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Mid to late season weeds are those that escape the early season herbicide applications and 

those that emerge late in the season. They might not affect the crop yield, but if 

uncontrolled, will produce a large number of seeds causing problems in the subsequent 

years. In this study, high-resolution aerial imagery of mid-season weeds in soybean fields 

was captured using an unmanned aerial vehicle (UAV) and the performance of two 

different automated weed detection approaches – patch-based classification and object 

detection was studied for site-specific weed management. For the patch-based 

classification approach, several conventional machine learning models on Haralick 

texture features were compared with the Mobilenet v2 based convolutional neural 

network (CNN) model for their classification performance. The results showed that the 

CNN model had the best classification performance for individual patches. Two different 

image slicing approaches – patches with and without overlap were tested, and it was 

found that slicing with overlap leads to improved weed detection but with higher 

inference time. For the object detection approach, two models with different network 

architectures, namely Faster RCNN and SSD were evaluated and compared. It was found 

that Faster RCNN had better overall weed detection performance than the SSD with 

similar inference time. Also, it was found that Faster RCNN had better detection 

performance and shorter inference time compared to the patch-based CNN with 



overlapping image slicing. The influence of spatial resolution on weed detection accuracy 

was investigated by simulating the UAV imagery captured at different altitudes. It was 

found that Faster RCNN achieves similar performance at a lower spatial resolution. The 

inference time of Faster RCNN was evaluated using a regular laptop. The results showed 

the potential of on-farm near real-time weed detection in soybean production fields by 

capturing UAV imagery with lesser overlap and processing them with a pre-trained deep 

learning model, such as Faster RCNN, in regular laptops and mobile devices. 
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CHAPTER 1  INTRODUCTION 

 The world population, currently 7.6 billion, is expected to reach more than 9 billion 

by 2050. With an increase in gross domestic product (GDP) per capita of the developing 

countries, the food consumption per capita is also expected to grow (Tilman, Balzer, Hill, 

& Befort, 2011). In order to secure food for growing population, global food production 

should almost double by 2050. Hence, in addition to breeding higher yielding varieties of 

crops, it is necessary to address the various factors contributing to yield loss such as 

nutrients, water, weeds, insects, and diseases. Weeds are unwanted plants that grow in the 

field and compete with crops for resources, thereby suppressing the growth of the crop and 

thereby the yield.  Typically, weeds are controlled by the application of pre-emergence and 

post-emergence herbicides at uniform rates throughout the field, which often leads to 

overuse resulting in environmental impacts, economic loss, and evolution of herbicide-

resistant weeds. However, the spatial distribution of weeds is not uniform across the field 

but rather is found to occur in patches. Hence, the approach of site specific weed 

management was proposed in which the weeds are sensed and spot sprayed using variable 

rate applicators (CHRISTENSEN et al., 2009).  

 Earlier studies on site specific weed management focused on real time sensing and 

spraying systems. They were limited in computational power and so were slow in operation 

thereby not being able to cover large areas. Remote sensing imagery from satellite covering 

large areas was proposed as a solution but was limited in the resolution of the imagery 

(Thorp & Tian, 2004). Unmanned aerial vehicles (UAVs) with their ability to get very 
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high- resolution aerial imagery and cover large areas proved to be a better alternative. 

Because of these advantages they have been used for several applications in agriculture 

such as water stress detection, disease detection, nitrogen management, weed detection, 

high throughput phenotyping (Sankaran et al., 2015; Shi et al., 2016). Advances in the field 

of machine learning in the past decade has led to various applications of machine learning 

algorithms and convolutional neural networks (CNN) for applications in agriculture 

including weed detection.  However, most of these studies are focused on early season 

weed detection since it is the critical period for weed removal. Mid to late season weeds 

are those escaped the early season herbicide application or those that emerged late in the 

season. Even though they might not affect the crop yield in that season, if uncontrolled, 

will produce large number of seeds thereby creating seedbank and causing problems in the 

future. With limited herbicide options available for application late in the season, 

automated detection of these mid to late season weeds will enable farmers to act quickly to 

control them. Therefore, in this study, the focus is on studying the use of patch-

classification and object detection approaches to detect weeds from UAV imagery and 

evaluate the feasibility of on-farm near-real time detection using regular laptop in 

commercial scale soybean fields. The specific objectives were: 

1. To evaluate and compare conventional machine learning models with a deep 

convolutional neural network model on patch-classification in terms of the 

detection performance and the inference time 

2. To evaluate and compare the detection performance and inference time of 

object detection and patch-based classification deep learning model 
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3. To evaluate the operational feasibility of object detection and patch-based classification 

deep learning models for near real time weed detection using UAVs in commercial 

scale soybean fields 

 

This thesis has been organized as five chapters with Chapter 1 and Chapter 5 being the 

introduction and conclusion. The studies corresponding to the three specific objectives 

mentioned above have been prepared as three manuscripts to be submitted to journals and 

named as Chapter 2, Chapter 3 and Chapter 4 respectively. 

 

1.1 REFERENCES 
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NADIMI, E. S., & JØRGENSEN, R. (2009). Site-specific weed control 

technologies. Weed Research, 49(3), 233–241. https://doi.org/10.1111/j.1365-

3180.2009.00696.x 

Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, 

G. J., … Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems 

for row and field crop phenotyping: A review. European Journal of Agronomy, 70, 

112–123. https://doi.org/10.1016/J.EJA.2015.07.004 

Shi, Y., Thomasson, J. A., Murray, S. C., Pugh, N. A., Rooney, W. L., Shafian, S., … 

Yang, C. (2016). Unmanned Aerial Vehicles for High-Throughput Phenotyping and 

Agronomic Research. PLOS ONE, 11(7), e0159781. 
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CHAPTER 2  CONVENTIONAL MACHINE LEARNING OR 

DEEP LEARNING: WHICH IS BETTER FOR PATCH-BASED MID 

TO LATE SEASON WEED DETECTION IN UAV IMAGERY? 

This manuscript has been prepared for journal submission 
 

2.1 INTRODUCTION 

 Weeds are one of the most important factors contributing to yield loss in crops 

(CENTENARY REVIEW, 2019). There are two ways of control to combat weeds, 

namely mechanical and chemical, of which chemical application is the most common 

practice. Use of chemicals such as herbicides after the emergence of weeds is the most 

common approach in weed management. Typically the herbicides are applied at a 

constant rate across the field, which has negative consequences such as economic loss, 

impacts on environment and increase in the evolution of herbicide resistant weeds due to 

overuse. However, the spatial distribution of weeds is not uniform across the field as they 

have been found to occur in patches. With the availability of remote sensing and global 

positioning systems for civilian applications, site-specific application was proposed as a 

core of precision farming that accounts for the spatial variability in the field to increase 

productivity and minimize environmental footprints (Zhang, Wang, & Wang, 2002). In 

weed management, this led to the site-specific herbicide application in which the 

herbicides are spot sprayed only where the weeds are using a sensing, decision making 

and variable-rate application system (CHRISTENSEN et al., 2009; Weis et al., 2008).  
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Earlier studies on weed sensing focused on extracting different features from 

digital images to distinguish between the crops and different weed species. Color based 

indices were found to be effective in distinguishing the plant pixels from the soil 

background but were difficult to differentiate between the crops and the weeds. Texture 

features that capture the spatial variation of pixel intensities as well as shape features 

such as roundness, perimeter among others, were able to distinguish between broadleaf 

and grassy plants. However, they were not able to differentiate individual species of 

weeds (D. M. Woebbecke, G. E. Meyer, K. Von Bargen, & D. A. Mortensen, 1995a, 

1995b; G. E. Meyer, T. Mehta, M. F. Kocher, D. A. Mortensen, & A. Samal, 1998). 

Following this, with advancements in variable rate implements, several studies focused 

on site-specific spraying. These systems used image processing techniques like discrete 

wavelet transform as well as nonlinear classifiers to recognize the weeds. Besides, these 

systems used the information about crop row to detect the inter-row weeds. However, the 

speed of these systems was limited by the computational capacity of the hardware (L. 

Tian, J. F. Reid, & J. W. Hummel, 1999; W. S. Lee, Slaughter, & Giles, 1999). Thorp & 

Tian (2004) studied the potential of satellite and manned aircraft-based remote sensing 

technologies to locate the weed patches. Using aerial imagery enables sensing large areas 

to develop a prescription map for herbicide application which can then be used by 

variable rate applicators without having to sense weeds real time on the ground. The low 

spatial resolution, the occurrence of mixed-image pixels and the similar spectral nature of 

a lot of weeds and the crops were the major difficulties with using satellite imagery.  

 Unmanned aerial vehicles (UAVs) with their ability to obtain ultra-high-

resolution aerial imagery at centimeter scales helped overcome the limitation of 
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resolution in satellite imagery and enabled various applications in precision farming such 

as weed, disease and pest detections (Sankaran et al., 2015). Most of the early studies on 

weed detection using UAV based aerial imagery was in sunflower fields. Following that, 

several researchers have investigated different weed detection algorithms from aerial 

imagery in different crops such as maize, sugarcane, and sugar beets. The potential of 

using only color-based indices from multispectral imagery to segment the weed pixels 

from crop and soil pixels was studied, but it was not found to be as effective because of 

spectral similarity of crops and weeds (Torres-Sánchez, López-Granados, De Castro, & 

Peña-Barragán, 2013). Following this, object-based image analysis (OBIA) was the most 

widely studied technique to detect early season weeds. In this approach, the image was 

converted into objects with spatially and spectrally homogenous pixels after which the 

vegetation objects were segmented from the soil using color indices such as Excess 

Green index and Normalized Difference Vegetation Index. The crop rows were then 

found using the orientation of the largest object and the inter-row vegetation objects were 

classified as by masking the crop rows (López-Granados et al., 2016; J. M. Peña, Torres-

Sánchez, de Castro, Kelly, & López-Granados, 2013; J. Peña et al., 2015). But the 

limitation of OBIA approach is the inability to detect the weeds in the crop row and the 

tuning of parameters needed to optimally segment the objects.  

Advances in the field of machine learning have led to improvements in precision 

farming applications.  As an alternative to OBIA, Hough transform was used to find crop 

rows and machine learning based classifiers were then used to classify small patches 

using spectral features and their relative position to crop rows (Perez-Ortiz et al., 2016; 

Pérez-Ortiz et al., 2015). With the availability compact hyperspectral cameras for UAV 
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systems, the potential of pixel level classification using machine learning approaches for 

weed detection from hyperspectral images was studied (Gao, Nuyttens, Lootens, He, & 

Pieters, 2018; Koot, 2014; Yano et al., 2017). Various machine learning classifiers such 

as support vector machines, artificial neural networks, random forest were used in these 

studies. However, the very high cost of hyperspectral cameras and complexity in their 

data processing currently limit their adoption in commercial applications. In the past 

several years, convolutional neural networks (CNNs) have revolutionized computer 

vision. Various researchers in the recent years have studied the application of CNNs for 

pixel wise classification of UAV images into weed, crop and soil for precision weed 

management (Huang et al., 2018; Lottes, Khanna, Pfeifer, Siegwart, & Stachniss, 2017; 

Sa et al., 2018). 

 It is to be noted that all these studies focus on early season weed detection for site 

specific application of post emergence herbicide. In addition to early season weeds, mid 

and late season weeds pose several problems to the farmers. Mid and late season weeds 

refer to those that escaped the post emergence herbicide application and those emerged 

late in the season. Though they may not affect the yield of the crop, if left uncontrolled, 

will produce large amounts of seeds thereby creating a seedbank to cause problems for 

years in the future.  Unlike tall crops like maize and sorghum in which late season weeds 

are hidden under the canopy and cannot be seen from aerial imagery, soybean being a 

short stature crop, aerial imagery can be used for this problem. The major challenge in 

the detection of late season weeds in the imagery is that the crop and weed objects are 

overlapping with each other in a cluttered manner thus limiting the performance of the 

segmentation algorithms used in OBIA. For practical applications in production 
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agriculture, a RGB camera based solution is preferred over others due to the low cost and 

convenience in data processing. 

2.1.1 Objective 

Develop a patch-based method for automatic mid to late season weed detection from 

UAV imagery in soybean after canopy closure and compare between conventional 

machine learning and convolutional neural network (CNN) based classifiers for detection 

performance and speed. 

