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Abstract

Outlier detection is an important research problem in data mining that aims to dis-

cover useful abnormal and irregular patterns hidden in large data sets. Most existing

outlier detection methods only deal with static data with relatively low dimensionality.

Recently, outlier detection for high-dimensional stream data became a new emerging

research problem. A key observation that motivates this research is that outliers

in high-dimensional data are projected outliers, i.e., they are embedded in lower-

dimensional subspaces. Detecting projected outliers from high-dimensional stream

data is a very challenging task for several reasons. First, detecting projected outliers

is difficult even for high-dimensional static data. The exhaustive search for the out-

lying subspaces where projected outliers are embedded is a NP problem. Second, the

algorithms for handling data streams are constrained to take only one pass to pro-

cess the streaming data with the conditions of space limitation and time criticality.

The currently existing methods for outlier detection are found to be ineffective for

detecting projected outliers in high-dimensional data streams.

In this thesis, we present a new technique, called the Stream Project Outlier

deTector (SPOT), which attempts to detect projected outliers in high-dimensional

data streams. SPOT employs an innovative window-based time model in capturing

dynamic statistics from stream data, and a novel data structure containing a set of

top sparse subspaces to detect projected outliers effectively. SPOT also employs

a multi-objective genetic algorithm as an effective search method for finding the

outlying subspaces where most projected outliers are embedded. The experimental

results demonstrate that SPOT is efficient and effective in detecting projected outliers

for high-dimensional data streams. The main contribution of this thesis is that it

provides a backbone in tackling the challenging problem of outlier detection for high-

dimensional data streams. SPOT can facilitate the discovery of useful abnormal

patterns and can be potentially applied to a variety of high demand applications,

such as for sensor network data monitoring, online transaction protection, etc.
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Chapter 1

Introduction

Outlier detection is an important research problem in data mining that aims to find

objects that are considerably dissimilar, exceptional and inconsistent with respect to

the majority data in an input database [60]. In recent years, we have witnessed a

tremendous research interest sparked by the explosion of data collected and trans-

ferred in the format of streams. This poses new opportunities as well as challenges

for research efforts in outlier detection. A data stream is a real-time, continuous

and ordered (implicitly by arrival sequence or explicitly by timestamp) sequence of

items. Examples of data streams include network traffic, telecommunications data,

financial market data, data from sensors that monitor the weather and environment,

surveillance video and so on. Outlier detection from stream data can find items (ob-

jects or points) that are abnormal or irregular with respect to the majority of items

in the whole or a horizon/window of the stream. Outlier detection in data streams

can be useful in many fields such as analysis and monitoring of network traffic data

(e.g., connection-oriented records), web log, wireless sensor networks and financial

transactions, etc.

A key observation that motivates this research is that outliers existing in high-

dimensional data streams are embedded in some lower-dimensional subspaces. Here,

a subspace refers to as the data space consisting of a subset of attributes. These

outliers are termed projected outliers in the high-dimensional space. The existence

of projected outliers is due to the fact that, as the dimensionality of data goes up,

data tend to become equally distant from each other. As a result, the difference of

data points’ outlier-ness will become increasingly weak and thus undistinguishable.

Only in moderate or low dimensional subspaces can significant outlier-ness of data

be observed. This phenomena is commonly referred to as the curse of dimensionality

1
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[17]. Because most of state-of-the-art outlier detection methods perform detection in

the full data space, thus the projected outliers cannot be found by these methods.

This will lead to a loss of interesting and potentially useful abnormal patterns hidden

in high-dimensional data streams.

In this research, we will study the problem of detecting projected outliers from

high-dimensional data streams. This problem can be formulated as follows: given

a data stream D with a potentially unbounded size of ϕ-dimensional data points,

for each data point pi = {pi1, pi2, . . . , piϕ} in D, projected outlier detection method

performs a mapping as

f : pi → (b, Si, Scorei)

where each data pi is mapped to a triplet (b, Si, Scorei). b is a Boolean variable

indicating whether or not pi is a projected outlier. If pi is a projected outlier (i.e.,

b = true), then Si is the set of outlying subspaces of pi and Scorei is the corresponding

outlier-ness score of pi in each subspace of Si. In the case that pi is a normal data,

we have b = false, Si = ∅ and Scorei is not applicable.

The results of the detection method will be a set of projected outliers and their

associated outlying subspace(s) and outlier-ness score to characterize the context and

strength of the projected outliers detected. The results, denoted byA, can be formally

expressed as

A= {< o, S, Score >, o∈ O}

where O denotes the set of projected outliers detected. The users have the discretion

to pick up the top k projected outliers that have the highest outlier-ness from O.

In contrast, the traditional definition of outliers does not explicitly present outlying

subspaces of outliers in the final result as outliers are detected in the full or a pre-

specified data space that is known to users before outliers are detected.

Detecting projected outliers in high-dimensional data streams is a nontrivial re-

search problem. Two major challenges we face in tackling this problem are elaborated

as follows:



3

1. First, finding the right outlying subspaces for projected outliers is crucial to de-

tection performance of the algorithm. Once these outlying subspaces have been

found, detecting projected outliers in these subspace will then become a much

easier task. Nevertheless, the number of possible subspaces increases dramati-

cally with the data dimensionality. Thus, finding the outlying subspaces of the

data through an exhaustive search of the space lattice is rather computationally

demanding and totally infeasible when the dimensionality of data is high. In

light of this, the outlier detection algorithm should be reasonably efficient to

find the right subspaces in which projected outliers can be accurately detected;

2. Another aspect of the challenge originates from the characteristics of stream-

ing data themselves. First, data streams can only be accessed in the order

of their arrivals and random access is disallowed. Second, data streams are

potentially unbound in size and the space available to store information is sup-

posed to be small. Finally, data objects in the stream usually have implicit

or explicit time concept (e.g., timestamps). Because of these unique features

of data streams, data stream outlier detection algorithms can only have one

pass over data streams and process data in an incremental, online and real-time

paradigm. In addition, they should feature constant and short time for process-

ing each data object and limited space for storing information. They need to

employ dynamic and space-economic data synopsis that can be updated incre-

mentally and efficiently. Finally, they are expected to take into account the time

concept in the detection process. They should apply appropriate time model(s)

to discriminate data arriving at different time, and have necessary capability to

cope with concept drift that may occur in the streams.

There have been intensive research efforts in outlier detection in the past decade.

The existing methods can be classified based on different criteria. Specifically, they

can be classified based upon whether they are used for low-dimensional or high-

dimensional data, whether they use the full set of attributes for outlier detection or

detect outliers in subspaces, and whether they can only handle static data or they

can deal with stream data. Most of the conventional outlier detection techniques are
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only applicable to relatively low dimensional static data [26][76][77][101][111]. Be-

cause they use the full set of attributes for outlier detection, thus they are not able to

detect projected outliers. They cannot handle data streams either. Recently, there

are some emerging work in dealing with outlier detection either in high-dimensional

static data or data streams. However, there has not been any reported concrete

research work so far for exploring the intersection of these two active research di-

rections. For those methods in projected outlier detection in high-dimensional space

[14][123][131][126][128], they can detect projected outliers that are embedded in sub-

spaces. However, their measurements used for evaluating points’ outlier-ness are not

incrementally updatable and many of the methods involve multiple scans of data,

making them incapable of handling data streams. For instance, [14][123] use the

Sparsity Coefficient to measure data sparsity. Sparsity Coefficient is based on an equi-

depth data partition that has to be updated frequently from the data stream. This

will be expensive and such updates will require multiple scans of data. [131][126][128]

use data sparsity metrics that are based on distance involving the concept of k near-

est neighbors (kNN). This is not suitable for data streams either as one scan of data

is not sufficient for retaining kNN information of data points. One the other hand,

the techniques for tackling outlier detection in data streams [100][1] rely on full data

space to detect outliers and thus projected outliers cannot be discovered by these

techniques. As such, it is desirable to propose a new method that well solves the

drawbacks of these existing methods.

In this thesis, we present a new technique, called Stream Projected Outlier deTec-

tor (SPOT), to approach the problem of outlier detection in high-dimensional data

streams. The major contributions of this research can be summarized as follows:

• In SPOT, we employ a new window-based time model and decaying data sum-

maries to capture statistics from the data streams for outlier detection. The

time model is able to approximate the conventional window-based model with-

out maintaining the detailed data in the window or keeping multiple snapshots

of data synopsis. The decaying data summaries can be efficiently computed and

incrementally maintained, enabling SPOT to handle fast data streams;
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• SPOT constructs a Sparse Subspace Template (SST) to detect projected out-

liers. SST consists of a number of mutually supplemented subspace groups that

contribute collectively to an effective detection of projected outliers. SPOT

is able to perform supervised and/or unsupervised learning to construct SST,

providing a maximum level of flexibility to users. Self-evolution of SST has also

been incorporated into SPOT to greatly enhance its adaptability to dynamics

of data streams;

• Unlike most of other outlier detection methods that measure outlier-ness of

data points based on a single criterion, SPOT adopts a more flexible framework

of using multiple measurements for this purpose. SPOT utilizes the Multi-

Objective Genetic Algorithm (MOGA) as an effective search method to find

subspaces that are able to optimize all the criteria for constructing SST;

• Last but not the least, we show that SPOT is efficient and effective in detecting

projected outliers in subspaces and outperforms the major existing methods

through experiments on both synthetic and real-life data streams.

Roadmap

The reminder of this thesis is organized as follows. Chapter 2 will present a review

on the existing methods for outlier detection. The basics of SPOT, including the

time model, data synopsis and definition of projected outliers, etc, will be elaborated

in Chapter 3. In Chapter 4, we dwell on algorithms of SPOT, with emphasis on

the learning and detection stages of SPOT. The Multi-Objective Genetic Algorithm

(MOGA), used to find outlying subspaces of streaming data for constructing SST, is

discussed in Chapter 5. We, in Chapter 6, report performance evaluation of SPOT.

The final chapter concludes this thesis.



Chapter 2

Related Work

We have witnessed considerable research efforts in outlier detection in the past a few

years. This section presents a review on the major state-of-the-art outlier detection

methods. To facilitate a systematic survey of the existing outlier detection methods,

the scope of this review is first clearly specified. The organization of the literature

review is as follows. We will first review the conventional outlier detection techniques

that are primarily suitable for relatively low-dimensional static data, followed by some

of recent advancements in outlier detection for high-dimensional static data and data

streams.

2.1 Scope of the Review

Before the review of outlier detection methods is presented, it is necessary for us to

first explicitly specify the scope of this review. There have been a lot of research

work in detecting different kinds of outliers from various types of data where the

techniques outlier detection methods utilize differ considerably. Most of the existing

outlier detection methods detect the so-called point outliers from vector-like data sets.

This is the focus of this review as well as of this thesis. Another common category

of outliers that has been investigated is called collective outliers. Besides the vector-

like data, outliers can also be detected from other types of data such as sequences,

trajectories and graphs, etc. In the reminder of this subsection, we will discuss briefly

different types of outliers.

First, outliers can be classified as point outliers and collective outliers based on

the number of data instances involved in the concept of outliers.

• Point outliers. In a given set of data instances, an individual outlying instance

is termed as a point outlier. This is the simplest type of outliers and is the focus

6
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of majority of existing outlier detection schemes [33]. A data point is detected

as a point outlier because it displays outlier-ness at its own right, rather than

together with other data points. In most cases, data are represented in vectors as

in the relational databases. Each tuple contains a specific number of attributes.

The principled method for detecting point outliers from vector-type data sets is

to quantify, through some outlier-ness metrics, the extent to which each single

data is deviated from the other data in the data set.

• Collective outliers. A collective outlier represents a collection of data in-

stances that is outlying with respect to the entire data set. The individual

data instance in a collective outlier may not be outlier by itself, but the joint

occurrence as a collection is anomalous [33]. Usually, the data instances in a

collective outlier are related to each other. A typical type of collective outliers

are sequence outliers, where the data are in the format of an ordered sequence.

Outliers can also be categorized into vector outliers, sequence outliers, trajectory

outliers and graph outliers, etc, depending on the types of data from where outliers

can be detected.

• Vector outliers. Vector outliers are detected from vector-like representation

of data such as the relational databases. The data are presented in tuples and

each tuple has a set of associated attributes. The data set can contain only

numeric attributes, or categorical attributes or both. Based on the number of

attributes, the data set can be broadly classified as low-dimensional data and

high-dimensional data, even though there is not a clear cutoff between these

two types of data sets. As relational databases still represent the mainstream

approaches for data storage, therefore, vector outliers are the most common

type of outliers we are dealing with.

• Sequence outliers. In many applications, data are presented as a sequence.

A good example of a sequence database is the computer system call log where

the computer commands executed, in a certain order, are stored. A sequence
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of commands in this log may look like the following sequence: http-web, buffer-

overflow, http-web, http-web, smtp-mail, ftp, http-web, ssh. Outlying sequence

of commands may indicate a malicious behavior that potentially compromises

system security. In order to detect abnormal command sequences, normal com-

mand sequences are maintained and those sequences that do not match any

normal sequences are labeled sequence outliers. Sequence outliers are a form of

collective outlier.

• Trajectory outliers. Recent improvements in satellites and tracking facilities

have made it possible to collect a huge amount of trajectory data of moving

objects. Examples include vehicle positioning data, hurricane tracking data,

and animal movement data [83]. Unlike a vector or a sequence, a trajectory

is typically represented by a set of key features for its movement, including

the coordinates of the starting and ending points; the average, minimum, and

maximum values of the directional vector; and the average, minimum, and

maximum velocities. Based on this representation, a weighted-sum distance

function can be defined to compute the difference of trajectory based on the key

features for the trajectory [78]. A more recent work proposed a partition-and-

detect framework for detecting trajectory outliers [83]. The idea of this method

is that it partitions the whole trajectory into line segments and tries to detect

outlying line segments, rather than the whole trajectory. Trajectory outliers

can be point outliers if we consider each single trajectory as the basic data unit

in the outlier detection. However, if the moving objects in the trajectory are

considered, then an abnormal sequence of such moving objects (constituting the

sub-trajectory) is a collective outlier.

• Graph outliers. Graph outliers represent those graph entities that are ab-

normal when compared with their peers. The graph entities that can become

outliers include nodes, edges and sub-graphs. For example, Sun et al. investi-

gate the detection of anomalous nodes in a bipartite graph [107][108]. Autopart

detects outlier edges in a general graph [32]. Noble et al. study anomaly de-

tection on a general graph with labeled nodes and try to identify abnormal
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substructure in the graph [90]. Graph outliers can be either point outliers (e.g.,

node and edge outliers) or collective outliers (e.g., sub-graph outliers).

Unless otherwise stated, all the outlier detection methods discussed in this review

refer to those methods for detecting point outliers from vector-like data sets.

2.2 Outlier Detection Methods for Low Dimensional Data

The earlier research work in outlier detection mainly deals with static datasets with

relatively low dimensions. Literature on these work can be broadly classified into

four major categories based on the techniques they used, i.e., statistical methods,

distance-based methods, density-based methods and clustering-based methods.

2.2.1 Statistical Detection Methods

Statistical outlier detection methods [28, 57] rely on the statistical approaches that

assume a distribution or probability model to fit the given dataset. Under the dis-

tribution assumed to fit the dataset, the outliers are those points that do not agree

with or conform to the underlying model of the data.

The statistical outlier detection methods can be broadly classified into two cat-

egories, i.e., the parametric methods and the non-parametric methods. The major

differences between these two classes of methods lie in that the parametric methods

assume the underlying distribution of the given data and estimate the parameters of

the distribution model from the given data [41] while the non-parametric methods do

not assume any knowledge of distribution characteristics [38].

Statistical outlier detection methods (parametric and non-parametric) typically

take two stages for detecting outliers, i.e., the training stage and test stage.

• Training stage. The training stage mainly involves fitting a statistical model

or building data profiles based on the given data. Statistical techniques can

be performed in a supervised, semi-supervised, and unsupervised manner. Su-

pervised techniques estimate the probability density for normal instances and

outliers. Semi-supervised techniques estimate the probability density for either
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normal instances, or outliers, depending on the availability of labels. Unsuper-

vised techniques determine a statistical model or profile which fits all or the

majority of the instances in the given data set;

• Test stage. Once the probabilistic model or profile is constructed, the next

step is to determine if a given data instance is an outlier with respect to the

model/profile or not. This involves computing the posterior probability of the

test instance to be generated by the constructed model or the deviation from

the constructed data profile. For example, we can find the distance of the data

instance from the estimated mean and declare any point above a threshold to

be an outlier [51].

Parametric Methods

Parametric statistical outlier detection methods explicitly assume the probabilistic or

distribution model(s) for the given data set. Model parameters can be estimated using

the training data based upon the distribution assumption. The major parametric

outlier detection methods include Gaussian model-based and regression model-based

methods.

A. Gaussian Models

Detecting outliers based on Gaussian distribution models have been intensively

studied. The training stage typically performs estimation of the mean and variance

(or standard deviation) of the Gaussian distribution using Maximum Likelihood Esti-

mates (MLE). To ensure that the distribution assumed by human users is the optimal

or close-to-optima underlying distribution the data fit, statistical discordany tests are

normally conducted in the test stage [28][18][21]. So far, over one hundred discor-

dancy/outlier tests have been developed for different circumstances, depending on the

parameter of dataset (such as the assumed data distribution) and parameter of dis-

tribution (such as mean and variance), and the expected number of outliers [60][76].

The rationale is that some small portion of points that have small probability of oc-

currence in the population are identified as outliers. The commonly used outlier tests

for normal distributions are the mean-variance test and box-plot test [84][59][106][53].
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In the mean-variance test for a Gaussian distribution N(µ, σ2), where the population

has a mean µ and variance σ, outliers can be considered to be points that lie 3 or

more standard deviations (i.e., ≥ 3σ) away from the mean [50]. This test is general

and can be applied to some other commonly used distributions such as Student t-

distribution and Poisson distribution, which feature a fatter tail and a longer right

tail than a normal distribution, respectively. The box-plot test draws on the box

plot to graphically depict the distribution of data using five major attributes, i.e.,

smallest non-outlier observation (min), lower quartile (Q1), median, upper quartile

(Q3), and largest non-outlier observation (max). The quantity Q3-Q1 is called the

Inter Quartile Range (IQR). IQR provides a means to indicate the boundary beyond

which the data will be labeled as outliers; a data instance will be labeled as an outlier

if it is located 1.5*IQR times lower than Q1 or 1.5*IQR times higher than Q3.

In some cases, a mixture of probabilistic models may be used if a single model is not

sufficient for the purpose of data modeling. If labeled data are available, two separate

models can be constructed, one for the normal data and another for the outliers. The

membership probability of the new instances can be quantified and they are labeled

as outliers if their membership probability of outlier probability model is higher than

that of the model of the normal data. The mixture of probabilistic models can also

be applied to unlabeled data, that is, the whole training data are modeled using a

mixture of models. A test instance is considered to be an outlier if it is found that it

does not belong to any of the constructed models.

B. Regression Models

If the probabilistic model is unknown regression can be employed for model con-

struction. The regression analysis aims to find a dependence of one/more random

variable(s) Y on another one/more variable(s) X . This involves examining the con-

ditional probability distribution Y|X . Outlier detection using regression techniques

are intensively applied to time-series data [4][2][46][1][82]. The training stage involves

constructing a regression model that fits the data. The regression model can either

be a linear or non-linear model, depending on the choice from users. The test stage

tests the regression model by evaluating each data instance against the model. More
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specifically, such test involves comparing the actual instance value and its projected

value produced by the regression model. A data point is labeled as an outlier if a re-

markable deviation occurs between the actual value and its expected value produced

by the regression model.

Basically speaking, there are two ways to use the data in the dataset for building

the regression model for outlier detection, namely the reverse search and direct search

methods. The reverse search method constructs the regression model by using all data

available and then the data with the greatest error are considered as outliers and

excluded from the model. The direct search approach constructs a model based on a

portion of data and then adds new data points incrementally when the preliminary

model construction has been finished. Then, the model is extended by adding most

fitting data, which are those objects in the rest of the population that have the least

deviations from the model constructed thus far. The data added to the model in the

last round, considered to be the least fitting data, are regarded to be outliers.

Non-parametric Methods

The outlier detection techniques in this category do not make any assumptions about

the statistical distribution of the data. The most popular approaches for outlier

detection in this category are histograms and Kernel density function methods.

A. Histograms

The most popular non-parametric statistical technique is to use histograms to

maintain a profile of data. Histogram techniques by nature are based on the frequency

or counting of data.

The histogram based outlier detection approach is typically applied when the data

has a single feature. Mathematically, a histogram for a feature of data consists of a

number of disjoint bins (or buckets) and the data are mapped into one (and only one)

bin. Represented graphically by the histogram graph, the height of bins corresponds

to the number of observations that fall into the bins. Thus, if we let n be the total

number of instances, k be the total number of bins and mi be the number of data point

in the ith bin (1 ≤ i ≤ k), the histogram satisfies the following condition n =
∑k

i=1 mi.
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The training stage involves building histograms based on the different values taken

by that feature in the training data.

The histogram techniques typically define a measure between a new test instance

and the histogram based profile to determine if it is an outlier or not. The measure

is defined based on how the histogram is constructed in the first place. Specifically,

there are three possible ways for building a histogram:

1. The histogram can be constructed only based on normal data. In this case, the

histogram only represents the profile for normal data. The test stage evaluates

whether the feature value in the test instance falls in any of the populated bins

of the constructed histogram. If not, the test instance is labeled as an outlier

[5] [68][58];

2. The histogram can be constructed only based on outliers. As such, the his-

togram captures the profile for outliers. A test instance that falls into one of

the populated bins is labeled as an outlier [39]. Such techniques are particularly

popular in intrusion detection community [41][45] [35] and fraud detection [49];

3. The histogram can be constructed based on a mixture of normal data and

outliers. This is the typical case where histogram is constructed. Since normal

data typically dominate the whole data set, thus the histogram represents an

approximated profile of normal data. The sparsity of a bin in the histogram can

be defined as the ratio of frequency of this bin against the average frequency of

all the bins in the histogram. A bin is considered as sparse if such ratio is lower

than a user-specified threshold. All the data instance falling into the sparse

bins are labeled as outliers.

The first and second ways for constructing histogram, as presented above, rely on

the availability of labeled instances, while the third one does not.

For multivariate data, a common approach is to construct feature-wise histograms.

In the test stage, the probability for each feature value of the test data is calculated

and then aggregated to generate the so-called outlier score. A low probability value

corresponds a higher outlier score of that test instance. The aggregation of per-feature
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likelihoods for calculating outlier score is typically done using the following equation:

Outlier Score =
∑

f∈F

wf · (1− pf)/|F |

where wf denotes the weight assigned for feature f , pf denotes the probability for the

value of feature f and F denotes the set of features of the dataset. Such histogram-

based aggregation techniques have been used in intrusion detection in system call data

[42], fraud detection [49], damage detection in structures [85] [88] [89], network intru-

sion detection [115] [117], web-based attack detection [81], Packet Header Anomaly

Detection (PHAD), Application Layer Anomaly Detection (ALAD) [87], NIDES (by

SRI International) [5] [12] [99]. Also, a substantial amount of research has been done

in the field of outlier detection for sequential data (primarily to detect intrusions in

computer system call data) using histogram based techniques. These techniques are

fundamentally similar to the instance based histogram approaches as described above

but are applied to sequential data to detect collective outliers.

Histogram based detection methods are simple to implement and hence are quite

popular in domain such as intrusion detection. But one key shortcoming of such

techniques for multivariate data is that they are not able to capture the interactions

between different attributes. An outlier might have attribute values that are individ-

ually very frequent, but their combination is very rare. This shortcoming will become

more salient when dimensionality of data is high. A feature-wise histogram technique

will not be able to detect such kinds of outliers. Another challenge for such techniques

is that users need to determine an optimal size of the bins to construct the histogram.

B. Kernel Functions

Another popular non-parametric approach for outlier detection is the parzen win-

dows estimation due to Parzen [94]. This involves using Kernel functions to approxi-

mate the actual density distribution. A new instance which lies in the low probability

area of this density is declared to be an outlier.

Formally, if x1, x2, ..., xN are IID (independently and identically distributed) sam-

ples of a random variable x, then the Kernel density approximation of its probability
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density function (pdf) is

fh(x) =
1

Nh

N
∑

i=1

K(
x− xi

h
)

where K is Kernel function and h is the bandwidth (smoothing parameter). Quite

often, K is taken to be a standard Gaussian function with mean µ = 0 and variance

σ2 = 1:

K(x) =
1√
2π

e−
1
2
x2

Novelty detection using Kernel function is presented by [19] for detecting novelties

in oil flow data. A test instance is declared to be novel if it belongs to the low density

area of the learnt density function. Similar application of parzen windows is proposed

for network intrusion detection [34] and for mammographic image analysis [110]. A

semi-supervised probabilistic approach is proposed to detect novelties [38]. Kernel

functions are used to estimate the probability distribution function (pdf) for the

normal instances. Recently, Kernel functions are used in outlier detection in sensor

networks [100][30].

Kernel density estimation of pdf is applicable to both univariate and multivariate

data. However, the pdf estimation for multivariate data is much more computation-

ally expensive than the univariate data. This renders the Kernel density estimation

methods rather inefficient in outlier detection for high-dimensional data.

Advantages and Disadvantages of Statistical Methods

Statistical outlier detection methods feature some advantages. They are mathemati-

cally justified and if a probabilistic model is given, the methods are very efficient and

it is possible to reveal the meaning of the outliers found [93]. In addition, the model

constructed, often presented in a compact form, makes it possible to detect outliers

without storing the original datasets that are usually of large sizes.

However, the statistical outlier detection methods, particularly the parametric

methods, suffer from some key drawbacks. First, they are typically not applied in

a multi-dimensional scenario because most distribution models typically apply to
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the univariate feature space. Thus, they are unsuitable even for moderate multi-

dimensional data sets. This greatly limits their applicability as in most practical

applications the data is multiple or even high dimensional. In addition, a lack of

the prior knowledge regarding the underlying distribution of the dataset makes the

distribution-based methods difficult to use in practical applications. A single distri-

bution may not model the entire data because the data may originate from multiple

distributions. Finally, the quality of results cannot be guaranteed because they are

largely dependent on the distribution chosen to fit the data. It is not guaranteed that

the data being examined fit the assumed distribution if there is no estimate of the dis-

tribution density based on the empirical data. Constructing such tests for hypothesis

verification in complex combinations of distributions is a nontrivial task whatsoever.

Even if the model is properly chosen, finding the values of parameters requires com-

plex procedures. From above discussion, we can see the statistical methods are rather

limited to large real-world databases which typically have many different fields and

it is not easy to characterize the multivariate distribution of exemplars.

For non-parametric statistical methods, such as histogram and Kernal function

methods, they do not have the problem of distribution assumption that the parametric

methods suffer and they both can deal with data streams containing continuously

arriving data. However, they are not appropriate for handling high-dimensional data.

Histogram methods are effective for a single feature analysis, but they lose much of

their effectiveness for multi or high-dimensional data because they lack the ability to

analyze multiple feature simultaneously. This prevents them from detecting subspace

outliers. Kernel function methods are appropriate only for relatively low dimensional

data as well. When the dimensionality of data is high, the density estimation using

Kernel functions becomes rather computationally expensive, making it inappropriate

for handling high-dimensional data streams.

2.2.2 Distance-based Methods

There have already been a number of different ways for defining outliers from the

perspective of distance-related metrics. Most existing metrics used for distance-based
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outlier detection techniques are defined based upon the concepts of local neighborhood

or k nearest neighbors (kNN) of the data points. The notion of distance-based outliers

does not assume any underlying data distributions and generalizes many concepts

from distribution-based methods. Moreover, distance-based methods scale better

to multi-dimensional space and can be computed much more efficiently than the

statistical-based methods.

In distance-based methods, distance between data points is needed to be com-

puted. We can use any of the Lp metrics like the Manhattan distance or Euclidean

distance metrics for measuring the distance between a pair of points. Alternately,

for some other application domains with presence of categorical data (e.g., text doc-

uments), non-metric distance functions can also be used, making the distance-based

definition of outliers very general. Data normalization is normally carried out in order

to normalize the different scales of data features before outlier detection is performed.

A. Local Neighborhood Methods

The first notion of distance-based outliers, called DB(k, λ)-Outlier, is due to Knorr

and Ng [76]. It is defined as follows. A point p in a data set is a DB(k, λ)-Outlier,

with respect to the parameters k and λ, if no more than k points in the data set

are at a distance λ or less (i.e., λ−neighborhood) from p. This definition of outliers

is intuitively simple and straightforward. The major disadvantage of this method,

however, is its sensitivity to the parameter λ that is difficult to specify a priori. As

we know, when the data dimensionality increases, it becomes increasingly difficult to

specify an appropriate circular local neighborhood (delimited by λ) for outlier-ness

evaluation of each point since most of the points are likely to lie in a thin shell about

any point [24]. Thus, a too small λ will cause the algorithm to detect all points as

outliers, whereas no point will be detected as outliers if a too large λ is picked up. In

other words, one needs to choose an appropriate λ with a very high degree of accuracy

in order to find a modest number of points that can then be defined as outliers.

To facilitate the choice of parameter values, this first local neighborhood distance-

based outlier definition is extended and the so-called DB(pct, dmin)-Outlier is pro-

posed which defines an object in a dataset as a DB(pct, dmin)-Outlier if at least
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pct% of the objects in the datasets have the distance larger than dmin from this ob-

ject [77][78]. Similar to DB(k, λ)-Outlier, this method essentially delimits the local

neighborhood of data points using the parameter dmin and measures the outlierness

of a data point based on the percentage, instead of the absolute number, of data

points falling into this specified local neighborhood. As pointed out in [74] and [75],

DB(pct, dmin) is quite general and is able to unify the exisiting statisical detection

methods using discordancy tests for outlier detection. For exmaple, DB(pct, dmin)

unifies the definition of outliers using a normal distribution-based discordancy test

with pct = 0.9988 and dmin = 0.13. The specification of pct is obviously more

intuitive and easier than the specification of k in DB(k, λ)-Outliers [77]. However,

DB(pct, dmin)-Outlier suffers a similar problem as DB(pct, dmin)-Outlier in specifying

the local neighborhood parameter dmin.

To efficiently calculate the number (or percentage) of data points falling into the

local neighborhood of each point, three classes of algorithms have been presented,

i.e., the nested-loop, index-based and cell-based algorithms. For easy of presentation,

these three algorithms are discussed for detecting DB(k, λ)-Outlier.

The nested-loop algorithm uses two nested loops to compute DB(k, λ)-Outlier.

The outer loop considers each point in the dataset while the inner loop computes for

each point in the outer loop the number (or percentage) of points in the dataset falling

into the specified λ-neighborhood. This algorithm has the advantage that it does not

require the indexing structure be constructed at all that may be rather expensive at

most of the time, though it has a quadratic complexity with respect to the number

of points in the dataset.

The index-based algorithm involves calculating the number of points belonging

to the λ-neighborhood of each data by intensively using a pre-constructed multi-

dimensional index structure such as R∗-tree [27] to facilitate kNN search. The com-

plexity of the algorithm is approximately logarithmic with respect to the number

of the data points in the dataset. However, the construction of index structures is

sometimes very expensive and the quality of the index structure constructed is not

easy to guarantee.
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In the cell-based algorithm, the data space is partitioned into cells and all the data

points are mapped into cells. By means of the cell size that is known a priori, esti-

mates of pair-wise distance of data points are developed, whereby heuristics (pruning

properties) are presented to achieve fast outlier detection. It is shown that three

passes over the dataset are sufficient for constructing the desired partition. More

precisely, the d−dimensional space is partitioned into cells with side length of λ

2
√

d
.

Thus, the distance between points in any 2 neighboring cells is guaranteed to be at

most λ. As a result, if for a cell the total number of points in the cell and its neighbors

is greater than k, then none of the points in the cell can be outliers. This property

is used to eliminate the vast majority of points that cannot be outliers. Also, points

belonging to cells that are more than 3 cells apart are more than a distance λ apart.

As a result, if the number of points contained in all cells that are at most 3 cells away

from the a given cell is less than k, then all points in the cell are definitely outliers.

Finally, for those points that belong to a cell that cannot be categorized as either

containing only outliers or only non-outliers, only points from neighboring cells that

are at most 3 cells away need to be considered in order to determine whether or not

they are outliers. Based on the above properties, the authors propose a three-pass

algorithm for computing outliers in large databases. The time complexity of this

cell-based algorithm is O(cd + N), where c is a number that is inversely proportional

to λ. This complexity is linear with dataset size N but exponential with the number

of dimensions d. As a result, due to the exponential growth in the number of cells

as the number of dimensions is increased, the cell-based algorithm starts to perform

poorly than the nested loop for datasets with dimensions of 4 or higher.

In [43], a similar definition of outlier is proposed. It calculates the number of

points falling into the w-radius of each data point and labels those points as outliers

that have low neighborhood density. We consider this definition of outliers as the

same as that for DB(k, λ)-Outlier, differing only that this method does not present

the threshold k explicitly in the definition. As the computation of the local density for

each point is expensive, [43] proposes a clustering method for an efficient estimation.

The basic idea of such approximation is to use the size of a cluster to approximate
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the local density of all the data in this cluster. It uses the fix-width clustering [43]

for density estimation due to its good efficiency in dealing with large data sets.

B. kNN-distance Methods

There have also been a few distance-based outlier detection methods utilizing

the k nearest neighbors (kNN) in measuring the outlier-ness of data points in the

dataset. The first proposal uses the distance to the kth nearest neighbors of every

point, denoted as Dk, to rank points so that outliers can be more efficiently discovered

and ranked [101]. Based on the notion of Dk, the following definition for Dk
n-Outlier

is given: Given k and n, a point is an outlier if the distance to its kth nearest neighbor

of the point is smaller than the corresponding value for no more than n − 1 other

points. Essentially, this definition of outliers considers the top n objects having the

highest Dk values in the dataset as outliers.

Similar to the computation of DB(k, λ)-Outlier, three different algorithms, i.e.,

the nested-loop algorithm, the index-based algorithm, and the partition-based algo-

rithm, are proposed to compute Dk for each data point efficiently.

The nested-loop algorithm for computing outliers simply computes, for each input

point p, Dk, the distance of between p and its kth nearest neighbor. It then sorts the

data and selects the top n points with the maximum Dk values. In order to compute

Dk for points, the algorithm scans the database for each point p. For a point p,

a list of its k nearest points is maintained, and for each point q from the database

which is considered, a check is made to see if the distance between p and q is smaller

than the distance of the kth nearest neighbor found so far. If so, q is included in

the list of the k nearest neighbors for p. The moment that the list contains more

than k neighbors, then the point that is furthest away from p is deleted from the

list. In this algorithm, since only one point is processed at a time, the database

would need to be scanned N times, where N is the number of points in the database.

The computational complexity is in the order of O(N2), which is rather expensive

for large datasets. However, since we are only interested in the top n outliers, we

can apply the following pruning optimization to early-stop the computation of Dk

for a point p. Assume that during each step of the algorithm, we store the top n
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outliers computed thus far. Let Dn
min be the minimum among these top n outliers. If

during the computation of for a new point p, we find that the value for Dk computed

so far has fallen below Dn
min, we are guaranteed that point p cannot be an outlier.

Therefore, it can be safely discarded. This is because Dk monotonically decreases

as we examine more points. Therefore, p is guaranteed not to be one of the top n

outliers.

