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Joint Prediction and Classification of Brain Image
Evolution Trajectories from Baseline Brain Image with

Application to Early Dementia

Can Gafuroğlu, Islem Rekik?, and for the Alzheimer’s Disease Neuroimaging
Initiative

BASIRA lab, CVIP group, School of Science and Engineering, Computing, University of
Dundee, UK

Abstract. Despite the large body of existing neuroimaging-based studies on brain
dementia, in particular mild cognitive impairment (MCI), modeling and predict-
ing the early dynamics of dementia onset and development in healthy brains is
somewhat overlooked in the literature. The majority of computer-aided diag-
nosis tools developed for classifying healthy and demented brains mainly rely
on either using single timepoint or longitudinal neuroimaging data. Longitudi-
nal brain imaging data offer a larger time window to better capture subtle brain
changes in early MCI development, and its utilization has been shown to im-
prove classification and prediction results. However, typical longitudinal studies
are challenged by a limited number of acquisition timepoints and the absence of
inter-subject matching between timepoints. To address this limitation, we pro-
pose a novel framework that learns how to predict the developmental trajectory
of a brain image from a single acquisition timepoint (i.e., baseline), while classi-
fying the predicted trajectory as ‘healthy’ or ‘demented’. To do so, we first rigidly
align all training images, then extract ‘landmark patches’ from training images.
Next, to predict the patch-wise trajectory evolution from baseline patch, we pro-
pose two novel strategies. The first strategy learns in a supervised manner to
select a few training atlas patches that best boost the classification accuracy of
the target testing patch. The second strategy learns in an unsupervised manner
to select the set of most similar training atlas patches to the target testing patch
using multi-kernel patch manifold learning. Finally, we train a linear classifier
for each predicted patch trajectory. To identify the final label of the target subject,
we use majority voting to aggregate the labels assigned by our model to all land-
mark patches’ trajectories. Our image prediction model boosted the classification
performance by 14% without further leveraging any enhancing methods such as
feature selection.

1 Introduction

The early detection of Alzheimer’s Disease (AD) allows patients to undergo preventive
treatment to minimize the impact of the disease on their lives. In particular, distinguish-
ing early Mild Cognitive Impairment (eMCI), which is the earliest form of AD, from
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normal controls (NC) is a challenging task, due to the subtlety of the anatomical differ-
ences between NC and eMCI subjects. However, this classification problem has great
significance due to AD being the most common cause of dementia [1, 2]. Presently, AD
is diagnosed using neuroimaging along with measures of cognitive performance [2].
This process places a burden on the experts as they must examine structural Magnetic
Resonance Imaging (MRI). The atrophy patterns in early MCI patients in particular
are subtle and these patients show no signs of cognitive impairment aside from mi-
nor memory concerns. Applying machine learning to automate the diagnosis of eMCI
can alleviate the burden on these experts and provide consistent interpretations of the
MRI data. As such, there have been a vast number of studies that aim to apply machine
learning methods on neuroimaging data to make predictions and diagnoses regarding
dementia, some of which use data from a single time point [3–5] and some of which
utilize data from multiple time points [6–9].

[6] used similarity maps between aligned baseline and follow-up images to predict
progression from MCI to AD by classifying stable MCI patients against MCI convert-
ers. [7] used incomplete longitudinal data from MCI subjects in conjunction with sparse
learning algorithms and found that the longitudinal data improves their classification
accuracy for identifying converters. [8] proposed a temporally structured support vec-
tor machine (SVM) classifier, which is designed specifically to work with longitudinal
MRI data, with no limit on the number of follow-ups that can be used and achieved
state-of-the-art performance in classifying MCI converters. [9] used data from multi-
ple modalities measured at multiple time points in order to predict progression from
MCI to AD using an SVM classifier. This work nicely modeled the relationship be-
tween data acquired at different time points, where the estimations of derived features
between time points was introduced in the learning model, such as cortical thinning
speed. By incorporating multiple time points into their framework, all of these works
leveraged additional relevant information to improve classification accuracy. However,
these methods are limited by the requirement of more than a single acquisition time-
point; hence, early MCI diagnosis or MCI conversion to AD prediction from baseline
data is impeded. As preventive treatment is more likely to succeed the earlier the dis-
ease is detected, requiring subjects to wait for multiple measurements at different time
points may hinder their treatment and recovery processes.

