34 research outputs found

    A Ka-band wind Geophysical Model Function using doppler scatterometer measurements from the Air-Sea Interaction Tower experiment

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Polverari, F., Wineteer, A., Rodríguez, E., Perkovic-Martin, D., Siqueira, P., Farrar, J., Adam, M., Closa Tarrés, M., & Edson, J. A Ka-band wind Geophysical Model Function using doppler scatterometer Measurements from the Air-Sea Interaction Tower experiment. Remote Sensing, 14(9), (2022): 2067, https://doi.org/10.3390/rs14092067.Physical understanding and modeling of Ka-band ocean surface backscatter is challenging due to a lack of measurements. In the framework of the NASA Earth Ventures Suborbital-3 Submesoscale Ocean Dynamics Experiment (S-MODE) mission, a Ka-Band Ocean continuous wave Doppler Scatterometer (KaBODS) built by the University of Massachusetts, Amherst (UMass) was installed on the Woods Hole Oceanographic Institution (WHOI) Air-Sea Interaction Tower. Together with ASIT anemometers, a new data set of Ka-band ocean surface backscatter measurements along with surface wind/wave and weather parameters was collected. In this work, we present the KaBODS instrument and an empirical Ka-band wind Geophysical Model Function (GMF), the so-called ASIT GMF, based on the KaBODS data collected over a period of three months, from October 2019 to January 2020, for incidence angles ranging between 40° and 68°. The ASIT GMF results are compared with an existing Ka-band wind GMF developed from data collected during a tower experiment conducted over the Black Sea. The two GMFs show differences in terms of wind speed and wind direction sensitivity. However, they are consistent in the values of the standard deviation of the model residuals. This suggests an intrinsic geophysical variability characterizing the Ka-band surface backscatter. The observed variability does not significantly change when filtering out swell-dominated data, indicating that the long-wave induced backscatter modulation is not the primary source of the KaBODS backscatter variability. We observe evidence of wave breaking events, which increase the skewness of the backscatter distribution in linear space, consistent with previous studies. Interestingly, a better agreement is seen between the GMFs and the actual data at an incidence angle of 60° for both GMFs, and the statistical analysis of the model residuals shows a reduced backscatter variability at this incidence angle. This study shows that the ASIT data set is a valuable reference for studies of Ka-band backscatter. Further investigations are on-going to fully characterize the observed variability and its implication in the wind GMF development.F.P. research was funded by an appointment to the NASA Postdoctoral Program initially administered by Universities Space Research Association and now administered by Oak Ridge Associated Universities, under a contract with National Aeronautics and Space Administration. A.W., E.R., D.P.-M., P.S., M.A., M.C.T. and J.T.F. received support from the S-MODE project, an EVS-3 Investigation awarded under NASA Research Announcement NNH17ZDA001N-EVS3 (JPL/Cal Tech: 80NM0019F0058, WHOI: 80NSSC19K1256, UMass Amherst: 80NSSC19K1282). J.B.E. acknowledges support from NSF under grant number OCE-1756789

    Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    Get PDF
    The NASA Propagation Effects Handbook for Satellite Systems Design provides a systematic compilation of the major propagation effects experienced on space-Earth paths in the 10 to 100 GHz frequency band region. It provides both a detailed description of the propagation phenomenon and a summary of the impact of the effect on the communications system design and performance. Chapter 2 through 5 describe the propagation effects, prediction models, and available experimental data bases. In Chapter 6, design techniques and prediction methods available for evaluating propagation effects on space-Earth communication systems are presented. Chapter 7 addresses the system design process and how the effects of propagation on system design and performance should be considered and how that can be mitigated. Examples of operational and planned Ku, Ka, and EHF satellite communications systems are given

    The winds and currents mission concept

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rodriguez, E., Bourassa, M., Chelton, D., Farrar, J. T., Long, D., Perkovic-Martin, D., & Samelson, R. The winds and currents mission concept. Frontiers in Marine Science, 6, (2019): 438, doi:10.3389/fmars.2019.00438.The Winds and Currents Mission (WaCM) is a proposed approach to meet the need identified by the NRC Decadal Survey for the simultaneous measurements of ocean vector winds and currents. WaCM features a Ka-band pencil-beam Doppler scatterometer able to map ocean winds and currents globally. We review the principles behind the WaCM measurement and the requirements driving the mission. We then present an overview of the WaCM observatory and tie its capabilities to other OceanObs reviews and measurement approaches.ER was funded under NASA grant NNN13D462T. DC was funded under NASA grant NNX10AO98G. JF was funded under NASA grants NNX14AM71G and NNX16AH76G. DL was funded under NASA grant NNX14AM67G. DP-M was funded under NASA grant NNH13ZDA001N. RS was funded under NASA grant NNX14AM66G

    Empirical Relationship Between the Doppler Centroid Derived From X-Band Spaceborne InSAR Data and Wind Vectors