2.1.2 Specific objectives 

1. Tuning of Gray Level Co-Occurrence Matrix based feature extraction parameters  

2. Comparison between conventional machine learning models such as support 

vector machine, logistic regression, artificial neural networks, and k-nearest 

neighbors, and CNN deep learning on their patch classification performance using 

accuracy, precision, recall and f1 score as evaluation metrics and their inference 

time 

3. Comparison between overlap and non-overlap image division methods for testing 

using Intersection over Union (IoU) as the evaluation metric 

2.2 MATERIALS AND METHODS 

2.2.1 Study site 

 The study site is located in South Central Agricultural Laboratory of the 

University of Nebraska, Lincoln at Clay Center, NE, USA (40.575188, -98.130909). The 
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study area consisted of soybean weed management research plots. Figure 2.1 shows the 

study area. 

 

Figure 2.1. Study area at South Central Agricultural Laboratory in Clay Center, NE 

 

2.2.2 UAV data collection 

 A DJI Matrice 600 pro UAV (DJI, Shenzhen, China) with a 16 megapixels (4608 

× 3456) RGB camera (Zenmuse X5R, DJI, Shenzhen, China) (Figure 2.2) was used to 

capture aerial imagery of soybean fields with weeds. The data collections were conducted 

late morning on two dates: July 2nd, 2018, in the north field, and July 12th, 2018, in the 
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south field. This resulted in variability in illumination during data collection as well as 

the growth stage of weeds in the data, thereby adding to the robustness of the 

classification models. DJI Ground Station pro application was used to plan the flight 

mission, and the images were obtained at an altitude of 20 m above ground level with 90 

% forward overlap and 85% side overlap. This resulted in a spatial resolution of 0.5 

cm/pixel.  

 

Figure 2.2. The DJI Matrice 600 pro UAV platform with Zenmuse X5R sensor used in 

this study.  
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2.2.3 Data annotation and preprocessing  

 The images obtained from the UAV was preprocessed, the weed areas annotated 

and the patch dataset was created as follows. Figure 2.3 shows a flowchart explaining the 

methodology used in this study from the preprocessing of raw images to the evaluation of 

results. From the obtained dataset, the overlapping raw images were removed to exclude 

duplicate data. Since the original size of the raw image of 4608 × 3456 pixels is too large 

to fit in memory, each 16 MP raw image was sliced into 12 sub-images of size 1152 × 

1152 pixels. After this process, the dataset contained 450 images of size 1152 × 1152. 

The image annotation tool LabelImg (Tzutalin, 2015) was used to draw bounding boxes 

on the areas containing weeds in the images. From these images with annotations, 

bounding box areas containing weeds were cropped out. The cropped out weed areas of 

varying sizes were then further cropped into a maximum possible number of patches of 

size 128 × 128 to form the ‘weed’ class. Then, the areas remained in the original image, 

i.e., soybean and soil areas were cropped into the maximum possible number of small 

patches of size 128 × 128 to form the ‘background’ class. Both classes were randomly 

split into 90% as training data and 10% as test data.  
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Figure 2.3. Flowchart showing data annotation, feature extraction, training of different 

machine learning models and convolutional neural network, comparison of the 

performance of these models and evaluation approaches 
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2.2.4 Feature extraction using Gray Level Co-occurrence Matrix for conventional 

machine learning models 

 In case of image classification using machine learning methods, feature extraction 

is one of the most important steps. Color, texture, and shape features are most widely 

used in agricultural applications. Since the data was collected after soybean canopy 

closure, there was a minimum amount of soil pixels presented between crop rows. The 

major classes in this study were the weed and the soybean canopy. It can be seen from the 

histogram of the two classes (Figure 2.4) that color features merely were not helpful 

enough to discriminate between the two classes. However, texture features extracted from 

Gray Level Co-Occurrence Matrix (GLCM) has proven successful in early season weed 

detection and plant species identification in several crops (Ahmed, Al-Mamun, Bari, 

Hossain, & Kwan, 2012; G. E. Meyer et al., 1998; HAWARI Ghazali, Mustafa, Hussain, 

Hawari Ghazali, & Marzuki Mustafa, 2007; Pulido Rojas, Solaque Guzmán, & Velasco 

Toledo, 2017; Wu & Wen, 2009). With only green band showing slight changes in 

intensity between the crop and weed pixels only the green band of the patches were used 

for texture feature extraction.  
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Figure 2.4. Boxplot of the distribution of the “background” class including soybean and 

soil pixels and the “weed” class in blue, green and red bands.  

 Gray level co-occurrence matrix (GLCM) is a statistical measure of the pixel 

intensity distribution in an image. In order to measure the variation in texture in the 

image, rather than individual pixel intensities, intensities of a pair of pixels defined by 

two parameters – distance offset d and angle Ɵ are measured (Chapter 7. Texture 

analysis, 2017). The size of the Co-occurrence matrix depends on the number of gray 

levels at which the image intensities are measured. Hence, GLCM of n gray levels maps 

an image of size i × j into a matrix of size n × n which represents the frequency of 

occurrence of each pair of gray levels (Figure 2.5). To represent the textural properties of 

an image with few numbers, (Haralick, Shanmugam, & Dinstein, 1973) proposed 14 

features of which the following 6 – Contrast, Dissimilarity, Homogeneity, ASM, Energy, 
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Correlation were calculated using scikit-image, an image processing package in python 

(van der Walt et al., 2014). 

 

 

Figure 2.5. Example showing the calculation of Gray Level Co-Occurrence Matrix at an 

angle of 0°,  distance offset 1 and 8 intensity levels  for an image of size 5×5 

 

Feature engineering greatly influences the performance of a machine learning 

classifier (Domingos, 2012). In addition to choosing the right feature extraction method, 
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it is necessary to find the optimal parameters for that method for each problem to 

maximize the performance of the classifier. In case of feature extraction using GLCM, 

distance offset and angle are the two parameters that determine the number of co-

occurrence matrices created. Previous studies have either looked at using only the 

neighboring pixel (a distance offset of 1) at multiple directions or average of various 

distance offsets and directions (S. N. Ondimu & H. Murase, 2008; T. F. Burks, S. A. 

Shearer, & F. A. Payne, 2000; Y. K. Chang et al., 2012). Based on visual observation of 

the patches, it was decided to use distance offsets in the range 1-5 and four different 

angles - 0°, 45°, 90°, and 135° thereby resulting in 20 matrices in total. Since 6 different 

features are extracted from each matrix, the dataset had 120 features in total.  

In order to find the influence of distance offset and direction on the classification 

performance, experiments were conducted with 4 different combinations of features:1) 

Averaging across all distance offsets and directions resulting in 6 features, 2) Retaining 

all 120 features, 3) Averaging across all directions but retaining all distance offsets 

resulting in 30 features and 4) Averaging across all distance offsets but retaining all 

directions resulting in 24 features. Following this, with the best combination of feature, 

experiments were conducted with a different number of distance offsets to find the 

optimal value. The same procedure was repeated to find the optimal number of gray 

levels in the GLCM. Classification accuracy and computation time for feature extraction 

were used as the evaluation metrics in all these experiments. 
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2.2.5 Conventional Machine Learning models 

 The hypothesis of this study was that the dataset is linearly separable in using 

Haralick features from GLCM and hence logistic regression was the first machine 

learning model that was investigated. Though logistic regression model had a very good 

classification accuracy of 93.32, potential for further improvement in classification 

accuracy and other evaluation metrics (as can be seen in the results) indicated that there 

might be slight non linearity existing in this dataset and hence 3 different models capable 

of learning non-linear decision boundaries – support vector machine (SVM) with 

Gaussian kernel or radial basis function (RBF), k-nearest neighbor and artificial neural 

networks were studied. During the training of each model, hyper parameter tuning was 

done using k-fold cross validation with different sets of hyper parameters to obtain the 

optimal hyper parameters. The best performing models with optimal hyper parameters in 

each case were then compared within them as well as with convolutional neural network 

using different evaluation metrics. 

 Logistic regression is a linear binary classifier and a probabilistic discriminative 

model where the model learns a mapping function to directly output the posterior class 

probability distribution without modeling the likelihood function of the features. It is 

widely used for classification tasks in case of linearly separable data. In case of non-

linear data, it can be used by augmenting the features to a high dimensional space but the 

time complexity suffers from the curse of dimensionality and hence is not suitable for 

non-linear data with a large number of dimensions (Bishop, 2006). 



 19 
 

 
 

 Support vector machine (SVM) is a linear binary classifier, which constructs a 

hyperplane to linearly separate the data in the feature dimension space. The objective of 

SVM is to maximize the width of the margin between the two classes thereby leading to 

low generalization error. The kernel trick in SVM allows us to augment the features to 

high dimensional polynomial features or Gaussian similarity features as in Radial Basis 

Function kernel. This property enables SVM to classify nonlinear data by augmenting the 

features to higher dimensions. The major difference between SVM and logistic regression 

is that in logistic regression the objective is to find a decision boundary, which would 

correctly classifies all the training data whereas in case of SVM the objective is to 

maximize the width of the decision margin with the constraint of correctly classifying all 

the training data. In addition, the kernel trick enables SVM to be used in case of nonlinear 

data with a large number of features. (Bishop, 2006). 

 K-nearest neighbor (KNN) is an analogy based machine learning algorithm that is 

non-parametric. Its advantage is its ability to learn highly complex decision boundary. It 

works by finding the similarity of a test point with all the training data points and assigns 

the class of the test point based on the class of the k-nearest neighbors. It suffers from 

overfitting. Also, since all the training data has to be loaded into the memory to make a 

prediction for every test data point, it is computationally expensive but there are some 

ways to increase the speed. The other disadvantages are the optimal of parameter k and 

the appropriate distance metric has to be found for each problem (Bishop, 2006).  

Artificial neural networks (ANN) mimic the human biological neuron in the 

structure and are highly non-linear in nature. They have units called neurons similar 
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neurons in the human brain and have weights associated with the connections between 

the neuron. At the neuron, the weighted sum of signals from all neurons in previous 

layers is done followed by an activation function which maps the weighted sum to a non-

linear output. These layers, other than the input and output layer, are called hidden layers. 

At the end, there is an output layer the outputs the class label in case of classification or 

prediction in case of regression problem in which a real valued number is needed as 

output (Bishop, 2006).      

2.2.6 Convolutional neural network model 

 Even though artificial neural networks with several hidden layers are very good in 

learning highly non-linear decision boundaries, in case of data with multiple arrays such 

as images and audio signals, their performance is limited by the information contained in 

the extracted features. In case of no feature extraction, artificial neural networks use the 

pixel intensities of images in different bands as features. However, since the spatial 

correlation of pixels in an image is not considered in such approach, the performance is 

limited. To overcome this limitation, convolutional neural networks (CNNs) were 

proposed. Most of the fully connected hidden layers in ANN were replaced by sliding 

windows or convolutional layers that learn spatial features in the image. These sliding 

windows are called feature maps. Similar to ANN, the output from the feature maps from 

each hidden layer is mapped to a non-linear space by using activation functions. The 

abstraction is that the feature maps in the earlier hidden layers learn generalized features 

such as textural features whereas feature maps in the hidden layers at the end learn task-

specific features. They are trained using the backpropagation algorithm similar to ANN. 
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However, because of the large number of parameters, they need a large amount of data to 

train a CNN from scratch (Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bengio, & 

Hinton, 2015).  

 To overcome this limitation, the transfer learning approach was proposed. In this 

case, the weights and graphs of CNN trained on large image datasets for another task 

were used to initialize the weights. In this case, CNN converged faster for smaller 

datasets. In this study, MobileNet v2 model was used for transfer learning (Sandler, 

Howard, Zhu, Zhmoginov, & Chen, 2018). It has been trained on the ImageNet dataset 

with 1.4 million images of 1000 classes. In the first 10 epochs, the convolutional layers in 

the model were frozen and only the fully connected layer was trained to distinguish weed 

patches from the background patches. After this, the convolutional layers were trained as 

well to fine tune the performance of the model (Chollet, 2017).  

