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resumo A necessidade de reorganização do mercado de energia, com o objetivo de re-
duzir o consumo de energia de fontes não renováveis, levou à criação de Co-
munidades de Energia Renovável, que permitem que os seus membros parti-
lhem a sua energia produzida e armazenada entre si. O presente trabalho pro-
põe um estudo sobre um sistema de gestão desta comunidade, usando técnicas 
de AI/ML para a previsão do consumo de eletricidade. Prevê-se que, com a uti-
lização destas técnicas, o sistema de gestão conseguirá diminuir o preço da 
fatura de eletricidade da comunidade, ou a redução do consumo de energia pro-
veniente da rede de distribuição. 
 

 

  



   

 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

keywords 

 
Machine learning, artificial intelligence, renewable energy communities 

 

abstract The need for a reorganization of the energy market, with the goal of reducing 
the energy consumption from non-renewable sources, led to the creation of 
Renewable Energy Communities, which allow their members to share their 
produced and stored energy among themselves. The present work proposes 
a study of a management system of this community, using AI/ML techniques 
for the energy consumption forecast. It is predicted that, with the use of these 
techniques, the management system will be able to decrease the electricity 
bill of the community, or the reduction of energy consumption from the distri-
bution grid. 
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1.  Introduction 
The need for change in the energy sector, with the goal of reducing the electric consump-

tion from non-renewable sources, prompted the emergence of a new paradigm based on the role 

of prosumers, which are energy consumers with capacity to produce and store electricity. Recently, 

a new operation of electricity markets using peer-to-peer (P2P) architectures was proposed, allow-

ing the prosumers to directly share their produced or stored energy with other consumers, there-

fore reducing the usage of “non-green” energy. These P2P markets focus on a bottom-up perspec-

tive and in an architecture centred on the consumer, allowing the prosumers to organize them-

selves collectively and cooperate in the operational management of energy, composing a Renewa-

ble Energy Community (REC). This reorganization of the electricity markets, with a decentralized 

management and based in cooperative principles, has the potential to promote the empowerment 

of the prosumers, while also pleasing their energy consumption preferences, such as renewable 

energy sources, CO2 gas emissions and the proximity to the energy production place of origin. In 

this P2P architecture, all peers (prosumers) cooperate with their available resources to produce, 

trade, or distribute an asset or a service. The P2P and community concepts have been applied under 

the principle of cooperative economy, easing the transaction amongst all economic agents. 

The goal of this thesis is the investigation and implementation of prediction models of con-

sumption of electricity by members of a REC, as well as the evolution of the buy and sell prices of 

energy in the electricity market. Based on the estimations, it will be possible for the management 

entity of the community, or each individual member, to perform a more efficient management of 

the produced, consumed, and stored energy. Machine Learning algorithms will perform the task of 

obtaining these estimations as trustworthy as possible, while learning existing patterns in a time 

series, such as the differences between the production and consumption of energy during summer 

and winter, or between day and night, weekdays, and weekends, etc. From the developed models, 

it will be possible to optimize the energetic balance of the community, evaluating in real-time the 

current price and the future estimation of when to buy, sell the electricity to the distribution net-

work and making decisions on storage, buying energy for future usage, or selling the produced ex-

cess. 
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2.  State of the Art 
This project concerns mainly with Machine Learning (ML) and how it can be used to predict 

the consumption and production of electricity by members of a REC. Therefore, in this chapter, ML 

is explained, while also diving into some of its methods, comparing them in how they may or may 

not benefit this project. 

2.1. Machine Learning 
Machine Learning (ML) is a field of Artificial Intelligence (AI) that concerns with the question 

of how to construct computer algorithms that automatically improve with experience [1]. ML has 

the goal of making predictions or finding patterns without being specifically programmed to do so, 

finding them because they were learnt with past data. Typically, a ML model is built using a range 

of techniques and methods that tune their parameters to reduce errors and fit the data as it is made 

available to them. This process is known as training. 

The ML models can be trained with distinct types of data, labelled and unlabelled. Labelled 

data have both input and output parameters, where the output are the values to predict, given the 

input parameters. For example, for a use case where we would try to predict a house price using 

ML, a dataset with several houses and their features, such as dimensions, location, number floors, 

and price, can be used as a labelled dataset, where the price is the output parameter, and the other 

features are the input parameters. Usually, a labelled dataset is obtained with human labour, which 

can, therefore, be more expensive to obtain. Unlabelled data, on the other hand, have no mean-

ingful tags or distinctive features, i.e., there is no specific value to predict. For example, a dataset 

with users and the movies they liked has no output parameter, yet it can be used to group users 

according to the similarity of their tastes and used for a recommendation algorithm [2]. 

There are three main techniques in ML: Supervised Learning, which is trained with labelled 

data and mainly categorized as Classification, where the input produces a discrete output, and Re-

gression, where the input produces a continuous output [3]; Unsupervised Learning, trained with 

unlabelled data and usually categorized as Clustering, the process of joining items into subgroups 

based on their similarities. This opposes Supervised Learning, since the goal is not to make predic-

tions, but rather finding statistical patterns in data [4]; and Reinforcement Learning, where the 

algorithms act as agents that are rewarded or punished, depending on their behaviour, therefore 

learning through trial and error [3]. 

2.1.1. Artificial Neural Networks 
An ANN is a ML algorithm that was created as a loose mathematical representation of neu-

rons on a biological brain and how they worked. According to the scientific knowledge of the time 

of its creation, neurons could be represented as a set of nodes, each connected to other nodes, 

transmitting signals to their connections. In an ANN, this “signal” is a real number, and the output 

of each neuron is computed by some non-linear function of the sum of its inputs. Neurons and their 

connections (edges) typically have a weight that adjusts as learning proceeds. The weight increases 

or decreases the strength of the signal at a connection [5]. 

A. Multilayer Perceptron (MLP) 
MLP is known as the simplest type of feedforward ANN. The MLP neural network has a 

layer of input neurons, where each can be mapped to a feature. Each neuron will then send its 

single output to the group of neurons of which it is connected to, in another layer of neurons 
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(hidden layers). This process is repeated until it reaches the final layer, the output layer, where 

the task will be accomplished, such as recognizing an object in an image [6]. Figure 1documents 

an example of an MLP Neural Network, with 𝑛 nodes on the input layer, one hidden layer with 𝑘 

nodes and a final layer with a single output. 

To find the output of the neuron, first we must take the weighted sum of all the inputs, 

weighted by the weights of the connections from the inputs to the neuron. We add a bias term to 

this sum. This weighted sum is sometimes called activation. This weighted sum is then passed 

through an activation function to produce the output [6]. 

 

Figure 1 – MLP Neural Network example (image obtained from [7]). 

B. Long Short-Term Memory Network (LSTM) 
Long short-term memory (LSTM) is an artificial recurrent neural network (RNN). A RNN is a 

special type of ANN, which differs from them because each neuron can have feedback connections 

to store representations of recent input events in form of activations [8]. Consequently, the output 

of a neuron will have an impact on its future output. This is ideal for sequential data, such as speech, 

video, or data in form of time series. With RNN architectures, however, it can be difficult to solve 

problems that require learning long-term temporal dependencies. This is because of the vanishing 

gradient problem, where the gradient of the loss function decays exponentially with time.  

A LSTM unit is composed of a memory cell, which can maintain information in memory for 

extended periods of time, an input gate, an output gate, and a forget gate. LSTM, unlike RNNs, 

which overwrite their content at each time-step, can decide whether to keep the existing memory 

via the introduced gates. These gates, therefore, control the information that enters the memory, 

that is forgotten, and that leaves as the output. Intuitively, if the LSTM unit detects an important 

feature from an input sequence at early stage, it easily carries this information (the existence of the 

feature) over a long distance, hence, capturing potential long-distance dependencies [9].  

C. Adaptive neuro fuzzy inference system 
An adaptive neuro-fuzzy inference system or adaptive network-based fuzzy inference sys-

tem (ANFIS) is an artificial neural network that is based on Takagi–Sugeno fuzzy inference system. 
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The technique was developed in the early 1990s. Since it integrates both neural networks and fuzzy 

logic principles, it has potential to capture the benefits of both in a single framework. Its inference 

system corresponds to a set of fuzzy IF–THEN rules that have learning capability to approximate 

nonlinear functions. Hence, ANFIS is a universal estimator. For using the ANFIS in a more efficient 

and optimal way, one can use the best parameters obtained by genetic algorithm. It has uses in 

intelligent situational aware energy management system [10]. 

2.1.2. Random Forest 
A random forest is a machine learning technique that is used to solve regression and clas-

sification problems, which consists of many decision trees, generating a “forest,” then trained by 

the algorithm. A Decision Tree is an intuitive technique that uses a tree-like model to draw decisions 

and their consequences. A simple example can be seen in Figure 2. A Random Forest builds several 

decision trees in randomly selected subspaces of the feature space [11] , i.e., a Random Forest 

contains several unrelated decision trees, each producing different outcomes. This method pre-

vents individual error, since the output will not be dependent of a single tree, but all the trees’ 

outputs. The outcome of a random forest can be the most common output of the different decision 

trees (see Figure 3).  

 

Figure 2 – Decision Tree example (image obtained from [12]). 

 

Figure 3 – Random Forest Classifier example (image obtained from [12]). 
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2.1.3. AdaBoost 
AdaBoost, short for Adaptative Boosting, is a ML algorithm that works in an equivalent way 

to random forests, since it is also a tree-based technique. Decision trees in random forests are un-

related and do not need to have any predefined depth. In AdaBoost, however, decision trees usually 

have only one node with two leaves (stump). Stumps alone do not make accurate predictions, since 

they can only use one variable to make a classification decision, but they are represented with dif-

ferent values for their relevance, with some getting more say in the classification than others, there-

fore reducing wrong predictions. Furthermore, each stump considers the previous stump’s errors 

into account, so, unlike random forests, decision trees are correlated and have a direct or indirect 

impact with each other [13]. 

2.1.4. Gradient Boost 
Gradient boost is a machine learning algorithm based on the same technique of AdaBoost, 

albeit it contrasts with it in several ways. Gradient boosting starts by making a single leaf, instead 

of a stump or a tree, which contains an empirical initial guess for the value to predict. For example, 

to predict house prices, the initial guess could be the average of all the house prices present in the 

dataset. Then, gradient boost builds a tree based on the error of the previous tree, thus sharing 

similarities to AdaBoost, even though the tree can be larger than a stump. Also, similarly to Ada-

Boost, gradient boost scales the trees, although it scales all trees by the same amount [14]. 

The full algorithm for Friedman’s Gradient Boost algorithm can be seen below in Algorithm 

1. 

