
ORIGINAL ARTICLE / ORIGINALBEITRAG

https://doi.org/10.1007/s10343-022-00764-6
Gesunde Pflanzen (2023) 75:25–36

A Pixel-wise Segmentation Model to Identify Bur Chervil (Anthriscus
caucalisM. Bieb.) Within Images from a Cereal Cropping Field

Hadi Karimi1 · Hossein Navid2 · Karl-Heinz Dammer3

Received: 22 May 2022 / Accepted: 5 October 2022 / Published online: 7 December 2022
© The Author(s) 2022

Abstract
Because of insufficient effectiveness after herbicide application in autumn, bur chervil (Anthriscus caucalis M. Bieb.) is
often present in cereal fields in spring. A second reason for spreading is the warm winter in Europe due to climate change.
This weed continues to germinate from autumn to spring. To prevent further spreading, a site-specific control in spring is
reasonable. Color imagery would offer cheap and complete monitoring of entire fields. In this study, an end-to-end fully
convolutional network approach is presented to detect bur chervil within color images. The dataset consisted of images
taken at three sampling dates in spring 2018 in winter wheat and at one date in 2019 in winter rye from the same field.
Pixels representing bur chervil were manually annotated in all images. After a random image augmentation was done,
a Unet-based convolutional neural network model was trained using 560 (80%) of the sub-images from 2018 (training
images). The power of the trained model at the three different sampling dates in 2018 was evaluated at 141 (20%) of the
manually annotated sub-images from 2018 and all (100%) sub-images from 2019 (test images). Comparing the estimated
and the manually annotated weed plants in the test images the Intersection over Union (Jaccard index) showed mean values
in the range of 0.9628 to 0.9909 for the three sampling dates in 2018, and a value of 0.9292 for the one date in 2019. The
Dice coefficients yielded mean values in the range of 0.9801 to 0.9954 for 2018 and a value of 0.9605 in 2019.
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Ein pixel-basiertes Segmentierungsmodell zur Identifizierung von Hunds-Kerbel (Anthriscus caucalis
M. Bieb.) in Farbbildern eines Getreidefeldes

Zusammenfassung
Nach einer Herbizidbehandlung im Herbst zur Kontrolle eines breiten Spektrums von Unkrautarten hat sich in den ver-
gangenen Jahren aufgrund deren geringen Wirkung Hunds-Kerbel (Anthriscus caucalis M. Bieb.) zum Problemunkraut
im Frühjahr in Getreidefeldern entwickelt. Durch die Klimaerwärmung kann diese Unkrautart den ganzen Winter über
keimen, was zu deren Ausbreitung zusätzlich beiträgt. Eine teilflächenbezogene Herbizidapplikation im Frühjahr wäre aus
ökologischen und ökonomischen Gründen sinnvoll. Der Einsatz von Farbbildkameras an landwirtschaftlichen Maschinen
oder unbemannten Fluggeräten bietet eine preiswerte Möglichkeit zum lückenlosen Monitoring kompletter Felder. Im
vorliegenden Beitrag wurde ein Unet-basiertes künstliches neuronales Netz verwendet, um in Farbbildern das Unkraut
zu identifizieren. Im Frühjahr 2018 erfolgte in einem Winterweizenfeld an 3 Terminen eine Farbbildaufnahme an 38 Be-
probungspunkten. Im Folgejahr wurden die Bilder an einem Termin an 36 Punkten im gleichen Feld mit Winterroggen
generiert. Eine manuelle Markierung (Annotation) von Hunds-Kerbel erfolgte in allen Bildern unter zur Hilfenahme einer
Software. Nachdem die Originalbilder in kleinere Bilder geteilt wurden, geschah das Trainieren des künstliches neuronales
Netz Modells an 560 (80%) der Teilbilder von 2018 (Trainingsbilder). Die Klassifizierungsgüte des trainierten Modells
wurde für 2018 anhand 141 (20%) der Teilbilder und für 2019 anhand aller (100%) Teilbilder (Testbilder) durchgeführt.
Der Vergleich der durch das Modell geschätzten mit den annotierten Hunds-Kerbelpflanzen ergaben zu den drei Aufnah-
mezeitpunkten 2018 Intersection over Union (Jaccard index) Werte von 0.9628 bis 0.9909 sowie einen Wert von 0.9292
für 2019. Der Dice Koeffizient ergab Werte von 0.9801 bis 0.9954 für 2018 und einen Wert von 0.9605 für 2019.

