
Representation Learning
for Texts and Graphs

A Unified Perspective on
Efficiency, Multimodality, and Adaptability

Lukas Paul Achatius Galke
aus

Wuppertal

Dissertation
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
(Dr.-Ing.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

eingereicht im Jahr 2022

Kiel Computer Science Series (KCSS) 2023/1 dated 2023-04-03

ISSN 2193-6781 (print version)
ISSN 2194-6639 (electronic version)

Electronic version, updates, errata available via https://www.informatik.uni-kiel.de/kcss

The author can be contacted via http://lpag.de

Published by the Department of Computer Science, Kiel University

Knowledge Discovery (defunct)

Please cite as:

Ź Lukas Galke. Representation Learning for Texts and Graphs Number 2023/1 in Kiel Computer
Science Series. Department of Computer Science, 2023. Dissertation, Faculty of Engineering, Kiel
University.

@book{galke2023dissertation,

author = {Lukas Galke},

title = {Representation Learning for Texts and Graphs},

publisher = {Department of Computer Science, Kiel University},

year = {2023},

number = {2023/1},

doi = {10.21941/kcss/2023/1},

series = {Kiel Computer Science Series},

note = {Dissertation, Faculty of Engineering,

Kiel University.}

}

© 2023 by Lukas Galke

ii

https://www.informatik.uni-kiel.de/kcss
http://lpag.de

About this Series

The Kiel Computer Science Series (KCSS) covers dissertations, habilitation theses,
lecture notes, textbooks, surveys, collections, handbooks, etc. written at the Depart-
ment of Computer Science at Kiel University. It was initiated in 2011 to support
authors in the dissemination of their work in electronic and printed form, without
restricting their rights to their work. The series provides a unified appearance and
aims at high-quality typography. The KCSS is an open access series; all series titles
are electronically available free of charge at the department’s website. In addition,
authors are encouraged to make printed copies available at a reasonable price,
typically with a print-on-demand service.

Please visit http://www.informatik.uni-kiel.de/kcss for more information, for instruc-
tions how to publish in the KCSS, and for access to all existing publications.

iii

http://www.informatik.uni-kiel.de/kcss

1. Gutachter: Prof. Dr. Ansgar Scherp
Universität Ulm

2. Gutachter: Prof. Dr. Peer Kröger
Christian-Albrechts-Unversität zu Kiel

Datum der mündlichen Prüfung: 23. August, 2022

iv

Zusammenfassung

Durch die Fortschritte im Bereich des maschinellen Lernens wird die maschi-
nelle Sprachverarbeitung immer mächtiger. Auch im Bereich der maschinellen
Verarbeitung von graphstrukturierten Daten gibt es vielversprechende Fortschritte.
Allerdings wird es zugleich immer schwieriger, den Bedarf an GPU-Speicher und
Rechenkraft für Sprachmodelle und Graphen zu handhaben. Insbesondere für
kleine Unternehmen und Forschungslabore wird es dadurch zunehmend schwierig,
an den Entwicklungen teilzuhaben. Das Ziel dieser Arbeit ist es, effiziente Metho-
den für das maschinelle Lernen von Text- und Graphrepräsentationen zu finden,
die sich zudem kontinuierlich auf neue Daten anpassen lassen. Diese Arbeit ist
zwischen maschineller Sprachverarbeitung und der maschinellen Verarbeitung von
graphstrukturierten Daten angesiedelt und behandelt ausgewählte Verbindungen.

Erstens werden Wortmatrizen als ein effizientes Modell für Text eingeführt, das
die Wortreihenfolge berücksichtigt. Nach selbstüberwachtem Training wird ein
Satz durch Matrixmultiplikation der Wortmatrizen repräsentiert. Diese Repräsenta-
tion kann dann für weitere Aufgaben verwendet werden. Experimente mit zehn
linguistischen Aufgaben sowie elf überwachten und fünf unüberwachten Aufgaben
zeigen, dass Wortvektoren und -matrizen über komplementäre Stärken verfügen
und dass ein gemeinsam trainiertes hybrides Modell besser funktioniert als die
beiden einzelnen Komponenten.

Zweitens wird BERT als ein weitverbreitetes Modell für die maschinelle Sprach-
verarbeitung in ein auf Wortmatrizen basierendes Modell destilliert. Die Wort-
matrizen werden insofern erweitert, als dass eine Rückwärtskomponente und
eine Strategie zum Umgang mit Satzpaaren hinzugefügt wird. Die Ergebnisse
auf dem GLUE Benchmark zeigen, dass dieses Modell ähnlich gut funktioniert
wie andere kontextualisierte Sprachmodelle, aber mit einem geringeren Zeit- und
Speicherbedarf auskommt.

Drittens werden drei verschiedene Modelltypen für die Textklassifikation ver-
glichen: solche, die auf der Eingabe eines Bag-of-Words, einer Sequenz oder eines
Graphen basieren. Die Experimente auf fünf Datensätzen zeigen, dass ein breites
mehrschichtiges Perzeptron auf einer Bag-of-Words Repräsentation kompetitiv zu
kürzlich erschienenen graphbasierten Ansätzen ist. Große Sprachmodelle schneiden
zwar am besten ab, benötigen jedoch deutlich mehr Rechenkraft.

v

Viertens wird die Verbindung zwischen Texten und Graphen im Kontext von
dokumentenbasierten Empfehlungssystemen für Zitationen und Themen unter-
sucht. Experimente auf sechs Datensätzen zeigen, dass das Hinzufügen des Titels
als Seiteninformation die Leistung von Autoencoder-Modellen verbessert. Die
Ergebnisse werden unter verschiedenen Bedingungen bestätigt: der Anzahl der
zu empfehlenden Elemente und der Anzahl der bereits vorhandenen Elemente
pro Dokument. Schlussendlich ist die Bedeutung von gemeinsam auftretenden
Zitationen oder Themen essenziell für die Wahl der Eingabemodalitäten und eines
angemessenen Modells.

Fünftens wird ein generisches Rahmenwerk für das lebenslange Lernen auf
Graphen vorgestellt, in denen neue Knoten, Kanten und Klassen nach und nach hin-
zugefügt werden. Basierend auf Text- und Graphdaten sollen Knoten klassifiziert
und neue Klassen erkannt werden. Wir experimentieren mit fünf repräsentativen
neuronalen Netzen für Graphen und drei Datensätzen aus wissenschaftlichen Pu-
blikationen: zwei Zitationsgraphen und einem Kollaborationsgraph. Die Ergebnisse
zeigen, dass es durch das Wiederverwenden von vorherigen Modellparametern in
einem inkrementellen Trainingsverfahren möglich wird, nur eine kleine Historie zu
verwenden, ohne viel Genauigkeit gegenüber vollständiger Historie einzubüßen.
Des Weiteren ist eine gewichtete Kostenfunktion essenziell, um der unbalancierten
Klassenverteilung beim Erkennen von neuen Klassen entgegenzuwirken.

Zusammengefasst eröffnet diese Arbeit neue Möglichkeiten für effiziente Metho-
den zum Lernen von Text- und Graphrepräsentationen. Sie zeigt, wie Empfehlungs-
systeme textuelle Seiteninformationen ausnutzen können und legt den Grundstein
für lebenslanges Lernen auf Graphen, in denen die Knoten mit textuellen Attributen
versehen sind.

vi

Abstract

Fueled by deep learning, natural language processing is becoming increasingly
influential. Meanwhile, graph representation learning shows how to process graph
data effectively. However, the size of language models and large, evolving graphs be-
comes increasingly challenging. The immense computing power and GPU memory
requirements make it difficult for small companies and research labs to participate.
This thesis aims at finding efficient text and graph representation learning methods
that continually adapt to new data. This thesis is situated between natural language
processing and graph representation learning and investigates selected connections.

First, we introduce matrix embeddings as an efficient text representation sen-
sitive to word order. After self-supervised pretraining, the matrix product acts as
sentence encoding for downstream tasks. Experiments with ten linguistic probing
tasks, 11 supervised, and five unsupervised downstream tasks reveal that vector
and matrix embeddings have complementary strengths and that a jointly trained
hybrid model outperforms both.

Second, a popular pretrained language model, BERT, is distilled into matrix
embeddings. To this end, we extend matrix embeddings with a bidirectional
component and equip them with a strategy to encode sentence pairs. The results
on the GLUE benchmark show that these models are competitive with other recent
contextualized language models while being more efficient in time and space.

Third, we compare three model types for text classification: bag-of-words,
sequence-, and graph-based models. Experiments on five datasets show that, sur-
prisingly, a wide multilayer perceptron on top of a bag-of-words representation
is competitive with recent graph-based approaches, questioning the necessity of
graphs synthesized from the text. Pretrained Transformer-based sequence models
perform best but come with high computational costs.

Fourth, we investigate the connection between text and graph data in document-
based recommender systems for citations and subject labels. Experiments on six
datasets show that the title as side information improves the performance of
autoencoder models. We confirm this result under different experimental conditions:
the number of all possible items and the fraction of already-present items per
document. We find that the meaning of item co-occurrence is crucial for the choice
of input modalities and an appropriate model.

vii

Fifth, we introduce a generic framework for lifelong learning on evolving
graphs in which new nodes, edges, and classes appear over time. The task is to
classify nodes and detect new classes based on textual and graph information.
We experiment with five representative graph neural network models and three
datasets based on scholarly articles: two citation graphs and one collaboration graph.
The results show that by reusing previous parameters in incremental training, it
is possible to employ smaller history sizes with only a slight decrease in accuracy
compared to training with complete history. Moreover, weighting the binary cross-
entropy loss function is crucial to mitigate the problem of class imbalance when
detecting newly emerging classes.

This work opens up new opportunities for efficient text and graph representa-
tion learning. It shows how recommender systems can exploit textual side infor-
mation and lays the foundation for lifelong and open-world learning in evolving
graphs with text-attributed nodes.

viii

Acknowledgements

First and foremost, I thank my principal PhD advisor, Ansgar Scherp for steadily
supporting me throughout my PhD studies and for guiding me to become the
researcher that I am today. Thank you, Ansgar, for supporting me throughout all
the strange times. I learned a lot from you.

Of course, I also thank my committee members: Peer Kröger, Olaf Landsiedel,
and Willi Hasselbring for taking the time to engage with my research.

I thank my colleagues and collaborators that sprinkled my PhD studies with in-
spirational interactions: Iacopo Vagliano and Florian Mai, Anne Lauscher, Tetyana
Melnychuk, Eva Seidlmayer, and Marcel Hoffmann. Thank you.

I thank the Bachelor’s and Master’s students, with whom I had the opportunity
to work: Gavin Lüdemann, Steffen Trog, Gunnar Gerstenkorn, Benedikt Franke,
Tobias Zielke, Isabelle Cuber, Christoph Meyer, Henrik Ferdinand Nölscher,
Angelina Sonderecker, Andor Diera, Bao Xin Lin, Bhakti Khera, Tim Meuser,
and Tushar Singhal. Thank you.

I thank my parents Sven and Lioba Galke for for encouraging me to do
something that I love and for spurring my interest in computer science, machine
learning, and neural networks. Thank you.

I thank Melanie Poech. Only through your steady love and understanding, I
had the strength to endure all peculiarities throughout my PhD journey. Thank you.
And thank you to Max and Gertrude Poech for enduring me during the hardest
deadline push of my life (until now). Thank you.

Finally, I thank everyone that made the journey through my PhD more enjoyable
and who was not mentioned before, friends and lab mates, Till Blume, Lars
Rohwedder, Falk Böschen, Martin Töpfer. Thank you.

ix

Contents

1 Introduction 1
1.1 Advances and Challenges in Text and Graph Representation Learning 2
1.2 A Unified Perspective on Representation Learning for Texts and Graphs 5
1.3 Outline and Contributions . 9

2 Background 13
2.1 Representation Learning . 13

2.1.1 Multilayer Perceptron . 14
2.1.2 Autoencoder . 15
2.1.3 Training of Neural Networks 15

2.2 Text Representation Learning . 18
2.2.1 Tokenization and the Vocabulary 19
2.2.2 One-Hot Encoding . 20
2.2.3 Bag-of-Words Representation 20
2.2.4 Word Embeddings . 21
2.2.5 Transformers and Language Models 23

2.3 Graph Representation Learning . 24
2.3.1 Types of Graphs . 24
2.3.2 Graph Neural Networks . 26
2.3.3 Graph Approaches to NLP . 27

2.4 Learning Paradigms . 28
2.5 Summary . 29

3 Word Matrices for Text Representation Learning 31
3.1 Related Prior Work . 32
3.2 Problem Formulation . 33
3.3 Methods . 34

3.3.1 Continuous Bag-of-Words . 34
3.3.2 Continual Multiplication of Words 34
3.3.3 CMOW/CBOW-Hybrid . 35
3.3.4 Training Objective . 36
3.3.5 Initialization . 37

xi

Contents

3.4 Datasets . 38
3.4.1 Dataset for Pretraining . 39
3.4.2 Datasets for Linguistic Probing Tasks 39
3.4.3 Datasets for Supervised and Unsupervised Downstream Tasks 40

3.5 Experiments . 42
3.5.1 Linguistic Probing Tasks . 43
3.5.2 Supervised Downstream Tasks 43
3.5.3 Unsupervised Downstream Tasks 45

3.6 Discussion . 45
3.7 Summary . 47

4 Cross-Architecture Distillation with Word Matrices 49
4.1 Related Prior Work . 51
4.2 Problem Formulation . 53
4.3 Methods . 55

4.3.1 Extending Matrix Embedding Models 55
4.3.2 Cross-Architecture Distillation 58
4.3.3 Two-Sequence Encoding with Matrix Embeddings 58

4.4 Datasets . 60
4.4.1 Dataset for Pretraining . 60
4.4.2 Datasets for Downstream Tasks 60

4.5 Experiments . 62
4.5.1 DiffCat Encoding versus Joint Encoding 64
4.5.2 Bidirectional versus unidirectional CMOW/CBOW-Hybrid . 64
4.5.3 General Distillation versus Task-specific Distillation 65
4.5.4 Comparing Bidirectional CMOW/CBOW-Hybrid to the Liter-

ature . 65
4.5.5 Comparison of Parameter Count and Runtime Performance . 66

4.6 Discussion . 67
4.7 Summary . 69

5 Wide Multilayer Perceptrons for Text Classification 71
5.1 Related Prior Work . 73

5.1.1 Bag-of-Word-based Models . 73
5.1.2 Graph-based Models . 74
5.1.3 Sequence-based Models . 75
5.1.4 Summary . 76

xii

Contents

5.2 Problem Formulation . 77
5.3 Methods . 77

5.3.1 Bag-of-Words-based Text Classification 78
5.3.2 Graph-based Text Classification 78
5.3.3 Sequence-based Text Classification 79

5.4 Datasets . 79
5.5 Experiments . 80

5.5.1 Classification Accuracy . 82
5.5.2 Efficiency . 82

5.6 Discussion . 84
5.7 Summary . 87

6 Multimodal Autoencoders for Document-based Recommendations 89
6.1 Related Prior Work . 93

6.1.1 Autoencoders as Recommendation Engines 93
6.1.2 Research Paper and Citation Recommendation 94
6.1.3 Subject Label Recommendation 95
6.1.4 Summary . 96

6.2 Problem Formulation . 97
6.2.1 Scenarios and Common Framework 97
6.2.2 Formal Problem Statement . 98

6.3 Methods . 100
6.3.1 Singular Value Decomposition 100
6.3.2 Item Co-Occurrence . 101
6.3.3 Multilayer Perceptrons . 101
6.3.4 Undercomplete Autoencoders 102
6.3.5 Denoising Autoencoders . 103
6.3.6 Variational Autoencoders . 103
6.3.7 Adversarial Autoencoder . 104
6.3.8 Conditioning Autoencoder on Side Information 105