On the other hand, several works focused on using a single acquisition timepoint for
dementia diagnosis and classification, which avoids the limitation of requiring patients
to wait for multiple scans. For instance, [3] used SVMs to classify AD against NC from
MRI images. Similarly, [4] used SVM classifiers with data acquired using varying scan-
ning equipments. [5] compared ten previously explored methods of classification on a
single dataset with three different AD-related classification problems: classifying AD
against NC, MCI against NC, as well as classifying MCI converters against stable MCI
patients. However, these works do not integrate longitudinal data into their frameworks,
thereby foregoing the potential improvement in classification accuracy that could be
achieved with information from additional timepoints.

To solve this issue, we propose to diagnose a patient in an early stage from their
baseline image; however, more reliably by leveraging longitudinal information pre-
dicted at later timepoints. Specifically, we unprecedentedly propose a joint image evo-



lution trajectory prediction and classification framework from a single acquisition time-
point. Our framework comprises four steps. First, we detect key landmarks in the target
anatomical region of interest (ROI) across all training subjects at baseline t1. Second,
for each baseline patch centered at a specific landmark, we learn how to predict its
evolution trajectory at follow-up timepoints. To do so, we propose two different novel
strategies. The first strategy learns in a supervised way how to select baseline ‘atlas
patches’ that are expected to yield the smallest patch prediction error at a follow-up
timepoint t2 for an input testing patch. The second strategy learns in an unsupervised
way how to nest both training and testing patches in a high-dimensional manifold using
multiple-kernel learning. Next, we select the closest baseline training patches (or atlas
patches) on the manifold to the testing patch. Following the selection of the best training
atlas patches at baseline t1, we simply average their corresponding atlas patches at t2 to
predict the testing patch at t2. Ultimately, we train an ensemble classifier to predict the
label for each learned patch-wise evolution trajectory, which are then aggregated using
majority voting to classify the target subject.

2 Joint Prediction and Classification of Brain Image Evolution
Trajectories from Baseline

In this section, we present the supervised and unsupervised learning strategies proposed
for jointly predicting and labeling brain image evolution trajectories from a single ac-
quisition timepoint. We denote matrices by boldface capital letters, e.g., X, and vectors
are denoted by bold lowercase letters, e.g., x. Fig. 1 illustrates the pipeline for each of
the proposed strategies based on a supervised or unsupervised selection of atlas patches
to predict the evolution trajectory of a baseline testing patch. In the training stage, both
strategies share a fundamental step, which consists of detecting key landmarks across
all training images to learn a landmark-wise prediction and classification model.

Proposed landmark detection method. Since brain disorders affect the morphol-
ogy of a particular anatomical brain region, we expect that the regions at the boundary
(or edge) of the target ROIs capture the most discriminative information. Hence, for
each training subject, we apply a Sobel filter to the training label map of the target ROI
to detect its edge. Next, we average all training edges to generate an ‘edge density’ at
each voxel. Ultimately, by thresholding the edge density map, we generate the key land-
marks that represent the centers of our training and testing patches for learning each of
our supervised and unsupervised image prediction models.

Supervised atlas patch selection for patch evolution trajectory prediction (strat-
egy 1). Inspired by the work of [10] on atlas selection learning for brain image segmen-
tation, we propose a patch-based atlas selection strategy that learns in a supervised
manner how to minimize the prediction error for a testing patch evolution trajectory.
For each target landmark xi, we learn how to select the best training atlas patches at
baseline timepoint t1 that minimize the prediction error for a target testing patch at a
follow-up timepoint tk, k ≥ 2. Our learning model assumes that two similar intensity
patches at baseline will evolve similarly at follow-up timepoints. Specifically, given
n − 1 training subjects, we first build an intensity disparity matrix of size (n − 2)2 at
t1, where each row denotes an element-wise absolute difference between two training



Fig. 1: Pipeline of the proposed joint prediction and classification framework of brain
image evolution trajectories from baseline image using two strategies (A) and (B). A)
Supervised atlas patch selection strategy. A regression function fit1 is learned at each
landmark xi to map absolute distance vectors between two patches to an error prediction
vector. This allows to learn how to select the best atlas patches at t1 for our patch
evolution trajectory prediction at t2. B) Unsupervised atlas patch selection strategy.
A patch-based multi-kernel manifold learning is used to select the most similar atlas
patches to the target testing patch at t1. The predicted follow-up patches at t2 are then
concatenated with the baseline patch at t1 and classified by majority voting using an
ensemble of SVM classifiers in both approaches.