    Get PDF
    One of the challenges in ocean surface current retrieval from synthetic aperture radar (SAR) data is the estimation and removal of the wave-induced Doppler centroid (DC). This article demonstrates empirically the relationship between the dc derived from spaceborne X-band InSAR data and the ocean surface wind and waves. In this study, we analyzed over 300 TanDEM-X image pairs. It is found that the general characteristics of the estimated dc follow the theoretically expected variation with incidence angle, wind speed, and wind direction. An empirical geophysical model function (GMF) is fit to the estimated dc and compared to existing models and previous experiments. Our GMF is in good agreement (within 0.2 m/s) with other models and data sets. It is found that the wind-induced Doppler velocity contributes to the total Doppler velocity with about 15% of the radial wind speed. This is much larger than the sum of the contributions from the Bragg waves (~0.2 m/s) and the wind-induced drift current (~3% of wind speed). This indicates a significant (dominant) contribution of the long wind waves to the SAR dc. Moreover, analysis of dual-polarized data shows that the backscatter polarization ratio (PR=σ⁰VV/σ⁰HH) and the dc polarization difference (PD=|dcVV|-|dcHH|) are systematically larger than 1 and smaller than 0 Hz, respectively, and both increase in magnitude with incidence angle. The estimated PR and PD are compared to other theoretical and empirical models. The Bragg scattering theory-based (pure Bragg and composite surface) models overestimate both PR and PD, suggesting that other scattering mechanisms, e.g., wave breaking, are involved. In general, it is found that empirical models are more consistent with both backscatter and Doppler data than theory-based models. This motivates a further improvement of SAR dc GMFs

    Propagation effects handbook for satellite systems design. A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    Get PDF
    This Propagation Handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in some detail, in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. In order to make the Handbook readily usable to many engineers, it has been arranged in two parts. Chapters 2-5 comprise the descriptive part. They deal in some detail with rain systems, rain and attenuation models, depolarization and experimental data. Chapters 6 and 7 make up the design part of the Handbook and may be used almost independently of the earlier chapters. In Chapter 6, the design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. Chapter 7 addresses the questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results

    Remote Sensing Observations of Tundra Snow with Ku- and X-band Radar

    Get PDF
    Seasonal patterns of snow accumulation in the Northern Hemisphere are changing in response to variations in Arctic climate. These changes have the potential to influence global climate, regional hydrology, and sensitive ecosystems as they become more pronounced. To refine our understanding of the role of snow in the Earth system, improved methods to characterize global changes in snow extent and mass are needed. Current space-borne observations and ground-based measurement networks lack the spatial resolution to characterize changes in volumetric snow properties at the scale of ground observed variation. Recently, radar has emerged as a potential complement to existing observation methods with demonstrated sensitivity to snow volume at high spatial resolutions (< 200 m). In 2009, this potential was recognized by the proposed European Space Agency Earth Explorer mission, the Cold Regions High Resolution Hydrology Observatory (CoReH2O); a satellite based dual frequency (17.2 and 9.6 GHz) radar for observation of cryospheric variables including snow water equivalent (SWE). Despite increasing international attention, snow-radar interactions specific to many snow cover types remain unevaluated at 17.2 or 9.6 GHz, including those common to the Canadian tundra. This thesis aimed to use field-based experimentation to close gaps in knowledge regarding snow-microwave interaction and to improve our understanding of how these interactions could be exploited to retrieve snow properties in tundra environments. Between September 2009 and March 2011, a pair of multi-objective field campaigns were conducted in Churchill, Manitoba, Canada to collect snow, ice, and radar measurements in a number of unique sub-arctic environments. Three distinct experiments were undertaken to characterize and evaluate snow-radar response using novel seasonal, spatial, and destructive sampling methods in previously untested terrestrial tundra environments. Common to each experiment was the deployment of a sled-mounted dual-frequency (17.2 and 9.6 GHz) scatterometer system known as UW-Scat. This adaptable ground-based radar system was used to collect backscatter measurements across a range of representative tundra snow conditions at remote terrestrial sites. The assembled set of measurements provide an extensive database from which to evaluate the influence of seasonal processes of snow accumulation and metamorphosis on radar response. Several advancements to our understanding of snow-radar interaction were made in this thesis. First, proof-of-concept experiments were used to establish seasonal and spatial observation protocols for ground-based evaluation. These initial experiments identified the presence of frequency dependent sensitivity to evolving snow properties in terrestrial environments. Expanding upon the preliminary experiments, a seasonal observation protocol was used to demonstrate for the first time Ku-band and X-band sensitivity to evolving snow properties at a coastal tundra observation site. Over a 5 month period, 13 discrete scatterometer observations were collected at an undisturbed snow target where Ku-band measurements were shown to hold strong sensitivity to increasing snow depth and water equivalent. Analysis of longer wavelength X-band measurements was complicated by soil response not easily separable from the target snow signal. Definitive evidence of snow volume scattering was shown by removing the snowpack from the field of view which resulted in a significant reduction in backscatter at both frequencies. An additional set of distributed snow covered tundra targets were evaluated to increase knowledge of spatiotemporal Ku-band interactions. In this experiment strong sensitivities to increasing depth and SWE were again demonstrated. To further evaluate the influence of tundra snow variability, detailed characterization of snow stratigraphy was completed within the sensor field of view and compared against collocated backscatter response. These experiments demonstrated Ku-band sensitivity to changes in tundra snow properties observed over short distances. A contrasting homogeneous snowpack showed a reduction in variation of the radar signal in comparison to a highly variable open tundra site. Overall, the results of this thesis support the single frequency Ku-band (17.2 GHz) retrieval of shallow tundra snow properties and encourage further study of X-band interactions to aid in decomposition of the desired snow volume signal.4 month