6.4 Datasets . 106
6.4.1 Datasets for Citation Recommendation 107
6.4.2 Datasets for Subject Labels Recommendation 109
6.4.3 Availability of Side Information 113
6.4.4 Chronological Train-Test Splits 114
6.4.5 Evaluation Measures . 115

6.5 Experiments . 115

xiii

Contents

6.5.1 Experiments under Varying Total Number of Items 116
6.5.2 Experiments under Varying Number of Items per Document 119

6.6 Discussion . 122
6.6.1 Key Results . 122
6.6.2 Meanings of Item Co-occurrence 124
6.6.3 Discussion of the Citation Recommendation Task 125
6.6.4 Discussion of Subject Label Recommendation Task 127
6.6.5 Threats to Validity . 129
6.6.6 Practical Impact . 129

6.7 Summary . 130

7 Lifelong Learning on Evolving Graphs 131
7.1 Related Prior Work . 136

7.1.1 Lifelong Learning . 136
7.1.2 Graph Neural Networks . 138
7.1.3 Unseen Class Detection and Out-of-Distribution Detection . . 139
7.1.4 Summary . 140

7.2 Problem Formulation . 140
7.3 Methods . 142

7.3.1 Incremental Training for Lifelong Graph Learning 142
7.3.2 Unseen Class Detection . 144
7.3.3 Measure of k-Neighborhood Time Differences 145
7.3.4 Base Graph Neural Network Models 148

7.4 Datasets . 149
7.4.1 Static Graph Datasets . 150
7.4.2 Evolving Graph Datasets . 151

7.5 Experiments . 155
7.5.1 Transductive versus Inductive Learning 155
7.5.2 Incrementally-trained vs Once-trained Models 159
7.5.3 Lifelong Learning on Graphs 160
7.5.4 Lifelong Learning with Limited Labeled Data 164
7.5.5 Self-Detection of Unseen Classes 166

7.6 Discussion . 171
7.7 Summary . 172

xiv

Contents

8 Conclusion 175
8.1 Summary of Contributions . 175
8.2 General Discussion . 176
8.3 Future Work . 179
8.4 Summary . 180

A Reproducibility and Published Resources 181
A.1 Reproducibility of Relevant Literature 181
A.2 Reproducibility of Our Experiments 182
A.3 Published Resources . 183

B Supplementary Material: Word Matrices 185
B.1 Comparison of Training Objectives . 185
B.2 Comparison of Initialization Strategies 185

C Supplementary Material: Cross-Architecture Distillation 189
C.1 Hyperparameters for Distillation . 189
C.2 Extended Results . 189

D Supplementary Material: Text Classification 191
D.1 Practical Guidelines for Designing a WideMLP 191
D.2 Connection between BoW-MLP and TextGCN 192
D.3 Equivalence of Micro-F1 and Accuracy in Multiclass Classification . 193

E Supplementary Material: Recommender Systems 195
E.1 Extended Results on the PubMed Dataset 195
E.2 Mean Average Precision Results . 195

F Supplementary Material: Lifelong Learning on Graphs 199
F.1 Proof: k-Neighborhood Time Differences tdiffk is Equivariant to

Temporal Granularity . 199
F.2 Details on Changes in the Class Sets 200

F.2.1 PharmaBio . 200
F.2.2 DBLP-Easy . 201
F.2.3 DBLP-Hard . 201

F.3 Extended Results for Unseen Class Detection 203

Bibliography 207

xv

List of Publications

Here, I list the publications with which I conveyed the research conducted for
the present thesis, clarify which publications share material with this thesis, and
outline the contributions that others have made to those publications. The following
preprints and publications share material with the present thesis.

[GCM+22] Lukas Galke, Isabelle Cuber, Christoph Meyer, Henrik Ferdinand Nölscher,
Angelina Sonderecker, and Ansgar Scherp. “General cross-architecture
distillation of pretrained language models into matrix embeddings”. In:
International Joint Conference on Neural Networks, IJCNN 2022, Padua, Italy,
July 18-23, 2022. IEEE, 2022, pp. 1–10. doi: 10.1109/IJCNN55064.2022.9892144. url:
https://doi.org/10.1109/IJCNN55064.2022.9892144.

[GFZ+21] Lukas Galke, Benedikt Franke, Tobias Zielke, and Ansgar Scherp. “Lifelong
learning of graph neural networks for open-world node classification”. In:
International Joint Conference on Neural Networks, IJCNN 2021, Shenzhen, China,
July 18-22, 2021. IEEE, 2021, pp. 1–8. doi: 10.1109/IJCNN52387.2021.9533412.

[GMS19] Lukas Galke, Florian Mai, and Ansgar Scherp. “What if we encoded words
as matrices and used matrix multiplication as composition function?” In: 49.
Jahrestagung der Gesellschaft für Informatik, 50 Jahre Gesellschaft für Informatik
- Informatik für Gesellschaft, INFORMATIK 2019, Kassel, Germany, September
23-26, 2019. Vol. P-294. LNI. GI, 2019, pp. 287–288. doi: 10.18420/inf2019_47.

[GMV+18] Lukas Galke, Florian Mai, Iacopo Vagliano, and Ansgar Scherp. “Multi-
modal adversarial autoencoders for recommendations of citations and
subject labels”. In: Proceedings of the 26th Conference on User Modeling, Adapta-
tion and Personalization, UMAP 2018, Singapore, July 08-11, 2018. ACM, 2018,
pp. 197–205. doi: 10.1145/3209219.3209236.

[GS22] Lukas Galke and Ansgar Scherp. “Bag-of-words vs. graph vs. sequence
in text classification: Questioning the necessity of text-graphs and the
surprising strength of a wide MLP”. In: Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin,
Ireland: Association for Computational Linguistics, May 2022, pp. 4038–
4051. doi: 10.18653/v1/2022.acl-long.279. url: https://aclanthology.org/2022.acl-long.279.

[GVF+21] Lukas Galke, Iacopo Vagliano, Benedikt Franke, Tobias Zielke, and Ansgar
Scherp. Lifelong learning in evolving graphs with limited labeled data and unseen
class detection. Under review. 2021. arXiv: 2112.10558 [cs.LG].

xvii

https://doi.org/10.1109/IJCNN55064.2022.9892144
https://doi.org/10.1109/IJCNN55064.2022.9892144
https://doi.org/10.1109/IJCNN52387.2021.9533412
https://doi.org/10.18420/inf2019_47
https://doi.org/10.1145/3209219.3209236
https://doi.org/10.18653/v1/2022.acl-long.279
https://aclanthology.org/2022.acl-long.279
https://arxiv.org/abs/2112.10558

List of Publications

[GVS19] Lukas Galke, Iacopo Vagliano, and Ansgar Scherp. “Can graph neural
networks go “online”? An analysis of pretraining and inference”. In: Rep-
resentation Learning on Graphs and Manifolds, ICLR Workshop. 2019. url:
https://rlgm.github.io/papers/21.pdf.

[MGS19] Florian Mai, Lukas Galke, and Ansgar Scherp. “CBOW is not all you need:
Combining CBOW with the compositional matrix space model”. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. url: https://openreview.net/

forum?id=H1MgjoR9tQ.

[VGS22] I. Vagliano, L. Galke, and A. Scherp. “Recommendations for item set com-
pletion: On the semantics of item co-occurrence with data sparsity, input
size, and input modalities”. In: Information Retrieval Journal (Apr. 2022). issn:
1573-7659. doi: 10.1007/s10791-022-09408-9.

Here, I list the roles of my coauthors in these publications on the basis of the
Contributor Roles Taxonomy, see: http://credit.niso.org/. I conceptualized the research
of these publications and in this thesis, while taking advice from Ansgar Scherp. To
all these publications, I contributed Investigation, Methodology, Software, Visualization,
Writing and Data Curation (when we introduced new datasets).

• Florian Mai has contributed Investigation, Methodology, and Software to [MGS18].

• Iacopo Vagliano has contributed Investigation, Methodology and Software to [VGS22].

• The project group on lifelong learning in graphs, Benedikt Franke and Tobias
Zielke, contributed Investigation using the methods SGC, GraphSAINT, and
JKNet, after they have integrated those methods (Software) into the lifelong graph
learning framework that I had developed. I have co-supervised the project together
with Ansgar Scherp. After the project had finished, I validated and re-ran the
experiments.

• The project group on Transformer distillation: Isabelle Cuber, Christoph Mezer,
Ferdinand Nölscher, Angelina Sonderecker have investigated and implemented
(Software) task-specific distillation with matrix-space embedding models. I have
co-supervised the project along with Ansgar Scherp. After the project had finished,
I validated the experiments.

During my studies, I have further contributed to the following publications, which
do not share material with this thesis.

xviii

https://rlgm.github.io/papers/21.pdf
https://openreview.net/forum?id=H1MgjoR9tQ
https://openreview.net/forum?id=H1MgjoR9tQ
https://doi.org/10.1007/s10791-022-09408-9
http://credit.niso.org/

[GGS18] Lukas Galke, Gunnar Gerstenkorn, and Ansgar Scherp. “A case study of
closed-domain response suggestion with limited training data”. In: Database
and Expert Systems Applications - DEXA 2018 International Workshops, BD-
MICS, BIOKDD, and TIR, Regensburg, Germany, September 3-6, 2018, Pro-
ceedings. Vol. 903. Communications in Computer and Information Science.
Springer, 2018, pp. 218–229. doi: 10.1007/978-3-319-99133-7_18.

[GMS+17] Lukas Galke, Florian Mai, Alan Schelten, Dennis Brunsch, and Ansgar
Scherp. “Using titles vs. full-text as source for automated semantic doc-
ument annotation”. In: Proceedings of the Knowledge Capture Conference, K-
CAP 2017, Austin, TX, USA, December 4-6, 2017. ACM, 2017, 20:1–20:4. doi:
10.1145/3148011.3148039.

[GMS+19] Lukas Galke, Tetyana Melnychuk, Eva Seidlmayer, Steffen Trog, Konrad U.
Förstner, Carsten Schultz, and Klaus Tochtermann. “Inductive learning of
concept representations from library-scale bibliographic corpora”. In: 49.
Jahrestagung der Gesellschaft für Informatik, 50 Jahre Gesellschaft für Informatik
- Informatik für Gesellschaft, INFORMATIK 2019, Kassel, Germany, September
23-26, 2019. Vol. P-294. LNI. GI, 2019, pp. 219–232. doi: 10.18420/inf2019_26. url:
https://doi.org/10.18420/inf2019_26.

[GSL+21] Lukas Galke, Eva Seidlmayer, Gavin Lüdemann, Lisa Langnickel, Tetyana
Melnychuk, Konrad U. Förstner, Klaus Tochtermann, and Carsten Schultz.
“COVID-19++: A citation-aware COVID-19 dataset for the analysis of re-
search dynamics”. In: IEEE Big Data 2021 Workshop on Big Data Analytics for
COVID-19. IEEE, 2021.

[GSS17] Lukas Galke, Ahmed Saleh, and Ansgar Scherp. “Word embeddings for
practical information retrieval”. In: 47. Jahrestagung der Gesellschaft für Infor-
matik, Digitale Kulturen, INFORMATIK 2017, Chemnitz, Germany, September
25-29, 2017. Vol. P-275. LNI. GI, 2017, pp. 2155–2167. doi: 10.18420/in2017_215.
url: https://doi.org/10.18420/in2017_215.

[LEG+18] Anne Lauscher, Kai Eckert, Lukas Galke, Ansgar Scherp, Syed Tahseen
Raza Rizvi, Sheraz Ahmed, Andreas Dengel, Philipp Zumstein, and Annette
Klein. “Linked open citation database: Enabling libraries to contribute to
an open and interconnected citation graph”. In: Proceedings of the 18th
ACM/IEEE on Joint Conference on Digital Libraries. JCDL ’18. Fort Worth,
Texas, USA: ACM, 2018, pp. 109–118. isbn: 978-1-4503-5178-2. doi: 10.1145/

3197026.3197050. url: http://doi.acm.org/10.1145/3197026.3197050.

[MGS+21] Tetyana Melnychuk, Lukas Galke, Eva Seidlmayer, Konrad U. Förstner,
Klaus Tochtermann, and Carsten Schultz. “Früherkennung wissenschaftlicher
Konvergenz im Hochschulmanagement”. In: Hochschulmanagement 16 (1
2021), pp. 24–28.

xix

https://doi.org/10.1007/978-3-319-99133-7_18
https://doi.org/10.1145/3148011.3148039
https://doi.org/10.18420/inf2019_26
https://doi.org/10.18420/inf2019_26
https://doi.org/10.18420/in2017_215
https://doi.org/10.18420/in2017_215
https://doi.org/10.1145/3197026.3197050
https://doi.org/10.1145/3197026.3197050
http://doi.acm.org/10.1145/3197026.3197050

List of Publications

[MGS18] Florian Mai, Lukas Galke, and Ansgar Scherp. “Using deep learning for
title-based semantic subject indexing to reach competitive performance to
full-text”. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital
Libraries, JCDL 2018, Fort Worth, TX, USA, June 03-07, 2018. ACM, 2018,
pp. 169–178. doi: 10.1145/3197026.3197039.

[SBG+18] Ahmed Saleh, Tilman Beck, Lukas Galke, and Ansgar Scherp. “Performance
comparison of ad-hoc retrieval models over full-text vs. titles of documents”.
In: Maturity and Innovation in Digital Libraries - 20th International Conference on
Asia-Pacific Digital Libraries, ICADL 2018, Hamilton, New Zealand, November
19-22, 2018, Proceedings. Vol. 11279. Lecture Notes in Computer Science.
Springer, 2018, pp. 290–303. doi: 10.1007/978-3-030-04257-8_30.

[VGM+18] Iacopo Vagliano, Lukas Galke, Florian Mai, and Ansgar Scherp. “Using
adversarial autoencoders for multi-modal automatic playlist continuation”.
In: Proceedings of the ACM Recommender Systems Challenge, RecSys Challenge
2018, Vancouver, BC, Canada, October 2, 2018. ACM, 2018, 5:1–5:6. doi: 10.1145/

3267471.3267476.

xx

https://doi.org/10.1145/3197026.3197039
https://doi.org/10.1007/978-3-030-04257-8_30
https://doi.org/10.1145/3267471.3267476
https://doi.org/10.1145/3267471.3267476

List of Figures

3.1 The continual multiplication of words (CMOW)/continuous bag-of-
words (CBOW)-Hybrid model during pretraining. 35

3.2 Mean of the absolute values of the text embeddings (y-axis) plotted
depending on the number of multiplications (x-axis) for the three ini-
tialization strategies. The absolute value of the embeddings quickly
decreases with more multiplications for standard initialization strate-
gies. When we apply our initialization method, the absolute values of
the embeddings have the same magnitude regardless of the sentence
length. 38

3.3 Results on linguistic probing tasks. 44
3.4 Results on supervised downstream tasks 44
3.5 Results on the unsupervised downstream tasks 45

4.1 The bidirectional CMOW component of our proposed architecture
during pretraining. In this example, the model predicts the masked
token at position 4 by concatenating forward and backward matrix
embeddings, which are then fed into a masked language modeling
head. Bert illustration: Melanie Poech 56

4.2 Separate encoding (DiffCat) for sequence pairs using a Bidirectional
CMOW/CBOW-Hybrid model during fine-tuning, optionally, with
task-specific distillation with a pre-training of deep bidirectional
Transformers (BERT) teacher. Bert illustration: Melanie Poech 59

6.1 Exemplary bipartite graphs of citation relationships between doc-
uments (left) and documents annotated with subject labels (right).

