42 research outputs found

    A Systematic Review of Deep Learning Approaches to Educational Data Mining

    Get PDF
    Educational Data Mining (EDM) is a research field that focuses on the application of data mining, machine learning, and statistical methods to detect patterns in large collections of educational data. Different machine learning techniques have been applied in this field over the years, but it has been recently that Deep Learning has gained increasing attention in the educational domain. Deep Learning is a machine learning method based on neural network architectures with multiple layers of processing units, which has been successfully applied to a broad set of problems in the areas of image recognition and natural language processing. This paper surveys the research carried out in Deep Learning techniques applied to EDM, from its origins to the present day. The main goals of this study are to identify the EDM tasks that have benefited from Deep Learning and those that are pending to be explored, to describe the main datasets used, to provide an overview of the key concepts, main architectures, and configurations of Deep Learning and its applications to EDM, and to discuss current state-of-the-art and future directions on this area of research

    Multi-facet graph mining with contextualized projections

    Get PDF
    The goal of my doctoral research is to develop a new generation of graph mining techniques, centered around my proposed idea of multi-facet contextualized projections, for more systematic, flexible, and scalable knowledge discovery around massive, complex, and noisy real-world context-rich networks across various domains. Traditional graph theories largely overlook network contexts, whereas state-of-the-art graph mining algorithms simply regard them as associative attributes and brutally employ machine learning models developed in individual domains (e.g., convolutional neural networks in computer vision, recurrent neural networks in natural language processing) to handle them jointly. As such, essentially different contexts (e.g., temporal, spatial, textual, visual) are mixed up in a messy, unstable, and uninterpretable way, while the correlations between graph topologies and contexts remain a mystery, which further renders the development of real-world mining systems less principled and ineffective. To overcome such barriers, my research harnesses the power of multi-facet context modeling and focuses on the principle of contextualized projections, which provides generic but subtle solutions to knowledge discovery over graphs with the mixtures of various semantic contexts

    Gaining Insight into Determinants of Physical Activity using Bayesian Network Learning

    Get PDF
    Contains fulltext : 228326pre.pdf (preprint version ) (Open Access) Contains fulltext : 228326pub.pdf (publisher's version ) (Open Access)BNAIC/BeneLearn 202

    Representation Learning for Texts and Graphs: A Unified Perspective on Efficiency, Multimodality, and Adaptability

    Get PDF
    [...] This thesis is situated between natural language processing and graph representation learning and investigates selected connections. First, we introduce matrix embeddings as an efficient text representation sensitive to word order. [...] Experiments with ten linguistic probing tasks, 11 supervised, and five unsupervised downstream tasks reveal that vector and matrix embeddings have complementary strengths and that a jointly trained hybrid model outperforms both. Second, a popular pretrained language model, BERT, is distilled into matrix embeddings. [...] The results on the GLUE benchmark show that these models are competitive with other recent contextualized language models while being more efficient in time and space. Third, we compare three model types for text classification: bag-of-words, sequence-, and graph-based models. Experiments on five datasets show that, surprisingly, a wide multilayer perceptron on top of a bag-of-words representation is competitive with recent graph-based approaches, questioning the necessity of graphs synthesized from the text. [...] Fourth, we investigate the connection between text and graph data in document-based recommender systems for citations and subject labels. Experiments on six datasets show that the title as side information improves the performance of autoencoder models. [...] We find that the meaning of item co-occurrence is crucial for the choice of input modalities and an appropriate model. Fifth, we introduce a generic framework for lifelong learning on evolving graphs in which new nodes, edges, and classes appear over time. [...] The results show that by reusing previous parameters in incremental training, it is possible to employ smaller history sizes with only a slight decrease in accuracy compared to training with complete history. Moreover, weighting the binary cross-entropy loss function is crucial to mitigate the problem of class imbalance when detecting newly emerging classes. [...

    Knowledge Extraction from Textual Resources through Semantic Web Tools and Advanced Machine Learning Algorithms for Applications in Various Domains

    Get PDF
    Nowadays there is a tremendous amount of unstructured data, often represented by texts, which is created and stored in variety of forms in many domains such as patients' health records, social networks comments, scientific publications, and so on. This volume of data represents an invaluable source of knowledge, but unfortunately it is challenging its mining for machines. At the same time, novel tools as well as advanced methodologies have been introduced in several domains, improving the efficacy and the efficiency of data-based services. Following this trend, this thesis shows how to parse data from text with Semantic Web based tools, feed data into Machine Learning methodologies, and produce services or resources to facilitate the execution of some tasks. More precisely, the use of Semantic Web technologies powered by Machine Learning algorithms has been investigated in the Healthcare and E-Learning domains through not yet experimented methodologies. Furthermore, this thesis investigates the use of some state-of-the-art tools to move data from texts to graphs for representing the knowledge contained in scientific literature. Finally, the use of a Semantic Web ontology and novel heuristics to detect insights from biological data in form of graph are presented. The thesis contributes to the scientific literature in terms of results and resources. Most of the material presented in this thesis derives from research papers published in international journals or conference proceedings

    Comparative study of NER using Bi-LSTM-CRF with different word vectorisation techniques on DNB documents