Algorithm 1 – Friedman’s Gradient Boost algorithm 

Inputs: 

• Input data (𝑥, 𝑦)𝑖=1
𝑁  

• Number of iterations 𝑀 

• Choice of the loss-function Ψ(𝑦, 𝑓) 

• Choice of the base-learner model ℎ(𝑥, 𝜃) 

Algorithm: 

1. Initialize 𝑓0̂ with a constant 

2. For 𝑡 = 1 to 𝑀 do 

a. Compute the negative gradient 𝑔𝑡(𝑥) 

b. Fit a new base-learner function ℎ(𝑥, 𝜃𝑡) 

c. Find the best gradient descent step-size: 

𝜌𝑡 = arg min𝜌 ∑ Ψ[𝑦𝑖 , 𝑓𝑡−1  ̂(𝑥𝑖) + 𝜌ℎ(𝑥𝑖 , 𝜃𝑡 )] 

𝑁

𝑖=1

 

d. Update the function estimate 

𝑓�̂� ← 𝑓𝑡−1̂ + 𝜌𝑡ℎ(𝑥, 𝜃𝑡) 

3. End for 
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A. XGBoost 
Extreme Gradient Boost (XGBoost) is a machine learning system that adapts Gradient Boost. 

The system is available as an open-source package [15] and gives state-of-the-art results on a wide 

range of problems, with its main factor being its scalability, running more than ten times faster than 

other popular solutions. XGBoost uses more advanced regularization than Gradient Boost, which 

improves model generalization capabilities. XGBoost delivers high performance, with a fast training 

time and parallelization possible across clusters [16]. 

2.1.5. Support Vector Machine 
SVM is a powerful technique for general (nonlinear) classification, regression and outlier 

detection, originally developed for binary classification by [17], although the same method can be 

used with regression, with SVM’s subclass Support Vector Regression (SVR). The method consists 

in separating data points into two classes, where each data point will be assigned one. The main 

goal is that the data are separated with the maximum margin between the classes’ closest points, 

like we see in Figure 4, where the points lying in the boundaries are called Support Vectors, and the 

line separating those points is the Separating Hyperplane. If the margin is not maximized, there is 

a risk that future data will be incorrectly classified, even if the hyperplane rightly separates the 

present data. Furthermore, to deal with the problem of overlapping classes, where some points fall 

within the “wrong” side of the discriminant margin, the method weighs the points down and there-

fore reduces their influence (soft margin). Lastly, the problem of nonlinearity, where a linear sepa-

rator cannot be found, is fixed by projecting the data points into an higher dimensional space where 

the data points become effectively linearly separable [18].  

 

Figure 4 – SVM classification (linear separable case) (image obtained from [18]). 

2.1.6. Performance Metrics 
To find how well the algorithms perform, the methods need to be compared and evaluated. 

To do this, it is necessary to calculate their performance metrics. Some of the most common metrics 

are documented in this section, where Y are the observed values and P are the predicted. 
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A. Mean Error (ME) 
Mean differences between the observed values and the predicted. 

𝑀𝐸 =
1

𝑛
∑ 𝑌𝑡 − 𝑃𝑡

𝑛

𝑡=1

 

( 1 ) 

B. Mean Absolute Error (MAE) 
Mean absolute difference between the observed values and the predicted. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑌𝑡 − 𝑃𝑡|

𝑛

𝑡=1

  

( 2 ) 

 

C. Mean Square Error (MSE) 
Mean of the square of the differences between the observed values and the predicted. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑡 − 𝑃𝑡)2

𝑛

𝑡=1

 

( 3 ) 

D. Root Mean Square Error (RMSE) 
Square root of the Mean Square Error. 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸  

( 4 ) 

E. Mean Absolute Percentage Error (MAPE) 
Mean absolute percentage of the difference between the observed values and the pre-

dicted. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑌𝑡 − 𝑃𝑡

𝑌𝑡
| ∗ 100

𝑛

𝑡=1

 

( 5 ) 

F. Weighted Mean Absolute Percentage Error (wMAPE) 
Sum of the absolute values of the difference between the observed values and the pre-

dicted, divided by the sum of the absolute observed values. 

𝑤𝑀𝐴𝑃𝐸 =
∑ |𝑌𝑡 − 𝑃𝑡|𝑛

𝑡=1

∑ |𝑌𝑡|𝑛
𝑡=1

∗ 100 

( 6 ) 
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G. Pearson Correlation Coefficient (r) 
Covariance of the two variables divided by the product of their standard deviations. 

𝑟 =
1

𝑛 − 1
∑ (

𝑥𝑖 − �̅�

𝑠𝑥
) (

𝑦𝑖 − �̅�

𝑠𝑦
)

𝑛

𝑖=1

 

( 7 ) 

H. Coefficient of Determination (R2) 
Relation between the differences of the observed and predicted values with the differences 

between the observations and the average. 

𝑅2 = 1 −
∑ (𝑥 − 𝑥)2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

∑ (𝑥 − �̅�)2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 

( 8 ) 

2.2. Related Work 
In this section, previous work on energy consumption with the use of ML techniques is ex-

plained, with the respective advantages and disadvantages of each related article.  

The authors in [19] describe the Machine Learning (ML) techniques they used to improve 

self-consumption in Renewable Energy Communities. The authors propose data analytics modules 

which aim at helping the community members to schedule the usage of their resources (generation 

and consumption) in order to minimize their electricity bill. The model uses two state-of-the-art 

Neural Network models, the feedforward Multilayer Perceptron (MLP) and Long Short-Term 

Memory Network (LSTM), with its bidirectional variant BLSTM, and another two tree-based tech-

niques, Random Forest (RF), and Gradient Boosting Decision Tree (GBDT). Finally, the authors use 

an original method that is simply the average of the output of the previous algorithms. The process 

can be visualized in Figure 5, where the data are fed to the four distinct algorithms (RF, GBDT, MLP, 

and BLSTM), each producing different outputs, computed into a final score. 

While the users revealed to not change their consuming habits actively, they were still able 

to predict, with some accuracy, the wind power of the day-ahead, as we can see in Figure 6. The 

authors also concluded that their original algorithm, the average of the results of the other algo-

rithms, produces the best results compared to the other algorithms individually. The Root Mean 

Squared Error (RMSE) of the ensemble method is the lowest, scoring 2327 kW, whereas RF, GBDT, 

MLP and Bi-LSTM score, respectively, 2347 kW, 2387 kW, 2338 kW and 2389 kW. 
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Figure 5 – Wind power forecasting model (image obtained from [19]). 

 

Figure 6 – Time series of wind power forecast and actuals for a day of the test set (image obtained 

from [19]). 

The scope of the paper [20] is to present an approach for forecasting an energy coopera-

tive’s solar plant short term production by using its infrastructure and monitoring system. To do 

this, the authors propose and train four ML algorithms in an operational solar plant producing high 

accuracy short-term forecasts up to 6 hours. The algorithms are LSTM, Support Vector Regression 

(SVR), Multiple Linear Regression (MLR) and XGBoost and they were trained using previous perfor-

mance and weather data. The results can be used for scheduling supply of the energy communities 

and set the base for more complex applications that require accurate short-term predictions, such 

as predictive maintenance. The overall methodology is represented in Figure 7, where the available 

data (temperature, humidity, etc.) are trained with the algorithms resulting in a production fore-

cast. 

The authors evaluated their algorithms by splitting the data into a train set (80% of the 

dataset) and test set (20%). All algorithms performed well, with XGBoost having the best results of 

the four of them. The results can be used for several actions regarding the PVs such as scheduling 

supply of the energy communities and set the base of more complex applications that require ac-

curate short-term predictions, such as predictive maintenance or energy trading. 
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Figure 7 – Methodology schema (image obtained from [20]). 

The authors in [21] compared the efficiency of three different techniques used to predict 

the daily power consumption for a local industrial region. First, the paper explains a probabilistic-

based technique that relies on the Multiple Model Particle Filter (MMPF) to forecast the daily power 

consumption for a full upcoming year. The Particle Filter is a technique for estimating the state of 

a dynamic system. It could be described as a recursive Bayes filter that takes the current belief and 

updates it, depending on the motion information and the successive observations. Then, it com-

pares it with two ANNs with one and two hidden layers, with design (5-5-1) and (5-5-5-1), respec-

tively. Finally, a new adaptable ANN (with design (5-15-5-1), represented in Figure 8) is used with 

the Hebbian learning rule [22], an oriented training technique that relies on the historical features 

included inside the given dataset with the goal of adjusting the weights of the links between the 

input layer and the first hidden layer. 

The performance metrics of the test results, as seen in Table 1, suggest that the third ANN, 

i.e., the ANN with design (5-15-5-1), performs better in terms of RMSE and MAPE, with 4.921 and 

0.094, respectively. Therefore, the authors conclude that this method with this architecture pro-

vides the best results compared to the other studied methods. 

 

Figure 8 – The general structure of the suggested design (5-15-5-1) ANN (image obtained from 

[21]). 
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Table 1 

 Linear (5-5-1) ANN (5-5-5-1) 
ANN 

Probabilistic 
MMPF 

(5-15-5-1) 
Improved 
ANN 

RMSE (Kw) 18.19 5.714 5.613 5.631 4.921 

MAPE 0.383 0.120 0.116 0.118 0.094 

R 0.011 0.837 0.862 0.861 0.911 

 

The authors of the paper [23] describe an energy management system that organizes the 

power flow in hybrid energy sources. In this work, a hybrid energy system (HES) composed of wind, 

gasoline and diesel generator is used as a case study to electrify a specific remote area.  The work 

is divided into two stages. In the first stage, a historical demand side dataset is used to model and 

calculate the five criteria with the TOPSIS method [23]. The TOPSIS method is a multi-criteria deci-

sion-making method. These criteria are efficiency of the energy, CO2 emission, gasoline and diesel 

fuel prices, labour, and consumption of fuels. However, the TOPSIS model has the downside that 

there is no equation to calculate the weight values of the criteria. To calculate those values, other 

methods like Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) were 

used, and later compared. In the second stage, machine learning algorithms were applied. Namely, 

random forest (RF) and light gradient boosted machine (LightGBM) algorithms are used to predict 

the combination of the energy sources as a way of validating the proposed work. This process is 

represented in Figure 9. 

Evaluating the algorithms shows the superiority of the RF algorithm with an accuracy of 

81.81% over LightGBM with accuracy of 68.6%. It also showed that the differences between AHP 

and FAHP are residual, and therefore, either of them can be used to show similar results. 

 

Figure 9 - The overall process of the model (image obtained from [23]). 

In [24] it is propose a contextual learning approach for energy forecasting, which supports 

the decisions of Building Energy Management Systems (BEMS). The proposed forecasting approach 

includes a contextual dimension that identifies different observed contexts and clusters them 
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according to their similarity. The identification of such contexts is used by the learning process of 

artificial intelligence forecasting methods to select and adapt the most relevant data that is used in 

the training phase in each context. Forecasts for energy consumption, generation, temperature, 

brightness, and occupancy are used by the BEMS to provide recommendations to the consumers 

and to support automated control of building devices. Real consumption, generation and contex-

tual data gathered from several sensors in a building are used to validate the results. The different 

AI techniques used for this paper are SVM, HyFIS [24], WM [25], and GFS.FR.MOGUL [26]. 