. 98
6.2 A multilayer perceptron (MLP) with two hidden layers 102
6.3 Undercomplete autoencoder . 102
6.4 Denoising autoencoder (DAE) . 103
6.5 Variational autoencoder (VAE) . 103
6.6 Adversarial autoencoder (AAE) . 104
6.7 Characteristics of the PubMed dataset 107

xxi

List of Figures

6.8 Characteristics of the DBLP dataset 109
6.9 Characteristics of the ACM dataset . 110
6.10 Characteristics of the EconBiz Dataset 111
6.11 Characteristics of the IREON dataset 112
6.12 Characteristics of the Reuters dataset 113
6.13 Mean reciprocal rank of predicted citations on the test set with vary-

ing minimum item occurrence (pruning) thresholds for the PubMed
(top row), DBLP (middle row), and ACM (bottom row) citation
datasets. Left: Only the partial set of items is given. Center: The
partial set of items along with the document title is given. Right:
The partial set of items is given along with the document title, the
authors, the journal title and the MeSH labels (if available). MLP can
only make use of either titles or titles, authors, journal titles, and
MeSH labels. 118

6.14 MRR of predicted subject labels on the test set with varying mini-
mum item occurrence thresholds for the EconBiz (top row), IREON
(middle row) and Reuters (bottom row) dataset. Left: Only the partial
set of items is given. Center: The partial set of items along with the
document title is given. Right: The partial set of items along with the
title and authors is given. MLP can only use either titles or titles and
authors. 120

6.15 MRR of predicted citations on the test set with varying number
dropped elements for the PubMed (top row) and ACM (bottom row)
citation datasets. The minimum item occurrence threshold is set to
55. Left: Only the partial set of items is given. Center: The partial set
of items along with the document title is given. Right: The partial
set of items is given along with the document title, the authors, the
journal title, and the MeSH labels. MLP can only make use of either
titles or titles, authors, journal titles, and MeSH labels. 121

6.16 MRR of predicted subject labels on the test set with varying number
of dropped elements for the EconBiz (top row), IREON (middle row)
and Reuters (bottom row) datasets. The minimum item occurrence
threshold is set to 20. Left: Only the partial set of items is given.
Center: The partial set of items along with the title is given. Right:
The partial set of items along with the document title and authors is
given. MLP can only use either titles or titles and authors. 123

xxii

List of Figures

7.1 Lifelong Open-World Node Classification. At each time t the learner
has to classify new vertices of task Tt (red). The learner may use
knowledge from previous tasks to adapt to the current task, eventu-
ally cut off by a history size (blue). The current task might come with
previously unseen classes. For example, the “c” appears only at task
t ´ 2 and was subsequently added to the class set. After evaluating
each task Tt, we continue with task Tt+1. 133

7.2 Example of time differences tdiff2(G) for hops at distance of up to
2 from each node. Node annotations show the time difference to
all nodes in the two-hop neighborhood, i. e., its contribution to the
multiset tdiff2(G). The calculation for the node with time t = 21 is
highlighted in orange. 147

7.3 Distribution of vertices per year on log scale (left column), degree
distributions (middle column), label distributions (right column), for
our new datasets: DBLP-easy (top row), DBLP-hard (middle row),
PharmaBio (bottom row) . 153

7.4 Magnitude of the class drift per dataset. The drift within the
PharmaBio dataset (no new classes) is lower than the drift of both
DBLP variants. Independent and identically distributed data would
have drift magnitude zero. 154

7.5 Distributions of time differences tdiffk (y-axis) for DBLP-easy (left),
DBLP-hard (center) and PharmaBio (right) within the k-hop neigh-
borhood for k = {1, 2, 3} (x-axis). 154

7.6 Test accuracy after each inference epoch for the many-few settings A
(Top) and few-many setting B (Bottom) on the datasets Cora, Citeseer,
and PubMed. Each line resembles the mean of 100 runs and its
region shows the standard deviation. The dashed lines show the
results with 200 pretraining. The solid lines are the results without
pretraining. 158

7.7 Accuracy scores of once-trained, static models (solid lines) are lower
than incrementally trained models (dashed lines). 159

7.8 Average accuracy of GraphSAGE with warm restarts across tasks on
DBLP-hard under varying label rate 165

7.9 Number of nodes with unseen classes per task on DBLP-hard . . . 166
7.10 Global MCC of GDOC (history size 3, warm) as a function of the SD

Factor for risk reduction with different minimum threshold values. 168

xxiii

List of Figures

E.1 MRR of predicted citations on the test set with varying number
dropped elements for the PubMed citation dataset. The minimum
item occurrence threshold is set to 55. Left: The partial set of items
is given along with the document title, the authors, and the journal
title. Right: The partial set of items is given along with the document
title, the authors, the journal title, and the MeSH labels. 196

E.2 MAP of predicted citations on the test set with varying number
dropped elements for the PubMed (top row) and ACM (bottom row)
citation datasets. The minimum item occurrence threshold is set to
55. Left: Only the partial set of items is given. Center: The partial set
of items along with the document title is given. Right: The partial
set of items is given along with the document title, the authors, the
journal title, and the MeSH labels. MLP can only make use of either
titles or titles, authors, journal titles, and MeSH labels. 197

E.3 MAP of predicted subject labels on the test set with varying number
of dropped elements for the EconBiz (top row), IREON (middle row),
and Reuters (bottom row) datasets. The minimum item occurrence
threshold is set to 20. Left: Only the partial set of items is given.
Center: The partial set of items along with the title is given. Right:
The partial set of items along with the document title and authors is
given. MLP can only use either titles or titles and authors. 198

xxiv

List of Tables

4.1 Comparison of DiffCat encoding and joint BERT-like encoding. Both
variants use randomly initialized unidirectional CMOW/CBOW-
Hybrid embeddings with MLP under task-specific distillation. The
DiffCat encoding improves the average score across two-sentence
tasks by 20%. 64

4.2 Comparison of unidirectional and bidirectional (prefix ‘B-’) variants
of CMOW/CBOW-Hybrid under task-specific distillation from ran-
dom initialization (suffix ‘-R’). We also report pretrained (suffix ‘-P’)
bidirectional Hybrid for reference. All methods use DiffCat encoding
and an MLP classifier. 65

4.3 Comparison of general and task-specific distillation using bidirec-
tional CMOW/CBOW-Hybrid embeddings and MLP classifier. Task-
specific distillation models have been either randomly initialized
(suffix ‘-R’) or initialized from pretraining (suffix ‘-P’). In 5 out of 9
tasks, general distillation performs better. 65

4.4 Comparison of best embedding-based methods (in bold) with meth-
ods from the literature on the validation set of the general language
understanding evaluation benchmark (GLUE) benchmark. 66

4.5 Number of parameters and inference time of the models. Inference
time is measured as encoding speed without gradient computation
on an NVIDIA A100-SXM4-40GB card 66

5.1 Properties of text classification approaches. Graph-based models
that rely on having access to unlabeled test documents such as
TextGCN and TensorGCN are not capable of inductive learning
without specific modifications. 77

5.2 Characteristics of text classification datasets 79
5.3 Accuracy and standard deviation on text classification datasets. Col-

umn “Provenance” reports the source. 83
5.4 Parameter counts of the models . 84
5.5 Total runtime (training+inference). Average of five runs rounded to

minutes. 84

xxv

List of Tables

6.1 Notation table . 99
6.2 Availability and occurrence of metadata in the datasets considered

for the two recommendation tasks. Subject labels and item set
occurrences are the same for the subject-label datasets as the subject
labels are the items to recommend (but can also be used as additional
metadata for the citation tasks). 114

6.3 Characteristics of the citation datasets with respect to different se-
lected pruning thresholds on the minimum item occurrence. 116

6.4 Characteristics of the subject label datasets with respect to different
selected pruning thresholds on minimum item occurrence. 117

7.1 Statistics for train-test splits: few-many (A) and many-few (B) set-
tings on the citation networks datasets: Cora, Citeseer, and PubMed.
The unseen nodes and edges are available only after the training
epochs. The test samples for measuring accuracy are a subset of the
unseen nodes. The label rate is the percentage of labeled nodes for
training. 151

7.2 Global dataset characteristics: total number of nodes |V|, edges |E|,
features D, classes |Y| along with # of newly appearing classes (in
braces) within the T evaluation tasks 152

7.3 Accuracy (with 95% confidence intervals through 1.96 standard error
of the mean) and Forward Transfer (averaged difference of warm
and cold restarts) in our datasets with different history sizes (column
c). The best method per dataset and history size is marked in bold,
along with the methods where the 95% CI overlaps. 163

7.4 Results for unseen class detection on DBLP-hard with GraphSAGE as
base model (average of 5 repetitions). α indicates that risk reduction
is used with the respective factor for the standard deviation, τ is
the minimum threshold. Runs named graph deep open classifica-
tion (GDOC) are trained with weighted cross entropy. Deep Open
Classification (DOC) is our baseline. 169

A.1 Published resources in the context of this thesis 183

B.1 Scores for different training objectives on the linguistic probing tasks.186
B.2 Scores for different training objectives on the supervised downstream

tasks. 186

xxvi

List of Tables

B.3 Scores for different training objectives on the unsupervised down-
stream tasks. 186

B.4 Scores for initialization strategies on probing tasks. 187
B.5 Scores for initialization strategies on supervised downstream tasks. 187
B.6 Scores for initialization strategies on unsupervised downstream tasks.187

C.1 Hyperparameter Search Space . 189
C.2 Scores on the GLUE development set. Our best performing general

distillation and task-specific distillation models are highlighted in
bold font per task. References indicate sources of scores. The ‹-
symbol indicates numbers on the official GLUE test set. ’Hybrid’
denotes CMOW/CBOW-Hybrid. 190

E.1 MRR of predicted citations for PubMed using either only documents
with fewer references than the median number of references or with
more references than the median number of references. 196

E.2 MAP of predicted citations for PubMed using either only documents
with fewer references than the median number of references (left col-
umn) or with more references than the median number of references
(right column). 197

F.1 Results for unseen class detection on the development set DBLP-
easy with GraphSAGE as base model (average of 5 repetitions). α

indicates that risk reduction is used with the respective factor for
the standard deviation, τ is the minimum threshold. Runs named
gDOC are trained with weighted cross entropy. DOC is our baseline. 204

F.2 Extended results for unseen class detection on DBLP-hard with
GraphSAGE as base model (average of 5 repetitions). α indicates
that risk reduction is used with the respective factor for the standard
deviation, τ is the minimum threshold. The gDOC models are
trained with weighted binary-cross entropy. History sizes 1 and 3. . 205

F.3 Extended results for unseen class detection on DBLP-hard with
GraphSAGE as base model (average of 5 repetitions). α indicates
that risk reduction is used with the respective factor for the standard
deviation, τ is the minimum threshold. The gDOC models are
trained with weighted binary-cross entropy. History sizes 6 and 3. . 206

xxvii

List of Acronyms

AAE adversarial autoencoder

AE autoencoder

AI artificial intelligence

BERT pre-training of deep bidirectional Transformers

BoW Bag-of-Words

CBOW continuous bag-of-words

CMOW continual multiplication of words

CMSM compositional matrix-space model

CNN convolutional neural network

CoLA Corpus of Linguistic Acceptability

CR Customer Reviews

DAE denoising autoencoder

DAN deep averaging network

DOC Deep Open Classification

ELMo Embeddings from Language Models

FWT Forward Transfer

GAT graph attention network

GCN graph convolutional network

GDOC graph deep open classification

GloVe global vectors for word representation

GLUE general language understanding evaluation benchmark

GNN graph neural network

GPT-3 3rd version of the generatively pretrained Transformer

GPU graphics processing unit

GraphSAGE graph sampling and aggregating

xxix

List of Acronyms

GraphSAINT graph sampling based inductive learning method

IDF inverse document frequency

JKNet jumping-knowledge network

LDA Latent Dirichlet Allocation

LM language model

LSTM long short-term memory

MCC Matthew’s correlation coefficient

MeSH medical subject headings

MI mutual information

MLM masked language model

MLP multilayer perceptron

MNLI Multi-Genre Natural Language Inference corpus

MPQA Multi-Perspective Question Answering

MRPC Microsoft Research Paraphrase Corpus

MRR mean reciprocal rank

MR Movie Reviews

NLI natural language inference

NLP natural language processing

PMI pointwise mutual information

PreLM pretrained language model

QNLI Question Natural Language Inference

QQP Quora Question Pairs

ReLU rectified linear unit

RNN recurrent neural network

RoBERTa a robustly optimized BERT pretraining approach

RTE Recognizing Textual Entailment

SD standard deviation

seq2seq sequence-to-sequence

xxx

SGC simplified graph convolutional network

SICK Sentences Involving Compositional Knowledge

SOMO Semantic Odd Man Out

SST-2 two-way Stanford Sentiment Treebank

SST-5 five-way Stanford Sentiment Treebank

SST Stanford Sentiment Treebank

STS-B Semantic Textual Similarity Benchmark

STS Semantic Textual Similarity

SVD singular value decomposition

SVM support vector machine

SWEM simple word embedding model

T5 text-to-text transfer Transformer

TF-IDF term frequency—inverse document frequency

TREC Text REtrieval Conference

VAE variational autoencoder

WC Word Content

WNLI Winograd Natural Language Inference

word2vec word-to-vector

IC Item Co-occurrence

xxxi

Terminology and Notation

Terminology

Here, a few potentially ambiguous terms are clarified. For the context of this thesis,
we distinguish between a graph that refers to the data, and networks that refer to
the neural network model.

[model] architecture The blueprint for the model

model An instance of a model architecture

parameters The learnable parameters of a model

features Input representation for the model

[neural] network a layered model architecture with learnable parameters

hidden units The “neurons” within in a neural network

hidden layer a collection of hidden units organized in a layer within a multi-layered
architecture.

layer The connections between two collections of units. A model with one hidden
layer has two layers: input-to-hidden and hidden-to-output.

layer’s representation The output of the layer.

weights The weight parameters of a layer

bias Refers to the bias parameters of a layer, sometimes also used on a meta-level
for experimental biases. Context should be sufficient to disambiguate.

Transformer A neural network architecture comprising multiple self-attention and
fully-connected layers [VSP+17]

graph Graph data comprising nodes and edges.

node A node of the graph

xxxiii

Terminology and Notation

node features Data attached to each node that is used as model input

edge An edge of the graph

graph structure The structure within the graph data, i. e., nodes and edges but no
node features.

Notation

We adopt a subset of the notation1 of Goodfellow, Bengio, and Courville [GBC16]
with minor adaptions and some extensions.

a A scalar (integer or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

A A tensor

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

ai Element i of vector a, with indexing starting at 1.

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

A[i] Row i of matrix A

A[i] Matrix i of a rank 3 tensor A, sliced along the first dimension.

∥ Concatenation of two vectors (or two tensors along their last dimension)

1https://github.com/goodfeli/dlbook_notation

xxxiv

https://github.com/goodfeli/dlbook_notation

flatten Flatten a matrix into a vector.

softmax The softmax function

L Loss function

σ Sigmoid activation function, or generic activation function, if mentioned explic-
itly

BCE Binary Cross-Entropy

E Expected value

Var Variance

SD Standard deviation

SE Standard error of the mean

DKL Kullback-Leibler Divergence

x „ P x is distributed as P

G A graph

V Set of nodes

E Set of edges

A The adjacency matrix of a graph

xxxv

Chapter 1

Introduction

Text is a communication medium for language, and language is human’s primary
tool to convey information. Data in textual format provide a rich source of infor-
mation for numerous applications, such as text classification and recommender
systems. Fueled by representation learning [BCV13; LBH15; GBC16], natural lan-
guage processing (NLP) has evolved into a powerful tool to take advantage of this
rich source of information.

