871 research outputs found

    Alzheimer's Disease Diagnosis Using Landmark-Based Features From Longitudinal Structural MR Images

    Get PDF
    Structural magnetic resonance imaging (MRI) has been proven to be an effective tool for Alzheimer’s disease (AD) diagnosis. While conventional MRI-based AD diagnosis typically uses images acquired at a single time point, a longitudinal study is more sensitive in detecting early pathological changes of AD, making it more favorable for accurate diagnosis. In general, there are two challenges faced in MRI-based diagnosis. First, extracting features from structural MR images requires time-consuming nonlinear registration and tissue segmentation, whereas the longitudinal study with involvement of more scans further exacerbates the computational costs. Moreover, the inconsistent longitudinal scans (i.e., different scanning time points and also the total number of scans) hinder extraction of unified feature representations in longitudinal studies. In this paper, we propose a landmark-based feature extraction method for AD diagnosis using longitudinal structural MR images, which does not require nonlinear registration or tissue segmentation in the application stage and is also robust to inconsistencies among longitudinal scans. Specifically, 1) the discriminative landmarks are first automatically discovered from the whole brain using training images, and then efficiently localized using a fast landmark detection method for testing images, without the involvement of any nonlinear registration and tissue segmentation; 2) high-level statistical spatial features and contextual longitudinal features are further extracted based on those detected landmarks, which can characterize spatial structural abnormalities and longitudinal landmark variations. Using these spatial and longitudinal features, a linear support vector machine (SVM) is finally adopted to distinguish AD subjects or mild cognitive impairment (MCI) subjects from healthy controls (HCs). Experimental results on the ADNI database demonstrate the superior performance and efficiency of the proposed method, with classification accuracies of 88.30% for AD vs. HC and 79.02% for MCI vs. HC, respectively

    Surface fluid registration of conformal representation: Application to detect disease burden and genetic influence on hippocampus

    Get PDF
    abstract: In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistent surface fluid registration, and multivariate tensor-based morphometty (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometry difference between diagnostic groups. Experimental results show that the new system has better performance than two publicly available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E(is an element of)4 allele (ApoE4), which is considered as the most prevalent risk factor for AD. Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our work provides a new MRI analysis tool that may help presymptomatic AD research.NOTICE: this is the author’s version of a work that was accepted for publication in NEUROIMAGE. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neuroimage, 78, 111-134 [2013] http://dx.doi.org/10.1016/j.neuroimage.2013.04.01

    Longitudinal Morphometric Study of Genetic Influence of APOE e4 Genotype on Hippocampal Atrophy - An N=1925 Surface-based ADNI Study

    Get PDF
    abstract: The apolipoprotein E (APOE) e4 genotype is the most prevalent known genetic risk factor for Alzheimer's disease (AD). In this paper, we examined the longitudinal effect of APOE e4 on hippocampal morphometry in Alzheimer's Disease Neuroimaging Initiative (ADNI). Generally, atrophy of hippocampus has more chance occurs in AD patients who carrying the APOE e4 allele than those who are APOE e4 noncarriers. Also, brain structure and function depend on APOE genotype not just for Alzheimer's disease patients but also in health elderly individuals, so APOE genotyping is considered critical in clinical trials of Alzheimer's disease. We used a large sample of elderly participants, with the help of a new automated surface registration system based on surface conformal parameterization with holomorphic 1-forms and surface fluid registration. In this system, we automatically segmented and constructed hippocampal surfaces from MR images at many different time points, such as 6 months, 1- and 2-year follow up. Between the two different hippocampal surfaces, we did the high-order correspondences, using a novel inverse consistent surface fluid registration method. At each time point, using Hotelling's T^2 test, we found significant morphological deformation in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the non-demented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes.Dissertation/ThesisMasters Thesis Computer Science 201

    Classifying Alzheimer's disease and frontotemporal dementia using machine learning with cross-sectional and longitudinal magnetic resonance imaging data

    Full text link
    Alzheimer's disease (AD) and frontotemporal dementia (FTD) are common causes of dementia with partly overlapping, symptoms and brain signatures. There is a need to establish an accurate diagnosis and to obtain markers for disease tracking. We combined unsupervised and supervised machine learning to discriminate between AD and FTD using brain magnetic resonance imaging (MRI). We included baseline 3T-T1 MRI data from 339 subjects: 99 healthy controls (CTR), 153 AD and 87 FTD patients; and 2-year follow-up data from 114 subjects. We obtained subcortical gray matter volumes and cortical thickness measures using FreeSurfer. We used dimensionality reduction to obtain a single feature that was later used in a support vector machine for classification. Discrimination patterns were obtained with the contribution of each region to the single feature. Our algorithm differentiated CTR versus AD and CTR versus FTD at the cross-sectional level with 83.3% and 82.1% of accuracy. These increased up to 90.0% and 88.0% with longitudinal data. When we studied the classification between AD versus FTD we obtained an accuracy of 63.3% at the cross-sectional level and 75.0% for longitudinal data. The AD versus FTD versus CTR classification has reached an accuracy of 60.7%, and 71.3% for cross-sectional and longitudinal data respectively. Disease discrimination brain maps are in concordance with previous results obtained with classical approaches. By using a single feature, we were capable to classify CTR, AD, and FTD with good accuracy, considering the inherent overlap between diseases. Importantly, the algorithm can be used with cross-sectional and longitudinal data.© 2023 The Authors. Human Brain Mapping published by Wiley Periodicals LLC

