

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2

MAE =
1

T

T∑
t=1

|yt − ŷt|

MAPE =
1

T

T∑
t=1

∣∣∣yt − ŷt
yt

∣∣∣
where T is the out-of-sample forecasting period; yt is the actual value at specific

time t; ŷt is the forecast value at specific time t.

The MSE is employed to compute the out-of-sample mean squared forecast

error for each RT model among these traditional measures of forecast accuracy in

this study. The MSE is chosen because our interest is to minimise risk and to
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advice a mean-variance portfortolio investor to invest on a portfolio which gives

the minimum volatility. In this case, an RT model with lower MSE is preferable

to a model with higher one, because the higher the volatility, the more riskier the

security/investment and vice versa.

3.3.13.2 Out-of-Sample Forecast Evaluation: The R2
OOS Statistic

The out-of-sample statistical goodness of fit used to measure the performance of

individual equity premium forecasting model, suggested by Campbell and Thomp-

son (2007) for evaluating the overall performance of any competing model forecasts

in terms of proportional error minimization, relative to the benchmark historical

average forecast is defined as follows:

R2
OOS = 1−

∑T
t=1(yT0+t − ŷT0+t)

2∑T
t=1(yT0+t − ȳT0+t)2

where R2
OOS > 0 implies that the MSE of the forecasting model is less than the

MSE of the benchmark forecasts based on historical average; ŷT0+t represents an

equity premium forecast based on a specific competing model; and ȳT0+t represents

the equity premium forecast based on the historical average, obtained by either

expanding or rolling window method.

3.3.13.3 Diebold-Mariano Test

Another suitable measure of individual model forecasts accuracy as compared to

the benchmark historical average forecasts accuracy is based on the outcome of

Diebold-Mariano (DM) test, whose assumptions relies on the forecast error loss

differential function (Diebold and Mariano, 2002; Diebold, 2015). Let ε1,t and ε2,t

denote the forecast errors associated with the loss functions L(ε1,t) and L(ε2,t) for

forecasts 1 and 2 respectively. The time-t loss differential between forecasts 1 and
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2 is defined as follows:

d1,2(t) = L(ε1,t)− L(ε2,t)

The DM hypothesis of equal forecast accuracy, also known as equal expected loss,

corresponds to the zero mean assumption of d1,2(t), i.e., E(d1,2(t)) = 0; where E(·)

denotes the mean value. Thus, the null hypothesis of equal forecast accuracy

against the alternative hypothesis of unequal forecast accuracy between forecasts

1 and 2, based on monthly forecast horizon h = 1, can be tested using the DM

test statistic as follows (Diebold, 2015):

DM1,2 =
d̄1,2

σ̂d̄1,2

asymptotically∼ N(0, 1)

where d̄1,2 =
1

T

∑T
t=1 d1,2(t) is the sample mean loss differential and σ̂d̄1,2

is a con-

sistent estimate of the standard deviation of d̄1,2. Thus, the DM test statistic has

the asymptotic standard normal distribution under the null hypothesis of equal

forecast accuracy. In this study, the forecast errors of each RT model are com-

pared with the forecast errors from the benchmark historical average.

3.3.13.4 Sharpe Ratio

In finance, the Sharpe Ratio (SR) is required to examine the performance of an

investment by simply adjusting for the risk associated with it. The SR is a measure

of excess return per unit of deviation in an investment asset or trading strategy

(Sharpe, 1994). In this study, we use the SR which standardizes the realized

returns with the risk of the portfolios. It is computed as follows:

SRp =
E(Rp)− E(Rf )√

V ar(Rp)

where E(Rp) is the average realized return of the portfolio over the out-of-sample

period; E(Rf ) is the average risk-free treasury bill rate; V ar(Rp) is the variance

121



of the portfolio over the out-of-sample period. A portfolio with a higher SR is

considered to be superior relative to its counterpart.

The cumulative return (CR) of the portfolio, was also employd to determine

the aggregate amount that an investment has gained or lost, independent of the

time period involved. It can be computed as follows:

CR =
T∑
t=1

Rt (3.67)

where Rt is the return on month t; T is the number of months in the out-of-sample

period.

3.3.13.5 Utility Gain

The utility gain (UG) is an economic performance evaluation measure for a mean-

variance portfolio investor on a real-time basis. The UG describes the portfolio

management fee that an investor would be willing to pay in order to have access to

the additional available information in a specific RT forecasting model relative to

the sole information in the historical average. A mean-variance investor who fore-

casts the monthly equity premium using the global historical average will decide

at the end of time t to allocate risky weights as share of her portfolio to equities

in time t+ 1, in form:

ω0,t = λ−1
( R̄t+1

σ̂2
R,t+1

)
where ω0,t represent the portfolio risky weights, constrained to lie between 0%

and 150%, i.e., ω0,t equals zero if ω0,t < 0 and ω0,t equals 1.5 if ω0,t > 1.5, in

accordance with the techniques used in Campbell and Thompson (2007); λ is the

risk aversion parameter; R̄t+1 represent the equity premium forecasts based on the

benchmark global historical average; σ̂2
R,t+1 is the expanding window estimate of

variance of stock returns. The rationale for using portfolio weights that lie between
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0% and 150% is to impose realistic portfolio constraints to prevent the investor

from shorting stocks or taking more than 50% leverage, and hence, confining the

portfolio weight on stocks to lie between 0.0 and 1.5.

The investor realizes an average utility over the out-of-sample period, given by the

following:

Û0 = µ̂0,p −
1

2
λσ̂2

0,p

where µ̂0,p is the sample mean over the out-of-sample period for the benchmark

portfolio formed using the equity premium forecasts based on the global historical

average; λσ̂2
0,p is the sample variance over the out-of-sample period for the bench-

mark portfolio formed using the equity premium forecasts based on the global

historical average.

The next step is to compute the average utility for the same investor when she

forms forecasts of the equity premium using an individual RT model. In this case,

the weight risky equity share can be chosen by the following:

ωj,t = λ−1
( R̂j,t+1

σ̂2
R,t+1

)

Then the investor realizes an average utility, defined as follows:

Ûj = µ̂j,p −
1

2
λσ̂2

j,p

where µ̂j,p is the sample mean over the out-of-sample period for the return on the

portfolio formed using forecasts of the equity premium based on an individual RT

model; λσ̂2
j,p is the sample mean over the out-of-sample period for the return on

the portfolio formed using forecasts of the equity premium based on an individual

RT model (Rapach et al., 2010; Goyal and Welch, 2007).
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Thus, the utility gain (UG) can be computed as follows:

UG = Ûj − Û0

for each of the RT out-of-sample forecasting models used in this study for fore-

casting the U.S. monthly equity premium.

3.4 The Empirical Results and Discussion

3.4.1 Data, Variables and Forecasting Method

In this study, the monthly data are obtained from Amit Goyal’s webpage1, each

covering monthly observations from January 1960 to December 2016, which re-

sults to a total of T = 684. Most of these variables, presented in Table 3.1, were

previously used in financial econometric literature by other scholars to forecast

the U.S. equity premium on either monthly, quarterly or annually. In accor-

dance with the benchmark method suggested by Goyal and Welch (2003), Goyal

and Welch (2007), Campbell and Thompson (2007) in which the performance of

any forecasting model comparative to the historical average method when fore-

casting equity premium should be based on either expanding window or rolling

window out-of-sample forecasting approach, all forecasts in this study are ob-

tained using expanding window out-of-sample forecasting method for the various

RT forecasting models. The out-of-sample period consists of monthly observations

from 1991M1 to 2016M12. In this case, the parameters of the forecasting models

are estimated recursively using an expanding window of observations, with data

point from the start date to the present time and obtain a one month-period-

ahead forecast, y1|T . The procedure is repeated until the last forecast, y312|T ,

is obtained. In this study, we trained each RT model, preprocessed the train-

ing dataset in a centred and scaled form, tuned the RT parameter(s) of each

1Available at: www.hec.unil.ch/agoyal/docs/PredictorData2016.xlsx
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model by cross-validation and resampling all, and eventually used the best tun-

ing parameters to run the out-of-sample forecasts recursively. The resampling

approach seek to figure out the values of each model parameters, providing the

best tuning parameter(s) from the validation set that can be used to produce the

out-of-sample forecasts. All computations in this study were obtained using R

software and the associated packages (Kuhn et al., 2008; Kuhn, 2012, 2015) and

https://topepo.github.io/caret/available-models.html, see Tables 3.3 and 3.4 for

detail specification of the packages and the their values. The forecast horizon de-

noted by h is one month ahead (h = 1) for all the RT forecasting models used in

this study. All tables and graphics are depicted appropriately.
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Table 3.1: Data & Description of Variables: 1960M01 to 2016M12

Data & Description of Variables: 1960M01 to 2016M12
Variable Description
Stock Index, SPt Is the Standard&Poor 500 U.S stock index.
Excess Stock Return,
rt

The difference between the expected return on the
market portfolio (SP500) and the risk-free treasury
bill rate.