However, a rarely considered factor is context information beyond the text. For
humans, context information is crucial to assess a text’s importance, quality, and
meaning For instance, a text can be a response to some other text, be part of a bigger
unit, or at least have context information, such as an author and its production
time. Learning systems that use pure text to solve a task disregard information that
might be as important as the text itself. How can we design multimodal models that
jointly process text together with more structured data that comes with it? Moreover, does
it help?

In previous work, we have shown that scientific papers can be very well classi-
fied into topics purely based on their title [GMS+17; MGS18]. Still, some papers
are hard to classify only by their title. For example, consider the paper entitled
“Optimal Brain Damage” [LDS89]. Is it medicine, neuroscience, or artificial intel-
ligence (AI)? Hard to say. However, what if we knew that the first author also
co-authored a paper entitled “Deep Learning” [LBH15] and that Deep Learning is
a well-established subfield of AI. This context might help us determine that we can
sort the paper to AI and we might even correctly guess that it is about the pruning
of artificial neural networks (thankfully).

Still, the “Deep Learning” paper came out 25 years later, and no learning system
can learn from the future. The world around us is evolving, and so are its data. In
addition, new categories (or classes) may emerge. As models and data grow larger
and larger, rebuilding models whenever new data come in becomes more and more
expensive. How can we adapt existing models to changes in evolving data?

1

1. Introduction

From a high-level perspective, this thesis examines the edge between text and
graph representation learning. It aims to create models that jointly process both
text and graph data and do so efficiently and effectively while adapting to new
data. Having such representation learning models would lead to a more holistic
approach of text and graph representation learning and would affect the processing
of a wide range of real-world data, as found in social graphs, citation graphs, and
collaboration graphs.

However, creating unified models for text and graph data is challenging because
recent models for only one of these data types already consume an immense amount
of resources. On the one hand, contemporary language models are becoming larger
and larger [SGM19; BHA+21]. On the other hand, graph data are often massive
in themselves, making them difficult to handle [FLW+21]. Thus, combining the
most prominent models of both domains is not feasible, leaving us with various
challenges at the intersection of text and graph representation learning, which we
outline in more detail below.

1.1 Advances and Challenges in Text and Graph Represen-
tation Learning

Representation learning [BCV13] has sparked advances in many research fields,
such as computer vision [KSH12; HZR+16], natural language processing [SVL14;
VSP+17; DCL+19; BMR+20], and graph representation learning [PAS14; KW17;
Ham20]. MT The key idea is to learn a helpful representation of data automatically,
optionally, with multiple abstraction layers, called deep learning [LBH15; GBC16].

Most deep learning methods rely on deep neural networks. Deep neural net-
works are a stack of layers in which each layer computes a non-linear transformation
of its input. The parameters are then optimized end-to-end by gradient descent.
With two layers, neural networks are universal function approximators [Cyb89],
which means that they can approximating any (compact) function to an arbitrary
degree of accuracy, depending on the width of the intermediate layer.

Neural networks are technically able to adapt to new data, but this comes at
the price of catastrophic forgetting [Rob95], which means that old knowledge is
quickly lost when adapting to new tasks. Catastrophic forgetting remains a crucial
challenge when adapting models to new data [LR17].

In text representation learning for natural language processing, the transfer
learning paradigm has emerged with great success [DCL+19; Rud19]. In transfer

2

1.1. Advances and Challenges in Text and Graph Representation Learning

learning, we train models on one task then transfer them to another. A typical
approach in NLP is to pretrain models on large amounts of unlabeled text and then
fine-tune the models for the tasks of interest.

The first example of this paradigm with tremendous success was word em-
beddings [MSC+13; PSM14], i. e., learned representations of single words. Later, it
became popular to encode entire text blocks together [PNI+18; HR18]. Vital transfer
learning approaches have emerged with the rise of the Transformer model [VSP+17].
Famous examples are BERT [DCL+19], the multitask text-to-text model T5 [RSR+20],
and the purely autoregressive GPT-3 [BMR+20]. We call these models pretrained
language models (PreLMs).

However, the recent success of PreLMs comes at the cost of ever-increasing
model sizes, which translate into increasing financial and ecological costs [SGM19].
At the time of writing, large PreLMs have billions or even trillions of parameters
and require terabytes of textual training data [FZS21]. As a result, the power to
design and train these large models lies in the hands of a few global players
alone [BHA+21].

Although considerable efforts improve the efficiency of PreLMs [SDC+20;
JYS+20; SCG+19; TDB+20], the core concept of self-attention remains an obsta-
cle that prevents us from simply extending the most prominent models to take
graph data together with text into account. Thus, in this thesis, we will first explore
more efficient text representation models.

However, again, there is no isolated text. The text comes with valuable structured
information, such as its author, where it has appeared, or whether it is a response
to some other text. We will study recommendation systems as a bridge between
text and graph data In recommender systems, side information often improves
the performance of collaborative filtering approaches. We will explore using the
document’s title and other metadata as side information in the context of citation
and subject-label recommendation.

Autoencoders (AEs) find widespread applications in recommender systems
[LKH+18; LS17]. AEs further stood the test of a reproducibility study by Dacrema,
Cremonesi, and Jannach [DCJ19]. Many approaches aim to incorporate side in-
formation into autoencoding recommendation systems [CR18; MJ17]. Still, there
is a need to study a principled way to use side information with AEs and tackle
the critical problem of making predictions for new users. Dealing with new users
is crucial for the document-based recommendation tasks we will consider in this
work.

3

1. Introduction

When we move to graph representation learning, we have the means to model
context information in a more sophisticated way. A graph comprises a set of vertices
(or nodes) and a set of edges, each of which optionally comes with additional
attributes. For example, each node resembles a document in a citation graph,
and edges indicate the citation relationship. The graph neural network (GNN)
model [SGT+09] is a generalization of neural networks to graph input data. The
introduction of graph convolution [KW17; HYL17] and graph attention [VCC+18]
has spurred new interest in the design of model architectures [XLT+18; XHL+19].
In addition, numerous recent approaches aim at scaling graph neural networks to
large graphs [CZS18; WJZ+19; ZZS+20; FLW+21].

Several GNN approaches also focus on heterogeneous graphs [WJS+19; YJK+19;
ZZP+19; ZSH+19; FZM+20], which process graphs with nodes of different types.
However, a recent study by Lv et al. [LDL+21] has shown that a properly configured
graph attention network outperforms GNNs explicitly designed for heterogeneous
graphs. Standard approaches are powerful when adequately configured and applied
to an appropriate input representation, such as modeling the type as an additional
attribute.

Interestingly, we make similar observations in the case of topical text classi-
fication. Here, the rise of graph neural networks has triggered renewed interest
in transforming pure text into graphs [YML19; LYZ+20; DWL+20; RSI+21]. In
Chapter 5, we show that the benefit of creating such synthetic graphs is, in fact,
marginal. However, there are numerous other instances where NLP benefits from
GNNs, for which we refer to a recent survey by Wu et al. [WCS+21].

In graphs, node attributes can hold textual data. However, there has yet to
be a principled way of adapting GNNs to new data in evolving graphs. Most
existing work studies graphs with a fixed set of nodes, and only the edges or node
attributes change over time [TDW+17; SDV+18; TFB+19; KZL19; MRM20; SWG+20;
RCF+20]. Only a few works are concerned with the appearance of new nodes over
time [PDC+20; XRK+20].

However, even entirely new classes may emerge. In this thesis, we tackle these
problems with a lifelong machine learning approach. In lifelong learning [TM95;
FWL16; CL18], a single model is maintained over time and continuously adapted to
new tasks. The model can make use of implicit or explicit knowledge from previous
tasks. Lifelong learning on graphs is a relatively new topic, investigated by a few
other works [FXM+22].

Dealing with evolving data also moves us beyond the core assumption of
having independent and identically distributed data between training and testing.

4

1.2. A Unified Perspective on Representation Learning for Texts and Graphs

Moving beyond the IID assumption enables a more thorough evaluation of the
models [GJM+20]. The temporal evolution of the data closely resembles real-world
applications, or, as Bottou [Bot19] has said, “Nature does not shuffle the examples.
We shouldn’t.”

In summary, we have identified the key challenges we must overcome to process
text and graph-structured data together.

Efficiency Language models grow larger and larger. Similarly, large amounts of
graph-structured data take more work to handle. How can we design efficient
methods for learning text representation combinable with graph data

Multimodality There is no isolated text. How can representation learning models
effectively process text and graph data together? What is the mutual influence?

Adaptability Real-world data evolve. Although language models excel at being
transferable to new tasks, this is not the case for graph representation learning
models. How can representation learning models for texts and graphs be
continually adapted to new data?

1.2 A Unified Perspective on Representation Learning for
Texts and Graphs

The contributions of this thesis are mainly concerned with the challenges described
above. The overarching aim is to design efficient text and graph representation
learning models adaptable to new data.

Although NLP models excel at transfer learning, they lack scalability. On the
other hand, commonly used GNN models struggle to process large graphs, which
can only be tackled with expensive sampling techniques. However, real-world data,
such as social or citation graphs, are large and evolving. Simply putting together
the most prominent models, e. g., a Transformer-based PreLM and a GNN, is not a
feasible solution because it does not scale.

In this thesis, we will first explore more efficient ways of learning text for the
learning of text representations. Then we examine the text classification case in
more detail. Subsequently, we investigate the mutual influence of text and graph
data in multimodal AEs for recommendation systems. Finally, we develop methods
that adapt a single model over time for lifelong open-world node classification in
evolving graphs with text as node attributes.

5

1. Introduction

In more detail, we explore the continual multiplication of words (CMOW) as an
efficient alternative to Transformer models that, unlike the CBOW representation,
considers word order. Specifically, we introduce an unsupervised training algorithm
for the compositional matrix space model [RG10], in which each word is repre-
sented as a matrix (a word matrix). The multiplication of word matrices forms a
representation of a sentence. Through extensive experimentation with ten linguistic
probing tasks, 11 supervised, and five unsupervised downstream tasks, we find
that word vectors and word matrices have complementary strengths and that a
jointly trained hybrid model, coined CMOW/CBOW-Hybrid, outperforms both
individual components CBOW and CMOW. Since dimensionality is a crucial factor
for sentence representations (higher is better) [WK19], we ensure that each model
has the same number of parameters. We will see that the CMOW/CBOW-Hybrid
model increases the average scores on the linguistic probing tasks by 8% and by
1.2% on supervised downstream tasks, compared to a CBOW model, which does
not take the order of words into account.

As a next step, we will investigate how a popular Transformer-based language
model, BERT [DCL+19], can be distilled into such matrix-based embedding models
to capture the learned knowledge of BERT in a smaller and faster model. We call
this procedure cross-architecture distillation, and it comes with unique challenges,
as standard techniques to promote distillation and model compression rely on the
smaller model (the student) having the same architecture as the original larger
model (the teacher) [SDC+20; JYS+20; SCG+19]. We extend CMOW/CBOW-Hybrid
to emit one representation for each token to facilitate knowledge distillation dur-
ing pretraining with a masked language modeling objective. We further enhance
CMOW/CBOW-Hybrid’s expressive power with a bidirectional component by
introducing a second set of matrix embeddings for each word, which are then
multiplied in the reverse direction. Finally, we extend the model with a specific
encoding scheme for tasks defined on sentence pairs inspired by approaches before
Transformers emerged, such as in Mou et al. [MML+16]. This extension allows us
to tackle natural language inference and sentence similarity tasks. We evaluate the
developed models on the GLUE benchmark, which comprises nine datasets that
cover natural language inference, sentence similarity, and linguistic acceptability.
We implement the transfer learning paradigm commonly used by large language
models and fine-tune the CMOW/CBOW-Hybrid model for each downstream
task. By thoroughly testing the influence of each of the extensions, we find that
bidirectionality leads to a 1% increase, and the proposed two-sentence encoding
scheme leads to an increase of 20% compared to a sequential encoding. Our results

6

1.2. A Unified Perspective on Representation Learning for Texts and Graphs

further indicate that general distillation is preferable over task-specific distilla-
tion. Compared to the literature, we find that the proposed method performs
better than other cross-architecture distillation approaches while falling behind the
predominant yet more expensive Transformer models.

Subsequently, we take a closer look at the text classification task, which can take
different forms, such as topical classification or sentiment analysis. In a comparative
study, we critically assess recent advances in text classification based on synthetic
graphs generated from the raw text corpus. After a thorough literature review, we
contrast these models with more efficient, wide MLP models that operate on a
Bag-of-Words (BoW) input representation and more expensive Transformer-based
sequence models. We compare 16 different methods on five datasets and find that
synthetic graph approaches provide no benefit for text classification over a simple
MLP model. Our experiments with BERT and DistilBERT set a new state of the art.
We conclude that BoW representations are well suited for text classification when
considering their advantage in efficiency.

Then, we move on to recommender systems that operate on documents. Pro-
viding recommendations can be regarded as a link prediction task in the bipartite
user-item graph. We will be concerned with AEs as a recommendation engine and
how they can be enhanced with textual side information. We design an experimen-
tal protocol that evaluates only unseen documents. This setting is uncommon in
other recommender systems, where the users are typically known to the system.
It is a unique challenge in document-based recommender systems, where the rec-
ommendations should only depend on the document itself. We conducted a wide
range of experiments with datasets that included citation graphs and subject labels
from a domain-specific thesaurus. The considered domains cover computer science,
life science, economics, politics, and news, on which we impose a chronological
train/test split to ensure that the setting resembles real-world conditions. We exper-
imented with six datasets of scholarly documents from different domains. We first
acknowledge the strength of a purely graph-based item co-occurrence method in
citations and the purely text-based BoW-MLP for subject labels. However, we show
that the four tested AE variants could consistently benefit from multimodal input.
We confirm these results in different configurations for the number of all possible
items, i. e., cited documents or subject labels, and the number of currently available
items as a basis for the recommendation. This procedure effectively generates
numerous versions of the base datasets and thus ensures the reproducibility and
generality of the results.

7

1. Introduction

Finally, we explore a more general approach to learning unified representations
of text and graphs. More specifically, we are concerned with node classification
in graphs whose nodes correspond to scholarly articles with textual features. The
edges in the graph come from citations or collaboration relationships. Although
this combination of using text as node features is undoubtedly familiar [KW17], we
tackle the challenges of evolving graphs, including the maintenance and adaptation
of a single model to new tasks that involve new nodes, edges, and even new
classes. We frame this problem as an instance of lifelong learning and develop an
incremental training algorithm and a method to derive comparable history sizes
across datasets We evaluate representative GNNs as base models and a BoW-MLP
as a graph-agnostic baseline in this new experimental framework. Our results
on three newly contributed evolving graph datasets, two citation graphs, and
one collaboration graph show that reusing the previous model parameters allows
us to use smaller history sizes without losing (much) accuracy. Precisely, with
history sizes comprising only 50% of the GNN’s receptive field, we still attain 95%
accuracy compared to the same models trained on the entire history of the graph.
We then look closely at the hardest dataset in which most new classes appear over
time. There, we explore two more variants of the problem: training with limited
labeled examples and self-detection of nodes that do not belong to the already
known classes. For the latter, we combine existing techniques with GNNs and find
that weighted cross-entropy training is essential for dealing with skewed label
distributions.