Schlüsselwörter Bildverarbeitung · Hunds-Kerbel · Maschinelles Lernen · Präziser Pflanzenschutz · Roggen · Weizen

Introduction

Herbicide spraying in cereals under Central European con-
ditions is usually done in autumn. To control a broad
spectrum of weeds, in autumn farmers in Germany used to
spray herbicides containing biocidal chemical compounds
like chlortoluron, metsulfuron, diflufenican, pendimethalin,
and tribenuron methyl. Most of these substances show
weak effectiveness against bur chervil (Anthriscus caucalis
M. Bieb.) from the family Apiaceae. The germination of
this weed usually occurs from autumn to spring. Due to
climate change, temperatures in Central Europe have been
unusually high in recent years. With favorable temperatures,
germination runs throughout the winter. The occurrence of
this weed species in cereal crops has increased in recent
years. Even as neophyte in Oceania the plant is abundant
(Rawnsley 2005).

After common herbicide spraying in autumn, in spring
often A. caucalis is the only weed species that is present in
cereal fields in typical patches. Precise, selective spraying
of only those patches would make economic and ecological
sense. In spring, farmers often use metsulfuron and thifen-
sulfuron-based herbicide products that are effective against
A. caucalis. If winter rape or inter-tillage crops are sown
after a dry summer, problems with the germination of those
crops can occur due to the persistence of the active agents of
herbicide products in the soil. Therefore, in addition to eco-
nomic and ecological aspects, precise spot spraying would
reduce this risk to a smaller area of the field.

Prior to a precise herbicide spraying, the target must be
identified. In recent years, efforts have been made to use
camera-sensors to identify weeds. For example, if they are
arranged close to each other at the spray boom an online
spot spraying of herbicides (weed detecting and spraying
in one operation) can be done (Anonymous 2022).

The accuracy and efficiency of weed identification, de-
termine the performance of the selective spraying technique
(Xu et al. 2020). Some visible and non-visible character-
istics can distinguish weeds from the main crop. Some of
them are leaf shape and leaf margins, the arrangement of
leaves on the stem, the presence or absence of hairs on
leaves or other parts of the plant, flower structure, color
and size. The leaf color is the main characteristic that can
make the identification process easier or more difficult. Wu
et al. (2011) examined a weed detection method based on
position and edge of leaves. The algorithm could only de-
termine image pixels belonging to weeds between the rows
and was unable to discriminate the crop from the weeds. Xu
et al. (2020) used an Absolute Feature Corner Point (AFCP)
algorithm and developed Harris corner detection to extract
the individual weed and crop corners as well as the crop
rows in field images. The major challenge in developing
a weed detection system is the large variability in the visual
appearance that occurs in different fields. Thus, an effec-
tive classification system has to robustly handle substantial
environmental changes, including varying weed pressures,
various weed species, different growth stages of crop and
weeds, and soil types (Lottes et al. 2018). Environmental
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conditions like clouds and wind can drastically affect the
characteristics of images (Ghosal et al. 2019).