The index-based algorithm draws on index structure such as R*-tree [27] to speed

up the computation. If we have all the points stored in a spatial index like R*-tree,

the following pruning optimization can be applied to reduce the number of distance

computations. Suppose that we have computed for point p by processing a portion

of the input points. The value that we have is clearly an upper bound for the actual

Dk of p. If the minimum distance between p and the Minimum Bounding Rectangles

(MBR) of a node in the R*-tree exceeds the value that we have anytime in the

algorithm, then we can claim that none of the points in the sub-tree rooted under

the node will be among the k nearest neighbors of p. This optimization enables us to

prune entire sub-trees that do not contain relevant points to the kNN search for p.

The major idea underlying the partition-based algorithm is to first partition the

data space, and then prune partitions as soon as it can be determined that they cannot

contain outliers. Partition-based algorithm is subject to the pre-processing step in

which data space is split into cells and data partitions, together with the Minimum

Bounding Rectangles of data partitions, are generated. Since n will typically be very

small, this additional preprocessing step performed at the granularity of partitions

rather than points is worthwhile as it can eliminate a significant number of points as

outlier candidates. This partition-based algorithm takes the following four steps:

1. First, a clustering algorithm, such as BIRCH, is used to cluster the data and

treat each cluster as a separate partition;

2. For each partition P , the lower and upper bounds (denoted as P.lower and

P.upper, respectively) on Dk for points in the partition are computed. For

every point p ∈ P , we have P.lower ≤ Dk(p) ≤ P.upper;
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Figure 2.1: Points with the same Dk value but different outlier-ness

3. The candidate partitions, the partitions containing points which are candidates

for outliers, are identified. Suppose we could compute minDkDist, the lower

bound on Dk for the n outliers we have detected so far. Then, if P.upper <

minDkDist, none of the points in P can possibly be outliers and are safely

pruned. Thus, only partitions P for which P.upper ≥ minDkDist are chosen

as candidate partitions;

4. Finally, the outliers are computed from among the points in the candidate par-

titions obtained in Step 3. For each candidate partition P , let P.neighbors

denote the neighboring partitions of P , which are all the partitions within dis-

tance P.upper from P . Points belonging to neighboring partitions of P are the

only points that need to be examined when computing Dk for each point in P .

The Dk
n-Outlier is further extended by considering for each point the sum of its

k nearest neighbors [10]. This extension is motivated by the fact that the definition

of Dk merely considers the distance between an object with its kth nearest neighbor,

entirely ignoring the distances between this object and its another k − 1 nearest

neighbors. This drawback may make Dk fail to give an accurate measurement of

outlier-ness of data points in some cases. For a better understanding, we present an

example, as shown in Figure 2.1, in which the same Dk value is assigned to points p1

and p2, two points with apparently rather different outlier-ness. The k − 1 nearest

neighbors for p2 are populated much more densely around it than those of p1, thus

the outlier-ness of p2 is obviously lower than p1. Obviously, Dk is not robust enough
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in this example to accurately reveal the outlier-ness of data points. By summing up

the distances between the object with all of its k nearest neighbors, we will be able

to have a more accurate measurement of outlier-ness of the object, though this will

require more computational effort in summing up the distances. This method is also

used in [43] for anomaly detection.

The idea of kNN-based distance metric can be extended to consider the k nearest

dense regions. The recent methods are the Largest cluster method [79][125] and Grid-

ODF [114], as discussed below.

Khoshgoftaar et al. propose a distance-based method for labeling wireless network

traffic records in the data stream used as either normal or intrusive [79][125]. Let d be

the largest distance of an instance to the centriod of the largest cluster. Any instance

or cluster that has a distance greater than αd (α ≥ 1) to the largest cluster is defined

as an attack. This method is referred to as the Largest Cluster method. It can also

be used to detect outliers. It takes the following several steps for outlier detection:

1. Find the largest cluster, i.e. the cluster with largest number of instances, and

label it as normal. Let c0 be the centriod of this cluster;

2. Sort the remaining clusters in ascending order based on the distance from their

cluster centroid to c0;

3. Label all the instances that have a distance to c0 greater than αd, where α is a

human-specified parameter;

4. Label all the other instances as normal.

When used in dealing with projected anomalies detection for high-dimensional

data streams, this method suffers the following limitations:

• First and most importantly, this method does not take into account the nature

of outliers in high-dimensional data sets and is unable to explore subspaces to

detect projected outliers;
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• k-means clustering is used in this method as the backbone enabling technique

for detecting intrusions. This poses difficulty for this method to deal with data

streams. k-means clustering requires iterative optimization of clustering cen-

troids to gradually achieve better clustering results. This optimization process

involves multiple data scans, which is infeasible in the context of data streams;

• A strong assumption is made in this method that all the normal data will appear

in a single cluster (i.e., the largest cluster), which is not properly substantiated

in the paper. This assumption may be too rigid in some applications. It is

possible that the normal data are distributed in two or more clusters that cor-

respond to a few varying normal behaviors. For a simple instance, the network

traffic volume is usually high during the daytime and becomes low late in the

night. Thus, network traffic volume may display several clusters to represent

behaviors exhibiting at different time of the day. In such case, the largest cluster

is apparently not where all the normal cases are only residing;

• In this method, one needs to specify the parameter α. The method is rather

sensitive to this parameter whose best value is not obvious whatsoever. First,

the distance scale between data will be rather different in various subspaces; the

distance between any pair of data is naturally increased when it is evaluated in a

subspace with higher dimension, compared to in a lower-dimensional subspace.

Therefore, specifying an ad-hoc α value for each subspace evaluated is rather

tedious and difficult. Second, α is also heavily affected by the number of clusters

the clustering method produces, i.e., k. Intuitively, when the number of clusters

k is small, D will become relatively large, then α should be set relatively small

accordingly, and vice versa.

Recently, an extension of the notion of kNN, called Grid-ODF, from the k nearest

objects to the k nearest dense regions is proposed [114]. This method employed the

sum of the distances between each data point and its k nearest dense regions to rank

data points. This enables the algorithm to measure the outlier-ness of data points

from a more global perspective. Grid-ODF takes into account the mechanisms used
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Figure 2.2: Local and global perspectives of outlier-ness of p1 and p2

in detecting both global and local outliers. In the local perspective, human examine

the point’s immediate neighborhood and consider it as an outlier if its neighborhood

density is low. The global observation considers the dense regions where the data

points are densely populated in the data space. Specifically, the neighboring density

of the point serves as a good indicator of its outlying degree from the local perspective.

In the left sub-figure of Figure 2.2, two square boxes of equal size are used to delimit

the neighborhood of points p1 and p2. Because the neighboring density of p1 is less

than that of p2, so the outlying degree of p1 is larger than p2. On the other hand,

the distance between the point and the dense regions reflects the similarity between

this point and the dense regions. Intuitively, the larger such distance is, the more

remarkably p is deviated from the main population of the data points and therefore

the higher outlying degree it has, otherwise it is not. In the right sub-figure of 2.2,

we can see a dense region and two outlying points, p1 and p2. Because the distance

between p1 and the dense region is larger than that between p2 and the dense region,

so the outlying degree of p1 is larger than p2.

Based on the above observations, a new measurement of outlying factor of data

points, called Outlying Degree Factor (ODF), is proposed to measure the outlier-ness

of points from both the global and local perspectives. The ODF of a point p is defined

as follows:

ODF (p) =
k DF (p)

NDF (p)

where k DF (p) denotes the average distance between p and its k nearest dense cells

and NDF (p) denotes number of points falling into the cell to which p belongs.

In order to implement the computation of ODF of points efficiently, grid structure
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is used to partition the data space. The main idea of grid-based data space partition

is to super-impose a multi-dimensional cube in the data space, with equal-volumed

cells. It is characterized by the following advantages. First, NDF (p) can be obtained

instantly by simply counting the number of points falling into the cell to which p

belongs, without the involvement of any indexing techniques. Secondly, the dense

regions can be efficiently identified, thus the computation of k DF (p) can be very

fast. Finally, based on the density of grid cells, we will be able to select the top n

outliers only from a specified number of points viewed as outlier candidates, rather

than the whole dataset, and the final top n outliers are selected from these outlier

candidates based on the ranking of their ODF values.

The number of outlier candidates is typically 9 or 10 times as large as the number

of final outliers to be found (i.e., top n) in order to provide a sufficiently large pool

for outlier selection. Let us suppose that the size of outlier candidates is m∗n, where

the m is a positive number provided by users. To generate m ∗ n outlier candidates,

all the cells containing points are sorted in ascending order based on their densities,

and then the points in the first t cells in the sorting list that satisfy the following

inequality are selected as the m ∗ n outlier candidates:

t−1
∑

i=1

Den(Ci) ≤ m ∗ n ≤
t
∑

i=1

Den(Ci)

The kNN-distance methods, which define the top n objects having the highest

values of the corresponding outlier-ness metrics as outliers, are advantageous over the

local neighborhood methods in that they order the data points based on their relative

ranking, rather than on the distance cutoff. Since the value of n, the top outlier users

are interested in, can be very small and is relatively independent of the underlying

data set, it will be easier for the users to specify compared to the distance threshold

λ.

C. Advantages and Disadvantages of Distance-based Methods

The major advantage of distance-based algorithms is that, unlike distribution-

based methods, distance-based methods are non-parametric and do not rely on any
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assumed distribution to fit the data. The distance-based definitions of outliers are

fairly straightforward and easy to understand and implement.

Their major drawback is that most of them are not effective in high-dimensional

space due to the curse of dimensionality, though one is able to mechanically extend

the distance metric, such as Euclidean distance, for high-dimensional data. The high-

dimensional data in real applications are very noisy, and the abnormal deviations may

be embedded in some lower-dimensional subspaces that cannot be observed in the

full data space. Their definitions of a local neighborhood, irrespective of the circular

neighborhood or the k nearest neighbors, do not make much sense in high-dimensional

space. Since each point tends to be equi-distant with each other as number of dimen-

sions goes up, the degree of outlier-ness of each points are approximately identical

and significant phenomenon of deviation or abnormality cannot be observed. Thus,

none of the data points can be viewed outliers if the concepts of proximity are used to

define outliers. In addition, neighborhood and kNN search in high-dimensional space

is a non-trivial and expensive task. Straightforward algorithms, such as those based

on nested loops, typically require O(N2) distance computations. This quadratic scal-

ing means that it will be very difficult to mine outliers as we tackle increasingly larger

data sets. This is a major problem for many real databases where there are often

millions of records. Thus, these approaches lack a good scalability for large data set.

Finally, the existing distance-based methods are not able to deal with data streams

due to the difficulty in maintaining a data distribution in the local neighborhood or

finding the kNN for the data in the stream.

2.2.3 Density-based Methods

Density-based methods use more complex mechanisms to model the outlier-ness of

data points than distance-based methods. It usually involves investigating not only

the local density of the point being studied but also the local densities of its nearest

neighbors. Thus, the outlier-ness metric of a data point is relative in the sense that

it is normally a ratio of density of this point against the the averaged densities of

its nearest neighbors. Density-based methods feature a stronger modeling capability
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Figure 2.3: A sample dataset showing the advantage of LOF over DB(k, λ)-Outlier

of outliers but require more expensive computation at the same time. What will be

discussed in this subsection are the major density-based methods called LOF method,

COF method, INFLO method and MDEF method.

A. LOF Method

The first major density-based formulation scheme of outlier has been proposed

in [26], which is more robust than the distance-based outlier detection methods. An

example is given in [26] (refer to figure 2.3), showing the advantage of a density-based

method over the distance-based methods such as DB(k, λ)-Outlier. The dataset

contains an outlier o, and C1 and C2 are two clusters with very different densities.

The DB(k, λ)-Outlier method cannot distinguish o from the rest of the data set no

matter what values the parameters k and λ take. This is because the density of o’s

neighborhood is very much closer to the that of the points in cluster C1. However,

the density-based method, proposed in [26], can handle it successfully.

This density-based formulation quantifies the outlying degree of points using Local

Outlier Factor (LOF). Given parameter MinPts, LOF of a point p is defined as

LOFMinPts(p) =

∑

o∈MinPts(p)
lrdMinPts(o)
lrdMinPts(p)

|NMinPts(p)|
where |NMinPts(p)| denotes the number of objects falling into the MinPts-neighborhood
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of p and lrdMinPts(p) denotes the local reachability density of point p that is defined as

the inverse of the average reachability distance based on the MinPts nearest neigh-

bors of p, i.e.,

lrdMinPts(p) = 1/

(

∑

o∈MinPts(p) reach distMinPts(p, o)

|NMinPts(p)|

)

Further, the reachability distance of point p is defined as

reach distMinPts(p, o) = max(MinPts distance(o), dist(p, o))

Intuitively speaking, LOF of an object reflects the density contrast between its

density and those of its neighborhood. The neighborhood is defined by the distance to

the MinPtsth nearest neighbor. The local outlier factor is a mean value of the ratio

of the density distribution estimate in the neighborhood of the object analyzed to

the distribution densities of its neighbors [26]. The lower the density of p and/or the

higher the densities of p’s neighbors, the larger the value of LOF (p), which indicates

that p has a higher degree of being an outlier. A similar outlier-ness metric to LOF,

called OPTICS-OF, was proposed in [25].

Unfortunately, the LOF method requires the computation of LOF for all objects

in the data set which is rather expensive because it requires a large number of kNN

search. The high cost of computing LOF for each data point p is caused by two factors.

First, we have to find the MinPtsth nearest neighbor of p in order to specify its neigh-

borhood. This resembles to computing Dk in detecting Dk
n-Outliers. Secondly, after

the MinPtsth-neighborhood of p has been determined, we have to further find the

MinPtsth-neighborhood for each data points falling into the MinPtsth-neighborhood

of p. This amounts to MinPtsth times in terms of computation efforts as computing

Dk when we are detecting Dk
n-Outliers.

It is desired to constrain a search to only the top n outliers instead of computing

the LOF of every object in the database. The efficiency of this algorithm is boosted

by an efficient micro-cluster-based local outlier mining algorithm proposed in [66].

LOF ranks points by only considering the neighborhood density of the points, thus

it may miss out the potential outliers whose densities are close to those of their neigh-

bors. Furthermore, the effectiveness of this algorithm using LOF is rather sensitive
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to the choice of MinPts, the parameter used to specify the local neighborhood.

B. COF Method

As LOF method suffers the drawback that it may miss those potential outliers

whose local neighborhood density is very close to that of its neighbors. To address

this problem, Tang et al. proposed a new Connectivity-based Outlier Factor (COF)

scheme that improves the effectiveness of LOF scheme when a pattern itself has

similar neighborhood density as an outlier [111]. In order to model the connectivity

of a data point with respect to a group of its neighbors, a set-based nearest path

(SBN-path) and further a set-based nearest trail (SBN-trail), originated from this

data point, are defined. This SNB trail stating from a point is considered to be the

pattern presented by the neighbors of this point. Based on SNB trail, the cost of this

trail, a weighted sum of the cost of all its constituting edges, is computed. The final

outlier-ness metric, COF, of a point p with respect to its k-neighborhood is defined

as

COFk(p) =
|Nk(p)| ∗ ac distNk(p)(p)
∑

o∈Nk(p) ac distNk(o)(o)

where ac distNk(p)(p) is the average chaining distance from point p to the rest of its

k nearest neighbors, which is the weighted sum of the cost of the SBN-trail starting

from p.

It has been shown in [111] that COF method is able to detect outlier more ef-

fectively than LOF method for some cases. However, COF method requires more

expensive computations than LOF and the time complexity is in the order of O(N2)

for high-dimensional datasets.

C. INFLO Method

Even though LOF is able to accurately estimate outlier-ness of data points in most

cases, it fails to do so in some complicated situations. For instance, when outliers are

in the location where the density distributions in the neighborhood are significantly

different, this may result in a wrong estimation. An example where LOF fails to

have an accurate outlier-ness estimation for data points has been given in [67]. The

example is presented in Figure 2.4. In this example, data p is in fact part of a sparse

cluster C2 which is near the dense cluster C1. Compared to objects q and r, p
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Figure 2.4: An example where LOF does not work

obviously displays less outlier-ness. However, if LOF is used in this case, p could be

mistakenly regarded to having stronger outlier-ness than q and r.

Authors in [67] pointed out that this problem of LOF is due to the inaccurate

specification of the space where LOF is applied. To solve this problem of LOF, an

improved method, called INFLO, is proposed [67]. The idea of INFLO is that both

the nearest neighbors (NNs) and reverse nearest neighbors (RNNs) of a data point are

taken into account in order to get a better estimation of the neighborhood’s density

distribution. The RNNs of an object p are those data points that have p as one of their

k nearest neighbors. By considering the symmetric neighborhood relationship of both

NN and RNN, the space of an object influenced by other objects is well determined.

This space is called the k-influence space of a data point. The outlier-ness of a data

point, called INFLuenced Outlierness (INFLO), is quantified. INFLO of a data point

p is defined as

INFLOk(p) =
denavg(ISk(p))

den(p)

INFLO is by nature very similar to LOF. With respect to a data point p, they are

both defined as the ratio of p’s its density and the average density of its neighbor-

ing objects. However, INFLO uses only the data points in its k-influence space for

calculating the density ratio. Using INFLO, the densities of its neighborhood will be

reasonably estimated, and thus the outliers found will be more meaningful.
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Figure 2.5: Definition of MDEF

D. MDEF Method

In [95], a new density-based outlier definition, called Multi-granularity Devia-

tion Factor (MEDF), is proposed. Intuitively, the MDEF at radius r for a point

pi is the relative deviation of its local neighborhood density from the average local

neighborhood density in its r-neighborhood. Let n(pi, αr) be the number of objects

in the αr-neighborhood of pi and n̂(pi, r, α) be the average, over all objects p in

the r-neighborhood of pi, of n(p, αr). In the example given by Figure 2.5, we have

n(pi, αr) = 1, and n̂(pi, r, α) = (1 + 6 + 5 + 1)/4 = 3.25.

MDEF of pi, given r and α, is defined as

MDEF (pi, r, α) = 1− n(pi, αr)

n̂(pi, r, α)

where α = 1
2
. A number of different values are set for the sampling radius r and the

minimum and the maximum values for r are denoted by rmin and rmax. A point is

flagged as an outliers if for any r ∈ [rmin, rmax], its MDEF is sufficient large.

E. Advantages and Disadvantages of Density-based Methods

The density-based outlier detection methods are generally more effective than the

distance-based methods. However, in order to achieve the improved effectiveness, the

density-based methods are more complicated and computationally expensive. For

a data object, they have to not only explore its local density but also that of its
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neighbors. Expensive kNN search is expected for all the existing methods in this

category. Due to the inherent complexity and non-updatability of their outlier-ness

measurements used, LOF, COF, INFLO and MDEF cannot handle data streams

efficiently.

2.2.4 Clustering-based Methods

The final category of outlier detection algorithm for relatively low dimensional static

data is clustering-based. Many data-mining algorithms in literature find outliers

as a by-product of clustering algorithms [6, 11, 13, 55, 129] themselves and define

outliers as points that do not lie in or located far apart from any clusters. Thus, the

clustering techniques implicitly define outliers as the background noise of clusters. So

far, there are numerous studies on clustering, and some of them are equipped with

some mechanisms to reduce the adverse effect of outliers, such as CLARANS [91],

DBSCAN [44], BIRCH [129], WaveCluster [104]. More recently, we have seen quite

a few clustering techniques tailored towards subspace clustering for high-dimensional

data including CLIQUE [6] and HPStream [9].

Next, we will review several major categories of clustering methods, together with

the analysis on their advantages and disadvantages and their applicability in dealing

with outlier detection problem for high-dimensional data streams.

A. Partitioning Clustering Methods

The partitioning clustering methods perform clustering by partitioning the data

set into a specific number of clusters. The number of clusters to be obtained, denoted

by k, is specified by human users. They typically start with an initial partition of the

dataset and then iteratively optimize the objective function until it reaches the opti-

mal for the dataset. In the clustering process, center of the clusters (centroid-based

methods) or the point which is located nearest to the cluster center (medoid-based

methods) is used to represent a cluster. The representative partitioning clustering

methods are PAM, CLARA, k-means and CLARANS.

PAM [80] uses a k-medoid method to identify the clusters. PAM selects k objects

arbitrarily as medoids and swap with objects until all k objects qualify as medoids.
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PAM compares an object with entire dataset to find a medoid, thus it has a slow

processing time with a complexity of O(k(N − k)2), where N is number of data in

the data set and k is the number of clusters.

CLARA [80] tries to improve the efficiency of PAM. It draws a sample from the

dataset and applies PAM on the sample that is much smaller in size than the the

whole dataset.

k-means [86] initially choose k data objects as seeds from the dataset. They can be

chosen randomly or in a way such that the points are mutually farthest apart. Then,

it examines each point in the dataset and assigns it to one of the clusters depending

on the minimum distance. The centroid’s position is recalculated and updated the

moment a point is added to the cluster and this continues until all the points are

grouped into the final clusters. The k-means algorithm is relatively scalable and

efficient in processing large datasets because the computational complexity is O(nkt),

where n is total number of points, k is the number of clusters and t is the number of

iterations of clustering. However, because it uses a centroid to represent each cluster,

k-means suffers the inability to correctly cluster with a large variation of size and

arbitrary shapes, and it is also very sensitive to the noise and outliers of the dataset

since a small number of such data will substantially effect the computation of mean

value the moment a new object is clustered.

CLARANS [91] is an improved k-medoid method, which is based on randomized

search. It begins with a random selection of k nodes, and in each of following steps,

compares each node to a specific number of its neighbors in order to find a local

minimum. When one local minimum is found, CLARANS continues to repeat this

process for another minimum until a specific number of minima have been found.

CLARANS has been experimentally shown to be more effective than both PAM and

CLEAR. However, the computational complexity of CLARANS is close to quadratic

w.r.t the number of points [113], and it is prohibitive for clustering large database.

Furthermore, the quality of clustering result is dependent on the sampling method,

and it is not stable and unique due to the characteristics of randomized search.
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B. Hierarchical Clustering Methods

Hierarchical clustering methods essentially constructs a hierarchical decomposition

of the whole dataset. It can be further divided into two categories based on how this

dendrogram is operated to generate clusters, i.e., agglomerative methods and divisive

methods. An agglomerative method begins with each point as a distinct cluster and

merges two closest clusters in each subsequent step until a stopping criterion is met.

A divisive method, contrary to an agglomerative method, begins with all the point

as a single cluster and splits it in each subsequent step until a stopping criterion is

met. Agglomerative methods are seen more popular in practice. The representatives

of hierarchical methods are MST clustering, CURE and CHAMELEON.

MST clustering [118] is a graph-based divisive clustering algorithm. Given n

points, a MST is a set of edges that connects all the points and has a minimum total

length. Deletion of edges with larger lengths will subsequently generate a specific

number of clusters. The overhead for MST clustering is determined by the Euclidean

MST construction, which is O(nlogn) in time complexity, thus MST algorithm can be

used for scalable clustering. However, MST algorithm can only work well on the clean

dataset and are sensitive to outliers. The intervention of outliers, termed ”chaining-

effect” (that is, a line of outliers between two distinct clusters will make these two

clusters be marked as one cluster due to its adverse effect), will seriously degrade the

quality of the clustering results.

CURE [55] employs a novel hierarchical clustering algorithm in which each cluster

is represented by a constant number of well-distributed points. A random sample

drawn from the original dataset is first partitioned and each partition is partially

clustered. The partial clusters are then clustered in a second pass to yield the de-

sired clusters. The multiple representative points for each cluster are picked to be

as disperse as possible and shrink towards the center using a pre-specified shrink-

ing factor. At each step of the algorithm, the two clusters with the closest pair of

representative (this pair of representative points are from different clusters) points

are merged. Usage of multiple points representing a cluster enables CURE to well

capture the shape of clusters and makes it suitable for clusters with non-spherical
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shapes and wide variance in size. The shrinking factor helps to dampen the adverse

effect of outliers. Thus, CURE is more robust to outliers and identifies clusters having

arbitrary shapes.

CHAMELEON [72] is a clustering technique trying to overcome the limitation

of existing agglomerative hierarchical clustering algorithms that the clustering is ir-

reversible. It operates on a sparse graph in which nodes represent data points and

weighted edges represent similarities of among the data points. CHAMELEON first

uses a graph partition algorithm to cluster the data points into a large number of rel-

atively small sub-clusters. It then employs an agglomerative hierarchical clustering

algorithm to genuine clusters by progressively merging these sub-clusters. The key

feature of CHAMELEON lies in its mechanism determining the similarity between

two sub-clusters in sub-cluster merging. Its hierarchical algorithm takes into consider-

ation of both inter-connectivity and closeness of clusters. Therefore, CHAMELEON

can dynamically adapt to the internal characteristics of the clusters being merged.

C. Density-based Clustering Methods

The density-based clustering algorithms consider normal clusters as dense regions

of objects in the data space that are separated by regions of low density. Human

normally identify a cluster because there is a relatively denser region compared to

its sparse neighborhood. The representative density-based clustering algorithms are

DBSCAN and DENCLUE.

The key idea of DBSCAN [44] is that for each point in a cluster, the neighbor-

hood of a given radius has to contain at least a minimum number of points. DBSCAN

introduces the notion of ”density-reachable points” and based on which performs clus-

tering. In DBSCAN, a cluster is a maximum set of density-reachable points w.r.t.

parameters Eps and MinPts, where Eps is the given radius and MinPts is the min-

imum number of points required to be in the Eps-neighborhood. Specifically, to dis-

cover clusters in the dataset, DBSCAN examines the Eps-neighborhood of each point

in the dataset. If the Eps-neighborhood of a point p contains more than MinPts,

a new cluster with p as the core object is generated. All the objects from within

this Eps-neighborhood are then assigned to this cluster. All this newly entry points
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will also go through the same process to gradually grow this cluster. When there is

no more core object can be found, another core object will be initiated and another

cluster will grow. The whole clustering process terminates when there are no new

points can be added to any clusters. As the clusters discovered are dependent on the

specification of the parameters, DBSCAN relies on the user’s ability to select a good

set of parameters. DBSCAN outperforms CLARANS by a factor of more than 100

in terms of efficiency [44]. DBSCAN is also powerful in discovering of clusters with

arbitrary shapes. The drawbacks DBSCAN suffers are: (1) It is subject to adverse

effect resulting from ”chaining-effect”; (2) The two parameters used in DBSCAN, i.e.,

Eps and MinPts, cannot be easily decided in advance and require a tedious process

of parameter tuning.

DENCLUE [61] performs clustering based on density distribution functions, a set

of mathematical functions used to model the influence of each point within its neigh-

borhood. The overall density of the data space can be modeled as sum of influence

function of all data points. The clusters can be determined by density attractors.

Density attractors are the local maximum of the overall density function. DENCLUE

has advantages that it can well deal with dataset with a large number of noises

and it allows a compact description of clusters of arbitrary shape in high-dimensional

datasets. To facilitate the computation of the density function, DENCLUE makes use

of grid-like structure. Noted that even though it uses grids in clustering, DENCLUE

is fundamentally different from grid-based clustering algorithm in that grid-based

clustering algorithm uses grid for summarizing information about the data points in

each grid cell, while DENCLUE uses such structure to effectively compute the sum

of influence functions at each data point.

D. Grid-based Clustering Methods

Grid-based clustering methods perform clustering based on a grid-like data struc-

ture with the aim of enhancing the efficiency of clustering. It quantizes the space into

a finite number of cells which form a grid structure on which all the operations for

clustering are performed. The main advantage of the approaches in this category is

their fast processing time which is typically only dependent on the number of cells in
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the quantized space, rather than the number of data objects. The representatives of

grid-based clustering algorithms are STING, WaveCluster and DClust.

STING [113] divides the spatial area into rectangular grids, and builds a hier-

archical rectangle grids structure. It scans the dataset and computes the necessary

statistical information, such as mean, variance, minimum, maximum, and type of

distribution, of each grid. The hierarchical grid structure can represent the statistical

information with different resolutions at different levels. The statistical information

in this hierarchical structure can be used to answer queries. The likelihood that a cell

is relevant to the query at some confidence level is computed using the parameters of

this cell. The likelihood can be defined as the proportion of objects in this cell that

satisfy the query condition. After the confidence interval is obtained, the cells are

labeled as relevant or irrelevant based on some confidence threshold. After examining

the current layer, the clustering proceeds to the next layer and repeats the process.

The algorithm will subsequently only examine the relevant cells instead of all the

cells. This process terminates when all the layers have been examined. In this way,

all the relevant regions (clusters) in terms of query are found and returned.

WaveCluster [104] is grid-based clustering algorithm based on wavelet transfor-

mation, a commonly used technique in signal processing. It transforms the multi-

dimensional spatial data to the multi-dimensional signal, and it is able to identify

dense regions in the transformed domain that are clusters to be found.

In DClust [122], the data space involved is partitioned into cells with equal size and

data points are mapped into the grid structure. A number of representative points

of the database are picked using the density criterion. A Minimum Spanning Tree

(MST) of these representative points, denoted as R-MST, is built. After the R-MST

has been constructed, multi-resolution clustering can be easily achieved. Suppose

a user wants to find k clusters. A graph search through the R-MST is initiated,

starting from the largest cost edge, to the lowest cost edge. As an edge is traversed,

it is marked as deleted from the R-MST. The number of partitions resulting from

the deletion is computed. The process stops when the number of partitions reaches

k. Any change in the value of k simply implies re-initiating the search-and-marked
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procedure on the R-MST. Once the R-MST has been divided into k partitions, we

can now propagate this information to the original dataset so that each point in the

dataset is assigned to one and only one partition/cluster. DClust is equipped with

more robust outlier elimination mechanisms to identify and filter the outliers during

the various stages of the clustering process. First, DClust uses a uniform random

sampling approach to sample the large database. This is effective in ruling out the

majority of outliers in the database. Hence, the sample database obtained will be

reasonably clean; Second, DClust employs a grid structure to identify representative

points. Grid cells whose density is less than the threshold are pruned. This pre-

filtering step ensures that the R-MST constructed is an accurate reflection of the

underlying cluster structure. Third, the clustering of representative points may cause

a number of the outliers that are in close vicinity to form a cluster. The number of

points in such outlier clusters will be much smaller than the number of points in the

normal clusters. Thus, any small clusters of representative points will be treated as

outlier clusters and eliminated. Finally, when the points in the dataset are labeled,

some of these points may be quite far from any representative point. DClust will

regard such points as outliers and filter them out in the final clustering results.

E. Advantages and Disadvantage of Clustering-based Methods

Detecting outliers by means of clustering analysis is quite intuitive and consis-

tent with human perception of outliers. In addition, clustering is a well-established

research area and there have been abundant clustering algorithms that users can

choose from for performing clustering and then detecting outliers.

Nevertheless, many researchers argue that, strictly speaking, clustering algorithms

should not be considered as outlier detection methods, because their objective is only

to group the objects in dataset such that clustering functions can be optimized. The

aim to eliminate outliers in dataset using clustering is only to dampen their adverse

effect on the final clustering result. This is in contrast to the various definitions of

outliers in outlier detection which are more objective and independent of how clusters

in the input data set are identified. One of the major philosophies in designing new
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outlier detection approaches is to directly model outliers and detect them without go-

ing though clustering the data first. In addition, the notions of outliers in the context

of clustering are essentially binary in nature, without any quantitative indication as

to how outlying each object is. It is desired in many applications that the outlier-ness

of the outliers can be quantified and ranked.

2.3 Outlier Detection Methods for High Dimensional Data

There are many applications in high-dimensional domains in which the data can

contain dozens or even hundreds of dimensions. The outlier detection techniques we

have reviewed in the preceding sections use various concepts of proximity in order

to find the outliers based on their relationship to the other points in the data set.

However, in high-dimensional space, the data are sparse and concepts using the notion

of proximity fail to achieve most of their effectiveness. This is due to the curse of

dimensionality that renders the high-dimensional data tend to be equi-distant to each

other as dimensionality increases. They does not consider the outliers embedded in

subspaces and are not equipped with the mechanism for detecting them.

2.3.1 Methods for Detecting Outliers in High-dimensional Data

To address the challenge associated with high data dimensionality, two major cate-

gories of research work have been conducted. The first category of methods project

the high dimensional data to lower dimensional data. Dimensionality deduction tech-

niques, such as Principal Component Analysis(PCA), Independent Component Anal-

ysis (ICA), Singular Value Decomposition (SVD), etc can be applied to the high-

dimensional data before outlier detection is performed. Essentially, this category of

methods perform feature selection and can be considered as the pre-processing work

for outlier detection. The second category of approaches is more promising yet chal-

lenging. They try to re-design the mechanism to accurately capture the proximity

relationship between data points in the high-dimensional space [14].
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A. Sparse Cube Method

Aggarwal et al. conducted some pioneering work in high-dimensional outlier detec-

tion [15][14]. They proposed a new technique for outlier detection that finds outliers

by observing the density distributions of projections from the data. This new defi-

nition considers a point to be an outlier if in some lower-dimensional projection it is

located in a local region of abnormally low density. Therefore, the outliers in these

lower-dimensional projections are detected by simply searching for these projections

featuring lower density. To measure the sparsity of a lower-dimensional projection

quantitatively, the authors proposed the so-called Sparsity Coefficient. The computa-

tion of Sparsity Coefficient involves a grid discretization of the data space and making

an assumption of normal distribution for the data in each cell of the hypercube. Each

attribute of the data is divided into ϕ equi-depth ranges. In each range, there is a

fraction f = 1/ϕ of the data. Then, a k-dimensional cube is made of ranges from k

different dimensions. Let N be the dataset size and n(D) denote the number of ob-

jects in a k-dimensional cube D. Under the condition that attributes were statistically

independent, the Sparsity Coefficient S(D) of the cube D is defined as:

S(D) =
n(D)−N ∗ fk

√

N ∗ fk ∗ (1− fk)

Since there are no closure properties for Sparsity Coefficient, thus no fast subspace

pruning can be performed and the lower-dimensional projection search problem be-

comes a NP-hard problem. Therefore, the authors employ evolutionary algorithm in

order to solve this problem efficiently. After lower-dimensional projections have been

found, a post-processing phase is required to map these projections into the data

points; all the sets of data points that contain in the abnormal projections reported

by the algorithm.

B. Example-based Method

Recently, an approach using outlier examples provided by users are used to detect

outliers in high-dimensional space [123][124]. It adopts an ′′outlier examples →
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subspaces → outliers′′ manner to detect outliers. Specifically, human users or do-

main experts first provide the systems with a few initial outlier examples. The algo-

rithm finds the subspaces in which most of these outlier examples exhibit significant

outlier-ness. Finally, other outliers are detected from these subspaces obtained in the

previous step. This approach partitions the data space into equi-depth cells and em-

ploys the Sparsity Coefficient proposed in [14] to measure the outlier-ness of outlier

examples in each subspace of the lattice. Since it is untenable to exhaustively search

the space lattice, the author also proposed to use evolutionary algorithms for subspace

search. The fitness of a subspace is the average Sparsity Coefficients of all cubes in

that subspace to which the outlier examples belong. All the objects contained in the

cubes which are sparser than or as sparse as cubes containing outlier examples in the

subspace are detected as outliers.

However, this method is limited in that it is only able to find the outliers in the

subspaces where most of the given user examples are outlying significantly. It can-

not detect those outliers that are embedded in other subspaces. Its capability for

effective outlier detection is largely depended on the number of given examples and,

more importantly, how these given examples are similar to the majority of outliers

in the dataset. Ideally, this set of user examples should be a good sample of all the

outliers in the dataset. This method works poorly when the number of user examples

is quite small and cannot provide enough clues as to where the majority of outliers

in the dataset are. Providing such a good set of outlier examples is a difficult task

whatsoever. The reasons are two-fold. First, it is not trivial to obtain a set of outlier

examples for a high-dimensional data set. Due to a lack of visualization aid in high-

dimensional data space, it is not obvious at all to find the initial outlier examples

unless they are detected by some other techniques. Secondly and more importantly,

even when a set of outliers have already been obtained, testing the representativeness

of this outlier set is almost impossible. Given these two strong constraints, this ap-

proach becomes inadequate in detecting outliers in high-dimensional datasets. It will

miss out those projected outliers that are not similar to those given outlier examples.
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C. Outlier Detection in Subspaces

Since outlier-ness of data points mainly appear significant in some subspaces of mod-

erate dimensionality in high-dimensional space and the quality of the outliers detected

varies in different subspaces consisting of different combinations of dimension subsets.

