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Abstract—The single core processor, which has dominated
for over 30 years, is now obsolete with recent trends increasing
towards parallel systems, demanding a huge shift in programming
techniques and practices. Moreover, we are rapidly moving
towards an age where almost all programming will be targeting
parallel systems. Parallel hardware is rapidly evolving, with large
heterogeneous systems, typically comprising a mixture of CPUs
and GPUs, becoming the mainstream. Additionally, with this
increasing heterogeneity comes increasing complexity: not only
does the programmer have to worry about where and how to
express the parallelism, they must also express an efficient map-
ping of resources to the available system. This generally requires
in-depth expert knowledge that most application programmers
do not have. In this paper we describe a new technique that
derives, automatically, optimal mappings for an application onto
a heterogeneous architecture, using a Monte Carlo Tree Search
algorithm. Our technique exploits high-level design patterns,
targeting a set of well-specified parallel skeletons. We demonstrate
that our MCTS on a convolution example obtained on average
95% of the speed up achieved by the hand tune optimisation
developed by expert user.

I. INTRODUCTION

Ongoing rapid progress in technologies such as GPGPU
and CPU/GPU clusters and emerging platforms such as CUDA
and OpenCL are widening applicability of high performance
computing. Data and stream-based parallelism in particular can
now be brought to bear on programming tasks in many engi-
neering and manufacturing operations. However, the process
of synchronisation and communication among components in
a given parallel architecture, essentially to obtain maximal
performance gains, is still a challenging issue and requires
expert parallel programmers. In this paper we take an approach
that exploits high-level parallel patterns, known as Algorithmic
Skeletons, which are a high-level abstraction for parallelising
applications [1]. They have long been considered as a viable
approach to encapsulating coordination, communication and
synchronisation among components. [2]

Stream-based parallelism can be regarded as a generic form
of pipeline in which the parallel program operates repeatedly

on a stream of data items, e.g. an audio or video stream.
Typically a parallel task performs in a way that on each
execution step it reads one or more data items from one or
more input streams, processes the input data and passes the
processed data to one or more output streams. [3]

The problem of mapping a stream-based parallel program
to a given parallel processing architecture can generally be
divided into two stages:

• partitioning the program into different tightly encapsu-
lated computational components and allocating each to
a thread. This is a design problem for the programmer,
possibly assisted by the software designer.

• scheduling the program to run on a specific archi-
tecture in terms of allocating an optimum number of
processors per component and dedicating appropriate
flows of input data to each component.

Separating these two tasks from each other to some extent
provides a level of abstraction from underlying resource which
increases the portability of parallel programs, because there
is no need for reshaping the whole written program for
each targeted platform. Once the skeletal structure has been
generated, the mapping can be retuned for different specific
targets. The main focus of this paper is to develop an intelligent
algorithm to automatically map a given program structure to
a given heterogeneous architecture to optimise performance.

In a homogeneous architecture, for each processing node
in the partition graph there is one type of component. Multiple
instances of that component can be run as a thread over multi-
core systems in which each core has the same power. However,
this is not the case for heterogeneous (CPU/GPU) architecture.
There it is desirable to take advantage of GPU processing for
suitable components when possible. Thus some components
can be written to run on either GPU or CPU or a combinations
of both. In this case, finding the optimal mapping choice
becomes more complex. The throughput of each processing
node depends on selecting either one version of the component
or using both of them, depending on the limitations of the
underlying architecture and the computational costs of the
components. Also, where there is a choice of running a
component on CPU or GPU, the proportion of flow of the



input stream sent to each of them will affect the overall
throughput of the system. Moreover, there is a constraint on
the number of tasks that can be run simultaneously on a single
GPU. Therefore, deciding which nodes to assign to a GPU is
combinatorially complex when there are multiple nodes that
can be mapped as such. Taking all of these factors into account,
the problem of mapping a parallel program to a heterogeneous
architecture becomes considerably more complex than that of
mapping to a homogeneous architecture.