Artificial Intelligence (AI) is fast becoming ubiquitous
due to its robust applicability to challenges that neither hu-
mans nor conventional computing structures can efficiently
solve. Agriculture is a dynamic field where situations can-
not be generalized to propose a common solution. Apply AI
techniques can grasp the intricate details of each situation
and can provide suitable solutions for farming problems.
(Bannerjee et al. 2018). Meanwhile, deep learning, coupled
with improvements in computer technology, particularly in
embedded graphical processing units (GPUs), has achieved
remarkable results in various areas such as image classifi-
cation and objection detection (Gu et al. 2018; Schmid-
huber 2015). The use of convolutional neural networks
(CNNs) can take advantage of the recent rapid increase
in processing power and memory, allowing for the timely
training of large sets of images. (Dos Santos Ferreira et al.
2017). Advances in deep learning and machine vision tech-
niques have been improved and perfected over time mainly
through CNNs. The CNNs have been leaders in training
algorithms and can visualize and identify patterns in the
image data with minimal human intervention (Pouyanfar
et al. 2018). Dyrmann et al. (2017) developed a fully con-
volutional network (FCN) to identify weeds in images cap-
tured with an All-Terrain Vehicle (ATV) mounted camera
of winter wheat fields. The results showed that the algo-
rithm detected 46% of the weeds in a field. The algorithm
faced problems detecting very small weeds like grasses,
and weeds that were exposed to a large amount of overlap-
ping. Dos Santos Ferreira et al. (2017) developed software
based on CNN that performs weed detection in images of
soybean fields, as well as differentiating between grasses
and broadleaf weeds. A drone equipped with an RGB cam-
era sensor created an image database of more than fifteen
thousand images including soil, the soybean crop, broadleaf
weeds and grasses. Using the CaffeNet architecture to train
and develop the neural network model resulted in greater
than 98% accuracy in the classification. Lottes et al. (2020)
developed an algorithm that jointly learns to recognize the
stems and the pixel-wise semantic segmentation, taking into
account image sequences of local field strips. Their exper-
iments showed the system worked well even in previously
unseen sugar beet fields under varying environmental con-
ditions. There are classic and modern network architectures
in CNN. Modern architectures such as ResNet, DenseNet
and U-Net provide innovative ways for constructing convo-
lutional layers to deepen learning.

It is time-consuming and tedious to prepare a properly
annotated image database for training a deep learning sys-
tem. While many sample images may be needed to be care-
fully and precisely annotated to form a successful deep
network system that can recognize objects in the same way

as a human. The higher the quality and quantity of anno-
tations, the more likely it is that the trained deep learning
models will perform well. To use the available annotated
images more effectively, Ronneberger et al. (2015) intro-
duced U-Net networks and a training procedure for biomed-
ical image segmentation based on heavy data augmenta-
tion. They noted that such a network can be trained end to
end from very few images and can effectively solve image
segmentation problems. The U-Net architecture consists of
a contracting path to capture context and a symmetric ex-
panding path that enables precise localization. Karimi et al.
(2021) successfully developed a U-Net-based model to de-
termine two-class pixels of the emergence point of plants
and background.

Due to heavy leaf occlusion and close color of A. cau-
calis and cereal plants, simple methods of image analy-
sis have difficuties to discriminate them. In addition, there
would be some issues in considering FCN object detection
approaches. The trained bounding box predictor usually has
trouble generating optimal bounding boxes that cover the
entire plant. The problem could be more acute when the ob-
ject detection model is confronted with high crop density
and small weeds which is common in cereal fields. There-
fore, in this study, a model for identifying image pixels
belonging to bur chervil based on semantic segmentation is
proposed. Due to the limitation in providing a large num-
ber of annotated images subject to excessive convergence
of plants in cereal fields and U-Net’s proven ability to re-
solve semantic segmentation issues, the U-Net architecture
was chosen for the development of the pixel-wise weed de-
tection model. The effectiveness and validity of the pixel-
wise weed detection model was investigated at three differ-
ent dates in 2018 and at one sampling date in 2019, while
crop and weed conditions, background composition, light-
ing, etc. vary over time.