The authors in [29] employ evolutionary algorithm for feature selection (find optimal

dimension subsets which represent the original dataset without losing information for

unsupervised learning task of outlier detection as well as clustering). This approach

is a wrapper algorithm in which the dimension subsets are selected such that the

quality of outlier detected or the clusters generated can be optimized. The originality

of this work is to combine the evolutionary algorithm with the data visualization

technique utilizing parallel coordinates to present evolution results interactively and

allow users to actively participate in evolutionary algorithm searching to achieve a

fast convergence of the algorithm.

D. Subspace Outlier Detection for Categorical Data

Das et al. study the problem of detecting anomalous records in categorical data sets

[40]. They draw on a probability approach for outlier detection. For each record in

the data set, the probabilities for the occurrence of different subsets of attributes are

investigated. A data record is labeled as an outlier if the occurrence probability for

the values of some of its attribute subsets is quite low. Specifically, the probability for

two subsets of attributes at and bt to occur together in a record, denoted by r(at, bt),

is quantified as:

r(at, bt) =
P (at, bt)

P (at)P (bt)

Due to the extremely large number of possible attribute subsets, only the attribute

subsets with a length not exceeding than k are studied.

Because it always evaluates pairs of attribute subsets, each of which contain at

least one attribute, therefore, this method will miss out the abnormality evaluation

for 1-dimensional attribute subsets. In addition, due to the exponential growth of

the number of attribute subsets w.r.t k, the value of k is set typically small in this

method. Hence, this method can only cover attribute subsets not larger than 2k for
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a record (this method evaluates a pair of attribute subsets at a time). This limits

the ability of this method for detecting records that have outlying attribute subsets

larger than 2k.

2.3.2 Outlying Subspace Detection for High-dimensional Data

All the outlier detection algorithms that we have discussed so far, regardless of in low

or high dimensional scenario, invariably fall into the framework of detecting outliers

in a specific data space, either in full space or subspace. We term these methods as

“space→ outliers′′ techniques. For instance, outliers are detected by first finding lo-

cally sparse subspaces [14], and the so-called Strongest/Weak Outliers are discovered

by first finding the Strongest Outlying Spaces [77].

A new research problem called outlying subspace detection for multiple or high

dimensional data has been identified recently in [121][126][120]. The major task of

outlying subspace detection is to find those subspaces (subset of features) in which

the data points of interest exhibit significant deviation from the rest of population.

This problem can be formulated as follows: given a data point or object, find the

subspaces in which this data is considerably dissimilar, exceptional or inconsistent

with respect to the remaining points or objects. These points under study are called

query points, which are usually the data that users are interested in or concerned

with. As in [121][126], a distance threshold T is utilized to decide whether or not a

data point deviates significantly from its neighboring points. A subspace s is called

an outlying subspace of data point p if ODs(p) ≥ T , where OD is the outlier-ness

measurement of p.

Finding the correct subspaces so that outliers can be detected is informative and

useful in many practical applications. For example, in the case of designing a training

program for an athlete, it is critical to identify the specific subspace(s) in which an

athlete deviates from his or her teammates in the daily training performances. Know-

ing the specific weakness (subspace) allows a more targeted training program to be

designed. In a medical system, it is useful for the Doctors to identify from volumi-

nous medical data the subspaces in which a particular patient is found abnormal and
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therefore a corresponding medical treatment can be provided in a timely manner.

The unique feature of the problem of outlying subspace detection is that, instead

of detecting outliers in specific subspaces as did in the classical outlier detection

techniques, it involves searching from the space lattice for the associated subspaces

whereby the given data points exhibit abnormal deviations. Therefore, the problem

of outlying subspace detection is called an ′′outlier → spaces′′ problem so as to distin-

guish the classical outlier detection problem which is labeled as a ′′space→ outliers′′

problem. It has been theoretically and experimentally shown that the conventional

outlier detection methods, irrespectively dealing with low or high-dimensional data,

cannot successfully cope with the problem of outlying subspace detection problem in

[121]. The existing high-dimensional outlier detection techniques, i.e., find outliers in

given subspaces, are theoretically applicable to solve the outlying detection problem.

To do this, we have to detect outliers in all subspaces and a search in all these sub-

spaces is needed to find the set of outlying subspaces of p, which are those subspaces

in which p is in their respective set of outliers. Obviously, the computational and

space costs are both in an exponential order of d, where d is the number of dimen-

sions of the data point. Such an exhaustive space searching is rather expensive in

high-dimensional scenario. In addition, they usually only return the top n outliers

in a given subspace, thus it is impossible to check whether or not p is an outlier in

this subspace if p is not in this top n list. This analysis provides an insight into the

inherent difficulty of using the existing high-dimensional outlier detection techniques

to solve the new outlying subspace detection problem.

A. HighDoD

Zhang et al. proposed a novel dynamic subspace search algorithm, called High-

DoD, to efficiently identify the outlying subspaces for the given query data points

[121][126]. The outlying measure, OD, is based on the sum of distances between a

data and its k nearest neighbors [10]. This measure is simple and independent of

any underlying statistical and distribution characteristics of the data points. The

following two heuristic pruning strategies employing upward-and downward closure

property are proposed to aid in the search for outlying subspaces: If a point p is
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not an outlier in a subspace s, then it cannot be an outlier in any subspace that is a

subset of s. If a point p is an outlier in a subspace s, then it will be an outlier in any

subspace that is a superset of s. These two properties can be used to quickly detect

the subspaces in which the point is not an outlier or the subspaces in which the point

is an outlier. All these subspaces can be removed from further consideration in the

later stage of the search process. A fast dynamic subspace search algorithm with a

sample-based learning process is proposed. The learning process aims to quantitize

the prior probabilities for upward- and downward pruning in each layer of space lat-

tice. The Total Saving Factor (TSF) of each layer of subspaces in the lattice, used to

measure the potential advantage in saving computation, is dynamically updated and

the search is performed in the layer of lattice that has the highest TSF value in each

step of the algorithm.

However, HighDoD suffers the following major limitations. First, HighDoD relies

heavily on the closure (monotonicity) property of the outlying measurement of data

points, termed OD, to perform the fast bottom-up or top-down subspace pruning

in the space lattice, which is the key technique HighDoD utilizes for speeding up

subspace search. Under the definition of OD, a subspace will always be more likely

to be an outlying subspace than its subset subspaces. This is because that OD of

data points will be naturally increased when the dimensionality of the subspaces

under study goes up. Nevertheless, this may not be a very accurate measurement.

The definition of a data point’s outlier-ness makes more sense if its measurement

can be related to other points, meaning that the averaged level of the measurement

for other points in the same subspace should be taken into account simultaneously

in order to make the measurement statistically significant. Therefore, the design of

a new search method is desired in this situation. Secondly, HighDoD labels each

subspace in a binary manner, either an outlying subspace or a non-outlying one, and

most subspaces are pruned away before their outlying measurements are virtually

evaluated in HighDoD. Thus, it is not possible for HighDoD to return a ranked list of

the detected outlying subspaces. Apparently, a ranked list will be more informative

and useful than an unranked one in many cases. Finally, a human-user defined cutoff
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for deciding whether a subspace is outlying or not with respect to a query point is used.

This parameter will define the ”outlying front” (the boundary between the outlying

subspaces and the non-outlying ones). Unfortunately, the value of this parameter

cannot be easily specified due to the lack of prior knowledge concerning the underlying

distribution of data point that maybe very complex in the high-dimensional spaces.

B. SOF Method

In [128], a novel technique based on genetic algorithm is proposed to solve the

outlying subspace detection problem and well copes with the drawbacks of the ex-

isting methods. A new metric, called Subspace Outlying Factor (SOF), is developed

for measuring the outlying degree of each data point in different subspaces. Based

on SOF, a new definition of outlying subspace, called SOF Outlying Subspaces, is

proposed. Given an input dataset D, parameters n and k, a subspace s is a SOF

Outlying Subspace for a given query data point p if there are no more than n − 1

other subspaces s′ such that SOF (s′, p) > SOF (s, p). The above definition is equiv-

alent to say that the top n subspaces having the largest SOF values are considered

to be outlying subspaces. The parameters used in defining SOF Outlying Subspaces

are easy to be specified, and do not require any prior knowledge about the data

distribution of the dataset. A genetic algorithm (GA) based method is proposed for

outlying subspace detection. The upward and downward closure property is no longer

required in the GA-based method, and the detected outlying subspaces can be ranked

based on their fitness function values. The concepts of the lower and upper bounds

of Dk, the distance between a given point and its kth nearest neighbor, are proposed.

These bounds are used for a significant performance boost in the method by provid-

ing a quick approximation of the fitness of subspaces in the GA. A technique is also

proposed to compute these bounds efficiently using the so-called kNN Look-up Table.

2.3.3 Clustering Algorithms for High-dimensional Data

We have witnessed some recent developments of clustering algorithms towards high-

dimensional data. As clustering provides a possible, even though not the best, means
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to detect outliers, it is necessary for us to review these new developments. The repre-

sentative methods for clustering high-dimensional data are CLIQUE and HPStream.

A. CLIQUE

CLIQUE [7] is a grid-based clustering method that discretizes the data space into

non-overlapping rectangular units, which are obtained by partitioning every dimen-

sion into a specific number of intervals of equal length. A unit is dense if the fraction

of total data points contained in this unit is greater than a threshold. Clusters are

defined as unions of connected dense units within a subspace. CLIQUE first identi-

fies a subspace that contains clusters. A bottom-up algorithm is used that exploits

the monotonicity of the clustering criterion with respect to dimensionality: if a k -

dimensional unit is dense, then so are its projections in (k -1) -dimensional space. A

candidate generation procedure iteratively determines the candidate k -dimensional

units Ck after determining the (k -1)-dimensional dense units Dk−1. A pass is made

over the data to determine those candidates units that are dense Dk. A depth-first

search algorithm is then used to identify clusters in the subspace: it starts with some

unit u in D, assign it the first cluster label number, and find all the units it is con-

nected to. Then, if there are still units in D that have yet been visited, it finds one

and repeats the procedure. CLIQUE is able to automatically finds dense clusters in

subspaces of high-dimensional dataset. It can produce identical results irrespective of

the order in which input data are presented and not presume any specific mathemati-

cal form of data distribution. However, the accuracy of this clustering method maybe

degraded due to the simplicity of this method. The clusters obtained are all of the

rectangular shapes, which is obviously not consistent with the shape of natural clus-

ters. In addition, the subspaces obtained are dependent on the choice of the density

threshold. CLIQUE uses a global density threshold (i.e., a parameter that is used for

all the subspaces), thus it is difficult to specify its value especially in high-dimensional

subspaces due to curse of dimensionality. Finally, the subspaces obtained are those

where dense units exist, but this has nothing to do with the existence of outliers. As

a result, CLIQUE is not suitable for detecting projected outliers.
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B. HPStream

In order to find the clusters embedded in the subspaces of high-dimensional data

space in data streams, a new clustering method, called HPStream, is proposed [9].

HPStream introduces the concept of projected clustering to data streams as significant

and high-quality clusters only exist in some low-dimensional subspaces. The basic

idea of HPStream is that it does not only find clusters but also updates the set of

dimensions associated with each cluster where more compact clusters can be found.

The total number of clusters obtained in HPStream is initially obtained through

k−means clustering and the initial set of dimensions associated with each of these

k clusters is the full set of dimensions of the data stream. As more streaming data

arrive, the set of dimensions for each cluster evolves such that each cluster can become

more compact with a smaller radius.

HPStream is innovative in finding clusters that are embedded in subspaces for

high-dimensional data streams. However, the number of subspaces returned by HP-

Stream is equal to the number of clusters obtained that is typically of a small value.

Consequently, if HPStream is applied to detect projected outliers, then it will only

be able to detect the outliers in those subspaces returned and miss out a significant

potions of outliers existing in other subspaces that are not returned by HPStream. Of

course, it is possible to increase the number of subspaces returned in order to improve

the detection rate. However, the increase of subspaces will imply an increase of the

number of clusters accordingly. An unreasonably large number of clusters is not con-

sistent with the formation of natural clusters and will therefore affect the detection

accuracy of projected outliers.

2.4 Outlier Detection Methods for Data Streams

The final major category of outlier detection methods we will discuss in this chapter

are those outlier detection methods for handling data streams. We will first discuss

Incremental LOF, and then the outlier detection methods for sensor networks that

use Kernel density function. The incremental clustering methods that can handle

continuously arriving data will also be covered at the end of this subsection.
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A. Incremental LOF Method

Since LOF method is not able to handle data streams, thus an incremental LOF al-

gorithm, appropriate for detecting outliers from dynamic databases where frequently

data insertions and deletions occur, is proposed in [97]. The proposed incremental

LOF algorithm provides an equivalent detection performance as the iterated static

LOF algorithm (applied after insertion of each data record), while requiring signif-

icantly less computational time. In addition, the incremental LOF algorithm also

dynamically updates the profiles of data points. This is an appealing property, since

data profiles may change over time. It is shown that insertion of new data points

as well as deletion of obsolete points influence only limited number of their nearest

neighbors and thus insertion/deletion time complexity per data point does not depend

on the total number of points N [97].

The advantage of Incremental LOF is that it can deal with data insertions and

deletions efficiently. Nevertheless, Incremental LOF is not economic in space. The

space complexity of this method is in the order of the data that have been inserted

but have not been deleted. In other words, Incremental LOF has to maintain the

whole length of data stream in order to deal with continuously arriving data because

it does not utilize any compact data summary or synopsis. This is clearly not desired

for data stream applications that are typically subject to explicit space constraint.

B. Outlier Detection Methods for Sensor Networks

There are a few recent anomaly detection methods for data streams. They mainly

come from sensor networks domain such as [100] and [30]. However, the major effort

taken in these works is the development of distributable outlier detection methods

from distributed data streams and does not deal with the problem of outlier detection

in subspaces of high-dimensional data space. Palpanas et al. proposed one of the

first outlier detection methods for distributed data streams in the context of sensor

networks [100]. The author classified the sensor nodes in the network as the low

capacity and high capacity nodes, through which a multi-resolution structure of the

sensor network is created. The high capacity nodes are nodes equipped with relatively

strong computational strength that can detect local outliers. The Kernel density
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function is employed to model local data distribution in a single or multiple dimensions

of space. A point is detected as an outlier if the number of values that have fallen

into its neighborhood (delimited by a sphere of radius r) is less than an application-

specific threshold. The number of values in the neighborhood can be computed by

the Kernel density function. Similarly, the authors in [30] also emphasize the design

of distributed outlier detection methods. Nevertheless, this work employs a number

of different commonly used outlier-ness metric such as the distance to kth nearest

neighbor, average distance to the k nearest neighbors, the inverse of the number of

neighbors within a specific distance. Nevertheless, these metrics are not applicable

to data streams.

C. Incremental Clustering Methods

Most clustering algorithms we have discussed earlier in this chapter assume a

complete and static dataset to operate. However, new data becomes continuously

available in many applications such as the data streams. With the aforementioned

classical clustering algorithms, reclustering from scratch to account for data updates

is too costly and inefficient. It is highly desired that the data can be processed and

clustered in an incremental fashion. The recent representative clustering algorithms

having mechanisms to handle data updates are BIRCH*, STREAM and CluStream.

BIRCH* [54] is a framework for fast, scalable and incremental clustering algo-

rithms. In the BIRCH* family of algorithms, objects are read from the databases

sequentially and inserted into incrementally evolving clusters which are represented

by generalized cluster features (CF*s), the condensed and summarized representa-

tion of clusters. A new objects reading from the databases is inserted into the closest

cluster. BIRCH* organizes all clusters in an in-memory index, and height-balanced

tree, called CF*-tree. For a new object, the search for an appropriate cluster requires

time logarithmic in the number of the clusters to a linear scan. CF*s are efficient

because: (1) they occupy much less space than the naive representation; (2) the cal-

culation of inter-cluster and intra-cluster measurements using the CF* is much faster

than calculations involving all objects in clusters. The purpose of the CF*-tree is to

direct a new object to the cluster closest to it. The non-leaf and leaf entries function
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differently, non-leaf entries are used to guide new objects to appropriate leaf clusters,

whereas leaf entries represent the dynamically evolving clusters. However, clustering

of high-dimensional datasets has not been studied in BIRCH*. In addition, BIRCH*

cannot perform well when the clusters are not spherical in shape due to the fact that

it relies on spherical summarization to produce the clusters.

STREAM [92] considers the clustering of continuously arriving data, and provides

a clustering algorithm superior to the commonly used k-means algorithm. STREAM

assumes that the data actually arrives in chunks X1, X2, · · · , Xn, each of which

fits into main memory. The streaming algorithm is as follows. For each chunk i,

STREAM first assigns weight to points in the chunks according to their respective

appearance frequency in the chunks ensuring that each point appear only once. The

STREAM clusters each chunk using procedure LOCALSEARCH. For each chunk,

only k weighted cluster centers are retained and the whole chunk is discarded in or-

der to free the memory for new chunks. Finally, LOCALSEARCH is applied to the

weighted centers retained from X1, X2, · · · , Xn, to obtain a set of (weighted) centers

for the entire stream X1, X2, · · · , Xn.

In order to find clusters in different time horizons (such as the last month, last

year or last decade), a new clustering method for data stream, called CluStream, is

proposed in [8]. This approach provides the user the flexibility to explore the nature of

the evolution of the clusters over different time periods. In order to avoid bookkeeping

the huge amount of information about the clustering results in different time horizons,

CluStream divides the clustering process into an online micro-clustering component

and an offine macro-clustering component. The micro-clustering phase mainly collects

online the data statistics for clustering purpose. This process is not dependent on

any user input such as the time horizon or the required granularity of the clustering

process. The aim is to maintain statistics at a sufficiently high level of granularity

so that it can be effectively used by the offline components of horizon-specific macro-

clustering as well as evolution analysis. The micro-clusters generated by the algorithm

serve as an intermediate statistical representation which can be maintained in an

efficient way even for a data stream of large volume. The macro-clustering process
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does not work on the original data stream that may be very large in size. Instead,

it uses the compactly stored summary statistics of the micro-clusters. Therefore,

the micro-clustering phase is not subject to the one-pass constraint of data stream

applications.

D. Advantages and Disadvantages of Outlier Detection for Data Streams

The methods discussed in this subsection can detect outliers from data streams.

The incremental LOF method is able to deal with continuously arriving data, but it

may face an explosion of space consumption. Moreover, the incremental LOF method

is not able to find outliers in subspaces in an automatic manner. The outlier detection

methods for sensor networks cannot find projected outliers either. Unlike the clus-

tering methods that are only appropriate for static databases, BIRCH*, STREAM

and CluStream go one step further and are able to handle incrementally the contin-

uously arriving data. Nevertheless, they are designed to use all the features of data

in detecting outliers and are difficult to detect projected outliers.

2.5 Summary

This section presents a review on the major existing methods for detecting point

outliers from vector-like data sets. Both the conventional outlier detection methods

that are mainly appropriate for relatively low dimensional static databases and the

more recent methods that are able to deal with high-dimensional projected outliers

or data stream applications have been discussed. For a big picture of these methods,

we present a summary in Table 2.6. In this table, we evaluate each method against

two criteria, namely whether it can detect projected outliers in a high-dimensional

data space and whether it can handle data streams. The symbols of tick and cross in

the table indicate respectively whether or not the corresponding method satisfies the

evaluation criteria. From this table, we can see that the conventional outlier detection

methods cannot detect projected outliers embedded in different subspaces; they detect

outliers only in the full data space or a given subspace. Amongst these methods that

can detect projected outliers, only HPStream can meet both criteria. However, being

a clustering method, HPStream cannot provide satisfactory support for projected
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outliers detection from high-dimensional data streams, as we have discussed in details

in Subsection 2.2.4. Thus, a new technique that is able to detect projected outliers

from high-dimensional data streams is desired.
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Figure 2.6: A summary of major existing outlier detection methods



Chapter 3

Concepts and Definitions

In this section, we will cover the basic concepts and definitions that are used in our

technique. First, we will introduce the time model used to distinguish data in dif-

ferent time horizons. The data synopsis for compactly capturing sufficient statistical

information for outlier detection are then proposed. Definition of projected outliers

in subspaces for high-dimensional data streams is also presented. Finally, detailed

discussions are given on how to compute and maintain the data synopsis efficiently

in order to meet the requirements of data stream applications.

3.1 Time Model and Decaying Function

We use a novel window-based time model, called (ω, ǫ)-model, in SPOT for dis-

criminating data arriving at different times in the stream. Unlike the conventional

window-based model, (ω, ǫ)-model does not need to keep trace of all the detailed data

in the window. Moreover, instead of maintaining a large number of historical snap-

shots of data synopsis as in the tilted time models, only the latest snapshot needs to

be kept in the (ω, ǫ)-model.

The concept of a sliding window is used in (ω, ǫ)-model. The parameter ω is the

window size representing either the difference in terms of time (or stream length if no

timestamps are present) between the first and last data located in the sliding window

W , i.e.,

∀pi ∈W, T − Ti ≤ ω or N −Ni ≤ ω

where T and Ti denotes the current time and the arrival time of pi, N and Ni corre-

spond to the current stream length and that when pi arrived. ω can be defined, for

example, as ω = 10 minutes or ω = 1000 data, meaning that we are only interested

in the data arriving less than 10 minutes ago or the recent 1000 arriving data. For

56
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ease of presentation, we define ω based on the dimension of time in the reminder of

this thesis.

In (ω, ǫ)-model, each data in the window will be assigned a weight, indicating its

importance or influence to the data synopsis at the current time. We use exponential

decaying function for calculating weights for different data. It is a function of the

elapsed time from the current time and the time when the data arrived. Precisely,

suppose pi arrived at time Ti and the current time is T , then weight of pi is computed

as

weight(pi) = df(T − Ti) = e−
α(T−Ti)

t

where α is the decaying coefficient that is used to adjust the speed of weighted decay,

and t is the basic time unit used for scaling elapsed time in decaying function.

The definition of (ω, ǫ)-model is given as follows.

Definition 3.1 (ω, ǫ)-model: For the points that have slid out of the current window

W (with a size of ω), the sum of their weights will not exceed ǫ. Formally, we have
∑

i weight(pi) ≤ ǫ, where T − Ti > ω, T is the current time and Ti denotes the

arriving time for point pi. The (ω, ǫ)-model is an approximation of conventional

window-based model of a window size ω with an approximation factor of ǫ.

In SPOT, we take advantage of the flexibility offered by the decaying function to

implement the (ω, ǫ)-model, without maintaining detailed data in the sliding window.

The basic idea is to tune the decaying coefficient α such that the influence from those

data that have slid out the window could be negligible. We explore the specification

of decaying coefficient α in Lemma 3.1.

Lemma 3.1. Let Tmin be the minimum interval of the arriving time for two consec-

utive data in the stream. At any time T , if the decaying coefficient α is set such that

eα ω
t (eα

Tmin
t − 1) ≥ 1

ǫ
, then

∑

i weight(pi) ≤ ǫ, where T − Ti > ω.

Proof. Suppose the data that have slid out of the current window, starting from the

more recent ones, are p1, p2, p3, · · · . Since for any data pi, we have weight(pi) ≤
e−α

ω+i·Tmin
t , thus

∑

i weight(pi) can be bounded as follows:
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∑

i

weight(pi) ≤ e−α
ω+Tmin

t + e−α
ω+2Tmin

t + e−α
ω+3Tmin

t + · · · (3.1)

Since e−α
ω+Tmin

t +e−α
ω+2Tmin

t +e−α
ω+3Tmin

t + · · · is the sum of an infinite decreasing

geometric series, thus Eq. (3.1) can be simplified as

∑

i

weight(pi) ≤
e−α

ω+Tmin
t

1− e−α
Tmin

t

In order to satisfy
∑

i weight(pi) ≤ ǫ, we need to have e−α
ω+Tmin

t

1−e−α
Tmin

t

≤ ǫ. By simpli-

fying this, we can get eα ω
t (eα

Tmin
t − 1) ≥ 1

ǫ
, as required. (End of proof)

Lemma 3.1 suggests that, by choosing an appropriate decay coefficient α (no less

than α∗, where α∗ is the root of equation eα ω
t (eα

Tmin
t − 1) = 1

ǫ
), we can implement

window-based time model without keeping trace of data in the window or maintaining

multiple snapshots of data synopsis. This contributes to a better computational and

space performance.

Using the decaying function, the data synopsis at time T ′ can be defined recur-

sively by the latest snapshot of data synopsis created at time T , T ≤ T ′, as

MT ′ = df(T ′ − T )MT + pT ′

where the additive term pT denotes the summary of those data arrived at time T ′.

There are other types of decaying functions such as the linear decaying functions,

but the results obtained using the exponential decaying function cannot be generalized

to the linear decaying function. Compared with an exponential decaying function, a

linear decaying function tends to have a slower decaying speed and the aggregated

sum of the weights of the data that have slid out of the sliding window is not upper

bounded, which violates the definition of our (ω, ǫ) time model.

Please note that, in the (ω, ǫ) time model, we assume that there is a minimum

interval of the arriving time for two consecutive data in the stream, denoted by Tmin.

If multiple data arrive at the same time, SPOT still processes them sequentially.

Therefore, the assumption of minimum time interval between two consecutive data

still hold.
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A similar decaying function was used in [8][9]. However, it does not use the scaling

factor t and the decaying factor α is not fine tuned explicitly for implementing the

window-based model.

3.2 Data Synopsis

Like many other data mining tasks on data stream analysis such as clustering and

frequent item detection, one of central problems involved is the design of appropriate

synopsis over data streams that are suitable for outlier detection purpose. In our

work, we employ Base Cell Summary (BCS) and Projected Cell Summary (PCS),

two compact structures that are able to capture the major underlying characteristics

of the data stream for detecting projected outliers.

Quantitization of BCS and PCS entails an equi-width partition of the domain

space, which partitions each attribute into a few disjoint subsets, or buckets. Specifi-

cally, let D be a set of ϕ-dimensional streaming data objects. For each attribute, the

space is partitioned into a set of non-overlapping intervals. All the intervals in each

such dimension are of identical length. The cells in hypercube can be classified into

two categories, i.e., the base and projected cells. A base cell is a cell in hypercube

with the finest granularity. The dimensionality (i.e., number of attributes) of base

cells is equal to ϕ. A projected cell is a cell that exists in a particular subspace s,

which is a projection of a number of base cells from the full data space into s. The

dimensionality of a projected cell is equal to |s| and |s| < ϕ, where |s| denotes the

number of attributes in s. For a simple example, if each dimension of a 3-dimensional

data space is divided into 3 intervals, then there are 27 base cells, but only 9 pro-

jected cells in all 2-dimensional subspaces and 3 projected cells in all 1-dimensional

subspaces.

Definition 3.2 Base Cell Summary (BCS): The Base Cell Summary of a base cell

c in the hypercube is a triplet defined as BCS(c) = {Dc,
→

LSc,
→

SSc), where Dc,
→

LSc

and
→

SSc denote the number of points, the sum and squared sum of data values in

each dimension of points in c, respectively, i.e.,
→

LSc=
∑ →

p i and
→

SSc=
∑ →

p
2

i , for pi

located in c, 1 ≤ i ≤ ϕ. nc is a scalar while both
→

LSc and
→

SSc are ϕ-dimensional
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vectors.

BCS features the following two desirable properties, i.e., additivity and incremen-

tal maintainability [129], that can be used to compute data synopsis for projected

cells in subspaces.

Property 1. Additivity of BCS: Let BCS(c1) = (Dc1,
→

LSc1,
→

SSc1) and BCS(c2) =

(Dc2,
→

LSc2 ,
→

SSc2) be BCSs of two base cells c1 and c2, respectively. It is easy to see

that the Dc′,
→
LSc′ and

→
SSc′ of the cell c′ that is formed by the union of c1 and c2 can

be presented as [129]:

BCS(c′) = (Dc′,
→

LSc′,
→

SSc′) = (Dc1+Dc2 ,
→

LSc1 +
→

LSc2 ,
→

SSc1 +
→

SSc2) = BCS(c1)+BCS(c2)

Property 2: Incremental maintainability of BCS: Suppose that the latest snap-

shot of BCS of c is created at time T , then we can update BCS of c when a new data

point p arrives at c at the time T ′ (T ≤ T ′) as follows:

BCS(c, s)T ′

= df(T ′ − T )BCS(c, s)T + [1,
→
p,

→
p2]

Definition 3.3 Projected Cell Summary (PCS): The Projected Cell Summary of

a cell c in a subspace s is a scalar triplet defined as PCS(c, s) = (RD, IRSD, IkRD),

where RD, IRSD and IkRD are the Relative Density, Inverse Relative Standard

Deviation and Inverse k-Relative Distance of data points in c of s, respectively.

RD, IRSD and IkRD are three effective measures to represent the overall data

sparsity of each projected cell from different perspectives. They are used together in

SPOT to achieve a good measurement of data outlier-ness. They are all defined as

ratio-type measures in order to achieve statistical significance in measurement and

facilitate the specification of the outlier-ness thresholds. They can be computed and

updated incrementally and are thus suitable for data stream applications. In what

follows, we will elaborate on these three components of PCS.

3.2.1 Relative Density (RD)

Relative Density of a cell c in subspace s measures the relative density of c w.r.t the

expected level of density of non-empty cells in s. If the density of c is significantly
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lower than the average level of cell density in the same subspace, then the data in c

can be labeled as outliers. It is defined as RD(c, s) = Dc

E(Ds)
, where Dc and E(Ds)

represent the density (i.e., number of points) in c and the expected density of all the

cells in s. Since E(Ds) = Nω

δ|s|
, where Nω corresponds to the effective stream length

(the decayed number of data points in sliding window at a certain time), thus,

RD(c, s) =
Dc · δ|s|

Nω

(3.2)

3.2.2 Inverse Relative Standard Deviation (IRSD)

Inverse Relative Standard Deviation of a cell c in subspace s is defined as inverse

of the ratio of standard deviation of c in s against the expected level of standard

deviation of non-empty cells in s. Under a fixed density, if the data in a cell features

a remarkably high standard deviation, then the data are generally distributed more

sparsely in the cell and the overall outlier-ness of data in this cell is high.

IRSD(c, s) is computed as IRSD(c, s) =
[

σc

E(σs)

]−1

, where σc denotes the standard

deviation of c and E(σs) denotes the expected standard deviation of cells in subspace

s. Since σc is larger than 0 but does not exceed the length of the longest diagonal of

the cell in subspace s, which is
√

|s|l, where l is the side length of each interval of

the cell, thus E(σs) can be estimated as E(σs) =
0+
√

|s|l
2

=

√
|s|l
2

. Thus, IRSD can be

expressed as

IRSD(c, s) =

√

|s|l
2σc

(3.3)

Remarks: Notice that |s| appears in the mathematical definition of both RD and

IRSD. It serves as a normalization factor to make quantities of RDs (and IRSDs)

across different subspaces in a comparable magnitude. (End of remarks)

3.2.3 Inverse k-Relative Distance (IkRD)

Inverse k -Relative Distance for a cell c in a subspace s is the inverse of ratio of the

distance between the centroid of c and its nearest representative points in s against
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the average level of such distance in s for all the non-empty cells. A high IkRD value

of c indicates that c is noticeably far from the dense regions of the data in s, thus the

outlier-ness of data in c is high. The notion of representative points will be discussed

in Subsection 3.4.4.

Given parameter k, the IkRD of a projected cell c in subspace s is defined as

IkRD(c, s, k) =

[

k dist(c, s)

average k dist(ci, s)

]−1

where k dist(c, s) is the sum of distances between the centroid of c and its k nearest

representative points in s. i.e.,

k dist(c, s) =
∑

dist(centroid(c), ri, s), ri ∈ kNN(c, s)

kNN(c, s) is the set containing the k nearest representative points of c in s.

average k dist(ci, s) is the average level of k dist(ci, s) for all the non-empty cells

in s, which is computed as

average k dist(ci, s) =

∑

k dist(ci, s)

|ci|
, ci ∈ s

Remarks: Note that the inverse of IRSD and IkRD, rather than RSD and kRD,

are used in SPOT so as to transform the problem of finding outlying subspaces to a

minimization problem. A small PCS (containing RD, IRSD and IkRD) indicates a

high level of data outlier-ness of c in s and vice versa. (End of remarks)

3.3 Definition of Projected Outliers

We base our decision of data points’ outlier-ness on the data sparsity of the cells they

belong to and the distance between them to the representative points in the subspace.

Specifically, a data point in a subspace is regarded as outlying if its RD, IRSD or

IkRD levels becomes unusually lower than the average/expected level. The outlying

cell of a point is defined as follows.

Definition 3.4 outlying cell: A cell c in subspace s is called the outlying cell of a

point p in s if one or more components of PCS(c, s) (i.e., RD, IRSD or IkRD) exceed

their corresponding thresholds, where p is located in c.
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As we know that each streaming point can be only mapped into one and only

one cell in the hypercube, thus there is at most one outlying cell of a point in any

subspace, if any. Based on the concept of outlying cell of a point, we can define

outlying subspace of a point.

Definition 3.5 outlying subspace: An outlying subspace s of a point p is a sub-

space in which p is an outlier in a particular cell of s. In other words, an outlying

subspace s of p is a subspace that contains the outlying cell of p.

Finally, based on concept of outlying subspace, we can formally define the notion

of projected outliers.

Definition 3.6 Projected outliers: A data point p is considered as a projected

outlier if there exists at least one outlying subspace s of p.

Projected outliers are important entities as outliers that exist in a high dimensional

space are projected outliers. They carry abnormal behavior or patterns in a subset

of attributes of the data. The aim of SPOT is to screen out projected outliers from

continuously arrived data points. Unless otherwise stated, the outliers discussed in

SPOT refer to projected outliers.

3.4 Computing PCS of a Projected Cell

In this subsection, we will discuss in details how PCS of a projected cell in the

hypercube can be quantitized. A promising characteristics of PCS is that, once BCS

of all the base cells in hypercubes have been calculated, PCS of any projected cell

can be computed efficiently by only aggregating the BCS of its base cells, without

referring to any detailed data points. This ensures that the computation of PCS will

only needs a single scan of the data stream.

Definition 3.7 Base cell set of a projected cell: Let c be a projected cell in

subspace s with attribute set [a1, a2, . . . , a|s|]. The interval index numbers of the |s|
attributes of c can be presented as [I1, I2, . . . , I|s|]. Similarly, the attribute set and the

corresponding attribute interval index of a base cell can be presented as [a′
1, a

′
2, . . . , a

′
ϕ]

and [I ′
1, I

′
2, . . . , I

′
ϕ], respectively. The base cell set of c, denoted as Base Cell Set(c),
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can be presented as

Base Cell Set(c) = {c′, where |c′| = ϕ and |Ii = I ′
j | = |s|}, 1 ≤ i ≤ |s|, 1 ≤ j ≤ ϕ

|Ii = I ′
j | = |s| signifies that the number of attributes whose index number are identical

between c and c′ is equal to |s|. The rationale for this definition is the fact that,

between a project cell and any one of its base cells, there exists exactly |s| attributes

of them that would have the same index number.