Static mapping involves calculating the proportion of work
and resources needed to be allocated for each component
of the parallel program. The problem associated with static
mapping is then finding the optimal mappings from the set of
all possible static mappings. Due to the combinatorial nature
of the mapping problem, the solution space grows quickly,
indicating suitability of a heuristic approach.

In this paper, we investigate the applicability of Monte
Carlo Tree Search (MCTS) for the mapping problem in the
heterogeneous (CPU/GPU) architectures. Monte Carlo Tree
Search (MCTS) is an approach originating from AI Games
to efficiently select moves in large game trees where full
evaluation of the tree is computationally intractable. MCTS
uses Monte Carlo random walks to evaluate states only at
the endpoints of each walk [4]. Here we create mappings by
random-walks where at each step a decision is made to allocate
a particular package of processing to a particular processor.
The walk is biased by the parameters of the static mapping. We
use a simulation of the computation to evaluate each mapping
at the end of the walk. Objectives such as throughput can
be calculated through sampling and summing the simulated
function performance distributions on the assigned processors.

The remainder of this paper is structured as follows. In
section III we explain the preliminary definitions and concepts.
In section IV our proposed MCTS algorithm for mapping prob-
lem is explained in detail. We demonstrate the applicability of
our proposed algorithm for a real world application as a case
study in section V. In sectionVI we analyse the suitability of
MCTS for the static mapping problem. SectionII summarises
the current research in this area and finally, section VII
provides some concluding remarks and future work.

II. RELATED WORK

A. Mapping process

The static mapping problem is by no means a new chal-
lenge and there is an extensive body of work on mapping task,
data and pipeline parallelism to parallel architectures providing
static partitioning [5], [6], [7], using runtime scheduling [8],
heuristic based mappings [9], analytical models [10], [11], or
ILP solvers [12]. Each of these can improve the performance of
the system. There are some heuristic based approaches which
automate the process of mapping to multi-core architectures
for specific frameworks, such as the learning approach used
for partitioning streaming in the StreamIt framework [13]
or the runtime adaptation approach used in FlexStream [14]
framework. Also, a series of research works have been pro-
duced aiming at optimising the use of resources on multi-core
embedded platforms linking both design-time optimisation
and simulation with run-time optimisation using lightweight

heuristics [15], [16], [17]. In [18], the use of platform sim-
ulators has been considered to identify Pareto-optimal design
configurations of parallel applications (incorporating code ver-
sions, resource mappings, constraints and costs).

Despite the amount of work done in the homogeneous
environment, to our best knowledge there is little work done
for mapping to heterogeneous(CPU/GPU) architectures. Most
of the work on GPUs are primarily focused on application
performance tuning [19] rather than orchestration.

However, in [20] a method is provided to orchestrate the
execution of heterogeneous StreamIt program presented on a
multi core platform equipped with an accelerator. They use
integer linear programming (ILP) formulations to perform par-
titioning over the combination of CPU/GPU. Formulating ILP
models, however, requires expert knowledge of the underlying
architecture. Finding a solution under certain constraints for
the ILP formula can be time-consuming as well.

Our aim in this paper is automatic orchestration of
CPU/GPU component for FastFlow applications by using
MCTS which usually requires less knowledge about the sys-
tem. Therefore, minimum information is needed to run the
result on the system. Moreover, applying it in a static manner
has a much lower overhead for deployment.

B. Monte Carlo Tree Search

Monte Carlo Tree Search have classically been applied to
challenging game playing, for example the GO and Bandit
problem [21], [22], [23], [24].