The main goal of this paper is to forecast energy consumption and generation of the build-

ing as well as occupancy, ideal temperature, and brightness of the rooms. The system uses, at first, 

clustering methods to recognize patterns in the consumption behaviour in the building. Then, based 

on these patterns, it selects the best data to train the forecasting models to predict future values. 

The tests show good enough results for the system to be trusted to provide recommendations re-

lated to consumption and with smaller error metrics than other ML methods (Table 2). The system 

uses a cloud-based strategy to create and use the ML models. This approach makes it possible to 

use this system in any other building without concerns about availability of required resources for 

ML. 

Table 2 – Results comparison with previous studies. 

Model  MAPE 

Deep Learning 15 min. ahead 36.20% 

 60 min. ahead 64.70% 

CNN-LSTM w/ no clustering  44.76% 

CNN-LSTM w/ clustering  40.38% 

LSTM w/ clustering  44.68% 

SVM 15 min. ahead 10.70% 

 60 min. ahead 12.44% 

HyFIS 15 min. ahead 13.00% 

 60 min. ahead 10.52% 

WM 15 min. ahead 13.10% 

 60 min. ahead 10.52% 

GFS.FR.MOGUL 15 min. ahead 15.93% 

 60 min. ahead 15.73% 

 

The paper [27] presents a study using the genetic fuzzy system for fuzzy rule learning based 

on the MOGUL methodology (GFS.FR.MOGUL) in order to have a better profile of the electricity 

consumption of the following hours. The GFS.FR.MOGUL is a forecasting method that implements 

a genetic algorithm determining the structure of the fuzzy IF-THEN rules and the membership func-

tion parameters. The proposed approach uses the electricity consumption of the past hours to fore-

cast the consumption value for the following hours. Results from the study are compared to those 

of previous approaches, namely two fuzzy based systems and several different approaches based 

on artificial neural networks. The studied method uses the electricity consumption from the 10 

previous hours to the moment that is to be forecasted to be trained and forecast the end results. 

The comparison of the achieved results with those achieved by the previous approaches 

shows that this approach can calculate a more reliable value for the electricity consumption in the 
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following hours, as it is able to achieve lower forecasting errors (see Figure 10), and less standard 

deviation of the forecasting error results (see Table 3). 

 

Figure 10 – Average forecasting errors of the HyFIS, WM, GFS.FR.MOGUL and several ANN ap-

proaches (image obtained from [27]). 

Table 3 – Standard deviation between HyFIS, WM and GFS.FR.MOGUL 

Forecast Method Forecast Error Standard Deviation (%) 

HyFIS 13.90 

WM 17.32 

GFS.FR.MOGUL 5.95 

 

The aim of the present study [28] was to investigate the potential of Fuzzy Interference 

System (FIS) to estimate the energy consumption of various types of residential buildings in the 

northern part of Cyprus. The climate zone in which the house was constructed, floor area of house, 

the year of construction, the type of house and the number of occupants per house was considered 

as input parameters and energy consumption per floor area as the output. 

The energy consumption values estimated by the proposed FIS model were in close agree-

ment with their actual counterparts reported previously, i.e., R2 value was as 0.9884 and 0.8851 for 

training and testing phase, respectively, and with a RMSE of 6.6115 and 20.3347. The training and 

test results are compared in Figure 11, demonstrating that the FIS model can be a powerful tool for 

predicting energy consumption of residential buildings. 
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Figure 11 – Comparison of predicted and actual counterparts for training and testing data sets 

(image obtained from [28]). 

In this study [29], the adaptive neuro-fuzzy inference system (ANFIS) is designed and 

adapted to estimate the energy consumption of buildings in relation to three parameter groups: 

building structure, insulation value and insulation thickness. There are three membership functions 

on each input, one ANFIS network for building heating, and one ANFIS network for building cooling. 

For this study, bell-shaped membership functions were chosen with maximum of 1 and minimum 

of 0. 

The performance statistics for heating (Table 4) and cooling prediction models (Table 5), 

which are compared to those of the ANN and genetic programming (GP), suggest that the predic-

tion results agree with the actual values of building energy consumption. The ANFIS predictions 

were superior to ANN and GP results, performing better in RMSE, r and R2. 

Table 4 – Performance statistics of heating prediction models 

 RMSE R2 r 

ANFIS 98 0.9959 0.9979 

ANN 300 0.9410 0.9422 

GP 279 0.9477 0.9485 

 

Table 5 – Performance statistics of cooling prediction models 

 RMSE R2 r 

ANFIS 85 0.9567 0.9780 

ANN 150 0.9463 0.9622 

GP 140 0.9342 0.9585 

 

This study [30] explores beyond the various studies which have developed diverse models 

for predicting building energy consumption focused on the current building stock but have not con-

sidered energy efficiency at the design stage. The authors aim to explore the application of hyper 

parameter tuning and feature selection methods in developing a design stage ML energy predictive 
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model. To do this, nine machine learning classification-based algorithms were compared for energy 

performance assessment at the design stage of residential buildings. Those algorithms are SVM, 

Gradient Boosting (GB), RF, Decision Tree (DT), K Nearest Neighbour (KNN), Extra Trees (ET), Ada 

boost, Gaussian Process (GP), and MLP. Additionally, feature selection and hyper parameter tun-

ning were implemented. The overall methodology, which contains five steps: Data collection, Data 

pre-processing, Feature Selection, Model development (training), and Model evaluation (testing), 

is represented in Figure 12. 

The results show that it is possible to develop a high performing ML model for building 

energy use prediction at the design stage. In Table 6, it is possible to see the performance results, 

where Gradient Boosting (GB) outperformed the other models with an accuracy of 0.67 for predict-

ing building energy performance. Although GB has not received much attention in the field of en-

ergy performance prediction, the performance level of the ML algorithm proffers GB as an effective 

predictive model in the field of energy prediction. 

Table 6 – Performance results after hyper parameter tunning. 

Model Training time Accuracy F1 

Random Forest 9m3s 0.66 0.64 

Gradient Boosting 5m15s 0.67 0.65 

Extra Trees 14s 0.64 0.63 

Decision Tree 1m9s 0.63 0.60 

K Nearest Neighbours 6s 0.64 0.59 

Support Vector Machines 14m31s 0.66 0.62 

Gaussian Process 16m45s 0.65 0.59 

Multi-Layer Perceptron 6m39s 0.63 0.58 

Ada Boost 12m4s 0.65 0.64 
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Figure 12 – Flowchart diagram of the research methodology (image obtained from [30]). 

 

This investigation [31] presents a review of ML techniques for forecasting energy consump-

tion time series using actual data, collected from a smart grid installed in an experimental building 

and used to evaluate the efficacy and effectiveness of statistical and ML techniques. The authors 

studied three categories of ML models: single, where only one technique is used to predict the 

output; ensemble, where multiple prediction models’ outputs are integrated into one; and a hybrid 

model, which combines two or more ML techniques and are more robust than the others as they 

frequently exhibit the advantages of the incorporated techniques and provide improved forecasting 

accuracy. For the single models, several methods were investigated, such as ANNs, C&R Trees (Clas-

sification and Regression Tree), SVR, and Linear Regression. For ensemble models, Voting and Bag-

ging ensemble models were used. Voting is an ensemble method where each model’s output is 

combined in some way, such as taking the mean or the mode of the predictions, allowing each 

model to vote on what the outcome should be. Bagging involves having each model in the ensemble 

vote with equal weight [32]. Finally, for hybrid models, SARIMA-MetaFA-LSSVR and SARIMA- PSO-

LSSVR were the methods chosen for further study. 

After focusing on several methods, both single, ensemble, and hybrid, the models with the 

best performance measures were compared, showing a clear advantage for hybrid models, as it can 

be seen in Table 7, where the best models in each scenario are compared. The hybrid model is more 

accurate, since both the accuracy of prediction and the suitability for use of these models are con-

sidered to support users in planning energy management. 
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Table 7 – Performance measures for the best single, ensemble, and hybrid models 

Scenario Best Model Performance Measures 

R RMSE MAE MAPE (%) SI Im-
prove-
ment 

Single ANN 0.556 0.092 0.057 36.834 0.70  

 

Ensemble Bagging 
(ANN) 

0.607 0.094 0.049 42.31 0.64 9% 

Hybrid SARIMA-
MetaFA-
LSSVR 

0.796 0.164 0.028 15.657 0.25 64% 

 

This paper [33] addresses the problem of energy sharing in Zero Energy Communities (ZEC), 

which is a collection of Zero Energy Buildings (ZEB). ZEBs are buildings designed to have their net 

energy usage over a one-year period equal to zero, i.e., its energy use is not larger than its overall 

renewables generation. The communities are represented as a multi-agent environment, where 

each building is an agent that learns optimal behaviour independently and is entirely responsible 

for making energy transactions on behalf of that building. The authors propose a Deep Reinforce-

ment Learning (DRL) based algorithm, called DQN to approximate Q-values. A Q-value is the ex-

pected value of taking an action in a particular state while considering the expected long-term re-

ward of taking that action in that state. To evaluate their approach, two sets of weather conditions, 

Winter, and Summer, were used. Furthermore, three different scenarios were evaluated represent-

ing different community configurations and different scales (i.e., different number of households). 

The three tested scenarios are composed of three, four, and ten houses, respectively, with varying 

generation capacity and initial battery charge, where in the second scenario one of the houses has 

zero generation capacity. An example of the behaviour of the agents is documented in Figure 13, 

where it can be seen the energy borrowed from the supply grid in the first scenario, during Winter. 

Results indicate that, with time, buildings learn to collaborate and learn a policy compara-

ble to the optimal policy, in which turn improves the ZEC’s energy from their neighbours rather 

than from the supply grid. Specifically, an improvement of 40 kWh with three houses during winter 

and over 60kWh with four houses during summer over three days, when compared to a no-energy-

sharing strategy. 
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Figure 13 – Energy borrowed from the Supply Grid during Winter in Scenario 1 (image obtained 

from [33]). 

This study [34] aims to compare prediction capabilities of five different intelligent system 

techniques by forecasting electricity consumption of an administration building. These five tech-

niques are Multiple Regression (MR), Genetic Programming (GP), ANN, Deep Neural Network 

(DNN), and SVM. The predicted electricity consumption of all models is compared with actual con-

sumption of another year. The dataset used to make these predictions contains data from the year 

2007-2011 and is composed of the following parameters: the daily electricity usage (𝑊ℎ/𝑚2); the 

daily mean surrounding temperature (𝐾); the daily mean humidity (%); and the weekday index 

(0/1). The dataset is further split onto a training set, which contains the data from year 2007-2010, 

and a testing set, with the year 2011. 