The central components needs to be obtained for RD, IRSD, IkRD of PCS of a

projected cell c are the density (Dc), mean (µc) and standard deviation (σc) of data

points in c and the representative points in a given subspace s. In the following, we

will focus on how Dc, µc, σc and representative points can be obtained thanks to the

additivity property of BCS.

3.4.1 Computing Density of a Projected Cell Dc

Let c be a projected cell in subspace s. The density of c can be computed as follows:

Dc =
∑

i

Dc′i
, where c′i is in Base Cell Set(c) (3.4)

The densities of base cells of c′ are pre-computed, so Dc can be computed efficiently.

3.4.2 Computing Mean of a Projected Cell µc

Let c be a projected cell in subspace s that contains m points. The mean of c is

computed as follows:

→
µc=

∑m

i=1

→
pi

m
=

1

m
[

m
∑

i

pi(1),
m
∑

i

pi(2), . . . ,
m
∑

i

pi(|s|)] (3.5)

where
→
pi denotes the vector representation of ith data point in c (1 ≤ i ≤ m) and

pi(j) represents the jth attribute of point pi (1 ≤ j ≤ ϕ). Each element
∑m

i pi(j) can

be computed as
∑m

i pi(j) =
∑

p′ p
′(j), where p’ is located in Base Cell Set(c). Since

∑

p′ P
′(j) is available in the BCSs of base cells of c, thus µc can be directly computed

by BCSs of base cells of c.
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3.4.3 Computing Standard Deviation of a Projected Cell σc

The unbiased estimator of standard deviation of m data points in c is computed as

σc =

√

∑m

i=1
Dist(pi, µc)2

m− 1
(3.6)

with a degree of freedom of m− 1, where Dist(pi, µc) is the distance between point

pi and µc, and Dist(pi, µc)
2 can be computed as

Dist(pi, µc)
2 =

|s|
∑

j=1

[pi(j)
2 − 2pi(j)µc(j) + µc(j)

2] (3.7)

Plug Eq. (3.7) into Eq. (3.6), we can get

σc =

√

∑|s|
j=1

[
∑m

i=1
pi(j)2 − 2µc(j)

∑m

i=1
pi(j) + mµc(j)2]

m− 1
(3.8)

where
∑m

i pi(j) =
∑

p′ p
′(j),

∑m

i pi(j)
2 =

∑

p′ p
′(j)2, p′ is a data located in Base Cell Set(c).

Because both
∑

p′ p
′(j) and

∑

p′ p
′(j)2 are available in the BCSs of vase cells of c, thus,

like the mean of points in c, its standard deviation can also be directly computed by

BCSs of its base cells.

3.4.4 Generate Representative Data Points in a Subspace

The representative points of a subspace needs to be generated to compute IkRD of

cells in this subspace. These representative points are selected from the centroids

of non-empty cells in the subspace. This set of selected cells are termed as coverage

cells. A rule-of-thumb in selecting coverage cells in a subspace s is to select a specified

number of the most populated cells in s such that they cover a majority of data in

s. Specifically, the cells in s will be first sorted in descending order based on their

densities. Then, starting from the most populated cell(s), NCoverage cell(s) cells are

chosen such that the coverage of these NCoverage cell(s) cells is no less than q (0 ≤ q ≤ 1)

of the total data in s, where NCoverage cell(s) denotes the number of coverage cells to

be selected and q is termed coverage ratio that is expected to take a value close to 1,

such as 0.9 or 0.95. Mathematically, NCoverage cell(s) can be expressed as

NCoverage cell(s) = t, where

t−1
∑

i=1

density(ci) ≤ qNω ≤
t
∑

i=1

density(ci)
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To compute IkRD of a subspace, we need to maintain the following two properties

during the process of data streams:

• The centroid/mean of all populated cells in this subspace;

• The average distance between the centroid of a cell and its k nearest represen-

tative points for populated cells in this subspace.

Based on the discussions in Subsection 3.4.1 and 3.4.2, we know that these two

information can be easily obtained from BCS. It is noted that the initial representative

data for different subspaces are obtained offline before outlier detection is conducted,

thus it is not subject to the one-pass scan and time-criticality requirements of data

stream applications.

3.5 Maintaining the PCS of a Projected Cell

Besides computing PCSs of projected cells, another important issue will be how to

maintain these synopses efficiently in the detection stage to meet the needs of data

stream applications. The naive approach for doing this is to first update BCS of base

cells when new data arrives and then project base cells from the full domain space

into different subspaces in order to update their PCSs. This approach, however, will

be expensive because as high as δϕ−|s| aggregations may be involved. Moreover, the

PCS of projected cells has to be updated in this way each time when a new point

arrives at this cell, thus frequent aggregation operations are required, which makes

this naive method rather costly. To achieve an efficient maintenance of the PCS,

we will demonstrate the incremental property of the PCS in this subsection. Once

it have been computed, the PCS can be thereafter updated incrementally upon the

arrival of each subsequent data. This enables the maintenance of the PCS to be

performed efficiently, without even referring to BCS of its base cells any more. This

can help avoid the need to aggregate BCS for updating the PCS and thus leads to a

computation saving by a large magnitude.
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3.5.1 Update RD of the PCS

Suppose that the latest snapshot of the PCS of a cell c is created at time T with an

effective stream length Nω, then we can update RD in the PCS of c incrementally

when a new data point arrives at c at the time T ′ with an effective stream length N ′
ω

as follows:

RD(c, s)T ′

=
[df(T ′ − T )RD(c,s)T ·Nω

δ|s|
+ 1] · δ|s|

N ′
ω

(3.9)

where RD(c,s)T ·Nω

δ|s|
is the density of c at time T and df(T ′ − T )RD(c,s)T ·Nω

δ|s|
+ 1 is thus

the new density of c at time T ′. After simplifying Eq. (3.9), we can get

RD(c, s)T ′

= df(T ′ − T )
Nω

N ′
ω

RD(c, s)T +
δ|s|

N ′
ω

(3.10)

From Eq. (3.10) we can see that, for incremental maintenance of the PCS, we need

to only additionally maintain, for each populated cell in the subspace, the effective

stream length Nω when the PCS of this cell was updated last time.

Before we start off discussing the update of IRSD in the PCS, we need to first

present the following lemma.

Lemma 3.2. As the density of a projected cell increases, the mean of this cell will

tend to converge. Mathematically, let the density of this projected cell is m, given ǫ,

∃n > 0, when m ≥ n, we will have

Dist(µm+1
c , µm

c )
√

|s|L
≤ ǫ

where ǫ is a small positive real number.

Proof: let µm
c be the mean of cell c when it contains m and µm+1

c be the new mean of

this cell when a new point is added. The distance between µm
c and µm+1

c is computed

as

Dist(µm+1
c , µm

c ) =

√

√

√

√

|s|
∑

i=1

(µm+1
c (i)− µm

c (i))2

µm
c (i) be the ith dimension of the mean of m data points in cell c.

Since µm+1
c (i) = mµm

c (i)+pm+1(i)
m+1

, pm+1(i) is the ith dimension of the (m + 1)th poin

in c, thus

(µm+1
c (i)− µm

c (i))2 = (
mµm

c (i) + pm+1(i)

m + 1
− µm

c (i))2
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=
(pm+1(i)− µm

c (i))2

(m + 1)2

Since 0 ≤ (pm+1(i)− µm
c (i))2 ≤ L2, thus (µm+1

c (i)− µm
c (i))2 ≤ L2

(m+1)2
. We then have

Dist(µm+1
c , µm

c ) ≤

√

√

|s| · L2

(m+1)2

√

|s|L
=

1

m + 1

Since 1
m+1

converges to 0 when m→ +∞, thus ∃n > 0, when m ≥ n, we will have

Dist(µm+1
c , µm

c )
√

|s|L
≤ ǫ

as required. (End of proof)

Lemma 3.2 reveals that, when the density of c is getting large, the mean µ of

c is asymptotically stabilized. This enable us to reasonably consider the mean of

cell as fixed when we update the PCS of the cells. This lemma is quite useful for

accomplishing the update of RSD of c in an incremental manner.

3.5.2 Update IRSD of the PCS

Suppose the density of cell c is m and let IRSD(c, s)T be the IRSD of cell c in

subspace s at time T , which can be computed as follows based on the definition of

IRSD(c, s)T :

IRSD(c, s)T =

√

|s|l
2σ(c)

=

√

|s|l
2

√

m− 1
∑m

i=1
Dist(pi, µc)2

(3.11)

where pi is located in c. Based on Eq. (3.11), we can get

m
∑

i=1

Dist(pi, µc)
2 =

|s|l2(m− 1)

4(IRSD(c, s)T )2
(3.12)

The IRSD(c, s) after the (m + 1)th point is assigned into c at time T ′ (T ≤ T ′) is

computed as

IRSD(c, s)T ′

=

√

|s|l
2

√

df(T ′ − T )(m− 1) + 1

df(T ′ − T )
∑m

i=1 Dist(pi, µ′
c)

2 + Dist(pm+1, µ′
c)

2
(3.13)

where µ′
c denotes the new mean of points in c when the (m + 1)th point is inserted

into c. Based on the Lemma 3.2, we can approximate IRSD(c, s)T ′
by plugging Eq.

(3.12) into Eq. (3.13) as

IRSD(c, s)T ′

=

√

(df(T ′ − T )(m− 1) + 1)sl2(IRSD(c, s)T )2

df(T ′ − T )sl2(m− 1) + 4(IRSD(c, s)T )2Dist(pm+1, µ
′

c)
2

(3.14)
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Please note that, in order to compute Dist(pm+1, µ
′
c)

2 in Eq. (3.14), we need to

first update the mean of points in c and then compute the distance between pm+1 and

the new mean µ′
c.

3.5.3 Update Representative Points in a Subspace

A crucial task in ensuring a fast update of IkRD is to obtain the set of coverage

cells efficiently in each subspace of SST when a data is processed in the stream. A

native way would be to re-sort all the populated cells in the subspace and pick up

a specific number of the top cells as the new coverage cells in this subspace. This

method is, however, expensive given the fact that the sorting has been performed

in each subspace for each incoming data and the number of populated cells in some

subspaces may be large.

A better way for maintaining the set of coverage cells is to reduce the number of

times populated cells are sorted as much as possible; sorting may not be necessary

each time when a new data arrives. The underlying rationale is that, in most cases, a

small amount of newly arrived data may not significantly change the overall density

distribution of data in the subspace and thus will not have any effect on the set

of coverage cells. Thus, if we can make this certain, then sorting is definitely not

necessary for the time being. To this end, we devise the following heuristics to

minimize the number of re-sorting of projected cells:

1. If a new data falls into one of the coverage cells in a subspace, then there is no

need to update the current set of coverage cells in this subspace. The proof of

this heuristic is given in Lemma 3.3;

2. Both the total coverage and the minimum density of the current set of coverage

cells in each subspace s ∈ SST are maintained, denoted by Cov and Denmin,

respectively. If a new data falls into a non-coverage cell c′ in s, then there is

no need to update the current set of coverage cells in s if we have Cov′ > q

and den(c′) ≤ Den′
min, where Cov′ and Den′

min correspond respectively to the
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decayed Cov and Denmin after the new data is processed, and q denotes the

coverage ratio required for the coverage cells. Both Cov′ and Den′
min can be

updated efficiently.

The reason that the current set of coverage cells does not need to update in the

above two cases is that, after arrival of the new data, the current coverage cells still

satisfy the coverage requirement and are still the cells with the highest densities in the

subspace. These two heuristics can contribute to a significant efficiency improvement

as the majority of the data are expected to fall into coverage cells. For example, if

the coverage cells cover 95% of the data in a subspace, then the possibility that the

coverage cells need to be updated when processing a new data is much lower than 5%

in practice by using these two heuristics.

Lemma 3.3.: Let CCm(s) denote the set of coverage cells in subspace s after the mth

data points have been processed. If the (m + 1)th data point p falls into a coverage

cell, then CCm+1(s) = CCm(s), meaning that coverage cells in s remain unchanged.

Proof : The coverage of cells in CCm(s) when the (m + 1)th data point arrives is

(D(c′, s)× df(.) + 1) +
∑

D(ci, s)× df(.), c′ ∈ CCm(s), ci ∈ CCm(s)

where c′ is the coverage cell where the (m + 1)th data point falls into, while ci are

other coverage cells.

The coverage of non-coverage cells (i.e., the cells that are not in CCm+1(s)) when

the (m + 1)th data point arrives is

∑

D(cj, s)× df(.)), cj 6∈ CCm(s)

Based on the coverage requirement for the coverage cells, we have

D(c′, s) +
∑

D(ci, s) ≥ q(D(c′, s) +
∑

D(ci, s) +
∑

D(cj, s))

Therefore, we can get

D(c′, s)×df(.)+1+
∑

D(ci, s)×df(.) ≥ q(D(c′, s)×df(.)+
∑

D(ci, s+
∑

D(cj, s))×df(.))+1

> q(D(c′, s)× df(.) + 1 +
∑

D(ci, s)× df(.) +
∑

D(cj, s)× df(.))
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suggesting the cells in CCm(s) still satisfy the coverage requirement after the (m+1)th

data point arrives.

In addition, after the (m + 1)th data point arrives, for any non-coverage cell cj

D(cj, s)× df(.) ≤ densitymin × df(.)

meaning that there is no non-coverage cells whose density can exceed that of any

coverage cells. In other words, the current coverage cells are still the cells with the

highest densities in s.

Based on above discussion, we can conclude that coverage cells in s remain un-

changed after after the (m+1)th data point arrives, i.e., CCm+1(s) = CCm(s). (End

of proof)

In a summary, to compute IkRD in SPOT, the following steps are performed in

each subspace s when processing each data p in the stream during the detection stage:

1. Update the density of the cell that p belongs to;

2. Update the list of coverage cells, if necessary;

3. Update the representative points, if necessary;

4. Compute IkRD for p.

Please note that Steps 2 and 3 are optional. Execution of Step 2 is dependent on

whether or not the coverage requirement is met. If Step 2 is performed, meaning that

the list of coverage cells needs to be updated, then Step 3 will be performed as well.

If Step 2 is not necessary, then we will see whether p falls into one of the coverage

cells. If so, then the representative point extracted from that coverage cell needs to

be updated and step 3 will be performed, otherwise Step 3 is unnecessary.

During the detection process, both k dist(c, s) and average k distance(ci, s) are

computed on the fly in SPOT. This enables IkRD to be suitable in applying on data

streams.
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3.6 Summary

Devising compact data synopsis is one of the central tasks for data stream applica-

tions. In this section, we present in detail the data synopsis SPOT uses to capture

data information for outlier detection purpose. The data synopses are called Base

Cell Summary (BCS) and Projected Cell Summary (the PCS), respectively. BCS

captures data information of each populated base cell and can be used to efficiently

quantify the PCS thanks to its additive and self-maintainability properties. The PCS

contains three data outlier-ness measurements (RD, IRSD and IkRD) and is associ-

ated with each non-empty projected cell of the subspaces in SST. One of promising

characteristics of the PCS is that it can be incrementally updated as well. This greatly

contributes to a good efficiency of SPOT in dealing with data streams.



Chapter 4

SPOT: Stream Projected Outlier Detector

To approach the challenging problem of projected outlier detection in high-dimensional

data streams, we propose a new technique, called Stream Projected Outlier Detector

(SPOT in short). In this chapter, we will present a detailed discussion of SPOT, with

an emphasis on its system architecture, learning stage and detection stage.

4.1 An Overview of SPOT

Our technique for outlier detection in data streams, SPOT, can be broadly divided

into two stages: the learning and detection stages. SPOT can further support two

types of learning, namely offline learning and online learning. In the offline learning,

Sparse Subspace Template (SST) is constructed using either the unlabeled train-

ing data (e.g., some available historic data) and/or the labeled outlier examples

provided by domain experts. SST is a set of subspaces that features higher data

sparsity/outlier-ness than other subspaces. SST consists of three groups of subspaces,

i.e., Fixed SST Subspaces (FS), Unsupervised SST Subspaces (US) and Supervised

SST Subspaces (SS), where FS is a compulsory component of SST while US and SS
are optional components. SST casts light on where projected outliers are likely to be

found in the high-dimensional space. SST is mainly constructed in an unsupervised

manner where no labeled examples are required. However, it is possible to use the

labeled outlier exemplars to further improve SST. As such, SPOT is very flexible and

is able to cater for different practical applications that may or may not have available

labeled exemplars.

When SST is constructed, SPOT can start to screen projected outliers from con-

stantly arriving data in the detection stage. The incoming data will be first used to

update the data summaries (i.e., the PCSs) of the cell it belongs to in each subspace

73
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Figure 4.1: An overview of SPOT

of SST. This data will then be labeled as an outlier if the PCS values of the cell where

it belongs to are lower than some pre-specified thresholds. The detected outliers are

archived in the so-called Outlier Repository. Finally, all or only a specified number

of the top outliers in Outlier Repository will be returned to users when the detection

stage is finished.

During the detection stage, SPOT can perform online training periodically. The

online training involves updating SST with new sparse subspaces SPOT finds based

on the current data characteristics and the newly detected outliers. Online training

improves SPOT’s adaptability to dynamic of data streams.

A system overview of SPOT is presented in Figure 4.1.

4.2 Learning Stage of SPOT

Since the number of subspaces grows exponentially with regard to the dimensionality

of data streams, evaluating each streaming data point in each possible subspace be-

comes prohibitively expensive. As such, we only check each point in a few subspaces

in the space lattice alternatively, in an effort to render projected outlier detection

problem tractable. In SPOT, we evaluate each data point from the stream in the
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subspaces contained in the SST.

We note that detecting outliers is more challenging and difficult than finding all

their outlying subspaces. Once an outlier has been flagged in one or more subspaces, it

is a fairly trivial task to find its other outlying subspaces by applying some appropriate

search method, such as Multiobjective Genetic Algorithm (MOGA). The flagging of

outliers is performed online while the search for the outliers’ outlying subspaces can

be done in an offline manner. Therefore, there is no need to require SST to contain

all the outlying subspaces for any given projected outlier. The problem now becomes

how to enable SST to contain one or more outlying subspaces for as many projected

outliers in the streams as possible.

In SPOT, SST consists of a few groups of subspaces that are generated by differ-

ent underlying rationales. Different subspace groups supplement each other towards

capturing the right subspaces where projected outliers are hidden. This helps enable

SPOT to detect projected outliers more effectively. Specifically, SST contains the

following three subspace groups, Fixed SST Subspaces (FS), Unsupervised SST Sub-

spaces (US) and Supervised SST Subspaces (SS), respectively. Since the construction

of FS does not require any learning process, the major task of the offline learning

stage is to generate US and/or SS . SST is obtained through the offline learning

process using a batch of training data. SPOT is mainly designed as unsupervised

outlier detection method (by means of FS and US). However, a salient feature of

SPOT is that it is not only able to deal with unlabeled data but also provides facility

for learning from labeled outlier exemplars through SS.

Note that we do not expect that US and/or SS cover all the subspaces where

outliers may occur. They may be biased by the limited number of top training data

or the outlier examples that used for the training purpose. However, the detection

of the major portion of outliers are realized by FS. US and SS are used only for

supplementing FS and increasing the probability that outliers can be detected.

• Fixed SST Subspaces (FS)

Fixed SST Subspaces (FS) contains all the subspaces in the full lattice whose

maximum dimension is MaxDimension, where MaxDimension is a user-specified



76

parameter. In other words, FS contains all the subspaces with dimensions of 1, 2,

· · · , MaxDimension. FS satisfies that

∀s, we have |s| ≤MaxDimension if and only if s ∈ FS

• Unsupervised SST Subspaces (US)
Unsupervised SST Subspaces (US) are constructed through an unsupervised of-

fline learning process. In this offline learning process, SPOT takes in unlabeled train-

ing data from the data stream and automatically finds the set of subspaces in which

a higher number of projected outliers can be detected. Intuitively, these subspaces

are where projected outliers are more likely to exist.

We assume that a set of historical data is available for unsupervised learning

at the beginning of SPOT. The training dataset should fit into main memory for

minimizing possible I/O overhead. Multi-objective Genetic Algorithm (MOGA) is

employed to search space lattice to find outlying subspaces of the whole training data

for constructing US. To facilitate fitness computation in MOGA, a hypercube H is

superimposed in the data space and all the training data are scanned and assigned

into one (and only one) cell in H . The BCS of each occupied cell in H are maintained

during this data assignment process. When all the training data have been mapped

into their corresponding cells, MOGA can be applied on the whole training data to

find the subspaces that feature a higher number of outliers. These subspaces will be

added to US .

Once we have obtained the initial US, we can further procure more useful sub-

spaces for US. We can find the outlying subspaces of the training data that have

the highest overall outlying degree. The selected training data are more likely to be

considered as outliers that can be potentially used to detect more subsequent outliers

in the stream. The overall outlying degree of the training data is computed in an

unsupervised manner by employing clustering analysis.

A key issue in the clustering analysis is to derive the method for accurately mea-

suring the distances between training data points. As the distance between two data

points may vary significantly in different subspaces, we therefore expect the distance

metric to be able to well reflect the overall outlying (dis)similarity of data points
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in difference subspaces, especially those where outliers are likely to be detected. To

achieve this, we employ a novel distance metric, called Outlying Distance(OD), for

clustering training data. It is defined as the average distance between two points

in the top sparse subspaces of the whole training data obtained by MOGA, i.e.,

OD(p1, p2) =
∑m

i=1 dist(p1,p2,si)

m
, where m is the number of top sparse subspaces re-

turned by MOGA and si is the ith subspaces in this set.

We utilize lead clustering method, also called the fixed-width clustering in [43],

to cluster the whole training data into a few clusters. Lead clustering method is

a highly efficient clustering method. It adopts an incremental paradigm to cluster

data. Each data point p that has yet been clustered in the data set will be assigned

to the cluster c′ such that OD(p, c′) < dc and ∀ci 6= c′, OD(p, c′) ≤ OD(p, ci). The

centriod of c′ with already m points will be updated upon the cluster assignment of

p as
→

Cen(c′)new= m
→

Cen(c′)+
→
p

m+1
. If ∀ci, we have OD(p, ci) ≥ dc, then a new cluster is

initiated and p becomes the centroid of this new cluster. These steps will be repeated

until all the data points in the data set have been clustered.

Due to its incremental nature, lead clustering method features a promising linear

scalability with regard to number and dimensions of training data. However, its

result is sensitive to the order in which the training data are clustered. To solve this

problem, we perform lead clustering in multiple runs under different data orders to

diminish its sensitivity to data order. The underlying rationale is that, even though

an outlier may be assigned into different clusters in different runs, the chance that it is

assigned to a small cluster is relatively high whatsoever. The average size of clusters

a point belongs to thus provides an useful insight into its accurate outlying degree,

regardless of the data order. The outlying degree of training data p, called Outlying

Factor(OF), is defined as OF n(p) =
∑n

i=1 cluster sizei(p)

n
, where cluster sizei(p) denotes

the size of cluster to which p belongs in the ith run and n denotes the number of

clustering runs. The sparse subspaces of the top training data, obtained by MOGA,

will also be added to US of SST.

The specification of dc needs some test and trial work for tuning dc. The alter-

native parameter of dc in the lead clustering is the number of cluster to be obtained,
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denoted by k. k is obviously easier to be specified than dc. A few different and rea-

sonable values of k can be used, under which the data are clustered and the Outlying

Factor of each training data can be quantified.

In a summary, the subspaces in US come from two distinct but probably over-

lapped groups of subspaces, that are, the outlying subspaces of the whole set of train-

ing data and those of the top training data that have the highest overall outlying

degree. Both groups of subspaces are obtained using MOGA.

• Supervised SST Subspaces (SS)
In some applications, a small number of outlier exemplars may be provided by

domain experts or are available from some earlier detection process. These outlier

exemplars can be considered as carriers of domain knowledge that are potentially

useful to improve SST for a better detection effectiveness. MOGA is applied on each

of these outlier exemplars to find their top sparse subspaces. There subspaces are

called Supervised SST Subspaces (SS). Based on SS , example-based outlier detection

[123] can be performed that effectively detects more outliers that are similar to these

outlier examples.

Remarks: FS, US and SS differ in their respective role they play in projected out-

lier detection. FS is deterministic and it tries to establish an effectiveness baseline

for projected outlier detection without performing any learning process. Definitely,

FS is able to detect the projected outliers as long as one of their respective out-

lying subspaces falls into the MaxDimension-dimensional space lattice. Due to an

exponential growth in size of this space lattice, MaxDimension is normally set quite

small, say 3 or 4. As such, the detecting capability of FS is limited. It cannot detect

those projected outliers if the dimensionality of all their outlying subspaces exceed

MaxDimension. In contrast, US and SS are randomized by nature and are not

subject to the dimensionality constraint. US and SS can help detect more subse-

quent outliers that share similar characteristics of the top outlying training data or

the outliers provided by human users, on which US and SS are built. They can

supplement FS to detect projected outliers whose outlying subspace are not located

in the MaxDimension−dimensional space lattice. (End of Remarks)
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Figure 4.2: The data structure of SST

Based upon the three constituting subspace groups, SST of the whole training

data set DT can be expressed as follows:

SST (DT ) = FS ∪ US ∪ SS

where each constituting subspace groups can be expressed as:

FS = ∪isi, |si| ≤MaxDimension

US = TSS(Dt) ∪j TSS(pj)

SS = ∪tTSS(ot)

where si denotes the ith subspace in the MaxDimension-dimensional full lattice,

TSS(Dt) denotes the top sparse subspaces of the whole training data Dt, TSS(pj)
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Algorithm: SPOT Unsupervised Learning (DT , dc, top k,Nruns)

Input: Training data DT , clustering distance threshold dc, the number of top subspaces
or outliers to be chosen top k, number of clustering runs Nruns;
Output: Unsupervised SST subspaces;
1. US ← top k sparse subspaces from MOGA(DT );
2. FOR i=1 to Nruns DO {
3. D′

T ← ChangeOrder(DT );
4. Cluster(D′

T , US, dc); }
5. OF set← ComputeOF(DT );
6. top training data set← Select top k(OF set,DT );
7. FOR each data p in top training data set DO {
8. US ← US∪ top k sparse subspaces of MOGA(p); }
9. SST ← US;
10. Return(SST );

Figure 4.3: Unsupervised learning algorithm of SPOT

Algorithm: SPOT Supervised Learning (OE, top k)

Input: Set of outlier examplars OE;
Output: Supervised SST subspaces;
1. SS ← ∅;
2. FOR each outlier examplar o in OE DO
3. SS ← SS∪ top k sparse subspaces of MOGA(o);
4. SST ← SS;
5. Return(SST );

Figure 4.4: Supervised learning algorithm of SPOT

denotes the top sparse subspaces of the jth top training data that have the highest

Outlying Factor and TSS(ot) denotes the top sparse subspaces of the tth outlier

exemplar available.

It is noted that, from the implementation’s perspective, SST is more than a set of

subspaces. Under each subspace in SST, we also maintain the set of non-empty cells

and the the PCS for each of them in this subspace. A hash function is used to achieve

a fast retrieval of cells and their the PCS in a given subspace. This hash function

maps the interval index vector of the projected cell where a given data belongs to in

each subspace of SST into a scalar value. Suppose that each dimension is partitioned
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into NI intervals and let [a1, a2, . . . , a|s|] be the interval index vector of the projected

cell where point p falls into in subspace s ∈ SST , then the hash function can be

defined as hash([a1, a2, . . . , a|s|]) =
∑|s|

i=1 ai ·N |s|−i

I . This hash function will not result

in collision of hash function values but the hash function values in some cases may

be rather large.

The non-empty cells (and their the PCS) in each subspace of SST will be up-

dated incrementally in the subsequent detection stage. The data structure of SST

is presented in Figure 4.2. Please note that the three subspace groups in SST are

highlighted using different colors in the figure, but they are treated equally in practice

and are not distinguished with each other once they have been added into SST.

Learning Algorithms

Figure 4.3 is the unsupervised learning algorithm of SPOT. Steps 4-5 perform

lead clustering of the training data DT . The distance metric used in the clustering,

Outlying Distance (OD), is based on the top sparse subspaces of the whole training

data obtained by MOGA in Step 2 and 3. Step 6 quantifies the Outlying Factor of

each training data. Step 7-9 try to find the sparse subspaces for the top training data

that have the highest Outlying Factor. MOGA is applied on each of top training data

to find their respective top sparse subspaces. US is added to SST and returned to

users in Step 10-11.

The algorithm for the supervised learning, which is simpler than that of the un-

supervised learning, is presented in Figure 4.4. Step 2-4 find the sparse subspaces for

each outlier exemplar using MOGA. SS is added to SST and returned to users in in

Step 5-6.

4.3 Detection Stage of SPOT

The detection stage performs outlier detection for arriving stream data. As streaming

data arrive continuously, the data synopsis the PCS of the projected cell where the

streaming data belongs to in each subspace of SST are first updated in order to capture

new information of the arrived data. A hash function is employed here to quickly

map a data into the cell it is located in any subspace. Then, the data is labeled as a
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Figure 4.5: The steps of detection stage in SPOT

projected outlier if the PCS of the cell it belongs to in one or more SST subspaces falls

under certain pre-specified thresholds. These subspaces are the outlying subspaces of

this outlier. All the outliers, together with their outlying subspaces and the PCS of

the cell they belong to in these outlying subspaces, are output to the so-called Outlier

Repository. All or a specified number of the top outliers in Outlier Repository are

retuned to the users in the end. The procedure of screening streaming data in the

detection stage are illustrated in Figure 4.5.

Due to the speed of data streams and time criticality posed to the detection

process, it is crucial that the aforementioned steps can be performed quickly. As we

have shown earlier, BCS and the PCS can be updated incrementally and thus will

be performed quickly. Also, the outlier-ness evaluation of each data in the stream is
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also efficient. It only involves mapping the data point into an appropriate cell and

retrieving the PCS of this cell for outlier-ness checking.

An essential issue to the effectiveness of SPOT is how to cope with dynamics of

data streams and respond to possible concept drift. Besides using decaying functions

on data synopsis, additional efforts have been taken in SPOT to deal with this issue,

which are summarized as follows.

• First, both BCSs of non-empty base cells and the PCSs of non-empty projected

cells in subspaces of SST will be efficiently maintained as data flow in. This

ensures SST to be able to capture the latest data characteristics of the stream

and response quickly to data changes;

• Second, any outlier, whenever it is detected, will not be discarded but rather be

stored in Outlier Repository. Their top sparse subspaces produced by MOGA

will be added into SS of SST to detect outliers from streaming data arriving

later. As a consequence, the detecting ability of SST will be enhanced constantly

as an increasing number of outliers are detected along the detection process;

• Third, SST is equipped with an unique ability of online self-evolution. The basic

idea of self-evolution of SST is that, as the detection stage proceeds, a number

of new subspaces are periodically generated online by crossovering and mutating

the top subspaces in the current SST. These newly generated subspaces repre-

sent the new evolution of SST. However, they cannot be immediately added to

SST due to a lack of the PCS information. Under our (ω, ǫ) time model, they

have to wait for a time duration (at least one window length ω) to accumulate

necessary statistical information. Once the new subspaces join SST, the whole

SST, including the new subspaces, will be re-ranked and the new top sparse

subspaces will be chosen to create a new SST.

The detection algorithm of SPOT is presented in Figure 4.6. The detection algo-

rithm of SPOT is executed as long as the end of stream has not been reached. The

set called SST Candidate is used to store the new subspaces generated periodically

from SST to represent its self-evolution. Upon arrival of a new data, three substeps
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Algorithm: SPOT Detection (SST, t,Ncan, top k)

Input: SST, self-evolution time period t and number of new subspaces generated Ncan in
self-evolution of SST;
Output: Outlier Repository where outliers detected are stored.
1. SST Candidate← ∅;
2. WHILE NOT (end of stream) DO {
3. IF a new data p in the stream arrives THEN {
4. Update BCS(p);
5. Update the PCS(p, SST, SST Candidate);
6. IF (Outlier Detection(p, SST)=True) THEN
7. Insert(Outlier Repository, p); }
8. IF ((Curent time–Start time) mod t=0) THEN {
9. SST← SST Evolution(SST, SST Candidate);
10. SST Candidate ← Generate SST Candidate(SST, Ncan);
11. For each new outliers o added to Outlier Repository DO{
12. SST← SST ∪ top sparse subspaces of MOGA(o); } } }
13. Return(top k outliers(Outlier Repository, top k));

Figure 4.6: Detecting algorithm of SPOT

are performed (Step 3-7), that are, 1) BCS of the base cell in the hypercube to which

the point belong are updated; 2) the PCS of the projected cell in each SST sub-

space and candidate SST subspace to which the point belongs are updated and 3)

this point is checked in each of subspaces in SST to decide whether or not it is an

projected outlier. If this point is found to be a projected outlier, it will be added to

Outlier Repository where all the detected projected outliers are to be stored. Every

time when a time period of t is elapsed, the self-evolution is SST is carried out. It

creates a new SST by using the current SST and SST Candidate (Step 9). Then,

it generates new subspaces for self-evolution in the next cycle. These new subspaces

need to stay in SST Candidate for a while to accumulate sufficient data statistics.

In Step 10, a number of new candidate SST subspaces are generated. For those newly

detected outliers in the latest cycle, MOGA is applied in Step 11 and 12 to find their

respective top sparse subspaces in order to update SST. Finally, the top k projected

outliers detected in the detection stage are returned (Step 14).
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4.4 Summary

In this section, we present a detailed discussion of SPOT. We starts with an overview

of SPOT, followed by a deep look at its training and detection stages. We present

the notion of Sparse Subspace Template (SST), the set of subspaces where streaming

data will be evaluated. The members of SST are mainly lower-dimensional subspaces

and the size of SST is much smaller than the size of the full space lattice. This helps

render the projected outlier detection problem tractable. We have also elaborated

on the three constituent subspace groups of SST, i.e., Fixed SST Subspaces (FS),

Unsupervised SST Subspaces (US) and Supervised SST Subspaces (SS). FS is

generated deterministically while US and SS are non-deterministically generated

using MOGA. They supplement each other and collectively contribute to the detection

effectiveness of SPOT. Once SST has been constructed, detection of outliers can be

performed by SPOT. Those data in the streams that have abnormally low the PCS

value are labeled as outliers. The top k outliers featuring the highest the PCS can

be picked up at the end of detection process. At the end of this section, we have also

pinpointed the strategies employed by SPOT to improve its adaptivity for handling

the dynamics of data streams in the detection stage.



Chapter 5

Multi-Objective Genetic Algorithm

To generate Unsupervised SST Subspaces (US) and Supervised SST Subspaces (SS),

Multi-objective Genetic Algorithm (MOGA) is used as an effective search method for

finding top sparse subspaces of the data. In this section, we will first present an

overview of evolutionary multiobjective optimization and then elaborate on the ad-

hoc design of MOGA in SPOT.

5.1 An Overview of Evolutionary Multiobjective Optimization

In many real-world applications, multiple, often conflicting, objectives arise naturally.

Evolutionary algorithms possess some ideal characteristics for dealing with these op-

timization problems, making them widely used search strategies for multiobjective

optimization for a long time. Evolutionary multiobjective optimization has estab-

lished as a research domain combining the fields of evolutionary computation and

classical multiple criteria decision making.

Evolutionary algorithms (EA) [56] originated in late 1950s, and several evolu-

tionary methodologies have been proposed since the 1970s. EAs represents a class

of stochastic optimization methods that simulate the process of natural evolution.

They imitate the process of organic evolution [65] in an aim to solve parameterized

optimization problems.