In summary, the experiments cover a wide range of tasks: general text rep-
resentation learning, text classification, document-based recommendation, and
lifelong node classification, along with numerous different representation learning
models such as Transformers, MLPs, AEs, GNNs, and a total of 49 datasets. For
all newly developed methods, we have carefully investigated the influence of each
component. The key insights are the following. A hybrid model composed of vector
representations (aggregated by summation) and matrix representations (aggregated
by matrix multiplication) performs better than each alone on a wide range of
tasks. PreLM can be effectively distilled into such matrix-vector hybrid models
and are competitive to RNN-based approaches. The latter ones are also slower.
In topical text classification, vector representations combined with an MLP are
surprisingly strong compared to recent approaches that rely on building synthetic
graphs from pure text. The same MLP model is also strong for recommending
subject labels, while structured data from citation graphs are more important when
recommending other documents. When classifying text-attributed nodes in a graph,

8

1.3. Outline and Contributions

structured information from the citation graph is helpful for determining the topic
of a publication.

Our experiments are designed in a way that is close to real-world applications:
we considered inductive learning, chronological train/test splits, and even operating
in fully evolving data. Therefore, the results directly affect practitioners concerned
with building text classification systems or recommender systems in which text
and graph data appear together. For the research community, we have laid the
foundation for lifelong learning on graphs while reminding us of effective and
efficient models which outperform more sophisticated, recently developed methods.

1.3 Outline and Contributions

Here, we summarize the five research questions. The thesis is structured along
these research questions. Each of these is related to the challenges identified in
Section 1.1 and is answered by the corresponding chapter’s key findings. This
overview also serves as an outline of the body of this thesis.

Ź Between highly efficient word embeddings that discard word order and resource-
intensive language models. Q1: Can we design efficient text representation learning
models that capture word order?

In Chapter 3 and [MGS19], we tackle the challenge of learning efficient text
representations and introduce an unsupervised pretraining scheme for the com-
positional matrix space model as a lightweight order-sensitive sentence encoding
model. We show that a jointly trained hybrid model consisting of matrix rep-
resentations, aggregated by matrix multiplication, and vector representations,
aggregated by summation, is superior to each of the components.

Ź Following on this hybrid model in combination with knowledge distillation
methods that aim to reduce model size, we explore cross-architecture distillation.
Q2: Can we distill the knowledge of large-scale pretrained language models into efficient
text representation models and adapt those via fine-tuning for downstream tasks?

In Chapter 4 and [GCM+22], we continue to work on the challenge efficiency
in learning text representation while also considering adaptability. We extend
the combined matrix-vector representation with a bidirectional component and
distill BERT as a large PreLM into it. We show that such an efficient general-
purpose distillate can be successfully fine-tuned to downstream tasks, also on
those defined on sentence pairs. The proposed model outperforms all previous

9

1. Introduction

work on cross-architecture distillation, is comparable to other contextualized
language models, and falls only behind Transformer-based PreLMs.

Ź Investigate topical text classification, where graph-based approaches that synthe-
size a graph of words and documents have recently emerged. Q3: Are synthetic
graph structures derived from raw text necessary for topical text classification?

In Chapter 5 and [GS22], we tackle the challenge of efficiency for text classification
and compare models based on BoW, graph, and sequence representations.
We show that, surprisingly, a wide BoW-MLP is competitive to many recent
approaches that construct a synthetic graph structure from raw text. We further
complement the existing literature by applying PreLMs as sequence models to
the topical text classification datasets, which expectedly outperform both graph-
based and BoW models. This indicates that, contrary to the recent literature,
synthetic text-graphs are less helpful for topical classification than assumed.
Furthermore, MLPs are much stronger than expected when using a single
but wide hidden layer along with modern best practices in tokenization and
optimization.

Ź As a bridge from text to (natural) graph data, consider bipartite graphs within
recommendation tasks but enriched with textual side information. Q4: How can
we design multimodal representation learning models that jointly process text and graph
data for document-based recommendation tasks?

In Chapter 6 and [GMV+18; VGM+18; VGS22], we tackle the challenge of multi-
modality and systematically investigate the influence of using side information
in document-based recommendation tasks: citation recommendation and subject
label recommendation. We show that autoencoder-based recommender systems
consistently gain improvements from tapping the resource of textual side infor-
mation, while we systematically control the item set size and the item vocabulary
size. Using strong task-specific baselines, we further find that, again, an MLP
that does not use graph data is a powerful model to predict subject labels. We
hypothesize that the importance of graph data is related to the meaning of item
co-occurrence: it only helps when similar items occur together in a single item
set.

Ź Investigate continual training and classification of interlinked text documents
organized in an evolving graph. Q5: How can we adapt representation learning
models for text and graph data that evolve over time? In Chapter 7 and [GVS19;
GFZ+21; GVF+21], we tackle the challenge of adaptability, while also considering

10

1.3. Outline and Contributions

the efficiency challenge. We introduce a new experimental framework with a new
evaluation protocol for lifelong learning on evolving graphs. In this framework,
a single GNN model is continually adapted to new data, including new classes,
while periodically being retrained on limited-history snapshots of the graph.
We reveal interesting interactions between the considered history size in the
temporal evolution and the reuse of parameters. Reusing parameters enables us
to use smaller history sizes without losing accuracy. Furthermore, we investigate
a method to automatically detect nodes that belong to, at that point, unknown
classes, and find that using a weighted cross-entropy loss is crucial for its stability.
This sets the foundation for lifelong learning on evolving graphs.

In Chapter 2, background information can be found that is useful for under-
standing the body of this thesis. The body then consists of the Chapters 3, 4, 5, 6,
and 7, which address research questions 1–5, respectively. We close with a general
discussion and concluding remarks in Chapter 8.

A summary of the measures taken to ensure reproducibility is provided in
Appendix A. Supplementary material corresponding to Chapters 3 to 7 is provided
in Appendices B to F, respectively.

11

Chapter 2

Background

In this chapter, we recapitulate the fundamental concepts necessary to understand
the body of this thesis. The basics of representation learning, in general, are briefly
described in Section 2.1. Subsequently, the basics of text representation learning
are described in Section 2.2, before we cover graph representation learning in
Section 2.3. The chapter ends with an overview of common learning paradigms on
text- and graph-structured data in Section 2.4.

2.1 Representation Learning

Representation learning [BCV13] is a subfield of machine learning that includes
deep learning [KSH17; LBH15; GBC16]. The core idea of machine learning is to learn
a function f that maps the input x to the output y. This model function f is learned
from data and should generalize to unseen inputs. In a normal program, the rules
to derive y from x are hand-designed. In contrast, a machine learning algorithm
only needs training data and learns the “rules” on its own. With the abundance
of available data, machine learning has become a vital approach. We do not need
to know and implement the rules in advance, but we let the machine learning
algorithm figure them out. Classical machine learning is based on hand-designed
features that are mapped to the output by the model function f . In representation
learning, these features are learned as representation of the raw input. When stacking
multiple layers of representations, we call that deep learning [GBC16].

Recently, Bronstein, Bruna, Cohen, and Veličković [BBC+21] have introduced
a theory of symmetry and equivariance that unifies the common architectures of
deep learning, including convolutional neural network (CNN), recurrent neural
network (RNN), and Transformers. A symmetry is defined a transformation of a
data object that does not change the data object. The key properties of symmetries
are that the identity transformation is a symmetry, that the chaining of symmetries
is a symmetry, and that the inverse of a symmetry is a symmetry. Exploiting
symmetries, for instance, weight sharing in CNNs, improves sample complexity,

13

2. Background

and thus weakens the curse of dimensionality. Under this notion of symmetries,
we regard neural networks as function spaces which we can influence by inductive
biases.

An inductive bias is a constraint that we place on the learnable function
space [BHB+18]. These constraints often emerge from domain knowledge, e. g.,
CNN impose a constraint for locality-sensitive models, while RNNs impose a
constraint to process the input in sequential order. Such inductive biases can take
the form of decisions within model architecture design, regularization terms, or
data augmentation.

For the context of this thesis, we follow the notion of function spaces and
expand the notion of a representation to its model function fθ : X Ñ Y; x ÞÑ y,
where x is the input and y the output. Learning the representation then means
learning the parameters θ of the model function f . Denoting the model function fθ

itself as a representation (rather than its output y) can be ambiguous, but is most
often not problematic. In particular, when we refer to a representation as efficient,
multimodal, or adaptable, we refer to the model function fθ .

We will now recapitulate the fundamental concepts of representation learning
that are essential for the body of the thesis.

2.1.1 Multilayer Perceptron

The multilayer perceptron (MLP) is the most basic form of an artificial neural
network, in which the inputs of each layer are fully connected to all outputs. An
MLP with L layers can be expressed as the composition of parameterized functions
f = f (1) ˝ f (2) ˝ ¨ ¨ ¨ ˝ f (L), where each layer fl has the form:

f (l)(x) = σ
(

W(l)x + b(l)
)

with weights W (l) and bias b(l) being learnable parameters and σ being an activation
function. For instance, a two-layer MLP, which we also call an MLP with one hidden
layer, has the form:

f (x) = W (2)σ
(

W (1)x + b(1)
)
+ b(2)

Among many options, the most commonly used activation function is the
rectified linear unit [NH10]:

ReLU(x) = max(0, x)

14

2.1. Representation Learning

which clamps the output of a hidden unit at 0. The main benefit of the rectified
linear unit (ReLU) activation function is that it does not hinder the gradient flow
because of its linear growth on the positive side. In contrast, sigmoidal activation
functions saturate and, ultimately, slow down the learning process. Still, the logistic
sigmoid activation function is still often used for the final output layer to model a
binary classification:

Sigmoid(x) =
1

1 + exp(´x)

A fundamental property of neural networks is the universal approximation theo-
rem [Cyb89]. The universal approximation theorem states that already a nonlinear
neural network with only two layers (or one hidden layer) is capable of approxi-
mating any compact function to an arbitrary degree of accuracy, depending on the
width of the hidden layer. But why do we bother with deeper neural networks?
The key argument is that depth provides exponential gains in terms the number of
computation paths that an input feature can take to the output [BCV13]. Counter-
intuitively, depth improves sample complexity in the sense that fewer training
examples are required to learn a task.

2.1.2 Autoencoder

Autoencoders (AEs) are a special form of neural networks that aim to reconstruct
their input. x̂ = g(f (x)) optimized with respect to a loss function L(x̂, x). Here,
the encoder f encodes the input into a code, which is then decoded by g. The
autoencoder is less of a specific architecture, but more of a general paradigm
for unsupervised representation learning: learning good representations through
reconstruction and preferably disentangling explanatory factors of variation within
the data [BCV13].

To prevent AEs from merely copying their input to the output, AEs need to be
regularized. Among many options, this regularization can be achieved by using a
lower dimensionality for the code (undercomplete AEs), or, a Gaussian prior on the
code as in VAEs [KW14], or actively corrupting the input and aiming to reconstruct
the original, non-corrupted, input, as in DAEs [VLB+08].

2.1.3 Training of Neural Networks

Here, we briefly revisit the basics of training neural networks: optimization, initial-
ization, and regularization. For a more detailed introduction to neural networks,
we refer to Goodfellow, Bengio, and Courville [GBC16].

15

2. Background

Optimization To optimize neural networks, we make use of a loss function. The
loss function compares the outputs of the model ŷ with the ground-truth targets y.

L(ŷ, y)

A value of the loss function is commonly referred to as loss and can be obtained
by applying the model to a set of examples. The most common loss function for
multiclass classification is the (categorical) cross-entropy:

LCE(ŷ, y) = ´ ∑ y log ŷ

where y is the desired output from the ground truth and y is the model output, in
multiclass classification typically activated by a softmax. The softmax activation
with C components normalizes the model output (or intermediate representation)
as follows:

softmax(x)i =
exp(xi)

∑C
j=1 exp(xj)

The optimization of neural networks is then carried out by error backpropaga-
tion [RHW86], i. e., gradient descent, where the gradient of the loss function ∇L
is computed with respected to the model parameters and subsequently used to
update the model parameters:

θ
(l)
t = θ

(l)
t´1 ´ α∇L

with parameters θ(l) of layer l and learning rate α.
In stochastic gradient descent, the most common way of training neural net-

works, we calculate the loss on small batches of examples. This is also known as
mini-batch gradient descent, while “stochastic gradient descent” originally referred
to using only a single example for each update. In contrast, full-batch gradient
descent, as often used with GNNs, uses all available examples for calculating the
loss in each update step.

Numerous optimizers have been proposed to optimize neural networks such
as momentum techniques [SMD+13]. The most commonly used optimizer is
Adam [KB15] because it works well for a wide range of models and is com-
paratively robust to its hyperparameter values. We will use the Adam optimizer
for all experiments presented in this thesis.

Initialization An important factor for optimization is weight initialization. If we
initialized all weights with zero, all outputs would remain zero, and the weights
would co-adapt during training. Therefore, we need to initialize the weights ran-

16

2.1. Representation Learning

domly. A common choice for the initialization is Glorot initialization [GB10], in
which the input and output dimensions of the weight matrix determine the bounds
of random sampling.

r =
√

d 2
in dout

Then, in Glorot uniform, each weight is initialized as a sample from the uniform
distribution Wij „ U (´r, r). In Glorot normal, each weight is sampled from a
normal distribution with standard deviation set to r: Wij „ N (0, r2). Both work
similarly well. This aims to ensure that the output vector of each layer has zero
mean and unit variance at random initialization.

In common frameworks, e. g., pyTorch1 and Tensorflow2, a slightly simplified,
yet similar technique is used: He initialization [HZR+15]. In this initialization
technique, the boundaries are determined only on the basis of each layer’s input

dimension: r =
√

2
din

. When not noted otherwise, we use the He initialization for
our experiments.

Regularization The term regularization in neural networks refers to any technique
that increases the training loss but decreases the validation loss [GBC16] with the
goal of improved generalization performance.

A popular regularization technique is Dropout [SHK+14]. Dropout randomly
selects a fraction p of hidden units whose output is then set to zero. At inference
time, the magnitude of the weights is scaled up by inverse of the dropout probability
1
p . With dropout, a single neural network can be regarded as an ensemble of neural
networks, which improves their generalization capabilities.

A classic regularization technique is L2-regularization, a.k.a. weight decay, that
introduces a penalty for the magnitude of weights: ∑lďL |W (l)|2. The effect is that
the weights are pushed towards zero. In conjunction with the Adam optimizer,
L2 regularization seem to have fallen out of favor, since it makes little difference
whether one uses it or not. This issue might have been caused by a flaw in frame-
works’ implementations of Adam, which has been identified by Loshchilov and
Hutter [LH19], who denote their corrected variant as AdamW.

Layer normalization [BKH16] is a different regularization technique that actively
normalizes the inputs to each layer to zero mean and unit variance. Especially in
deep neural networks, layer normalization is important to stabilize training, as seen
for instance in Transformers [VSP+17].

1
https://pytorch.org/

2
https://tensorflow.org/

17

https://pytorch.org/
https://pytorch.org/
https://tensorflow.org/
https://tensorflow.org/

2. Background

2.2 Text Representation Learning

The history of using neural networks to learn representations of text ranges back to
the 1990s with the Elman RNN [Elm91] and Hochreiter and Schmidhuber’s long
short-term memory (LSTM) [HS97]. In 2008, Collobert and Weston [CW08] have
shown how 1-dimensional CNNs can be employed to tackle multiple NLP tasks at
once.

In 2013, Mikolov et al. [MSC+13] have then introduced the word-to-vector
(word2vec) algorithm, which learns word representations by predicting missing
words in large amounts of text. The idea is motivated by the distributional hypoth-
esis [Har54], which states that the meaning of words is primarily determined by
the context of their use. Global vectors for word representation (GloVe) [PSM14] is
a similar technique that derives word embeddings by factorizing the global word
co-occurrence matrix. As a follow-up to word2vec, Bojanowski, Grave, Joulin, and
Mikolov [BGJ+17] have introduced fastText, which incorporates subword informa-
tion.