2.2.7  Evaluation metrics 

 Two different sets of evaluation metrics were used in this study- one to evaluate 

the performance of the classifiers on individual patches and another to evaluate the 

performance of the classifiers on the sub-image. All the models were trained and 

evaluated on a computer with Intel i9 processor with 18 cores and 64 GB of RAM and 

NVIDIA GeForce RTX 2080 Ti graphics card. 
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2.2.7.1 Evaluate on patches 

 Accuracy, precision, recall and f1 score were used as the evaluation metrics to 

evaluate the classification performance on patches. To calculate all these metrics, true 

positive (TP), true negative (TN), false positive (FP) and false negative (FN) were 

calculated. TP refers to the weed patches that have been classified as weed. TN are the 

background patches that have been classified as background. FP refers to the background 

patches that have been misclassified as weed while FN are the weed patches that have 

been misclassified as background (Géron, 2017).  In addition, the time needed for feature 

extraction as well as prediction of test patches was calculated and used as a metric. 

Accuracy = 
TP+TN

TP+FP+TN+FN
 

Precision = 
TP

TP+FP
 

Recall = 
TP

TP+FN
 

F1 score = 
2×Precision×Recall  

Precision +Recall 
 

2.2.7.2 Evaluate on raw images 

 To use the patch-based classification methods, patches have to be cropped from 

the big raw image from the UAV system. The image slicing was done in two ways: 

overlapping and non-overlapping and their effect on detection of weeds was studied. In 

case of non-overlapping approach, a 1152×1152 sub-image was sliced into 81 non-
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overlapping images of size 128×128 and the class for each of the non-overlapping patch 

is predicted using the classifier. In case of the overlapping approach, rather than non-

overlapping 128×128 patches, the image is sliced with 75% horizontal overlap and 75% 

vertical overlap (Figure 2.6). This helps to reduce the edge effects in the big image and 

helps to improve the performance. 

  

(a) Non-overlapping approach (b) Overlapping approach 

 

Figure 2.6. Example of slicing an image using non-overlapping and overlapping 

approach. (a) a 1152 × 1152 image sliced into 4 non-overlapping small  images  (b) same  

image sliced using 50% horizontal and vertical overlap resulting in 8 small images 

 To compare the two approaches, mean IoU of the output images from the two 

approaches with respect to the ground truth binary image was used. 

IoU = 
Area of overlap  

Area of union 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Optimal parameters of feature extraction for conventional machine learning 

models 

   The effect of each combination of features on the classification accuracy of the 4 

different classifiers was evaluated using hyper parameter tuning and cross validation and 

shown in Figure 2.7. It has been found that in case of all the classifiers, retaining all the 

120 features leads to the best classification accuracy. Also, it has been found that, other 

than KNN, in the other 3 classifiers, retaining all the distance offsets (30 features) leads 

to a significant increase in classification accuracy compared to retaining all directions (24 

features). This shows that the 5 different distance offsets contain more information than 

the 4 different directions for classifying between the weed and the background. This 

could be because of the almost radial symmetry of the plant in the top view as in aerial 

imagery. 
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Figure 2.7. Validation accuracy of each model for different number of features. It shows 

that not averaging across distance and angle and retaining the features from all the 

distance offsets and angles result in the best performance in case of all the models 

      

 To find the optimal number of distance offsets to be calculated, experiments were 

conducted at various ranges from 1 to 15. In each case, features from all the distance 

offsets and directions were retained in the dataset. The effect of the various number of 

distance offsets on classification accuracy as well as the time needed for computing the 
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features was investigated and shown in Figure 2.8. It should be noted that these 

experiments were performed on processors with high computing power compared to the 

ones used on the farm for real-time applications. Hence, rather than absolute values of 

computation time, the trend of change in computation time with varying distance offset 

should be observed. It can been seen that in case of all the models, the validation 

accuracy increases with increase in the number of distance offsets up to a value of 5 after 

which it plateaus. From the plot showing the computation time of features, it can be seen 

that the feature extraction using GLCM has a linear time complexity with the number of 

distance offsets being calculated. Hence, for this problem at this spatial resolution, Figure 

2.8 shows that extracting features using 5 distance offsets (from 1 to 5) results in the best 

performance in terms of classification accuracy and the time needed to compute the 

features. 
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Figure 2.8. Effect of the number of distance offsets in GLCM on model performance and 

features computation time. 5 distance offsets (1-5) is the optimal value leading to the best 

accuracy and optimal feature extraction time in case of all the models. 

                                    

 In addition to distance offset and direction, the number of gray levels is another 

parameter in the calculation of GLCM that influences the calculation of Haralick 

features. In this case, the input images are 8 bit and so have values in the range 0-255. 

But it may not be needed to calculate GLCM at 256 gray levels and hence experiments 

were conducted by varying the gray levels from 8 to 128. The effect of varying the 

number of gray levels in GLCM on classification accuracy of different models as well as 

the time needed for computation of features is shown in Figure 2.9. It can be seen that the 

computational time needed for calculating features from GLCM has a piecewise linear 
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time complexity with an increase in the number of gray levels in GLCM. In case of 

classification accuracy, other than KNN, for the other 3 models, gray level of 16 was 

found to result in the best performance whereas, in case of KNN, gray level of 32 resulted 

in best performance after which there was no significant performance gain with an 

increase in gray levels. Hence, GLCM was computed with 16 gray levels, 5 distance 

offsets and 4 directions resulting in 120 features in case of SVM, logistic regression and 

ANN whereas in case of KNN the only difference being 32 gray levels. 

 

Figure 2.9. Effect of gray level in GLCM on validation accuracy and feature extraction 

time. 16 gray levels are found to be the optimal number of gray levels leading to best 

accuracy and feature extraction time trade-off.       

                   



 29 
 

 
 

2.3.2 Training and validation of machine learning models 

 Learning curves were then plotted (as shown in Figure 2.10) in case of each 

model by varying the training data size in steps of 500 from 500 to 10000. It can be seen 

that the validation accuracy increases with an increase in training data size up to 4000 

after which, there is no significant increase in validation accuracy of the model. This 

shows that using the GLCM based feature extraction technique, all the 4 models have 

achieved their maximum performance for this problem and that adding more training data 

would not lead to any performance gain. In addition, it can be seen that in case of SVM 

the gap between the validation accuracy and training accuracy is very high which might 

be because SVM with Gaussian kernel suffers from overfitting. This can be attributed to 

the ability of the Gaussian kernel to create highly nonlinear decision boundaries. ANN is 

a non-linear model and is prone to overfitting and hence the similar gap between training 

accuracy curve and validation accuracy curve is obtained in ANN. It is to be noted that 

the learning curves are monotonic for all models but ANN. This is because of the 

stochastic gradient descent based solver used in training the ANN. Of all the 4 models, 

KNN suffers from very severe overfitting. This could be attributed to KNN being an 

analogy based lazy learner. Also, the performance of KNN is very sensitive to the 

distance function used to calculate similarity. In this case, during hyper parameter tuning, 

only various degrees of Minkowski distance was tested. But, it is to be noted that there is 

a very high correlation between the various Haralick features. Hence, using a distance 

function that accounts for the covariance such as Mahalanobis distance might have 

reduced the severity of overfitting observed here. Logistic regression is found to have no 
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overfitting with similar performance in training data and validation data. This is due to its 

nature of being a simple linear classifier. Several previous research on using machine 

learning methods for weeds detection methods have found ANN to be a better classifier 

(Koot, 2014; Yano et al., 2017). Even though the results of ANN performance of this 

study are similar to those studies, the major difference in this study is the feature used. 

Previous work mentioned either used other feature extraction techniques from RGB 

imagery or hyperspectral imagery with pixel intensities in various bands as features.  

Hence, using Haralick features, for patch-based mid and late season weed detection in 

soybean fields from UAV imagery, we find SVM and Logistic regression to be the best 

performing classifiers. Also, the high classification performance from RGB is similar to 

the findings of (Koot, 2014) where RGB images performed better than multispectral 

images in classifying the weed pixels. 
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Figure 2.10. Curves showing the change in validation and training accuracy as well as 

prediction time of test data with an increase in training data size. It can be seen that a 

training data size of 4000 to 6000 results in the best performance of the models with no 

significant improvement after that. 
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 In addition to studying the increase in validation accuracy with increase in 

training data size, its effect on the prediction time on test data is plotted in Figure 2.10. 

Test data prediction time indicates only the time needed for the model to predict the class 

label for all the test dataset with features extracted. As seen from Figure 2.10, the time 

needed for prediction of test data remained the same with increasing training data size for  

Logistic regression and ANN. This is because in case of Logistic regression and ANN, 

the number of parameters remains the same irrespective of the size of the training data 

size. Whereas in case of SVM with Gaussian kernel and KNN, it can be seen that the 

prediction time of test data has an almost linear time complexity with the training data 

size. This could be because, in case of SVM with Gaussian kernel, prediction for test data 

is made by calculating the similarity of the test data point with all the support vectors and 

the number of support vectors might be increasing with an increase in training data size 

thereby increasing the prediction time. Hence, in case of this application which requires 

on-farm data processing, if SVM with Gaussian kernel is to be used, using a training data 

size of 6000 results in better trade-off in terms of classification accuracy and prediction 

time. 

2.3.3 Training and validation of convolutional neural network model 

 Figure 2.11 shows the training graph of the convolutional neural network. The 

change in training and validation accuracy and loss with an increase in training epochs is 

shown. During the first 10 epochs when the convolutional layers are frozen, the 

convolutional layers act as feature extractor and only the fully connected classification 

layers are trained. Hence, using the features that were extracted on the large dataset on 
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which MobileNet v2 was trained, the model achieves a training and validation accuracy 

of about 94% in 10 epochs. Also, the training accuracy shows no improvement in 

accuracy from epochs 6 to 10. Hence, training was stopped after 10 epochs after which 

the convolutional layers are allowed to train as well. The model then tweaks the features 

learned to the current classification task after epoch as evident from the sudden increase 

in training and validation accuracy from epoch 10 to 11. With the convolutional layers 

unfrozen, the model was trained for 10 epochs. Since no performance gain was achieved 

after a total of 16 epochs, the training process was stopped after 20 epochs. The 

classification performance of the model achieved is similar to previous research on using 

transfer learning on CNN for related tasks such as plant species identification and plant 

disease detection (S. H. Lee, Chan, Wilkin, & Remagnino, 2015; Mohanty, Hughes, & 

Salathé, 2016). 
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Figure 2.11. Training graph of CNN showing the change in training and validation 

accuracy as well as loss during the training process. The sudden jump in accuracy after 

fine-tuning can be seen. 

2.3.4 Comparison of performance on test data 

 The following table shows the performance of each model on test data using 4 

evaluation metrics – accuracy, precision, recall, and f1 score. Also, the prediction time of 

each model on the test data set as well as the total inference time (time for feature 

extraction and prediction) on test data is shown in Table 2.1.      



 35 
 

 
 

Table 2.1.  Model performance on test patches. SVM results in best classification performance among machine learning models but is 1 

lesser than CNN. But, CNN has longer inference time. Feature extraction contributes the most to the inference time in case of machine 2 

learning models 3 

Model 

 

Accuracy 

    (%)  

     Precision 

       (%)  

 

     Recall 

        (%)  

     F1 score 

         (%)  

Prediction time 

of 1 test patch 

in seconds 

 

Processing time of 1 

test patch (Feature 

extraction + 

Prediction) in 

seconds 

 

SVM 96.25 96.25 96.25 96.25 0.0001 0.0018 

  

Logistic 

regression 

93.32 92.62 94.13 93.37 0.000001 0.0017 

ANN 91.2 90.44 92.13 91.28 0.000004 0.0019 

KNN 85.14 85.86 84.14 84.99 0.0003 0.0024 

CNN 98.64 97.75 97.88 97.82 0.0023 0.0023 

4 
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 Among the 4 machine learning methods based on manually engineered features, 

SVM with Gaussian kernel has the best performance in terms of all the evaluation 

metrics. But it takes longer for prediction compared to the other three methods. The very 

good performance of logistic regression indicates that the data is almost linear in the 

Haralick feature space but not perfectly linear. It is important to note that even though 

logistic regression is significantly faster in prediction than the other machine learning 

methods, the difference in time between models become negligible when the feature 

extraction time is taken into account. As seen from the table, the total inference time in 

case of manually engineered features based machine learning methods is limited by the 

time taken for feature extraction rather than prediction.  In case of CNN, there is no 

feature extraction step involved since the convolutional layers learn the features by 

themselves. However, because of the large number of parameters in CNN, the inference 

time in case of CNN is longer than all the machine learning based methods. 