Recently MCTS has been applied to planning and schedul-
ing problems. In [25] a MonteCarlo search algorithm has been
applied to produce management problems which can be dened
as single-agents selecting a sequence of actions with side
effects, leading to high quantities of one or more goal prod-
ucts.The result shows that they achieve a successful solution
in less time than already existing learning method. In [26]
a Monte Carlo Random Walk (MRW) planning algorithm
is used in deterministic classical planning achieving results
comparable with the other state of the art algorithms. In [27]
an extended version of UCT approach has been successfully
applied in continuous stochastic problems with continuous
action space.

In this paper we establish the applicability of MCTS to
the seamless orchestration of heterogeneous components over
a hybrid(CPU, GPU) platform. Although we work on the
FastFlow framework, the technique can easily be applied to a
different framework by changing the evaluation method used
here, which makes the algorithm framework independent.

III. BACKGROUND

A. FastFlow

Fastflow [28] is a skeleton-based parallel programming
framework for multi-core platforms, implemented in C++.
Fastflow’s streaming patterns are coordinating mechanisms
that control the flow of work between multiple concurrent
threads. This allows programmers to focus on application-
specific computational components by abstracting over com-
plex coordination and communication layers. Fastflow supports



both CPUs and GPUs as part of a heterogeneous parallel
system [29].

B. Skeletons

An algorithmic skeleton is an abstract computational entity
that models some common pattern of parallelism (such as the
parallel execution of the sequence of computations over the
set of inputs, where the output of one computation is the input
to the next one). A skeleton is typically implemented as a
high-level function that takes care of the parallel aspects of a
computation (e.g., the creation of parallel threads, communica-
tion and synchronisation between these threads, load balancing
etc.), and where the user provides a sequential code specific
to his concrete problem.

In this paper, we restrict ourselves to two fundamental,
heterogeneous skeletons, that we consider to be the most
popular and most useful:

• The Pipeline skeleton models the application of a
composition of functions f1, f2, . . . , fn to a sequence
of independent inputs x1, x2, . . . , xm, where the out-
put of fi is the input to fi+1. The parallelism arises
from the fact that, for example, f1(xn) can be ex-
ecuted in parallel with f2(f1(xn−1)). We will de-
note the pipeline skeleton by Pipe(f1, f2, . . . , fn, x),
where f1, f2, . . . , fn are the functions of a pipeline
and x is the array of inputs.

• A Farm skeleton models the application of a
function, f , to a sequence of independent inputs,
x1, x2, x3, . . . , xn. We will denote the farm skeleton
by Farm(nw, f, x), where nw is the number of
worker threads, f is a function that is to be applied
to the inputs, and x is the array of inputs.

C. Monte Carlo Tree Search

MCTS uses four main steps. (i) in the selection step the
tree is traversed from the root node to the leaves; (ii) next,
in the expansion step, a new node is added to the tree; (iii)
subsequently, during the sampling step, moves are selected
at random until a leaf is reached and evaluated; and (iv)
finally, in the back-propagation step, the result of an evaluation
is propagated backwards, through the previously traversed
nodes. [30]

IV. THE PROPOSED APPROACH

We assume that we are given a parallel program, together
with its associated skeleton tree structure. A skeleton tree
structure provides the high-level view of the skeletons used in
a program, together with the information about their nesting
and the sequential components used in these skeletons. We also
assume that we are given, for each component, the information
about whether it is a CPU or GPU component, and the
estimated runtime of that component for one input on a given
hardware. Figure 1 shows an example skeleton tree structure,
with three components (A, B, G, D). The components A, B
and C are CPU components, whereas the component G is a
GPU component. The components B and G belong to the same
farm (i.e. they correspond to two implementations of the same
function, one for CPUs and one for GPUs).

We define a static mapping of a parallel program to a
given hardware as an assignment of the amount of appropriate
resources (CPUs or GPUs) to each component in the program
skeleton tree structure. The static mapping problem is the
problem of finding, from the set of all static mappings, the
static mapping which will be optimal with respect to some
metric. In order to find the optimal static mapping, we use the
MCTS algorithm to calculate the distribution of computational
resources to the components.