Material andMethods

Experimental Sites

The farmer’s field is situated in the Eastern Germany South
of Berlin (N 51.919175, E 13.151163). The winter wheat
variety NordkapTM was sown on October 1, 2017, with
300 seeds m–2. The previous crop was winter rape. Before
sowing, the soil was tilled with a field cultivator 15cm in
depth (without turning tillage system) after the application
of 2.5 l ha–1 RoundupTM PowerFlex (480g l–1 glyphosat)
on September 5, 2017. In autumn herbicides were ap-
plied twice: October 16, 2017: 1.0 l ha–1 ViperTM Compact
(100g l–1 diflufenican, 15g l–1 penoxsulam, 3.57g l–1 flo-
rasulam), November 3, 2017: 26g ha–1 TrimmerTM SX
(284g kg–1 tribenuron methyl).
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On October 4, 2018 winter rye of the variety DanielloTM

with 180 seeds m–2 was sown. Before sowing, the soil was
tilled with a field cultivator 20cm in depth after applying
1.7 l ha–1 Plantaclean LabelTM XL (360g l–1 glyphosat) on
September 2, 2018. A common herbicide spraying that is
effective against a broad variety of weeds was performed
on October 17, 2018, with 2.0 l ha–1 TrinityTM (300g l–1

pendimethalin, 250g l–1 chlortoluron, 40g l–1 diflufenican).
All other measures such as nutrition, fungicide and growth
regulator application were done in both years according to
the rules of good agricultural practice.

Image Datasets

In 2018, 32 images were taken within 50 meters distance
along two adjacent transects (machine tracks). Image acqui-
sition continued at the same sampling points on March 27,
April 12 and April 18. A different development of the weed
and crop, as well as a low to high leaf overlap, was guar-
anteed. In 2019, 12 images each were taken along three
transects (machine track) A Canon EOS 550D camera with
a 33mm lens was used to capture the color (RGB) images.
The shutter speed was set on automatically. Each image in
this dataset consists of 3-channel color (RGB) images with
a resolution of 5184× 3456 pixels. Fig. 1 shows examples
of images during the three sampling times in 2018 and the
one time in 2019.

Image Annotation

In order to provide datasets for training, evaluation and vali-
dation processes with suitable truth masks in machine learn-

Fig. 1 Images examples: winter
wheat on March 27, April 12 (a,
b), and April 18, 2018 (c) as
well in winter rye on March 29,
2019 (d)

ing, all images from 2018 and 2019 were annotated with the
GIMP—GNU Image Manipulation Program (GIMP Devel-
opment Team 2019; Solomon 2009). Using a separate layer
in the GIMP GUI, a segmentation mask was manually cre-
ated for each image to precisely mark weeds from other
objects such as background soil and cereal plants (Fig. 2).
To implement the training process, two classes of the weed
and the non-weed must be discrete in each mask frame.
Using the OpenCV Python library (Mordvintsev and Abid
2014), the pixels in the mask that included weeds were bina-
rized to white and given a value of 1, while the other pixels
were set to black and given a value of 0 (Fig. 2). To ensure
that each mask matches the corresponding training image
when the CNN U-Net model is run, the individual mask
and the corresponding image have been stored separately
as a NumPy array (Van Der Walt et al. 2011). A NumPy
array data set was then created by appending the relevant
image data set for the mask and the training image in a For
Loop.