2.3.5 Comparison of overlapping and non-overlapping image slicing methods 

 The mean intersection over union (IoU) and the inference time on the test dataset 

using the overlap approach and the non-overlapping approach is shown in Table 2.2. It is 

found that the inference time for the overlapping approach is significantly longer 

compared to the non-overlapping approach. This is due to the large number of image 

patches that have to be evaluated in case of overlapping approach. But it can be seen that 

the IoU of the overlapping approach is better than the nonoverlapping approach in case of 

every model that was studied. Of all the models, CNN was found to have the highest IoU. 

This is because it was seen in Table 2 that CNN has the highest classification 
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performance on the patch of all the models and so it leads to comparatively higher IoU 

than the other models. It is to be noted that 0.61 was the highest IoU that could be 

obtained using the patch-based approach.  But as we can see in Figure 2.10, even though 

the IoU is lesser, the overlapping approach outputs a localized boundary of the weed 

patches. Since the ground truth boxes are rectangular, the ground truth does not refer to 

all the weed areas but the greatest area of a rectangle within which all the weed areas are 

present. Hence, in case of overlapping approach, higher IoU could be obtained if the 

ground truth refers only to the area of weed but not bounding box area.  
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Table 2.2. Mean IoU of different models with two approaches on test data. Image slicing with overlap results in better IoU than 

without overlap in case of all the models but with a significant cost in the form of inference time. Hence, in case of computational 

resource constraints, without overlap approach is suggested.  

Model 

 

IoU with overlap 

(%) 

Processing time of a sub-

image (1152×1152) with 

overlap in seconds 

IoU without 

overlap 

Processing time of a sub-image 

(1152×1152) without overlap in 

seconds 

 

SVM 59 2.42 56 0.19 

Logistic regression 58 2.12 56 0.17 

ANN 52 2.17 49 0.17 

KNN 52 3.47 50 0.24 

CNN 61 1.03 60 0.22 
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 The relatively less difference in IoU between overlapping and non overlapping 

approach in case of CNN might indicate that CNN performs relatively better in case of 

images with mixed pixels of crop and weed in them. The difference in inference time 

between overlapping and non overlapping is relatively lesser in case of CNN than other 

models. This could be because feature extraction within the network and prediction is 

done in batches in CNN whereas in case of machine learning models, feature extraction is 

done individually for each data point. In case of the crop rows being at an angle of 0° in 

the image, it should be noted that the horizontal overlap is less important than the vertical 

overlap. This is because the probability of mixed pixels is more in case of sliced rows 

than the sliced columns. Hence, in case of regular shaped fields, since the crop rows are 

perfectly planted in one direction, the overlapping approach may not include horizontal 

overlap thereby leading to increase in speed of processing without significant decrease in 

IoU.      
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(a) Example sub image (b) Ground truth bounding box 

  

(c) SVM with no overlap (d) SVM with overlap 
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(e) Logistic regression with no overlap (f) Logistic regression with overlap 

  

(g) ANN with no overlap (h) ANN with overlap 
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(i) KNN with no overlap (j) KNN with overlap 

  

(k) CNN with no overlap (l) CNN with overlap 

Figure 2.12. a) Raw image b) Ground truth bounding box c) SVM with no overlap d) 

SVM with overlap e) Logistic regression with no overlap f) Logistic regression with 

overlap g) ANN with no overlap h) ANN with overlap i) KNN with no overlap j) KNN 

with overlap k) CNN with no overlap l) CNN with overlap 
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2.4 CONCLUSION 

 This study investigated the potential of using patch-based machine learning and 

deep learning methods to detect mid and late season weeds from UAV imagery. In case 

of machine learning methods, experiments were done to find the optimal parameters for 

GLCM to extract Haralick’s features. Four directions - 0°, 45°, 90°, and 135°, 5 distance 

offsets from 1 to 5 and 16 gray levels were found to be the optimal parameters for feature 

extraction. Also, results from this experiment show that the optimal value of these 

parameters would vary with the problem as well as the spatial resolution of the imagery 

since the size of the object in the image varies. Hence, further studies are needed at 

different spatial resolutions to find the optimal parameters in order to make suggestions 

for UAV imagery collected from different altitudes. Among conventional machine 

learning models, SVM resulted in the best classification performance but CNN was found 

to have better patch classification performance than all the conventional machine learning 

models. In case of processing time, SVM, logistic regression and ANN was found to be 

faster than CNN. The results also showed the bottleneck of feature extraction time 

associated with machine learning methods although their prediction time is significantly 

faster. Among the overlapping and non-overlapping image division methods, overlapping 

method had better IoU with the ground truth image than non-overlapping method but 

there was a significant increase in processing time associated with overlapping method. 

The processing time of all the models in addition to the classification performance 

provides useful information to choose the appropriate model and evaluation approach 

based on computational resource availability and model performance requirement. 
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CHAPTER 3 COMPARISON OF OBJECT DETECTION AND 

PATCH-BASED CLASSIFICATION DEEP LEARNING MODELS 

ON MID TO LATE SEASON WEED DETECTION IN UAV 

IMAGERY 

This manuscript has been prepared for journal submission 
 

3.1 INTRODUCTION 

To feed the increasing population, it is necessary to increase global agricultural 

productivity (Godfray et al., 2010). Hence, it becomes critical to address the various crop 

yield-limiting factors such as weeds and other biotic and abiotic stresses. 

(“CENTENARY REVIEW,” 2019). Weeds are unwanted plants that grow in the field 

and compete with the crops for water, light, nutrients, and space. If uncontrolled, weeds 

can have several negative consequences such as crop yield loss, production of a large 

number of seeds thereby creating a weed seed bank in the field and contamination of 

grain during harvesting to name a few (dos Santos Ferreira, Matte Freitas, Gonçalves da 

Silva, Pistori, & Theophilo Folhes, 2017). Traditionally, weed management programs 

involve control of weeds through chemical or mechanical means such as uniform 

application of herbicides throughout the field. However, the spatial density of weeds is 

not uniform across the field, thereby leading to overuse of chemicals which results in 

environmental concerns and evolution of herbicide-resistant weeds. To overcome this 

issue, a concept of site-specific weed management, which refers to detecting weed 
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patches and spot spraying or removal by mechanical means, was proposed in the early 

’90s.  (CHRISTENSEN et al., 2009; Weis et al., 2008; Zhang, Wang, & Wang, 2002).  

Earlier studies on weed detection often used Color Co-occurrence Matrix based 

texture analysis for digital images (G. E. Meyer, T. Mehta, M. F. Kocher, D. A. 

Mortensen, & A. Samal, 1998; T. F. Burks, S. A. Shearer, & F. A. Payne, 2000). 

Following this, there were several studies on combining optical sensing, image 

processing algorithms, and variable rate application implements for real-time site-specific 

herbicide application on weeds. However, the speed of these systems was limited by 

computational power constraints for real-time detection, which in turn limited their 

ability to cover large areas of fields. Unmanned aerial vehicles (UAVs) with their ability 

to cover large areas in a short amount of time and payload capacity to carry optical 

sensors provided an alternative. UAVs have been studied for various applications in 

precision farming such as weed, disease, and pest detection using high-resolution aerial 

imagery (Sankaran et al., 2015). Multiple studies have investigated several algorithms to 

detect weeds from the crop in aerial imagery. A common approach is to use vegetation 

indices to segment the vegetation pixels from the soil pixels, followed by crop row 

detection for weed classification using techniques such as object-based image analysis 

(OBIA) and Hough Transform (López-Granados et al., 2016; Peña, Torres-Sánchez, de 

Castro, Kelly, & López-Granados, 2013; Pérez-Ortiz et al., 2015). However, crop row 

detection-based approaches cannot detect intra-row weeds. Hence machine learning 

based classifiers using features computed from OBIA were used to detect intra-row 

weeds as well (de Castro et al., 2018). However, the performance of OBIA is sensitive to 
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the segmentation accuracy and so optimal parameters for segmentation step in OBIA has 

to be found for different crops and field conditions (D. Liu & Xia, 2010). Also, this 

approach is limited to early season weed detection when crops and weed objects do not 

overlap. In case of overlapping crop and weed objects, Lottes, Khanna, Pfeifer, Siegwart, 

& Stachniss  (2017) proposed a key point based feature extraction approach that was 

found to detect weed objects that overlap with the crop. However, with color based 

vegetation segmentation being the first preprocessing step in the above studies to segment 

the vegetation objects, they are limited in the application after crop canopy closure when 

there is no soil background. 

With advancements in parallel processing computing and availability of large 

datasets, convolutional neural networks (CNN) was found to perform very well in 

computer vision tasks such as classification, prediction and object detection (Krizhevsky, 

Sutskever, & Hinton, 2012a). In addition to performance, another principal advantage of 

CNN is that the network learns the features by itself during the training process, and 

hence manual feature engineering is not necessary. CNNs have been studied for various 

image-based applications in agriculture such as weed detection, disease detection, fruit 

counting, crop yield estimation, obstacle detection for autonomous farm machines and 

soil moisture content estimation (Kuwata & Shibasaki, 2015; Mohanty, Hughes, & 

Salathé, 2016; Rahnemoonfar, Sheppard, Rahnemoonfar, & Sheppard, 2017; Song et al., 

2016; Steen et al., 2016).  CNNs have been used for weed detection using data obtained 

from three different ways – using UAVs, using the autonomous ground robot and high-

resolution images obtained manually in the field. A simple CNN binary classifier was 
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trained to classify manually collected small high-resolution images of maize and weed. 

The performance of the classifier with transfer learning on various pre-trained networks 

such as LeNet and AlexNet was compared, but this study was limited in variability in the 

obtained dataset and on the evaluation of the classification approach with large images 

(Andrea, Mauricio Daniel, & Jose Misael, 2017). Dyrmann, Mortensen, Midtiby, & 

Jørgensen (2016) used a pre-trained VGG-16 network and replaced the fully connected 

layer with a deconvolution layer to output a pixel-wise classification map of maize, weed, 

and soil. The training images were simulated by overlapping a small number of available 

images of soil, maize, and weed in various orientations and proportions.  The use of 

encoder- decoder architecture for real-time output of pixel-wise classification map for 

site-specific spraying was studied. It was found that by adding hand-crafted features such 

as vegetation indices, different color spaces and edges as input channels to CNN, the 

generalization performance of the model in different locations at the different growth 

stage of the crop improved (Milioto, Lottes, & Stachniss, 2018). Also, to improve the 

generalization performance of the CNN-based weed detection system, Lottes, Behley, 

Milioto, & Stachniss (2018) studied the use of fully convolutional DenseNet with 

spatiotemporal fusion and spatiotemporal decoder with sequential images to learn the 

local geometry of crops in fixed straight lines along the path of a ground robot. In 

addition to weed detection, for effective removal of weeds in case of mechanical or laser 

means, it is necessary to detect the stem of weeds for actuation. A fully convolutional 

DenseNet was trained to output the stem location of crop and weed as well as a pixel-

wise segmentation map of crop and weed (Lottes, Behley, Chebrolu, Milioto, & 

Stachniss, 2018).  
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In case of weed detection using UAV imagery, similar to OBIA approaches 

mentioned above, dos Santos Ferreira et al. (2017) used a Superpixel segmentation 

algorithm to segment objects are clusters from an image and trained CNN to classify 

these clusters and compared the performance with other machine learning classifiers 

which use handcrafted features. Sa, Chen, et al. (2018) studied the use of an encoder -

decoder architecture, Segnet for pixel-wise classification of multispectral imagery and 

followed up with a study on performance evaluation of this detection system using 

different UAV platforms and multispectral cameras (Sa, Popović, et al., 2018). Bah, 

Dericquebourg, Hafiane, & Canals (2019) used Hough transform along with patch-based 

CNN to detect weeds from UAV imagery and found that overlapping weed and crop 

objects led to some errors in this approach. It is to be noted that in this approach the 

patches are sliced from the large image in a non-overlapping manner. H. Huang et al. 

(2018) studied the performance of various deep learning architectures for pixel-wise 

classification of rice and weeds and found that the Fully Convolutional Network 

architecture outperformed other architectures. 