In Figure 14, it can be seen a comparison between the spread of predicted energy consump-

tion data by different methods and the real data in the form of box plots. None of the methods 

correctly predict the minimum or maximum value, although the prediction of some methods was 

closer to actual than others. Looking at the figure it can be said that results of ANN and GP for 

median, second and third quartile are close to the actual values and these two methods seem to 

perform better than others in overall prediction. Furthermore, results demonstrate that ANN per-

forms better than all other four techniques with a MAPE of 6% whereas MR, GP, SVM and DNN 

have MAPE of 8.5%, 8.7%, 9% and 11%, respectively. 



   

 

21 

 

 

Figure 14 – Comparison of outputs of different modelling techniques (image obtained from [34]). 

In [35], it is studied the prediction of future energy usage using the XGBoost algorithm. First, 

the authors used this algorithm to perform a technique called “feature extraction”. Feature extrac-

tion or feature selection is the study of algorithms for reducing dimensionality of data to improve 

machine learning performance [36]. The process of this phase consisted in extracting the load of 

the past week, with a granularity of 30 minutes, therefore having 336 variables (48x7), and using 

XGBoost for feature importance calculation. The authors removed the features bellow a threshold, 

which was set by repeating the experiment multiple times. In the end, it was considered the 35-40 

features with highest importance value.  

The following phase consisted in splitting the data into a train dataset with 75% of the data 

and a test dataset with 25%. The model was trained with the train dataset and evaluated with the 

test dataset. These processes are documented in Figure 15. The XGBoost load forecasting model 

resulted in a MAPE of 10.08%, 97.21% accuracy and 88.90% MAE. We can see that the results are 

good, however, as we can see in Figure 16, the high load instances are not being followed by the 

XGBoost algorithm. 

 

Figure 15 – System model (image obtained from [35]). 
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Figure 16 – XGB Predictions (image obtained from [35]). 

2.2.1. Discussion 
Table 8 summarizes the results of the different techniques for each analyzed paper. In this 

sense, the method that produced the best outcome is identified. 

Table 8 – Summary of the techniques used in related work. 

Source Application Used Techniques Best Performance 

Z. de Grève et al. [19] Consumption Forecast 
in Communities 

RF, GBDT, MLP, 
BLSTM, ensemble (av-
erage of all outputs) 

ensemble 

N. Dimitropoulos et 
al. [20] 

Production Forecast in 
communities 

LSTM, SVR, MLR, 
XGBoost 

XGBoost 

A. Baba [21] Consumption Forecast 
of a local industrial re-

gion 

MMPF, ANN (5-5-1, 5-
5-5-1, 5-15-5-1) 

ANN (5-15-5-1) 

H. Musbah, G. Ali, H. 
H. Aly, and T. A. Little 

[23] 

Energy management RF, LightGBM RF 

A. Jozi, T. Pinto, and Z. 
Vale [24] 

Consumption and gen-
eration forecast with 

contextual data  

SVM, HyFIS, WM, 
GFS.FR.MOGUL, com-

pared to Deep 

SVM, HyFIS, WM, 
GFS.FR.MOGUL 
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Learning, CNN-LSTM 
and LSTM 

A. Jozi, T. Pinto, I. 
Praca, F. Silva, B. Tei-

xeira, and Z. Vale  [27] 

Consumption forecast GFS.FR.MOGUL, ANNs, 
HyFIS, WM 

GFS.FR.MOGUL 

F. Al-Shanableh and 
A. Evcil [28] 

Consumption forecast FIS - 

S. Naji et al. [29] Consumption forecast 
of buildings 

ANFIS, ANN, GP ANFIS 

R. Olu-Ajayi, H. Alaka, 
I. Sulaimon, F. Sun-

mola, and S. Ajayi [30] 

Building energy con-
sumption forecast 

SVM, GB, RF, DT, KNN, 
ET, AdaBoost, GP, MLP 

GB 

J. S. Chou and D. S. 
Tran [31] 

Consumption forecast-
ing 

Different types of sin-
gle, ensemble and hy-

brid models 

Hybrid models 

A. Prasad and I. 
Dusparic [33] 

Energy communities' 
management 

DRL - 

K. P. Amber, R. Ah-
mad, M. W. Aslam, A. 

Kousar, M. Usman, 
and M. S. Khan [34] 

Electricity consump-
tion forecast of an ad-
ministrative building 

MR, GP, ANN, DNN, 
SVM 

ANN 

N. Javaid, M. Nauman 
Javid Ghuman, Z. Ali 

Khan, R. Abid Abbasi, 
and S. Ur Rehman[35] 

Electricity consump-
tion forecast 

XGBoost - 

 

In this chapter, the topic of ML was approached, explaining what ML is, as well as its most 

common algorithms. Then, existing literature was reviewed. Several papers were summarized, 

pointing their goals, the algorithms used, and the results retrieved by them. The papers also ap-

proached the problem using several different methods, each with its specific advantage. Single 

methods, such as Random Forest or Gradient Boost, were often present in the different articles, 

but also ensemble methods and hybrid models were used. It does not seem, however, to exist a 
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unique preferred method, with results varying from paper to paper. Nonetheless, GB, ANN, and 

XGBoost could be selected as the most promising, providing satisfactory results when evaluated 

with other algorithms. Most articles focus on the energy consumption forecast in residential build-

ings, either individual or in communities. In contrast, this project will focus on energy communities 

without discrimination of their type, they can be individual residential households, stores, business 

buildings, etc. It is expected that consumption patterns vary depending on the type of building and 

the different use people give to them, such as the energy consumed in weekends and weekdays 

can be different in stores closed on weekends and individual households, where people will likely 

consume more energy outside business hours. 

The next line of work will be data collection and analysis. The data should be extensive, with 

diverse types of buildings, and with other possible metrics, such as weather information. Finally, 

the system will be developed, extensively experimenting various algorithms and methods. The pro-

cess is documented in the thesis, which will provide the necessary conclusions of the project. 
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3. Architecture 
In this chapter, an architecture for the system is proposed and will be implemented and 

described in the next chapters. The architecture is documented in Figure 17. The system contains, 

at the center, a decision algorithm will make decisions on the charging and discharging of the bat-

teries. To do this, the algorithm will be fed with a forecast of the production of solar photovoltaic 

panels (PV). This forecast is done with the use of the prediction of the solar irradiance, publicly 

available, and the area and efficiency of the solar panels. This results in an analytical model to pre-

dict the energy production of a REC. The algorithm will also consider the market electricity prices, 

as well as the state-of-charge of the batteries. Finally, the energy consumption forecast, using 

AI//ML models, is used, with the goal of improving the consumption of green energy, or reducing 

the overall price. 

 

 

Figure 17 – Project Architecture. 

The algorithm, at the center of the architecture, makes the decisions about the energy 

management of the community. Particularly, it manages the REC, providing the details of what 

should the community do, regarding the energy produced, stored, and the energy that must be 

fetched from the grid. It executes every half-hour and incorporates the outputs of the other com-

ponents to make these decisions.  

The PV production forecast component uses an analytical model to make a forecast of the 

energy produced by the solar PV’s. The forecast can be a short-term forecast or the daily forecast. 

Regardless, it needs to know the Direct Normal Irradiance (DNI) or solar irradiance to make a high-

quality prediction. 

The electricity market prices are used to evaluate the algorithm. With the goal of reducing 

the value of this component, the calculation of the bill of the REC provides insight on whether the 

algorithm is viable for the users or if it is too expensive. 
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The consumption forecast is provided by a ML algorithm, which supplies the decision algo-

rithm with a forecast of the energy consumption of the community. The decision algorithm will 

account for this prediction and make the management decisions accordingly. 

The battery is the storage component. For a user to be a prosumer, it needs capacity of 

production and storage of energy. So, this component will provide the algorithm with its state-of-

charge, i.e., the current charge of the batteries. The algorithm will also connect with this component 

by informing it of the energy the batteries need to charge or discharge. 

Later, on this document, a detailed explanation of the implementation and validation of 

each of the individual components is provided.  
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4. Implementation 
This chapter provides a detailed explanation of the implementation of the five different 

components of the algorithm. Specifically, it details the steps necessary to implement the compo-

nents, as well as the reasoning behind those steps. 

4.1. Energy Consumption Forecast 
This section documents the approach followed to apply the Machine Learning algorithms 

to predict the energy consumption of a REC. 

4.1.1. About the data 
To train the Machine Learning algorithms, it is necessary to obtain data from real life energy 

consumption sources, as well as weather information. The data was obtained thanks to the Bath: 

Hacked project, which contains several datasets detailing aspects of life in Bath & North East Som-

erset (BANES), UK, including a dataset on the electricity energy usage in Council buildings [37]. Fur-

thermore, weather information such as air temperature and relative humidity was acquired using 

the Solcast API [38]. 

A. BANES dataset 
The BANES dataset contains energy consumption data in kWh of seventy-two council build-

ings, such as schools and libraries, with the help of smart meters from 1 October 2006 to 8 February 

2020, and a granularity of 30 minutes. The data used, however, was only after 2007, since the Sol-

cast API did not accommodated data from 2006. There were further alterations to the data, which 

contained a small number of negative values. These readings were eliminated, considering that it 

would not make much sense to consume negative values of energy, and, instead, they were re-

placed by the interpolation of the previous and following readings. Finally, duplicate values were 

deleted. 

The dataset has its columns represented in Table 9. The columns id, totalunits, units, mpan, 

and msid were not necessary and were, therefore, dropped. The date column contains the infor-

mation regarding the day of the readings, the location column the name of the building, and the 

following columns the hour and minute of the energy consumption values with a granularity of 30 

minutes. 

Table 9 – Columns of the dataset. 

date location 00:30 01:00 … 23:00 23:30 24:00 

 

Since it is not very flexible to work with the hours extended in the columns horizontally, the 

values were joined into a single column energy. The date column will no longer represent just the 

day, but also represent the hour of the readings, being renamed time in the process. A sample of 

the final dataset is documented in Table 10. 

Table 10 – Sample of the final dataset. 

time location energy 

2008-06-14 00:30:00+00:00 ## OLD Paulton Library Electricity Supply 1 0.08 

2008-06-14 01:00:00+00:00 ## OLD Paulton Library Electricity Supply 1 0.07 
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2008-06-14 01:30:00+00:00 ## OLD Paulton Library Electricity Supply 1 0.08 

2008-06-14 02:00:00+00:00 ## OLD Paulton Library Electricity Supply 1 0.07 

2008-06-14 02:30:00+00:00 ## OLD Paulton Library Electricity Supply 1 0.08 

  

Below, in Figure 18,  the number of readings each building had present in the dataset is 

shown. Figure 19 documents the mean energy each building consumed at every half hour interval. 