The problem of finding an optimal static mapping for the
given program is then divided into two phases:

• Converting the program’s skeleton tree structure to its
associated process graph

• A Monte Carlo Tree Search for selecting an optimal
mapping of the process graph to the target architecture

A. Converting the Skeleton Tree Structure to the Process
Graph

The skeleton tree is a nested combination of farms and
pipelines which is created in an IDE interactively by the
user. Figure 1 shows the skeleton tree structure of a 3-stage
pipeline. Each stage is a farm and the second stage contains a
combination of CPU and GPU components.

The skeleton tree structure is converted into a first order
logic formula from which a process graph can be created.
In case the computational resources available for a particular
factorisation are not sufficient, the process graph is reshaped
by removing the leaves for which the formula remains correct
after their removal. Any skeleton tree can be converted to a
first order logic formula, using the following scheme:

Farm(A1, ..., An) := ∨n
i=1Ai

Pipe(A1, ..., Am) := ∧m
i=1Ai

Ai := Pipe(A
′

1, ..., A
′

m)|Farm(A
′

1, ..., A
′

n)|f
where fϵ{set of components}.

As an example, for the skeleton tree structure presented
in figure 1, the first order logic formula is as follows.
FOL(TS) = (A ∧ (B ∨G) ∧ C).

To create a process graph from the formula, each prepo-
sition represents a component, each operator ∧ represents a
queue connecting the components of the systems together and
the operator ∨ is used to represent different components of the
system streaming data from the same queue. Figure 2 shows
the process graph generated from FOL(TS). The process
graph has three task queues for the top-level pipeline. Queues
Q0 and Q1 connect the subsequent pipeline stages, and the
queue Q2 accumulates the output of the whole pipeline. The
task queues are the main factor for finding the optimal solution.
For each task queue a queue level has been considered, where
the queue level is the number of tasks waiting to be processed
by the next stage. In an ideal case the queue level for all task
queues is equal to zero, because as soon as a tasks enter in the
task queue, it will be processed by the next stage. However, this
does not occur in reality specially when we have heterogeneous
componenet running on heterogeneous resources. In this case
the number of resouces alocated to each component are the
key factor to create that queue level balance.



Fig. 1. Tree Structure.

Fig. 2. Process Graph.

The more the queue levels of task queues in the system
are similar and close to zero, the better the provided mapping
is. The queue level together with the troughput of the system,
which can be achieved by monitiring the number of tasks put
in last task queue in time interval T , are the main evaluation
factors for choosing optimised mapping. Therefore, in each
step the MCTS approach, selects a mapping soluion, simulates
the execution of the problem for the selected mapping and
rewards it by analising the simulation based on the above main
factors. The result of the reward will be backpropagated based
on the applied backpropagation policy.

In the following we explain the proposed MCTS approach
in more details.

B. A Monte Carlo Tree Search from the Process Graph

C. Decision Tree

The nodes of the decision tree of our model are the
mapping decisions, where a single decision corresponds to
allocating the amount of remaining resources to one or more
components. At each decision point, some resources will be
allocated, limiting the total resources available to the yet
unallocated components. A leaf of the tree corresponds to
the complete static mapping, where all components have been
allocated an amount of resources. At this point the mapping
can be evaluated by simulation, where we apply MCTS to
search for an optimal path through this decision tree.

At each step, a set of resources is allocated to components
of a single farm. We can represent the set of possible decisions
as:

{A(wi, k) | wi ∈ M,k ∈ {0, 1, . . . , L}},

where A ∈ {ADD,REMOVE}; M is the set of components
in the farm (containing one element if there is only a CPU
or a GPU component, or two if there are both a CPU and a
GPU component); k is the amount of resources to be allocated
or deallocated to a component, wi; and, L is the maximum

amount of resources that can be allocated to the component,
wi.