From the literature reviewed, it can be seen that automated weed detection has been 

primarily focused on early season weeds since that is found to be the critical period for 

weed management to prevent crop yield loss. However, it is to be noted that mid to late 

season weeds escaped from the routine early-season management also threatens the 

production in a longer term by creating a large number of seeds for several future 

growing seasons. With the herbicide resistance issue currently, escaped herbicide-

resistance weeds become prominent. Studies on early season weeds use vegetation 
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segmentation as a preprocessing step to reduce the memory requirements, but with no soil 

pixels due to canopy closure, this does not apply to mid to late season weed imaging. 

Also, because of the significant overlap between crop and weed, the performance of the 

object-based feature extraction algorithm will be limited because of the challenges in 

segmenting weed and crop objects in such a cluttered environment. With deep learning- 

based object detection methods having proven successful for tasks such as fruit counting 

which has a cluttered background as in this case, it is hypothesized that such methods 

would be able to detect mid to late season weeds from UAV imagery. Also, as seen in 

Chapter 2, with patch-based CNN method using overlapping evaluation performing well, 

the objective of this study is to study deep learning based object detection methods to 

detect mid to late season weeds and compare their performance with patch-based CNN 

method. The specific objectives are 

1. Evaluate the performance of two object detection algorithms with different 

detection performance and inference speed - Faster RCNN and Single Shot 

Detector algorithm in detecting mid to late season weeds from UAV imagery 

using precision, recall, f1 score and mean IoU as the evaluation metrics for their 

detection performance and inference time as the metric for their speed 

2. Compare the performance of object detection model with better detection 

performance and speed with patch-based CNN in terms of weed detection 

performance using mean IoU and inference time 
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3.2 MATERIALS AND METHODS 

3.2.1 Study Site 

The study sites were located in the South Central Agricultural Laboratory of the 

University of Nebraska, Lincoln at Clay Center, NE, USA (40.575188, -98.130909). The 

two study sites were located adjacent to each other. They were different soybean weed 

management research plots. Figure 3.1 shows the stitched maps of the study sites.  
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Figure 3.1 Study area at South Central Ag Laboratory in Clay Center, NE  

3.2.2 UAV data collection 

A DJI Matrice 600 pro unmanned aerial vehicle (UAV) platform (Figure 3.2) was 

used with a Zenmuse X5R camera to capture aerial imagery. In order to collect data with 

varying growth stage of crop as well as variations in illumination conditions, the images 

from study site 1 (shown at the top in Figure 3.1) were collected on July 2nd, 2018 

whereas the images from study site 2 (shown at the bottom in Figure 3.1) were collected 
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on July 12th, 2018. The flight altitude in both the cases was 20m above ground level. The 

Zenmuse X5R camera used is a 16 megapixel camera with 4/3” sensor and 72 degree 

diagonal field of view. The dimension of the captured images is 4608×3456 pixels in 

three bands – Red, Green, and Blue. To develop an economical solution, this study 

focuses on only using RGB imagery. At 20m altitude, for the given sensor specifications, 

the spatial resolution of the output image is 0.5 cm/pixel. DJI Ground Station pro 

software was used for flight control and the data collection mission was flown with 90% 

forward overlap and 85% side overlap. 

 

Figure 3.2 DJI Matrice 600 pro UAV platform with Zenmuse X5R camera 

 

3.2.3 Data annotation and processing 

The objective of the study is to develop a weed detection system with on-farm data 

processing capability. Since the mosaicking of overlapping aerial images is the time-

consuming process in the workflow and is not required in this case, overlapping images 
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were removed, and only the non-overlapping raw images were retained. The original 

dimension of the raw image is too large to fit in the memory for processing: each raw 

image of size 4608×3456 pixels was sliced into 12 sub-images of size 1152×1152 pixels. 

The weed areas in each sub-image were annotated as rectangular bounding boxes using 

the python labeling tool LabelImg (Tzutalin, 2015). A total of 450 sub-images were 

annotated and was then randomly split into 90% training images and 10% test images. 

Using the annotation information, small patches of size 128×128 were cropped from 

weed areas and the background areas in sub-images. These images were saved as binary 

class dataset belonging to two classes – ‘Weed’ and ‘Background’. 7098 patches in each 

class were extracted and used for training, whereas 801 patches belonging to each class 

were used as test data. 

 

3.2.4 Patch based CNN 

Convolutional neural networks (CNNs) are feedforward artificial neural networks 

with the fully connected layers in the input hidden layers replaced with convolutional 

filters. This reduces the number of filters in each layer and enables CNNs to learn spatial 

patterns in images and other two-dimensional data. The advantage of a CNN is its ability 

to learn the features by itself, thereby preventing the need for time-consuming hand 

engineering of features needed in case of other Computer Vision algorithms. CNN 

architectures have been proposed and its use in applications such as document 

recognition by using backpropagation for training has been studied much earlier (LeCun, 

Bottou, Bengio, & Haffner, 1998). However, their applications were limited because of 

the need for very large datasets to train a large number of parameters in deep networks 
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and also the computational needs for training. In the last decade, with advancements in 

parallel processing capabilities using graphical processing units and increases in 

availability in large datasets, (Krizhevsky, Sutskever, & Hinton, 2012b) showed the 

potential of CNN in complex multiclass image classification tasks. But in most cases, it 

was found that there was not enough data available that is needed to train a deep CNN 

from scratch. Transfer learning helped overcome this limitation. Transfer learning is the 

technique of using the weights of pre-trained networks trained on very large datasets such 

as Alexnet, Googlenet and retraining them with small datasets for other applications 

(Torrey & Shavlik, 2010). This has been found to lead to exceptional classification 

performance and hypothesis for its performance is that the features learned in the initial 

convolutional layers are global features which are common across image classification 

tasks. 

In this study, a pre-trained network called Mobilenet v2 has been used for transfer 

learning. The Mobilenet v2 was developed primarily for use in mobile or devices with 

lesser memory capabilities. Hence, in order to reduce the number of parameters, in each 

convolutional block, Mobilenet v2 consists of an expansion layer with a convolutional 

kernel of window size 1. This layer increases the number of channels in the input. This is 

followed by a normal convolutional layer which is then followed by a projection layer 

that consists of a convolutional kernel of window size 1. This depthwise layer reduces the 

number of channels in the output thereby reducing the number of parameters in the next 

convolutional block. Hence in each block, feature maps are projected to a high 

dimensional space followed by learning higher dimensional features which are then 

encoded using a depthwise convolutional projection layer. The Mobilenet v2 network 
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was trained ImageNet dataset containing 1.4 million images belonging to 1000 classes 

(Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018). This network was retrained using 

the training patches belonging to both the classes. Initially, for the first 10 epochs, only 

the classifier layer of the network was trained by freezing the weights of all other layers. 

This was done to use the global features learned on the ImageNet dataset and fine tune 

the classifier for this specific application. After this, fine-tuning was performed in which 

all the top layers were unfrozen and were allowed to fine tune the convolutional features 

to this specific application. The fine tuning was performed for 10 epochs and hence the 

model was only trained for 20 epochs in total (Chollet, 2017). 

 

3.2.5 Object detection models 

Object detection refers to the task of localization of an object in an image in addition 

to classifying the object. Hence, for every object in the image, the model is expected to 

regress the coordinates of the bounding box of the object in addition to the class 

probabilities for classification. Two different models have been investigated – Faster 

RCNN with Inception v2 as feature extractor and SSD with Inception v2 as a feature 

extractor. Faster RCNN and SSD was chosen since Faster RCNN was found to have 

better performance whereas SSD was found to have better speed and performance 

tradeoff. Also, in both cases, Inception v2 architecture as extractor was found to be faster. 

Since our objective is to develop a weed detection system with on-farm real-time data 

processing capabilities, Inception v2 was chosen (Huang, J., Rathod, V., Sun, C., Zhu, 

M., Korattikara, A., Fathi, A., ... & Murphy, 2017). 



 64 
 

 
 

3.2.5.1 Faster RCNN 

Faster RCNN model consists of three sections namely the feature extractor, region 

proposal network followed by the Region of Interest (RoI) and classification layer as 

shown in Figure 3.3. 

 

Figure 3.3. Faster RCNN architecture 

For feature extraction, the convolutional layers from Inception v2 architecture is 

used. The advantage of Inception v2 network is its use of wider networks with filters of 
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different kernel sizes in each layer which makes it translation and scale invariant. Hence, 

the Inception v2 architecture outputs a reduced dimensional feature map to the region 

proposal layer. The region proposal network is defined by anchors or fixed boundary 

boxes at each location. At each location, anchors of different scale and aspect ratio are 

defined, thereby enabling the region proposal network to make scale invariant proposals. 

The region proposal layer uses a convolutional filter on the feature map to output a 

confidence score for two classes, namely object, and background. This is called the 

objectness score. Also, the convolutional filter outputs regression offsets for anchor 

boxes. Hence, assuming there are k anchors at a location, the convolutional filter in the 

region proposal network outputs 6k value, namely 4k coordinates and 2k scores. Two 

losses are calculated from this output – classification loss and bounding box regression 

loss. The bounding box coordinates of anchors classified as objects are then combined 

with the feature map from feature extractor. In the RoI pooling layer, bounding box 

regions of different sizes and aspect ratios are resized to fixed size outputs using max 

pooling. The max pooled feature map of a fixed size corresponding to each output is then 

classified, and its bounding box offsets with respect to ground truth boxes are regressed. 

Hence, as in region proposal layer, two losses are computed at this output, namely the 

classification loss and bounding box regression loss. 

3.2.5.2 Hyperparameters of the architecture 

In the framework that was used, the input images to the Faster RCNN network 

were resized to images of fixed size 1024 × 1024 pixels. At each location in the region 

proposal layer, 4 different scales namely 0.25, 0.5, 1.0, 2.0 and 3 different aspect ratios 
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namely 0.5, 1.0 and 2.0 were used. Hence, in total there were 12 anchors at each location. 

The model was trained for 25000 epochs with a batch size of 1 using momentum 

optimizer. The training dataset was split into training and validation dataset and the 

performance of the model on validation data was continuously monitored during training 

to check if the model starts to overfit. Random horizontal flip and random crop 

operations were performed to augment the training data. 

 

3.2.5.3 SSD 

Single Shot Detector (SSD) model was proposed to improve the inference time of 

objection detection models with region proposal network such as Faster RCNN. The 

main difference in SSD compared to Faster RCNN is the generation of detection outputs 

without a separate region proposal layer. Similar to Faster RCNN, SSD uses a feature 

extractor which is Inception v2 architecture in this case. At each location of feature map 

output, the model outputs a set of bounding boxes of different scales and aspect ratios. 

This is very similar to Faster RCNN but the difference being the convolutional filter on 

the feature map outputs directly the confidence scores corresponding to the output classes 

along with regression box offsets. Hence, the class and bounding box offsets are output in 

a single shot as the name suggests. In order for the model to be scale and translation 

invariant, rather than outputting bounding boxes from only the feature map output, extra 

feature layers are added to the feature map output and detection boxes are output at 

different scales from each output. Hence, in total, the SSD model has 6 layers that output 

detection boxes at different scales (W. Liu et al., 2015) (Figure 3.4). 
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Figure 3.4. SSD architecture 

3.2.5.4 Hyperparameters of the architecture  

In case of SSD, in the framework that has been used, the input images are always 

reshaped to a fixed dimension of 300 × 300 pixels. After the feature extraction, in 6 

different layers that output detection boxes, 6 different scales in the range 0.2-0.95 was 

used. Five different aspect ratios namely 1.0, 2.0, 0.5, 3.0 and 0.333 were generated at 

each location. The model was trained for 25000 epochs as in the case of Faster RCNN. A 

batch size of 24 was used in training and RMS prop optimizer was used. Data 

augmentation was applied with random horizontal flipping and random cropping of 

images. Validation images were evaluated periodically during the training to check if the 

model is overfitting. 

3.2.6 Hardware and software used 

The models were trained, and evaluation of the models was performed on a computer 

with Intel i9 processor with 18 cores and 64 GB of RAM and NVIDIA GeForce RTX 

2080 Ti graphics card. Tensorflow object detection API (Huang, J., Rathod, V., Sun, C., 

Zhu, M., Korattikara, A., Fathi, A., ... & Murphy, 2017) in Python was used to train and 
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evaluate Faster RCNN and SSD. Tensorflow tutorial on transfer learning (Chollet, 2017) 

was used to train the MobileNet v2 architecture for patch-based CNN. 