patches pt1i,s and pt1i,s′ . Next, we build a corresponding error vector et1i that quantifies
the prediction error of using pt1i,s for subject s at t1 as an atlas patch to predict p̃t2i,s′ for
subject s′ at t2. Specifically, we define p̃t2i,s′ = α× pt2i,s′ , where α = pt1i,s′/p

t1
i,s. If pt1i,s

has a zero-element, then the corresponding element in vector α is set to a high value.
As for the prediction error, we define it as the average absolute difference between the
ground truth patch pt2i,s′ and the predicted patch p̃t2i,s′ for the ‘testing’ subject s′. Next,
in the training stage, we learn a support vector regressor function f t1i that maps the
intensity disparity matrix at each landmark xi onto the corresponding prediction error
vector (Fig. 1–A). In the testing stage, we compute the pairwise distance between each
training patch {pt1i,s}

n−1
s=1 and the testing patch pt1i,tst. Then, by testing the learned re-

gression function for each pairwise absolute distance f t1i (|pt1i,s−pt1i,tst|), we predict the
error of using subject s to predict pt2i,tst. Ultimately, we select the top K atlas patches
at t1 with the lowest prediction errors, then average their corresponding patches at t2 to
output p̃t2i,tst.

Multi-kernel patch-based manifold learning for patch evolution trajectory pre-
diction (strategy 2). In this strategy, we use the multi-kernel manifold learning (MKML)
method proposed in [11], to identify the baseline atlas patches whose follow-up im-
ages best represent the testing baseline patch by learning patch-to-patch similarities
(Fig. 1–B). In this section, we briefly present the MKML framework introduced in
[11] and how we extended it to our aim. MKML learns a distance metric in an un-
supervised manner by combining multiple Gaussian kernels, and uses it to output a
learned pairwise similarity matrix of size n × n from an input matrix of size n × d
where n is the number of subjects and d is the size of their vectorized patches. For
each landmark xi, to predict p̃t2i,tst for a testing subject, we first learn a baseline simi-
larity matrix St1i for all training and testing samples. This allows to learn an intensity
patch manifold where all patch vectors {pt1i,1, . . . ,p

t1
i,n} are nested. Instead of using one

predefined distance metric which may fail to capture the nonlinear relationship in the
patch data, we use multiple Gaussian kernels with learned weights to better explore in
depth the similarity patterns among patches centered at a fixed landmark across a set
of subjects. In other words, adopting multiple kernels allows to better fit the true un-
derlying statistical distribution of the input matrix of intensity patch features. Addition-
ally, constraints are imposed on kernel weights to avoid a single kernel selection [11].

The Gaussian kernel is expressed as follows: K(pt1i,s,p
t1
i,s′) =

1
εs,s′
√
2π
e
(−
|pt1
i,s
−p

t1
i,s′
|2

2ε2
s,s′

)

,

where εs,s′ is defined as: εs,s′ = σ(µs + µs′)/2, where σ is a tuning parameter and

µs =

∑
l∈KNN(p

t1
i,s

)
|pt1i,s−p

t1
i,s′ |

k , where KNN(pt1i,s) represents the top k neighboring
subjects of subject s. The computed kernels are then averaged to further learn the sim-
ilarity matrix St1i at landmark xi and baseline timepoint t1 through an optimization
framework formulated as follows:

min
S
t1
i ,L,w

∑
k,j −wlKl(h

k,hj)St1i (k, j) + β||St1i ||2F + γtr(LT (In − St1i )L) +

ρ
∑
l wllogwl

Subject to:
∑
l wl = 1, wl ≥ 0, LTL = Ic,

∑
j S

t1
i (k, j) = 1, and St1i (k, j) ≥ 0

for all (k, j), where:



•
∑
k,j −wlKl(h

k,hj)St1i (k, j) refers to the relation between the similarity and
the kernel distance with weights wl between two subject-specific patches. The learned
similarity should be small if the distance between a pair of patches is large.
• β||St1i ||2F denotes a regularization term that avoids over-fitting the model to the

data.
• γtr(LT (In − St1i )L): L is the latent matrix of size n × c where n is the number

of subjects and c is the number of clusters. The matrix (In − St1i ) denotes the graph
Laplacian.
• ρ

∑
l wllogwl imposes constraints on the kernel weights to avoid selection of a

single kernel.
An alternating convex optimization is adopted where each variable is optimized

while fixing the other variables until convergence [11]. Finally, based on the landmark-
specific learned matrix St1i , we select the top K training patches (or K atlas patches)
that are most similar to the target testing patch at baseline. Finally, we predict p̃t2i,tst as
a weighted average of corresponding K atlas patches at follow-up t2.