Dividend Price Ratio
(log), DPRt

The dividends over the past year divided by the
current stock index value.

Dividend Yield (log),
DYt

Is the difference between the log of dividends and
the log of lagged prices.

Earnings Price Ratio
(log), EPRt

The earnings over the past year divided by the
current stock index value.

Realized Stock Vari-
ance, RSVt

Is the sum of squared daily returns on the S&P500
index within one month.

Book to Market Value,
BMVt

Is the ratio of book value to market value for the
Dow Jones Industrial Average.

Net Equity Expan-
sion, NEEt

Is the ratio of 12-month moving sums of net issues
by New York Stock Exchange (NYSE) listed stocks
to total end of year market capitalization of the
NYSE stocks.

Treasury Bill Rate,
TBRt

Is the interest rate on a 3-month treasury bill, sec-
ondary market.

Long Term Yield,
LTYt

Is the long term government bond yield, constant
maturity.

Long Term Return,
LTRt

Is the return on long term government bonds.

Term Spread, TSt Is the difference between the long term yield
(LTYt) and the treasury bill rate (TBRt).

Default Yield Spread,
DY St

Is the difference between the BAA and AAA rated
corporate bond yields.

Default Return
Spread, DRSt

Is the difference between the long term corporate
bond and long term government bond returns.

Inflation, INFt Is computed from the consumer price index (CPI)
for all urban consumers.
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The descriptive statistics for the time series variables are as shown in Table

3.2. Among these descriptive statistics, the kurtosis described the tailedness or

sharpness of the peak of the probability distribution of each variable relative to

a normal distribution. As a rule of thumb, any variable whose excess kurtosis

is positive has fatter tails than a normal distribution, signifying a leptokurtic

distribution while a negative excess kurtosis indicate skinnier tails than a normal

distribution, and hence, platykurtic in distribution. A zero excess kurtosis indicate

an exact normal bell-shaped curve matching that of a normal distribution and is

said to be mesokurtic in distribution. The skewness is a symmetric measure of data

distribution. Following a rule of thumb, a negative skewness indicates that the

mean of the dataset is less than the median resulting to a left-skewed distribution

while a positive skewness indicates its counterpart resulting to a right-skewed

distribution. A perfectly symmetric dataset has skewness equals zero resulting to

a zero skewed normal distribution.

From the descriptive statistics, the EquityPremt have a positive kurtosis and

a negative skewness, with mean less than its median and the resulting distribution

is skewed towards the left. It is leptokurtic in distribution which appeared to have

higher probability of future negative excess stock return realizations than normal.

3.4.2 Results and Discussion

The empirical analysis in this study is splitted into two perspectives, namely the

statistical performance of each RT model and the corresponding economic signif-

icance relative to the benchmark historical average. Rather than fitting simple

linear model for the individual variables or in ordinary kitchen sink form as shown

in the existing literature, each sophisticated RT model in this study is trained

by first preprocessing the training dataset in a centred and scaled form, tuned

the RT parameter(s) of each model by cross-validation and resampling all, and

eventually used the best tuning parameters to run the forecasts recursively until
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the whole out-of-sample periods are obtained. The performance of the various RT

models are summarized in distinct panels as shown in Tables 3.3 and 3.4. Using

the benchmark procedures for statistical predictability of the equity premium in

Goyal and Welch (2003), Campbell and Thompson (2005), any of the RT models

which gives an R2
OOS > 0 with corresponding mean squared forecast error (MSE)

less than the mean squared error of the benchmark historical average obtained us-

ing either expanding or rolling window is said to have outperformed or consistently

beat the historical average. In the regularized/shrinkage models panel, each of the

models produced R2
OOS > 0 with corresponding MSE less than the one obtained

from historical average out-of-sample. The ridge model outperformed the other

regularized/shrinkage models out-of-sample, in terms of statistically predictive

power, owing to its smallest MSE and highest R2
OOS. The forward-backward ridge

(FOBA) underperformed the ridge model while the relaxed LASSO (RELAXO)

appeared to have outperformed the LASSO in this direction. Thus, the concept

of bias-variance trade off in sophisticated RT models is a useful approach for fore-

casting the U.S. monthly equity premium out-of-sample with significant predictive

power. In the component regression models panel, the ICR, the PCR and the Su-

per PC models evidently beat the benchmark historical average, with the Super

PC outperforming the ICR and PCR respectively, in a statistically justifiable ap-

proach. As for the neural network models panel, the NNET , the AV NNET

and the QRNN significantly beat the historical average whereas the PCANNET

does not outperform the historical average (i.e. R2
OOS < 0) with corresponding

(MSEPCANNET < MSEGHA). The quantile regression neural network (QRNN)

has by far outperformed the other neural network models in this study in terms of

statistical predictability of the U.S. equity premium out-of-sample. In the kitchen

sink panel, the linear model (LM) underperformed the benchmark historical aver-

age, and hence, it corroborates the empirical results in previous findings in which

the ordinary linear regression is unable to consistenly beat the benchmark histor-

ical average out-of-sample.
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All the partial least squares models demonstrate statistically significant ev-

idence of outperformance over the benchmark historical average, each of which

produced lower MSE corresponding to a higher R2
OOS. It is worth noting that

the partial least squares models with kernel functions appeared to produced lower

MSE and corresponding higher R2
OOS as compared to the ordinary PLS. The

PLS with wide kernel function (WideKernelPLS) has the minimum MSE cor-

responding to the highest R2
OOS, and hence, outperforming the other PLS models

in this study. In the kernel-based regularized least squares (KRLS) models panel,

both the radial basis kernel and the polynomial basis kernel functions signifi-

cantly beat the benchmark historical average, and the radial basis kernel function

outperformed the polynomial basis kernel function, in terms of statistical pre-

dictability. As for the regression splines panel, the multivariate adaptive regression

splines (MARS) and the bagging MARS (BagEarth) showed statistically signif-

icant evidence of outperformance over the benchmark historical average; whereas

the splines with generalized cross-validation (GCVEarth) appeared to have un-

derperformed the benchmark historical average. The MARS model applied with

bagging or bootstrap aggregating seems to yield lower mean squared prediction

error which corresponds to a higher R2
OOS, and hence, the concept of bootstrap ag-

gregating or bagging the MARS seek to improve the predictive task of the MARS

model in this direction. All the kernel functions of the support vector regression

(SVR) panel, relevance vector machine (RVM) regression panel, and the Gaus-

sian processes regression (GPR) panel revealed statistically significant evidence

of superior performance over the benchmark historical average; the polynomial

basis kernel functions of the SVR, RVM and GPR respectively beat the linear and

radial basis kernel functions. The SVR, RVM and GPR models that are shown to

produced useful statistical information in other aspects of economic and financial

stock market analysis in empirical literature, do not only reflect usefulness in this

study but also significantly beat the benchmark historical average and many other

RT models in terms of forecasting the U.S. monthly equity premium out-of-sample.
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The kNN as an instant-based model also demonstrate statistically significant ev-

idence of beating the benchmark historical average. In the ruled-based model

panel, the Cubist significantly beats the benchmark historical average. The pro-

jection pursuit model also produced statistically significant evidence of beating

the benchmark historical average.

Unlike in other existing papers in which the predictive performance of any

model relative to the benchmark historical average rely solely on R2
OOS and MSE,

we employed the Diebold-Mariano (DM) as confirmative tests to further inves-

tigate whether each RT model demonstrate statistically significant evidence of

beating the benchmark historical average, using the residuals of the comparative

models together with suitable loss differential function in a one-tailed test of sta-

tistical significance. The pValues drawn from the standard Z scores based on the

asymptotic normal property are shown in Tables 3.3 and 3.4. The analytical find-

ings in this study revealed that the best performing RT models that are shown

to outperformed the benchmark historical average based on the R2
OOS and MSE

measures are also confirmed by the DM one-tailed tests to significantly produce

better forecast accuracies than the forecast accuracy from the benchmark historical

average, at a 5% significance level. However, the DM results seems to be contro-

versial in that some RT models that beat the benchmark historical average based

on other statistical measures, do not seems to produce better forecast accuracies

than the benchmark historical average. This corroborates the argument in Ra-

pach et al. (2007) which explained that the Diebold and Mariano (2002) statistical

tests may be severely undersized when comparing forecasts from nested models,

especially for tests involving small difference in predictive accuracies among the

competing models, and seems to be inconsistent in some cases. The outcome on

the statistical measure of predictability of any model relative to the benchmark

historical average depends on the specific statistical tool and method used in the

performance evaluation, and hence, the need to specify the standard statistical

measures employed.
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The graphical approach was aslo employed to depict the statistical predictive

performance of each RT forecasting model, serially arranged in the order they

appeared in the methodology, and in Tables 3.3 and 3.4. The graphical repre-

sentation of the various forecasts produced by the RT models corroborates the

statistical performance evaluation results (see figures 3.1 to 3.9). Like in Rapach

et al. (2007) and Rapach et al. (2010), we compute the difference in benchmark

historical average forecast cumulative square prediction error and each of the in-

dividual RT model forecast cumulative square prediction error (DCSPE), and the

outcome is depicted graphically (see figures 3.10 to 3.18). It is noticeable that

the DCSPE time-plots of some of the RT models slopes mostly above the thresh-

old (zero), which indicates few outliers produced by the RT model relative to the

benchmark historical average, while in some other cases, it slopes mostly below

the threshold, which indicates many outliers produced by the RT model relative

to the benchmark historical average.