3.2.7 Evaluation metrics 

Precision, recall, f1 score, and Intersection over Union (IoU) are the evaluation 

metrics used in this study. 

Precision = 
TP

TP+FP
 

Recall = 
TP

TP+FN
 

F1 score = 
2×Precision×Recall  

Precision +Recall 
 

Here TP refers to True Positive, FP refers to False Positive, and FN refers to False 

negative. Also these, mean Average Precision (mAP) is another metric that is commonly 

used in object detection problems. It is the mean of the average precision at all recall 

values at different IoU of prediction and ground truth thresholds from 0.5 to 0.95. It is to 

be noted that these metrics were primarily formulated for object detection. Even though 

in this study we use object detection models, the objective is not to find weed objects but 

rather all the area covered by weeds for management purpose. However, in case of above 

metrics, for each ground truth box, only one prediction box with the highest class score is 

assigned as a True Positive. In this case, some prediction boxes might end up being 

considered as False Positive even though they cover an area of a weed patch not covered 

by the True Positive for a corresponding ground truth box. As can be seen in the 

following Figure 3.5, the output of this image has two prediction boxes covering the 
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weed area in the left but in the ground truth it was marked as one bounding box. Hence, if 

precision is used as the evaluation metric, the box on the bottom will be regarded as False 

Positive even though that box adds to more weed area being detected. Therefore, 

Intersection over Union (IoU) of binary output image representing weed and background 

pixels with the ground truth binary image is used as the primary evaluation metric. 

IoU = 
Area of overlap  

Area of union 
 

 

 

Figure 3.5. Example output image showing a weed patch annotated with single box in 

ground truth image detected as two boxes in output. This will lead to lesser precision as 

only the bigger box is considered true positive and therefore IoU is a better evaluation 

metric for this problem 
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To evaluate the patch-based CNN on the sub-image, an overlapping slicing approach 

is used. The sub-image of size 1152 × 1152 pixels is sliced into patches of size 128 × 128 

pixels with a stride of 32 on the horizontal and vertical. Therefore, the sliced patches 

have 75% horizontal and vertical overlap. Hence, each small area of size 32 × 32 is part 

of 8 patches and the class with maximum votes from the 4 patches is assigned as the class 

of the small area. To evaluate this result with ground truth and to compare with the 

results of Faster RCNN and SSD, IoU is used as the evaluation metric. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Training of Faster RCNN and SSD 

Figure 3.6 shows the training graph for Faster RCNN and SSD. The decrease in 

training loss and the increase in mAP of the validation data with training epochs can be 

seen. By the end of the training, very little difference in the mAP of Faster RCNN and 

SSD validation dat was obtained. It can be seen that Faster RCNN converges faster than 

SSD. The training process of Faster RCNN might appear to be more oscillating to be than 

SSD which could be due to the different batch sizes and optimizers being used by the two 

models. However, it should be noted that the scale of the two loss plots is different. The 

different batch size and optimizer could also be the reason for the Faster RCNN model 

converging to high validation mAP earlier than SSD since a batch size of 1 Faster RCNN 

leads to 24 times more gradient updates being performed than SSD with a batch size of 

24. 
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Figure 3.6. Change in training loss and Validation Mean Average Precision with number 

of epochs of (a) Faster RCNN and (b) SSD 

3.3.2 Optimal IoU and confidence thresholds for Faster RCNN and SSD 

In order to find the optimal threshold for IoU of the prediction boxes and ground truth 

boxes that would result in best performance of the model, precision recall curve was 

drawn using various confidence thresholds from 0 to 1 at various IoU thresholds ranging 

from 0.5 to 0.95 (Figure 3.7). 
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Figure 3.7. Precision-recall curve at different thresholds for IoU of the predicted box and 

ground truth box (a) Faster RCNN and (b) SSD 

It can be seen that the area under the precision-recall curve is almost the same in 

case of Faster RCNN and SSD which explains the fact that the validation mAP during the 

final epochs as seen from the training graph was very similar (0.63 in Faster RCNN and 

0.62 in SSD). Also, it can be seen that, both Faster RCNN and SSD achieve the 

maximum area under the precision-recall curve at an IoU threshold of 0.5 for the 

prediction box and ground truth box. Hence, for each ground truth box, among all 

prediction boxes with a confidence score greater than the threshold, the prediction box 

which has an IoU with that ground box greater than the threshold as well as the highest 

value of IoU among all prediction boxes is considered a true positive.  All prediction 

boxes that were not a true positive with any ground truth box are regarded as false 
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positives. The number of false negatives is equal to the number of ground truth box that 

does not have a corresponding true positive. With the optimal IoU threshold found for 

Faster RCNN and SSD, the following graph (Figure 3.8) was plotted to find the optimal 

confidence threshold for Faster RCNN and SSD that results in the best performance. 

 

Figure 3.8. Change in IoU of output binary image and ground truth binary image as well 

as f1 score with change in recall 

The above graph shows the change in f1 score and the mean IoU of the output 

binary image of the model with the ground truth binary image with change in recall. It 

was found that the recall at which the best performance of mean IoU and f1 score was 

observed was at a corresponding confidence threshold of 0.6 in case of Faster RCNN and 

0.1 in case of SSD. It is to be noted that mean IoU here refers to the Intersection over 

Union of the whole binary model output image with the ground truth binary image 
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whereas the IoU mentioned earlier was the Intersection over Union of individual 

prediction bounding boxes with individual ground truth bounding boxes.   

3.3.3 Comparison of performance of Faster RCNN and SSD 

Table 3.1 shows the precision, recall, f1 score, mean IoU of the model output binary 

image and the ground truth binary and the inference time of a 1152 × 1152 image. It can 

be seen that the precision, recall, f1 score and mean IoU of both the models were similar 

but the SSD model was slightly faster in execution than Faster RCNN.   It is to be noted 

that the above performance was in case of Faster RCNN network that outputs 300 

proposals from the region proposal network. However, Huang, J., Rathod, V., Sun, C., 

Zhu, M., Korattikara, A., Fathi, A., ... & Murphy (2017) found that by reducing the 

number of proposals output by Faster RCNN, the inference time of Faster RCNN can be 

improved but with a slight cost in precision, recall and f1 score. Therefore, experiments 

were conducted to study the change in inference time, precision, recall, f1 score and 

mean IoU by varying the number of proposal boxes from the Faster RCNN network from 

50 to 300 and the results are plotted in Figure 3.9.
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Table 3.1. Performance of test data in Faster RCNN and SSD 

Model Precision Recall F1 score Mean IoU 

Inference time of 

1152 × 1152 image in 

seconds 

Faster 

RCNN 
0.65 0.68 0.66 0.85 0.23 

SSD 0.66 0.68 0.67 0.84 0.21 
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Figure 3.9. Change in evaluation metrics and inference time of Faster RCNN model with 

increase in number of proposals 

 It can be seen that the inference time of Faster RCNN has a linear time 

complexity with the number of proposal boxes output from the region proposal network. 

It can be seen that from 200 to 300 proposals, there was no change in performance of the 

model but the inference time decreased and hence it can be concluded that 200 proposals 

is the optimal number of proposals for this dataset. At 200 proposals, the inference time 

of Faster RCNN was 0.21 seconds which was the same as SSD. Hence, no difference in 

performance was found between Faster RCNN with 200 proposals and SSD in terms of 

evaluation metrics used in this study. However, it is to be noted that, even with same 

performance metric, Faster RCNN outputs weed objects with high confidence compared 

to SSD since the confidence threshold being used for Faster RCNN was 0.6 whereas it 
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was a very low 0.1 for SSD. Though this threshold might result in the best performance 

with the current validation test, it might affect the generalization performance of the 

model in case of test dataset that is from a different location or from a field with different 

management practices. In such cases, the low threshold might lead to reduced precision. 

On visual observation of the outputs of all the 44 test images, it was found that in 41 

images, both the images detected all the weed areas. Hence, in these images, the 

difference in IoU between the model output and the ground truth is only because of the 

slight displacements of the boundaries of the bounding boxes from each other. As 

mentioned in section 3.2.7, the low values of precision, recall and f1 score obtained is 

primarily because of the way these metrics are calculated since only one bounding box is 

considered as a true positive for one ground truth box whereas the model in case of some 

weed areas with slight discontinuities outputs multiple prediction boxes to detect those 

areas. Therefore, as mentioned earlier, mean IoU of the binary output image with the 

binary image of the ground truth is the appropriate metric. In 3 of the test images (shown 

in Figure 3.10), there was a difference in the output of Faster RCNN and SSD. In the 

output image 1, Faster RCNN couldn’t detect a small strip of weed between the crop 

rows but has been detected by SSD. But by looking at the confidence score of the weed 

object from SSD, it can be understood that SSD was able to detect this weed object only 

because of the very low confidence threshold set for it. Whereas in output image 2, it can 

be seen that SSD misclassified a row of soybean crop with herbicide drift injury as weed. 

Also, in case of output image 3, SSD could not detect the weeds on the left vertical 

border of the image. With both the failure areas being present in the border of the images, 

this might show the susceptibility of the SSD model in the image border. This could be 
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due to the architecture of SSD that does detection of objects and classification into its 

class in a single shot, unlike Faster RCNN. Another possible reason could be that, by 

default, the API used to train both the models was resizing the input images to Faster 

RCNN to 600 × 600 whereas in case of SSD it was resized to 300 × 300. Therefore this 

further loss of detail in the input image compared to the Faster RCNN input image might 

have led to the misclassifications in the border. Hence, further study with the same input 

image resolution is needed for a fair comparison. 

  

(a) Faster RCNN output image 1 (b) SSD output image 1 
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(c) Faster RCNN output image 2 (d) SSD output image 2 

  

(e) Faster RCNN output image 3 (f) SSD output image 3 

Figure 3.10. Output images with discrepancies between Faster RCNN and SSD 

 Other than the above mentioned 3 images, Faster RCNN, as well as SSD, 

performed exceptionally well in detecting weed objects of various scales as seen in 

Figure 3.11. As mentioned earlier, it can be seen that though SSD detects all the weed 
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objects that were detected Faster RCNN, the confidence of a lot of those predictions are 

very low and ended up as true positive because of the low confidence threshold. 

  

(a) Faster RCNN output image 1 (b) SSD output image 1 

  

(c) Faster RCNN output image 2 (d) Faster RCNN output image 2 

Figure 3.11. Example output images with good model performance 
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 Since by reducing the number of proposals to 200, Faster RCNN can be as fast 

SSD in terms of inference time, it can be concluded that for this application with respect 

to this dataset, Faster RCNN has better speed performance tradeoff. 

3.4 Comparison of performance of Faster RCNN and patch-based CNN 

The Mobilenet v2 network trained on the training patches showed very high 

performance in classifying test patches with an f1 score of 0.98. But in order to evaluate 

its performance in detecting the weed objects in the sub-image and compare its 

performance with Faster RCNN object detection model, the overlapping approach 

explained earlier was used. The following table shows the mean IoU of the output binary 

image from Faster RCNN and patch-based CNN with the ground truth binary image. 

Also, the table shows the time taken to evaluate one sub-image by both the models. 