In parallel, the generic sequence-to-sequence (seq2seq) paradigm has been
developed to tackle tasks like machine translation [SVL14]. In 2015, Bahdanau, Cho,
and Bengio [BCB15] introduced an attention mechanism for LSTMs in seq2seq to
herald the start of the “LSTM hegemony”, whereupon LSTMs with attention has
been used across almost all NLP tasks [Gol17]. Notably, Howard and Ruder [HR18]
and Peters et al. [PNI+18] have found ways to pretrain LSTMs on unlabeled text
before fine-tuning the learned representations to tackle downstream tasks.

In 2017, Vaswani et al. [VSP+17] have introduced the Transformer model that
only uses attention and feed-forward layers, again for machine translation. Not
much later, Devlin, Chang, Lee, and Toutanova [DCL+19]’s BERT has led to tremen-
dous success in NLP by pretraining a bidirectional Transformer model. The BERT
model has been trained with a self-supervised masked language modeling objective
on large amounts of unlabeled text and is then fine-tuned to various downstream
tasks on single sentence and sentence pairs, e. g., sentiment analysis or natural
language inference.

The text-to-text transfer Transformer (T5) model by Raffel et al. [RSR+20]
follows up on the pretraining and fine-tuning strategy but casts all downstream
tasks to have text input and, in contrast to BERT, text output. This means that all
downstream tasks are transformed into a format, in which the output is mapped to
some tokens of the model vocabulary. For example, a binary classification can be

18

2.2. Text Representation Learning

modeled by testing whether the token “yes” or the token “no” is more probable in
the model output.

An even larger language model, Brown et al. [BMR+20]’s 3rd version of the
generatively pretrained Transformer (GPT-3), is able to tackle downstream tasks
by using only a few examples in the prompt of the input, alleviating the need
for fine-tuning at all. The GPT-3 model has been trained with a plain language
modeling objective of predicting the next token, as opposed to the masked language
modeling objective of BERT. This makes GPT-3 more suitable for text generation.

Recently, Bommasani et al. [BHA+21] have unified these new approaches of
representation learning under the hood of “foundation models” and outline various
applications in other disciplines, while highlighting benefits, but also risks of the
concept of foundation models. The considered risks comprise inequity, misuse,
economic and environmental impact, as well as legal and ethical considerations.

2.2.1 Tokenization and the Vocabulary

The first step of processing natural language is to convert the text into a machine-
readable format such as a sequence of discrete tokens. For this, we separate the
input string into tokens, i. e., perform tokenization. Tokens can be words but also
subword units, e. g., imagine the phrase “quickly starting” being tokenized into
“quick@@” “@@ly” “start@@”, “@@ing”, Here, the special characters “@@” indicate
that a single word has been split up, such that the tokenization is invertible.

The next step is to build a vocabulary from all words that appear in a certain
corpus. The vocabulary V is set of all possible tokens. Along with the vocabulary,
there is a mapping vocab : V Ñ N, such that we can map each token to a unique
index. Depending on the model of choice, it can be useful to reserve some special
tokens for the start/end of the sequence or out-of-vocabulary words. Note that
tokens can be either words or subword units, to which we still refer as words for
reasons of simplicity.

In general, one can distinguish between top-down and bottom-up ways of
tokenization and building the vocabulary. In the top-down approach, the text is
tokenized with a predefined strategy such as splitting on whitespaces. To determine
the final vocabulary, one can, for instance, limit the vocabulary size by using only
the most frequent words or by requiring a minimum number of occurrences over
the corpus. In the bottom-up approach, e. g., WordPiece tokenization [WSC+16],
one specifies a desired vocabulary size and subword units are merged together

19

2. Background

with the goal of maximum coverage over the training corpus, until the desired
vocabulary size is reached.

2.2.2 One-Hot Encoding

The straight-forward way to encode text in a machine readable format is to assign
each word w to a unique vector xw that is all zero but has a one at the position of
the respective word in the vocabulary, i. e., xi = 1, if i = vocab[w] and 0 otherwise.
A sequence of tokens is then encoded as a sequence of these one-hot vectors.
While this input representation is suitable for models like RNNs that can process
arbitrary-length sequences, other architectures such as an MLP require a fixed-size
input representation. A fixed size in a sequence can be enforced by a combination
of padding with dummy symbols (e. g., all zero vectors) and truncation of long
sequences. A different way to build a fixed-size representation is the Bag-of-Words,
which we discuss next.

2.2.3 Bag-of-Words Representation

A common fixed-size input representation for processing text is the Bag-of-Words
(BoW), which refers to a multiset of words. We count the words within the input
sequence and obtain a vector x with the dimension of the vocabulary size. Each
entry xi corresponds to the number of times that word w with vocab[w] = i
has occurred in the input text. It is worth noting that this representation loses
any information on word order and word position. In exchange, the sequence is
squashed into a single fixed-size vector, optionally with length normalization by
dividing through the L1 or L2 vector norm.

TF-IDF Weighting

Term frequency—inverse document frequency (TF-IDF) is a heuristic weighting
scheme discounts words that appear frequently in a corpus of documents [SB88].
The inverse document frequency (IDF) is defined per word as:

IDFcorpus(w) =
Number of documents

Number of documents in corpus that contain word w

20

2.2. Text Representation Learning

The term frequency is the length-normalized count of the word (or token) w
within a document d

TF(w, d) =
Count of w in d

Count of all words in d
Then, the TF-IDF score of a word w in a document d is computed as

TF-IDF(w, d) = TF(w, d) ¨ IDF(w)

As such, TF-IDF can be regarded as a soft form of stop-word removal. The
IDF score of a word is minimal when it appears in every document of the corpus.
Conversely, rare words are more distinctive and their weight is increased. TF-IDF
is a powerful weighting scheme for information retrieval. Similarly, the weighting
scheme can be employed to compose a weighted BoW of a document as input
representation for machine learning algorithms [GMS+17].

2.2.4 Word Embeddings

A word embedding is a dense low dimensional vector representation for each word
of the vocabulary [Gol17]. Such a word embedding can be obtained by multiplying
a BoW vector (or a one-hot vector) with the initial weight matrix of a neural network
Wx + b. The output dimension of the layer then corresponds to the embedding
size, while the input is required to have the same size as the vocabulary. For an
intuition, consider a one-hot vector, which would effectively select one row of the
weight matrix. When we have a BoW vector, the respective rows of the embedding
would be summed up.

A more efficient way to obtain word embeddings is to skip the step of the
BoW or one-hot encoding and to directly reserve a lookup table for embedding
vectors. In this case, we reserve an embedding matrix X of shape vocabulary
size ˆ embedding size. When we need to encode some text, we can look up the
word indices i and obtain the word vector X[i] from the embedding right away,
whose parameters can be adjusted during optimization. While it is often left as an
implementation detail, the lookup table (or embedding) approach is mathematically
equivalent to feeding the BoW representation into a fully-connected feedforward
layer.

Yet, the lookup table is more efficient because it skips the matrix multiplication
with the dimension of the large vocabulary size. The only difference between
a lookup table embedding and a fully-connected input layer lies in commonly
used initialization techniques and that embeddings are typically not subject to

21

2. Background

an activation function. Dropout is, however, still often used on the embedding.
Length normalization, i. e., averaging the word vectors, and TF-IDF weighting can
be applied at will during aggregation of word embeddings [GSS17].

In general, the concept of an embedding layer refers to the idea of a lookup
table to encode discrete tokens with continuous vectors. Apart from words, an
embedding layer can also be used for a node embedding in graphs or any other
form of categorical input. When we are concerned with text, an embedding layer
representation that aggregates over the sequence in a BoW fashion is oftentimes
called an embedded BoW or a continuous bag-of-words (CBOW) [Gol17].

An important distinction is between pretrained and non-pretrained word em-
beddings. On the one hand, in non-pretrained word vectors, the embedding layer is
initialized randomly and optimized for the current task at hand. On the other hand,
we can use a pretrained word embedding that has been trained on large amounts of
unlabeled text. Popular examples include word2vec [MSC+13], GloVe [PSM14], and
fastText [BGJ+17], which are known to capture syntactic and semantic properties of
the words. Goth [Got16] has constituted such pretrained word embeddings as the
most important contribution of unsupervised (or more accurately, self-supervised)
machine learning to NLP.

Word2vec learns the parameters of the embedding layer by predicting missing
words in a fixed-size context window on unlabeled text. It can be regarded as an
autoencoder, where the encoder is the embedding layer and the decoder is a logistic
regression. Still, the error is back-propagated to the embedding layer and the
decoder is discarded after training. GloVe uses a different approach of factorizing
the global word–word co-occurrence matrix. It can be shown that word2vec is a
local approximation thereof [LG14], where local means that the algorithm operates
only on single sentences and does not require setting up a global co-occurrence
matrix. FastText is similar to word2vec in its training objective but goes down to
the subword level by jointly considering character n-grams. This allows to better
generalize to words that are out-of-vocabulary.

In a sense, pretrained word vectors can be regarded as a precursor to today’s
large pretrained language models, which will be described next. The main differ-
ence is that language models jointly encode entire blocks of text rather than only
emitting static vectors for single words.

22

2.2. Text Representation Learning

2.2.5 Transformers and Language Models

Language models have a long history in statistics and machine learning with
traditional n-gram based language models that seek to predict the next word based
on last seen n words (e. g., [Kat87]).

Similarly, RNN models such as LSTMs [HS97] and gated recurrent units
[CMB+14] are sequentially applied to one token at a time, while maintaining
a hidden state that is updated depending on each newly seen token.

Ever since its introduction, the realm of language models was conquered by
the Transformer architecture [VSP+17], spinning out pretrained language model
such as BERT [DCL+19], RoBERTa [LOG+19], T5 [RSR+20], or GPT-3 [BMR+20].
In contrast to RNNs, Transformers have neither recurrent connections nor hidden
state that is sequentially updated after seeing each token. This removes sequential
dependencies and allows a higher degree of parallelization.

Transformers are sequence models that primarily rely on a self-attention mech-
anism [VSP+17]. This self-attention mechanism, or more specifically: key–value
attention, consists of projecting the same input vector x to three new vectors: a
query q := Wqx, a key k := Wkx, and a value v = Wvx. These three vectors then
interact to resemble a soft table lookup. Each token is projected to a key–value pair
(both vectors), and can query other tokens with its query vector, which is again
the output of another projection. The values of the other tokens are aggregated on
the basis of how similar the respective key and query vectors are. The key–value
self-attention mechanism can be formalized in matrix form as follows [VSP+17]:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V

where dk corresponds to the dimension of the key and query vectors. The scaling
factor 1√

dk
flattens the softmax and thus counteracts small gradients.

After each key–value self-attention layer, there is a feedforward module, an
MLP, and layer normalization to prepare the output for the next self-attention
layer. Furthermore, multiple so-called attention heads, i. e., different instances of
the linear projections Wq, Wk, Wv, operate in parallel such that different aspects of
each word can be captured.

Originally, Transformers were developed for machine translation in an encoder
decoder architecture. Still, not much later, Devlin, Chang, Lee, and Toutanova
[DCL+19] have shown how to pretrain a self-supervised language model by using
a masked language model objective. A masked language model objective is similar

23

2. Background

to the objective of word embeddings, as described above. The idea is to encode
text, while some of the words are masked (replaced with special tokens), and
then optimize the model to reconstruct the original words in its output [DCL+19].
Intuitively, the masked language modeling objective can be regarded as filling in
the blanks.

An interesting property of Transformers is that word position and word order
needs to be explicitly encoded. The self-attention mechanism does not distinguish
between the different positions in its input. The most common way to inject
this information into the model is to use a position embeddings. In position
embeddings, each discrete position is associated with an embedding vector, which
is then added to the word embedding vector before further processing. There are
also other techniques for positional encoding, such as using a sinusoid function or
a relative positional encoding, e. g., see [Che21].

2.3 Graph Representation Learning

In 2009, Scarselli et al. [SGT+09] have introduced a generic way to process graph-
structured data with neural networks: the graph neural network model. Eight years
later, the success of graph convolution Kipf and Welling [KW17] and Hamilton,
Ying, and Leskovec [HYL17] in node classification along has led to widespread
interest in graph neural networks [Ham20]. A graph G = (V , E) is a generic data
structure that consists of a set of vertices V and a set of edges E Ď V ˆV . The entire
graph, the nodes or the edges may have attributes. In this work, we consider node
attributes in the form of textual node features and node labels, the latter forming
the target outputs of our models. This allows us to use a notation for attributed
graphs, that is closer to the neural network processing: We denote a graph with n
nodes and m node features as (X, A), where X P Rnˆm are the node features and
A P {0, 1}nˆn is a binary adjacency matrix. Node labels are then defined as a vector
that holds the label for each node y P Yn, where Y is the set of all possible labels,
which we encode as values between 0 and |Y| ´ 1.

2.3.1 Types of Graphs

Undirected and Directed Graphs The edges in a graph can be undirected or
directed. In the undirected case, we ensure that (u, v) P E ô (v, u) P E . In case of an
undirected graph, the adjacency matrix is symmetric, such that AT = A. A directed
graph can be converted into an undirected graph by inserting the corresponding

24

2.3. Graph Representation Learning

edges. This comes with a loss of information since the graph cannot be converted
back to the same directed graph.

Attributed Graphs In principle, attributes can be added to all components of the
graph, i. e., to the nodes, the edges, or even the graph itself. Such attributes might
take form of time information, a label, or a text. For instance, also the author or
the journal of a paper can be modeled as a node attribute rather than having as its
own dedicated node. In this work, we will be using mostly textual node attributes
in and a class label that is the desired output of the models. We will also see how
journal and author information can be used as attributes in bipartite graphs for
recommender systems.

Edge Weights A special case of attributes are edge weights. In the standard binary
formulation, either there is an edge between two nodes or not. However, some
edges might be more important than others, which can be modeled by giving
the edges a specific weight. While this could be modeled explicitly per-edge, also
principled approaches can be employed to normalize the edge weights [KW17] or
compute them dynamically [VCC+18] on the basis of the representations of the
source and destination node.

Homogeneous and Heterogeneous Graphs In heterogeneous graphs, nodes can
have different types, e. g., there might be author, paper, venue-typed nodes. Then
the edges would also have different a interpretation depending on the types of the
invovled nodes, such as “written-by” or “published-in”. In homogeneous graphs,
all nodes have the same type and all edges have the same meaning. Oftentimes, the
same underlying data can be regarded under different perspectives, either focusing
only on one specific type, e. g., paper nodes and citation edges, or ignoring that
the nodes have different types and treating them all equal. In fact, sometimes the
homogeneous view is more effective than one would expect [LDL+21]. This is
because, for instance, node types can be modeled as node attributes. This way, also
a seemingly homogeneous GNN becomes aware of different node types.

Types of Dynamic Graphs The notion of a dynamic graphs can be ambiguous,
if not properly defined. We adopt a principled approach and distinguish between
several characteristics (not mutually exclusive): dynamic signal, dynamic structure,
and continuous time. In graphs with a dynamic signal, the node features and/or

25

2. Background

node labels may change over time. When the graph has a dynamic structure,
there can be new nodes and new edges and also removed nodes and edges. A
third characteristic is whether the time information is continuous or discrete. With
discrete time, the data are effectively organized into snapshots [AS14]. In continuous
time, the data comes in a stream and no assumptions are made about snapshots
or granularity. When we speak of evolving graphs, we refer to graphs that have a
dynamic structure but a static signal.

Tasks on Graph-structured Data Typical tasks on graph-structured data include
node classification, graph classification, edge classification, or link prediction. When
we model documents as nodes in a graph, node classification would translate to
classifying those documents. Moreover, when we aim to suggest new items to users
in a recommendation task, we predict links in the bipartite graph between users
and items.