Overall, the wide kernel PLS (WideKernelPLS) produced the minimum MSE

and highest R2
OOS among the other RT models in terms of statistical predictability,

and it shows statistically significant evidence of producing better forecast accuracy

than the benchmark historical average. Thus, the WideKernelPLS is the best RT

model for forecasting the U.S. monthly equity premium out-of-sample, among all

RT models tested statistically in this study.

Suffice it to say that the R2
OOS and MSE statistically significant evidence of

beating the benchmark historical average in terms of statistical predictive per-

formance does not necessarily reflect economic significance in real terms. A given

model may provide evident of useful statistical predictability relative to the bench-

mark historical average, but it may provide a weak Sharpe ratio and utility gain

respectively, underscoring a portfolio held on a risk-free treasury bill rate in some

worst case scenarios. The findings in Campbell and Thompson (2007) led to the

argument that even very low positive R2
OOS ≥ 0.50% values for monthly data

can produce a meaningful economic evidence of equity premium predictability in
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(d) Wide Kernel PLS

Figure 3.1: Out-of-Sample U.S Monthly Equity Premium Forecasts produced by
the RT Models
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Figure 3.2: Out-of-Sample U.S Monthly Equity Premium Forecasts produced by
the RT Models (Continued)
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(d) RVM with RBF

Figure 3.3: Out-of-Sample U.S Monthly Equity Premium Forecasts produced by
the RT Models (Continued)
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Figure 3.4: Out-of-Sample U.S Monthly Equity Premium Forecasts produced by
the RT Models (Continued)
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(d) LARS2

Figure 3.5: Out-of-Sample U.S Monthly Equity Premium Forecasts produced by
the RT Models (Continued)
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(d) GPR with LBF

Figure 3.6: Out-of-Sample U.S Monthly Equity Premium Forecasts produced by
the RT Models (Continued)
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(d) Bagging Earth

Figure 3.7: Out-of-Sample U.S Monthly Equity Premium Forecasts produced by
the RT Models (Continued)
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Figure 3.8: Out-of-Sample U.S Monthly Equity Premium Forecasts produced by
the RT Models (Continued)
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Figure 3.9: Out-of-Sample U.S Monthly Equity Premium Forecasts produced by
the RT Models (Continued)
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Figure 3.10: Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative square prediction
error (DCSPE)
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Figure 3.11: Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative square prediction
error (DCSPE) continued
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Figure 3.12: Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative square prediction
error (DCSPE) continued
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Figure 3.13: Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative square prediction
error (DCSPE) continued
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Figure 3.14: Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative square prediction
error (DCSPE) continued
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Figure 3.15: Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative square prediction
error (DCSPE) Continued

149



gaussprRadial

Time

D
C

S
P

E

1990 1995 2000 2005 2010 2015

0.
0

0.
2

0.
4

0.
6

(a) GPR with RBF

gaussprPoly

Time

D
C

S
P

E

1990 1995 2000 2005 2010 2015

−
0.

05
0.

00
0.

05
0.

10
(b) GPR with PBF

mars

Time

D
C

S
P

E

1990 1995 2000 2005 2010 2015

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

(c) MARS

bagEarth

Time

D
C

S
P

E

1990 1995 2000 2005 2010 2015

−
1.

5
−

1.
0

−
0.

5
0.

0

(d) Bagging Earth

Figure 3.16: Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative square prediction
error (DCSPE) Continued
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Figure 3.17: Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative square prediction
error (DCSPE) Continued
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Figure 3.18: Difference in benchmark historical average forecast cumulative square
prediction error and the individual RT model forecast cumulative square prediction
error (DCSPE) Continued
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terms of increased annual portfolio returns for a mean-variance investor. However,

the R2
OOS does not explicitly account for an investor’s risk over the out-of-sample

period, and hence the quest to evaluate the corresponding Sharpe ratios (SR) and

utility gains (UG) based on the out-of-sample period. Reconciling the statistical

and economic evidence in an attempt to guarantee the future expectation of a

mean-variance portfolio investor is another crucial issue in this study. It is notice-

able that all the RT models demonstrate useful evidence of economic prodictabil-

ity, owing to their cumulative returns (CRs) and corresponding positive Share

ratios (SRs). It is also importatnt to note that a model may underperformed

the benchmark historical avergae, but it may still possess good statistical and

economic predictive power, providing useful information to a mean-variance port-

folio investor. As suggested by Campbell and Thompson (2007), a mean-variance

investor can increase her monthly portfolio return by computing a proportional

factor
R2
OOS

(SR)2
, where SR is the Sharpe ratio. The average risk-free treasury bill

rate in this study is computed to be R̄free = 0.220% and the risk aversion param-

eter λ = 3. Following Rapach et al. (2007) and Rapach et al. (2010), the utility

gains (UGs) in this study are expressed in the form of average annualized per-

centage returns, also known as certainty equivalent returns. The UG is important

in that it provides useful economic information on the portfolio management fee

that an investor would be willing to pay in order to have access to the additional

available information in the RT forecasting model relative to the sole information

in the historical equity premium. A model that produced a UG based on the

out-of-sample periods greater than the average risk-free treasury bill is preferable

to its counterpart, for a mean-variance portfolio investor. If risk is equal, then

it is more profitable to invest in treasury bills than in the portfolio based on the

model. In this study, 33 out of the 36 RT models produced positive UGs that are

greater than the average risk-free treasury bill, suggesting better alternatives to

a mean-variance portfolio manager than the risk-free treasury bill. The NNET

and PCANNET that underperformed the benchmark historical average in terms
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of statistical predictability, also provide corresponding weak economic predictabil-

ity, suggesting future portfolio investments to a mean-variance investor on the

risk-free treasury bill than the specific models. It is worth noting that the RT

models that statistically beat the historical average, also economically beat the

average risk-free treasury bill, providing better UGs in each case, except for the

AVNNET. Contrary to the statistically predictive results, the GCVEarth that

underperformed the becnhmark historical average, appeared to produce better

economically predictive results, outperforming the average risk-free treasury bill.

In terms of ranking the performance of the RT models, it is noticeable that some

of the RT models that produced smaller MSEs, do not provide corresponding

higher UGs by comparison. The WideKernelPLS produced the smallest MSE

with the highest CR and SR, while the Gaussian processes regression with radial

basis kernel function (GPR with RBF) produced the highest average utility (AU)

with a corresponding highest UG in this direction. Thus, the findings agreed with

the notion in the litearture in which a model may be weak in statistical predictive

power, but it may provide useful economic information in a real-time setting.

The empirical findings in this study revealed that the sophisticated RT models

significantly beat the benchmark historical average both statistically and econom-

ically, producing smaller MSEs, compared to the methods used by many scholars

in the literature. Thus, the sophisticated RT models used in this study appeared

to guarantee a mean-variance investor in a real-time setting who optimally reallo-

cates a monthly portfolio between equities and risk-free treasury bill using equity

premium forecasts at minimal risk.

3.5 Conclusion

The research has fills the gap on the controversial arguments between different

scholars about the use of individual or collective variables to significantly fore-

cast the U.S. equity premium out-of-sample relative to the benchmark historical

average. Rather than individual financial variables, the sophisticated RT models
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incorporate all covariates in the kitchen sink form, regardless of variable impor-

tance at initial stage, to train the various models and use the resulting model

together with the cross-validated tuning parameters to run the forecasts recur-

sively. The replication of the benchmark historical average in this chapter have

corroborates the empirical analysis made by scholars in the existing literature.

The superior performance of any model depends on the modelling and forecasting

techniques used, and not necessarily the dataset under consideration.