Architecture Used

The U-Net architecture was chosen for the development of
the pixel-wise weed detection model. The idea of identi-
fying weed areas with the U-Net architecture can be ex-
plained as follows. The U-Net architecture was built with
the three paths of contraction, bottleneck and expansion
(Ronneberger et al. 2015). The contraction and expansion
paths were built with six blocks. In the contraction path,
each block included two layers of convolution, followed by
a layer of down-sampling. After processing every pixel in
each block, a new feature map of the result is stored in the
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Fig. 2 Manually annotated pix-
els (red encircled: A. caucalis) in
a sub-image (a) and transferred
to white in the binary mask (b)
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same order as the input image. The down-sampling layer
was applied to abbreviate the dimension of the feature map
so that only the most important parts of the feature map
were retained. The reduced features map was then used
as input for the next contraction block. The spatial dimen-
sions of the feature maps were reduced by one half and the
number of feature maps was duplicated several times by
the down-sampling layer (Guan et al. 2019; Weng et al.
2019; Lin and Guo 2020a). The bottleneck, constructed
with two layers of convolution, mediated the contraction
and expansion sections. The spatial dimension of the data
at the bottleneck was 32× 32 and 2048 feature maps (Lin
and Guo 2020b; Ronneberger et al. 2015). In the expansion
path, the block comprised two convolution layers, followed
by an up-sampling layer. After each up-sampling layer, the
number of feature maps was divided in half and the spa-
tial dimensions of the feature maps was doubled to keep
the symmetry of the entire architecture. Once all extension
blocks have been run, the final output feature map could
provide the final distinction between weed-infested areas
and the background. The proposed pixel-wise image seg-
mentation architecture consisted of a total of 34,637,346
parameters, of which 34,623,090 were trainable and 14,256
non-trainable parameters. The non-trainable parameters are
the number of weights that are not updated during training
with backpropagation.

Hardware and Libraries Used

The semantic image segmentation model, which classifyed
weed pixels from the background pixel in the image, was
performed with Keras. Keras is an open-source software
library running on top of the TensorFlow package (Abadi
et al. 2016), provides a Python interface for solving ma-
chine learning problems. It comes with predefined layers,
meaningful hyperparameters and a clear and simple API

(Application Programming Interface) that can be used to
define, adapt and evaluate standard deep learning models
(Géron 2019). By choosing Keras and using models from
the open-source community, a supportable solution was de-
veloped. It allows for minimal startup time and a greater
focus on the architecture of the network rather than the
implementing neurons.

As deep learning models spend a lot of time for training,
even powerful central processing units (CPUs) were not
efficient enough to handle so many computations at once.
Compute Unified Device Architecture (CUDA) as a soft-
ware platform coupled with GPU hardware was used to
accelerate computations with the parallel processing power
of Nvidia GPUs. The training was carried out under Win 10
as the operating system on a desktop computer with an In-
tel Coffee Lake Core i7-8700K CPU, 24GB DDR4 RAM
and a GeForce GTX 1080 Ti GPU with 11GB integrated
DDR5 memory.

Loss Function

In deep learning, the optimization task is followed by an es-
tablished neural network. Based on the data and features of
a task, a loss function had to be created to outline the learn-
ing objective. Pixel class imbalance is the most common
issue in image segmentation practices. The background of-
ten goes far beyond the proportion of the target class to be
segmented. Therefore, it is important to choose a specified
loss function taking into account the optimization goal of
the class imbalance segmentation task (Tseng et al. 2021).
A large segment of an image taken from a cereal field is ex-
pected to belong to crops and soils, resulting in significant
differences between the pixels associated with the back-
ground and the pixels associated with the weed-infested ar-
eas. Thus, in the pixel-by-pixel classification, there is a class
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imbalance between the pixels of the weed-infested areas and
the pixels of the background.

The Dice coefficient, which appears suitable for image
segmentation tasks, was chosen as the loss function. The
Dice coefficient is a measure of the overlap between the
model prediction results and a reality mask created through
manual annotations (Zou et al. 2004). This measure ranges
from 0 to 1, with a Dice coefficient of 1 indicating two
regions that perfectly overlap and a Dice coefficient of 0
indicating no match. The image segmentation model is de-
signed to make the predictions as close as possible to man-
ual annotation. This means that the training process is es-
sentially based on achieving a greater Dice coefficient. The
Dice coefficient could be calculated as follows:

DSC =
2 � ˇ

ˇXpred \ Ylabel
ˇ
ˇ

ˇ
ˇXpred

ˇ
ˇ + jYlabelj

(1)

Where Xpred stands for the area predicted by the model
and Ylabel for the area manually labelled. In terms of the
confusion matrix, it can be written using the definition of
true positive (TP), false positive (FP), and false negative
(FN):

DSC =
2TP

2TP + FN + FP
(2)

To formulate a loss function that can be minimized dur-
ing the training process, simply the inverse of the Dice
coefficient was applied. The Dice loss can be formulated
as 1—Dice. This loss function is known as soft Dice loss
because it uses the predicted probabilities directly rather
than thresholding them and converting them to a binary
mask.