Predicted trajectories’ labeling using an ensemble classifier. The last shared step
in both proposed strategies is to label patch evolution trajectory for a testing subejct at
each landmark xi as ‘healthy’ or ‘disordered’. To do so, for each landmark xi, we train
a support vector machine (SVM) using the concatenation of baseline training patches
{pt1i,s}

n−1
s=1 and their corresponding predicted patches {p̃t2i,s}

n−1
s=1 using strategies 1 or 2.

The left out testing subject is then classified using majority voting on predicted labels
outputted by all SVMs (i.e, across all landmarks).

3 Results and Discussion

Data and model parameters. We used data from 30 NC (Normal Control) and 30
eMCI subjects acquired from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset (adni.loni.usc.edu). All training baseline and follow-up MR images along with
their AAL-atlas based label maps are rigidly aligned to a common space. For evaluation,
we tested our methods on landmark patches extracted from the left hippocampus and the
left lateral ventricle. We selected these preliminary ROIs due to: (1) their prevalence in
the dementia literature [6, 5], and (2) the fact that atrophy rates were found to be faster
in the left hemisphere compared to the right hemisphere [12]. We fixed the patch size
to 7 × 7 × 7 across all methods. The number of neighbours (the best atlas patches)
used for predicting the follow-up trajectory is set to 2 for both strategies. For MKML
parameters, we set the number of clusters to c = 2, and m = 2 kernels.

Evaluation. We used leave-one-out cross-validation to evaluate the classification
accuracy of the proposed methods. Fig. 2–A displays the average patch prediction error
computed using the mean absolute error (MAE) between ground-truth and predicted
patches at the follow-up timepoint. We note that for both of the selected ROIs, both
methods led to similar results, where unsupervised prediction slightly outperformed su-
pervised prediction in the hippocampus as opposed to the ventricle. As for the eMCI/NC
classification results (Fig. 2–B), integrating predicted follow-up timepoints significantly
increased by∼5% (resp.∼2%) when using supervised prediction method and by∼%14
(resp. ∼10%) when using unsupervised prediction strategy for the hippocampus (resp.



Fig. 2: (A) Prediction accuracy for each ROI using proposed strategies for predicting
the follow-up image evolution trajectory from baseline. (B) Classification accuracy by
our proposed methods.

the ventricle). Clearly, multi-kernel patch-based manifold learning for patch evolution
prediction consistently produced the best classification results. We would like to high-
light that the main contribution of this work is to highlight the great potential of predict-
ing follow-up data from baseline data in boosting classification and disorder diagnosis.
Both strategies proposed in Fig. 1 can be boosted by using enhancing methods such as
feature selection or deep-learning approaches.

It should be noted that our supervised atlas selection strategy relies on the assump-
tion that the multiplication of an intensity patch of subject s at baseline by a weighting
vector α can produce the intensity patch of a different subject s′. Through propagating
this rule to follow-up timepoints, we can learn how to predict patch evolution trajec-
tory. However, there is no theoretical proof that this assumption holds aside from the
fact that the follow-up data predicted in this way improved our classification accuracy
when compared to classifying using the baseline images only. We also note that our
framework leverages information from only brain MR images, however brain dementia
also atrophies the cortical surface [13]. Hence, based on the seminal shape evolution
learning models for predicting infant cortical development from a single timepoint [14]
and inspired from the joint shape-image regression model proposed in [15], we aim
to build a unified model which simultaneously predicts cortical shape and brain image
evolution trajectories for a more accurate early diagnosis from baseline data.

4 Conclusion

In this work, we proposed a novel joint image prediction and classification framework
for the early diagnosis of MCI. Our initial results show that there is a possibility of
improvement in classification accuracy when predicted longitudinal data is leveraged
for classification even without additional use of enhancing approaches such as feature
selection. Our future work will involve improving the framework by investigating the
impact of various feature selection and learning methods, including deep learning ar-
chitectures. Additionally, we wish to extend our framework by investigating whether
timepoint-to-timepoint similarity maps such as those proposed in [6] can further im-



prove our classification accuracy when the follow-up images are not measured, but
predicted instead.
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