The sophisticated RT forecasting models used in this study produced signifi-

cant evidence of statistical predictability with economic significance out-of-sample

relative to the benchmark historical average. The RT models generally produced

smaller mean squared prediction errors MSE and better R2
OOS, compared to the

analysis shown in the literature in which individual indicators were used to fore-

cast the U.S. equity premium out-of-sample. The results showed that the collective

variables provide statistically and economically useful forecasts of the U.S equity

premium for investors in real time setting, and demonstrate significant evidence of

consistently beating the benchmark historical average out-of-sample. Interestingly,

the concept of training and validating a kitchen-sink regression model associated

with the underlying sophisticated techniques in this study is evidently considered

to be statistically and economically significant approach, adding enormous impact

to enrich modern econometric and financial literature to boost the expectation of

investors on a long run. However, the statistical predictive superiority of an RT

model does not necessarily guarantee a corresponding economic superiority in this

direction.

Overall, the WideKernelPLS model produced the best result in terms of sta-

tistical predictability of the U.S. monthly equity premium out-of-sample while the

Gaussian processes regression with radial basis kernel function (GPR with RBF)

produced the highest average utility (AU) with a corresponding highest utility gain

UG, indicating the best economic significant result. They provide meaningful eco-

nomic information on mean-variance portfolio investment for investors who are
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timing the market to earn future gains at minimal risk, compared to the other RT

out-of-sample forecasting models. Therefore, the best performing sophisticated

RT out-of-sample forecasting models appeared to guarantee a mean-variance in-

vestor in a real-time setting who optimally reallocates a monthly portfolio between

equities and risk-free treasury bill using equity premium forecasts at minimal risk.

2

2This chapter has been submitted for publication, and it is currently on peer review, as
follows:
Iworiso, J. & Vrontos, S. (2019). Forecasting the U.S. Equity Premium with Regression Training
Techniques. Journal of Empirical Finance. Unpublished (peer review in progress).
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Chapter 4

Deep Learning Techniques for

Stock Market Statistical

Predictability with Economic

Significance

4.1 Introduction

Stock market predictability is an open-ended debatable research issue with con-

ceptualization in this modern age of rapid technological growth. A number of

methods have been proposed by several scholars as shown in existing literature

to analyse different financial data such as bonds, exchange rates, microeconomic

variables etc. The researcher’s proposed methodology could be promising when

a specific dataset is used (i.e., financial, macroeconomic, medical etc.), but not

necessarily promising in all datasets, and hence, the quest for robustness over the

proposed methodologies.

This chapter proposes a more sophisticated techniques known as deep learning

techniques which have the ability to extract features from a large raw dataset

without relying on prior knowledge of predictors. Day and Lee (2016) described

deep learning as a deep neural network, which is a more sophisticated aspect of

157



machine learning. It is a form of machine learning technique that involved the

use of data to train a model or recognize pattern(s) or label instances in order to

make predictions from new data in a more sophisticated manner (Heaton et al.,

2017). The various aspects of the deep learning techniques in this study include

the deep neural network (DNN), stacked autoencoder (SAE), H2O deep learning

H2ODL, long-short-term-memory (LSTM), and the fusion of some of these tech-

niques. The activation function and dropout approach were also introduced. Deep

learning techniques has demonstrated useful evidence of feasibility and effective-

ness in many fields of study, in computer science, biology, medicine, linguistics,

physics, and is currently attracting rapid attention in economics and finance.

The output of this study shall provide extensive knowledge on the effective-

ness of deep learning techniques with robustness of the proposed methodologies in

predictability of equity premium. It shall intensify investors target by providing

remedy to curb the identifiable research ills in prospective profit driven portfolio

investment at minimal risk. It shall enrich empirical literature and provide a basis

for further research work.

4.2 Review of Relevant Literature

Prediction of stock market behaviour is a challenging issue in financial analy-

sis. Empirical literature have shown several attempts made by researchers to

improve the predictive performance in stock market analysis with application of

sophisticated econometric, statistical or machine learning techniques over the old-

fashioned financial time series models (Di Persio and Honchar, 2016; Tsantekidis

et al., 2017). In recent time, the feasibility of artificial neural networks in stock

market forecasting with desirable predictive performance had led to the introduc-

tion of a more sophisticated learning technique known as deep learning. Over the

years, artificial neural networks as well as deep belief networks are shown to be

useful techniques for handling advanced linear and nonlinear relationships among
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the data. They offer a great deal of successes in time series analysis, natural lan-

guage processing, pattern mining and image classification among others (Hinton

et al., 2006; Akita et al., 2016; Yoshihara et al., 2014; Dixon et al., 2016; Vargas

et al., 2017; Deng et al., 2017; Shen et al., 2018; Candel et al., 2016; Dixon et al.,

2015; Sirignano et al., 2016; Pradeepkumar and Ravi, 2017; Hosein and Hosein,

2017; Yoshihara et al., 2015).

A review of unsupervised feature learning and deep learning for time series

modelling in Längkvist et al. (2014) revealed that the deep learning techniques

provide better representation and classification on a multitude of time series prob-

lems when properly configured and trained, compared to the shallow approaches.

It is worth noting to give less attention on the preprocessing pipeline for a specific

time series problem and focus more on learning better feature representations for a

general purpose algorithm for data structured, regardless of the underlying appli-

cation. The unsupervised feature extraction methods using principal component

analysis, autoencoder and restricted Boltzmann machine on a deep learning net-

work to predict future market behaviour by Chong et al. (2017) has demonstrated

practical insights and usefulness of deep learning techniques in stock market fore-

casting with significant improvement in performance evaluation. A comparative

analysis on predicting the trend of stock market using recurrent deep neural net-

works compared to support vector machines and deep belief networks in Yoshihara

et al. (2014) indicate the effectiveness of the approach, statistically significant im-

provement and outperformance over the later models especially when the analyti-

cal process is focused on specific period after a known significant event in financial

domain. The analysis is suggesting a controversial superiority of recurrent neural

networks over the deep belief network in this direction. A notable comparative

approach in financial literature is to compare the predictive performance of any

model with the benchmark buy and hold trading strategy. The application of deep

learning ensemble approach with stacked denoising autoencoders for modelling and

forecasting crude oil prices showed statistically significant evidence of superiority
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of the deep learning techniques over the bootstrap aggregation and other machine

learning techniques (Zhao et al., 2017). The introduction and implementation of a

hybrid genetic-neural architecture for stock indexes forecasting with consideration

of realistic trading commission by Armano et al. (2005) proved to be promising

in the selected application task and the overall results shows evidence of superior

outperformance over the benchmark buy and hold strategy for a large test dataset.

The empirical results in Hu et al. (2018), Feuerriegel and Fehrer (2016), Heaton

et al. (2016) also confirmed that the application of deep learning techniques in

financial analysis seek to outperformed both the standard methods in finance and

the conventional machine learning techniques. Contrary to these analyses, is the

empirical results in Krauss et al. (2017) in which a random forest outperformed

both deep neural networks and gradient boosted trees in the investigation of sta-

tistical arbitrage on S&P500, although a further investigation by hyper-parameter

optimization to yield improved results for the deep neural networks is required as

an area of future research. The combination of the base learners: deep neural

networks, boosted shallow trees and decorrelated trees of high depth into a simple

ensemble outperformed the various models in their individual form. It could also

be plausible to use the restricted Boltzmann machine to stack autoencoders that

can extract features from low signal to noisy time series dataset with appropriately

preprocessed inputs, as demonstrated in Takeuchi and Lee (2013), in which deep

learning technique was applied to enhance momentum trading strategy in stocks.

However, the notion of stacking the network layers in deep learning is proven

to be better in performance than the use of shallow structures (Gamboa, 2017)

and are evidently seen to be promising with underlying improvement in predictive

performance subject to further investigation in future studies.