Image Data Preprocessing and Augmentation

In the image pre-processing step, all original field images
were randomly cropped and downscaled to 1024× 1024 pix-
els (Fig. 2). The purpose was to reduce the computational
load, reduce the risk of overfitting and adjust the image
dimensions according to the chosen network architecture.
This size limitation is also due to the memory limitation of
the Nvidia GPU used for training. The success of develop-
ing deep learning models depends heavily on the amount
of data available for training (Kebir et al. 2021). Due to
the limited original image data of the training set and dif-
ficulty in the manual annotation of images, expanding the
number of images could enhance the performance of CNNs
models (Chatfield et al. 2014). Image data extension tech-
niques have been used to solve the limitations that exist
in a short number of training data. Data augmentation is
a regularization process that relies on applying transforma-
tions of images. (Garcia-Garcia et al. 2017). The image

augmentation aims to apply some transformations to gener-
ate more training data (sub-images) from original images.
This benefits the model to generalize better to unseen im-
ages and avoid over-fitting. (Stirenko et al. 2018; Espejo-
Garcia et al. 2020). In this study, the Pixel-wise Segmenta-
tion model was trained on the heavy augmented images. In
the training process, several transformations were carried
out randomly on the original training images and also on
the corresponding labeled masks. Tensor imagery batches
with real-time data augmentation were produced employing
the Keras library. The data were looped in batches. Taking
into account the uncertainties such as the angle and position
of crops and weeds in images, the image magnification was
set to randomly rotate (45°), horizontal shift (0.2), vertical
shift (0.2), shear transformation (0.2), zoom (0.2), horizon-
tal and vertical flip, normalize the images (1/255), with the
“Wrap” fill mode.

Training and Evaluation

After the image augmentation process, the U-Net algorithm
was used to create a two-channel pixel classification model
loading augmented training sub-images of the year 2018
as input and the corresponding manually identified binary
mask of infested weed regions as output. The network’s
Dice loss was determined by comparing the predictions
with the reality from the manually labeled mask. Next, the
network propagated the prediction error back and renewed
the network parameters.

The model was trained using the RMSprop optimizer
(Kurbiel and Khaleghian 2017) with a variable learning
rate of 0.0001 (Learning rate policy: conditional decay).
Eighty epochs were performed in the training process. The
number of epochs was determined based on the training
image size, training required time, and the overall perfor-
mance of the model. Due to memory restrictions, the sub-
images were uploaded to the network in two batches. Over
701 sub-images and associated annotated sub-image masks
were provided for the development and validation of the
segmentation model. For developing the model, after ran-
dom cropping, 80% of the sub-images of the year 2018 in
the provided data set were defined as training and the re-
maining 20% were used as validation and test. Such that,
in a data set of 701 sub-images in total, 560 were used to
train the model and the other 141 were used for valida-
tion and evaluation. The output of the developed network
is a two-channel binary mask of 1024× 1024 pixels, rep-
resenting two classes of the weed-infested image area and
the background area.

To assess the strength of the pixel-wise model in iden-
tifying weed-infested areas in cereal fields, metrics must
be established to show whether weed pixels are recognized
or not. Further overlap between predictions of the model
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and truth (labeled pixels) indicates the greater capacity of
the model in the pixel-by-pixel classification of field im-
ages. For this purpose, the Dice and the Intersection over
Union (IoU), also known as the Jaccard index, were se-
lected to evaluate the segmentation model. These metrics
could quantify the percentage of agreement between the
target mask and the predictions.

