628 research outputs found

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Comparison of Human Pilot (Remote) Control Systems in Multirotor Unmanned Aerial Vehicle Navigation

    Get PDF
    This paper concerns about the human pilot or remote control system in UAV navigation. Demands for Unmanned Aerial Vehicle (UAV) are increasing tremendously in aviation industry and research area. UAV is a flying machine that can fly with no pilot onboard and can be controlled by ground-based operators. In this paper, a comparison was made between different proposed remote control systems and devices to navigate multirotor UAV, like hand-controllers, gestures and body postures techniques, and vision-based techniques. The overall reviews discussed in this paper have been studied in various research sources related to UAV and its navigation system. Every method has its pros and cons depends on the situation. At the end of the study, those methods will be analyzed and the best method will be chosen in term of accuracy and efficiency

    De bello robotico : an ethical assessment of military robotics

    Get PDF
    This article provides a detailed description of robotic weapons and unmanned systems currently used by the U.S. Military and its allies, and an ethical assessment of their actual or potential use on the battlefield. Firstly, trough a review of scientific literature, reports, and newspaper articles, a catalogue of ethical problems related to military robotics is compiled. Secondly, possible solutions for these problems are offered, by relying also on analytic tools provided by the new field of roboethics. Finally, the article explores possible future developments of military robotics and present six reasons why a war between humans and automata is unlikely to happen in the 21st century

    Applications of Unmanned Aerial Systems (UASs) in Hydrology: A Review

    Get PDF
    In less than two decades, UASs (unmanned aerial systems) have revolutionized the field of hydrology, bridging the gap between traditional satellite observations and ground-based measurements and allowing the limitations of manned aircraft to be overcome. With unparalleled spatial and temporal resolutions and product-tailoring possibilities, UAS are contributing to the acquisition of large volumes of data on water bodies, submerged parameters and their interactions in different hydrological contexts and in inaccessible or hazardous locations. This paper provides a comprehensive review of 122 works on the applications of UASs in surface water and groundwater research with a purpose-oriented approach. Concretely, the review addresses: (i) the current applications of UAS in surface and groundwater studies, (ii) the type of platforms and sensors mainly used in these tasks, (iii) types of products generated from UAS-borne data, (iv) the associated advantages and limitations, and (v) knowledge gaps and future prospects of UASs application in hydrology. The first aim of this review is to serve as a reference or introductory document for all researchers and water managers who are interested in embracing this novel technology. The second aim is to unify in a single document all the possibilities, potential approaches and results obtained by different authors through the implementation of UASs

    Development of improvements in UAS for difficult access environments

    Get PDF
    The objective of this document is to study and verify the development and improvements in Unmanned Aircraft Systems (UAS) for difficult access environments since this matter is a critical area of research and innovation. As the use of UAS in various applications continues to expand, the need for these systems to operate in challenging environments such as mountainous terrain, dense forests, or urban areas with high-rise structures is increasing. The main motivation to start developing this project was the challenge exposed in the Xprize Rainforest Competition. The $10M XPRIZE Rainforest is a five-year competition to enhance the understanding of the rainforest ecosystem. I am part of the semifinalist team, Providence Plus, a multidisciplinary team composed by scientists from UPC, CSIC, MIT, and TUDelf. The purpose of this challenge is to obtain the maximum amount of information on biodiversity in the rainforest, using drone technology in this type of environment, with all the difficulties inherent in this environment that must be overcome and that are also the subject of analysis in this work, to propose and compare the different solutions and technologies to achieve the objectives of said challenge. As resources for competing in Xprize Challenge are limited and the final solution shall be scalable, the technologies evaluated must be cost efficient and practical. The first difficulty in this kind of environments is the signal strength and signal quality, not only for the drone commands but for the video and telemetry data. In this work, different solutions will be compared since analogic to digital technology. The second difficulty is autonomy, in terms of energetic supply. Taking into account the Rainforest environment and environmental policies, the most suitable technology available is batteries. There are several types of batteries that are suitable for drones, depending on the size, weight, and specifications of the drone. There will be a comparison between the most popular ones. Apart from that, an analysis of different propulsion configurations (ideal motors and propellers) will be carried out in order to achieve an optimal flight time without compromising the structural integrity of the drone. The third difficulty is reducing noise levels, in order to avoid disturbing the wildlife and with the goal in mind of having the best images possible, a study of different propellers will be carried out. Finally, durability and weather resistance: Rainforests are characterized by high humidity, heavy rainfall, and extreme heat. Drones used in this environment must be built to withstand these conditions and be weather-resistant. This may involve using materials that can withstand moisture, designing waterproof housing for sensitive components, and installing heat dissipation systems to prevent overheating.Objectius de Desenvolupament Sostenible::15 - Vida d'Ecosistemes TerrestresObjectius de Desenvolupament Sostenible::13 - AcciĂł per al Clim

    Drones for Conservation in Protected Areas: Present and Future

    Get PDF
    Park managers call for cost-effective and innovative solutions to handle a wide variety of environmental problems that threaten biodiversity in protected areas. Recently, drones have been called upon to revolutionize conservation and hold great potential to evolve and raise better-informed decisions to assist management. Despite great expectations, the benefits that drones could bring to foster effectiveness remain fundamentally unexplored. To address this gap, we performed a literature review about the use of drones in conservation. We selected a total of 256 studies, of which 99 were carried out in protected areas. We classified the studies in five distinct areas of applications: “wildlife monitoring and management”; “ecosystem monitoring”; “law enforcement”; “ecotourism”; and “environmental management and disaster response”. We also identified specific gaps and challenges that would allow for the expansion of critical research or monitoring. Our results support the evidence that drones hold merits to serve conservation actions and reinforce effective management, but multidisciplinary research must resolve the operational and analytical shortcomings that undermine the prospects for drones integration in protected areas

    Military Innovation in the Third Age of U.S. Unmanned Aviation, 1991–2015

    Get PDF
    Military innovation studies have largely relied on monocausal accounts—rationalism, institutionalism, or culture—to explain technologically innovative and adaptive outcomes in defense organizations. None of these perspectives alone provided a compelling explanation for the adoption outcomes of unmanned aerial vehicles (UAVs) in the U.S. military from 1991 to 2015. Two questions motivated this research: Why, despite abundant material resources, mature technology, and operational need, are the most-capable UAVs not in the inventory across the services? What accounts for variations and patterns in UAV innovation adoption? The study selected ten UAV program episodes from the Air Force and Navy, categorized as high-, medium-, and low-end cases, for within-case and cross-case analysis. Primary and secondary sources, plus interviews, enabled process tracing across episodes. The results showed a pattern of adoption or rejection based on a logic-of-utility effectiveness and consistent resource availability: a military problem to solve, and a capability gap in threats or tasks and consistent monetary capacity; furthermore, ideational factors strengthened or weakened adoption. In conclusion, the study undermines single-perspective arguments as sole determinants of innovation, reveals that military culture is not monolithic in determining outcomes, and demonstrates that civil-military relationships no longer operate where civilian leaders hold inordinate sway over military institutions.Lieutenant Colonel, United States Air ForceApproved for public release; distribution is unlimited
    • 

    corecore