Some scholars adopted a concept known as long short-term memory (LSTM)

units associated with deep learning techniques for stock return predictability. The

empirical results in Fischer and Krauss (2018) in financial stock market predic-

tions by deep learning techniques with LSTM seems to have outperformed other
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approaches such as the random forest, deep neural net and logistic regression. It is

worth noting that the inclusion of an LSTM network helps to extract meaningful

information effectively from noisy financial time series data. The combination of

stacked autoencoders and LSTM in deep learning framework for financial time

series in Bao et al. (2017) also demonstrate a superior performance in predic-

tive accuracy and profitability measures over the artificial neural networks and

support vector regression. The findings in Xiong et al. (2015) employing a sim-

ilar approach also give a superior outperformance over the ridge, least absolute

shrinkage and selection operator (LASSO) and generalized autoregressive condi-

tional heteroskedastic (GARCH) benchmark models by about 31% margin. The

activation function in the deep learning and neural network models were found

to be useful and promising with better predictive performance for predicting the

stock market behaviour. The use of deep neural networks and transfer learning for

decision support from financial disclosures with the aim of predicting stock market

movement by Kraus and Feuerriegel (2017) has again confirmed the superiority of

the LSTM over all traditional machine learning models based on bag of words data

analytical approach, owing to its higher directional accuracy as compared to the

traditional machine learning techniques. Traditional machine learning techniques

includes clustering, ensembles, dimensionality reduction, reinforecement learning,

artificial neural networks etc. Li et al. (2017) added that the adoption of LSTM

neural network made deep learning potentially stable in time series analysis even

in the presence of strong noise. Nelson et al. (2017) concluded that the LSTM

based models do not only outperformed other employed approaches in existing

literature but also offer less risks as compared to other strategies. In contrast

to the LSTM approach, the analytical findings made by Hiransha et al. (2018)

in predicting the National Stock Exchange of India and the New York Stock Ex-

change using their respective day-wise closing prices as dataset, the convolutional

neural network appeared to produce the best prediction accuracy, outperforming

the LSTM, multilayer perceptron and recurrent neural network among the deep
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learning techniques. Thus the convolutional neural network potentially captured

the abrupt changes in the system owing to the use of specific window for predicting

the future outcome in the stock market.

The use of market indicators: technical versus fundamental or the hybridized

approach is a pending confrontational discourse in financial analysis, which require

further investigation by various approaches including the deep learning techniques

to affirm robustness. The hybridized approach in Adebiyi et al. (2012) showed

remarkable results in predicting the future price of stock with better improvement

over the use of technical variables alone, suggesting a useful guide for investors

in making optimal business decisions in the financial market. The empirical find-

ings in Lee et al. (2017) involving an unsupervised learning phase and a fine-

tuning phase (back-propagation algorithm), in which the learning phase uses the

restricted Boltzmann machine also confirmed useful evidence of corporate per-

formance predictability, using the company’s financial and patent indicators as

predictor variables. Although the proposed deep belief network model shows good

statistical evidence in predicting a company’s performance in terms of technical

capability, however there is need to examine the hybridized form and compare

results to investigate robustness in further studies.

4.3 Research Methodology

4.3.1 Excess Stock Return Predictability

Let rt be an excess stock return at time t, and let Zt be a k-dimensional covariates,

required as predictor variables to predict rt+1 at time point t+ 1. Then a kitchen

sink predictive model can be obtained in the form (Rapach et al., 2010; Phan

et al., 2015):

rt+1 = θ0 + θ′Zt + ut+1; ut+1 ∼ N(0, σ) (4.1)
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where θ0 is the intercept; θ is a k-column vector of unknown coefficients; Zt is a

k-dimensional vector of covariates; ut+1 is a disturbance term; t = 1, 2, ..., T.

4.3.2 Historical Average

Let rt be a univariate time series representing the monthly excess stock market

return at time t. Following Rapach et al. (2010) and Lee et al. (2015), the future

historical average (HA) can be modelled as follows:

rt+1 = θ + ut+1 (4.2)

where θ is the model parameter representing the intercept; ut+1 is a zero mean

disturbance term; t = 1, 2, ..., T . The least squares estimator of the historical

average is as follows:

θ̂HA =
1

T

T∑
t=1

rt (4.3)

where θ̂HA is the parametric estimator of θ.

Thus, the benchmark HA forecasts, denoted by r̂T+1 can be obtained as follows:

r̂T+1|T =
1

T

T∑
t=1

rt (4.4)

4.3.3 Deep Neural Network

Typically, a single-layer neural network gives the nonlinear connection between

the variables hl, hl+1 via a network function, defined as follows:

hl+1 = H(whl + B) (4.5)

where H is an activation function; w is L × 1 vector of weight parameters; B is

L× 1 vector of biases; hl and hl+1 are network variables.

Given a predictor function r = g(Z), then a deep neural network can be con-
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structed by serially stacking the network functions in the form:

h1 = H1(w1Z +B1)

h2 = H2(w2h1 +B2)

...

r = HL(wLhL−1 +BL)

where Z is L×1 vector of input covariates; L is the number of layers, l = 1, 2, ..., L

(Chong et al., 2017; Heaton et al., 2017).

If {(Zn, τn)}Nn=1 represent a dataset of inputs and targets with an error function

ε(rn, τn) measuring the difference between the output rn = g(Zn) and the target

τn, then the model parameters for the overall network φ = {w1, w2..., wL;B1, β2..., BL}

can be obtained by minimizing the sum of the errors in the form:

arg min
φ

[
S =

N∑
n=1

ε(rn, τn)
]

(4.6)

where n = 1, 2, ..., N represent the input units

The solution of the objective function for the above minimization problem can be

obtained by gradient descent approach, resulting to (Chong et al., 2017):

S =
1

N

N∑
n=1

||rn − τn||2 + α ·
L∑
l=1

||wl||2 (4.7)

where || · || denotes the Euclidean vector norm; || · ||2 is an `2 vector norm, which

serves as a regularizer to eliminate overfitting; α is a user defined coefficient.

Such a multi-layer neural network is referred to as a deep neural network (DNN).

4.3.4 Stacked Autoencoder

An autoencoder (AE) involves a deep learning routine which trains the architec-

ture to approximate the covariate Z by itself (Z = r) via a bottleneck structure.

A bottleneck structure implies a network communication approach in which all

inputs flow are fully utilized in a defined relationship.
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Let Γ be a function which maps Z unto r, defined as follows:

Γ −→ Z : r

with an input-output mapping r = Γ(Z) and Z = (Z1, Z2, ...ZL). Then the solution

under an `2-loss function is as follows:

arg min
w,B

||Γw,B(Z)− r||22 (4.8)

subject to a regularization penalty on the weights and offsets;

where w = (w1, w2, ..., wL) and B = B1, B2, ..., BL (Heaton et al., 2016).

Let Z be input covariate vector in an AE, and setting the target output as rt = Zt.

Then we obtain a static AE with two layers akin to a traditional model in the form

of deep learners, defined by the following:

h2 = w1Z +B1

α2 = γ2(h2)

h3 = w2α2 +B2

r = Γw,B(Z) = α3 = γ3(h3)

where α2, α3 are activation levels, with initial setting α1 = Z.

A two-layer deep learning model is obtained when {wl}2
l=1 are simultaneously es-

timated based on the training input covariates Z.

In a dynamic single-layer AE, we need to find the weight vectors wZ and wr,

so that the state model encodes while the w = (wz,wr)
′ decodes the rt vector

into its lag rt−1 and the current state Zt. Thus, a single-layer dynamic AE for a

financial time series rt can be represented in a coupled system, as follows:

rt = wZZt + wrrt−1 where

 Zt

rt−1

 = wrt (4.9)

(Heaton et al., 2017)
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Clearly the AE model is directly in predictive form, and hence we do not need to

model the variance-covariance matrix explicitly, given the nonlinear combination

of deep learners.

A stacked autoencoder (SAE) consists of multiple layers of sparse autoencoders in

which the output of each layer is connected to the inputs of the successive layers.

Let w(m,1), w(m,2), B(m,1), B(m,1) represent the parameters w1, w2, β1, β2 for mth au-

toencoder. Then for a stacked autoencoder with L layers, the encoding step of

the SAE is obtained by running the encoding step of each layer in forward order,

defined as follows:

αl = Γ(Z(l)) (4.10)

Zl+1 = w(l,1)αl +B(l,1) (4.11)

The decoding step is obtained by running the decoding stack of each autoencoder

in reverse order, defined by the following:

α(L+l) = Γ(Z(L+l)) (4.12)

Z(L+l+1) = w(L−l,2)α(L+l) +B(L−l,2)

where α(L) is the activation of the deepest layer of hidden units in the network

model.

4.3.5 H2O Deep Learning

In a neural network model, the weighted combination, defined by:

α =
L∑
l=1

wlZl + B (4.13)
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of input signals is usually aggregated, so that an output signal, defined by:

Γ(α) = Γ
( L∑
l=1

wlZl + B
)

(4.14)

can be transmitted by the connected neurons in the model; where Γ(α) is the

nonlinear activation function used throughout the network; β is a bias term rep-

resenting the neuron’s activation threshold (Arora et al., 2015).

The multilayer feedforward neural networks consist of many layers of intercon-

nected neuron units, starting with an input layer to match the feature space,

followed by multiple layers of nonlinearity and resulting to a linear regression

layer to match the output space.

The objective is to minimize the loss function for each training example j:

Loss
(
w,B|j

)
= Loss

({
wl
}L−1

l=1
,
{
Bl

}L−1

l=1
|j
)

(4.15)

where w is L−1 weight vector connecting layer l to l+1 for a network of L layers;

B is L− 1 column vector of biases for layer l + 1.