It can be seen that the data is highly unbalanced, with some locations averaging over 30 kWh and 

some close to 0 kWh. This could, potentially, bring some "reality” to the project since the model 

that will be trained needs to be used in communities with quite different consumption patterns. 

 

 

Figure 18 – Number of readings per council building in the dataset. 

 

Figure 19 – Mean energy consumption at every half hour per building. 
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B. Solcast API 
The Solcast API is more extensive than the BANES dataset, with data from several spots 

around the world. Since the energy readings we have available are from Bath, UK, a request was 

made for a time series dataset for the coordinates 51.378102, -2.359683, the latitude and longi-

tude, respectively, of the city of Bath. The retrieved dataset accommodated data from 1 January 

2007 to 8 February 2020, where it was requested a granularity of 30 minutes to match the BANES 

dataset. The specified variables contained in the dataset were the Air Temperature, Relative Hu-

midity, and DNI, the solar irradiation. Note that the DNI will not be used in this phase, but it was 

requested, nonetheless, because it will be important to estimate the energy production of solar 

panels in the next chapter. 

The air temperature and relative humidity are documented in Figure 20 and Figure 21, re-

spectively. There were no alterations to the data. 

 

Figure 20 – Air Temperature in Bath, UK. 

 

Figure 21 – Relative Humidity in Bath, UK. 
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C. Merge datasets 
Finally, the Solcast dataset was merged with the BANES dataset and the relative humidity 

column was divided by one hundred to be in intervals of 0-1, instead of 0-100. A sample of the 

result is represented below.  

Table 11 – Sample of the merged dataset. 

time location energy AirTemp RelativeHumidity Dni 

2007-01-01 
00:30:00+00:00 

Bath Central Library 
Electricity (HH) 

18.0 8.0 0.814 0.0 

2007-01-01 
00:30:00+00:00 

Guildhall Electricity 
Supply 1 (HH) 

33.0 8.0 0.814 0.0 

2007-01-02 
00:30:00+00:00 

Bath Central Library 
Electricity (HH) 

17.8 5.1 0.800 0.0 

2007-01-02 
00:30:00+00:00 

Guildhall Electricity 
Supply 1 (HH) 

29.8 5.1 0.800 0.0 

2007-01-03 
00:30:00+00:00 

Bath Central Library 
Electricity (HH) 

17.9 6.4 0.856 0.0 

 

4.1.2. Machine Learning 
This section explains the process and results of the training and testing of the ML algorithms 

to forecast the electricity consumption of buildings using the datasets explained above. 

In the state-of-the-art chapter, we looked at several algorithms that could be used to train 

and evaluate our model to predict the consumption of electricity. Although there was no consensus 

between the papers for a single algorithm, XGBoost, Gradient Boost, and ANN were often present, 

providing satisfactory results.  

A. Algorithms Comparison 
To pick a single algorithm to continue the study of Energy Consumption models, the already 

mentioned methods, XGBoost, Gradient Boost, and ANN, will be trained and tested under similar 

circumstances. The proposed models, which will be trained with these different algorithms, will 

predict the short-term load energy consumption at every location, i.e., the energy column is the 

output parameter that will be predicted by the models. The input parameters, or features, the al-

gorithms will use are the air temperature, relative humidity, and each of the energy consumption 

readings of the same building of the last 24 hours. At the end, there will be a column with the output 

values, energy, and fifty other columns with the two weather features already acknowledged, and 

the forty-eight columns with the energy reading of the building at the previous 30 minutes, previous 

hour, previous 90 minutes, etc., until the previous 24 hours of the energy reading to predict. Finally, 

the dataset is split into train and test datasets, with 80% for the train, and 20% for the test sets. 

• ANN – The ANN model has four layers. The input layer has a size of fifty, which is equal to 

the number of features. There are also two hidden layers, each with a size of ten and acti-

vated with the reLU function. The model is compiled with the Adam optimizer and uses 

MSE for the loss metric. Finally, it is trained with twenty epochs, and a batch size of one 

thousand. 

• GBDT – The GBDT algorithm is used in this context with one hundred estimators and 0.1 as 

its learning rate, as it is described in [30]. 
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• XGBoost – To train the XGBoost model, the histogram as the tree method was used while 

running on GPU. Running the algorithm on GPU increases the performance on the training 

time, while making negligible changes on the other metrics. The XGBoost also has six as its 

maximum depth, 0.3 as its learning rate and one hundred estimators. The default values 

are used in the other hyperparameters. 

The results, which are analysed in greater detail further on this document, show that 

XGBoost performed better in all error metrics – MSE, RMSE, MAE, wMAPE, and R2, compared to 

the other algorithms, and, therefore, will be the focus of the next section. 

B. Feature Classification 
Following the results of the previous subsection, which tests different ML algorithms, 

XGBoost was picked for further study on diverse ways to forecast the energy consumption of a REC. 

In this section, using a technique called Feature Classification, a smaller set of features will be se-

lected according to their importance on the training of an XGBoost model, adapting the steps in 

[35]. To do this, instead of using the previous 24 hours like in the previous section, the entire pre-

vious week is used, resulting in 336 features, plus the air temperature and relative humidity, adding 

up to 338 input parameters. The high number of features leads to a heavy amount of memory us-

age, and, to tackle this problem, only a year in the data was used for training the model. 

• Perform feature classification 

The XGBoost algorithm will have as hyperparameters one thousand estimators, a maximum 

depth of five, and a learning rate of 0.05, and will be trained with the entire data from the year 

2019, taking 259.9533 seconds to perform. The features have the name 𝑒𝑛𝑒𝑟𝑔𝑦_𝑙𝑎𝑔_𝑖, where 𝑖 is 

equal to the 𝑖th previous half hour readings.  

The input parameter that has the largest impact in the prediction is the direct previous 

energy reading, with over 80% of importance. Further details on the results are explained in the 

next chapter. 

• Train models using the features’ classification 

With the results of the features’ classification, the forty most prominent features will be 

used, as well as the features with an importance classification above 5%, i.e., the six most important 

input parameters. The training phase will be performed similarly as before, with a separation of the 

data into training and test datasets with a ratio of 80% and 20%, respectively. Furthermore, a dif-

ferent approach is also followed where different n buildings are left out of the training phase and 

used to evaluate the model. This method is followed because, in a real-life scenario, the model that 

will be used on communities is not trained with their data, but the data of other communities. To 

find out the minimum acceptable number of buildings that can be left out of training, different 

models are trained leaving 5, 10, and 15 houses, chosen at random, using only the features with an 

importance classification higher than 0.5%. The experiment is repeated five times and the results 

show that, when only five houses are used, the error metrics vary too much. With ten or fifteen 

houses, however, the performance metrics of all experiments record similar values. Therefore, for 

this approach, a minimum number of ten buildings must be used as the test dataset. 
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4.2. Energy Production Forecast 
To predict the production of energy in a community with PV panels, we used an analytical 

model. The model is based on the following formula [39]: 

𝐸(𝑡) = 𝐴 ∗ 𝑟 ∗ 𝑔(𝑡) ∗ 𝜌 

( 9 ) 

Where: 

• 𝐸(𝑡) is the energy produced in kWh at time 𝑡. 

• 𝐴 is the area of the solar panels in m2. 

• 𝑟 is the yield of the solar panel given by the ratio: electrical power (in kWp) of a solar panel 

divided by the area of a PV panel. 

• 𝑔(𝑡) is the solar irradiance in kWh/m2 at time 𝑡. 

• 𝜌 is the overall performance, with values ranging between 0 and 1. 

With these metrics, we can predict with relative accuracy the energy produced in a com-

munity if we can correctly predict these factors, particularly the solar irradiance. We can obtain the 

solar irradiance with the already mentioned Solcast API, whose values are present in the DNI (Direct 

Normal Irradiance) column, the other values are assigned following three scenarios of production: 

high production; low production – which is a tenth of the high production; and average production 

– average of the high production and low production. The high production scenario has a total area 

of 28.8 m2 (eighteen panels with 1.6m2 each) and a yield of the solar panel of 0.16. In standard 

conditions, i.e., with a performance of one and a solar irradiance of 1kWh/m2, the energy produced 

at time t is equal to around 4.6080 kWh, which means that in the low production scenario, it pro-

duces around 0.4608 kWh and in the average scenario 2.5344 kWh. Moreover, in both scenarios, 

the PV performance is equal to 0.95, reducing these figures. It is considered, for simplicity, that the 

weather forecast, as well as this model’s output, have no associated error. 

4.3. Market Prices 
To determine the price of electricity that the consumers must pay, we must factor a sub-

stantial number of different variables, which can make the simulation overly complex, and out of 

scope for this project. This section provides a simplistic explanation of the electricity bill and in what 

way the simulation will calculate the price of the REC’s energy consumption usage. 

As this project is based in continental Portugal, it is important for the simulation of the 

prices to have a resemblance with the real prices practiced in Portugal, even if the data that are 

currently available are set in a different location. Portugal’s electricity prices are regulated by ERSE 

– Entidade Reguladora dos Serviços Energéticos [40], and are charged with three different factors 

[41]: 

• Access to the grids fare – regulated by the ERSE. 

• Energy Market Prices – from either the regulated market, or the liberal market. 

• Taxes – regulated by the state. 

Furthermore, it is possible to use different fares based on the time and day the energy was 

consumed. There can be three different schedule’s tariffs that can be chosen by the clients:  

• Simple – a flat rate fare for the entire day. 
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• Bihourly – two different prices for separate times of day. 

• Trihourly – three different prices. 

The trihourly tariff will not be considered, since most operators only offer this option to 

clients with an overtly large energy consumption. Simple fares have only one fare, regardless of 

time and day. Bihourly fares are divided into two categories: peak and out of peak time. In out of 

peak time, the fares are lower than the simple tariff, whereas the peak fares are higher. Further-

more, the clients have two options, weekly and daily cycle. In the daily cycle option, only the time 

of day is considered, while in a weekly cycle option, both the time of day, the day of the week, and 

day of the year (summertime, or wintertime) are considered. The full schedule is documented in 

Figure 22. 

 

Figure 22 – Bihourly Cycles peak and out of peak time. 

For this project, to simplify the process, the price will be calculated using only the tariffs 

from the regulated market, without taxes, or other expenses. Specifically, the tariffs from the Nor-

mal Low Voltage option, after 1 April 2022, which can be observed in Table 12. 

Table 12 – Prices for Normal Low Voltage from the Regulated Market after 1 April 2022 [42]. 

  €/kWh 

Simple > 2.3 kVA 0.1583 

Bihourly Out of Peak 0.1044 

Peak 0.1917 

 

Finally, with these values, the price of energy consumption can be calculated by the simple 

formula: 

𝑃(𝑡) = 𝑒𝑐(𝑡) ∗ 𝑡𝑎𝑟𝑖𝑓𝑓(𝑡) 
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( 10 ) 

Where: 

• 𝑃(𝑡) is the cost in € for the consumed energy in the time interval 𝑡. 