EAs base their working mechanisms on the fundamental idea of Darwinian evo-

lution, that is, resources are scarce in nature, which leads to a competition amongst

the species. In this competition process, all the species will undergo a selection mech-

anism, in which only the fittest will be able to survive. As such, the fitter individuals

stand a higher chance to mate each other, producing even better individuals as a

result in the evolution process. Meanwhile, variation occasionally occur through the

86
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means of mutation. This improves the extent of diversity among the species, and

contributes to a greater fitness improvement.

The underlying mechanisms of EAs are simple and they have been proven as a

general, robust and powerful search mechanism [112]. They are particularly suitable

for tackling complicate optimization/search problems that features

1. Multiple conflicting objectives; and

2. Intractably large and highly complex search spaces.

5.1.1 Multiobjective Optimization Problem Formulation

Suppose an optimization problem, with k objectives, are to be solved. Without losing

generality, let us assume this optimization problem as a minimum problem where all

the k objectives are to be minimized. The solutions to this problem can be formulated

as decision vectors that each can be presented as
→
x= {x1, x2, . . . , xn}T in the decision

space X. By applying a mapping function f : X → Y , the decision vector
→
x can be

transformed to an objective vector
→
y= (y1, y2, . . . , yk}T in objective space Y as

→
y=

→
f (

→
x) = {f1(

→
x), f2(

→
x), . . . , fk(

→
x)}T

whereby the quality/goodness of this solution can be evaluated. The goal of the

optimization problem is to find the decision vector
→
x∗= {x∗

1, x
∗
2, . . . x

∗
n}T that produces

the optimized objective vector
→
y∗.

Suppose the objective space Y is a real number data space. We discuss the

evaluation of solution quality as follows based on the number of objectives k that is

to be optimized:

1. When k = 1, the problem is reduced to a single-objective optimization problem.

The objective space Y can be represented as Y ⊆ ℜ. In this case, a solution

x1 ∈ X is considered better than another solution x2 ∈ X if y1 < y2, where

y1 = f(x1) and y2 = f(x2);

2. When k > 1, the problem becomes a multiobjective optimization problem. The

objective space Y now becomes a multi-dimensional vector, i.e., Y ⊆ ℜk, rather
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than a scalar. In such case, the way for evaluating solutions becomes more com-

plicated than the single objective optimization scenario. Pareto dominance is

a commonly used concept for determining the goodness of solutions in multi-

objective optimization problems. Using Pareto dominance, an objective vector

y1 is considered to dominate another objective vector y2, denoted as y1 ≻ y2,

if no component of y2 is smaller than the corresponding component of y1 and

there are at least one component of y2 is larger than that of y1. Consequently,

we can say that a solution x1 is better than (i.e dominate) another solution x2,

denoted as x1 ≻ x2, if y1 ≻ y2.

Based on the concept of Pareto dominance, we say that a solution
→
x
∗∈ X is

Pareto optimal if for every solution
→
x∈ X, we have

∀i ∈ I, fi(
→
x
∗
) ≤ fi(

→
x)

and

∃j ∈ I, fi(
→
x
∗
) < fi(

→
x)

where I is the attribute set of the data stream.

In other words,
→
x
∗

is Pareto optimal if there exists no feasible solution
→
x which

would decrease some criterion without causing a simultaneous increase in at

least one other criterion. In practice, the Pareto optimum are not a single

solution, but rather a set of non-inferior or non-dominated solutions, called the

Pareto set.

In objective space, objective vectors can be organized on a number of trade-off

surfaces. The objective vectors in the same trade-off surface does not dominate

each other, while the superiority (or inferiority) of objective vectors in different

trade-off surfaces can be decided. For example, those objective vectors in the

trade-off surface that are closer to the origin are better than those in the surface

that are far from the origin in a minimization problem. The surface where the

optimal solutions are located is called the Pareto Front.
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5.1.2 Major Components of Evolutionary Algorithms

In a sense, the goal of multiobjective optimization is to find the Pareto set, the set of

solutions that form the Pareto Front in the objective space. Unfortunately, obtaining

the Pareto set can be computationally expensive and is often infeasible. Hence,

the multiobjective optimization methods cannot guarantee the optimal Pareto front.

Instead, they only try to find a good approximation that is as close to the true optimal

front as possible.

A number of stochastic search strategies such as random search, hill climbing,

simulated annealing and evolutionary algorithms (EAs) [71] have been developed to

approach optimization problems. Nevertheless, EAs work with an entire population

of current solutions rather than a single solution. This is one of the major reasons

why EAs are more effective than either hill-climbing, random search or simulated

annealing techniques. EAs use the essence of the techniques of all these methods

with recombination of multiple solutions in a population. Appropriate operations are

defined in order to imitate the recombination and mutation processes as well, and the

simulation is complete [14].

An EA typically have following three salient characteristics:

1. A set of solution candidates is maintained;

2. A mating selection process, called selection operator, is performed on this set;

3. Several solutions may be combined in terms of crossover or each solution may

be mutated to generate new solutions.

In EAs, the solution candidates are called individuals and the set of solution

candidates is called a population. Each individual represents a possible solution, i.e.,

a decision vector, in the decision space to the problem under study. Each individual

is encoded in EAs based on an appropriate representation such as binary string, tree

and so on. The individuals are generated in a generation-wise fashion in the evolution

and it is expected that individuals in the newer generations generally outperform their

precedents even though it may not the case in practice.
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The mating selection process usually consists of two stages: fitness assignment

and selection (in some literatures, selection is called sampling). In the first stage, the

individuals in the current population are evaluated in the objective space and assigned

a scalar value, i.e., the fitness, reflecting their quality. Then, a mating pool containing

the individuals that are used to generate new individuals for the next generation, is

created by random sampling from the population according to the fitness values of

individuals.

Once the mating pool is generated, it is ready to produce the new individuals of

a new generation by employing the variation operators. The variation operators are

also commonly referred to as search operators as they introduce the mechanism for

searching different possible solutions by producing new individuals. The two major

variation operators used in EAs are crossover (recombination) operator and muta-

tion operator. The crossover operator takes a certain number of parents (typically

two) each time and creates a child by combining parts of the parents. A crossover

probability is usually used in this operator to decide the crossover locus of the parent

individuals involved in the crossover for recombination. The mutation operator, in

contrast, modifies individuals by changing small parts in the representation according

to a given mutation probability. Note that it is possible that, due to randomness of

variation, some individuals in the mating pool may not be affected by variation and

therefore simply represent a copy of a previously generated solution.

5.1.3 Important Issues of MOEAs

Besides the major constituting components of evolutionary algorithms that have been

discussed earlier, there are several important issues needed to be addressed, particu-

larly for multiobjective evolutionary algorithms. These issues include fitness assign-

ment, diversity encouragement and elitism.

It is noted that, from a historical view, these important issues are considered

with different extent of attention at the different developmental stages of the field

of evolutionary multiobjective optimization. The focus of the evolutionary multiob-

jective optimization in the first generation lied in approaching the problem of better
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approximating the Pareto set; guiding the search towards the Pareto Front [47] [69]

[102]. The methods of the second generation incorporated the concept of niching in

order to encourage the solution diversity [48] [63] [105]. The importance of elitism

was recognized and supported experimentally in the late nineties [98] [119] [130], and

most of the third generation MOEAs are equipped with the mechanism of elitism, in

one way or another, in order to continuously improve the overall fitness of solutions

in the evolution [36] [70] [127].

Fitness Assignment

In the single-objective optimization problem, objective function and fitness func-

tion are often identical and are usually used exchangeably. Hence, quality evaluation

of individuals in single-objective optimization problems can be conducted directly

based on their objective function values. In contrast, the objective function and fitness

function differ in evolutionary multiobjective optimization. The objective function

f , by applying on the decision vector X, produces a k-dimensional objective vector

Y . Quality evaluation of individuals in MOEAs using only Y is not straightforward.

Usually, it is desired to convert the k-dimensional objective vector Y to a scalar fit-

ness function in order to facilitate individual quality evaluation. Fitness assignment

is the operation to fulfill such conversion. There are three major classes of methods

for performing fitness assignment, that are aggregate sum approaches, criterion-based

approaches and Pareto dominance-based approaches.

The simplest and most straightforward approach for generating the trade-off sur-

faces is to aggregate the objectives into a single parameterized objective function.

This approach is called aggregate sum approach. The parameters of the aggregation

function are systematically tuned during the optimization process in order to find a

set of non-dominated solutions instead of a single trade-off solution. The most com-

monly used aggregation function in MOEAs is the weighted-sum aggregation, where

the parameters for different objectives are their assigned weights indicating their rel-

ative importance in the optimization [62] [64]. Even though it is simple and easy

to implement, aggregating function approach suffers major drawbacks that, in most

cases, it is not meaningful to directly combine different objectives and, even so, it is



92

not easy to set the values of the weights used to balance the significance of different

objectives in the aggregate function.

Criterion-based approaches potentially choose different objectives in selecting so-

lutions in the same or different generations. When an individual is chosen for produc-

ing its offsprings, a different objective may be used to decide which member of the

population will be copied into the mating pool. There are different ways for picking

objectives for selecting individuals. In [102], each objective are used to create an

equal portion of the mating pool. A probabilistic method for choosing objectives can

be used; a human-specified probability is assigned to each objective that determines

the chance of the objective to be selected [69].

Pareto dominance-based approaches, by its name, quantify the individual’s fitness

based on the concept of Pareto dominance [52]. Several different methods are used

to perform fitness assignment based on the Pareto dominance. Generally speaking,

these methods are either based on dominance rank, dominance depth or dominance

count. [48] uses the dominance rank, i.e., the number of individuals by which an

individual is dominated, to determine the fitness values. Also, as we have mentioned

earlier, the solution population is divided into several fronts in the objective space

and the depth reflects which front an individual belongs to. [36] and [105] draw on

the idea of dominance depth to calculate individual’s fitness. [127] and [130] also

employ the dominance count, i.e., the number of individuals dominated by a certain

individual for fitness calculation. Different Pareto dominance-based strategies can be

used to together.

In contrast to aggregation-based methods which calculate an individual’s raw fit-

ness value independently of other individuals, the Pareto dominance-based approaches

take into account the whole population in fitness calculation. In addition, Pareto

dominance-based approaches consider all the objectives simultaneously, rather than

a single objective at a time as in the criterion-based approaches.

Diversity Encouragement

Diversity encouragement is a key consideration in MOEAs to ensure a good ap-

proximation of the Pareto front in objective space. It is highly desirable that the
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solutions obtained can distribute as evenly as possible along the front. This can

significantly low the chance of ending up with local optimum.

Most MOEAs try to maintain solution diversity for the Pareto front approxima-

tion by utilizing density information in the individual selection process. The gen-

eral principle is that an individual’s probability of being selected is penalized more

severely when the density of individuals in its neighborhood is higher. Therefore, the

central task in preserving solution diversity is to estimate the local density for each

individual. Among the major techniques for estimating local density for individuals

in MOEAs are Kernel function-based methods, nearest neighbor-based methods and

grid-based methods.

Kernel methods [103] define the neighborhood of a point using Kernel function.

For each individual x, the distances from x to all other individuals in the population

are calculated. Some sorts of influence function are defined to measure the influence

of other individuals on x. In principle, the influence function can be an arbitrary

function that uses the distance between two individuals as an argument. The influence

function can be a square wave influence function where f(x, x′) = 1 if dist(x, x′) ≤ σ,

and f(x, x′) = 0 otherwise. It can also be a Guassian influence function where

f(x, x′) = e−
dist(x,x′)2

2σ2 . The estimated density of individual x is defined as th sum of

influence function of all the other individuals in the population as

density(x) =

P
∑

i=1

f(x, xi), x 6= xi

Fitness sharing, using Kernel density estimation, is the most popular technique used

in the field of MOEAs [48][63] [105].

Nearest neighbor techniques are simple ways for local density estimation [103].

They compute the distance of a given individual to its kth nearest neighbor and use

this distance as the means to estimate the density in its neighborhood. Usually, the

density estimator is a function of the inverse of this distance [127].

Grid-based methods [103] are another class of commonly used density estimators

that use a hypercube to quantify local density for individuals within the objective

space. The density of the cells in the hypercube provide a quick guidance as to the
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whereabout of dense/sparse regions in the objective space. The density around an

individual is simply estimated by the number of individuals in the same cell of the

grid [70].

Elitism

Elitism is the effort to address the problem of losing those potentially good solu-

tions during the optimization process because of the randomness in MOEAs. If no

special measures are taken, MOEAs cannot guarantee the individuals obtained in a

newer generation always outperform those in the older one. Good solutions may not

be successfully selected and will therefore consequently disappear forever in the pop-

ulation. Elitism tries to maintain the good solutions found in the whole optimization

process and allow them for being selected for producing new individuals. Elitism

provides an effective means to prevent deteriorating generations in the evolution.

There are two major ways for implementing elitism in MOEAs. One way is to

combine the old population and its offspring, i.e., the mating pool after variation,

and to apply a deterministic selection procedure to select from the above combination

population to obtain individuals for the new generation, rather than directly replacing

the old population by the modified mating pool. Also, the a few best solutions can

be directly copied to the next generation. The above two approaches are called non-

archive approaches in which no addition storage achieve is needed to keep the good

solutions.

Alternatively, a special storage space, called archive, can be allocated to keep

the promising solutions in the population. The top solutions can be copied in each

generation into the archive. The archive can be used just as an external storage

separated from the optimization algorithm. The solutions stored in the archive is

only for archiving purpose that serves the purpose of facilitating users to find the

optimal solution at the end of optimization. However, it can also be integrated into

MOEAs in each generation by including archive members in the selection process. In

other words, the mating pool consists of individuals not only coming from previous

generation but also from the good historical solutions stored in the archive.
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5.2 Design of MOEA in SPOT

Genetic algorithms, a particular class of evolutionary algorithms, has been recognized

to be well-suited to multi-objective optimization problems. In our work, we employ

Multi-Objective Genetic Algorithm (MOGA) to search for subspaces where RD, IRSD

and IkRD can be minimized for constructing SST. In this subsection, we will dwell on

the important design issues of MOGA in SPOT, including fitness function, individual

representation, selection operator, search operator, diversity preservation and elitism.

There are four major parameters that are used in the MOGA, i.e., the total

number of generations that are to be performed in the MOGA (denoted by Ng),

the number of individuals in the population of each generation (denoted by Np), the

probability that the crossover between two selected individuals will be performed

(denoted by pc) and finally the probability that each bit of the individual will be

mutated (denoted by pm). The typical parameter setup in SPOT is Ng = 100, Np =

50, pc = 0.7 and pm = 0.1. One can change the value specification of these parameters

in order to obtain different search workloads and search strengths for the MOGA.

5.3 Objective Functions

5.3.1 Definition of Objective Functions

To use MOGA in the training stage, we need to define the objective functions for two

types of data.

The first type of data is a single data point. This applies to each top ranked

training data and each outlier exemplar. We need to find the outlying subspaces for

the top ranked training data and outlier exemplars to generate US and SS . For a

single data point, we have f(p, s) = f(c, s), meaning that the objective function of

data point p is the data sparsity (measured by RD, IRSD, IkRD) of the cell c where

p belongs to.

The second type of data is the whole training data Dt. The outlying subspaces

of the whole training data are found at the beginning of the learning process for

generating US. If the objective function of Dt is defined in the same way as that
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of a single data, e.g., the average data sparsity of populated cells, then we will have

f(Dt, s) = 1 because RD, IRSD and IkRD are all defined as ratios against their

average level. Instead, the objective function for Dt is defined as the number (more

precisely, the percentage) of data points with low the PCS (that is, the corresponding

RD, IRSD and IkRD in the PCS is low with respect to some user-defined thresholds).

The objective functions of Dt are presented as follows.

Definition 5.1. RD objective of a training data set: RD objective of a training

data set Dt in subspace s, denoted as fRD(Dt, s), measures the overall sparsity of Dt

in s based on the relative density of cells occupied by Dt in s. It is defined as the

inverse of percentage of data in Dt whose RD is lower than the RD threshold γRD:

fRD(Dt, s) =

[ |{pi : RD(c, s) < γRD, pi ∈ c}|
|Dt|

]−1

, c is occupied by Dt (5.1)

where |{pi : RD(c, s) < γRD, pi ∈ c}| denotes the number of data points in the cells

whose RD in s is less than the threshold γRD. |Dt| is the number of data in Dt. The

lower the value of fRD(D, s) is, the higher data sparsity of Dt in subspace s will be.

Definition 5.2. IRSD objective of a training data set: IRSD objective of a

training data set Dt in subspace s, denoted as fIRSD(Dt, s), measures the overall

sparsity based on the standard deviation of the cells occupied by Dt in s. It is

defined as the inverse of percentage of data in Dt whose IRSD is lower than the IRSD

threshold γIRSD:

fIRSD(Dt, s) =

[ |{pi : IRSD(c, s) < γIRSD, pi ∈ c}|
|Dt|

]−1

, c is occupied by Dt (5.2)

where |{pi : IRSD(c, s) < γIRSD, pi ∈ c}| denotes the number of data points in

the cells whose IRSD in s is less than the threshold γIRSD. The lower the value of

fIRSD(D, s) is, the higher data sparsity of Dt in subspace s will be.

Definition 5.3. IkRD objective of a training data set: IkRD objective of a

training data set Dt in subspace s, denoted as fIkRD(Dt, s), measures the overall

sparsity based on k -relative distance of the cells occupied by Dt in s. It is defined as

the inverse of percentage of data in Dt whose IkRD is lower than the IkRD threshold
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γIkRD:

fIkRD(Dt, s) =

[ |{pi : IkRD(c, s) < γIkRD, pi ∈ c}|
|Dt|

]−1

, c is occupied by Dt (5.3)

where |{pi : IkRD(c, s) < γIkRD, pi ∈ c}| denotes the number of data points in

the cells whose IkRD in s is less than the threshold γIkRD. The lower the value of

fIkRD(D, s) is, the higher data sparsity of Dt in subspace s will be.

fRD and fIRSD can be computed quite straightforwardly. The cells whose RD and

and IRSD are lower than their corresponding thresholds are first identified and the

number of data points in these cells, which are readily available, are summed up in

order to quantify fRD and fIRSD.

Since the training stage can be performed in an offline fashion, it is thus possible

to have more than one scan of the training data in computing fIkRD. The coverage

cells are first found, whereby the representative points can be extracted. We then

calculate the k -distance for each populated cell and count the number of data in the

cells whose IkRD is lower than its threshold. A more efficient approximation approach

for calculating fIkRD is to, instead of computing k -distance for all the populated cells,

we only compute k -distance for the non-coverage cells in the subspace. The underlying

rationale is that, under a given threshold for IkRD, i.e., γIkRD, which is typically a

small real number, the IkRD value of coverage cells will be likely well exceed γIkRD

and the cells whose IkRD fall below γIkRD quite likely come from non-coverage cells.

Because the number of non-coverage cells is relatively small, this strategy can thus

contribute to a significant speedup in the computation of fIkRD without seriously

compromising the effectiveness.

5.3.2 Penalized Objective Functions

As we have pointed out, the projected outliers are more likely to exist in those lower

dimensional subspaces. Hence, penalty terms are incorporated into the optimizing

objectives, RD, IRSD and IkRD, in SPOT to reflect this knowledge and make the

search more effective. The penalty terms enable the search to be focused more on the

low dimensional subspaces and is able to reduce the generation of high dimensional
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subspaces that would otherwise have to be evaluated in the genetic algorithm. More

specifically, we pick up an exponential penalty function w.r.t the dimensionality of

subspaces. Exponential penalty functions are able to penalize much more severely

the subspaces with higher dimensions but far more leniently when the dimensionality

of the subspaces is decreased. This helps encourage the search process to converge

to those relatively low dimensional subspaces as evolution proceeds, but at the same

time avoid it to prematurely converge to subspaces with too few attributes, say 1 or

2, which will highly overlap FS. To prevent an overlap between US (or SS) and

FS, we penalize the objective functions using a large term (Large value = 1000) to

ensure the dimensionality of the subspaces in US and/or SS obtained by MOGA is

larger than MaxDimension. The penalized objective functions of a subspace s w.r.t

a set of data D (D can be a single data or the whole training data) are defined as

follows:

fRD(D, s)′ = fRD(D, s)(1 +
e|s|−c

eϕ−c
), if |s| > MaxDimension

fIRSD(D, s)′ = fIRSD(D, s)(1 +
e|s|−c

eϕ−c
), if |s| > MaxDimension

fIkRD(D, s)′ = fIkRD(D, s)(1 +
e|s|−c

eϕ−c
), if |s| > MaxDimension

fRD(D, s)′ = fIRSD(Dt, s)
′ = fIkRD(Dt, s)

′ = Large value, otherwise (5.4)

Formally, the penalized objective function f ′ can be presented as follows:

f ′ = {f ′
RD, f ′

IRSD, f ′
IkRD}

5.3.3 Incorporating More Objectives

Using multiple objectives, instead of a single one, is generally more effective to identify

outliers. An appealing feature of SPOT is its potential to incorporate more objective

functions thanks to MOGA. These objectives functions, however, should meet the

following requirements:

• First and most basically, they should be able to measure the sparsity of data in

the cells;
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• Second, the values of these measures should be able to be computed efficiently

by aggregating BCS of base cells of in the hypercube;

• Finally, these objective functions can be updated efficiently in an incremental

manner in order to deal with data streams.

5.4 Selection Operators

In SPOT, Pareto based selection is used to select fitter solutions in each step of the

evolution. It is a stochastic selection method where the selection probability of a

subspace is proportional to the value of its fitness. The fitness for a subspace s,

denoted by fitness(s), is converted from its Pareto count (or dominance count) of

s in the whole population, which is defined as the number of individuals that are

dominated by s in the population, i.e.,

fitness(s) = |{si : s ≻ si}| (5.5)

where |{si : s ≻ si}| denotes the number of individuals si that is dominated by s.

The probability that the individual s is selected from the population, denoted by

Pr(s), is calculated as:

Pr(s) =
fitness(s)

∑P
i=1 fitness(si)

(5.6)

where P is the population size. Comparing with the conventional Roulette Wheel

Selection method based directly on the fitness of solutions, Pareto-dominance based

selection method can lower the selection pressure and increase the chances that the

subspaces with low fitness to be selected into next population. This will help promote

individual diversity and prevent MOGA from becoming stuck to the local optimum.

5.5 Search Operators

Crossover and mutation are two most commonly used search operators in genetic al-

gorithm. Following Holland’s canonical GA specification, the crossover and mutation

used in this research work is single-point crossover and bit-wise mutation. In single-

point crossover, a crossover locus on two parent individuals is selected and all the bits
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beyond that locus in the strings are swapped between the two parents, producing two

new children. The bit-wise mutation involves flipping each bit randomly and leads to

generating a new children. In our work, all the new individuals generated by crossover

and mutation are of the same length, i.e., ϕ, as their parent(s), where ϕ is number of

dimensions of the input database. There are two associated probabilities, pc and pm,

used to determine the frequencies for applying crossover and mutation, respectively.

Please note that the application of crossover and mutation is not mutually exclusive

in the sense that each selected pair of parents will go through tests of crossover and

mutation to decide which search operator(s) is/are to be applied on them. Normally,

we have pc >> pm, meaning that crossover is performed in a much higher frequency

than mutation.

In some applications, it is possible to incorporate problem domain knowledge into

the search operators. For example, if it is known that a certain feature is important

in the outlier detection process, then we can increase the probability that the bit

(representing this feature in the individual representation) is mutated from 0 to 1

and decrease the probability that it is mutated from 1 to 0 and vice versa for those

unimportant features.

5.6 Individual Representation

A straightforward yet effective representation scheme for subspaces is the standard

binary encoding; all individuals are represented by binary strings with fixed and equal

length ϕ, where ϕ is the number of dimensions of the dataset. Using a binary alphabet

Σ = {0, 1} for gene alleles, each bit in the individual will take on the value of ”0”

and ”1”, respectively, indicating whether or not its corresponding attribute is selected

(”0” indicates the corresponding condition is absent and vice versa for ”1”). For a

simple example, the individual ”100101” when the dimension of data stream ϕ = 6

represents a 3-dimensional subspace containing the 1st, 4th and 6th attributes of the

dataset.

However, for high-dimensional data streams with ϕ dimensions, we will end up

using a long binary string with a length of ϕ for representing each subspace. A high
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computational overhead is involved as a result in the frequently preformed crossover

and mutation operations based on the long binary strings. Therefore, a short rep-

resentation of individuals is desirable. To this end, we employ a more compact rep-

resentation of individuals in the MOGA that features a much shorter length. The

basic idea of this compact representation is to use an integer string, instead of a bi-

nary string, to represent each subspace. Each integer can represent a few binary bits,

which contributes a remarkable reduction of the length of individual representation.

If we assume that the number of binary bits needed for representing each integer

is L, L ≤ ϕ (integers are in the range of [0, 2L − 1]), then the length of an integer

string for representing a subspace will be only approximately ϕ

L
of the binary string

used to represent the same subspace.

Even though it features a more compact representation and enables faster crossover

and mutation operations, the integer string representation is limited in two-fold. In

crossover operation, the possible crossover locus will be remarkably reduced due to

the shorter length of integer strings. This will greatly limit the capability of explo-

ration of crossover operator. In mutation operation, the probability that one integer

a is mutated to another integer b (a 6= b) by using integer string representation is

equal to a constant of pm

2L−1
, where pm is probability of performing mutation on the

integer level, while such probability is actually variable (under different values of a

and b) when using binary string representation. As such, integer string representa-

tion changes the behavior of mutation and tends to result in abrupt mutations more

frequently, which may lead to loss of useful segments of bits that might just turn out

to be part of potentially good solutions.

To solve these problems while, at the same time, preserve the desired advantages of

integer representation, we propose efficient methods to seamlessly simulate the genetic

operations of binary string using integer string representation. We derive ways for

quickly obtaining crossover and mutation results between any pair of integers that

are consistent with those of binary strings.

For crossover operation, we propose Crossover Lookup Table (CLT). It is a 2L×2L

table with each entry being a pair of integers corresponding to the crossover result of
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0 1 2 3
0 (0,0) (1,0) (2,0) (1,2)
1 (0,1) (1,1) (0,3) (1,3)
2 (2,0) (3,0) (2,2) (3,2)
3 (2,1) (3,1) (2,3) (3,3)

Table 5.1: Crossover Lookup Table (identifier = 1, L = 2)

a given pair of integers. The crossover locus lc is generated randomly in the range of

[1, ϕ − 1]. Notice that, from an integer string’s perspective, the crossover locus will

only be located in the boundary of two adjacent integers or within a single integer.

In the former case, two integer strings can be directly crossovered in the same way as

the binary strings. In the later case, all the integers after the one that the crossover

locus is located can also be crossovered in the same way as the binary strings. The

crossover result of the pair of integers where crossover locus is located can be obtained

by looking up the appropriate Crossover lookup Table based on the value of (lc mod

L). As there are L − 1 different crossover locus inside an integer, thus we need to

pre-computed L − 1 different CLTs. Each table is uniquely identified by an integer

i ∈ [1, L− 1]. Table 5.1 gives an example CLT with identifier=1 when L = 2. Figure

5.1 is a crossover example of two integers by means of the CLT given in Table 5.1. In

this example, lc = 3, meaning that the crossover locus will be within the 2nd integer.

An appropriate CLT is looked up (The CLT with identifier = 1, L = 2, as shown in

Table 5.1, is used) and crossover result for the integer pair (1,2), i.e., (0,3), will be

found from the table for performing the crossover for the 2nd integer pair.

For mutation operation, we quantify the Mutation Transition Probability Table

(MTPT). It is also a 2L×2L table with each entry representing the mutation transition

probability from one integer to another. An integer is mutated to another based

upon their transition probability initiated from this integer. Let us suppose that two

integers a and b differ in l bits in their binary representations (0 ≤ l ≤ L ≤ ϕ),

the mutation transition probability from a to b, denoted as Pr(a, b), is computed as

Pr(a, b) = pl
m(1− pm)(L−l). Unlike CLT, there is only one possible MTPT that needs

to be pre-computed for a given ϕ and L. A simple example is given here to illustrates
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Figure 5.1: An crossover example of two integer strings (with ϕ = 8, L = 2, lc = 3)

how the mutation transition probability of two integers is computed. Suppose L = 2

and pm = 0.1, we need to compute the mutation transition probability from integer

2 to 3. As they differ in only 1 bit in their binary representations, thus Pr(2, 3) can

be computed as Pr(2, 3) = 0.11 · (1− 0.1)2−1 = 0.09.

In the possible case that ϕ is not dividable by L (that is mod(ϕ, L) 6= 0), special

treatment will be given for crossover and mutation of the last pair of integer in the

string. There is because that there are less than L binary bits left for representing

this last integer. In crossover operation, if the crossover locus is located within the

last integer, we will implicitly image another (L−ϕ mod L) bits of 0 are added to the

leftmost of binary strings of the last integer and the Crossover Lookup Table with the

identifier of (lc mod L+L - ϕ mod L) is looked up for the crossover result of the last

pair of integers in the string. For mutation operation, the last integer is subject to the

constraint that it can only be mutated to integers in the range of [0, 2L′
], where L′ is

the number of bits representing the last integer and L′ = ϕ mod L, whose transition

probabilities can be easily derived by the existing Mutation Transition Probability

Table.

When using a shorter integer representation for subspaces in MOGA, we can

achieve an approximate ϕ

L
times performance boost in genetic operations for ϕ-

dimensional streaming data if each integer in the string is represented by L binary

bits. The pre-computed CLT and MTPT contribute to a remarkable performance

gain of crossover and mutation in MOGA by transforming them to simple lookup
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operations from lookup tables, without the frequent on-the-fly conversion between

integer and binary strings.

Dr. John Mchugh suggests another method for performing crossover even without

using the lookup table. Please see the footnote below for this method. 1

5.7 Elitism

As we have mentioned earlier, when creating a new population by crossover and

mutation, we have a high chance to lose the best subspace(s) found in the previous

generation due to the nature of randomness of evolution. Hence, besides Pareto-

based selection method, we also use elitism method to achieve a constantly improving

population of subspaces. We adopt the archive fashion to implement elitism in SPOT.

In our elitism strategy, the best or a few best subspaces are directly copied to

the new population, together with other new individuals generated from the mating

pool. In MOGA, the non-dominated solutions are deemed as best solutions. The rest

of the population is constructed from dominated solutions by Pareto-based selection

method if the number of non-dominated solutions has not exceeded the population

size P .

In addition, all the solutions obtained in GA in different generations will be stored

in an external archive. In the current implementation of SPOT, there is no limit on

the archive that is used to store all the solutions that are obtained in the GA. The

reason is that the space overhead for storing all the solutions is still tolerable. For

example, the size of the archive will only be around 600k if there are 100 generations

to be performed in the GA and the population size in each generation is 50.

Elitism is advantageous as it can rapidly increase the performance of MOGA by

1let L’ be the number of dimensions. let L be L’ ”rounded up” to a multiple of the word length W so that
candidates r and s are zero filled to the left to occupy 2L bit strings represented in arrays A and B of size L/W. & is
bitwise and, | is bitwise or, ! is bitwise complement.

Step 1. Pick a crossover point C in 1..L’;
Step 2. If ( ( x = C rem W ) != 0 ) {
i = C / W //the index of the crossover word in A, and B create a mask with x bits set to 1 in the low order portion;
a = A(i) & mask; b = B(i) & mask; a = a xor b; b = a xor b; a = a xor b //swap low order bits
mask = ! mask // complement mask so high bits are now 1s
A(i) = A(i) & mask; B(i) = B(i) & mask; A(i) = A(i) | a; B(i) = B(i) | b;
C = C-1 // first whole word to swap; }
Step 3. for ( i=C; i¿=0; i– ) { A(i) = A(i) xor B(i); B(i) = A(i) xor B(i); A(i) = A(i) xor B(i); }
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preventing a loss of the best found solution(s).

5.8 Diversity Preservation

In SPOT, grid-based method is employed to preserve the diversity of individuals in the

population. Compared to the Kernel function-based method and nearest neighbor-

based method, the grid-based method does not need to compute the pari-wise distance

between all the individuals in the population and its complexity is in the linear

order of the number of individuals in the population. Consequently, the grid-based

method is more efficient than the other two methods whose complexity in local density

estimation are in the quadratic order of the number of individuals.

It is worthwhile pointing out that the hypercube used here in preserving diversity

of individuals is not the same hypercube used to process the original data. The

hypercube used here is generated in the objective space for performing local density

estimation of objective vectors, while the hypercube for processing the original data

is created in the decision space for facilitating the calculation of objective vectors. To

distinguish the hypercube for processing the original data, which is denoted by H ,

we denote the hypercube for local density estimation as H ′ here.

As we are optimizing three objectives in SPOT, we need to create a 3-dimensional

hypercube H ′ in the objective space. Each 3-dimensional penalized objective function

vector f ′ will be assigned to an appropriate cell in H ′. The density of each cell in H ′,

denoted by density(c), is quantified as

fniche = f ′ · (1 +
density(c)

P
), f ′ ∈ c, c ∈ H ′ (5.7)

In Eq. (5.7), a penalizing term, density(c)
P

, is further added to the already penalized

objective function f ′ to incorporate niche mechanism.

As the penalized objective function f ′ is by nature a vector, Eq. (5.7) is equivalent

to the following equations:

fniche
RD (Dt, s) = fRD(Dt, s)

′(1 +
density(c)

P
)

fniche
IRSD(Dt, s) = fIRSD(Dt, s)

′(1 +
density(c)

P
)
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Algorithm: MOGA(D, Ns, PS)

Input: Data set D, number of top sparse subspaces to be obtained Ns and parameter
set PS of genetic algorithm, including population size P , probability of crossover pc,
probability of mutation pm.
Output: Top Ns sparse subspaces of D.
1. Solution Set← ∅;
2. Spop ← initial population of P subspaces;
3. WHILE (evolution stop criterion=False) DO {
4. FOR each individual s in Spop DO {
5. Comp RD(D, s); Comp IRSD(D, s); Comp IkRD(D, s) }
6. Solution set← Solution set∪ Non dominated solutions(Spop);
7. Comp ParetoFitness(Spop);
8. Spop ← Selection(Spop, Solution set);
9. Spop ← Crossover(Spop, pc);
10. Spop ← Mutation(Spop, pm); }
11. Return top Ns individuals in Solution Set;

Figure 5.2: Algorithm of MOGA

fniche
IkRD(Dt, s) = fIkRD(Dt, s)

′(1 +
density(c)

P
)

where {fRD(Dt, s)
′, fIRSD(Dt, s)

′, fIkRD(Dt, s)
′} ∈ c, c ∈ H ′ (5.8)

MOGA will search in the space lattice for those subspaces with optimized fniche
RD ,

fniche
IRSD and fniche

IkRD values.

5.9 Algorithm of MOGA

The algorithm of MOGA is presented in Figure 5.2. The major differences between

MOGA and the single-objective GA lie from Step 5 to 8. In Step 5, the penalized

niching functions for RD, IRSD and IkRD are computed for each subspace in the

population of the current generation. The best (i.e., non-dominated) solutions in the

current generation is stored in the set of Solution set in Step 6. The Pareto-rank

based fitness is computed for all the solutions in the population in Step 7. In Step

8-10, the population for the next generation is produced by crossover and mutation

of a selected set of good solutions in the current generation.
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5.10 Summary

Multiobjective Evolutionary Algorithms (MOEAs) are techniques well suited for solv-

ing multi-objective search/optimization problems. Given the multiobjective nature

of the problem of finding outlying subspaces in constructing US and SS , Multi-

objective Genetic Algorithm (MOGA), a subclass of MOEAs, is utilized in SPOT.