The H2O follows the model of multilayer feedforward neural networks for predic-

tive modelling. Thus the H2O deep learning uses a purely supervised training

protocol with specification of the training frame together with the tuning param-

eters for the regression task.

4.3.6 Long Short Term Memory

The long stort term memory (LSTM) refers to a specific form of recurrent neural

network which seek to provide a solution by incorporating memory units, allwoing

the network to learn when to forget previous hidden states and when to update

hidden states given new information. This is done by inclusion of an input gate, a

forget gate, an input modulation gate and a memory cell in addition to the hidden

unit.
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In traditional recurrent neural networks (RNN), the networks can learn complex

temporal dynamics via a set of deep recurrence models, defined as follows:

ht = γ(wZ,hZt + wh,h +BZ)

rt = γ(wh,zZt +BZ)

where Zt is the input vector of covariates; ht is the hidden layer with n hidden

units; rt is the corresponding output at time t, for input sequence of length T in

which the updates a computed sequentially.

The architecture for an LSTM model added a hidden state Ct and a sigmoid func-

tion σ(·) resulting to:

Γt = σ(w′Γ[ht−1,Zt] +BΓ) (4.16)

It = σ(w′I [ht−1,Zt] +BI) (4.17)

Ĉt = tanh(w′C [ht−1,Zt] +BC) (4.18)

Ct = Γt ⊕ Ct−1 + It ⊕ Ĉt (4.19)

ht = Ot ⊕ tanh(Ct) (4.20)

where Γt ⊕ Ct−1 is the forget gate, which allows to throw away some data from

previous cell state; It ⊕ Ĉt is the input gate, which decides the values of the cell

state to be updated by an input signal in the network model; [ht−1,Zt] is a pair-

wise vector such that the new cell state is a sum of the previous cell state passing

through the forget gate selected components; Ot ⊕ tanh(Ct) is the output gate,

which returns tanh applied to the hidden state with the removal of some elements

(Vargas et al., 2017; Heaton et al., 2016).

The LSTM provides a mechanism for dropping irrelevant information from the

previous states and adding relevant information from the current time step, im-

proving the predictors by utilizing data from the previous to memorize volatility

patterns from previous periods. Thus the designated model aimed to automate

the identification of the temporal connections in the dataset at the cost of larger

168



sets of untrained parameters.

4.3.7 Dropout Approach

The dropout approach is a selection technique to eliminate overfitting in the train-

ing process of a deep learning model. In this case, the network is defined as follows:

rli = γ(hli)

hli = wliZ
l +Bl

i

is replaced with the dropout architecture, defined by the following:

Dl
i ∼ Bernoulli(π)

r̂li = Dl ⊕ Zl

rli = γ(hli)

hli = wliZ
l +Bl

i

where D ⊕ Z replaces Z in the previous model; ⊕ is the element-wise product;

l = 1, 2, ..., L; D is L-dimensional vector of independent Bernoulli distributed ran-

dom variables with parameter π; Z is L× 1 vector of covariates.

Using the loss function optimization concept, then we marginalize the problem

over the randomness to obtain the objective function:

arg min
w

E(D ∼ Bernoulli(π))||r−w(D⊕Z)||22 ' arg min
w

||r−πwZ||22+π(1−π)||Σw||22

(4.21)

which can be viewed as a Bayesian ridge regression model with a g-prior, where

Σ = (diag(Z′Z))
1
2 ;E denotes the expectation.

4.3.8 Activation Functions

The activation functions used in this study include Sigmoid, Hyperbolic Tangent,

Maximum Output, Rectifier Linear Units, Softmax and some combinations with

the dropout approach. See (Arora et al., 2015; Candel et al., 2016; Nwankpa et al.,
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2018) for detail.

The Sigmoid is a commonly used nonlinear function in feedforward neural net-

Table 4.1: The Activation Functions

Function Formula
Sigmoid, Sigm Γ(α) = 1

1+e−α
; Γ(·) ∈ [0, 1]

Hyperbolic Tangent, Tanh Γ(α) = eα−e−α
eα+e−α

; Γ(·) ∈ [−1, 1]

Maximum Output, Maxout Γ(α1, α2) = max(α1, α2); Γ(·) ∈ R
Rectifier Linear Units, ReLU Γ(α) = max(0, α); Γ(·) ∈ R+

Softmax Γ(α) =
eαj∑k
j=1 e

αj
∈ (0, 1) for α = (α1, α2, ..., αk).

where α, α1, α2, ..., αk represent the weighted combinations.

work models. It is a monotonically bounded continuous real input valued differ-

entiable function with positive derivatives everywhere in its domain. The Tanh is

commonly used in multilayer neural networks, which seeks to produce smoother

zero-centred output to improve the back propagation process in the model. The

MaxOut which is a generalization of the rectifier linear activation in which each

neuron picks the largest output of k separate channels and each channel has its

own wights and biases. The Softmax takes an input vector of α real numbers

and normalizes into a probability distribution consisting of α probabilities propor-

tional to the exponentials of the input numbers. The aim of normalization is to

ensure that the sum of the components of the output vector Γ(α) is equal to 1.

The H2O deep learning allows optional specification of adaptive learning rate for

fast convergence, annealing and momentum. The regularization options, dropout

and model averaging are special concepts introduced to prevent model overfitting.

4.3.9 Statistical and Economic Performance Evaluation

In this study, the evaluation metric employed to compare the statistical perfor-

mance of the various models is the mean squared forecast error (MSFE). It is

computed as

MSFE =
1

T

T∑
t=1

(rt − r̂t)2 (4.22)
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where T denotes the out of sample periods; rt denotes the actual at specific time

point t; r̂t is the forecast at specific time point t.

The smaller the MSFE the better the model, and hence the model which gives

the minimum MSFE is the best statistically predictive model.

The cumulative return (CR) and the Sharpe ratio (SR) are the two metrics

used for the economic performance evaluation in this study.

Sharpe Ratio and Cumulative Return

According to Sharpe (1994), the Sharpe ratio (also known as reward to volatility

ratio) is a measure of the additional amount of return that an investor receives

per unit of increase in risk. Mathematically, it is defined as follows:

SRp =
E(rp)− E(rf )√

V ar(rp)

where E(rp) is the average realized return of the portfolio over the out-of-sample

period; E(rf ) is the average risk-free treasury bill rate; V ar(rp) is the variance of

the portfolio over the out-of-sample period. In this study, we use the SR which

standardizes the realized returns with the risk of the portfolios.

The cumulative return (CR) of the portfolio, is computed as follows:

CR =
T∑
t=1

rt (4.23)

where rt is the return on month t; and T is the number of months in the out-of-

sample period.
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4.4 Data Analysis & Discussion

The dataset and variables used in this chapter are obtained from Amit Goyal’s

webpage1, each covering monthly observations from 1960M1 to 2016M12, and the

sample size is T = 684. The three distinct out-of-sample periods in this study con-

sists of monthly observations from January 1981 to December 2016 (TOOS = 432),

January 1991 to December 2016 (TOOS = 312), and January 2001 to December

2016 (TOOS = 192). Each deep learning model was fitted and the parameters

were estimated recursively using an expanding window of observations, with data

point from the start time to the present time and obtain a one month-period-

ahead forecast. The procedure is repeated until the last forecast is obtained, for

the various out of sample periods. The forecast horizon is one month ahead, for

all the deep learning models used in the study.

The empirical analysis in this chapter provide useful evidence of statistical pre-

dictability by the deep learning techniques, each producing smaller mean squared

forecast errors (MSFEs), which implies that they possess statistical predictive

power in financial stock market analysis.

In terms of statistical predictability, all the deep leaning models demonstrate

useful evident of statistical predictability. Following the concept of statistical pre-

dictability, a model which gives a smaller MSFE is preferable in this direction,

and hence the smaller the MSFE, the better the predictive performance of the

model. Considering the statistical predictive performance of the deep learning

models in their isolated form, the H2O deep learning (H2ODL) gives the small-

est MSFE in each of the out-of-sample periods. Specifically, the H2ODL with

Rectifier used as the activation function produced the smallest MSFE, and hence,

outperformed the other individual models in the chapter. Indeed, the superiority

of H2ODL over the other individual models is robust for both smaller and larger

out-of-sample priods. Furtherance to corroborating or refuting the claims made by

previous scholars about the fusion of the models in the literature, we investigate

1Available at: www.hec.unil.ch/agoyal/docs/PredictorData2016.xlsx
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Table 4.2: Data & Description of Variables:1960M01 to 2016M12

Data & Description of Variables:1960M01 to 2016M12
Variable Description
Stock Index, SPt Is the Standard&Poor 500 U.S stock index.
Excess Stock Return,
rt

The difference between the expected return on the
market portfolio (SP500) and the risk-free treasury
bill rate.

