3,966 research outputs found

    Genetic Programming Approach for Classification Problem using GPU

    Get PDF
    Genetic programming (GP) is a machine learning technique that is based on the evolution of computer programs using a genetic algorithm. Genetic programming have proven to be a good technique for solving data set classification problems but at high computational cost. The objectives of this research is to accelerate the execution of the classification algorithms by proposing a general model of execution in GPU of the adjustment function of the individuals of the population. The computation times of each of the phases of the evolutionary process and the operation of the model of parallel programming in GPU were studied. Genetic programming is interesting to parallelize from the perspective of evolving a population of individuals in paralle

    Information visualization for DNA microarray data analysis: A critical review

    Get PDF
    Graphical representation may provide effective means of making sense of the complexity and sheer volume of data produced by DNA microarray experiments that monitor the expression patterns of thousands of genes simultaneously. The ability to use ldquoabstractrdquo graphical representation to draw attention to areas of interest, and more in-depth visualizations to answer focused questions, would enable biologists to move from a large amount of data to particular records they are interested in, and therefore, gain deeper insights in understanding the microarray experiment results. This paper starts by providing some background knowledge of microarray experiments, and then, explains how graphical representation can be applied in general to this problem domain, followed by exploring the role of visualization in gene expression data analysis. Having set the problem scene, the paper then examines various multivariate data visualization techniques that have been applied to microarray data analysis. These techniques are critically reviewed so that the strengths and weaknesses of each technique can be tabulated. Finally, several key problem areas as well as possible solutions to them are discussed as being a source for future work

    Genetic Programming Approach for Classification Problem using GPU

    Get PDF
    Genetic programming (GP) is a machine learning technique that is based on the evolution of computer programs using a genetic algorithm. Genetic programming have proven to be a good technique for solving data set classification problems but at high computational cost. The objectives of this research is to accelerate the execution of the classification algorithms by proposing a general model of execution in GPU of the adjustment function of the individuals of the population. The computation times of each of the phases of the evolutionary process and the operation of the model of parallel programming in GPU were studied. Genetic programming is interesting to parallelize from the perspective of evolving a population of individuals in parallel

    Soft Computing Techiniques for the Protein Folding Problem on High Performance Computing Architectures

    Get PDF
    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.This work is jointly supported by the FundaciĂłnSĂ©neca (Agencia Regional de Ciencia y TecnologĂ­a, RegiĂłn de Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC and European Commission FEDER under grant with reference TEC2012-37945-C02-02 and TIN2012-31345, by the Nils Coordinated Mobility under grant 012-ABEL-CM-2014A, in part financed by the European Regional Development Fund (ERDF). We also thank NVIDIA for hardware donation within UCAM GPU educational and research centers.IngenierĂ­a, Industria y ConstrucciĂł

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Speeding up Multiple Instance Learning Classification Rules on GPUs

    Get PDF
    Multiple instance learning is a challenging task in supervised learning and data mining. How- ever, algorithm performance becomes slow when learning from large-scale and high-dimensional data sets. Graphics processing units (GPUs) are being used for reducing computing time of algorithms. This paper presents an implementation of the G3P-MI algorithm on GPUs for solving multiple instance problems using classification rules. The GPU model proposed is distributable to multiple GPUs, seeking for its scal- ability across large-scale and high-dimensional data sets. The proposal is compared to the multi-threaded CPU algorithm with SSE parallelism over a series of data sets. Experimental results report that the com- putation time can be significantly reduced and its scalability improved. Specifically, an speedup of up to 149× can be achieved over the multi-threaded CPU algorithm when using four GPUs, and the rules interpreter achieves great efficiency and runs over 108 billion Genetic Programming operations per second

    University of Helsinki Department of Computer Science Annual Report 1998

    Get PDF
    • 

    corecore