JAC = IoU =

ˇ
ˇXpred \ Ylabel

ˇ
ˇ

ˇ
ˇXpred [ Ylabel

ˇ
ˇ

(3)

Where Xpred represents the predictions and Ylabel repre-
sents the target mask. The intersection (Xpred \ Ylabel) con-
sists of the pixels identified in both the prediction mask and
the labeled mask, while the union (Xpred [ Ylabel) consists
of all pixels identified in either the output or truth mask.
The Jaccard index is closely related to the Dice coefficient
and can be rewritten in terms of the confusion matrix with
the definition of true positive (TP), false positive (FP) and
false negative (FN):

JAC = IoU =
TP

TP + FN + FP
(4)

In order to investigate the possibility of the influence of
the growth stage of crops and weeds on the effectiveness of
weed detection, the image data set was collected on three
different dates from the same points in the field in 2018.

A typical machine vision-based weed detection system
faces various issues, such as color deviation due to shad-
ing and glare, daylight changes, background segmentation,
overlapping of neighboring plants, etc. The overlapping of
plants is even more severe in cereal fields as seeds are
sown with random patterns and generally close row spacing.
Therefore, a generalized system with the ability to detect
weeds in different soil and plant conditions, background
composition, lighting, etc. is very desirable. In this case, in
addition to evaluating the effectiveness of weed detection at
three different times in 2018, while crop and weed condi-
tions change over time, the generalizability of the developed
pixel-wise detection model was examined using 36 original
images captured in the next year on March 29, 2019. In the
image preprocessing step, the number increased to 306 sub-
images after random cropping and downscaling to a size of
1024× 1024 pixels. All new images that the network has not
previously seen were fed in and corresponding predictions
were made.

Results and Discussion

Training and Validation

The training process involved 80 runs of the entire input
data from 2018, namely 79 epochs. As soon as learning was
caught and stopped during training, the network benefited
from decay in the learning rate by a factor of 0.0. Therefore,
if no progress was perceived within 3 epochs, the learning
rate decreased (Fig. 3).

The curve of Dice loss and Dice coefficient over the
epochs are shown in Figs. 4 and 5. The best time of the
learning process, when the model updated its weights for
the last time, was signed on the diagrams. As can be ob-
served, no progress has been perceived over a number of
specific epochs and the updating of the model weight has
been terminated. Such that Dice coefficient and Dice loss
value did not respectively increase from 0.9797 and de-
crease from 0.0568 beyond 57th epochs. However, the best
model was determined in the epoch of 72 with Dice loss
validation of 0.048.

Evaluation of the SegmentationModel (Test Images
2018)

The output of the trained U-Net model after the activation
function is a probable two-channel space with values vary-
ing from 0 to 1. This probability space reflects each pixel’s
possibility of belonging to the target class or the associated
background. Fig. 6 shows a comparison between the manu-
ally labelled and the predicted weed-infested regions by the

Fig. 3 Decrease in the learning rate by a factor of 0.0 if no progress
was perceived within 3 epochs
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Fig. 4 The curve of the Dice coefficient over the epochs

Fig. 5 The curve of the Dice loss over the epochs

model of three examples (with and without A. caucalis) of
test sub-images of 2018 in winter wheat. Binary predicted
points (pixels) in Fig. 6 right are predicted weed-infested
points after applying a threshold of 0.25 to the probable
predicted space. The closed red lines in Fig. 6 represent
actual weed-infested regions that were previously manually
labeled.

The mean IoU index and the Dice coefficient of the test
data set were calculated by averaging the IoU and Dice
coefficient of each sub-image and class. Fig. 7 shows the

results of the mean IoU index and the mean Dice coeffi-
cient at the three different dates from the same sampling
points in the field in 2018. At the corresponding sampling
dates, these metrics indicate a high percentage of agree-
ment between the annotated A. caucalis image pixels and
the model’s predicted pixels.