Dividend Price Ratio
(log), DPRt

The dividends over the past year divided by the
current stock index value.

Dividend Yield (log),
DYt

Is the difference between the log of dividends and
the log of lagged prices.

Earnings Price Ratio
(log), EPRt

The earnings over the past year divided by the
current stock index value.

Realized Stock Vari-
ance, RSVt

Is the sum of squared daily returns on the S&P500
index within one month.

Book to Market Value,
BMVt

Is the ratio of book value to market value for the
Dow Jones Industrial Average.

Net Equity Expan-
sion, NEEt

Is the ratio of 12-month moving sums of net issues
by New York Stock Exchange (NYSE) listed stocks
to total end of year market capitalization of the
NYSE stocks.

Treasury Bill Rate,
TBRt

Is the interest rate on a 3-month treasury bill, sec-
ondary market.

Long Term Yield,
LTYt

Is the long term government bond yield, constant
maturity.

Long Term Return,
LTRt

Is the return on long term government bonds.

Term Spread, TSt Is the difference between the long term yield
(LTYt) and the treasury bill rate (TBRt).

Default Yield Spread,
DY St

Is the difference between the BAA and AAA rated
corporate bond yields.

Default Return
Spread, DRSt

Is the difference between the long term corporate
bond and long term government bond returns.

Inflation, INFt Is computed from the consumer price index (CPI)
for all urban consumers.
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the statistical predictive performance of the SAE fused with H2O at various acti-

vation functions, and the results are promising. The fusion of the SAE-with-H2O

using Maxout activation function produced the smallest MSFE, compared to ev-

ery other model, for the various out-of-sample periods. The superior performance

of the SAE-with-H2O over the individual deep learning models has corroborates

the hybrid form, demonstrated in Armano et al. (2005) in the literature. Thus, the

SAE-with-H2O gives the best statistical predictive results among all the models

tested, and it is robust with the Maxout activation function in all out-of-sample

periods. In order to demonstrate further evidence of statistical predictability, the

forecasts produced by each model is plotted vertically against their respective peri-

ods, comparative to the actual values to ease the illustration. Again, the graphical

illustration of each predictive model is seen to be promising. The graphical repre-

sentation of the actual versus the forecasts produced by the SAE-with-H2O also

revealed the best relationship between the forecasts and actuals than the other

models. Thus, the SAE fused with H2O is the best statistically predictive deep

leaning model among all the models used in this chapter, owing to its smallest

MSFE with robustness.
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One notable approach for determining the statistical and economic predictive

power of a resulting model is to compare the performance with the performance

of the benchmark historical average (HA). It is imperative to note that the HA

out-of-sample forecasts are obtained by recursive window forecasting approach.

Following the benchmark approach, any deep learning model which yields MSFE

smaller than the MSFE from the HA is said to beat the benchmark HA in

terms of statistically predictive perspective. From the empirical findings, the

H2ODL applied with different activation functions have all consistently beat the

HA, owing to smaller MSFE across all out-of-sample periods. The SAE-with-

H2O using the Maxout and MaxoutWithDropout respectively, have consistently

beat the HA in all out-of-saple periods. However, the LSTM and DNN do not

outperform the benchmarkHA. Thus, theH2ODL and SAE-with-H2O appeared

to provide less volatility in future portfolio investment than the benchmark HA

in this perspective.

The economic performance evaluation results produced by the various deep

learning models generally appeared to be promising. Most of the deep learning

models produced positive cumulative return (CR) and a corresponding positive

Sharpe ratio (SR), which signifies future investment gains at lower volatility. In-

terestingly, the good performing deep learning models that provide evidence of

statistical predictability, are economically significant in the study. Contrary to

the statistically predictive analysis, in which the H2ODL using Rectifier activa-

tion function consistently producing the smallest MSFE, does not consistently

produce the highest CR and SR. In the economic performance evaluation, the

H2ODL using Rectifier activation function does not consistently produced high-

est CR and SR across all the out-of-sample periods, in the isolated form. The

H2ODL using the RectifierWithDropout activation function produced higher

CR and SR respectively, than the H2ODL with TanhWithDropout activation

function, in two disticnt out-of-sample periods. Notwithstanding, the H2ODL

appeared to produce the best economic significant results among all the deep

178



learning models tested in their isolated form. Again, the fusion results for the eco-

nomic performance evaluation reveals that the SAE-with-H2O using the Maxout

activation function generally yields the highest CR and SR respectively, among

all the deep learning models, in the distinct out-of-sample periods. It is worth

noting that the higher the CR, the higher the SR and the lower the MSFE,

which concords with a rule of thumb in an ideal market situation. Thus, the

SAE-with-H2O using the Maxout activation function consistently yields the best

economically significant results among all the deep learning models tested, across

all out-of-sample periods in this direction.

In terms of economic performance, the H2ODL and the SAE-with-H2O using

the various activation functions, have all produced CR and SR which are by

far higher than those from the HA, and they are robust across all out-of-sample

periods. Contrary to the statistcally predictive results, the HA do not consistently

beat the DNN and SAE economically, across the various out-of-sample periods.

In some cases, the SAE and DNN economically beat the HA. The LSTM

which was shown to be promising for classification task in the literature, also

demonstrate evidence of statistical and economic predictability for the higher out-

of-sample periods, but do not beat the benchmark HA, in regression perpective.

The outperformance of H2ODL and SAE-with-H2O over the benchmark HA,

seems to provide better strategy on future protfolio investments with less volatility

than the old-fashioned HA method.

Indeed, the introduction of H2O in equity premium data in this chapter has

demonstrated useful evidence of both statistical and economic predictability, and

the fusion with any model suggestively butress the predictive performance. Over-

all, the SAE-with-H2O using Maxout activation function consistently produced

the best statistically predictive and economically significant results among all the

deep learning models tested in the various out-of-sample periods. Therefore it is

imperative to introduce H2O and its fusion or hybridized form in deep learning

techniques when forecasting financial stock market data in order to improve the
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Figure 4.1: Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1981 to December 2016
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Actual vs SAE_MaxoutWithDropout Forecasts
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Figure 4.2: Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1981 to December 2016 (continued)
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Actual vs H2ODL_MaxoutWithDropout Forecasts
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Figure 4.3: Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1981 to December 2016 (continued)
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Figure 4.4: Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1991 to December 2016
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Actual vs SAE_MaxoutWithDropout Forecasts
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Figure 4.5: Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1991 to December 2016 (continued)
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Actual vs H2ODL_MaxoutWithDropout Forecasts
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Actual vs LSTM Forecasts

Time

O
ut

−
O

f−
S

am
pl

e 
F

or
ec

as
ts

1990 1995 2000 2005 2010 2015

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

Actual

LSTM

(c) LSTM

Figure 4.6: Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 1991 to December 2016 (continued)
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Actual vs DNN Forecasts
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Figure 4.7: Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 2001 to December 2016
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Actual vs SAE_MaxoutWithDropout Forecasts
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Figure 4.8: Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 2001 to December 2016 (continued)

187



Actual vs H2ODL_MaxoutWithDropout Forecasts
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Figure 4.9: Out-of-Sample U.S Monthly Equity Premium Forecasts by Deep
Learning Models: January 2001 to December 2016 (continued)
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statistically predictive task of the resulting model(s), with economic significance.

4.5 Conclusion

Deep learning techniques are proven to be useful in many fields of study including

in medicine for gene expression data, in linguistics for speech recognition and in

physics for digital image classification; but are rarely used in finance, and hence the

quest for the feasibility with statistical predictability and economic significance.

The objective was to investigate the predictive performance of deep learning tech-

niques on monthly financial stock market data, which has been achieved with fea-

sibility and promising empirical results. This chapter investigates the statistically

predictive power and economic significance of financial stock market data by deep

learning techniques. In particular, we use the equity risk premium, also known as

excess stock market return as the response variable and the other variables as the

predictors.

Interestingly, most of the deep learning techniques provide useful evidence of

statistical predictability and economic significance. The empirical findings in this

chapter reveals that the H2ODL and the SAE-with-H2O using various activation

functions have consistently outperformed the benchmark HA both statistically

and economically, and they are robust across all out-of-sample periods. It is

worth noting that the introduction of fusion, in which the SAE is fused with

H2O appeared to produce better statistically predictive results with economic

significance, than the results obtained from their isolated forms. The deep learning

forecasting models that demonstrates evidence of statistical predictability, which

beat the benchmark HA, also demonstrates a corresponding evidence of economic

significance.