    Propagation effects handbook for satellite systems design: A summary of propagation impairments on 10 to 100 GHz satellite links with techniques for system design

    Get PDF
    The major propagation effects experienced on Earth-space communications paths in the 10 to 100 GHz frequency range. Attenuation due to rain is dealt with in detail

    Semi-Empirical Algorithm for Wind Speed Retrieval from Gaofen-3 Quad-Polarization Strip Mode SAR Data

    Get PDF
    Synthetic aperture radar (SAR) is a suitable tool to obtain reliable wind retrievals with high spatial resolution. The geophysical model function (GMF), which is widely employed for wind speed retrieval from SAR data, describes the relationship between the SAR normalized radar cross-section (NRCS) at the copolarization channel (vertical-vertical and horizontal-horizontal) and a wind vector. SAR-measured NRCS at cross-polarization channels (horizontal-vertical and vertical-horizontal) correlates with wind speed. In this study, a semi-empirical algorithm is presented to retrieve wind speed from the noisy Chinese Gaofen-3 (GF-3) SAR data with noise-equivalent sigma zero correction using an empirical function. GF-3 SAR can acquire data in a quad-polarization strip mode, which includes cross-polarization channels. The semi-empirical algorithm is tuned using acquisitions collocated with winds from the European Center for Medium-Range Weather Forecasts. In particular, the proposed algorithm includes the dependences of wind speed and incidence angle on cross-polarized NRCS. The accuracy of SAR-derived wind speed is around 2.10 m s-1 root mean square error, which is validated against measurements from the Advanced Scatterometer onboard the Metop-A/B and the buoys from the National Data Buoy Center of the National Oceanic and Atmospheric Administration. The results obtained by the proposed algorithm considering the incidence angle in a GMF are relatively more accurate than those achieved by other algorithms. This work provides an alternative method to generate operational wind products for GF-3 SAR without relying on ancillary data for wind direction

    A propagation effects handbook for satellite systems design. A summary of propagation impairments on 10-100 GHz satellite links, with techniques for system design

    Get PDF
    This handbook provides satellite system engineers with a concise summary of the major propagation effects experienced on Earth-space paths in the 10 to 100 GHz frequency range. The dominant effect, attenuation due to rain, is dealt with in terms of both experimental data from measurements made in the U.S. and Canada, and the mathematical and conceptual models devised to explain the data. Rain systems, rain and attenuation models, depolarization and experimental data are described. The design techniques recommended for predicting propagation effects in Earth-space communications systems are presented. The questions of where in the system design process the effects of propagation should be considered, and what precautions should be taken when applying the propagation results are addressed in order to bridge the gap between the propagation research data and the classical link budget analysis of Earth-space communications system

    SKIM, a candidate satellite mission exploring global ocean currents and waves

    Get PDF
    The Sea surface KInematics Multiscale monitoring (SKIM) satellite mission is designed to explore ocean surface current and waves. This includes tropical currents, notably the poorly known patterns of divergence and their impact on the ocean heat budget, and monitoring of the emerging Arctic up to 82.5°N. SKIM will also make unprecedented direct measurements of strong currents, from boundary currents to the Antarctic circumpolar current, and their interaction with ocean waves with expected impacts on air-sea fluxes and extreme waves. For the first time, SKIM will directly measure the ocean surface current vector from space. The main instrument on SKIM is a Ka-band conically scanning, multi-beam Doppler radar altimeter/wave scatterometer that includes a state-of-the-art nadir beam comparable to the Poseidon-4 instrument on Sentinel 6. The well proven Doppler pulse-pair technique will give a surface drift velocity representative of the top meter of the ocean, after subtracting a large wave-induced contribution. Horizontal velocity components will be obtained with an accuracy better than 7 cm/s for horizontal wavelengths larger than 80 km and time resolutions larger than 15 days, with a mean revisit time of 4 days for of 99% of the global oceans. This will provide unique and innovative measurements that will further our understanding of the transports in the upper ocean layer, permanently distributing heat, carbon, plankton, and plastics. SKIM will also benefit from co-located measurements of water vapor, rain rate, sea ice concentration, and wind vectors provided by the European operational satellite MetOp-SG(B), allowing many joint analyses. SKIM is one of the two candidate satellite missions under development for ESA Earth Explorer 9. The other candidate is the Far infrared Radiation Understanding and Monitoring (FORUM). The final selection will be announced by September 2019, for a launch in the coming decade
    corecore