2,259 research outputs found

    Combining physical and cultural weed control with biological methods – prospects for integrated non-chemical weed management strategies

    Get PDF
    The paper deals with the possibilities of combining physical weed control with biological weed control

    Recent results in the development of band steaming for intra-row weed control

    Get PDF
    The recent achievements with developing band-steaming techniques for intra-row weed control in vegetables are presente

    Task-based agricultural mobile robots in arable farming: A review

    Get PDF
    In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the farming of animals), smart farming and automated agricultural technology have emerged as promising methodologies for increasing the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent crops or woody plants such as orchards and vineyards whereas arable farming includes temporary crops such as wheat and rice. Major operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and harvesting where robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for future improvements in using reliable mobile robots for arable farmin

    Development of Modified CNN Algorithm for Agriculture Product: A Research Review

    Get PDF
    Now a day, with the increase in world population, the demand for agricultural products is also increased. Modern days electronic technologies combined with machine vision techniques have become a good resource for precise weed and crop detection in the field. It is becoming prominent in precision agriculture and also supporting site-specific weed management. By reviewing as there are so many different kinds of weed detection algorithms that were already used in the weed removal process or in agriculture. By the comparative study of research papers on weed detection. In this paper, we have suggested advanced and improved algorithms which take care of most of the limitations of previous work. The main goal of this review is to study the different types of algorithms used to detect weeds present in crops for automated systems in agriculture. This paper used a method that is based on a convolutional neural network model, VGG16, to identify images of weeds. As the basic network, VGG16 has very good classification performance, and it is relatively easy to modify. Download the weed dataset. This image dataset has 15336 segments, being 3249 of soil, 7376 soybeans, 3520 grass, and 1191 broadleaf weeds. Our model fixes the first 16 layers of  VGG16 parameters for layer-by-layer automatic extraction of features, adding an average pooling layer, convolution layer, Dropout layer, fully connected layer, and softmax for classifiers. The results show that the final model performs well in the classification effect of 4 classes. The accuracy is 97.76 %. We will compare our result with the CNN model. It provides an accurate and reliable judgment basis for quantitative chemical pesticide spraying. The results of this study can provide an overview of the use of CNN-based techniques for weed detection

    Mid to Late Season Weed Detection in Soybean Production Fields Using Unmanned Aerial Vehicle and Machine Learning

    Get PDF
    Mid-late season weeds are those that escape the early season herbicide applications and those that emerge late in the season. They might not affect the crop yield, but if uncontrolled, will produce a large number of seeds causing problems in the subsequent years. In this study, high-resolution aerial imagery of mid-season weeds in soybean fields was captured using an unmanned aerial vehicle (UAV) and the performance of two different automated weed detection approaches – patch-based classification and object detection was studied for site-specific weed management. For the patch-based classification approach, several conventional machine learning models on Haralick texture features were compared with the Mobilenet v2 based convolutional neural network (CNN) model for their classification performance. The results showed that the CNN model had the best classification performance for individual patches. Two different image slicing approaches – patches with and without overlap were tested, and it was found that slicing with overlap leads to improved weed detection but with higher inference time. For the object detection approach, two models with different network architectures, namely Faster RCNN and SSD were evaluated and compared. It was found that Faster RCNN had better overall weed detection performance than the SSD with similar inference time. Also, it was found that Faster RCNN had better detection performance and shorter inference time compared to the patch-based CNN with overlapping image slicing. The influence of spatial resolution on weed detection accuracy was investigated by simulating the UAV imagery captured at different altitudes. It was found that Faster RCNN achieves similar performance at a lower spatial resolution. The inference time of Faster RCNN was evaluated using a regular laptop. The results showed the potential of on-farm near real-time weed detection in soybean production fields by capturing UAV imagery with lesser overlap and processing them with a pre-trained deep learning model, such as Faster RCNN, in regular laptops and mobile devices. Advisor: Yeyin Sh

    Mid to Late Season Weed Detection in Soybean Production Fields Using Unmanned Aerial Vehicle and Machine Learning

    Get PDF
    Mid-late season weeds are those that escape the early season herbicide applications and those that emerge late in the season. They might not affect the crop yield, but if uncontrolled, will produce a large number of seeds causing problems in the subsequent years. In this study, high-resolution aerial imagery of mid-season weeds in soybean fields was captured using an unmanned aerial vehicle (UAV) and the performance of two different automated weed detection approaches – patch-based classification and object detection was studied for site-specific weed management. For the patch-based classification approach, several conventional machine learning models on Haralick texture features were compared with the Mobilenet v2 based convolutional neural network (CNN) model for their classification performance. The results showed that the CNN model had the best classification performance for individual patches. Two different image slicing approaches – patches with and without overlap were tested, and it was found that slicing with overlap leads to improved weed detection but with higher inference time. For the object detection approach, two models with different network architectures, namely Faster RCNN and SSD were evaluated and compared. It was found that Faster RCNN had better overall weed detection performance than the SSD with similar inference time. Also, it was found that Faster RCNN had better detection performance and shorter inference time compared to the patch-based CNN with overlapping image slicing. The influence of spatial resolution on weed detection accuracy was investigated by simulating the UAV imagery captured at different altitudes. It was found that Faster RCNN achieves similar performance at a lower spatial resolution. The inference time of Faster RCNN was evaluated using a regular laptop. The results showed the potential of on-farm near real-time weed detection in soybean production fields by capturing UAV imagery with lesser overlap and processing them with a pre-trained deep learning model, such as Faster RCNN, in regular laptops and mobile devices. Advisor: Yeyin Sh

    Ein pixel-basiertes Segmentierungsmodell zur Identifizierung von Hunds-Kerbel (Anthriscus caucalis M. Bieb.) in Farbbildern eines Getreidefeldes

    Get PDF
    Because of insufficient effectiveness after herbicide application in autumn, bur chervil (Anthriscus caucalis M. Bieb.) is often present in cereal fields in spring. A second reason for spreading is the warm winter in Europe due to climate change. This weed continues to germinate from autumn to spring. To prevent further spreading, a site-specific control in spring is reasonable. Color imagery would offer cheap and complete monitoring of entire fields. In this study, an end-to-end fully convolutional network approach is presented to detect bur chervil within color images. The dataset consisted of images taken at three sampling dates in spring 2018 in winter wheat and at one date in 2019 in winter rye from the same field. Pixels representing bur chervil were manually annotated in all images. After a random image augmentation was done, a Unet-based convolutional neural network model was trained using 560 (80%) of the sub-images from 2018 (training images). The power of the trained model at the three different sampling dates in 2018 was evaluated at 141 (20%) of the manually annotated sub-images from 2018 and all (100%) sub-images from 2019 (test images). Comparing the estimated and the manually annotated weed plants in the test images the Intersection over Union (Jaccard index) showed mean values in the range of 0.9628 to 0.9909 for the three sampling dates in 2018, and a value of 0.9292 for the one date in 2019. The Dice coefficients yielded mean values in the range of 0.9801 to 0.9954 for 2018 and a value of 0.9605 in 2019
    • …
    corecore