D. Selection Strategy

The selection strategy that we use is the Upper Confidence
bounds applied to Trees (UCT) [31], [22]. The formula for
UCT is:

UCT = Xj + 2CP

√
2 lnn
nj

where n is the number of times the current node has been
visited; nj is the number of times the child, j, has been visited;
CP > 0 is a constant value; and, Xj is the average reward
value given to child node, j.

E. Simulation of Static Mapping

There are two ways to evaluate the performance of a
selected path in the decision tree (which correspond to one
static mapping): mathematical abstraction of the system (such
as a cost model) and simulation. Here we use simulation
because the accuracy of a cost model depends on large
number of parameters that may be difficult to obtain for
certain skeletons and hardware systems. Here we chose an
approach that is intended to be generic, rather than completely
precise. However, the precision gained using simulations is
good enough for comparing different static mappings allowing
us to demonstrate the principles of our technique.

We have developed a simulator for FastFlow that mimics
the behaviour of a given FastFlow application running on
the target architecture. The simulator outputs the metrics
(queue Level, component utilisation, throughput) that we use
to evaluate the static mappings.

F. Reward Function

Once a static mapping has been simulated, a reward for
the mapping is calculated. The reward function is based on
the throughput of the system, denoted by T . There are two
balancing factors related to the overall utilisation of the system:

1) We define utilisation of a component, w, to be
denoted by U(w), as the utilisation of the resources
allocated to the component, w. We denote by SDU

the standard deviation of the component utilisation
from the mean utilisation of all components in the
system:

SDU =

√
ΣN (Uwi − Uwm)2

N
,

where N is the total number of components in the
system; Uwi is the utilisation of the component, wi;
and, Uwm is the average utilisation of all components
in the system. Using SDU as a reward function
discourages the allocation of additional resources to
a component in the case where this results in only
a minor gain in the overall program speedup (and in
reduced utilisation).

2) We define throughput of a queue as
SDQ is the standard deviation of all queues in the
system, defined as follows.



SDQ =

√
ΣL(TQi

−TQm )2

L
Here, L is the total number of queues in the sys-
tem, TQi is the throughput of the Qi and TQm is
the average value of the throughput of all queues
in the system. Adjusting the reward for this factor
discourages the allocation of additional resource to
the components of a queue when they are no longer
bottlenecks on that queue.

In the case where a program is executed on an environment
where the resources are not necessarily free-of-charge (e.g.
cloud infrastructure), we may add two penalty factors:

1) GPU penalty, PGPU =
√

NUG

NTG
, where NUG is the

number of GPUs in the system that have not been
used by the static mapping, and NTG is the total
number of available GPUs in the system.

2) CPU penalty, PCPU =
√

NUC

NTC
, where NUC is the

number of CPU cores in the system that have not
been used by the static mapping, and NTC is the
total number of available CPU cores in the system.

The main effect of PGPU and PCPU is to force the system
to use all of the available resources, by introducing a penalty
for unused resources. If we add these two factors to the
definition of the reward function, then in the case where more
than one mapping achieves the same throughput and utilisation,
the one that uses the smallest amount of resources is chosen.
Conversely, if we omit these two factors, the mapping that uses
the largest amount of resources is chosen.

Since our assumption is that the system on which programs
are executed is dedicated private machine, we do not use PGPU

and PCPU in the reward function, which is therefore

Q(v) = T − (SDU + SDQ),

for a selected path, v, of the decision tree. If we were to use
the two penalty factors, the reward function would become
Q(v) = T − (SDU + SDQ + PCPU + PGPU ).

G. Back-propagation, Termination Condition and Final Move
Selection

We have considered two back-propagation policies [30]:
the Max policy, where the maximal reward of all the children
is propagated to their parent, and the Average policy, where
the average reward of all the children is propagated to their
parent.

The MCTS algorithm finishes if no new moves have been
made for K iterations. The final move selection is based on
the robust-max child. The robust-max child is the child with
both the highest visit count and the highest value. If there is
no robust-max child at the moment, more simulations are run
until a robust-max child is obtained [30].

