7,094 research outputs found

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    Agile Autonomous Driving using End-to-End Deep Imitation Learning

    Full text link
    We present an end-to-end imitation learning system for agile, off-road autonomous driving using only low-cost sensors. By imitating a model predictive controller equipped with advanced sensors, we train a deep neural network control policy to map raw, high-dimensional observations to continuous steering and throttle commands. Compared with recent approaches to similar tasks, our method requires neither state estimation nor on-the-fly planning to navigate the vehicle. Our approach relies on, and experimentally validates, recent imitation learning theory. Empirically, we show that policies trained with online imitation learning overcome well-known challenges related to covariate shift and generalize better than policies trained with batch imitation learning. Built on these insights, our autonomous driving system demonstrates successful high-speed off-road driving, matching the state-of-the-art performance.Comment: 13 pages, Robotics: Science and Systems (RSS) 201

    Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation

    Full text link
    Imitation learning is an effective approach for autonomous systems to acquire control policies when an explicit reward function is unavailable, using supervision provided as demonstrations from an expert, typically a human operator. However, standard imitation learning methods assume that the agent receives examples of observation-action tuples that could be provided, for instance, to a supervised learning algorithm. This stands in contrast to how humans and animals imitate: we observe another person performing some behavior and then figure out which actions will realize that behavior, compensating for changes in viewpoint, surroundings, object positions and types, and other factors. We term this kind of imitation learning "imitation-from-observation," and propose an imitation learning method based on video prediction with context translation and deep reinforcement learning. This lifts the assumption in imitation learning that the demonstration should consist of observations in the same environment configuration, and enables a variety of interesting applications, including learning robotic skills that involve tool use simply by observing videos of human tool use. Our experimental results show the effectiveness of our approach in learning a wide range of real-world robotic tasks modeled after common household chores from videos of a human demonstrator, including sweeping, ladling almonds, pushing objects as well as a number of tasks in simulation.Comment: Accepted at ICRA 2018, Brisbane. YuXuan Liu and Abhishek Gupta had equal contributio

    Goal Set Inverse Optimal Control and Iterative Re-planning for Predicting Human Reaching Motions in Shared Workspaces

    Full text link
    To enable safe and efficient human-robot collaboration in shared workspaces it is important for the robot to predict how a human will move when performing a task. While predicting human motion for tasks not known a priori is very challenging, we argue that single-arm reaching motions for known tasks in collaborative settings (which are especially relevant for manufacturing) are indeed predictable. Two hypotheses underlie our approach for predicting such motions: First, that the trajectory the human performs is optimal with respect to an unknown cost function, and second, that human adaptation to their partner's motion can be captured well through iterative re-planning with the above cost function. The key to our approach is thus to learn a cost function which "explains" the motion of the human. To do this, we gather example trajectories from pairs of participants performing a collaborative assembly task using motion capture. We then use Inverse Optimal Control to learn a cost function from these trajectories. Finally, we predict reaching motions from the human's current configuration to a task-space goal region by iteratively re-planning a trajectory using the learned cost function. Our planning algorithm is based on the trajectory optimizer STOMP, it plans for a 23 DoF human kinematic model and accounts for the presence of a moving collaborator and obstacles in the environment. Our results suggest that in most cases, our method outperforms baseline methods when predicting motions. We also show that our method outperforms baselines for predicting human motion when a human and a robot share the workspace.Comment: 12 pages, Accepted for publication IEEE Transaction on Robotics 201

    Learning Multimodal Latent Dynamics for Human-Robot Interaction

    Full text link
    This article presents a method for learning well-coordinated Human-Robot Interaction (HRI) from Human-Human Interactions (HHI). We devise a hybrid approach using Hidden Markov Models (HMMs) as the latent space priors for a Variational Autoencoder to model a joint distribution over the interacting agents. We leverage the interaction dynamics learned from HHI to learn HRI and incorporate the conditional generation of robot motions from human observations into the training, thereby predicting more accurate robot trajectories. The generated robot motions are further adapted with Inverse Kinematics to ensure the desired physical proximity with a human, combining the ease of joint space learning and accurate task space reachability. For contact-rich interactions, we modulate the robot's stiffness using HMM segmentation for a compliant interaction. We verify the effectiveness of our approach deployed on a Humanoid robot via a user study. Our method generalizes well to various humans despite being trained on data from just two humans. We find that Users perceive our method as more human-like, timely, and accurate and rank our method with a higher degree of preference over other baselines.Comment: 20 Pages, 10 Figure
    corecore