This section first presents a review of MOEAs and then a discussion of an ad-hoc de-

sign of MOGA in SPOT for outlying subspace search. A number of important issues

concerning MOGA have been addressed including objective function specification,

choice of search operator and selection operator, and the strategies used for elitism

and individual diversity improvement.



Chapter 6

Performance Evaluation

6.1 Data Preparation and Interface Development

Before presenting the experimental results of SPOT, we need to first conduct data

preparation and interface development. We note that the interface mentioned here is

not limited to the Graphical User Interface (GUI) through which users can interact

with SPOT. In a broad sense, it can be referred to as the mechanisms that enable

SPOT to deal with particular applications by bridging the gap between the function-

ality provided by SPOT (i.e., detecting projected outliers for high-dimensional data

streams) and the application-specific goals that we want to achieve. This work is

important to ensure a smooth deployment of SPOT in various practical applications.

6.1.1 Synthetic Data Sets

Synthetic data sets are used in the performance evaluation of SPOT. They are gen-

erated by two high-dimensional data generators. The first generator SD1 is able to

produce data sets that exhibit remarkably different data characteristics in projections

of different subsets of features. The number, location, size and distribution of the

data are generated randomly. They are thus quite close to real-life data sets. This

generator has been used in [131][126][128] to generate high dimensional data sets for

outlying subspace detection. The second synthetic data generator SD2 is specially

designed for comparative study of SPOT and the existing methods. In SD2, we need

to know a priori the true projected outliers existing in the data set for effectiveness

evaluation. To this end, we conduct the following setup. Two data ranges are defined

in SD2 as R1 = (a, b) and R2 = (c, d), where b+ l < c, l is the length of a partitioning

interval in each dimension. This ensures that the data points in R1 and R2 will not

fall into the same interval for each dimension. In SD2, we first generate a large set

108
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of normal data points D, each of which will fall into R1 in ϕ − 1 dimensions and

into R2 in only one dimension. We then generate a small set of projected outliers O.

Each projected outlier will be placed into R2 for all the ϕ dimensions. An important

characteristic of SD2 is that the projected outliers appear perfectly normal in all

1-dimensional subspaces as all of them are masked by normal data in R2 for all the

1-dimensional subspaces. Finally, to tailor it to fit data stream applications, the time

dimension needs to be added into SD1 and SD2. The outliers generated in SD2 are

assumed to arrive at |O| randomly distributed time points ti ∈ {t1, · · · , t|O|} of the

whole data stream.

6.1.2 Real-life Data Sets

We also use 4 real-life multi- and high-dimensional datasets in our experiments. The

first two data sets come from the UCI machine learning repository. They are called

Letter Image (RD1, 17-dimensions) and Musk (RD2, 168-dimensions), respectively.

The third real-life data stream is the MIT wireless LAN (WLAN) data stream (RD3,

18 dimensions)[20]. The wireless network logs correspond to the trace data collected

from a real wireless LAN (WLAN) over a period of several weeks by MIT (The

data set can be downloaded from http://nms.lcs.mit.edu/˜mbalazin/wireless/ ). The

fourth real-life data set is the KDD-CUP’99 Network Intrusion Detection stream data

set (RD4, 42 dimensions). RD4 has been used to evaluate the clustering quality for

several stream clustering algorithms [8][9]. This data set corresponds to the important

problem of automatic and real-time detection of cyber attacks and consists of a series

of TCP connection records from two weeks of LAN network traffic managed by MIT

Lincoln Labs [9]. Each record can either correspond to a normal network connection

or an anomaly (falling into one of 4 major categories).

The wireless LAN network and the KDD-CUP’99 network applications are all

related to anomaly detection. However, the data stream in the wireless network

application is unlabeled, while labeled training and test data are available in the

KDD-CUP’99 network anomaly detection applications. Thus, different strategies are

used for outlier detection in SPOT. In these two applications, data have been modeled
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as high-dimensional vectors where each of them contains a number of varied features

to measure the quantitative traffic behaviors. Therefore, SPOT can be easily applied

to detect outliers from them.

Before using KDD CUP 99 data in our experiments, we will discuss the major

problems that this data set (as well DARPA 98 data from where KDD CUP 99 data

was derived) has. As pointed by Brugger (http://www.kddnuggets.com/news/2007/n18

/4i.html), the major problems are 1) there lacks a validation to show that they look

like real network traffic, and 2) the data rates are far below what will be experienced

in a real medium sized network. However, researchers continue to use these data sets

for lack of anything better. It was still useful to evaluate the true positive performance

of a network IDS; however, any false positive results are meaningless [22]. By simply

considering the attack instances as outliers, the experimental work of SPOT using

KDD CUP’99 data set only aims to evaluate how well SPOT is able to detect outlying

connection records from the data set and the true positive rate (i.e., detection rate)

is considered more important than the false positive rate in our evaluation.

Data Preparation for Wireless Network Data Stream

The wireless LAN network we use consists of over 170 access points spreading over

three different physical locations. The WLAN consists of clients connected via access

points. SNMP (Simple Network Management Protocol) is used to poll access points

every 5 minutes for about four weeks in 2002 (from Saturday, July 20th through

Sunday, August 17th, 2002). 5-min intervals are chosen to avoid affecting access

point performance. Information is collected about the traffic going through each

access point as well as about the list of users associated with each access point. For

each user, detailed information is also retrieved on the amount of data (bytes and

packets) transferred, the error rates, the latest signal strength, and the latest signal

quality, etc. The raw data are summarized into connection oriented records by pairing

the MAC address that uniquely identifies the client with the access point to which

he/she connected. Each data contains 18 attributes.
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Attributes Description
Site Building where access point is located
Parent Name of access point
MAC MAC address of users
IP Network address of access point

Table 6.1: List of anonymized attributes

Data Pre-processing

Two aspects of data pre-processing work need to be performed before anomaly de-

tection is conducted using SPOT, namely, feature selection and data partitioning.

• Feature Selection

Feature selection needs to be first performed to identify those attributes that are

suitable for anomaly detection purpose. Amongst the 18 attributes in the original

data set, the information regarding the Site, Parent (i.e., access point), MAC Address

and Client IP for each connection is anonymized for confidential reasons. Table 6.1

presents the list of anonymized attributes in the data. These 4 attributes will not be

used for anomaly detection purpose. Also, there are another 3 attributes, i.e., AID,

State and ClassID, that are deemed irrelevant to anomaly detection and will not be

used either. The remaining 11 attributes are regarded relevant. Table 6.2 shows the

list of relevant attributes that will be used for anomaly detection.

After the relevant attributes have been identified, data are projected from the full

data space into the subspace delimited by the set of relevant attributes. This will

lead to a new data stream on which SPOT will be applied. Projected outliers will be

detected form the subspaces of the data space formed by these 11 attributes.

• Data Partitioning

Amongst those 11 relevant attributes, the attributes of Day and Moment are

utilized as summarization attributes, instead of the attributes that are directly used

in SPOT for constructing data statistics PCS. Using these two temporal attributes,

instead of other attributes, for data partitioning are mainly due to the following

reasons:
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Attributes Description
Day Date of the poll.
Moment Time of the poll.
ShortRet The total number of 802.11 Short Retries incurred across

all packet transmission attempts to this station.
LongRet The total number of 802.11 Short Retries incurred across

all packet transmission attempts to this station.
Quality A numeric measure in [0,100], average to give the idea of

mean quality.
Strength A numeric value in [0, 100] to indicate signal strength.
SrcPkts Number of observed packets for which this station was

the source.
SrcErrPkts Number of observed error packets for which this station

was the source.
DstPkts Number of observed packets for which this station was

the destination.
DstErrPkts Number of observed error packets for which this station

was the destination.
DstMaxRetryErr Number of observed max-retry error packets for which

this station was the destination.

Table 6.2: List of attributes used in anomaly detection

1. The temporal attributes feature an intuitive concept hierarchy and data can be

generalized and specified in a natural and meaningful way;

2. It is reasonable to assume data in different temporal contexts exhibit varied

data characteristics and distributions, e.g., the data traffic during weekdays are

quite likely to be different from that during weekend;

3. As the connection data are polled in a regular frequency, the distribution of

temporal attribute values between the whole and any part of the data stream

will be very similar. Hence, it is inappropriate to use these temporal attributes

to construct data statistics and detect anomalies.

Similar to the time dimension in an OLAP analysis, Day and Moment dimensions

in the data stream can be discretized into desired time granularities for data analysis

purpose. For example, Day can be transformed into a categorical value in {Weekday

(Monday-Friday), Weekend (Saturday-Sunday)} for studying varying network traffic
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All Daytime Night

Weekday Weekday-Daytime Weekday-Night
Weekend Weekend-Daytime Weekend-Night

Table 6.3: Temporal contexts for data partitioning

behaviors during the weekdays and weekends. Similarly, Moment can be transformed

to a categorical value in {Daytime (8AM-6PM), Night(6PM-8AM)} in order to in-

vestigate network traffic behaviors during the daily peak and off-peak time periods.

The discretization of Moment into Daytime and Night is purely subjective and one

may come up with different discretization of the Moment dimension.

Based on the varying granularities of Day and Moment, we can further create finer

temporal contexts such as Weekday-Daytime and Weekend-Night by pairing Day and

Moment dimensions. In total, we create 9 possible temporal contexts, shown in Table

6.3, for constructing data statistics PCS to detect anomalies. These temporal contexts

form a three-layer lattice of temporal contexts as follows:

• Top Level: All the data in the data stream without considering their Day and

Moment information, denoted by All ;

• Median Level: A single temporal context in either Day or Moment, denoted

as Weekday, Weekend, Daytime and Night ;

• Bottom Level: The combined/paired temporal contexts by Day and Mo-

ment, denoted as Weekday-Daytime, Weekday-Night, Weekend-Daytime and

Weekend-Night.

Based on the lattice of temporal contexts, different profiles for characterizing the

traffic behaviors will be constructed with respect to different temporal contexts. The

anomalies will be detected from the data streams that are relevant to each of these 9

temporal contexts.
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Anomaly Validation

Given a lack of labeled test data in this data stream, we need to devise a way for

validating the detection results of SPOT and other relevant competitive methods for

anomaly detection in data streams. Human examination of all the detected anomalies

is infeasible given the potentially large number of subspaces that need to be evaluated.

An automated validation method is thus desired.

• Outlier-ness Metrics for Validation Method

We use both distance-based and density-based metrics in the validation method.

Distance-based metrics are relatively simple and efficient. Moreover, because pro-

jected outliers are mainly detected from low dimensional subspaces, thus the effec-

tiveness of distance-based metrics is largely maintained. Density-based metrics are

more effective in measuring data’s outlier-ness, though their computational complex-

ity is higher.

Broadly speaking, the outlier-ness metrics that are used in the validation method

fall into two major categories, the global outlier-ness metrics and the local outlier-ness

metrics.

Global outlier-ness metrics. The global outlier-ness metrics refer to those metrics

that measure the outlier-ness of data points from the prospective of how far away they

are from the dense regions (or clusters) of data in the data space. The most intuitive

global outlier-ness metric would be the distance between a data point to the centroid

of its nearest cluster. This metric can be easily extended to considering the k nearest

clusters (k > 1) [114]. For an easy referral, we term these metrics as kNN Clusters

metric. The Largest Cluster metric used in [79] is also a global outlier-ness metric.

It measures the outlier-ness of a data point using its distance to the centroid of the

largest cluster in the data space.

In this study, we use the metric of k-Relative Distance (kRD) in the validation

method for identifying anomalies. Given parameter k, kRD of a point p in subspace

s is defined as

kRD(p, s, k) =
k dist(p, s)

average k dist(D(p), s)
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where k dist(p, s) is the sum of distances between p and its k nearest neighbors and

average k dist(D(p), s) is the average of such distance sum for the data points that

arrive before p.

Using kRD, we can solve the limitations of kNN Clusters and Largest Cluster

metrics. Specifically, we can achieve a better outlier-ness measurement than kNN Clusters

metrics when the shapes of clusters are rather irregular. In addition, we can relax

the rigid assumption of single mode distribution of normal data and lessen the pa-

rameter sensitivity of the Largest Cluster method. The advantages of using kRD are

presented in details as follows:

1. First, multiple cluster representative points are used in calculating kRD. This

enables kRD to deliver a more accurate measurement when the cluster shapes

are irregular. The representative points, being well scattered within the cluster,

are more robust in capturing the overall geometric shape of the clusters such that

the distance metric can deliver a more accurate measurement of the distance

between a data point and the dense regions of data sets, while using the centroid

is incapable of reliably achieving this. For instance, in case of a prolonged

shaped cluster as illustrated in Figure 6.1, it is obvious that data o is an outlier

while p is a normal data. However, the distance between p and the cluster

centroid is even larger than that for o (see Figure 6.1(a)). This will not happen

if multiple representative points are used instead though. In Figure 6.1(b), the

representative points in this cluster are marked in red color and we can see that

the average distance between p and its nearest representative points are less

than that of o, which is consistent with human perception;

2. Second, we do not limit the normal data to reside only in the largest cluster as

in the Largest Cluster method. kRD provides flexibility to deal with cases of

both single and multiple modes for the normal data distribution.

3. Finally, we employ the concept of distance ratio, instead of the absolute distance

value, in kRD to measure the outlier-ness of data points. Thus, kRD waivers

the need to normalize data distance for removing the effect of distance scale in
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Figure 6.1: Using centroid and representative points to measure outlier-ness of data
points

different subspaces. Also, value specification of a threshold parameter based on

the distance ratio is more intuitive and easier than the threshold based on the

absolute distance.

In the validation method, we do not partition the data space and use the centroid

of dense grid cells as representative points for calculating kRD, as we do in SPOT.

Instead, we employ the method proposed in [55] to generate representative points for

a higher degree of accuracy. The idea of such representative point generation method

is that, for a cluster c, a constant number of well scattered points in each cluster are

first chosen and these scattered points are then shrunk towards the centroid of the

cluster by a fraction of ρ, where 0 < ρ < 1. Let rep set(c) be the set of representative

points of cluster c. rep set(c) is generated in the following steps:

1. Initialization step: As an initialization, the cluster centroid c0 is inserted into

rep set(c);

2. Iterative steps: For each data p in c that has not yet been included into

rep set(c), p will be inserted into rep set(c) if p is the furtherest data points

from all the data currently existing in rep set(c). The distance between p and

rep set(c) is quantitized by the average distance between p and data points in

rep set(c), i.e.,

dist(p, rep set(c)) =

∑

dist(p, pi)

|rep set(c)| , where pi ∈ rep set(c)
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Figure 6.2: Cluster representative points generation

This step will continue until a desired number of scattered points have been

obtained in rep set(c);

3. Shrinking step: Cluster representative points are generated from all the scat-

tered data points in rep set(c) by shrinking them towards c0 by a factor of ρ,

i.e.,

pi = pi + ρ(c0 − pi), where pi ∈ rep set(c)

Figure 6.2 is a step-wise example showing how the cluster representatives are

generated. The number of representative points Nr = 6 in this example. Figure 6.2(a)

is the initialization step where the cluster centroid is selected as a representative point.

Figure 6.2(b) shows the well scattered data points selected in the cluster (marked in

red color). Figure 6.2(c) shows the shrinking of scattered points obtained in Figure

6.2(b) to eventually generate all the representative points (marked by red crosses).

The steps for computing kRD in the validation method for a data point p in

subspace s are as follows:

1. k-means clustering is performed using D(p) in s to generate k clusters;

2. Find Nr representative points from all the clusters using the method proposed

in [55]. The exact number of representative points for different clusters can be

proportional to the size of clusters;

3. Compute the average distance between each data in the horizon before p and

their k respective nearest representative points;

4. Compute the distance between p and its k nearest cluster representative points;
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5. Compute kRD as kRD(p, s, k) = k dist(p,s)
average k dist(D(p),s)

.

Local outlier-ness metrics. Unlike the global outlier-ness metrics, the local outlier-

ness metrics typically do not consider the distance between the data to the dense

regions of data in the data space. Instead, they quantitize the local data density

or distribution in the neighborhood of a data point in order to measure the outlier-

ness of this data. As we have discussed in the Chapter of Related Work, the major

local distance-based outlier-ness metrics include DB(k, λ), DB(pct, dmin), Dk and Dk

Sum. Compared with DB(k, λ) and DB(pct, dmin), Dk and Dk Sum are easier to use.

The value specification for k is far more intuitive and straightforward than the local

neighborhood parameters used (i.e., λ and dmin) in DB(k, λ) and DB(pct, dmin). We

will use Dk Sum in the validation method as it is more effective than Dk.

Besides the afore-discussed local distance-based metrics, we also use LOF, a rep-

resentative local density outlier-ness metrics. Even though there are other existing

local density metrics, such as COF and INFLO, that are more effective than LOF in

some cases, LOF is works well in practice and it is noticeably faster than COF and

INFLO.

• Choice of Validation Method

Given that the data in the wireless network anomaly detection application are

unlabeled, we need to choose a method as the validation method for establishing the

gold-truth results for performance evaluation. To select a good validation method,

we need to investigate the quality of the anomalies detected by different candidate

methods. Because the evaluation of anomaly quality is not straightforward, thus we

investigate the quality of clusters after the anomalies that are identified by different

methods have been removed. Intuitively, the better the clusters are formed after

removal of anomalies, the better quality of the anomalies are. In this sense, the overall

cluster quality can be used as a useful indicator of quality of anomalies detected by

different strategies.

To study the quality of anomalies deleted by different candidate validation meth-

ods, we need some objective quality metrics for anomalies. Two major metrics are
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commonly used to measure the quality of clusters, Mean Square Error (MSE) and

Silhouette Coefficient (SC) [80].

Mean Square Error (MSE): MSE is a measure for the compactness of clusters.

MSE of a cluster c is defined as the intra-cluster sum of distance of c in subspace s,

that is the sum of distance between each data in cluster c and its centroid, i.e.,

MSE(c, s) =
∑

dist(pi, c0, s), where c0 =

∑

pi

|c|
where |c|, pi and c0 correspond to the number of data within cluster c in s, the ith

data within cluster c and the centroid of cluster c in s, respectively.

The overall quality of the whole clustering result C in s is quantitized by the total

intra-cluster sum of distance of all the clusters we obtain in s. That is,

MSE(C, s) =
∑

MSE(c, s), for c ∈ C

A lower value of MSE(C, s) indicates a better clustering quality in s. A major

problem with MSE is that it is sensitive to the selection of cluster number; MSE will

decrease monotonically as the number of clusters increases.

Silhouette Coefficient (SC): SC is another useful measurement used to judge the

quality of clusters. The underlying rationale of SC is that, in a good clustering, the

intra-cluster data distance should be smaller than the inter-cluster data distance. The

calculation of SC of a clustering result C in subspace s takes the following several

steps:

1. Calculate the average distance between p and all other data points in its cluster

in s, denoted by a(p, s), i.e., a(p, s) =
∑

dist(p, pi, s)/|c|, for c ∈ C and pi ∈ c;

2. Calculate the average distance between p and data points in each other cluster

that does not contain p in s. Find the minimum such distance amongst all these

clusters, denoted by b(p, s), i.e., b(p, s) = min(
∑

dist(p, pi, s)/|cj|), for cj ∈
C and p 6∈ cj and pi ∈ cj ;

3. The SC of p in s, denoted by SC(p, s), can be computed by SC(p, s) =

b(p,s)−a(p,s)
max(a(p,s)),(b(p,s))

;
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4. The SC of the clustering C in s, denoted by SC(C, s), is simply the sum of SCs

for all the data points in the data set, i.e., SC(C, s) =
∑

SC(pi, s), for pi ∈ D.

The value of SC can vary between -1 and 1. It is desired that SC is positive and

and is as close to 1 as possible. The major advantage of SC over MSE is that SC is

much less sensitive to the number of clusters than MSE. Given the advantage of SC

over MSE, we will use SC as the anomaly quality metric in selecting the validation

method.

• Quality Evaluation of Anomalies

In this subsection, we present the quality evaluation of anomalies detected by

several different anomaly validation candidate methods by means of SC. We generate

four candidates from where the validation method will be chosen. There are the meth-

ods use kRD, Dk Sum, LOF , and the method that use all the three metrics. These

four anomaly detection methods under study are first applied to detect anomalies.

Then, we evaluate the cluster quality using SC. For each candidate method, we select

a specific number of top anomalies that have the highest metric values for evaluation.

The number of top anomalies we select for each candidate method is identical which

is denoted by top n. It is worthwhile pointing out that the anomalies measured us-

ing all the three metrics essentially form a number of trade-off planes where all the

anomalies in the same plane are not superior or inferior to each other while superi-

ority or inferiority can be established between anomalies across different planes. The

selection process for the top anomalies starts with the best plane until all the top n

anomalies have been selected.

For a fair comparison, we evaluate the cluster quality in the same set of subspaces

for all the candidate methods after the detected anomalies have been removed. This

set of subspaces can be obtained by a sampling technique. The subspaces are unique

and selected randomly from the full space lattice whose maximum dimensionality

is bounded by 4. Generating subspaces from this space lattice can ensure that the

resulting subspaces are of low dimensionality and contain most of the anomalies that

can be detected.
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KDF Dk Sum LOF KDF + Dk Sum + LOF

All 0.74 0.62 0.72 0.75
Daytime 0.60 0.77 0.71 0.67
Night 0.77 0.62 0.79 0.72

Weekday 0.71 0.47 0.80 0.74
Weekend 0.64 0.66 0.52 0.69

Weekday-Daytime 0.74 0.70 0.68 0.68
Weekday-Night 0.70 0.76 0.81 0.72

Weekend-Daytime 0.73 0.64 0.68 0.82
Weekend-Night 0.70 0.74 0.79 0.73

Table 6.4: SC results of different validation method candidates

The cluster quality evaluation results are presented in Table 6.4. In this figure, we

tabulate the Silhouette Coefficient for all the four candidates of validation methods

averaged over the same sampling subspaces. We can see that anomaly detection using

LOF and all the outlier-ness metrics perform generally better than the methods that

use kDF and Dk Sum; we can achieve better SC in 3 temporal contexts when using

LOF alone and the three metrics simultaneously, compared to 2 temporal contexts

by using kRD and 1 temporal contexts by using Dk Sum.

This experimental result provides a useful guidance for us to choose a good vali-

dation method for different temporal contexts in this study.

• Generation of Validation Data Set

The validation method is only able to deliver good anomaly detection for static

databases rather than data streams. In the static databases, one-time execution of

the validation method is sufficient for validating all the anomalies in a subspace.

Nevertheless, we need to perform the validation method once for each data in a

subspace in order to decide whether or not this data is an anomaly in this subspace.

This is due to the unique nature of outlier detection in data streams: a data that is

labeled as an anomaly at the time of its arrival may no longer be an anomaly later

as it may be masked by the data subsequently arrive. As a result, evaluating all the

data, even in a single subspace, is extremely expensive. To alleviate this problem, we

perform a data sampling to render the validation process tractable.
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The validation data set is generated for evaluating SPOT and all the other com-

petitive methods. Different methods under study may produce varied labeling for

both the anomalies and normal data for the same data stream. It is desired that the

validation data set covers all the anomalies detected by different methods and some,

if not all, normal data. The normal data are sampled such that the percentage of

anomalies in the whole validation data set is small (say 1%). For SPOT in which

multiple outlier-ness metrics are used, the probability of a normal data being selected

in the validation is in an inverse proportion to its Pareto ranking if data with stronger

outlier-ness are assigned a lower rank. For other competitive methods that use a sin-

gle outlier-ness metric, such probability is in a right proportion to the normal data’s

outlier-ness value. By doing so, we can encourage the selection of those normal data

with relatively strong outlier-ness (i.e., those data that narrowly pass the outlier-ness

thresholds and are therefore labeled as normal) for validation. The rationale for such

a skewed selection of normal data is that those normal data that narrowly pass the

thresholds are more subject to mis-labeling, compared with those normal data with

relatively lower outlier-ness. Thus, the selected set of normal data will be more useful

for the validation purpose than a randomly selected set of normal data. The other

data that are not either labeled as anomalies by detection methods nor sampled as

normal data are assume normal.

Formally, the validation data set, denoted as V D, for a total of m different detec-

tion methods, can be expressed as

V D = ∪m
i=1anomaly set(i) ∪m

i=1 sampled normal data(i)

where anomaly set(i) and sampled normal data(i) represent respectively the anoma-

lies and the sampled normal data labeled by the ith method under study.

This strategy for generating validation data set enables the validation be per-

formed much more efficiently. This is because the number of anomalies detected by

different methods are relatively small and the number of normal data to be validated

can be well adjusted by users.
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• Generation of Ground-truth Results

The validation method is executed on an offline basis to generate the ground-truth

results and we do not require this method be able to handle data streams. As a result,

more expensive computations, such as multiple scans of data, can be performed to

realize an accurate detection of anomalies.

When the validation for a data p in the validation data set V D is performed, we

need to specify two configurations:

1. Subspace configuration: The subspaces where validation is performed;

2. Stream length configuration: The portion of data stream in the horizon W that

arrives before p, denoted by D(p).

In other words, the validation of a data point p in validation data set V D is

conducted using a subset of data stream, i.e., D(p), in some subspaces. We note that

any two validation data points differ in their validation configurations because they

will definitely differ in their stream length configuration, regardless of their subspace

configuration.

To generate the ground-truth results for validation, we need to, for a validation

point p with configuration of s and D(p), quantitize kRD, Dk Sum and LOF for p

using D(p) in s. After all the data in V D have been evaluated, data can be ranked.

For each data p ∈ V D, the relative rank of p is computed as relative rank(p) =

rank(p)
|V D| . A smaller relative rank value indicates a higher outlier-ness. p is labeled as an

anomaly by the validation method if relative rank(p) is smaller than a corresponding

threshold, say 0.01. p will be labeled as a normal data otherwise. The data labeling

produced by the validation method will be compared with the results obtained by

SPOT and other competitive methods for a performance evaluation.

Now, we would like to discuss the approach for ranking validation data. Based on

Table 6.4, we can choose the best validation method for different temporal contexts.

If a single-metric validation method is used, then each data in V D is simply ranked

based on its single-metric value. If multi-metric method is used, all the data in V D

are first sorted in a descending order based on their Pareto count, this is, the number
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of data in V D that each data dominates. In the case of tie rank of Pareto count, the

data involved can be further sorted based on their average rank in each individual

criteria (i.e., kRD, Dk, LOF ). If both the Pareto count and average ranking cannot

break the tie, then the involved data are assigned the same rank.

Data Preparation for KDD-CUP’99 Outlier Detection Data Stream

In many applications, only identifying outliers/anomalies from data streams is not suf-

ficient. Given the inherently varying behaviors of different categories of anomalies, it is

desirable that the anomalies we detect could be further categorized into one of known

anomaly subtypes for a better understanding of their nature and characteristics. In

KDD-CUP’99 outlier detection application, anomalous network connections may be

manifestations of outliers that can be divided into as many as 4 different classes.

Different classes of attacks may distinguish themselves by anomalous connection be-

haviors exhibiting in different subspaces. Our task is to, by means of their different

connection behaviors in outlying subspaces revealed by SPOT, classify anomalous

connection records into one of the known attack classes (or the false-positive class).

•Introduction to KDD-CUP’99 Outlier Detection Application

The KDD-CUP’99 outlier detection data stream contains a wide variety of intru-

sions simulated in a military network environment. Each instance in this data stream

is a vector of extracted feature values from a connection record obtained from the raw

network data gathered during the simulated intrusions. A connection is a sequence of

TCP packets to and from some IP addresses. The TCP packets were assembled into

connection records using the Bro program modified for use with MADAM/ID. Each

connection was labeled as either normal or as exactly one specific kind of attack. All

labels are assumed to be correct. The attacks will be considered as outliers in our

study.

The simulated attacks fall into one of the following four categories: DoS: Denial

of Service (e.g., a syn flood); R2L: unauthorized access from a remote machine (e.g.,

password guessing); U2R: unauthorized access to superuser or root functions (e.g., a

buffer overflow attack); Probing: surveillance and other probing for vulnerabilities
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(e.g., port scanning).

The extract features included the basic features of an individual TCP connection

such as its duration, protocol type, number of bytes transferred, and the flag/label

indicating the normal or error status of the connection. Other features of an individual

connection were obtained by using some domain knowledge and include the number

of file creation operations, number of failed login attempts, where root shell was

obtained and others. Finally, there were a number of features computed using a two-

second time window. These include the number of connections to the same host as

the current connection within the past two seconds, percentage of connections that

have ”SYN” and ”REJ” errors, and the number of connections to the same service

as the current connection within the past two seconds. In total, there are 42 features

for this data stream. In addition, labeled training and test data sets are available in

this application. They are the data collected in the first seven weeks of the DARPA

experiments.

•Steps of Applying SPOT on KDD-CUP’99 Outlier Detection Data Stream

When applying on KDD-CUP’99 Outlier Detection data stream, SPOT takes

three major steps in its learning stage to detect outliers, which are presented below:

• Step 1: SST is first generated. As a large number of labeled sample outliers

are available in this application, SST will contain SS besides FS and US.

Supervised learning is performed to generate SS in SST. Since the sample

outliers have been assigned varied class labels, we can perform MOGA on all

the sample outliers belonging to the same class to produce the SS for that

particular class, and the final SS in SST contains SSs for the four different

classes. That is, SST = FS ∪ US ∪ SS (OD), where OD is whole set of

label outlier samples in the data set. SS(OD) is computed as SS (OD) = ∪4
i=1

SS(ODi), where ODi is the set containing the outlier samples belongs to the

ith attack class.

• Step 2: Once we have obtained SST, we need to generate PCS for each subspace

in SST to detect anomalies from the data set. Because normal samples are
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available in the training data set, thus it is possible for us to use only the

normal samples, rather than the whole training data, to construct PCS. This

ensures that PCS is constructed in a way to better reflect the normal behavior

of data in the application.

• Step 3: All the sample outliers in the training data will be evaluated in SST

to find their outlying subspaces. Please note that, when we are evaluating each

outlier, we only retrieve, but do not update, the PCS of the cell it falls into. This

is because the total number of outlier samples is far larger than that of normal

samples. Updating PCS using outlier samples will therefore bias it towards

outliers, which will disable the ability of SPOT to accurately identify outliers

thereafter. When outlying subspaces of all outlier samples are found, signature

subspace lookup table will be built. Signature subspace lookup table records

the outlying subspaces of anomalies that are used to categorize anomalies. We

will discuss it later on in this subsection.

In the detection stage of SPOT, we not only flag out anomalies found in the

data stream but also assign labels to them to indicate their membership outlier class.

Signature subspace lookup table is used (and updated incrementally) in this stage for

anomaly categorization purpose.

To successfully deploy SPOT in this application, we need to carefully address the

following several important issues:

• The training data available in this application are not appropriate for the train-

ing of SPOT and other anomaly-based detection methods. New training data

sets need to be generated to properly support the learning process of SPOT;

• The number of outlying subspaces for even a single outlier returned by SPOT

could be large. However, many of these outlying subspaces are redundant and

can be removed from the results. We need to develop an algorithm to prune

away redundant outlying subspaces to render the result more compact and

informative;
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• SPOT is only able to identify potential outliers but lacks the facility to correctly

categorize them. We need to incorporate categorization functionality into SPOT

in this application;

• The problem of high false positive rate is a common yet rarely treated problem

for anomaly-based detection methods. It is desired that some mechanisms can

be developed to lower the false positive rate and lessen security officer’s burden

in alarm examination.

•Training Data Generation

The training data set available in this application cannot be directly used by

SPOT and other anomaly-based detectors. This is due to the high proportion of

attack instances in this training data set; as high as 91% of the samples in this

training data are attacks. Normal data behavior is needed in identifying anomalies

from the data stream. As such, we need to construct new training data sets based

on the original one to meet the distribution assumption that the number of normal

connections is much larger than the number of attack connections.

In order to do this, [31] selects from the original training data set all the normal

instances and uses sampling technique to sample the attack samples (see Figure 6.3).

In this way, a new training data satisfying the distribution assumption is obtained,

in which normal connections are dominating the whole data set; as high as 98% of

the samples are normal connections while the number of samples for the four attack

classes combined amounts to 2%.

However, since only a small number of attack instances are sampled, the new

training data set may not be comprehensive enough in terms of capturing sufficient

attack instances for generating accurate profiles for different attack classes. Another

major limitation of the approach for generating training data in [31] is that the

training data set contains outlier samples of different classes. Samples of one class

may become noises for another class in the training. To minimize the effect of noises,

it would be desired that the training data set contain only outlier samples that belong

to the same class. MOGA can be applied to cleaner training data sets to find outlying

subspaces that are more relevant to different classes.
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Figure 6.3: Generating single training data set for obtaining SS

Figure 6.4: Generating multiple training data sets for obtaining SS

To remedy the inherent drawbacks of the single training data set generation

method, we adopt a strategy to generate multiple training data sets in order to

meet the learning needs of SPOT, as presented in Figure 6.4. The basic idea of this

strategy is that, for each outlier class, multiple training data sets are generated and

MOGA will be applied on each of them to produce SS for each class. Mathematically,

let DT be the original training data set available. DT consists two parts, the normal

and outlier samples, denoted by DN and DI , respectively. DT can be expressed as

DT = DN ∪DI

where DI consists of outlier instances of up to four different classes, so we have

DI = ∪4
i=1D

i
I
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In our work, we generate multiple new training data sets with replacement from

Di
I for each class i ∈ [1, 4], each such training data set can be expressed as

Di,j
T ′ = DN ∪Di,j

I

where j is the number of data sets generated from Di
I . The data distribution in each

new training data set for different classes satisfies the requirement that the normal

data dominate the whole training data set. By applying MOGA on Di,j
T ′ , we can

obtain SS for class i ∈ [1, 4], denoted as SS i, as

SS i = ∪jMOGA(Di,j
T ′ )

The complete SS is simply the union of SS i for i ∈ [1, 4] as

SS = ∪i SS i

By including FS and US, the complete SST is finally constructed as

SST = FS∪ US ∪SS

From all the training data sets that have been generated, we can use a small

portion of them (say 30%) for cross validation. Cross-validation can help enhance

the robustness of SPOT from two aspects. First, it can test whether or not the SST

constructed can achieve a satisfactory detection performance (e.g. detection rate ≥
90% and false positve rate ≤ 10%) before it is deployed to detect outliers from the

data streams. Second, if there are multiple different SSTs generated under different

parameter setups, then it is possible to choose a SST that features a higher detection

rate and/or a lower false positive rate through cross validation.

•Redundant Outlying Subspace Removal

SPOT is able to find outlying subspaces for data in the stream. However, we may

obtain a large number of resulting outlying subspaces even for a single data in the

stream. Amongst these outlying subspaces, there exists some dominating outlying

subspaces that contribute to the outlier-ness of anomalies. Other outlying subspaces

can be considered as redundant ones. To facilitate the analysis of anomalies, we
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Figure 6.5: Example of outlying subspaces and its corresponding Outlying Subspace
Front (OSF) for an anomaly

need to extract the dominating outlying subspaces for anomalies from their outlying

subspaces detected by SPOT.

Definition 6.1. Dominating subspace: Let s and s′ be two subspaces in the set of

outlying subspaces of an anomaly o. If s ⊂ s′, then we call s a dominating subspace

over s′. Here s ⊂ s′ (i.e., s is a proper subset of s′) if for each dimension d ∈ s, we

have d ∈ s′ and ∃d ∈ s′ that d 6∈ s.

In a space lattice where the low order subspaces are positioned in the bottom

while the high order subspaces are put on the top, there exists a boundary between

dominating outlying subspaces and non-dominating outlying subspace/non-outlying

subspaces. In our work, we term this line as Outlying Subspace Front. Next, we

present the definition of Outlying Subspace Front of an anomaly.