• 𝑒𝑐(𝑡) is the energy consumed in kWh for the time interval 𝑡. 

• 𝑡𝑎𝑟𝑖𝑓𝑓(𝑡) is one of the options already mentioned in Table 12 in €/kWh. It is dependent on 

the time interval 𝑡, unless it is the simple tariff that is being calculated, in that case, 𝑡𝑎𝑟𝑖𝑓𝑓 

is a constant. 

4.4. Battery 
To consider a user of a REC a prosumer, it is necessary that user has the capacity to produce 

energy and store it. For that reason, a REC needs one or more batteries, so it has capacity of storage. 

The full capacity of storage of a community can depend not only on the number of batteries, but 

their capacity as well.  

Analysing real-life examples of solar batteries, we defined three scenarios, small, average, 

and large storage capacity. An Hoppecke 4 OPzS bloc, for example, can have a capacity of 1.62 kWh, 

whereas a Tesla Powerwall can have 13.5 kWh. So, with these values, we define that each building 

in the community will average a capacity of storage of 1.6 kWh for a small capacity scenario, 6.4 

kWh for an average capacity, and 12.8 kWh for large capacity. Specifically, each house will have a 

number N of batteries, so that the full real capacity of all N batteries reaches the defined capacity 

in each of the scenarios. Moreover, the simulation will not account for the degradation of batteries, 

or natural draining, but it will consider inverter losses, when the system charges and when dis-

charges the batteries, of 3%. 

4.5. Algorithm 
The final component of the system is the algorithm. The algorithm is at the center of the 

process, and, at each time step, it will make the main decisions regarding what to do with the en-

ergy produced and stored, as well as choosing the source of energy to consume. In this section, we 

describe the three different algorithms which will, every 30 minutes, make these decisions, with 

the goal of reducing the CER’s price demands. 

4.5.1. Baseline 
The first algorithm to be implemented and evaluated is the baseline algorithm. In the base-

line scenario, the simulation is made without capacity of storage and with no use of ML. The algo-

rithm runs at every half-hour and orders the consumption of the energy produced. If there is still a 

need for more energy, then that energy is fetched from the grid. The algorithm is described with a 

flowchart in Figure 23. 
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Figure 23 – Baseline algorithm flowchart. 

4.5.2. Batteries 
A new algorithm is proposed and documented in this section that enriches the baseline 

algorithm by adding the possibility of storage to the batteries. With this algorithm, the system will 

consume the produced energy. Then, if there is an excess, it will store it in the battery until it 

reaches the battery’s capacity, selling the remainder energy to grid by a fixed price (0.03 €/kWh). If 

there is no excess production, and energy is still needed, the system will discharge the battery and 

consume from it, fetching the rest, if necessary, from the grid. In the same way as the baseline 

algorithm, the system will also run this algorithm every half-hour and it is described with a flowchart 

in Figure 24. 
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Figure 24 – Battery algorithm flowchart. 

 

4.5.3. ML based 
The next algorithm uses ML, specifically the energy consumption forecast, to make deci-

sions regarding the charging and discharging of the batteries. The algorithm adapts [43] by fetching 

energy from the grid at midnight, when the price tariffs are lower (if the bihourly tariff is chosen).  

The algorithm, at midnight, uses the energy production forecast model’s output, as well as 

the output of the energy consumption forecast model, to predict the full day values at midnight. 

Based on these values, the algorithm will perform one of three actions, according to each of these 

cases: 

• Case 1: when there is excess production, i.e., the predicted production is larger than the 

predicted energy consumption of the REC between 9:00 and 18:00, and the excess is less 

than the battery capacity available. In this situation, the algorithm will fetch energy from 

the grid to charge the battery with its capacity minus the predicted excess.  

• Case 2: when the predicted excess PV energy is larger than the battery capacity available. 

In this case, the algorithm will fetch from the grid the energy equivalent to the forecast of 

the morning consumption and save the energy to the battery. More specifically, it will fetch 

the predicted energy consumption usage between 6:00 and 9:00 of the next day. 

• Case 3: there is no predicted excess PV energy during the day and therefore the battery is 

pre-charged to its full battery capacity. 

Afterwards, until 10:00, every time the algorithm runs, it orders the consumption of the 

produced energy. If there is excess production, then it saves it to the battery, until the full capacity 

is reached. If there is still a remainder of energy, it is sold to the grid (at 0.03 €/kWh). If there is no 

excess production, the algorithm orders the consumption of energy from the grid. 

After 10:00, the algorithm also commands the system to consume the energy produced. 

However, if there is still need for energy, it first discharges the battery with the energy needed and 

only then will consume it from the grid. If there is excess production, it proceeds as before 10:00, 

saving the energy to the battery and selling the remainder, if present, to the grid.  

The flowchart of the algorithm is documented in Figure 25, where 𝛿1 is the ratio of the pre-

dicted energy consumption between 9:00 to 18:00 and the full day, and 𝛿2 is the energy usage 

forecast of the morning between 6:00 and 9:00 divided by the energy consumption forecast of the 

day. 



   

 

37 

 

 

Figure 25 – Flowchart of the ML based algorithm. 
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5. Validation 
This chapter provides, in greater detail, the results of the components of the system. It also 

draws conclusions on the viability of the project, deciding on how satisfactory those results are. 

5.1. Energy Consumption Forecast 
The consumption forecast of energy is made with the use of an ML model. The analysis of 

the state-of-the art concluded that the use of XGBoost, ANN, or GB were the most suitable for this 

problem. The results indicated that, of these three algorithms, XGBoost would perform better, and 

further studies on how to improve the algorithm were conducted. Specifically, the feature classifi-

cation method was used. This section contains the analysis of the results of both experiments – 

algorithms comparison, and feature classification. 

5.1.1. Algorithms Comparison 
After the training and testing phases were completed, the performance of the algorithms 

is compared using six different metrics – the time it took to perform the training phase, the time it 

took to predict the test dataset, MSE, RMSE, MAE, wMAPE, and R2. Below, in Table 13, the results 

of these error metrics on the test dataset are documented, as well as the time it took to train the 

algorithms and to make the predictions. We can see that all the algorithms perform well, particu-

larly XGBoost, which performs better than all the other algorithms in every error metric. Further-

more, although the error can be large in some circumstances, the distribution of the error is mostly 

around zero, as it is documented in Figure 26. XGBoost is, therefore, the focus of the next subsec-

tion, where the results of other ways to maximize the capabilities of the model are explored. 

Table 13 – Results of the predictions on the test dataset, with the best results of each metric at 

bold. 
 

ANN GBDT XGBoost 

Training Time (s) 268.7992 11676.7068 54.2282 

Prediction Time (s) 45.1752 8.1269 1.9277 

MSE (kWh) 0.8107 0.9097 0.6629 

RMSE (kWh) 0.9004 0.9538 0.8142 

MAE (kWh) 0.3601 0.3683 0.3290 

wMAPE (%) 8.9294 9.1313 8.1575 

R2 0.9886 0.9872 0.9907 



   

 

39 

 

 

Figure 26 – Error distribution of XGBoost model trained with the previous 24 hours and weather 

metrics. 

5.1.2. Feature Classification 
The feature classification consisted of two phases, a preliminary phase that trains a model 

containing the information of the previous week, on which the feature classification technique is 

used, and, following its results, a training phase where two models are trained and evaluated. The 

first model uses only the features with an importance classification of over 0.5%, and the other uses 

the top forty features according to their classification. 

• Perform feature classification 

The results of the preliminary phase are documented in this subsection. The importance 

classification of the forty most prominent features is registered in Figure 27. We can see that the 

direct previous energy reading impacts the algorithm the most, with a score of over 80%, surpassing 

every other feature by a substantial margin. 
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Figure 27 – The 40 features with the highest importance classification 

In Figure 28,  the same graph as above is documented, but without the energy lag 1 feature. 

We can see that the most important parameters are the ones around the same hours the week 

earlier, as well as the day before. With these results, the next phase details the results of the eval-

uation of two models, one with the forty most predominant features, represented in the y axis in 

the figure above, and another with the features with an importance classification of over 0.5%. 

 

Figure 28 – The 40 features, besides energy lag 1, with the highest importance classification 

• Train models using the features’ classification 
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In this phase, the two models mentioned before, which are trained by splitting the data into 

a train a test dataset with 80% and 20% of the entire data, respectively, are evaluated using the 

test dataset. The results of the performance metrics are presented in Table 14. 

Table 14 – Performance metrics on 20% of the data. 

 Feature importance > 0.5% Top forty features 

Training Time (s) 11.4464 42.7416 

Prediction Time (s) 0.7795 1.2840 

MSE (kWh) 0.7200 0.5372 

RMSE (kWh) 0.8485 0.7329 

MAE (kWh) 0.3320 0.3006 

wMAPE (%) 8.1936 7.4197 

R2 0.9899 0.9925 

  

Another approach, where different n buildings are left out of the training phase and used 

to evaluate the model, is also analysed in this phase, since in a real-life situation the model would 

be trained with data from different communities. Below, we can see the results of the study, where, 

for each n houses, the experiment was repeated five times, choosing new random houses each 

time. It is also documented the mean (x)̄ and standard deviation (σ) of each performance metric. 

With a large standard deviation in most metrics when five houses were picked, it can be deduced 

that the model cannot be evaluated with such small number of buildings. The wMAPE metric alone 

records values ranging from less than 12% to more than 21%, which is unacceptable, when the 

deviation should be around zero. On the other hand, when ten or fifteen houses were used, the 

performance metrics of all five tests recorded similar values. So, for this approach, a minimum num-

ber of ten houses must be used as the test dataset.  

Table 15 – Performance metrics with five houses as the test data. 

 1 2 3 4 5 x ̄ σ 

training 
time (s) 

14.2463 13.3309 13.2278 12.8021 12.8308 13.2876 0.5850 

predic-
tion time 
(s) 

0.4349 0.4177 0.5004 0.9100 0.6033 0.5733 0.2018 

MSE 
(kWh) 

0.2096 0.5362 3.1264 0.3500 0.4609 0.9366 1.2303 

RMSE 
(kWh) 

0.4578 0.7323 1.7682 0.5916 0.6789 0.8458 0.5260 

MAE 
(kWh) 

0.2166 0.3063 0.8334 0.2576 0.2479 0.3724 0.2597 

wMAPE 
(%) 

13.1885 13.6776 5.7013 20.3205 11.0990 12.7974 5.2622 

R2 0.9555 0.9464 0.9895 0.9004 0.9720 0.9528 0.0336 

 

Table 16 – Performance metrics with ten houses as the test data. 