Overall, the empirical analysis in this chapter revealed that the SAE-with-

H2O using Maxout activation function produced the best statistically predictive

and economically significant results with robustness across all the out-of-sample

periods. The introduction of fusion in this study has contributed immensely to
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boost the statistical predictive task of the SAE model, better than its isolated

form. Thus, the deep learning techniques seek to intensify investors target by

providing remedy to curb the identifiable research ills in prospective profit driven

portfolio investment at minimal risk.

2

2This chapter has been submitted for publication, and it is currently on peer review, as
follows:
Iworiso, J. & Vrontos, S. (2019). On the Predictability of Equity Premium Using Deep Learning
Techniques. International Journal of Forecasting. Unpublished (peer review in progress).
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Chapter 5

Summary, Conclusion and

Further Research

5.1 Summary

The objective of this thesis was to explore sophisticated machine learning and

deep learning techniques to model financial stock market data in order to make

predictions and evaluate their performances both statistically and economically

with robustness, and to demonstrate superior outperformance of the proposed

methodologies over the benchmark approaches used in the existing literature.

Chapter two applies a plethora of machine learning techniques to forecast the

direction of the U.S. equity premium. The techniques include benchmark binary

probit models, penalized binary probit models, classification and regression trees

(CART), discriminant analysis classifiers, Bayesian classifiers and neural networks.

The study begins with replication of existing methods as shown in chapter two,

specifically the static and dynamic binary probit models for directional forecast-

ing proposed by Nyberg (2011), and the empirical results corroborate the results

shown in the paper, confirming the weak predictive power of the models. The

empirical analysis reveals that the sophisticated machine learning techniques sig-

nificantly outperformed the benchmark binary probit forecasting models, both

statistically and economically. Overall, the discriminant analysis classifiers are

191



ranked first among all the models tested. Specifically, the high dimensional dis-

criminant analysis (HDDA) classifier ranks first in terms of statistical performance,

while the quadratic discriminant analysis (QDA) classifier ranks first in economic

performance. The kNN, Bayesian classifiers, prominent CART and the penalized

likelihood binary probit models (Least Absolute Shrinkage and Selection Opera-

tor, Ridge, Elastic Net) also outperformed the benchmark binary probit models,

providing significant alternatives to portfolio managers. The proposed machine

learning techniques provide better investment alternatives to portfolio managers

than the buy and hold (B&H) trading strategy used as a decision rule to time the

market.

Chapter three focuses mainly on the application of regression training (RT)

techniques to forecast the U.S. monthly equity premium out-of-sample recursively

with expanding window method. It employed a broad categories of regression

models, which includes, the kitchen sink linear model, partial least squares re-

gression, kernel-based regularized least squares, support vector regression, rele-

vance vector regression, regularized regression, components regression, Gaussian

processes regression, regression splines, rule-based regression, nearest neighbour,

projection pursuit, and neural networks. Interestingly, the RT models demon-

strate significant evidence of equity premium predictability both statistically and

economically relative to the benchmark historical average, delivering significant

utility gains (UGs). The empirical findings revealed that the RT models signif-

icantly beat the benchmark historical average. Overall, the partial least squares

regression with wide kernel (WideKernelPLS) produced the best result in terms

of statistical predictability while the the Gaussian processes regression with radial

basis kernel function (GPR with RBF ) produced the highest average utility (AU)

with a corresponding highest utility gain (UG), indicating the best economic sig-

nificant result, among all the RT models. The results showed that the collective

variables provide statistically and economically useful forecasts of the U.S equity

premium for investors in real time setting, and demonstrate significant evidence of
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consistently beating the benchmark historical average out-of-sample. They seek to

provide meaningful economic information on mean-variance portfolio investment

for investors who are timing the market to earn future gains at minimal risk, com-

pared to the other RT forecasting models. Therefore, the RT models appeared

to guarantee a mean-variance investor in a real-time setting who optimally reallo-

cates a monthly portfolio between equities and risk-free treasury bill using equity

premium forecasts at minimal risk.

The feasibility and superiority of the machine learning techniques (statistically

and economically) over other existing methods led to the proposal of more sophis-

ticated techniques known as deep learning techniques for further investigation on

monthly financial stock market data, which has been achieved with feasibility and

promising empirical results. Chapter four investigates the statistical predictive

power and economic significance of financial stock market data by deep learning

techniques. The deep learning techniques used in the chapter include, the deep

neural network (DNN), stacked autoencoder (SAE), H2O deep learning H2ODL,

long-short-term-memory (LSTM), and the fusion of some of these techniques. The

activation function and dropout approach were also introduced. In particular, we

use the equity risk premium as the response variable and other economic and fi-

nancial variables as the predictors. The deep learning techniques used in this study

provide useful evidence of statistical predictability and economic significance. Con-

sidering the statistical predictive performance of the deep learning models in their

isolated form, the H2O deep learning (H2ODL) gives the smallest mean squared

forecast error (MSFE), with corresponding highest cumulative return (CR) and

Sharpe ratio (SR) respectively, in each of the out-of-sample periods. Specifically,

the H2ODL with Rectifier used as the activation function, outperformed the other

models used in the chapter. In the fusion results, the SAE-with-H2O using Max-

out activation function yields the smallest MSFE with corresponding highest CR

and SR in all the out-of-sample periods. It is worth noting that the higher the

CR, the higher the SR, and the lower the MSFE which concords with a rule of
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thumb. Overall, the empirical analysis in this study revealed that the SAE-with-

H2O using Maxout activation function produced the best statistically predictive

and economic significant results with robustness across all the out-of-sample pe-

riods. Thus, the deep learning techniques seek to intensify investors target by

providing remedy to curb the identifiable research ills in portfolio investment at

minimal risk.

5.2 Conclusion

The objective of this thesis has been achieved, as the machine learning and deep

learning techniques proposed in the study have demonstrate significant evidence

of outperforming the benchmark existing methods in the relevant literature, both

statistically and economically. The techniques are proven to be robust both sta-

tistically and economically when forecasting the monthly equity premium out-

of-sample using recursive (expanding) window method. However, reconciling the

statistical and economic evidence in an attempt to guarantee the future expecta-

tion of a portfolio investor was a crucial issue in this thesis. It is worth noting, from

the empirical findings in the thesis, that the superiority of a model in terms of sta-

tistical predictability among the machine learning techniques does not necessarily

guarantee superiority in economic significance in this direction. Notwithstanding,

the best model among the deep learning techniques was shown to be superior both

statistically and economically. Thus, they provide better investment alternatives

to portfolio managers who are timing the market to earn future profits at minimal

risk rather than the conventional B&H trading strategy.

The new major contributions in this study/thesis include the following:

1. The use of sophisticated machine learning classifiers involving model train-

ing, data preprocessing, resampling/cross-validation and fine-tuning the pa-

rameters in forecasting the sign or direction of the U.S. stock market re-

cursively using expanding window has greatly outperformed the previous
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methods used in the literature, both statistically and economically, suggest-

ing better investment alternatives to portfolio managers.

2. The best machine learning classifier in this study outperformed the best

binary probit model statistically in the literature by 7.4%, see Nyberg (2011).

3. Unlike the previous studies shown in the literature in which only few per-

formance evaluation measures were used, this study introduces a wide range

of statistical performance evaluation measures (example Kappa statistic,

McNemar etc.) and economic performance evaluation measures (example

Sortino ratio, Maximum Draw-down, VaR, CVaR, Upside potential) to boost

the empirical analysis of the study.

4. The sophisticated regression training techniques/models which incorporate

all covariates as predictors in this study produced smaller mean squared

errors, better Sharpe ratios and utility gains respectively than the use of

individual variables in ordinary regression models with restrictions by other

scholars shown in the literature. Thus the sophisticated regression training

techniques appeared to provide a better investment alternative to a mean-

variance portfolio investor who is timing the market to earn future profit at

minimal risk/volatility, rather than the conventional techniques used in the

literature.

5. Unlike some previous works reviewed in the literature, the empirical find-

ings in this study appeared to be robust in that each model performance is

considered both statistically and economically.

6. Adequate performance evaluation measures were used to investigate the deep

learning techniques/models in this study, in the context of finance, compared

to previous studies in the literature.

7. Comparatively, the deep learning techniques in this study appeared to pro-

duce the best model in both statistically and economically justifiable manner
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when forecasting the U.S. stock market recursively with expanding window,

compared to the traditional machine learning techniques and the conven-

tional techniques in finance used in the literature.

5.3 Further Research

The following areas are left pending for further research:

• To investigate the statistical predictability and economic significance of the

machine learning and deep learning models used in this thesis at different

length(s) of forecast horizon, for example quarterly (h = 3), semi-annually

(h = 6) and annually (h = 12).

• To investigate the feasibility and predictability of these sophisticated tech-

niques in forecasting other relevant financial and economic variables such as

industrial production, economic recession, economic growth, exchange rate

etc.
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