Table 3.2. Performance of Faster RCNN and patch-based CNN in test sub-images 

Model Mean IoU 

Inference time in seconds  

for each sub-image 

(1152×1152) 

Faster RCNN with 200 

proposals 
0.85 0.21 

Patch based CNN sliced 

with overlap 
0.61 1.03 

Patch based CNN sliced 

without overlap 
0.6 0.22 

  

It can be seen that Faster RCNN has better performance than patch-based CNN 

with overlap both in terms of mean IoU and inference time. But patch-based CNN 

without overlap has an inference time which is almost the same as Faster RCNN. The low 
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values of IoU of patch based CNN without overlap were because of the coarse nature of 

this algorithm. Since each sub-image is split into 81 patches in this approach, weeds 

smaller in size would not be detected in this approach. Also, because of the way the 

patches are sliced, there could be a lot of patches with weeds and background in equal 

proportion. Whereas the Mobilenet model has only been trained with patches with only 

weed or only background and hence the model is prone to error in this approach. To 

reduce this error, the slicing with overlap approach is tested. Since, for each small block 

within a patch, the class is determined by majority vote in 8 patches, the problem of 

mixed patches can be solved to some extent. But the almost similar IoU of slicing with 

overlap and without overlap is because the ground truth binary image represents weed 

objects are rectangular boxes whereas output binary image from patch-based overlap 

approach consists of weed objects which are polygonal in nature because of the majority 

vote as can be seen in Figure 3.12. Therefore, patch-based CNN with overlap has better 

performance than the IoU value with ground truth image suggests. But the drawback of 

this approach is the very high inference compared to Faster RCNN and patch based 

RCNN without overlap. Further studies can be done with different levels of horizontal 

and vertical overlap and its influence on the inference time of this approach. But with the 

inference time of Faster RCNN is the same as the patch based CNN without overlap, any 

amount of overlap would lead to more patches to be evaluated than the non-overlap 

approach and hence greater inference time. Therefore, among the approaches investigated 

in this study, Faster RCNN has the best overall performance. But in order to implement 

this system for on-farm detection, further studies are needed to evaluate the performance 

of these approaches at higher altitudes. At an altitude of 20m in which this data was 
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collected, it is practically impossible to cover the large soybean fields with the current 

limited battery capacity of the UAV systems.  Therefore, evaluation of the performance 

of these models at low-resolution images from high altitude are needed for practical 

adoption of these systems. Similar to SSD, it can be seen that there is a higher 

misclassification rate of patches in the border of the images. In case of using this 

approach, it is suggested to collect images with some overlap such as 15% so that weed 

objects present in the border of one image end up in the interior of the next image. 
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(a) Ground truth image (b) Faster RCNN output image 

  

(c) Patch based CNN without overlap 

output image 

(d) Patch based with overlap output 

image 

Figure 3.12. Output images of patch based CNN and Faster RCNN 
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3.4 CONCLUSION 

Faster RCNN and SSD object detection models were trained and evaluated for mid to 

late season weed detections in soybean fields. It was found that the Faster RCNN model 

with 200 box proposals and SSD had similar weed detection performance in terms of 

precision, recall, f1 score and IoU as well as similar inference time. But, the optimal 

confidence threshold of SSD was found to be 0.1 which resulted in lower confidence in 

case of weed objects detected whereas the optimal confidence threshold was found to be 

0.6 in case of Faster RCNN which led to weed objects detected with higher confidence. 

Also, it was found that SSD was susceptible to misclassification in the border of some 

test images. These findings indicated that SSD might have relatively lower generalization 

performance than Faster RCNN for mid to late season weed detection in soybean using 

UAV imagery and hence Faster RCNN was concluded as the better performing model 

among the two. Between Faster RCNN and patch-based CNN, it was found that Faster 

RCNN had better weed detection performance than patch-based CNN with overlap as 

well as without overlap. The inference time of Faster RCNN was found to be similar as 

patch-based CNN without overlap but significantly lesser than patch-based CNN with 

overlap. Hence, Faster RCNN was found to be the best model in terms of weed detection 

performance and inference time among the different models compared in this study. By 

resampling high-resolution images to low-resolution images, the performance of Faster 

RCNN at different altitudes can be evaluated. Also, the inference time experiments at 

different altitudes should be performed on low computational power devices such as 
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regular laptops and mini-PCs used for flight control of UAV systems. This would help 

understand the potential of using such devices for on-farm near real-time data processing. 
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CHAPTER 4  OPERATIONAL FEASIBILITY OF NEAR REAL 

TIME MID TO LATE SEASON WEED DETECTION IN 

COMMERCIAL SCALE SOYBEAN FIELDS USING UAV AND 

MACHINE LEARNING 

This manuscript has been prepared for journal submission 
 

4.1 INTRODUCTION 

 Advancements in the unmanned aerial vehicle (UAV) technology in the past 

decade has led to various applications in agriculture such as irrigation management, 

nitrogen management, pest detection, weed detection, and high throughput phenotyping. 

The main advantage of UAV in remote sensing is in their ability to cover a large area and 

collect high-resolution aerial imagery using various sensors such as RGB camera, 

multispectral camera, hyperspectral camera, thermal camera and LIDAR (Sankaran et al., 

2015).  In case of most of the applications mentioned above, UAVs are used as a sensing 

platform to collect data which is then processed later away from the field. A typical 

workflow involves using UAV to collect images with an overlap which are then stitched 

using computer vision algorithms into an orthorectified map to visualize the whole field 

(Pérez, Agüera, & Carvajal, 2013). It includes algorithms such as feature detection and 

pixel matching on a large number of captured images and hence needs computational 

power and time. In most of the applications, the orthomosaic from the UAV in different 

spectral bands are then combined as different vegetation indices and used to create 

prescription maps for variable rate application of farm inputs (Rasmussen et al., 2016). 
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Since these variable rate application operations are not affected by a latency period of a 

day or two in processing, the stitching of images to create the orthomosaic is usually done 

away from the farm because of the computational constraints mentioned above. However, 

in case of using the UAV to complement crop scouting, if the images can be processed 

near real time, it will help the farmers to scout the problem areas thereby saving time and 

effort. 

 Several studies have looked at various applications of UAVs in different types of 

crops. However, the limited battery time of the UAVs is regarded as the main barrier for 

adoption of this technology by the farmers, especially in case of large farms growing row 

crops such as corn, soybean. But, if examined further, it can be seen that the major reason 

for the long time needed to cover large areas is the practice of collecting images with 

more than 50% overlap along and across the flight path. This is done since overlapping 

images are needed to use pixel matching algorithms to stitch the images into an 

orthomosaic. However, in case of applications such as crop scouting, providing near real-

time information about the problem areas in the field from the images can be more 

valuable than the orthomosaic with high geometric accuracy provided by the pixel 

matching algorithms. With the extraordinary performance of convolutional neural 

networks (CNNs) in image related tasks such as classification and object detection, 

several studies have looked at the performance of CNNs for various agricultural 

applications (Kamilaris & Prenafeta-Boldú, 2018). However, there is limited work on the 

evaluation of the inference time of CNNs on low computational power devices for on-

farm data processing. 
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 Weeds are one of the major crop yield-limiting factors. Several studies have 

focused on UAV based early season weed detection in several crops. Mid to late season 

weeds, though might not affect the crop yield in that season, will produce a large number 

of seeds and cause problems for several years in the future. In Chapter 1 and Chapter 2, 

two different approaches have been studied in detail, and their performance and inference 

time has been evaluated using imagery captured at 20m altitude. However, for farmers to 

adopt these systems, the feasibility of these systems for the commercial scale fields need 

to be evaluated. Therefore, the objective of this study is to evaluate the operational 

feasibility of data collection and near real-time data processing of UAV based mid to late 

season weed detection systems for commercial scale soybean fields. 

 The specific objectives of the study are 

1. To evaluate the performance of patch-based CNN and Faster RCNN weed 

detection systems in terms of weed detection performance using precision, recall, 

f1 score and mean Intersection over Union (IoU), and inference time at the 

different spatial resolutions of input images 

2. To estimate the time needed for data collection and data processing at different 

data collection altitudes for a virtual square soybean field of quarter section area 

using the specified sensor and weed detection models  

3. Discuss the potential of near real-time weed detection system using existing 

technologies 
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4.2 METHODOLOGY 

4.2.1 Resizing of images to simulate images captured at different flight altitudes 

As mentioned in earlier chapters, the data used in this study was collected using 

the DJI Zenmuse X5R camera at 20m altitude above ground level which corresponds to a 

spatial resolution of 0.5 cm/pixel for this particular sensor. In Chapter 2, the performance 

of Faster RCNN and patch based CNN approaches on mid to late season weed detection 

has been studied in detail. In order to evaluate the performance of the models at different 

spatial resolutions, the images were resized by bicubic interpolation using the ‘resize’ 

function in Matlab Image processing toolbox to images of 4 different spatial resolutions 

namely 0.5 cm/pixel, 1 cm/pixel, 2cm/pixel, 3cm/pixel. These 4 resolutions correspond to 

flight altitudes 20m, 40m, 80m, and 120m respectively for this sensor configuration 

(Figure 4.1). After resolution reductions, in order to maintain the same dimension of the 

input images for comparison purpose, the images were resized back to the original image 

dimension by bicubic interpolation. For example, in case of 1 cm/pixel resolution, the 

original image of size 1152 × 1152 pixels was resized to 576 × 576 pixels and was again 

resized back to 1152 × 1152 pixels. In this case, even though the field of view and the 

number of pixels in the image remains the same, the detail in the image is reduced and 

hence the image becomes equivalent to have been captured at 1 cm/pixel resolution. In 

case of both Faster RCNN and patch-based CNN without overlap, the performance of 

two models was evaluated – the performance at different altitudes of a model trained with 

only images at 20m and a model trained with images at all altitudes. Mean intersection 

over union, precision, recall and f1 score were the metrics used to evaluate the 
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performance of Faster RCNN at different simulated flight altitudes. In case of patch-

based CNN, only mean intersection over union was used for evaluation. 

  

(a) 20m (b) 40m 

  

(c) 80m (d) 120m 

Figure 4.1. Example showing an image resized to 4 different altitudes (a) original image 

taken at 20m AGL with 0.5 cm/pixel resolution (b) image with reduced resolution 

simulating one taken at 40m AGL with 1cm/pixel resolution (c) image with reduced 
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resolution simulating one taken at 80m AGL with 2 cm/pixel resolution  (d) image with 

reduced resolution simulating one taken at 120m AGL with 3 cm/pixel resolution 

4.2.2 Estimation of flight time and data processing time at different altitudes 

In order to investigate the implementation of a UAV based near real-time mid to 

late season weed detection system, a case study based approach has been followed. Since 

this study is focused on large row crop farms in the US Midwest, a squared area of 160 

acres was created in the flight control software for this case study.  Using the 

specifications of the DJI Zenmuse X5R camera that has been used in this study, the flight 

time and the number of images that would be captured at different flight altitudes were 

calculated using the DJI Ground Station Pro flight planning application (DJI, Shenzhen, 

China) for the virtual field. It was assumed that a forward and side overlap of 15% was 

maintained during data capture. It is to be noted that an overlap of more than 50% is not 

used as is the usual case since the generation of orthomosaic using pixel-matching 

algorithm is not the objective of this study. But, a buffer of 15% overlap is used because 

in Chapter 2, it has been found that in some case, Single Shot Detector (SSD) algorithm, 

as well as patch based convolutional neural networks (CNN), has more misclassification 

in the edges of the images. Hence, by using a 15% overlap, a weed area which was in the 

edge in one image would still be covered in the interior in the next image and so has very 

less chance of getting misclassified if SSD and patch based CNN models are used. In 

Chapter 1 and Chapter 2, the inference time experiments were run on devices with high 

computational power and Graphical Processing Unit (GPU). But in order to evaluate the 

feasibility of on-farm data processing using regular laptops and mini-PCs, the inference 



 100 
 

 
 

time experiments have been conducted using a Microsoft Surface Pro mini PC with 8 GB 

of RAM and Intel i5 processor with no GPU. The inference time was then used along 

with the number of image information to calculate the data processing time for the virtual 

field. 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Performance of Faster RCNN and patch based CNN models at different 

spatial resolutions 

Figure 4.2 shows the change in evaluation metrics such as mean Intersection over 

Union (IoU) of the model output binary image and ground truth image, precision, recall 

and f1 score of Faster RCNN model with the change in the altitude at which the test 

images were captured. Two different Faster RCNN models – a model trained only with 

images at 20m and a model trained with resized images equivalent to all the altitudes 

(20m, 40m, 80m, 120m) are compared. It can be seen that the performance metrics 

remain constant at all test image altitudes in case of a model trained with images from all 

altitudes whereas the model trained with images from only 20m performs well for test 

images at 40m but its performance falls drastically thereafter. This shows that the model 

trained only with images at 20m can only generalize up to an altitude an 40m after which 

the loss of detail in the image is so high that the parameters learned in the network do not 
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generalize well.

