1,820 research outputs found

    A Multi-Objective Decision Support Model for the Turkish Armed Forces Personnel Assignment System

    Get PDF
    The Turkish Armed Forces (TAF) assign more than 25,000 active duty personnel annually. TAF wants to obtain maximum utilization of its personnel by assigning the right person to the right job at the right time, To accomplish this task, decision-makers and personnel assignment staff should consider conflicting multiple objectives that create the widely known problem called personnel assignment problem . To assist in this complicated task from a quantitative perspective, a preemptive goal programming approach was used to develop an integer programming (IP) model to capture the multiple objectives flexibly and interactively. A realistic size IP problem with random data was tested for computational efficiency and analysis. The mean solution time for different instances of the problem was reasonably small. An application of the methodology in an actual assignment decision support system of any large-scale government or non-government organization has a potential to help decision-makers make better use of their personnel

    Mapping parallel programs to heterogeneous CPU/GPU architectures using a Monte Carlo Tree Search

    Get PDF
    The single core processor, which has dominated for over 30 years, is now obsolete with recent trends increasing towards parallel systems, demanding a huge shift in programming techniques and practices. Moreover, we are rapidly moving towards an age where almost all programming will be targeting parallel systems. Parallel hardware is rapidly evolving, with large heterogeneous systems, typically comprising a mixture of CPUs and GPUs, becoming the mainstream. Additionally, with this increasing heterogeneity comes increasing complexity: not only does the programmer have to worry about where and how to express the parallelism, they must also express an efficient mapping of resources to the available system. This generally requires in-depth expert knowledge that most application programmers do not have. In this paper we describe a new technique that derives, automatically, optimal mappings for an application onto a heterogeneous architecture, using a Monte Carlo Tree Search algorithm. Our technique exploits high-level design patterns, targeting a set of well-specified parallel skeletons. We demonstrate that our MCTS on a convolution example obtained speedups that are within 5% of the speedups achieved by a hand-tuned version of the same application.Postprin

    Approximate Computation and Implicit Regularization for Very Large-scale Data Analysis

    Full text link
    Database theory and database practice are typically the domain of computer scientists who adopt what may be termed an algorithmic perspective on their data. This perspective is very different than the more statistical perspective adopted by statisticians, scientific computers, machine learners, and other who work on what may be broadly termed statistical data analysis. In this article, I will address fundamental aspects of this algorithmic-statistical disconnect, with an eye to bridging the gap between these two very different approaches. A concept that lies at the heart of this disconnect is that of statistical regularization, a notion that has to do with how robust is the output of an algorithm to the noise properties of the input data. Although it is nearly completely absent from computer science, which historically has taken the input data as given and modeled algorithms discretely, regularization in one form or another is central to nearly every application domain that applies algorithms to noisy data. By using several case studies, I will illustrate, both theoretically and empirically, the nonobvious fact that approximate computation, in and of itself, can implicitly lead to statistical regularization. This and other recent work suggests that, by exploiting in a more principled way the statistical properties implicit in worst-case algorithms, one can in many cases satisfy the bicriteria of having algorithms that are scalable to very large-scale databases and that also have good inferential or predictive properties.Comment: To appear in the Proceedings of the 2012 ACM Symposium on Principles of Database Systems (PODS 2012

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    ScaleNet: Searching for the Model to Scale

    Full text link
    Recently, community has paid increasing attention on model scaling and contributed to developing a model family with a wide spectrum of scales. Current methods either simply resort to a one-shot NAS manner to construct a non-structural and non-scalable model family or rely on a manual yet fixed scaling strategy to scale an unnecessarily best base model. In this paper, we bridge both two components and propose ScaleNet to jointly search base model and scaling strategy so that the scaled large model can have more promising performance. Concretely, we design a super-supernet to embody models with different spectrum of sizes (e.g., FLOPs). Then, the scaling strategy can be learned interactively with the base model via a Markov chain-based evolution algorithm and generalized to develop even larger models. To obtain a decent super-supernet, we design a hierarchical sampling strategy to enhance its training sufficiency and alleviate the disturbance. Experimental results show our scaled networks enjoy significant performance superiority on various FLOPs, but with at least 2.53x reduction on search cost. Codes are available at https://github.com/luminolx/ScaleNet.Comment: Accepted by ECCV202

    Towards outlier detection for high-dimensional data streams using projected outlier analysis strategy

    Get PDF
    [Abstract]: Outlier detection is an important research problem in data mining that aims to discover useful abnormal and irregular patterns hidden in large data sets. Most existing outlier detection methods only deal with static data with relatively low dimensionality. Recently, outlier detection for high-dimensional stream data became a new emerging research problem. A key observation that motivates this research is that outliers in high-dimensional data are projected outliers, i.e., they are embedded in lower-dimensional subspaces. Detecting projected outliers from high-dimensional stream data is a very challenging task for several reasons. First, detecting projected outliers is difficult even for high-dimensional static data. The exhaustive search for the out-lying subspaces where projected outliers are embedded is a NP problem. Second, the algorithms for handling data streams are constrained to take only one pass to process the streaming data with the conditions of space limitation and time criticality. The currently existing methods for outlier detection are found to be ineffective for detecting projected outliers in high-dimensional data streams. In this thesis, we present a new technique, called the Stream Project Outlier deTector (SPOT), which attempts to detect projected outliers in high-dimensional data streams. SPOT employs an innovative window-based time model in capturing dynamic statistics from stream data, and a novel data structure containing a set of top sparse subspaces to detect projected outliers effectively. SPOT also employs a multi-objective genetic algorithm as an effective search method for finding the outlying subspaces where most projected outliers are embedded. The experimental results demonstrate that SPOT is efficient and effective in detecting projected outliers for high-dimensional data streams. The main contribution of this thesis is that it provides a backbone in tackling the challenging problem of outlier detection for high- dimensional data streams. SPOT can facilitate the discovery of useful abnormal patterns and can be potentially applied to a variety of high demand applications, such as for sensor network data monitoring, online transaction protection, etc

    Big Data Optimization : Algorithmic Framework for Data Analysis Guided by Semantics

    Get PDF
    Fecha de Lectura de Tesis: 9 noviembre 2018.Over the past decade the rapid rise of creating data in all domains of knowledge such as traffic, medicine, social network, industry, etc., has highlighted the need for enhancing the process of analyzing large data volumes, in order to be able to manage them with more easiness and in addition, discover new relationships which are hidden in them Optimization problems, which are commonly found in current industry, are not unrelated to this trend, therefore Multi-Objective Optimization Algorithms (MOA) should bear in mind this new scenario. This means that, MOAs have to deal with problems, which have either various data sources (typically streaming) of huge amount of data. Indeed these features, in particular, are found in Dynamic Multi-Objective Problems (DMOPs), which are related to Big Data optimization problems. Mostly with regards to velocity and variability. When dealing with DMOPs, whenever there exist changes in the environment that affect the solutions of the problem (i.e., the Pareto set, the Pareto front, or both), therefore in the fitness landscape, the optimization algorithm must react to adapt the search to the new features of the problem. Big Data analytics are long and complex processes therefore, with the aim of simplify them, a series of steps are carried out through. A typical analysis is composed of data collection, data manipulation, data analysis and finally result visualization. In the process of creating a Big Data workflow the analyst should bear in mind the semantics involving the problem domain knowledge and its data. Ontology is the standard way for describing the knowledge about a domain. As a global target of this PhD Thesis, we are interested in investigating the use of the semantic in the process of Big Data analysis, not only focused on machine learning analysis, but also in optimization
    corecore