Definition 6.2. Outlying Subspace Front: Let OS(o) denote the set of outlying

subspaces of an anomaly o. The Outlying Subspace Front of o is defined as the set

of all its dominating subspaces in OS(o), i.e.,

OSF (o) = {s, where s is a dominating subspace in OS(o)}

OSF has the following characteristics:

• A subspace in OSF cannot dominate (or be dominated by) any other subspaces

in OSF. They are all partial ordered subspaces;
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Algorithm: Find OSF

Input: OS(o) (Outlying subspace set of o).
Output: OSF (o) (Outlying Subspace Front of o).
1. OSF (o)← ∅;
2. Sort subspaces in OS(o) in an ascending order in terms of their dimensionalities;
3. FOR each existing subspace s in sorted OS(o) DO {
4. OSF (o)← OSF (o) ∪ s;
5. Delete s from OS(o);
6. FOR each existing subspace s′ in sorted OS(o) DO
7. IF (s ⊆ s′) THEN delete s′ from OS(o);}

Figure 6.6: Algorithm for finding Outlying Subspace Front

• OSF is a subset of the corresponding OS and each subspace in OS will be

dominated by one or a few subspaces in OSF, i.e., OSF (o) ⊆ OS(o) and ∀s ∈
OS(o), ∃s′ ∈ OSF (o) that s′ ⊆ s.

Figure 6.5 presents an example of outlying subspaces of an anomaly and its cor-

responding Outlying Subspace Front.

The algorithm for finding OSF for an anomaly o is presented in Figure 6.6. The

sorting operation in Step 1 of the algorithm helps achieve an early detection of dom-

inating subspaces and, thus, leads to a more efficient pruning of the non-dominated

subspaces. Step 2 inserts the next existing subspace in OS(o) into OSF (o). Step 6-7

prune away, for the current subspace s under study in the For loop, all the subspaces

that are dominated by s. Because of these pruning operations, we can guarantee that

the subspaces we insert into OSF (o) are dominating subspaces in OS(o). The whole

algorithm is terminated when OS(o) becomes an empty set.

Detection of OSF can have the following advantages:

• The size of OSF for an anomaly is typically far more smaller than the size

of its corresponding OS, especially in the case of using a small anomaly-ness

threshold. Consequently, storing and processing based on OSF will be much

more efficient than the operations based directly on OS;
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• OSF is able to capture the subspaces that are truly contributing to the outlier-

ness of anomalies. The existence of a large number of non-dominated (redun-

dant) subspaces may adversely bias the weights of the underlying contributing

subspaces in the classification analysis of anomalies.

•Anomaly Categorization

Outlier classification mainly involves categorizing detected anomalies into one of

know outlier classes or the class of false positive. We derive categorization function-

ality and incorporate it into SPOT for achieving this objective.

Signature Subspaces

To achieve anomaly categorization, we generate signature subspaces for each out-

lier class. The signature subspaces for a target class are those subspaces that can be

used to identify outliers for this particular class. To generate signature subspaces for

a particular class, we collect the subspaces in OSF of those anomalies falling to this

class and use them as the signature subspaces of this class. Mathematically speaking,

the set of signature subspaces of class c is defined as

Signature(c) = {s : ∃o belonging to c, s ∈ OSF (o)}

Within a class, different signature subspaces have varying weights to indicate their

capability in correctly identifying anomalies for this class. The weighting scheme is

necessary in the similarity measure used in the categorization process.

Signature Subspace Weights and Similarity Measure

The weight of a signature subspace s with respect to a class represent the discrimi-

nating ability of s towards c. The higher the weight is, the stronger the discriminating

power of this subspace is in identifying the instances of class c. Because OSF is by

nature a bag of subspaces, we thus borrow the idea of tf-idf (term frequency-inverse

document frequency) weighting method, a commonly used technique in the domain of

information retrieval and text mining, to measure the weight of signature subspaces

for each class. The tf-idf weight is a statistical measure used to evaluate how im-

portant a term is to a document in a collection or corpus. The importance increases
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proportionally to the number of times a term appears in the document but is offset

by the frequency of the term in the whole corpus.

Term Frequency (tf). The term frequency (tf) for a class is simply the number

of times a given signature subspace appears in that class. This count is normalized

to give a measure of importance for the signature subspace within the class. The

normalization is performed to prevent a bias towards class with larger number of

signature subspaces that may feature a higher term frequency regardless of the actual

importance of that subspaces in the class. The tf for subspace si in class cj is defined

as

tfi,j =
N(si, cj)

N(cj)

where N(si, cj) denotes the number of occurrences of signature subspace si in class

cj and N(cj) is the number of occurrences of all signature subspaces in class cj .

Inverse Document Frequency (idf). The inverse document frequency (idf) is a

measure of the general importance of the term. The idf for signature subspace si

in class cj is defined as the inverse of percentage of the classes that contained si.

Normally, the logarithmic form of this ratio is used for scaling purpose, i.e.,

idfi,j = log
|C|

|{cj, where si ∈ cj}|

where |C| corresponds to the total number of classes and |{cj, where si ∈ cj}| is the

number of classes that contain si.

Finally, the tf-idf weight of signature subspace si with regard to class cj is the

product of tfi,j and idfi,j, i.e.,

wsi,cj
= tfidfi,j = tfi,j × idfi,j

Similarity Measure. Similarity measure needs to be properly defined before the

anomalies can be classified. The similarity between an anomaly o and class c is defined

as their average inner product, which is the normalized sum of weight products of the

outlying subspaces of o and the signature subspaces of class c, i.e.,

Sim(o, c) =
o · c

|OSF (o)|
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c1 c2 · · · cm

s1 N(s1, c1), T (s1, c1) N(s1, c2), T (s1, c2) · · · N(s1, cm), T (s1, cm)
s2 N(s2, c1), T (s2, c1) N(s2, c2), T (s2, c2) · · · N(s2, cm), T (s2, cm)
· · · · · · · · · · · · · · ·
sn N(sn, c1), T (sn, c1) N(sn, c2), T (sn, c2) · · · N(sn, cm), T (sn, cm)

Table 6.5: The time-decayed signature subspace lookup table

where |OS(o)| denotes the number of outlying subspaces of o. Let wo,s be the binary

vector of o and wc,s be the weight vector of class c. Normally, we assign wo,s = 0 if

subspace s does not appear in OS(o), so the above similarity measurement can be

written as

Sim(o, c) =

∑

s∈Q ws,o · ws,c

|OSF (o)|

Signature Subspace Lookup Table

In order to compute the similarity between anomalies and classes efficiently, we

need to have a mechanism to realize fast retrieval of tf-idf information for a give sig-

nature subspace. To this end, we construct a signature subspace lookup table to store

all the signature subspaces, occurring in different classes, for efficient retrieval. Also,

to render it suitable for handling data stream, we incorporate time stamp information

to implement time model in this table. We term this table the time-decayed signature

subspace lookup table, which is defined as follows.

Definition 6.3. Time-decayed signature subspace lookup table. Given the

set of classes C and the signature subspaces for all the classes in C, the time-decayed

signature subspace lookup table is a (|S| + 1) × |C| table, where |S| and |C| are

the total number of signature subspaces and classes, respectively. C consists of the

attack and false-positive classes. The entry of ai,j , 1 ≤ i ≤ |s|, 1 ≤ j ≤ |C| is a pair

of < N(si, cj), T (si, cj) >, corresponding respectively to the count of si in cj and the

time stamp when this entry was last updated. The entry of a|s|+1,j, 1 ≤ j ≤ |C| is
also a pair in the format of < N(cj), T (cj) >, recording the total number of signature

subspaces in cj and the time stamp when this entry was last updated.

An example of the time-decayed signature subspace lookup table is given in Table



135

6.5. It is worthwhile noting that, in time-decayed signature subspace lookup table,

T (si, cj) needs to be updated every time when an anomaly that has outlying subspace

si is classified into class cj , and T (cj) needs to be updated when an anomaly is

classified into cj , regardless of its outlying subspaces.

Based upon the signature subspace lookup table, it will be very efficient to com-

pute td-idf of each signature subspace. First, tfi,j can be computed as follows.

tfi,j =
weight(T ′, T (si, cj)) ·N(si, cj)

weight(T ′, T (cj)) ·N(cj)

where T ′ is the time stamp when the data that has outlying subspace si is processed.

The information of N(si, cj) and N(cj) can be directly retrieved for computation from

the signature subspace lookup table. The weight coefficients are defined as

weight(T ′, T (si, cj)) = e−
α(T ′−T (si,cj))

∆t

weight(T ′, T (cj)) = e−
α(T ′−T (cj ))

∆t

idfi,j can be computed as

idfi,j = log
|C|

|c, where si ∈ c at T ′|

where |c, where s ∈ c at T ′| denotes the number of classes that contain s at time T ′.

This only involves counting from the lookup table the classes that contains si.

The time-decayed signature subspace lookup table is constructed in the training

stage of SPOT using the labeled training data. To do so, we need to register signature

subspaces of different classes into this lookup table. Specifically, for each anomaly o

found in the labeled training data with its Outlying Subspace Front OSF (o), class

label c and time stamp T ′, we need to register all the subspaces of OSF (o) into the

lookup table. This mainly involves initializing and/or updating the counts and time

stamps for classes and signature subspaces in the lookup table. Varying updating

schemes are used in the following two cases:

1. If si ∈ OSF (o) has already existed in the signature subspace lookup table, then

we update class count N(c) and time stamp T (c) of class c as
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N(c) = weight(T ′, T (c)) ·N(c) + 1

T (c) = T ′

and update subspace count N(s, c) and time stamp T (s, c) as











N(s, c) = weight(T ′, T (s, c)) ·N(s, c) + 1

T (s, c) = T ′

2. If s ∈ OSF (o) does not exist in the signature subspace lookup table, then we

will update class count N(c) and time stamp T (c) of class c as











N(c) = weight(T ′, T (c)) ·N(c) + 1

T (c) = T ′

and initialize subspace count N(s, c) and time stamp T (s, c) as











N(s, c) = 1

T (s, c) = T ′

For each class c′ 6= c, we perform the following initialization:











N(s, c′) = 0

T (s, c′) = ” ” (null time stamp)

Steps for Anomaly Classification

When constructed, the signature subspace lookup table can be used to classify

anomalies in the data stream. Each anomaly is classified into one or more possible

attack classes or the false-positive class based on the class membership probabilities

of the anomaly. The class membership probability of an anomaly o with respect to

class ci ∈ C is computed as

pr(o, ci) =
sim(o, ci)
∑

i sim(o, ci)
× 100%, where ci ∈ C
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The higher the probability for a class is, the high chance that the anomaly falls into

this class.

An anomaly o can be classified into a class ci if pr(o, ci) ≥ τ , where τ is the

similarity threshold. As s result, under a given τ , it is possible that an anomaly o is

classified into a few, instead of one, classes if their similarities are high enough. The

set of classes that o may fall into, denoted as class(o), is defined as

class(o) = {ci, where pr(o, ci) ≥ τ, ci ∈ C}

For each anomaly, we can further sort its membership classes based on the re-

spective membership probabilities in an descending order. This facilitates users to

pick up the top k (k ∈ [1, |C|]) most likely attack class(es) of the anomaly for further

investigation.

After the classification of o is finished, we need to update the counts and time

stamps for classes and signature subspaces in the lookup table. Such updates re-

flect the concept drift as the lookup table is updated accordingly in response to the

data dynamics by adjusting the weights of signature subspace in the lookup table. A

promising characteristic of signature subspace lookup table is that it can be updated

incrementally, enabling the update of lookup table to be performed very efficiently in

the detection process. For each detected anomaly, the steps of class membership prob-

ability computation, class classification and signature subspace lookup table updating

are performed in an on-the-fly manner.

•Handle False Positives

False positives, also called false alarms, are those anomalies that are erroneously

detected as the attacks by the system. Even though they are benign in nature and not

harmful as compared to real attacks, false positives consume a fair amount of human

effort spent on investigating them whatsoever and thus making it almost impossible

for security officers to really concentrate only on the real attacks. Generally, among

all the anomalies detected, up to 90% of them may be false positves. It is much

desirable to quickly screen out these false postives in order to allow closer attention

to be paid towards the real harmful attacks.
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The situation we are facing in the KDD-CUP’99 Outlier Detection application is

that there are no available false-positive exemplars in the training data set. Therefore,

unlike the attack classes, it is not easy to directly create the signature subspaces for the

false-positive class. However, there are a fair amount of normal samples in the training

data set. If any of them are found abnormal, i.e., they have some outlying subspaces,

then they will be considered as false positives. These false positives from the training

data provides the basis for constructing the signature subspace for the false-positive

class. Consequently, like other attack classes, the construction of signature subspaces

of false-positive class can be started as early as in the learning stage of SPOT.

The set of signature subspaces of the false-positive class starts from an empty

set. In the learning stage of SPOT, a normal data in the training data set will be

considered as a false positive if it is found abnormal in some subspaces. Formally, a

data point p is a false positive if we have

OS(p) 6= ∅ and label(p) = normal

The moment a data point p is identified as a false positive, the subspaces in its OSF

will be properly registered into the current signature subspace lookup table. Ideally,

the similarity between false positives and the false-positive class should be significantly

higher than their similarities to other attack classes. However, this may not be true

in the early stage due to the immatureness of the signature subspaces of the false-

positive class. As an increasing number of false positives are continuously registered,

the signature subspaces of the false-positive class will keep on growing. As a result,

we will witness an continuously improved classification accuracy of false positives. We

keep trace of the goodness of the signature subspaces we have constructed thus far

at any time of the learning process. As a rule of thumb, the growing stage could be

continued until the moment when a satisfied detection accuracy, say 90%, is achieved

for false-positive class.

If the training data fail to establish a signature subspace lookup table for achiev-

ing a satisfactory classification accuracy, the construction of signature subspaces for

the false-positive class will be continued to the detection stage of SPOT. Since the

examination of false positives by domain experts during the detection stage is rather
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Figure 6.7: Change of the member probabilities of anomalies w.r.t the false-positive
class

time-consuming, if it is not completely impossible, we thus employ an alternative

automatic approximation method to expand the set of signature subspaces for the

false-positive class. The basic idea for this automatic approach is that we collect

the anomalies detected by SPOT and label those anomalies as false positives whose

probability for falling into any known attack class is lower than a corresponding

probability threshold. Given that the overwhelming majority of anomalies detected

by SPOT are false positives, it is reasonable to consider all these anomalies that

cannot be categorized into any attack classes as false-positives without significantly

compromising its detection accuracy. This could save a lot of human efforts taken in

anomaly examination.

When labeled samples are absent, we cannot rely on the detection rate to properly

pinpoint the transition from the growing stage to the later mature stage. Alterna-

tively, we depend on the changes in the membership probabilities of anomalies with

regard to the false-positive class. The higher the membership probability is, the better

identification is achieved for the false positives. Such membership probability value

is relatively low at the beginning due to the immatureness of the signature subspaces

of the false-positive class. When this set grows as time evolves, we gradually obtain
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a better detection performance of false positives and the similarity value will be in-

creased. When the similarity value starts to converge (reaching a plateau stage), then

we can consider the set of signature subspaces of the false-positive class to be ma-

ture. Figure 6.7 shows the change of the membership probabilities of anomalies with

respect to the false-positive class. Please note that, after the set of signature sub-

space has reached the mature stage, we are in a better position to identify anomalies.

One such example will be the 93th anomaly shown in Figure 6.7 that has remarkably

low probability with respect to false-positive class compared to other anomalies. It

is probably an attack instance, though its exact attack class is unknown by solely

reading this figure.

6.2 Experimental Results

After data preparation and application interface development have been finished,

we can conduct experimental evaluation on SPOT and compare the performance of

SPOT with other competitive methods. We use both synthetic and real-life datasets

for performance evaluation in our experiments. All the experimental evaluations are

carried out on a Pentium 4 PC with 512MB RAM. These experimental results are

reported in this subsection.

6.2.1 Scalability Study of SPOT

The scalability study investigates the scalability of SPOT (both learning and detection

processes) w.r.t length N and dimensionality ϕ of data streams. Sine construction

of FS does not require any learning process, thus the learning process we study

here refers only to the unsupervised learning that generates US of SST. Due to their

generality and controllability, data sets generated by SD1 with different N and ϕ are

used in all scalability experiments.

Scalability of Learning Process w.r.t N

Figure 6.8 shows the scalability of unsupervised learning process w.r.t number of

training data N . The major tasks involved in the unsupervised learning process are
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Figure 6.8: Scalability of learning process w.r.t data number

multi-run clustering of training data, selection of top training data that have the

highest outlying degree and application of MOGA on each of them to generate US
of SST. The lead clustering method we use requires only a single scan of the training

data, and the number of top training data we choose is usually linearly depended on

N . Therefore, the overall complexity of unsupervised learning process scales linearly

w.r.t N .

Scalability of Learning Process w.r.t ϕ

Since the construction of FS in SST does not need any leaning process, we only need

to study the effect of data dimensionality on the construction of US. Because US
is only supplemental to FS, a relatively large fixed search workload of the MOGA

will be sufficient for most of cases. Under a fixed search workload, the complexity of

constructing US is in an exponential order with regard to the data dimensionality.

This is because the computation of the PCSs of projected cells involves data aggrega-

tion of the BCSs of their base cells and the number of base cells grows exponentially

when the data dimension increases. Figure 6.9 shows the results, which indicate an

exponential growth of execution time of learning process when ϕ is increased from 20
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Figure 6.9: Scalability of learning process w.r.t data dimension

to 100 under a fixed search workload in MOGA.

Scalability of Detection Process w.r.t N

In Figure 6.10, we present the scalability result of detection process w.r.t stream length

N . In this experiment, the stream length N is set much larger than the number of

training data in order to study the performance of SPOT in coping with large data

streams. Figure 6.10 shows a promising linear behavior of detection process when

handing an increasing amount of streaming data. This is because that the detection

process needs only one scan of the arriving streaming data. In addition, BCS and

the PCS are both incrementally maintainable, thus the detection process of SPOT is

efficient. This leads to a good throughput of SPOT and enables it to deal with fast

data streams.

Scalability of Detection Process w.r.t ϕ

The dimensionality of a data stream ϕ affects the size of FS that is used in detection

process. When MaxDimension is fixed, the size of FS is in an exponential order of
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Figure 6.10: Scalability of detection process w.r.t data number

ϕ, which is usually much larger than that of US and SS . This causes FS to dominate

the whole SST. As such, the execution time of detection process is expected to grow

exponentially w.r.t ϕ. We typically set lower MaxDimension values for data streams

with higher dimensionality to prevent an explosion of FS. In this experiment, we

first use MaxDimension = 3 for data streams of different dimensions and we can see

an exponential behavior of the detection process. Then, we use variable values for

MaxDimension to adjust the size of FS. We set MaxDimension = 4 for data sets

with dimension of 20 and 40, set MaxDimension = 3 for data sets with dimension

of 60 and finally set MaxDimension = 2 for data sets with dimension of 80 and

100. If this strategy is used, we will witness an irregularly shaped, rather than an

exponential, curve of the detection process w.r.t ϕ. The results are presented in

Figure 6.11.

Throughput Analysis of SPOT

At the end of scalability study, we would like to carry out the throughput analysis of

SPOT. This analysis involves investigating the number of data that SPOT is able to

process per second under different number of data dimensions. In this experiment,



144

20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

Number of dimensions

E
xe

cu
tio

n 
tim

e 
(S

ec
.)

Fixed MaxDimension
Variable MaxDimension

Figure 6.11: Scalability of detection process w.r.t data dimension

we evaluate the throughput of SPOT under five different numbers of dimensions,

ranging from 10 to 50. The results are shown in Figure 6.12. Because FS dominates

the whole SST and its size is in an exponential order with respect to the number of

data dimensions, thus the time required to process the same amount of data is also

approximately in an exponential order of the number of data dimensions. Hence,

the throughput of SPOT is decreased exponentially when the number of dimensions

increases.

6.2.2 Convergence and Adaptability Study of SPOT

The convergence and adaptability study of SPOT involve the investigation on the

convergence of MOGA in SPOT for searching outlying subspaces and the evolution

of SST when the outlier detection process evolves in SPOT.

Convergence study of MOGA

We first study the convergence of MOGA in terms of optimizing RD, IRSD and IkRD.

Convergence of MOGA is crucial to outlying subspaces searching in SPOT. We inves-

tigate the average of RD, IRSD and IkRD of the top 10 subspaces in the population
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Figure 6.12: Throughput analysis of SPOT

of each generation of MOGA. This experiment is conducted on SD1, RD1, RD2, RD3

and RD4. Only the results of RD4 (KDD-CUP’99 data stream) are presented (see

Figure 6.13). Similar results are obtained for other datasets. Generally speaking,

the criteria are being improved (minimized) as more generations are performed in

MOGA. This indicates a good convergence behavior of MOGA in searching outlying

subspaces. However, there are some abrupt increase of optimizing criteria values in

the search process. The underlying reason is that, when elitism is not used, there is a

higher chance of the occurrence of degrading generations in the evolution. Here, de-

grading generations refer to those generations in the evolution whose fitness function

values of a population, especially those of the top individuals, become worse than

its previous generation. This is due to the randomized nature of MOGA that likely

renders good solutions in one generation to be lost in the next one by crossover or

mutation operations.

When elitism is employed, we can achieve a better optimization of RD, IRSD and

IkRD. Because the best solutions are copied into the next generation, we do not see

any vibrations of optimizing criteria values in MOGA and the optimizing criteria can
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Figure 6.13: Convergence study of MOGA

be constantly improved as the evolution proceeds.

Evolution of SST

One of the important features of SPOT is its capability of self-evolution. This feature

enables SPOT to cope with the fast-changing data streams. In this experiment, we

investigate the evolution of SST as an informative indicator of concept drift of data

streams. The setup is as follows. We keep the initial version of SST (i.e., the SST

obtained after the first 1000 data points are processed) and record the versions of

SST when every 1000 data (up to 10,000) are processed afterwards. Self-evolution is

activated at every 1000-data interval. We compare different SST versions with the

initial one and calculate the percentage of identical subspaces. SD1, RD1, RD2, RD3

and RD4 are used in this experiment. The results are shown in Figure 6.14. We find

that an increasing number of subspaces in the initial SST version have disappeared in

the later SST versions as more data points are processed. We use the same seeds in

MOGA, ruling out the randomness in individual generation for different self-evolution

sessions. Therefore, the change of SST is due to the changing characteristics of the

data stream (reflected by the BCS and the PCS) and outliers we have detected in
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Figure 6.14: Evolution of SST

different stages.

6.2.3 Sensitivity Study of SPOT

In this subsection, experimental study will be conducted to test the sensitivity of

SPOT towards the major parameters it uses. We will first investigate of the effect of

pre-specified outlier-ness thresholds. Then, we will study the effect of search workload

W of MOGA. As multi-run lead clustering is the core technique used in the unsuper-

vised learning to generate US of SST, we will also evaluate the effect of two major

parameters used in the unsupervised learning, i.e., number of runs of lead clustering

Nruns and number of top outlying training data Ntop we choose to apply MOGA.

Effect of Pre-specified Outlier-ness thresholds

We first evaluate the effect of the pre-specified outlier-ness thresholds on the perfor-

mance of SPOT. We use RD4 in this experiment and evaluate the detection rate and

false positive rate under five different outlier-ness thresholds, i.e., 10, 20, 30, 40 and

50. Intuitively speaking, a higher threshold will result in a lower detection rate and

a lower false positive rate, and vice versa. The results are presented in Table 6.6. As
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t=10 t=20 t=30 t=40 t=50

Detection rate 99.94% 99.82% 96.77% 96.65% 96.65%
False positive rate 29.59% 20.35% 15.10% 12.43% 10.57%

Table 6.6: Performance of SPOT under varying thresholds

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
20

40

60

80

100

120

140

160

180

200

Search workload

E
xe

cu
tio

n 
tim

e 
(S

ec
.)

Figure 6.15: Effect of search workload on speed of MOGA

we can see from this table, SPOT is able to consistently achieve very good detection

rates (over 96%) for all the five different thresholds. This indicates the insensitivity

of the detection rate of SPOT with respect to the thresholds. In contrast, the false

positive rate of SPOT is relatively more sensitive to the thresholds. It changes from

29.59% to 10.57% when the threshold value is reduced. However, in our applications,

the detection rate is normally considered more important than the false positive rate,

and a high and reliable detection rate (as achieved by SPOT) is a desired feature for

the outlier detection methods in these applications.

Effect of Search Workload of MOGA W

The search workload of MOGA represents the total number of subspaces that are

explored by MOGA. It directly affects the speed of MOGA and may also influence



149

the detection effectiveness of SPOT. If the terminating condition of MOGA is speci-

fied using the maximum number of generations performed in MOGA, then the search

workload is determined by the human-specified parameters including the number of

generations Ng and the number of individuals (subspaces) generated in each genera-

tion Np. Let W denote total search workload of MOGA and it can be quantified as

W = Ng ×Np.

Figure 6.15 shows the execution time of the MOGA component of SPOT under

varying search workloads, ranging from 1,000 to 10,000. Clearly, the execution time of

MOGA increases approximately linearly with respect to its search workload. Figure

6.16 presents the values of the three optimizing criteria, RD, IRSD, IkRD, averaged

over 5 different MOGA runs when the search workload is increased from 1,000 to

10,000. The result in Figure 6.16 indicates that the three criteria are steadily improved

by increasing the search workload of MOGA. Nevertheless, the US or SS in SST is

relatively small compared with FS, thus MOGA is able to produce a good US or

SS When a sufficiently large search workload is allowed. Once a good US or SS
has been achieved, solely increasing the search workload will not lead to a significant

improvement of US or SS any more. In Figure 6.16, the improvement of the three

criteria when the search workload is increased from 6,000 to 10,000 is obviously much

more marginal than the improvement obtained earlier when the search workload is

increased from 1,000 to 6,000.

Effect of Number of Clustering Runs Nruns

To generate US in SST, multi-run leading clustering is employed to find the top

outlying training data. The outlying degree of the training data are called Outlying

Factor. In this experiment, we will study the change of Outlying Factor of training

data when the number of clustering runs is increased. SD1, RD1, RD2 and RD3

are used in this experiment. Figure 6.17 shows the result. The value of Y axis

when X = j in this figure corresponds to the average difference of Outlying Factors

for all training data observed in the ith run with regard to the (j − 1)th run, i.e.,

Y (j) =
∑N

i=1 |OF j(pi)−OF j−1(pi)|
N

. As we can see from Figure 6.17, the outlying degree
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Figure 6.16: Effect of search workload on objective optimization

of training data becomes stabilized when the number of clustering runs is increased,

demonstrating a good convergence phenomenon. This confirms the effectiveness of

using multi-run strategy to reduce order sensitivity of the lead clustering method.

Also, this experiment suggests that it is unnecessary to have a large Nruns value.

Based on our experimental experiences, specifying Nruns between 5 and 10 will be

generally sufficient to achieve a good convergence of Outlying Factor for the training

data.

Effect of Number of Top Outlying Training Data Ntop

The number of top outlying training data Ntop we select may influence the effectiveness

of SPOT in detecting projected outliers. Figure 6.18 presents the effect of Ntop on

SPOT using RD3 and RD4 because the ground-truth results can be established in

RD3 and the labeled training data are available in RD4. We evaluate the percentage

of outliers correctly flagged by SPOT using only US in these data sets under different

Ntop values. We can see that, as Ntop is increased, the number of detected projected

outliers increases as well but tends to converge later on. This is because US as well as

the detecting capability of SPOT is enhanced by increasing Ntop but approaches its
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Figure 6.17: Effect of number of clustering iterations

limit when almost all the outlying training data have been included. This experiment

establishes that we will still be able to achieve a good effectiveness of SPOT even

when Ntop is small relative to the number of training data. A rule of thumb for

specifying Ntop is to set it as a small percentage (for instance 1%) of the total number

of training data based on the estimated frequency of outliers in the stream.

6.2.4 Effectiveness Study of SPOT

In the last part of experimental evaluation, we will conduct effectiveness study of

SPOT. A number of comparative experiments will also be performed between SPOT

and other competitive methods.

Competitive Methods for Comparative Study

Since there is little research conducted in projected outlier detection for high-dimensional

data streams, we cannot find the techniques tackling exactly the same problem as

SPOT does for comparison. However, there are some related existing approaches for

detecting outliers from data streams that we can compare SPOT with. These meth-

ods can be broadly categorized as methods using histogram, Kernel density function,
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Figure 6.18: Effect of number of top outlying training data selected

distance-based function and clustering analysis, respectively.

Histogram and Kernel density function are amongst the most commonly used

statistical techniques in outlier detection. Histograms are created for each dimension

of the data stream. The density (i.e., number of data points) falling into each bin of

the histogram are recorded. The outlier-ness of a data point is computed feature-wise

for multi-variate data as follows:

outlier ness(p) =
∑

f∈F

wf × (1− pf)/|F |

where pf is the probability that feature f takes the value of p, pf is calculated as the

ratio of the density of the bin p belongs to against the total number of points arriving

thus far. wf is the weight assigned to feature f . For simplicity, wf is set equal for

all the attributes in the data stream. All attributes are considered in calculating the

outlier-ness of data points of the stream in the histogram method. |F | denotes the

total number of features in the data set. In this histogram-based anomaly detection

method, a data point is an anomaly if its outlier-ness is above a threshold. Kernel

density function models local data distribution in a single or multiple dimensions of

space. One of the representative methods using Kernel function is proposed in [100]

for detecting anomalies from sensor network. A point is detected as an anomaly if
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the number of values that have fallen into its neighborhood (delimited by a sphere

of radius r) is less than an application-specific threshold. The number of values in

the neighborhood can be computed by the Kernel density function. To facilitate the

comparison, the functionalities of this Kernel function based method for dealing with

distributed nodes are ignored. Anomaly detection from data stream is performed

only in a single-node mode for this method.

A major recent distance-based method for data stream is called Incremental LOF

[97]. It is a variant of LOF method tailored for coping with frequent data updates

(insertions and deletions) for dynamic databases.

Clustering analysis can also be used to detect outliers from those data that are

located far apart from the data clusters. HPStream [9] is the representative method

for finding subspace clusters in high-dimensional data streams. In our experiments, a

minor modification is needed to enable HPStream to detect anomalies. A data will be

labeled abnormal if it is far apart from the so-called limiting radius of all the clusters.

Here, the limiting radius of a cluster is typically a few times of the average radius

of the data points in the cluster. We test four different possible sets of dimensions

associated with each cluster, i.e., 1, 2, 3 and 4, respectively. The exact number of

dimension for a cluster is chosen from these four configurations such that the best

F -measure can be achieved. This specification ensures that all the subspaces explored

in HPStream are included in the 4-dimensional space lattice.

In addition, since the Largest cluster method [79] has been applied to the wireless

network anomaly detection application, we will also compare SPOT and this method

in the wireless network anomaly detection application.

Amongst the afore-mentioned competitive methods, histogram method mainly

deals with each single attribute while HPStream has already been equipped with the

mechanism to explore subspaces for optimizing clusters. The Kernel density function

method, Incremental LOF and the Largest Cluster method can handle multiple at-

tributes but they lack the ability to explore subspaces. Their detection performance

is thus heavily dependent on the selection of subspaces for outlier detection. In the

experiments, we study two different ways for deciding the subspaces where these two
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methods will be applied, namely randomly selecting multiple subspaces and using

SST that is obtained by SPOT. We use SD2, RD3 and RD4 to carry out the compar-

ative experiments. As RD3 is an unlabeled data stream, an offline detection is thus

performed to establish the ground-truth results prior to the comparative study.

The wireless network anomaly detection data stream contains timestamp infor-

mation for each connection. However, the existing anomaly detection methods for

time-series data streams, such as [1] and [82], are not applicable in this study. This is

because different users, with likely varied patterns of behaviors in using the wireless

network, can access the wireless network through the same access point. There-

fore, there are no evidences for supporting strong temporal dependency for data in

the stream from the access point’s perspective. If the time-series anomaly detection

methods in [1] and [82] are used, the patterns of one user will be utilized to evaluate

those of other users. This will seriously adversely affect the detection performance.

Effectiveness Measures for Comparative Study

Appropriate performance metrics are needed in evaluating the detection performance

of SPOT and other competitive detection methods.

In the data sets generated using SD2 and the KDD-CUP’99 Outlier Detection

application, we will use detection rate (or called true positive rate) and false positive

rate for performance evaluation. These two metrics are the most commonly used

onces in detection systems. Detection rate refers to the percentage of hits (correctly

identified anomalies) in the whole set of anomalies existing in the data set and false

positive rate represents the percentage of erroneously labeled anomalies in the whole

set of normal data. Their definitions are presented as follows.

Detection rate =
|{anomalies correctly detected by the detection method}|

|{true anomalies}|

False positive rate =
|{normal instances erroneously labeled as attacks by the method}|

|{true normal instances}|
Based on detection rate and false positive rate, Receiver Operating Characteristic

(ROC) analysis is usually used. ROC is a commonly used technique for performance

evaluation of detection methods by plotting its detection rate and false positive rate
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in the same ROC space. In a ROC curve, the detection rate is plotted in function of

the false positive rate for different cut-offs. The closer the ROC curve of a method

is from the left-upper corner in ROC space, the better the detection performance of

this method will be.

In the wireless network anomaly detection application, we use precision and recall,

rather than detection rate and false positive rate. Precision and recall are two metrics

originally used to evaluate the performance of information retrieval systems. They are

also widely used for performance evaluation of detection systems. Precision measures

accuracy of the detection results while recall measures completeness of the detection

results. The reason why we use precision-recall analysis, instead of ROC analysis, is

because we need to know all the true normal data in order to compute false positive

rate in ROC analysis. This requires the validation of almost all the data in the

data stream for generating the ground-truth result given the majority of the data

in the data stream are normal. This will be extremely expensive as the validation

for each data is rather costly. In contrast, Precision-Recall analysis only needs the

true anomalies in the data stream. We can validate the anomalies flagged out by

different detection methods in order to find the anomalies in the data stream. We

understand that this is only an approximate approach for finding the true anomalies

in the data streams, but in practice it works well because the true anomalies are

quite likely to be detected by at least one of the methods under study. As the

number of anomalies is much smaller than the number of normal data in the stream,

Precision-Recall analysis becomes more efficient than ROC analysis. Additionally,

the underlying relationship between ROC space and Precision-Recall space has been

unveiled recently in [37], that is, a curve dominates in ROC space if and only if it

dominates in Precision-Recall space. Therefore, if ROC analysis is computationally

infeasible, then we can perform evaluation based on the precision and recall criteria

as an equivalent alternative strategy.

In an outlier detection application, precision is defined as the fraction of anomalies

that the detection method correctly identifies, i.e.,

Precision =
|{anomalies correctly detected by the detection method}|
|{anomalies detected by the detection method}|



156

SPOT Histogram Kernel function Incremental LOF HPStream

Detection rate 100% 0.04% 100% 100% 0.29%
False positive rate 0% 0% 2.5% 0% 0%

Table 6.7: Comparison of different methods using SD2

Recall is defined as the fraction of true anomalies that are successfully identified

by the detection method, i.e.,

Recall =
|{anomalies correctly detected by the detection method}|

|{true anomalies}|

F -measure is the metric combining precision and recall into a single measure for

performance evaluation. It is defined as

F =
2× precision× recall

precision + recall

Experimental Results Using Synthetic Data Set SD2

We first use the synthetic data sets generated by SD2 to carry out comparative

experiment between SPOT and other four competitive methods. Unlike SD1, SD2 is

able to facilitate the performance analysis as the true projected outliers in SD2 are

known in advance. The performance of different methods is measured by detection

rate and false positive rate.