V. CASE STUDY: IMAGE CONVOLUTION IN FASTFLOW

In order to evaluate our approach, we have used an image
convolution [32] as our example parallel program. Image
convolution is widely used in image processing applications,
e.g. for blurring, smoothing and edge detection. Our version
of image convolution consists of reading a stream of images

into the memory and applying the convolution function (with a
given filter) to each of these images. Applying the convolution
function to an input image conists of calculating, for each
pixel of the input image, a scalar product of the “window”
surrounding that pixel with the filter weights, and storing the
resut in the output image at the same position:

out(i, j) =
∑
m

∑
n

in(i− n, j −m)× filter(n,m),

where out(i, j) is the pixel of the output image at position
(i, j), in(i, j) is the pixel of the input image at position (i, j),
m and n are the dimensions of the filter, and filter(i, j) is
the pixel of the filter at position (i, j).

We emphasise that our intention here is to demonstrate the
applicability of our MCTS approach to deriving optimal static
mapping for computationally-demanding real-world FastFlow
applications, not to develop a new version of the CPU/GPU
convolution algorithm. The application that we use is imple-
mented in the GPU-extended version of FastFlow [29], where
it is shown that the hand-tuned version of the application
achieves a 45 speedup compared to the sequential version for
large-scale inputs. Here, as a proof of concept, we demon-
strate that our MCTS approach can derive the static mapping
that delivers a comparable speedup, therefore opening up the
prospect for automating tuning for non-experts.

We consider two different skeleton tree structures, or
factorisations, for the image convolution application [29]. In
both factorisations there are two kinds of components: r, which
reads a single image into memory, and p which applies the
convolution function to a single image. r only has a CPU
version, whereas p has both CPU and GPU versions. Therefore,
there are two different p components, which we will denote
by PCPU and PGPU . The two factorisations that we consider
are:

1) Pipe(Farm(r),Seq(pGPU )) and
2) Pipe(Farm(r),Farm(pCPU , pGPU )).

Table I shows the information about the hardware we used
in the evaluation of the MCTS algorithm. Table II shows the
two instances of the problem that we consider. We use the
Factorisation 1 for large-scale problems where we cannot run
more than one instance of a component on a single GPU. Since
in our system we have only one GPU, it means that we can
have at most one instance of pGPU . We use Factorisation 2 for
small-scale problems where we can run more than one instance
of a component on a single GPU.

Figure 3 compares the average absolute speedup obtained
with a mapping calculated by the MCTS algorithm over 1000
executions with the hand-tuned version for both factorisations,
compared with a sequential version. The speedups obtained
with the mapping calculated by the MCTS algorithm are within
5% of the speedups of the hand-tuned version. Figure 4 shows
the utilisations of the components of the application. We can
observe that the utilisation of all components is above 0.6.
Considering the fact that each component is assigned to a
resource in the system this implies an overall 0.6 utilisation of
the system. Figure 5 shows the throughput of the queues in the
application. We can observe that the throughput of both queues
is the same, which indicates perfect balance of the pipeline.



Parameter Value
No. of CPUs 2
Cores per CPU 6
CPU Clock 3.07 GHz
Physical Memory 50 GB
No. of GPUs 1
GPU Model NVIDIA Tesla M2090
GPU Memory 6 GB
GPU Cores 512
CUDA Version 4.0 V0.2.1221
GPU Driver Version 290.10

TABLE I. HARDWARE SPECIFICATION FOR RUNNING ACTUAL
CONVOLUTION PROBLEM

.

Category Input Image Filter No. Input
Size Size Images

Small Scale 2048*2048 15*15 1000
Large Scale 8192*8192 48*48 1000

TABLE II. PROBLEM CATEGORIES

Fig. 3. Speedups obtained with a static mapping calculated by the MCTS
algorithm and with a hand-tuned version

Fig. 4. Utilisation of the components in the application

Fig. 5. The throughput of queues in the application

VI. ANALYSIS OF MCTS ON STATIC MAPPING PROBLEM

In this section we discuss in more detail the choice of MCTS
for the static mapping problem.