Validation of the SegmentationModel (Test Images
2019)

The validity and generality of the developed pixel-wise seg-
mentation model in 2018 were assessed on the sub-images
from March 29, 2019. Taking into account the predicted
weed pixels and the manually annotated weed pixels, the
Dice similarity coefficient (DSC) and IOU index were cal-
culated. The average values of the DSC- and IOU-index was
0.9605 and 0.9292, respectively. Fig. 8 shows a typical re-
sult and comparison of the manually labeled and predicted
weed-infested image regions. Binary predicted points (pix-
els) in Fig. 8 are predicted weed-infested points after ap-
plying a threshold of 0.25 to the probable predicted space.
The closed red lines in Fig. 8 represent previously manu-
ally labeled weed-infested regions. The results show that
the model is acceptably valid for the classification of the
images from 2019, which means that the detection system
was generalized in a promising way.

Conclusions

A. caucalis is a undesirable weed species that grow in crops,
competing for elements such as sunlight, water and nutri-
ents, causing losses to crop yields. Site-specific herbicide
application to cereal fields that avoids wasting resources
and the destructive environmental effects is highly desir-
able. If a few individual plants appear, an initial control
is needed to prevent further spreading. Color cameras can
be attached to agricultural machinery, providing measures
such as fertilization, spraying of crop protection products,
etc., which can result in comprehensive monitoring of entire
fields without gaps.

In this study, to determine A. caucalis within color im-
ages a fully convolutional and end-to-end trainable network
model was developed. After creating a relevant annotated
image database, the pixel-wise segmentation model was
trained on heavy augmented images from 2018. To eval-
uate the trained segmentation model, the metrics of the In-
tersection over Union (IoU) index and the Dice similarity
coefficient (DSC) were calculated for the test data set from
2018 and all images from 2019. At all sampling dates, these
metrics indicated a high percentage of agreement, over 92%
between the target, referred to as the labeled weed-infested
areas and the model’s predictions. The results suggest that
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Fig. 6 Field sub-image (left row), probable (middle row), and binary spaces (right row) of predicted weed-infested regions in three examples (with
and without A. caucalis) of test sub-images of 2018 in winter wheat

the developed pixel-wise segmentation model trained with
the 2018 annotated images was favorably generalized and
successfully identified image pixels belonging to A. cau-
calis, even within images from the following year with win-
ter rye as a cereal crop. For the 2018 test sub-images, the
early sampling date on March 27 showed slightly higher
IoU and DSC Index than the two dates in April results
(Fig. 7). One reason could be the increasing overlapping of
cereal and weed crops with time.

Under cropping conditions like in this study, where
only one weed species occurs, the proposed image analysis
model offers the following summarized advantages:

� More effective use of available annotated images.
� High accuracy in the following year despite different crop

conditions.
� Future suitability of the presented model to run on color

cameras with an integrated computer (embedded system)

The spreading of bur chervil is increasing not only in
Europe. As invasive species, this weed was reported for
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Fig. 7 Mean Jaccard index
(IoU) and the Dice coefficient
(DSC) calculated for the test
data set, collected at three differ-
ent sampling dates in 2018 along
the 2 transects in winter wheat
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Fig. 8 Field sub-image (a), probable (b), and binary spaces (c) of predicted weed-infested regions in an example (with A. caucalis) of test images
of 2019 in winter rye

example in Idaho in the western United States (Anony-
mous 2007). In recent years, the weed has even reached
New Zealand (Anonymous 2018) and Tasmania (Rawns-
ley 2005). Therefore amongst others in future research, the
following aspects should be bear in mind:

� Providing labeled image masks for the training of differ-
ent areas (countries) and crops would help to generalize
the A. caucalis detection model and to increase its per-
formance in practical operation.

� A chemical control also in later growth stages would
make sense to avoid flowering. Collecting image data for
training in the later growth stages of the cereal could be
reasonable.

� In recent years, unmanned aerial vehicles (UAVs) plat-
forms that provide high-resolution, low-altitude images
have shown great potential in weed detection and map-

ping (Torres-Sánchez et al. 2021). UAVs could cover
large areas of land in a very short time and periodically
provide historical and multispectral image data. In the
future, it might be beneficial to study the ability of the
developed methods to identify A. caucalis within UAV-
based images.
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