 

Figure 4.2. Performance of Faster RCNN on images at different altitudes 

Figure 4.3 shows the change in mean Intersection over Union of the output binary 

image from the patch based CNN algorithm without overlap with the ground truth binary 

image. It is to be noted that in case of using patch-based CNN algorithm for test images 

from higher altitudes, the size of the patches that are cropped from the big image has to 
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be reduced accordingly. For example, in case of 16-megapixel image with 0.5 cm/pixel 

spatial resolution in Chapter 1 and 2, a patch size of 128 × 128 was used. This size was 

chosen based on the approximate number of pixels that covered the crop or weed row. 

Since the width of a crop row at that resolution was found to be 128, the above dimension 

was chosen for the patches. But in case of test images at an altitude greater than 40m, in 

proportion to an increase in spatial resolution, the patch size has to be reduced for such 

images. In this case, as mentioned earlier, each test image was resized to a lower 

resolution and then resized back to the original number of pixels but with details lost. 

Therefore, testing with the same patch size of 128 × 128 in this resized image is 

equivalent to testing the performance of reduced patch size in higher altitude images. 

Because of the reduced patch size in higher altitudes, the number of images to be 

evaluated will increase. In Chapter 1, we found that even though patch based CNN with 

overlap shows better performance than patch based CNN without overlap, it is 

significantly slower because of the large number of images to be evaluated. Therefore, in 

this altitude experiments, only the patch-based CNN without overlap is considered. It can 

be seen in Figure 4.3 that when the model is trained with patches from all altitude, the 

mean IoU, though slightly decreases, does not show significant change. However, in case 

of the model trained only with patches at 20m, the mean IoU decreases significantly 

showing the poor generalization performance. Also, comparing with Figure 4.2, it can be 

seen that the generalization performance of Faster RCNN model trained with only 20m 

images is significantly better than patch based CNN without overlap model trained with 

only 20m images since the decrease in mean IoU in Faster RCNN has been found to be 
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lesser than that of patch-based CNN without overlap.

 

Figure 4.3. Change in mean Intersection over Union of patch-based CNN output with the 

test image altitude 

4.3.2 Estimation of flight time and data processing time at different altitudes 

Figure 4.4 and Table 4.1 shows the number of images that will be captured and the 

time to fly using DJI Zenmuse X5R camera at 15% forward and side overlap to cover a 

large square shaped field of 160-acre area. It can be seen that, in case of 80m and 120m 

altitude, the number of images and the flight time increase by small amounts whereas 

with further decrease in altitude, the number of images as well as flight time increase 

significantly. It is to be noted that in case of 80m and 120m altitude, the flight time is less 

than 20 minutes. On average, most of the commercially available UAV platforms have an 



 104 
 

 
 

actual flight time of 20 minutes. Therefore, with 80m and 120m altitude, a 160-acre field 

can be flown without having to use additional batteries. 

Table 4.1. Number of images and flight time at different altitudes calculated to cover a 

160 acre field with 15% overlap at different altitude. Results were calculated based on a 

camera with 4608 × 3456 pixels and a focal length of 15mm 

Flight altitude 

Ground 

sampling 

distance 

Flight speed 

in miles per 

hour 

Number of 

images  

Flight time in 

minutes 

20 m 0.5 cm 16.4 2377 93.1 

40 m 1 cm 21.9 594 36.4 

80 m 2 cm 21.9 154 19.7 

120 m 3 cm 22.2 64 11.4 

 

 

Figure 4.4.Change in number of images captured and the time to fly at different flight 

altitudes for 160 acres square shaped field 
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 Figure 4.5 shows the change in time needed to process an image of size 1152 × 

1152 at different altitudes in case of Faster RCNN and patch based CNN without overlap. 

As mentioned in 4.3.1, in case of patch-based CNN, at higher altitudes, the patch size has 

to be reduced proportionally to the change in altitude from 20m. Therefore, the number of 

patches to be evaluated for a test image collected at 120m will be significantly higher 

than the number of patches to be evaluated for a test image collected at 40m since the 

patch size in terms of pixels varies. Hence, the inference time for an 1152 × 1152 test 

image will vary at different altitudes for patch-based CNN whereas, in case of Faster 

RCNN, it remains the same.   

 

Figure 4.5. Change in inference time of an 1152 × 1152 image at different altitudes 
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 At 20m altitude, with a spatial resolution of 0.5cm/pixel and patch size of 

128×128, the patch covers an area of 64cm × 64cm on the ground. For different flight 

altitudes with different spatial resolution in images, the proportional patch sizes were 

calculated that would cover the same 64cm × 64 cm on the ground. Then, by combining 

the information from Figure 4.4 and Figure 4.5, the time taken for data processing at 

different altitudes for Faster RCNN and patch based CNN was calculated and is shown in 

Figure 4.6 and. It can be seen that, in case of Faster RCNN, since the inference time of 

the test image remains the same at all altitudes, the time taken for data processing 

decreases with increase in altitude in proportion to the decrease in the number of images 

captured at different altitudes. However, in case of patch-based CNN, since with the 

increase in altitude even though there is a decrease in the number of images captured, the 

patch size decreases and hence the number of patches to be evaluated increases 

proportionally. So the data processing time almost remains the same at all altitudes in 

case of patch-based CNN. Therefore patch based CNN is not recommended for near real-

time on farm data processing. 

  



 107 
 

 
 

 

Table 4.2. Time taken for data processing at different altitudes for Faster RCNN and 

patch based CNN without overlap 

Altitude Faster RCNN data 

processing time for 160 

acre field in minutes 

Patch based CNN data 

processing time for 160 

acre field in minutes 

20m 662. 84 604.5 

40m 165.64 604.24 

80m 42.94 626.62 

120m 17.85 564.43 
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Figure 4.6. Time taken for data processing at different flight altitudes 

 Hence, it can be seen from the results that, in case of using DJI Zenmuse X5R 

camera and Faster RCNN based weed detection model, data collected from 160 acres of 

field 120m altitude can be processed on farm in about 18 minutes of time using a mini 

PC. Persson & Andersson, 2016) studied different orthomosaic generating algorithms for 

on-farm orthomosaic creation in near real-time as data is collected from a DJI Matrice 

100 UAV system. It was found that, using DJI mobile and on board SDK, images 

captured by DJI UAV systems can be transmitted real time thereby enabling near real 

time processing. A 12 megapixel took about 8 seconds to download. In our case, since the 

image size is 16 megapixel, multiplying by the corresponding factor, it would take about 
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10.6 seconds to download an image from DJI Zenmuse X5R camera. Therefore, by 

downloading the images in near real time, before the completion of the flight, most of the 

images can be downloaded and processed. Also, Persson & Andersson, (2016) found that 

simple image stitching methods such as cropping and alpha blending, though less 

accurate, can be done in near real time and can be used as a visualization tool in our weed 

detection system. Since, the raw 16-megapixel image has GPS coordinates available as 

metadata, using the pitch, roll and yaw information, each image can be converted to an 

orthorectified image which is in nadir view. This would enable to use simple 

interpolation of GPS coordinate of the middle of the image to obtain GPS of the all the 

pixels in the image thereby enabling georeferencing of the weed output binary image 

from the model. The georeferencing accuracy of this system is limited by the accuracy of 

the GPS coordinates of the image which will be improved in the near future with 

advancements in low-cost RTK GPS technology.  

4.4 CONCLUSION 

Faster RCNN and patch-based CNN model was trained with images of different 

spatial resolutions and their weed detection performance at various spatial resolutions 

was tested using precision, recall, f1 score and mean IoU as evaluation metrics. It was 

found that both the models had similar weed detection performance at all spatial 

resolutions when trained with images of different spatial resolutions whereas in case of a 

model trained with only one spatial resolution, the models did not perform well at other 

spatial resolutions. Considering a virtual square shaped soybean field of 160 acres area, 

the time needed to capture UAV imagery using a DJI Zenmuse X5R camera with 15% 
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forward and side overlap and the time needed to process all these images using Faster 

RCNN and patch-based CNN model in a regular laptop was estimated at different 

altitudes. It was found that at an altitude of 120m, the 160 acre virtual soybean field can 

be captured in aerial imagery using the mentioned sensor within 12 minutes and the 

captured images can be processed using Faster RCNN model in a Microsoft surface pro 

laptop within 18 minutes. In case of using patch-based CNN approach, the data 

processing time remained almost same at more than 550 minutes at all altitudes. Hence, it 

was concluded on farm near real time mid to late season weed detection in commercial 

scale fields is feasible with existing UAV sensor technology and regular laptops by 

capturing imagery at the maximum legally permissible altitude of 120m and Faster 

RCNN model. Hence, by developing a mobile application for regular laptops and mobile 

devices, Faster RCNN model can be used for near real-time weed detection using mobile 

phones or miniPCs used for flight control of the UAV system. This system thus shows a 

processing workflow to help overcome the data processing bottlenecks for near real-time 

applications to aid crop scouting. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

 Even though several studies have focused on using UAV imagery and machine 

learning to detect early season weeds, there is no literature focused on automated 

detection of mid to late season weeds. In my research, patch-based classification using 

conventional machine learning as well as CNN and object detection using Faster RCNN 

and SSD models were studied for mid to late season weed detection in UAV imagery. 

Patch based classification method using conventional machine learning models such as 

support vector machine, logistic regression, ANN and KNN, though resulted in higher 

prediction time, suffered from the bottleneck of longer time needed for feature extraction 

using Gray Level Co-Occurrence Matrix. CNN model using Mobilenet v2 showed the 

best classification performance compared to conventional machine learning models in 

case of patch-based weed detection. Also, two different approaches to test the patch-

based classification models on raw images were evaluated – slicing raw images into 

patches with and without overlap. It was found that slicing the raw images into patches 

with overlap (75% horizontal and vertical overlap) improved the weed detection 

performance of the model on the raw images. However, it has a significant increase in 

evaluation time compared to slicing without overlap. In case of object detection models, 

Faster RCNN model with 300 proposals was found to have slightly better detection 

performance compared to the SSD model with a slightly longer inference time. However, 

it was observed that reducing the proposals to 200 decreased the inference time of Faster 

RCNN model  to the same amount as what was needed by the SSD model without any 

significant decrease in detection performance. In order to evaluate the feasibility of using 
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these models for near real-time weed detection of commercial scale soybean fields, 

experiments were conducted by resizing the images from 20m altitude to higher altitudes 

and the change in performance with loss of detail was studied. It was found in our case 

that Faster RCNN model was able to detect weeds in images simulated at 120m altitude 

without any decrease in detection performance compared to images obtained at 20m. 

Also, with 15%  forward and side overlap, it was estimated that a 160-acre soybean field 

of square shape could be covered within 12 minutes of flight time and the captured 

images could be evaluated using Faster RCNN model on a regular laptop (Microsoft 

Surface Pro) within 18 minutes. 

 It is known that one of the major drawbacks of using individual raw images 

collected rather than a stitched orthomosaic map is the error in geolocation. However, 

with the availability of RTK or close to RTK level GPS in the latest commercial UAV 

and sensor systems, it is possible now to have very high geolocation precision for 

individual images relative to a base station. This enables obtaining images with very low 

deviation in the overlap between images. Also, RTK GPS improves the stability of flight 

and possibly less deviation from the nadir view of the camera. Using the GPS coordinates 

and pitch, roll and yaw information, orthorectification of individual images can be 

achieved with very high geolocation accuracy. Further studies can be conducted to 

estimate the error in the geolocation using orthorectified individual images without RTK 

GPS to know the tradeoff in geolocation accuracy with the cost of buying an RTK GPS 

enabled UAV system.  
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As mentioned earlier, it was estimated to take about 12 minutes to cover 160 acres 

at 120m, in this case, using DJI Zenmuse X5R camera, and so an area as big as 500 acres 

can be covered within 40 minutes and the data processed in a regular laptop within an 

hour. Also, it is to be noted that with the average flight time of UAV battery being around 

20 minutes, using just two sets of batteries, the above mentioned 500 acres can be 

covered using existing technologies. In case of commercial UAV systems such as those 

from the DJI, software development kits are available to develop flight control 

applications and also to access real-time transmission of data from the UAV. Typically, 

mini PCs are used to run the flight control applications. Hence, by using the software 

development kit, an integrated application can be developed that enables mission 

planning and flight control and also accesses the captured images real-time and processes 

the images on the background using deep learning based models on the same mini PC or 

regular laptop. This would enable near real-time weed detection using existing UAV 

technology and mobile devices which we believe is part of the future of digital 

agriculture. 
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