 1 2 3 4 5 x ̄ σ 
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training 
time (s) 

12.1195 11.3366 12.5359 10.9098 11.8923 11.7588 0.6424 

predic-
tion time 
(s) 

0.7870 0.9550 1.0450 1.1390 1.0160 0.9884 0.1307 

MSE 
(kWh) 

0.8164 0.6926 0.6846 0.8845 0.6866 0.7529 0.0923 

RMSE 
(kWh) 

0.9035 0.8322 0.8274 0.9405 0.8286 0.8664 0.0524 

MAE 
(kWh) 

0.3480 0.3303 0.3286 0.3417 0.3282 0.3354 0.0090 

wMAPE 
(%) 

8.5893 8.1511 8.1108 8.4348 8.1005 8.2773 0.2220 

R2 0.9886 0.9903 0.9904 0.9877 0.9904 0.9895 0.0013 

 

Table 17 – Performance metrics with fifteen houses as the test data. 

 1 2 3 4 5 x ̄ σ 

training 
time (s) 

11.5723 11.0528 10.2737 11.1070 10.2865 10.8585 0.5653 

predic-
tion time 
(s) 

1.0780 1.0716 1.3300 0.8800 0.9640 1.0647 0.1695 

MSE 
(kWh) 

0.7457 0.7167 0.6920 0.7007 0.6883 0.7087 0.0234 

RMSE 
(kWh) 

0.8635 0.8466 0.8318 0.8370 0.8296 0.8417 0.0138 

MAE 
(kWh) 

0.3346 0.3300 0.3303 0.3324 0.3312 0.3317 0.0019 

wMAPE 
(%) 

8.2573 8.1452 8.1515 8.2033 8.1751 8.1865 0.0457 

R2 0.9896 0.9900 0.9903 0.9902 0.9904 0.9901 0.0003 

 

Finally, the approach was repeated with the forty features with highest importance. As the 

results above showed, using ten buildings to assess the model is sufficient. In Table 18 the results 

of the performance metrics are presented and compared with the metrics using the entire dataset, 

when ten houses were used to evaluate the model using the features with a classification larger 

than 0.5%. 

Table 18 – Performance metrics on ten buildings for the top forty features and features with im-

portance classification higher than 0.5%. 

 Feature importance > 0.5% Top forty features 

training time (s) 11.0428 45.7238 

prediction time (s) 1.2434 1.3590 

MSE (kWh) 0.2370 1.7960 

RMSE (kWh) 0.4868 1.3401 

MAE (kWh) 0.2098 0.4715 
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wMAPE (%) 9.9973 8.8847 

R2 0.9798 0.9871 

 

5.1.3. Results and discussion 
Regarding the energy consumption forecast component of the system, it is possible to draw 

several conclusions. The first corresponds to the fact that the XGBoost algorithm performs better 

in this situation than other state-of-the-art algorithms like ANN and GB. With a wMAPE of just 

8.1575% when evaluated with the previous 24 hours and weather metrics, another assessment that 

can be made is that the algorithm loses little, or not at all, when the number of features is reduced 

to the most prominent features. Specifically, when the forty parameters with highest classification 

(a reduction of ten features) is used, the model reduces the wMAPE to 7.4197%, and when only the 

features with an importance classification higher than 0.5% (a reduction of forty-four features) are 

evaluated, the model retrieves an error of 8.1936%, a difference of less than 0.1%. In the scenario 

where ten houses are left out of the training phase, and are, instead, used to evaluate the model, 

the performance metrics of the model with only six features are better than the model with forty 

features, except the wMAPE, which has an increase of 1.1126%, and the R2.  

With these results, although using forty input parameters improves the wMAPE error met-

ric, the model that generates the output of the energy consumption forecast component is the 

model with the features that have an importance score of above 0.5%. The reasoning behind that 

is the higher flexibility that a small number of features offers, and the fact that other metrics, like 

the training time, have a better score than with a higher number of features. 

Although we are predicting the short-term consumption of individual buildings, the goal of 

this project is the management of a community. Therefore, the individual houses’ forecast is not so 

important, but the community’s consumption as a whole. So, after the algorithm predicts the sep-

arate building’s consumption, the actual forecast of the REC’s energy consumption is the sum of 

those predictions. Furthermore, the algorithm will also need to predict, at midnight, the consump-

tion of the entire day. This means that the algorithm will forecast at midnight the short-term con-

sumption using real values, and then predicts the next step using the real values when possible, or 

the values that were predicted, thus propagating the error. The Table 19 describes the performance 

metrics of both situations, when the algorithm predicts the short-term forecast of the community, 

and when predicts the entire day at midnight, with the values of each house in both cases being 

grouped and summed. The all-day prediction and short-term forecasting are compared to the real 

values in Figure 29 and Figure 30, respectively. All-day forecasting lacks in comparison to short-

term forecasting, but still manages to maintain a similar pattern with the real values. 

Table 19 – Performance metrics of the energy consumption forecast of all the community 

 Short-term load forecasting All-day load forecasting 

MAE (kWh) 1.1819 2.6361 

MSE (kWh) 3.1929 17.0603 

RMSE (kWh) 1.7869 4.1304 

MAPE (%) 6.1067 13.3331 

R2 0.9700 0.8396 
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Figure 29 – All-day load forecasting compared to real values. 

 

 

Figure 30 – Short-term load forecasting compared to real values. 

5.2. Energy Production Forecast 
In this section, the values of the energy production forecast model are presented and de-

scribed. In Figure 31, the output of the model over time is presented. Table 20 provides the descrip-

tion of the outputs of the model, including the mean (x̄), standard deviation (σ), and sum (∑), as 

well as the minimum and maximum values, and the percentiles. Finally, the output is multiplied by 

the number of buildings present in the community. 
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Figure 31 – Production of energy per building over time. 

Table 20 – Description of the model’s outputs, according to scenarios of high, low, and average 

production. 

 High Production (kWh) Low Production (kWh) Average Production (kWh) 

x ̄ 0.4320 0.0432 0.2376 

σ 0.9680 0.0968 0.5324 

Min 0.0000 0.0000 0.0000 

25% 0.0000 0.0000 0.0000 

50% 0.0000 0.0000 0.0000 

75% 0.0744 0.0074 0.0409 

Max 4.1368 0.4136 2.2752 

∑ 23352.8281 2335.2828 12844.0555 

 

5.3. Market Prices 
This section presents the results of the average price paid by each household over time, 

since the beginning of the dataset. Table 21 represents the description of all the values, including 

the mean (x)̄, standard deviation (σ), and sum (∑), as well as the minimum and maximum values, 

and the percentiles of the average values paid by a user. Figure 32 shows the cumulative sum of 

the mean electricity bill paid by the user over time, if all the energy is fetched from the distribution 

network. During the simulation, the values of the energy are grouped, and may account for the 

possibility of storage and production, which can make these values vary from the documented here. 

Table 21 – Description of the model’s outputs, according to scenarios of bihourly tariff (daily), Bi-

hourly tariff (weekly), and simple tariff. 

 Bihourly tariff (daily) (€) Bihourly tariff (weekly) (€) Simple tariff (€) 

x ̄ 1.2443 1.2344 1.2003 

σ 0.9680 0.0968 0.5324 

Min 1.8411 1.8388 1.5997 

25% 0.3369 0.3044 0.3981 

50% 0.5800 0.6037 0.6106 
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75% 1.2634 1.2706 1.0751 

Max 11.5308 11.5308 9.5217 

∑ 285857.4185 283567.7304 275740.5707 

 

 

Figure 32 – Cumulative sum of the average price paid by the consumer, according to the three tar-

iff scenarios. 

5.4. Algorithm 
In the previous chapter, we proposed three algorithms. In this section, those algorithms are 

evaluated regarding the electricity bill and consumption from green sources, concluding on the vi-

ability of each method. The algorithms are tested using a REC of ten buildings, which were left out 

of the training phase for the energy consumption forecast component, and evaluated using three 

scenarios of storage capacity, and three scenarios of production. 

5.4.1. Baseline 
The algorithm was evaluated using ten houses in the dataset, between 8 January 2017 and 

7 February 2020. According to the results, documented in Table 22, the REC consumes more than 

160 000 kWh in the three-year span when the production is low, than when there is large produc-

tion, which accounts for more than a 25 500 € difference when the simple tariff (the lowest in all 

scenarios) is used. The next algorithms will compare to the baseline in terms of prices and grid 

energy consumption. 

Table 22 – Price and consumption from the grid, in high, low, and average scenarios, using the 

baseline algorithm for a REC of ten buildings. 

Production  Baseline 

High Production Bihourly tariff (weekly option) (€) 146 364.0864 

Bihourly tariff (daily option) (€) 146 434.8987 

Simple tariff (€) 144 322.7950 

Consumed From Grid (kWh) 911 704.3270 

Low Production Bihourly tariff (weekly option) (€) 176 246.0450 

Bihourly tariff (daily option) (€) 175 254.3673 

Simple tariff (€) 169 883.2251 

Consumed From Grid (kWh) 1 073 172.6156 
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Average Production Bihourly tariff (weekly option) (€) 158 095.2314 

Bihourly tariff (daily option) (€) 158 055.0320 

Simple tariff (€) 154 340.5272 

Consumed From Grid (kWh) 974 987.5379 

5.4.2. Batteries 
In the previous algorithm, the results were presented for three scenarios regarding the 

REC’s capacity of production. Table 23, Table 24, and Table 25, document, respectively, the low, 

average, and high scenarios for capacity of storage. Each one also presents the scenarios for high, 

low, and average production, when the batteries algorithm is executed, showing a comparison with 

the baseline algorithm, regarding the price of the three possible tariffs, and the consumption from 

the grid. 

Table 23 – Comparison between batteries algorithm and baseline for low storage scenario (16 

kWh). 

Production  Baseline Batteries 

High Bihourly (weekly) (€) 146 364.0864 140 829.1992 

Bihourly (daily) (€) 146 434.8987 141 125.5911 

Simple (€) 144 322.7950 139 058.6055 

Grid (kWh) 911 704.3270 903 360.8796 

Low Bihourly (weekly) (€) 176 246.0450 176 245.0032 

Bihourly (daily) (€) 175 254.3673 175 253.4215 

Simple (€) 169 883.2251 169 882.2200 

Grid (kWh) 1 073 172.6156 1 073 171.5146 

Average Bihourly (weekly) (€) 158 095.2314 156 903.2119 

Bihourly (daily) (€) 158 055.0320 156 989.9957 

Simple (€) 154 340.5272 153 228.0538 

Grid (kWh) 974 987.5379 972 550.0141 

 

Table 24 – Comparison between batteries algorithm and baseline for average storage scenario (64 

kWh). 