Random Walk Approaches As an interesting connection between text and graphs,
we briefly outline the DeepWalk [PAS14] or node2vec [GL16] algorithm. The
DeepWalk algorithm aims to learn node representation by predicting left-out nodes
along random walks. It essentially transfers the Word2vec algorithm, which operates
on text sequences, to graphs by sampling random walks. In fact, implementations
of the DeepWalk algorithm even use the exact same code base that is used for the
Word2vec algorithm.

2.3.2 Graph Neural Networks

A graph neural network (GNN) can be regarded as a message passing network
that transforms and aggregates neighborhood information for each node. A single
layer of a GNN can be expressed as:

h(l+1)
i = σ

b(l) + ∑
jPiYNbrs(i)

1
cij

W (l)h(l)
j

 ,

where h(0)
i = xi are the features of node i, Nbrs(i) gives the set of adjacent nodes i,

and ci j is the scalar edge weight. The factor cij depends on the specific model. For
instance, in Kipf’s graph convolutional network (GCN) [KW17], the authors use
the geometric mean of the two nodes’ degree cij =

√
degi ¨ degj.

26

2.3. Graph Representation Learning

When storing 1
cij

as entry Ai j in the adjacency matrix, we can express above
formula equivalently with matrix operations:

H(l+1) = σ
(

ÂH(l)W (l) + b(l)
)

where each row Hi,: corresponds to the representation of a node i.
In the mean aggregation variant of GraphSAGE [HYL17], the mean over the

incoming edges is used, i. e., cij = degi, which simplifies the graph-level normal-
ization of the adjacency matrix and facilitates applying the model to new graph
data without having to re-normalize. GraphSAGE further uses two different weight
matrices: one for self-connections and one for the connections to neighbors:

h(l+1)
i = σ

 1
cii

W (self,l)h(l)
i + ∑

jPNbrs(i)

1
cij

W (neigh,l)h(l)
j

Another variant of GNNs is the graph attention network (GAT) [VCC+18]. In

GATs, the edge weights between node i and node j are computed dynamically
with an attention mechanism on the basis of the node representations of h(l)

i and

h(l)
j . Graph neural networks that use dynamic edge weights are called anisotropic

GNNs, as opposed to isotropic GNNs that use static edge weights [DJL+20].
In a more general formulation, graph neural networks can be expressed with

two operations AGGREGATE, which performs the neighborhood aggregation and
UPDATE, which updates each node’s own representation:

H(l+1) := UPDATE
(

H(l), AGGREGATE
(

H(l), Â
))

with H(0) = X corresponding to the node features at the input level.

2.3.3 Graph Approaches to NLP

Using graph approaches for NLP has a long history. Early approaches are Key-
Graph [OBY98] and TextRank [MT04]. In KeyGraph, a word co-occurrence graph
is segmented to determine the main topics of a document. TextRank [MT04] is an
adaption of the PageRank algorithm [BP98] to the words within documents for
unsupervised keyword and sentence extraction. Similarly, the keyword extraction
approach RAKE [REC+10] leverages a graph structure inferred from text, while
splitting the text on predefined stop-words.

Recently, also GNNs have been used for NLP tasks such as syntactic parsing,
reasoning, and semantic role labeling. For an overview, we refer to [WCS+21].

27

2. Background

In particular, a number of approaches have been developed for graph-based text
classification such as TextGCN [YML19] and TensorGCN [LYZ+20].

In TextGCN, a graph is set up on the basis of an collection of documents. The
graph holds both words and documents as nodes. The word-document edges
are determined by a TF-IDF weighted BoW. The word-word edges correspond to
(positive) pointwise mutual information (PMI) scores that have been determined
with a sliding window over the text. Each node in the graph then receives its own
embedding vector by setting X = I. A drawback of this approach is that new docu-
ments do not have an embedding yet and the model needs to be retrained before
it is able to make predictions. TensorGCN then extends the graph construction
technique with cosine similarity of LSTM representations and dependency parsing
methods in addition to word co-occurrence.

Follow-up approaches already relax this constraint and are able to deal with
new documents being inserted after training. Those include HeteGCN [RSI+21],
HyperGAT [DWL+20], and DADGNN [LGG+21], which will be described in more
detail in Chapter 5.

2.4 Learning Paradigms

Here, we describe the learning paradigms relevant for this thesis.
In supervised learning, the goal is to learn a function f that maps data from the

input to domain to the desired output domain x ÞÑ y. For this, the model is trained
on a corpus of paired training data D := {(x, y)i}, i ă N. After training, the model
is applied to previously unseen examples from the test set. A related learning
paradigm in graph representation learning is inductive learning. In inductive
learning, the underlying graph can be swapped out completely because the method
only operates on the graph structure and attributes such as node features.

Semi-supervised learning refers to having a set of labeled examples and a set of
unlabeled examples available at training time. Then, the task is to make predictions
for the unlabeled examples. In graph representation learning, this is referred to as
transductive learning. In node classification, for instance, the full graph is available
for training but only some of the nodes are labeled. The task is to predict labels for
the unlabeled nodes.

Self-supervised learning and transfer learning refers to taking an existing
model and adapting it to a new task. A popular strategy is to exploit large amounts
of unlabeled data for self-supervised pretraining, e. g., predicting missing words

28

2.5. Summary

from their context, and then use transfer learning to adapt the model to down-
stream tasks of interest. From a bird’s eye perspective, self-supervised pretraining
and subsequent transfer learning might seem similar to the semi-supervised learn-
ing case. However, there is a subtle but important difference. In self-supervised
pretraining, it is not the ultimate goal to predict labels for the unlabeled data.
Instead the unlabeled data is consulted to obtain a general-purpose model, e. g., in
language, by predicting intentionally left-out words. Only afterwards, the model is
then fine-tuned to tasks of interest.

Lifelong learning [Thr98] is the origin of transfer learning. In transfer learning,
the idea is also to transfer an existing model to a new task. The lifelong learning
goes one step further: a single model is gradually adapted throughout a sequence of
tasks, while making use of the knowledge acquired in past tasks.

2.4.1 Definition (Lifelong Learning [CL18]). At any time t, the learner has per-
formed a sequence of t learning tasks, T1, T2, . . . , Tt and has accumulated the
knowledge K learned in these past tasks. At time t + 1, it is faced with a new
learning task Tt+1. The learner is able to make use of past knowledge to help
perform the new learning task Tt+1.

In Chapter 7, we will use a lifelong learning approach to deal with evolving
graph data, i. e., each task Ti will be a task defined on graphs.

Open-world learning is considered a subproblem of lifelong learning. In a
closed-world setting, all possible classes are assumed to be known at training time.
In contrast, in open-world learning, new classes may appear after training [CL18].
Hence, the model has to deal with data instances from previously unseen classes
at test time, which is very challenging. A typical way to deal with this problem is
to actively reject the classification of those data instances. But how can the model
determine when an instance should be rejected? This can, for instance, be modeled
in a supervised fashion by adding a virtual class along with noise data instances to
the training, or, in an unsupervised fashion by observing the model’s outputs for
all classes and reject on the basis of the degree of uncertainty within the outputs.

2.5 Summary

We have outlined the key concepts of text representation learning and graph repre-
sentation learning. Furthermore, we have described the key learning paradigms
that are relevant to this thesis: transfer learning, supervised or inductive learning,
and lifelong learning, which will be relevant for the upcoming chapters.

29

Chapter 3

Word Matrices for Text
Representation Learning

In this chapter, our aim is to answer Q1: Can we design efficient text representa-
tion learning models that capture word order?. The results presented in this chapter
are based on material from an article published in International Conference for
Learning Representations 2019 [MGS19].

Word embeddings [CW08; MSC+13] have been celebrated as one of the most
impactful contributions from unsupervised representation learning to natural
language processing [Got16]. After unsupervised learning from a large textual
corpus, the word embeddings can be transferred to various downstream tasks.
Sentence representations are then aggregated by the sum or mean of the words
in the sentence, the so-called continuous bag-of-words (CBOW) [MSC+13]. Since
these operations are inherently commutative, any information of word order is
lost. For example, the following two sentences would produce exactly the same
embedding: “The movie was not awful, it was rather great.” and “The movie was
not great, it was rather awful.” A classifier based on the continuous bag-of-words
embedding of these sentences would inevitably fail to distinguish the two different
meanings [Gol17, p. 151]. Although the use of n-grams is a common choice to make
traditional classifiers sensitive to word order, storing embeddings for all n-gram
combinations would require a large amount of memory. Other approaches, such as
contextualized word representations [PNI+18], also require more parameters and
suffer from slow inference times. We identify the need for efficient, order-aware,
word embedding models.

We propose to encode each word as a matrix and to use matrix multiplication
as a composition function. Due to the associative property, only O(log n) sequential
steps are sufficient to encode a sentence. Frequent n-grams can be precomputed
via dynamic programming. The idea was theoretically explored earlier by Rudolph
and Giesbrecht [RG10] as the compositional matrix-space model (CMSM) of lan-
guage but without any learning algorithm. We show that the CBOW training

31

3. Word Matrices for Text Representation Learning

objective [MSC+13] can be adapted to obtain an efficient and unsupervised training
scheme by making two modifications. On the one hand, we modify the initialization
scheme so that the expected value of chained matrix multiplications is constant.
On the other hand, we chose a random word as target instead of the center word
to alleviate bias.

Our experiments show that matrix embeddings yield an increase in 9 out of
10 linguistic probing tasks compared to vector embeddings. We find that matrix-
and vector-based models complement each other well. When training a joint model
with both matrix- and vector-based components, the model produces a higher
performance on 10 of 16 downstream tasks compared to the vector-based approach
trained on the same data with the same capacity. The average improvement across
the 16 tasks is 1.2%. These results are insofar promising, as they open up new
opportunities to efficiently incorporate order awareness into word embedding
models.

After outlining the related work below, we will introduce the CMOW architec-
ture along with a special initialization technique and the unsupervised training
scheme for CMSMs in Section 3.3. The datasets used for model evaluation are
described in Section 3.4. The experiments and results can be found in Section 3.5,
which we discuss in Section 3.6, before we summarize the chapter.

3.1 Related Prior Work

We present an algorithm to learn the weights of the CMSM [RG10]. To the best of
our knowledge, only [YC11] and Asaadi and Rudolph [AR17] have addressed this.
They present complex, multi-level initialization strategies to achieve reasonable
results. Both papers train and evaluate their model on sentiment analysis datasets
only, but do not evaluate their CMSM as a general-purpose sentence encoder. There
is also a work by Borbély [Bor17], which investigates three strategies for learning
matrix embeddings, one of which is similar to ours in the sense that the Word2vec
objective is also reused. The experiments of this work only evaluate word2vec-style
analogy tasks, and the results were not very promising.

Other works have also represented words as matrices, but, unlike our work, they
are not within the framework of the CMSM. Grefenstette and Sadrzadeh [GS11]
represent only relational words as matrices. Socher, Huval, Manning, and Ng
[SHM+12] and Chung, Wang, and Bowman [CWB18] argue that while CMSMs are
arguably more expressive than embeddings located in a vector space, the associative

32

3.2. Problem Formulation

property of matrix multiplication does not reflect the hierarchical structure of
language. Instead, they represent the word sequence as a tree structure. Socher,
Huval, Manning, and Ng [SHM+12] represent each word directly as a matrix (and
a vector) and build recursive neural networks, which combine pairs of words
step by step. Chung, Wang, and Bowman [CWB18] present an approach that
maps pretrained word embeddings to their matrix representation and a non-linear
function composes the constituents.

Sentence embeddings have recently become an active field of research. A desir-
able property of embeddings is that the encoded knowledge is useful in a variety of
high-level downstream tasks. To this end, Conneau and Kiela [CK18] and Conneau
et al. [CKL+18] introduced an evaluation framework for sentence encoders that
tests both their performance on downstream tasks and their ability to capture
linguistic properties. Most of the works focus on either i) the ability of encoders to
capture appropriate semantics or on ii) training objectives that give the encoders
incentive to capture those semantics. Regarding the former, large RNNs are by far
the most popular [CKS+17; KZS+15; TJF+17; NBG19; HCK16; MBX+17; PNI+18;
LL18], followed by convolutional neural networks [GPH+17].

A third group is efficient methods that aggregate word embeddings [WBG+16;
ALM17; PGJ18]. Most of the methods in the latter group are word-order agnostic.
Sent2Vec [PGJ18] is an exception in the sense that they also incorporate bigrams.
Despite employing an objective similar to CBOW, their work is very different from
ours, as they use addition as their composition function.

Regarding training objectives, there is an ongoing debate whether language
modeling [PNI+18; HR18], machine translation [MBX+17], natural language infer-
ence [CKS+17], paraphrase identification [WBG+16], or a mix of many tasks [STB+18]
incentives the models to learn important aspects of language. In our study, we focus
on adapting the well-known objective from word2vec [MSC+13] for the CMSM.

3.2 Problem Formulation

We study the problem of learning an encoder model to produce representations
for a sequence of words (or a sentence). After learning the encoder model on
unlabeled text (pretraining), the model is transferred to downstream tasks of
interest. Optionally, for supervised tasks, another task-specific model is learned
on top of the pretrained model to tackle the downstream task. The parameters
of the pretrained model remain unchanged, i. e., the sentence encoder is frozen

33

3. Word Matrices for Text Representation Learning

after pretraining. The procedure for an arbitrary task (supervised, unsupervised,
or linguistic probing) can be described by the following procedure.

1. Train the encoder model fenc on unlabeled text.

2. Apply encoder model to the task T .

3. If the task is supervised, learn a task-specific model gT , such that y = g(f (x))
for paired training data {(x, y)i}.

4. Evaluate the encoder model combined with the task-specific model on the test
data T .

Note that we only train the encoder in an unsupervised manner on large amounts
of unlabeled text. Only thereafter, steps 2–4 are repeated for each task on the basis
of the same pretrained model from step 1.

3.3 Methods

We describe the CBOW and CMOW encoders as well as the CMOW/CBOW-
Hybrid model. Subsequently, we discuss the training objective and the initialization
strategy.

3.3.1 Continuous Bag-of-Words

With standard word vectors, we reserve a lookup table (an embedding) X(CBOW) P

Rdvocabˆdvec , where dvocab is the vocabulary size and dvec is the dimensionality of each
word vector. Given a sequence of tokens s1, s2, . . . , sn, we denote the summation of
the word vectors for the continuous bag-of-words (CBOW) encoding as:

CBOW(s) :=
n

∑
i=1

X(CBOW)[si]

3.3.2 Continual Multiplication of Words

Again, we start with a lookup table that contains a matrix for each word (a word
matrix), which we encode as a tensor X(CMOW) P Rdvocabˆdˆd, where dvocab is the
vocabulary size and d is the dimensionality of the square matrices. We denote a
specific word matrix of the embedding by X[¨]. Now, given a sequence of tokens

34

3.3. Methods

<Target>brown jumpsquick over the lazy dog

X(CMOW)
brown

H(CMOW)

Matrix Multiplication

Output Layer fox

dog

lazy

...
X(CBOW)

quick

X(CMOW)
quick X(CMOW)

jumps X(CMOW)
over X(CMOW)

the X(CMOW)
lazy X(CMOW)

dog

X(CBOW)
brown X(CBOW)

jumps X(CBOW)
over X(CBOW)

the X(CBOW)
lazy X(CBOW)

dog

Summation
H(CBOW)

Figure 3.1. The CMOW/CBOW-Hybrid model during pretraining.

s1, s2, . . . , sn. The CMOW text encoder computes:

CMOW(s) := flatten
(
X(CMOW)[s1] ¨ X(CMOW)[s2] ¨ ¨ ¨X(CMOW)[sn]

)
where ¨ denotes matrix multiplication, and flatten flattens the resulting d ˆ d-matrix
into a vector of dimension d2.