    Get PDF
    The presence of huge volumes of unstructured data in the form of pdf documents poses a challenge to the organizations trying to extract valuable information from it. In this thesis, we try to solve this problem as per the requirement of DNB by building an automatic information extraction system to get only the key information in which the company is interested in from the pdf documents. This is achieved by comparing the performance of named entity recognition models for automatic text extraction, built using Bi-directional Long Short Term Memory (Bi-LSTM) with a Conditional Random Field (CRF) in combination with three variations of word vectorization techniques. The word vectorisation techniques compared in this thesis include randomly generated word embeddings by the Keras embedding layer, pre-trained static word embeddings focusing on 100-dimensional GloVe embeddings and, finally, deep-contextual ELMo word embeddings. Comparison of these models helps us identify the advantages and disadvantages of using different word embeddings by analysing their effect on NER performance. This study was performed on a DNB provided data set. The comparative study showed that the NER systems built using Bi-LSTM-CRF with GloVe embeddings gave the best results with a micro F1 score of 0.868 and a macro-F1 score of 0.872 on unseen data, in comparison to a Bi-LSTM-CRF based NER using Keras embedding layer and ELMo embeddings which gave micro F1 scores of 0.858 and 0.796 and macro F1 scores of 0.848 and 0.776 respectively. The result is in contrary to our assumption that NER using deep contextualised word embeddings show better performance when compared to NER using other word embeddings. We proposed that this contradicting performance is due to the high dimensionality, and we analysed it by using a lower-dimensional word embedding. It was found that using 50-dimensional GloVe embeddings instead of 100-dimensional GloVe embeddings resulted in an improvement of the overall micro and macro F1 score from 0.87 to 0.88. Additionally, optimising the best model, which was the Bi-LSTM-CRF using 100-dimensional GloVe embeddings, by tuning in a small hyperparameter search space did not result in any improvement from the present micro F1 score of 0.87 and macro F1 score of 0.87.M30-DV Master's ThesisM-D

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Sparsity-aware neural user behavior modeling in online interaction platforms

    Get PDF
    Modern online platforms offer users an opportunity to participate in a variety of content-creation, social networking, and shopping activities. With the rapid proliferation of such online services, learning data-driven user behavior models is indispensable to enable personalized user experiences. Recently, representation learning has emerged as an effective strategy for user modeling, powered by neural networks trained over large volumes of interaction data. Despite their enormous potential, we encounter the unique challenge of data sparsity for a vast majority of entities, e.g., sparsity in ground-truth labels for entities and in entity-level interactions (cold-start users, items in the long-tail, and ephemeral groups). In this dissertation, we develop generalizable neural representation learning frameworks for user behavior modeling designed to address different sparsity challenges across applications. Our problem settings span transductive and inductive learning scenarios, where transductive learning models entities seen during training and inductive learning targets entities that are only observed during inference. We leverage different facets of information reflecting user behavior (e.g., interconnectivity in social networks, temporal and attributed interaction information) to enable personalized inference at scale. Our proposed models are complementary to concurrent advances in neural architectural choices and are adaptive to the rapid addition of new applications in online platforms. First, we examine two transductive learning settings: inference and recommendation in graph-structured and bipartite user-item interactions. In chapter 3, we formulate user profiling in social platforms as semi-supervised learning over graphs given sparse ground-truth labels for node attributes. We present a graph neural network framework that exploits higher-order connectivity structures (network motifs) to learn attributed structural roles of nodes that identify structurally similar nodes with co-varying local attributes. In chapter 4, we design neural collaborative filtering models for few-shot recommendations over user-item interactions. To address item interaction sparsity due to heavy-tailed distributions, our proposed meta-learning framework learns-to-recommend few-shot items by knowledge transfer from arbitrary base recommenders. We show that our framework consistently outperforms state-of-art approaches on overall recommendation (by 5% Recall) while achieving significant gains (of 60-80% Recall) for tail items with fewer than 20 interactions. Next, we explored three inductive learning settings: modeling spread of user-generated content in social networks; item recommendations for ephemeral groups; and friend ranking in large-scale social platforms. In chapter 5, we focus on diffusion prediction in social networks where a vast population of users rarely post content. We introduce a deep generative modeling framework that models users as probability distributions in the latent space with variational priors parameterized by graph neural networks. Our approach enables massive performance gains (over 150% recall) for users with sparse activities while being faster than state-of-the-art neural models by an order of magnitude. In chapter 6, we examine item recommendations for ephemeral groups with limited or no historical interactions together. To overcome group interaction sparsity, we present self-supervised learning strategies that exploit the preference co-variance in observed group memberships for group recommender training. Our framework achieves significant performance gains (over 30% NDCG) over prior state-of-the-art group recommendation models. In chapter 7, we introduce multi-modal inference with graph neural networks that captures knowledge from multiple feature modalities and user interactions for multi-faceted friend ranking. Our approach achieves notable higher performance gains for critical populations of less-active and low degree users

    B!SON: A Tool for Open Access Journal Recommendation

    Get PDF
    Finding a suitable open access journal to publish scientific work is a complex task: Researchers have to navigate a constantly growing number of journals, institutional agreements with publishers, funders’ conditions and the risk of Predatory Publishers. To help with these challenges, we introduce a web-based journal recommendation system called B!SON. It is developed based on a systematic requirements analysis, built on open data, gives publisher-independent recommendations and works across domains. It suggests open access journals based on title, abstract and references provided by the user. The recommendation quality has been evaluated using a large test set of 10,000 articles. Development by two German scientific libraries ensures the longevity of the project
    corecore