As illustrated in Table 6.7, we can see that SPOT, Kernel function method and

Incremental LOF are able to detect all the projected outliers in SD2 (featuring a 100%

detection rate), while histogram method and HPStream have a very poor detection

rate. Histogram employs feature-wise analysis for detecting outliers. All the outliers

in SD2 appear perfectly normal in each dimension because they have been masked by

the normal data, thus the histogram method is not able to identify them. The ability

of HPStream in detecting outliers is largely limited by the small number of subspaces

it explores. All the methods perform well in terms of false positive rate due to the

relatively simple structure of the data sets generated by SD2.
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Figure 6.19: Precision, recall and F -measure of SPOT and the histogram based
method

Experimental Results Using Wireless Network Anomaly Detection Data

Stream

In this section, we conduct experimental evaluation on SPOT for anomaly detection

from the wireless network data stream. Extensive comparative study are performed

to investigate the detection performance between SPOT and the competitive anomaly

detection methods.

• Comparative Study Between SPOT and Anomaly Detection Method

Using Histogram Technique

In this first experiment, we will compare SPOT and anomaly detection method using

histogram technique.

Figure 6.19 presents the detection performance of SPOT and the histogram method.

The outlier-ness threshold for the anomaly detection method using histogram tech-

nique is set as 0.8. From the figure, we can see that the histogram-based anomaly

detection method achieves a slightly better precision performance but a significantly

low recall performance when compared with SPOT. The F -measure of the histogram-

based anomaly detection technique is also inferior to that of SPOT due to its poor
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Figure 6.20: Precision, recall and F -measure of SPOT and the Kernel-function based
method

recall performance. This is because that the histogram-based anomaly detection

method is only able to identify anomalies that exhibit outlier-ness in all or most at-

tributes. The method cannot successfully detect those anomalies that are outlying

only in a small number of attributes but their overall outlier-ness is not sufficiently

high in order for them to be labeled as anomalies.

• Comparative Study Between SPOT, Kernel Function based Anomaly

Detection Method and Incremental LOF

In this experiment, we compare SPOT, the Kernel function based anomaly detec-

tion method and Incremental LOF. The reason why we compare these two methods

together with SPOT is that neither the Kernel function based anomaly detection

method nor Incremental LOF has the ability to explore different subspaces for de-

tecting anomalies. They both need human users to specify subspaces for performing

anomaly detection.

The comparative study between SPOT, the Kernel function based method and

Incremental LOF are carried out as follows:
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Figure 6.21: Precision, recall and F -measure of SPOT and the Incremental LOF

1. We first study the detection performance of SPOT and the other two compet-

itive methods under the same searching subspaces. Specifically, we compare

their performance in subspaces of SST. Figure 6.20 shows the results of SPOT

and the Kernel function method. We can see that the performance of SPOT is

noticeably superior to the Kernel-function based method; SPOT achieves bet-

ter precision in 8 out of 9 temporal contexts and better recall and F -measure

in all temporal contexts. Kernel density estimation is essentially a local den-

sity method. As it can quantitize the number of data points within a specific

neighborhood through Kernel function, thus Kernel function method is simi-

lar in spirit to the D(k, λ)-Outlier method, with the difference that the Kernel

function can be incrementally updated while D(k, λ) metric cannot. SPOT

does not only use local density metrics but also global distance metrics in the

anomaly detection, which contributes to a better detection performance. Figure

6.21 presents the results of SPOT and Incremental LOF. Detection accuracy of

Incremental LOF is better than SPOT in 6 out of 9 temporal contexts. Never-

theless, SPOT features better recall and F -measure than Incremental LOF in

all the temporal contexts. Incremental LOF can achieve a better detection pre-

cision than SPOT because it employs LOF, a much more complicate metric, to
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Figure 6.22: Efficiency comparison of SPOT and Incremental LOF

detect anomalies. As a result, Incremental LOF is subject to a far higher compu-

tational overhead than SPOT. Figure 6.22 presents the execution time of SPOT

and Incremental LOF under varying number of data to be processed. SPOT

is obviously much more efficient than Incremental LOF in processing data in

the data stream. Better efficiency is especially important in data stream appli-

cations. Moreover, unlike maintaining only a compact data synopsis in SPOT,

Incremental LOF needs to keep all the data in memory, leading to an extremely

high space overhead.

2. The second experiment we conduct aims to evaluate the detection performance

of the three methods under different searching subspaces. SPOT detects anoma-

lies in SST while the other two competitive methods detect anomalies in a

specific number of randomly chosen subspaces. In other words, the subspaces

explored by the Kernel function based method and Incremental LOF are chosen

entirely in a random manner, while those of SPOT are driven by its own fitness

function. For a fair comparison, the total search workload is set identical for the

three methods. We evaluate the number of anomalies these three methods can

correctly detect under different search workloads (i.e., the number of subspaces
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Figure 6.23: Percentage of true anomalies detected by SPOT, the Kernel function-
based detection method and Incremental LOF under varying search workloads

to be evaluated). The search workloads are specified from 1,000 to 10,000 with

1,000 being increments. The emphasis of this study is to see how comprehen-

sive the three methods can detect anomalies. Figure 6.23 shows the number of

anomalies (in percentage) correctly detected by the three methods under differ-

ent subspaces. The results are averaged on all the 9 temporal contexts. We can

see that from the figure that, under the same searching workload, the number of

detected anomalies of SPOT is significantly (approximately 35%-43%) higher

than the other two methods when the search workload reaches 10,000. This

indicates a noticeable better detection capability of SPOT given a fixed search

workload. This advantage of SPOT is due to the fact that SPOT is equipped

with the ability of automatic subspace search by means of MOGA while the

other two methods do not. A lack of the ability for guided subspace searching

will seriously limit the Kernel-function based method and Incremental LOF in

detecting anomalies in high-dimensional data space;

3. It is worthwhile pointing out that the Kernel-function based method and In-

cremental LOF, including most of other anomaly detection methods, typically

operate in a single human pre-specified data space for detecting anomalies. If
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Figure 6.24: Precision, recall and F -measure of SPOT and HPStream

this practice is used, then the number of anomalies that can be detected by the

Kernel-function based method and Incremental LOF in any single subspace is

at most 0.18% and 0.46%, respectively, of the total number of anomalies that

can be detected by SPOT, suggsting that they will fail to detect a significant

portion of the ture anomalies.

• Comparative Study Between SPOT and Projected Clustering Method

for High-dimensional Data Streams

Given the possibility of utilizing clustering method in high-dimensional data streams,

such as HPStream, in anomaly detection, we would like to carry out a comparative

study between SPOT and HPStream.

The precision, recall and F -measure results of SPOT and HPStream are presented

in Figure 6.24. The results suggest the following two major findings:

1. The precision of HPStream is worse than that of SPOT. As we know, preci-

sion performance is largely dependent on the outlier-ness metric the detection

method uses. In HPStream, a data point is detected as abnormal in a subspace if
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Figure 6.25: Precision and recall of HPStream under a varying number of clusters

it is far from the limiting radius of the clusters that can be optimized in this sub-

space. This judgment, to a large extent, is similar to the Largest Cluster method

given that the possibility that two or more clusters can be optimized in the same

subspace is quite low. Hence, the precision of HPStream is inferior to SPOT.

SPOT utilizes more complicated outlier-ness metrics than HPStream. These

metrics help SPOT achieve a higher level of accuracy in identifying anomalies;

2. HPStream features a much poorer recall performance compared to SPOT. The

major reason for the low recall performance of HPStream is because of the

extremely small number of subspaces where anomalies can be detected. As

only one set of dimensions is associated with each of the k clusters, there will

be only k subspaces where the newly arrived data points are evaluated to decide

whether they are abnormal or not. It is impossible for HPStream to evaluate

the newly arrived data in the subspaces other than those associated with the

clusters that HPStream has produced. This could result in a large number of

anomalies being missed out in the detection result.

Because the number of clusters k to be obtained is an important parameter in

HPStream, we also study the effect of k in this experiment. We test five different
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reasonable values of k for HPStream, i.e., 5, 10, 15, 20 and 25, respectively. The

corresponding precision and recall are plotted in Figure 6.25. We can see from this

figure that the recall of HPStream is improved as k increases. This improvement

of recall is due to the larger number of subspaces (resulting from the larger number

of clusters) that can be used in anomaly detection. Because of the recall-precision

dilemma, the precision of HPStream tends to become lower under an improving recall.

However, the improved recall is still far from satisfactory because 25 subspaces, in any

sense, is too small even compared with the possible subspaces in a low-dimensional

space lattice. One may argue that the recall of detection can be greatly improved

simply by increasing the number of clusters k. However, an unreasonably large k

will cause the clusters obtained to be inconsistent with human perception and render

many data being erroneously labeled as anomalies.

Based on this experiment, we learn that even though HPStream is able to deliver

high-quality clusters embedded in subspaces, it is not trivial for it to achieve a satis-

factory anomaly detection performance with only a minor modification. This is due

to the discrepancy of the objective pursued by SPOT and HPStream: SPOT tries to

deliver a good detection of anomalies, while HPStream seeks to find compact clusters

in some subspaces. This experiment suggests that it is quite difficult, if it is not

impossible, for the existing clustering methods in high-dimensional data streams to

provide a sufficient support to the problem of anomaly detection in high-dimensional

data streams.

• Comparative Study Between SPOT and Largest Cluster Detection Method

The anomaly detection method that employs the Largest Cluster metric for detecting

anomalies [79] uses this wireless data stream as a case study. Therefore, we would like

to carry out a comparative study between SPOT and the Largest Cluster method.

As we have discussed earlier, the Largest Cluster detection method is not able

to directly deal with data streams, it is thus impossible for us to produce a set

of anomalies from the data stream by this method. To overcome this problem and

enable us to compare SPOT and the Largest Cluster detection method in a reasonable
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Figure 6.26: Precision, recall and F -measure of SPOT and the Largest-Cluster de-
tection method

way, a minor modification of the Largest Cluster detection method is conducted. We

employ lead clustering method, instead of k-means, to cluster data efficiently. In lead

clustering, each newly arrived data will be assigned to the largest cluster generated

thus far using the data arriving earlier. The centroid of the cluster to which the newly

arrived data is assigned will be updated. This modification enables the detection

method to process the data in an incremental fashion while maintaining the spirit of

the Largest Cluster metric in anomaly detection.

We first evaluate the average precision, recall and F -measure of SPOT and the

Largest Cluster detection method under a fixed SST. Due to the high sensitivity of

the Largest Cluster detection method to the distance cutoff threshold α and num-

ber of clusters k, five different pairs for k and α are used in this experiments, i.e.

{k = 5, α = 1.0}, {k = 10, α = 2.0}, {k = 15, α = 3.0}, {k = 20, α = 4.0} and

{k = 25, α = 5.0}. A general rule for paring k and α is that a smaller k value is

paired with a smaller α value and vice versa. The precision-recall results are shown

in Figure 6.26. From this figure, we can see that SPOT is able to reliably achieve a

good detection performance in different temporal contexts. The F -measure achieved

by SPOT is in the range of 0.79-0.89 for different temporal contexts. This indicates a
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Figure 6.27: Boxplot of F -measure of SPOT and the Largest-Cluster detection
method

good insensitivity of SPOT towards different temporal contexts. In contrast, the per-

formance of the Largest Cluster detection method varies noticeably under different

temporal contexts. Its F -measure ranges from 0.55 to 0.79. For a better comparison,

please see Figure 6.27 for a boxplot comparison of the F-measures of the two meth-

ods. A closer study reveals that the detection performance of the Largest Cluster

detection method tends to deteriorate when it is performed in relatively high-level

temporal contexts. Specifically, the F -measure in temporal context of All is generally

worse than that of single temporal contexts and the detection accuracy of All and

single-dimensional temporal contexts are inferior to that of two-dimensional temporal

contexts. This is because that, as data are generalized (when we roll up the temporal

contexts along the lattice), they tend to display a multi-mode distribution in different

subspaces, meaning that multiple natural clusters may be formed and some normal

data may not be located in the limited neighborhood of the largest cluster. This will

greatly pose an adverse effect on the performance of the Largest Cluster detection

method in correctly identifying anomalies.

We also study the F -measure values for the two methods under different number

of search subspaces. Precisely, we change the size of SST from 1,000 to 10,000, and
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Figure 6.28: F -measure of SPOT and the Largest-Cluster detection method under
varying number of validation subspaces

investigate the F -measure values for the two methods under varying SST sizes. The

results are presented in Figure 6.28. In this figure, we show the F -measure values of

SPOT and Largest Cluster detection method averaged over the 9 different temporal

contexts. We found from this figure that SPOT outperforms Largest Cluster detection

method in F -measure performance. In addition, the SST size does not seem to be

an affecting factor to the detection performance of SPOT, while the Largest Cluster

detection method is much more sensitive to the SST size. We witness a sharp decrease

in F -measure value for the Largest Cluster detection method when SST is increased.

This is due to the fact that when anomalies are to be detected from an increasingly

large number of subspaces, there is a higher chance that the values of parameters k and

α used in the Largest Cluster method become inappropriate for anomaly detection

in many subspaces. Specifying ad-hoc parameter values for k and α in different

subspaces will be an overwhelming task that is infeasible in practice. In comparison,

SPOT employs ratio-type parameters that are nearly independent of the data scale

in different subspaces, leading to a more reliable F -measure performance.
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All Daytime Night Weekday Weekend
All X X X X X

Daytime 15% X X X X
Night 13% X X X X

Weekday 19% X X X X
Weekend 24% X X X X

Weekday-Daytime 28% 26% X 22% X
Weekday-Night 38% X 22% 38% X

Weekend-Daytime 42% 17% X X 23%
Weekend-night 31% X 16% X 20%

Table 6.8: Anomaly detection analysis for different temporal contexts

• Validating Data Partitioning of the Stream

Recall that when we apply SPOT to the wireless network anomaly detection appli-

cation, data in the stream are partitioned according to different temporal contexts.

The motivation for doing this is that there may be anomalies that can be detected in

more specific temporal contexts such as Weekday-Daytime but cannot be detected in

its more general temporal contexts such as All, Weekday or Daytime. This is due to

the different data distribution/characteristics in temporal contexts of varying granu-

larities. This experimental analysis tries to establish the benefit of partitioning the

data stream into several sub-streams in an attempt to detect more anomalies.

The results are shown in Table 6.8. Each entry (i, j) in this figure represents

the percentage of anomalies that can be detected in temporal context i but cannot

be detected in temporal context j subject to the constraint that i is a more specific

temporal context of j in the temporal context lattice.

We note that no results are presented in the figure for the cases that temporal

context i is identical to j and i is a more general temporal context of j. The corre-

sponding entries are marked using symbol ’X’ in the table. The reasons are given as

follows:

1. If temporal context i is identical to j, then it is trivial to know that the result

will be 100%;
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Figure 6.29: Effect of number of training data sets for each attack class

2. if i is a more general temporal context of j, then the analysis becomes mean-

ingless. As we know, the data stream corresponds to j is only a subset of that

for i, therefore the data that can be detected as anomalies in temporal context

i may not even exist in the data for temporal context j at all.

From Table 6.8, we can see that on average 17.7% of anomalies in median-level

temproal contexts cannot be detected if only the data of top-level temproal context

is used. Further, on avergae 26.9% of the anomalies existing in the bottom-level

temporal contexts will be missing if only data of median-level or top-level temporal

contexts are employed. This shows the benefit of partitioning the data stream based

on different temporal contexts for detecting more anomalies.

Experimental Results Using Network Anomaly Detection Data Stream

In this subsection, we report the results of experimental evaluation on SPOT in KDD-

CUP’99 Outlier Detection application.
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Datasets 5.0 4.0 3.0 2.0 1.0
SD1 62% 69% 72% 76% 79%
RD1 42% 55% 58% 63% 77%
RD2 44% 49% 53% 72% 84%
RD4 51% 54% 56% 59% 81%

Table 6.9: Percentage of the anomalies that have redundant outlying subspaces

• Effect of Number of Training Data Sets

When SPOT is applied in KDD-CUP’99 outlier detection application, multiple train-

ing data sets are generated for each attack classes for training purpose. This is to

sample an enough amount of attack instances and at the same time satisfy the dis-

tribution requirement regarding normal and attack instances in each training data

set. In this experiment, we investigate the effect of the number of training data sets

generated for each class on the detection performance of SPOT. Recall that, due

to the size limitation, each training data set is only able to contain a small portion

of the labeled outlier exemplars from the original training data set. Therefore, it

is expected that, as the number of training data set for each class is increased, the

detection accuracy will be enhanced accordingly and finally a kind of convergence

phenomenon is expected to be observed. In this experiment, we evaluate the true

positive rate and false positive rate of SPOT under varying number of training data

sets. The result is presented in Figure 6.29. Besides the curve of true positive rate,

two additional curves corresponding respectively to the cases of using and not using

the false positive reduction are also presented for the false positive rate in the figure.

We can see that, as the number of training data set increases, the true positive rate

is indeed improve. However, a larger number of training data sets tend to result in a

higher false positive rate. Fortunately, we observe an noticeably lower false positive

rate for SPOT thanks to the false positive categorization we introduced in SPOT to

automatically screen out false positives through the anomaly categorization process.
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Datasets 5.0 4.0 3.0 2.0 1.0
SD1 54% 62% 62% 64% 69%
RD1 49% 52% 59% 68% 70%
RD2 57% 61% 69% 70% 73%
RD4 55% 56% 57% 60% 66%

Table 6.10: Redundancy Ratio of different data sets

• Redundant Outlying Subspace Removal

We also investigate the existence of redundant outlying subspaces of anomalies. We

first study the percentage of anomalies that have redundant outlying subspaces in

KDD-CUP’99 outlier detection data stream and other data sets. We can see from

Table 6.9 that the majority of anomalies have redundant subspaces (ranging from

42% to 84%). We also study the Redundancy Ratio for these data sets. Here, the

Redundancy Ratio (RR) of a data set D is defined as the ratio of the number of

outlying subspaces (OS) of anomalies against the size of their outlying subspace front

(OSF), i.e.

RR(D) =

∑ |OS(o)|
∑ |OSF (o)| , for o being an anomaly in D

As shown in Table 6.10, from the whole data set’s perspective, the Redundancy

Ratio of its outlying subspace set is between 49% and 73%, indicating a fairly high

Redudency Ratio for different data sets. As a result, using Outlying Subspace Front

would help reduce the number of outlying subspaces by from 49% to 73%. Another

important observation is that the values of these two measures are increased when the

outlier-ness threshold goes down. This is because that, as the outlier-ness threshold

become smaller, more subspaces will become outlying subspaces and they are likely

to be dominated by some of their lower dimensional counterparts.

• Comparison of Manual and Automatic Methods for Identifying False

Positives

In this experiment, we compare the signature subspaces and the classification accu-

racy obtained by the manual and automatic methods for screening false positives.
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0.5 0.6 0.7 0.8 0.9
Difference of signature subspaces generated 23.5% 7.6% 13.7% 17.8% 28.5%

Accuracy in classifying false positives 87.2% 92.3% 88.5% 83.4% 72.1%

Table 6.11: Comparison of the manual and automatic methods for identifying false
positives

The manual method draws on human expertise to identify false positives, while the

automatic method automatically labels those anomalies that cannot be categorized

into any known attack classes as false positives. That is, a data is labeled as a false

positive if its class membership probability with respect to any attack class is lower

than τ . We use a portion of the labeled training data in this experiment. The labeled

training data can be used to simulate the detection results of the manual method.

The results in this experiment are evaluated under varying membership probability

threshold values (i.e., τ). Table 6.11 shows the difference (presented in percentage)

of the signature subspaces generated by these two methods for the false-positive class

and the classification accuracy of false-positives using the automatic method under

varying class membership probability threshold τ . This comparison indicates that the

final signature subspaces of the false-positive class generated by the automatic method

is similar to those generated by the manual detection method, differing marginally

(less than 10%) when τ is set 0.6. In addition, using the results of the manual de-

tection method as a reference, the classification of false positives using the automatic

method achieves an accuracy around 90% when τ is set between 0.5 and 0.7. These

results are attributed to the fact that most of the anomalies that are dissimilar to any

existing attack classes are false positives. Consequently, it does not seriously matter

if all these anomalies are directly labeled as false positives without undergoing a hu-

man screening process. This suggests that relying solely on the automatic detection

for false positives is an acceptable alternative if human involvement is impossible or

limited in the course of false-positive examination.
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Figure 6.30: Number of strong signature subspaces for each attack class under varying
number of data being processed

• Signature Subspace Analysis

We are also interested in studying the diversity of signature subspaces of the false-

positive class, as compared with those of the attack classes. We record the number

of strong unique signature subspaces for different classes (including the false-positive

class) as the number of data we evaluated increases. In this experiment, the strong

signature subspaces we select are those signature subspaces whose tf-idf weight is

5 times higher than the average weight level. This definition of strong signature

subspaces is of course subjective. We plot the results in Figure 6.30. Interestingly,

we find that the number of unique strong signature subspaces for the false-positive

class is significantly higher than any other attack classes by a factor of three or four.

This means that the strong signature subspaces for the false-positive class is far more

diverse that those of the attack classes. This finding offers an important insight to

us when we are creating the set of signature subspaces of the false-positive class. We

need to collect a relatively large pool of signature subspaces in the detection process

to achieve an accurate detection of false positives.
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Figure 6.31: ROC curves of different methods

• Comparative Study with Existing Methods

Comparative study is also performed in KDD-CUP’99 outlier detection application

to investigate the detection rate and false positive rate of SPOT and other existing

anomaly detection methods, including histogram method, Kernel function method,

Incremental LOF and HPStream. Receiver Operating Characteristic (ROC) analysis

is used in this comparative study. To conduct ROC analysis, we need to know apriori

the true positives (anomalies) and true negatives (normal data). This is possible in

KDD-CUP’99 outlier detection application as labeled test data are available. As we

know, any detection method can easily achieve a 100% detection rate by simplying

labeling all the connections as anomalies. However, this strategy will result in an

extermaly high false positive rate. Likewise, one can obtain a 0% false positive rate

by claming all the connections as normal, but this will lead to 0% true positive rate.

Therefore, we need to consider these two rates simultaneously. In Figure 6.31, we plot

the ROC curves for SPOT and other four competitive methods. We can see from this

figure that the ROC curves of SPOT, Incremental LOF and Kernel function method

progress much closer to the upper-left coner of the plot than the curves of histogram

method and HPStream, indicating that SPOT, Incremental LOF and Kernel function
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method generally achieve a better detection performance. A closer examination of

the figure suggests that Incremental LOF and Kernel function method perform better

than SPOT when the false positive rate is relatively low (i.e., in the early stage

of the ROC curves). However, SPOT starts to outperform Incremental LOF and

Kernel function method as the false positive rate further increases. The false positive

categorization that SPOT is equipped with enables it to identify false positives in

an automated fashion while other competitive methods cannot. This helps SPOT to

significantly reduce false positives and achieves a lower false positive rate under the

same detection rate (or achieves a higher detection rate under the same false positive

rate).

• Comparative Study with the Winning Entry of KDD CUP’99

At the end of this subsection, we would like to compare the detection performance of

SPOT with that of the winning entry of KDD CUP’99. The winning entry, due to

Dr. Bernhard Pfahringer of the Austrian Research Institute for Artificial Intelligence,

uses bagged boosting of C5.0 (See5) decision trees. We compare these two methods

using detection rate and false positive rate. These two rates of the winning entry can

be directly obtained from http://www-cse.ucsd.edu/users/elkan/clresults.html. Since

there is only one set of detection rate and false positive rate published for the winning

entry from this link, we tune the pre-specified thresholds of SPOT to generate a set

of detection rate and false positive rate for SPOT that are as close to those of the

winning entry as possible for a better comparison. Table 6.12 presents the results.

The detection rate and false positive rate of the winning entry are 91% and 0.55%,

respectively. The closest set of the detection rate and the false positive rate that we

can obtain for SPOT are 92.3% and 1.5%, respectively, which are comparable with

those of the winning entry. However, the decision tree-based method is not as efficient

as SPOT when dealing with data streams. The decision tree-based method is able to

incrementally handle the data in the streams using the trees (or the rule sets) that are

constructed in the learning stage, but it is not trivial to update the trees (or the rule

sets) themselves incrementally as data are continuously arriving. Without updating
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Winning entry of KDD CUP’99 SPOT

Detection rate 91% 92.3%
False positive rate 0.55% 1.5%

Table 6.12: Comparing SPOT and the winning entry of KDD CUP’99

the trees (or the rule sets) in a real-time manner, it is impossible for this technique

to capture the latest data characteristics and cope with possible concept drift in the

streams. This is not desired in data stream applications. In contrast, SPOT is able

to update PCS in a timely fashion each time when a new data from the stream is

processed, enabling SPOT to handle the dynamics of data streams efficiently.

6.3 Summary

This section elaborates on the performance evaluation of SPOT. A fair amount of

efforts have been taken for data preparation and interface development, an important

work to facilitate the subsequent experimental evaluation. More specifically, we devise

two synthetic data generators with difference emphasis. The data sets generated using

the first data generator are general and well suited to evaluate the scalability of SPOT

under varying number and dimensionality of data, while the data sets generated

by the second generator are quite unique in terms of its data distribution. This

helps to evaluate the detection effectiveness of SPOT and other competitive methods

in some extreme cases. Application interfaces are also developed for the wireless

network anomaly detection and the KDD-CUP’99 outlier detection applications to

facilitate the application of SPOT. The major task in the wireless network anomaly

detection is the generation of ground-truth results as the data set is unlabeled. For

the KDD-CUP’99 outlier detection application, a number of issues, such as training

data generation, redundant outlying subspace removal, anomaly categorization and

false positive reduction, have been addressed.

A wide spectrum of experiments have been conducted in this section as well.

The experimental results show that SPOT is scalable with respect to the length

and dimensionality of data streams. They also show that SPOT features a good
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Detection rate False positive rate

SPOT 1 1
Histogram 3 1

Kernel 1 1
Incremental LOF 1 1

HPStream 2 1

Table 6.13: Performance rank of different methods for data streams generated by SD2

Detection rate False positive rate

SPOT 1 3
Histogram 4 2

Kernel 3 4
Incremental LOF 2 1

HPStream 5 5

Table 6.14: Performance rank of different methods for KDD-CUP’99 data stream

convergence for outlying subspace search by using MOGA and the ability to handle

data change in the data stream through self-evolution.

Comparative experiments carried in synthetic data sets, the wireless network

anomaly detection and the KDD-CUP’99 outlier detection applications demonstrate

that SPOT is effective in detecting anomalies. To obtain a big picture, we rank

SPOT and different competitive methods based on their performance. Table 6.13,

Table 6.14 and Table 6.15 present the ranking results of methods in the three differ-

ent data streams. Better methods are assigned smaller ranks in these tables. Methods

are assigned tie rank if their performance is close and not significantly distinguishable.

For example in Figure 6.13, all the methods have the same rank in terms of false pos-

itive rate because all the methods have zero or close-to-zero false positive rate due to

the simplicity of the data streams generated by SD2. From these three tables, we can

see that SPOT performs best in terms of detection rate (for SD2 and KDD-CUP’99

data stream) and recall (for wireless network data stream). This is due to its strong

search ability to explore subspaces for outlier detection. However, in terms of false

positive rate and precision in the wireless network and KDD-CUP’99 applications,

SPOT is not the best method. It is inferior to histogram method and Incremental
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Precision Recall F-measure

SPOT 3 1 1
Histogram 2 5 4

Kernel 4 2 3
Incremental LOF 1 3 2

HPStream 5 6 6
Largest Cluster 6 4 5

Table 6.15: Performance rank of different methods for wireless network data stream

LOF. The histogram method has a high precision because it only explores a rather

small number of subspaces. In other words, good precision is achieved in histogram

method at a sacrifice of recall loss. Incremental LOF is accurate in identifying outliers

due to use of a complicated outlier-ness metric (i.e., LOF) that is computationally

expensive. SPOT explores a remarkably larger number of subspaces than histogram

method and uses simpler (yet much more efficient) outlier-ness metrics than Incre-

mental LOF, therefore SPOT receives a higher pressure to produce false positives

that adversely effects its detection precision. Despite this, SPOT still outperforms all

the other methods in terms of F -measure for the wireless network data stream due

to its much better recall performance.



Chapter 7

Conclusions

7.1 Research Summary

Even though the problem of outlier detection has been studied intensively in the

past a few years, outlier detection problem in high-dimensional data streams has

rarely been investigated. The current state-of-the-art methods of outlier detection

are difficult in finding projected outliers in the context of data streams, because they

are either constrained to only low dimensional data (relying on full dimensionality

analysis), or not able to incrementally update detection model for real-time data

streams. To the best of our knowledge, there has been little research work in literature

that particularly targets this research problem.

This research work is motivated by the unique characteristics of data in high-

dimensional space. Due to the curse of dimensionality, the outliers existing in the

high-dimensional data sets (including data streams) are embedded in those lower

dimensional subspaces. These outliers existing in high-dimensional data space are

termed projected outliers. In this thesis, we introduce and formally formulate the

problem of projected outlier detection for multi and high-dimensional data streams.

To solve this problem, we present a new technique, called Stream Projected Outlier

deTector (SPOT).

SPOT utilizes compact data synopsis, including BCS and the PCS, to capture

necessary data statistical information for outlier detection. Both of them can be

computed and maintained efficiently, enabling SPOT to meet the one-pass constraint

and time criticality posed by data stream applications.

Given the inherent NP hardness of detecting projected outlier detection in high-

dimensional data streams, we construct the Sparse Subspace Template (SST) in SPOT

179
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to detect projected outliers. It is hoped that SST is able to contain the major sub-

spaces where most of the projected outliers are embedded. In order to achieve this

objective, SST consists of a number of mutually supplemented subspace groups that

contribute collectively to an effective detection of projected outliers. The component

of Fixed SST Subspaces (FS) in SST covers the full space lattice whose dimension-

ality is upper bounded by MaxDimension. FS tries to establish the bottomline for

detection performance of SPOT. Unsupervised SST Subspaces (US) and Supervised

SST Subspaces (SS), being the other two components of SST, find supplemental sub-

spaces that are not covered by FS. Through US and SS, SPOT is able to support

both unsupervised and supervised learning to construct SST, providing a maximum

level of flexibility to users.

Another major feature of SPOT lies in the outlying search strategy it uses to con-

struct SST, particularly US and SS . Unlike most of other outlier detection methods

that measure outlier-ness of data points based on a single criterion, SPOT adopts a

more flexible framework for using multiple measures for outlier detection. Employing

multiple measures is generally more effective in measuring data sparsity than a single

measure. In addition, SPOT utilizes Multi-Objective Genetic Algorithm (MOGA) as

an effective search method to find subspaces that are able to optimize these outlier-

ness criteria. We have presented in this thesis the ad-hoc design of MOGA in the

aspects of objective/fitness functions, individual representation, selection operation,

search operation, elitism and solution diversity preservation.

We have carried out a wide spectrum of experiments to evaluate the performance

of SPOT in this thesis. Two synthetic data sets and four real-life data sets are

used in the experimental evaluations. Two detailed case studies are conducted in

the performance evaluation, namely MIT wireless network anomaly detection and

KDD CUP’99 anomaly detection. Interfaces are developed to facilitate SPOT to

be deployed in these applications by bridging the gap between the functionality of

SPOT and the application-specific goals. The experimental results demonstrate that

SPOT is efficient and effective in detecting projected outliers from high-dimensional

data streams, and generally outperforms the related outlier detection methods using
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histogram, Kernel function, density-based metric and clustering analysis.

7.2 Limitations of SPOT

Despite its advantages, SPOT still has some limitations. These limitations are sum-

marized as follows.

• Because there are typically several thousands of subspaces in SST where SPOT

needs to evaluate each data in the stream, thus it is not surprising to find

that SPOT is noticeably slower than most of other traditional outlier detection

methods that only evaluate the data in the full space or a single user-specified

space. There exists a dilemma for us to specify the size of SST: a smaller SST

will lead to a faster processing speed but has a higher chance of missing real

outliers, and vice versa. Fortunately, most of outliers are embedded in the lower

dimensional subspaces, therefore a reasonable SST (e.g., Maxidimension = 3

and |US|+ |SS|∈ [100, 500]) can perform well. But, this is still largely a purely

heuristic-based approach without any theoretical performance guarantee;

• Another difficulty in specifying a good SST size is that a large SST will impose

a stronger pressure for SPOT to result in a high false positive rate, though the

detection rate can be very high. This problem can be solved for SPOT, to a

large extent, if labeled exemplars are available, based on which signature sub-

space lookup table can be built and false positive reduction can be performed.

However, in absence of labeled exemplars, there have not been effective ways yet

to automatically screen out those false positives for SPOT. The solution of this

problem relies on a fair amount of domain knowledge for identifying the true

outliers from the detected anomalies. As such, this problem cannot be solved

by solely improving SPOT itself without resorting to external knowledge.

• SPOT is designed to detect point outliers from vector-type data sets. It is only

able to deal with well structured data sets such as relational databases and

data streams. It cannot be applied to other unstructured or semi-structured

data sets such as TCP dump data or XML data.
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7.3 Future Research

At the end of this subsection, we would like to lay out some potential research direc-

tions in outlier detection using SPOT for the future.

7.3.1 Adaptation of SST

In the current implementation of SPOT, we use a fixed-sized SST in the whole de-

tection process. The size of SST remains unchanged once it has been constructed

in the training stage. However, it is possible that some of the subspaces in SST,

particularly in FS, are non-outlying subspaces or some outlying subspaces become

non-outlying subspaces as time evolves. A possible future research is to devise a

mechanism to automatically adjust SST so that it only contains the outlying sub-

spaces at any time. The advantages for doing this is two-fold. First, the size of SST

can be greatly reduced. This implies that less computational and space overhead can

be achieved. Second, this can help reduce the pressure for producing a large number

of false positives when false positive categorization is impossible.

7.3.2 Optimization of Partition Size δ

An important parameter used in SPOT is δ, the number of intervals that each dimen-

sion of data is split into. This parameter determines cell granularity of the hypercube

we create. For the reason of simplicity, we assume that each dimension is partitioned

into an equal number of intervals with identical length. The specification of δ re-

quires a close scrutiny. On one hand, the number of partition intervals should not be

too small, otherwise the cells in the low dimensional subspaces generally cannot have

statistically significant amount of data. Statistically sufficiency of data ensures the

density and standard deviation of the populated base cells (based upon which RD,

IRSD and IkRD are defined) serve as accurate measurements for data sparsity in the

cell for outlier detection purpose. On the other hand, each cell needs to establish

a reasonable neighborhood for data points, thus the partition cannot be too coarse

either. Therefore, the optimization method for determining δ will be developed.
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7.3.3 Distributed Outlier Detection Using SPOT

Most outlier detection methods, including SPOT, work in a single node mode. In

other words, the outlier detector is working in an environment where the detector can

process all the data streams under investigation. However, in some applications such

as sensor networks, we need to deploy SPOT in a distributed mode, where SPOT are

deployed to distributed sensors. In such case, each SPOT instance can only process

the data streams that the sensor collects. It is required that the detection results of

SPOT deployed in distributed nodes are identical to the results if SPOT is deployed

a centralized node that can see the confluence of all the streams. The key challenge

lies in that each distributed node needs to have a global, rather than a local, data

synopsis the PCS in order to accurately detect global outliers using SPOT. We are

interested in studying this problem in the future and developing a mechanism for

efficient and effective outlier detection using SPOT in a distributed environment.
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