The proposed approach aims to target FastFlow applica-
tions which are computationally heavy and contain a nested
combination of farms and pipelines. Such applications usually
take hours or even days to run [29], [33]. For example, running
the application presented in Section IV for an input stream of
8000 images on a machine with 2 GPUs and 24 CPUs takes
around 4 hours. Therefore, the effort required to run the MCTS
algorithm to obtain an optimal mapping, even for a relatively
simple problem like convolution, is amply justified in terms of
the savings in time and energy realised by achieving speedups
over such long run times.

The solution space is also sufficiently complex and ex-
pensive to justify an advanced search approach. The size of
the solution space size depends on the number of components
of the application and the amount of resources available in
the target architecture. For example, consider the skeleton tree
structure in Figure 1, presented in Section IV, which can be
categorised as a small problem.For an architecture with 16
CPUs and 1 GPU the solution space size is 1240; for an
architecture with 24 CPUs and 2 GPUs problem size would be
6624 and for a 64 cores machine with 2 GPU the problem size
would be have 129204 combinations. The costly operation here
is the performance evaluation of each possible solution in terms
of throughput and resource utilisation. For this example, using
the provided service time for each function, the evaluation
of each solution can vary from 12 seconds to 107 seconds.
So running all the possible solutions for even 1240 possible
solutions for the 16 cores machine with 1 GPU can take more
than a day to analyse. The simulation of this application for
24 cores CPU and 2 GPUs depends on the quality of the
selected path but can vary from 14 to 200 seconds. Exhaustive
search of this solution space will take almost a week. Finally,
in the case of a system with 64 CPU and 2 GPU, the solution
space will contain 129204 solutions, which is impractical for
exhaustive investigation. We emphasise again that this is a
small problem on a small target architecture. Large machines
in operation today can have thousands of processors, so for
large scale problem with large resources there is a need to
search intelligently for high quality mappings.



TABLE III. RUNTIME RESULTS FOR DIFFERENT MCTS VARIATIONS
IN FIGURE 1 OVER A PLATFORM WITH 24 CPU 2 GPU.

Name CPU/GPU number Percentage of Population Seen
MCTS-AVG 24/2 0.20
MCTS-AVG 16/1 0.32
MCTS-Max 24/2 0.09
MCTS-Max 16/1 0.19

Fig. 6. Average fitness over 50-step random walks from the global optimum.
the x-axis represents the walk steps and the y-axis represents the system
throughput in each walk step.

In order to analyse the solution space we study the fitness-
distance correlation (FDC) and landscape correlation (AC1)
for the above example over a platform with 16 cores CPU
and 1 GPU. Exhaustive evaluation of the example indicates
that the best solution is ”a:5”,”b:8”, ”g:1” and ”c:3”. As stated
in figure 6, we run 50-step random walks from the global
optimum, 100 times, to calculate the FDC and AC for the
solution space.

Table IV, displays the FDC obtained for this problem.
This indicates a clear gradient in solution quality as distance
increased, showing that it is reasonable to apply heuristic
search. [34]. However, AC1 value is comparable with the
reported AC1 on the NK landscape problem [35] with k=50
and N=100 which is quite rugged. This counter-indicates the
use of simple heuristics such as hill-climbing which is likely
to become trapped in local optima.

In the UCT approach applied here, the factor CP can be
considered as a greediness factor of the algorithm. Therefore,
considering the ruggedness of the solution space, selecting
too small a value for CP can result in searching smaller
regions of the solution space, with a higher risk of becoming
trapped in local optima. However, choosing too large a value
for CP slows or even prevents convergence. In our experience
values of CP around 1

5 th of the average throughput gives good
convergence to the optimal solution.