    Surface Feature-Guided Mapping of Cerebral Metabolic Changes in Cognitively Normal and Mildly Impaired Elderly

    Get PDF
    Purpose: The aim of this study was to investigate the longitudinal positron emission tomography (PET) metabolic changes in the elderly. Procedures: Nineteen nondemented subjects (mean Mini-Mental Status Examination 29.4±0.7 SD) underwent two detailed neuropsychological evaluations and resting 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-PET scan (interval 21.7±3.7 months), baseline structural 3T magnetic resonance (MR) imaging, and apolipoprotein E4 genotyping. Cortical PET metabolic changes were analyzed in 3-D using the cortical pattern matching technique. Results: Baseline vs. follow-up whole-group comparison revealed significant metabolic decline bilaterally in the posterior temporal, parietal, and occipital lobes and the left lateral frontal cortex. The declining group demonstrated 10–15 % decline in bilateral posterior cingulate/precuneus, posterior temporal, parietal, and occipital cortices. The cognitively stable group showed 2.5–5% similarly distributed decline. ApoE4-positive individuals underwent 5–15 % metabolic decline in the posterior association cortices. Conclusions: Using 3-D surface-based MR-guided FDG-PET mapping, significant metaboli

    Evaluation of Cerebral Lateral Ventricular Enlargement Derived from Magnetic Resonance Imaging: A Candidate Biomarker of Alzheimer Disease Progression in Vivo

    Get PDF
    Alzheimer disease (AD) is the most common form of dementia and has grievous mortality rates. Measuring brain volumes from structural magnetic resonance images (MRI) may be useful for illuminating disease progression. The goal of this thesis was to (1) help refine a novel technique used to segment the lateral cerebral ventricles from MRI, (2) validate this tool, and determine group-wise differences between normal elderly controls (NEC) and subjects with mild cognitive impairment (MCI) and AD and (3) determine the number of subjects necessary to detect a 20 percent change from the natural history of ventricular enlargement with respect to genotype. Three dimensional Ti-weighted MRI and cognitive measures were acquired from 504 subjects (NEC n = 152, MCI n = 247 and AD n = 105) participating in the multi-centre Alzheimer\u27s Disease Neuroimaging Initiative. Cerebral ventricular volume was quantified at baseline and after six months. For secondary analyses, all groups were dichotomized for Apolipoprotein E genotype based on the presence of an e4 polymorphism. The AD group had greater ventricular enlargement compared to both subjects with MCI (P = 0.0004) and NEC (P \u3c 0.0001), and subjects with MCI had a greater rate of ventricular enlargement compared to NEC (P =0.0001). MCI subjects that progressed to clinical AD after six months had greater ventricular enlargement than stable MCI subjects (P = 0.0270). Ventricular enlargement was different between apolipoprotein E genotypes within the AD group (P = 0.010). The number of subjects required to demonstrate a 20% change in ventricular enlargement (AD: N=342, MCI: N=1180) was substantially lower than that required to demonstrate a 20% change in cognitive scores (MMSE) (AD: N=7056, MCI: N=7712). Therefore, ventricular enlargement represents a feasible short-term marker of disease progression in subjects with MCI and subjects with AD for multi-centre studie

    Lost in spatial translation - A novel tool to objectively assess spatial disorientation in Alzheimer's disease and frontotemporal dementia

    Get PDF
    Spatial disorientation is a prominent feature of early Alzheimer's disease (AD) attributed to degeneration of medial temporal and parietal brain regions, including the retrosplenial cortex (RSC). By contrast, frontotemporal dementia (FTD) syndromes show generally intact spatial orientation at presentation. However, currently no clinical tasks are routinely administered to objectively assess spatial orientation in these neurodegenerative conditions. In this study we investigated spatial orientation in 58 dementia patients and 23 healthy controls using a novel virtual supermarket task as well as voxel-based morphometry (VBM). We compared performance on this task with visual and verbal memory function, which has traditionally been used to discriminate between AD and FTD. Participants viewed a series of videos from a first person perspective travelling through a virtual supermarket and were required to maintain orientation to a starting location. Analyses revealed significantly impaired spatial orientation in AD, compared to FTD patient groups. Spatial orientation performance was found to discriminate AD and FTD patient groups to a very high degree at presentation. More importantly, integrity of the RSC was identified as a key neural correlate of orientation performance. These findings confirm the notion that i) it is feasible to assess spatial orientation objectively via our novel Supermarket task; ii) impaired orientation is a prominent feature that can be applied clinically to discriminate between AD and FTD and iii) the RSC emerges as a critical biomarker to assess spatial orientation deficits in these neurodegenerative conditions
    • …
    corecore