Production  Baseline Batteries 

High Bihourly (weekly) (€) 146 364.0864 138 906.5757 

Bihourly (daily) (€) 146 434.8987 139 523.4337 

Simple (€) 144 322.7950 137 474.3989 

Grid (kWh) 911 704.3270 890 829.1492 

Low Bihourly (weekly) (€) 176 246.0450 176 245.0083 

Bihourly (daily) (€) 175 254.3673 175 253.4243 

Simple (€) 169 883.2251 169 882.2242 

Grid (kWh) 1 073 172.6156 1 073 171.5413 

Average Bihourly (weekly) (€) 158 095.2314 156 547.5470 

Bihourly (daily) (€) 158 055.0320 156 757.9280 

Simple (€) 154 340.5272 152 930.9751 

Grid (kWh) 974 987.5379 970 189.6801 
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Table 25 – Comparison between batteries algorithm and baseline for high storage scenario (128 

kWh). 

Production  Baseline Batteries 

High Bihourly (weekly) (€) 146 364.0864 137 912.5288 

Bihourly (daily) (€) 146 434.8987 138 594.9123 

Simple (€) 144 322.7950 136 286.6575 

Grid (kWh) 911 704.3270 881 433.6229 

Low Bihourly (weekly) (€) 176 246.0450 176 245.0083 

Bihourly (daily) (€) 175 254.3673 175 253.4243 

Simple (€) 169 883.2251 169 882.2242 

Grid (kWh) 1 073 172.6156 1 073 171.5413 

Average Bihourly (weekly) (€) 158 095.2314 156 454.1503 

Bihourly (daily) (€) 158 055.0320 156 685.2525 

Simple (€) 154 340.5272 152 805.2904 

Grid (kWh) 974 987.5379 969 195.4626 

 

With these results, we can conclude that the use of batteries improves the baseline algo-

rithm in every scenario. However, for a low production situation, the gains from using batteries are 

negligible. So, we can assume that the batteries are not worth the cost if the produced energy is 

not in enough quantity. With an average production, the REC has gains of between 1065.04€, and 

1641.08€. Assuming each user in the community has the same capacity of storage, each user gains 

around 106.50€ and 164.10€. If the profits remain constant, it is possible that a user can return a 

profit, assuming a battery has ten years of lifetime. However, the investment on batteries could be 

of too much risk to be advisable. With a high production, the gains can be of 5264.19€ or 8451.56€. 

In this scenario, it is highly likely a user can return a profit. 

5.4.3. ML based 
Following the results of the previous algorithms, the same approach is followed for the ML 

based algorithm. This algorithm, however, does not have the goal of reducing the consumption of 

energy from the grid, nor the simple tariff price. Instead, the aim is to reduce the bihourly tariffs 

prices, so that they have the lowest price in that specific scenario. The following tables detail the 

results of the evaluation of the algorithm. 

Table 26 – Comparison between baseline, batteries algorithm and ML based for low storage sce-

nario (16 kWh). 

Production  Baseline Batteries ML based 

High Bihourly (weekly) (€) 146 364.0864 140 829.1992 140 100.7655 

Bihourly (daily) (€) 146 434.8987 141 125.5911 140 538.2377 

Simple (€) 144 322.7950 139 058.6055 139 773.1007 

Grid (kWh) 911 704.3270 903 360.8796 908 738.0779 

Low Bihourly (weekly) (€) 176 246.0450 176 245.0032 174 833.5646 

Bihourly (daily) (€) 175 254.3673 175 253.4215 174 060.1188 

Simple (€) 169 883.2251 169 882.2200 170 055.3370 

Grid (kWh) 1 073 172.6156 1 073 171.5146 1 074 265.1157 
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Average Bihourly (weekly) (€) 158 095.2314 156 903.2119 155 688.4566 

Bihourly (daily) (€) 158 055.0320 156 989.9957 155 942.4465 

Simple (€) 154 340.5272 153 228.0538 153 557.7401 

Grid (kWh) 974 987.5379 972 550.0141 974 871.9488 

 

Table 27 – Comparison between baseline, batteries algorithm and ML based for average storage 

scenario (64 kWh). 

Production  Baseline Batteries ML based 

High Bihourly (weekly) (€) 146 364.0864 138 906.5757 135 421.2991 

Bihourly (daily) (€) 146 434.8987 139 523.4337 136 634.3897 

Simple (€) 144 322.7950 137 474.3989 139 820.2150 

Grid (kWh) 911 704.3270 890 829.1492 908 292.8994 

Low Bihourly (weekly) (€) 176 246.0450 176 245.0083 170 602.3039 

Bihourly (daily) (€) 175 254.3673 175 253.4243 170 492.4297 

Simple (€) 169 883.2251 169 882.2242 170 576.6233 

Grid (kWh) 1 073 172.6156 1 073 171.5413 1 077 558.1433 

Average Bihourly (weekly) (€) 158 095.2314 156 547.5470 151 409.0531 

Bihourly (daily) (€) 158 055.0320 156 757.9280 152 395.9916 

Simple (€) 154 340.5272 152 930.9751 153 970.8334 

Grid (kWh) 974 987.5379 970 189.6801 977 321.1353 

 

Table 28 – Comparison between baseline, batteries algorithm and ML based for high storage sce-

nario (128 kWh). 

Production  Baseline Batteries ML based 

High Bihourly (weekly) (€) 146 364.0864 137 912.5288 130 170.7481 

Bihourly (daily) (€) 146 434.8987 138 594.9123 132 201.3186 

Simple (€) 144 322.7950 136 286.6575 140 009.8316 

Grid (kWh) 911 704.3270 881 433.6229 908 788.3554 

Low Bihourly (weekly) (€) 176 246.0450 176 245.0083 164 985.0157 

Bihourly (daily) (€) 175 254.3673 175 253.4243 165 992.7034 

Simple (€) 169 883.2251 169 882.2242 171 270.0897 

Grid (kWh) 1 073 172.6156 1 073 171.5413 1 081 938.8536 

Average Bihourly (weekly) (€) 158 095.2314 156 454.1503 145 943.0327 

Bihourly (daily) (€) 158 055.0320 156 685.2525 147 922.0113 

Simple (€) 154 340.5272 152 805.2904 154 515.1524 

Grid (kWh) 974 987.5379 969 195.4626 980 555.5266 

 

The results show that, in every situation, the algorithm can successfully reduce the prices 

of the bihourly tariffs. However, the algorithm cannot always improve the results of the bihourly 

tariffs, as they are not always lower than the simple tariffs’ prices of either the baseline, or batteries 

algorithm. In the low storage capacity scenario, the ML based algorithm cannot improve the simple 

tariff prices of both production scenarios. With average storage capacity, only with low production 

the algorithm showed poor results. With a high production, the algorithm improved the batteries 

algorithm by 2053.10€, and 8901.50€ to the baseline algorithm. With average production, the 
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algorithm resulted in an improvement of 1521,92€ to the batteries’ algorithm and 2931.47€ the 

baseline. These results could turn a potentially risky investment into a profitable deal. In the high 

storage capacity scenario, the algorithm heavily reduced the electricity bill, with an improvement 

of 14152.04€, 4898.20€, and 8397.49€ for high, low, and average productions. 
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6. Conclusion 
This investigation aims at the creation of a management system for a REC, to reduce the 

energy usage from “non-green” sources, or the reduction of the electricity bill, paid by a REC, by 

using ML techniques to forecast the energy consumption of a community. At first, a study of the 

State-of-the-Art, which makes an analysis of ML algorithms, and a review of related literature, was 

made. The investigation pointed to three different algorithms that could be used on the energy 

consumption forecast (ANN, XGBoost, and GB), as well as the overall process necessary to conduct 

the research. Then, an architecture is proposed. The architecture contains four key components 

(PV production forecast, Market Electricity Prices, Energy Consumption forecast, and Battery) plus 

the algorithm. Based on the information from these components the algorithm can decide when to 

charge or discharge the batteries. The components’ characteristics and behaviour are explored in 

greater detail in the implementation and validation chapters, where their implementation and the 

results are investigated. The first study, regarding the energy consumption forecast module, con-

cludes on the viability of the XGBoost algorithm, providing immediately better results than the 

other algorithms. Further studies, using XGBoost, also deduce on the most important input param-

eters, which do not include weather features, but include the immediate previous energy reading, 

as well as readings from the previous day and week. The results were found to be acceptable since 

the error metrics did not retrieve high values. Therefore, we can conclude on the viability of ML to 

predict the energy consumption of a REC. Moreover, an experiment where buildings are left out of 

the training phase and are used to evaluate the algorithm showed that a minimum number of ten 

buildings must be used as the test dataset, since the deviation of the error metrics across experi-

ments is low. 

After defining three scenarios for storage, and three scenarios for production, three algo-

rithms were proposed and evaluated according to the sum of the electricity bill of the community, 

as well as the consumption of energy from the distribution network. The results show that adding 

batteries to the baseline algorithm, and selling the excess to distribution network, reduce the con-

sumption from the grid, as well the energy prices in every situation. However, the reduction of 

prices may not be enough in the scenarios where the production is low to outweigh the expenses 

of purchasing batteries. The ML based algorithm, which charges the batteries at midnight, can suc-

cessfully reduce the prices of energy if the REC chooses to use bihourly tariffs, instead of a flat rate, 

in the situations where the capacity of storage is large, or, with an average capacity, if the produc-

tion capacity is at least average. In the case where the capacity of storage is low, although it im-

proves the bihourly tariffs, the improvement is not enough to reduce the costs to lower than the 

price of energy of simple tariff, when the batteries algorithm is used. This happens similarly to the 

case where the production is low, and the storage capacity is average. The reason behind the lack 

of improvement in this last case is because the hours of daylight, i.e., the hours of more production, 

usually overlap with the peak hours, when the energy is more expensive. Therefore, when there is 

not enough production to cover this energy, the cost of energy using bihourly tariffs is more expen-

sive than the use of simple tariffs, and even with the improvements of the ML based algorithm 

(which were larger than in other scenarios of production), it is still not enough to improve the simple 

tariff case. When storage capacity is low, the batteries are pre-charged at midnight, but do not have 

capacity to provide energy during the day to the community and are mostly discharged after 10:00, 

leaving little to no energy for the rest of peak hours. This reduces the usefulness of the algorithms, 

which results in a higher price with bihourly tariffs using the ML based algorithm when compared 
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to the price with a single tariff using the batteries algorithm. Moreover, the consumption from the 

grid is larger in every situation, with the ML algorithm, since there is more energy charged to the 

batteries, which suffer from losses when charged and discharged, and those losses are covered by 

the distribution network. 

6.1. Future Work 
For future work, some improvements and changes should be made to this project. Firstly, 

the energy consumption forecast is done using XGBoost to predict the short-term energy consump-

tion. However, the algorithm needs to predict the energy at midnight for the next day, so an algo-

rithm with multiple outputs should present more reliable results. Moreover, the energy production 

forecast is made using a model that uses the real weather parameters and assumes no error from 

it. In real life, however, only a forecast will be available, and not the actual values, so the simulation 

should assume some errors. Lastly, the system manages the REC as a single entity, but, in the future, 

it should also manage the members of the community, in regards of trading of energy between 

themselves. 
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