As shown in tableIII all of the optimum results were found
by exploring 9 − 32% of the solution space. We expect that,
on larger problems with deeper trees, these percentages will
drop dramatically as the number of unevaluated paths will
increase exponentially. Thus the justification for MCTS grows
with search space size.

We also observe that, since the MCTS-AVG is a less
greedy approach than the MCTS-MAX, MCTS-AVG is a better
algorithm for this problem. As stated in figures 7 and 8, the run

TABLE IV. THE FDC AND AC1 VALUE FOR PROBLEM SIZE 1240.

Name Value Standard Deviation
AC1 0.51 0.18
FDC -0.33 0.32

Fig. 7. Run Length Distribution on 16CPU 1GPU platform

Fig. 8. Run Length Distribution on 24CPU 2GPU platform

length distribution, shows that MCTS-AVG is more accurate
than MCTS-MAX for larger problems. Figure 8 shows that
the MCTS-MAX converges on local optima on 20% of runs.
However, when the solution space is small, the probability
of MCTS-MAX converging on a local optimum is reduced
(figure 7).

Moreover, the convergence of MCTS-AVG is more pre-
dictable than that of MCTS-MAX, as we can see in figures 7
and 8, for both cases 80% of the convergence are in certain iter-
ation, while in MCTS-MAX this is less predictable. However,
the number of population visited by MCTS-Max is less than
that in MCTS-AVG. Since the simulation is a costly function
here, this means that the cost of MCTS-MAX is less than the
cost of MCTS-AVG.

Moreover, Due to the large differences between the speed
of CPU and GPU, a set of solutions with almost the same
throughput as the global optimum exist. Since the static
mapping is based on estimation over the simulated value, it
is reasonable to accept all of these as best solutions. During
runtime of the parallel program, dynamic factors come into
play which affect the performance of the system and a light
weight dynamic remapping technique would be employed
to further tune the solution at runtime if needed. However,
the process of dynamic remapping is expensive. Hence, the
selected static mapping solution should be robust enough to
require the least possible effort at runtime. MCTS-AVG tends



to select solutions with robust sub-trees. By this we mean that,
at each decision step, the number of good solutions found in
the selected sub-tree (child) of a parent is more than other
sub-trees (children) of that parent. This is useful because it
increases the chances of needing less effort for further tuning
of selected path at runtime, since it increases the chance of
reaching another good solution by making small changes to
the current selected solution. MCTS-MAX is less likely than
MCTS-AVG to produce robust subtrees, since its evaluation is
based solely on the best result of its children.

Finally, comparing the run length distributions of the
MCTS algorithms with those of a simple random search
demonstrates the considerable extent to which learning assists
in finding a high quality solution with non-exhaustive effort.

VII. CONCLUSION

This paper has presented an intelligent approach to au-
tomating the mapping of a FastFlow program over a het-
erogeneous multicore architecture accelerated with GPU. The
approach uses Monte Carlo Tree Search and provides solutions
competitive with hand tuned expert solutions (upto 95% speed
up over hand tuned approach) without requiring specialist
knowledge.

We also analysed the applicability of MCTS to the mapping
problem in terms of its suitability, scalability and solution qual-
ity. Versions of MCTS with different back-propagation policies
were analysed. We have shown that MCTS with average back-
propagation provides robust solutions, most suitable as a basis
for dynamic remapping at runtime.

In the future, we are planning to integrate the idea of
streaming parallelism with data parallelism and to extend the
applicability of our algorithm to other algorithmic skeletons,
especially the Map skeleton for FastFlow. We also intend to
implement the dynamic remapping of the FastFlow program
as an extension over the generated result of the static mapping
approach.

A remaining issue for further investigation is the appli-
cability of this approach over a distributed heterogeneous
architecture, where the cost of transferring both components
and data over a network is accounted for in the simulation, as it
affects the system performance and utilisation of components.
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