The model is well defined for sequences of arbitrary length because the result
of the aggregation for any prefix of the sequence is again a square matrix of shape
d ˆ d for both aggregation functions. Thus, it can serve as a general-purpose text
encoder.

3.3.3 CMOW/CBOW-Hybrid

The text representation models CBOW and CMOW also extract different linguistic
properties of the text. Intuitively, a hybrid model that combines the features of its
constituent models also improves the performance on downstream tasks.

The simplest combination is to train CBOW and CMOW separately and concate-
nate the resulting sentence embeddings at test time. In preliminary experiments,
this approach did not work well. We conjecture that there is still considerable
overlap in the features learned by each model, which hinders better performance
on downstream tasks. To avoid redundancy in the learned features, we combine
CBOW and CMOW already during pretraining.

CMOW/CBOW-Hybrid(s) := CMOW(s) ∥ CBOW(s)

35

3. Word Matrices for Text Representation Learning

Note that CMOW and CMOW use separate word lookup tables to retrieve the
embedding matrices and vectors, respectively.

3.3.4 Training Objective

Motivated by its success, we employ a similar training objective as word2vec
[MSC+13]. Intuitively, the model uses logistic regression to predict a left-out word
from the concatenation of CBOW and CMOW embeddings. Then, the model
parameters are updated according to the backpropagated error signal.

The objective consists of maximizing the conditional probability of a word wO
in a certain context s: p(wO | s). For a word wt at position t within a sentence,
we consider the window of tokens (wt´c, . . . , wt+c) around that word. From that
window, we select a target word wO := {wt+i} , i P {´c, . . . ,+c}. The remaining 2c
words of the window form the context s.

We train the model with negative sampling, which is an efficient approximation
of the softmax [MSC+13]. For each positive example, we draw k negative examples
(noise words) from a noise distribution Pnoise(w). The goal is to distinguish the
target word wO from the randomly sampled noise words. Given the encoded input
words f(s), a dot product with weights v P Rdvocabˆdmodel is trained to predicts 1 for
context words and 0 for noise words. The negative sampling training objective is:

log σ
(

vT
wO

fenc(s)
)
+

k

∑
i=1

Ewi„Pnoise(w)

[
log σ(´vT

wi
fenc(s))

]
(3.3.1)

where fenc is one of the text representation models described above: fenc P

{CBOW, CMOW, CMOW/CBOW-Hybrid}, and dmodel corresponds to the dimen-
sion of the (flattened) sentence representation of the model.

Figure 3.1 depicts the training procedure for the CMOW/CBOW-Hybrid model.
For each word, we look up the corresponding word vector and the corresponding
word matrix. The word vectors are aggregated by summation. Word matrices are
aggregated by multiplying the matrices from left to right. The aggregates of both
representations are concatenated, before an output layer (a logistic regression) tries
to predict the left-out word.

In the original word2vec [MSC+13], the center word wO := wt is used as the
target word. However, in our experiments, this objective did not yield satisfactory
results. We hypothesized that the model might be biased because it always had
an equal number of matrices on the left-hand side and on the right-hand side
of the missing word. Instead, we have proposed to select a random output word

36

3.3. Methods

wO „ U ({wt´c, . . . , wt+c}) from the window [MGS19]. The rationale was that by
removing the information about the position of the removed word, the model is
forced to build a representation of the entire sequence.

For CMOW, modifying the objective leads to a large improvement on down-
stream tasks by 20.8% on average, while it does not make a difference for CBOW.
We present details in the Appendix (see Appendix B.1).

3.3.5 Initialization

So far, only Yessenalina and Cardie [YC11] and Asaadi and Rudolph [AR17] have
proposed algorithms to learn the parameters of the matrices in CMSMs. Both works
devote particular attention to the initialization, noting that a standard initialization
randomly sampled from N (0, 0.1) does not work well due to the optimization
problem being non-convex. To alleviate this, the authors of both papers propose
complex initialization strategies based on a bag-of-words [YC11] or incremental
training, starting with two word phrases [AR17]. Instead, we propose an effective
yet simple strategy that initializes embedding matrices close to the identity matrix.

We argue that modern optimizers based on stochastic gradient descent have
shown to find good solutions to optimization problems even when the problems
are non-convex, as in optimizing the weights of deep neural networks. CMOW
is essentially a deep linear neural network with flexible layers, where each layer
corresponds to a word in the sentence. The output of the final layer is then used as
an embedding for the sentence. A subsequent classifier may expect all embeddings
to come from the same distribution. We argue that initializing the weights randomly
from N (0, 0.1) or any other distribution that has most of its mass around zero is
problematic in such a setting. This includes Glorot initialization [GB10], which was
designed to alleviate the problem of vanishing gradients. Figure 3.2 illustrates the
problem: With each multiplication, the values in the embedding become smaller
(by about one order of magnitude). This leads to the undesirable effect that short
sentences have a drastically different representation than larger ones and that the
embedding values vanish for long sequences.

To avoid this problem of vanishing values, we propose an initialization strat-
egy, where we initialize each word embedding matrix X[w] P Rdˆd as a random
deviation from the identity matrix.

37

3. Word Matrices for Text Representation Learning

Figure 3.2. Mean of the absolute values of the text embeddings (y-axis) plotted depending
on the number of multiplications (x-axis) for the three initialization strategies. The abso-
lute value of the embeddings quickly decreases with more multiplications for standard
initialization strategies. When we apply our initialization method, the absolute values of
the embeddings have the same magnitude regardless of the sentence length.

X[w] „ Id +

N (0, 0.1) ¨ ¨ ¨ N (0, 0.1)
...

. . .
...

N (0, 0.1) ¨ ¨ ¨ N (0, 0.1)

 (3.3.2)

The expected value of the multiplication of any number of such word embed-
ding matrices is again the identity matrix [MGS19]. Figure 3.2 shows that this
initialization strategy is capable of maintaining a constant magnitude of the values
throughout the multiplications. For training CMSMs, we observed an improvement
over Glorot initialization of 2.8% on average. We present details in Appendix B.2.

3.4 Datasets

Below, we describe the datasets for pretraining, for the supervised and unsuper-
vised downstream tasks as well as for the linguistic probing tasks. The downstream
tasks are close to applications (e. g., sentiment analysis, natural language inference,

38

3.4. Datasets

sentence similarity), while the linguistic probing tasks test to what extent a model
captures certain linguistic properties such as bigram shift or sentence length.

3.4.1 Dataset for Pretraining

For pretraining, we use the unlabeled news corpus from the University of Maryland,
Baltimore County (UMBC) [HKF+13], available at https://ebiquity.umbc.edu/resource/

html/id/351. The UMBC corpus consists of 134 million English sentences with 3
billion tokens in total. Each sentence has 24.8 words on average with a standard
deviation of 14.6. The dataset originates from a 2007 web crawl that covered more
than 100 million web pages. The uncompressed text data have a size of 48 gigabytes.

3.4.2 Datasets for Linguistic Probing Tasks

All linguistic probing tasks come with 100, 000 training examples and 10, 000 test
examples (English) and are evaluated by accuracy. The datasets for these tasks
have been assembled by Conneau et al. [CKL+18] and can be downloaded from
https://github.com/facebookresearch/SentEval/tree/main/data/probing.

Tree Depth prediction (Depth) The task is to predict the depth of the syntactic tree of
a sentence. Its ground truth values range between 5 and 12.

Bigram Shift (BShift) In BShift, the task is to predict whether a word bigram has
been inverted within the input sentence.

Subject number (SubjNum) The task to predict whether the subject of the main clause
of the input sentence is in singular or plural form.

Tense A binary classification task, in which it should be predicted whether the
main verb of the sentence is in the present or past tense.

Coordination Inversion (CoordInv) A binary classification task in which it needs to be
predicted whether the order of two parts (combined by a conjunction) has been
inverted compared to the training data.

Length prediction (SentLen) The task is to predict the length of the input sequence in
six possible intervals between 5 and 28.

Object number prediction (ObjNum) Analogous to SubjNum, the ObjNum task is
to predict whether the direct object of the input sentence’s main clause is in
singular or plural form.

39

https://ebiquity.umbc.edu/resource/html/id/351
https://ebiquity.umbc.edu/resource/html/id/351
https://github.com/facebookresearch/SentEval/tree/main/data/probing

3. Word Matrices for Text Representation Learning

Top Constituents prediction (TopConst) The task is to predict the top constituent
sequences, e. g., noun-phrase verb-phrase. The number of possible classes is 20
with 19 top-constituent sequences and 1 ’other’ class.

Semantic Odd Man Out (SOMO) A binary classification task in which the task is
to determine whether the sentence has occurred as-is in the training data or
whether a noun or verb has been replaced.

Word Content (WC) is a task to memorize word content, i. e., the model should
predict which of 1,000 words are present in a given sentence based on the
representation of the aggregated sentence. Note that this task would be trivial
with a BoW representation. What is of interest is the extent to which the input
words can be reconstructed on the basis of an aggregated low-dimensional
representation of a sentence.

3.4.3 Datasets for Supervised and Unsupervised Downstream Tasks

Here, we briefly describe the tasks within the SentEval benchmark1 by Conneau and
Kiela [CK18]. All tasks are evaluated with accuracy, except for Sentences Involving
Compositional Knowledge (SICK)-R and the STS variants, which we evaluate with
Spearman correlation.

Subjectivity Status (SUBJ) A two-class classification dataset, where the task is to
distinguish between subjective reviews and objective plot summaries [WM12]
(English). The original dataset had been composed by Pang and Lee [PL04] The
data can be found at https://nlp.stanford.edu/~sidaw/home/projects:nbsvm.

Customer Reviews (CR) CR is a dataset of customer reviews in English [WM12] with
the task of distinguishing between positive or negative opinions about products.
The dataset has been processed as in Nakagawa, Inui, and Kurohashi [NIK10],
while the original dataset is from Hu and Liu [HL04].The data can be found at
https://nlp.stanford.edu/~sidaw/home/projects:nbsvm.

Movie Reviews (MR) The movie reviews dataset consists of 11k training and 11k test
examples. The task is to predict the sentiment of sentences within movie reviews.
The data can be found under https://nlp.stanford.edu/~sidaw/home/projects:nbsvm

1https://github.com/facebookresearch/SentEval

40

https://nlp.stanford.edu/~sidaw/home/projects:nbsvm
https://nlp.stanford.edu/~sidaw/home/projects:nbsvm
https://nlp.stanford.edu/~sidaw/home/projects:nbsvm
https://github.com/facebookresearch/SentEval

3.4. Datasets

Opinion Polarity (abbreviated as MPQA) The Opinion-Polarity subtask [WM12] of the
Multi-Perspective Question Answering (MPQA) by Wiebe, Wilson, and Cardie
[WWC05]. The task is to classify English questions into polarity. The data can
be found at https://nlp.stanford.edu/~sidaw/home/projects:nbsvm.

Microsoft Research Paraphrase Corpus (MRPC) MRPC is a paraphrase detection task
consisting of 5,800 pairs of sentences. The task is to determine whether a pair
of English sentences is in a relationship of paraphrase (or semantic equivalence)
or not. The original data set is from Dolan, Quirk, and Brockett [DQB04]. The
data can be found at https://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_

the_art)

Text REtrieval Conference (TREC) Question-type Classification The TREC Question-
type classification dataset has been assembled by Li and Roth [LR02]. The task
is to classify English questions into question types. The original dataset had
6 coarse and 50 fine-grained classes. The data can be found at https://cogcomp.

seas.upenn.edu/Data/QA/QC/. The test set contains 500 TREC 10 questions, while the
training sets are composed of earlier TREC versions.

Sentences Involving Compositional Knowledge (SICK) SICK-E and SICK-R are English
natural language inference datasets, in which the task is to determine whether
one sentence is implied by another. The task of SICK-E is a three-way clas-
sification with classes being ’entailment’, ’contradiction’, and ’neutral’. The
task of SICK-R is to predict a more fine-grained relatedness score in the range
of 1 to 5. SICK-E is evaluated with accuracy, whereas the more fine-grained
SICK-R is evaluated with Spearman correlation. The data can be found under
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC

Stanford Sentiment Treebank (SST) Two-way Stanford Sentiment Treebank (SST-2)
and five-way Stanford Sentiment Treebank (SST-5) are English sentiment analy-
sis datasets from the Stanford Sentiment Treebank [SPW+13]. SST-2 is a binary
sentiment classification task and SST-5 is a fine-grained (five classes) sentiment
classification task. The datasets can be found at https://nlp.stanford.edu/sentiment/

index.html.

Semantic Textual Similarity Benchmark (STS-B) STS-B is a collection of the English
datasets from the annual SemEval challenges between 2012 and 2017. The
task is to measure the similarity of two sentences on a scale from 1 to 5.
Details can be found in Section 8 of Cer et al. [CDA+17]. We evaluate the

41

https://nlp.stanford.edu/~sidaw/home/projects:nbsvm
https://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_the_art)
https://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_the_art)
https://cogcomp.seas.upenn.edu/Data/QA/QC/
https://cogcomp.seas.upenn.edu/Data/QA/QC/
https://wiki.cimec.unitn.it/tiki-index.php?page=CLIC
https://nlp.stanford.edu/sentiment/index.html
https://nlp.stanford.edu/sentiment/index.html

3. Word Matrices for Text Representation Learning

performance on this task as Spearman correlation coefficient (times 100) of
the models’ output with the similarity scores. The data can be found at http:

//ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

Semantic Textual Similarity (STS) 12–16 STS-12–16 refer to the STS tasks of the
annual issues of the SemEval challenge between 2012 and 2016. Again, the task
is to measure the similarity of a pair of English sentences. We report the results
as Spearman correlation coefficient (times 100) of the models’ output with the
ground-truth similarity scores. The difference from STS-B is that these tasks are
evaluated in an unsupervised manner.

3.5 Experiments

We first describe the procedure for pretraining our models on the UMBC corpus
and fine-tuning them on the linguistic probing and downstream tasks.

Following Mikolov et al. [MSC+13], we limit the vocabulary to the 30,000
most frequent words to compare our different methods and their variants. Out-of-
vocabulary words are discarded. The optimization is carried out by Adam [KB15]
with an initial learning rate of 0.0003 and k = 20 negative samples, as suggested
by [MSC+13]. For the noise distribution Pn(w), we again follow [MSC+13] and use
U (w)3/4/Z, where Z is the partition function to normalize the distribution.

To limit the total batch size and to avoid repeating the expensive tokenization
step, we created each batch as follows: 1,024 sentences from the corpus are selected
at random. After tokenizing each sentence, we randomly select (without replace-
ment) at maximum 30 words from the sentence to function as center words for
a context window of size c = 5, i. e., we generate up to 30 training samples per
sentence. By padding with copies of the neutral element, we also include words as
center words for which there are not enough words in the left or right contexts. For
CBOW, the neutral element is the zero vector. For CMOW, the neutral element is
the identity matrix.

We use 0.1% of the 134 million sentences for validation. After each 1,000
updates corresponding to 1M training examples, we calculate the validation loss,
and training terminates after 10 consecutive validations of no improvement.

We have trained five different models: CMOW and CBOW with d = 20 and
d = 28, which lead to 400-dimensional and 784-dimensional word embeddings,
respectively. We also trained the CMOW/CMOW-Hybrid model with d = 20 for
each component, so that the total model has 800 parameters per word in the

42

http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark
http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark

3.5. Experiments

lookup tables. We report the results of two more models: H-CBOW is the 400-
dimensional CBOW component trained in Hybrid and H-CMOW is the respective
CMOW component. Below, we compare the 800-dimensional Hybrid method to
the 784-dimensional CBOW and CMOW models.

After training, we keep only the encoder f of the model. We evaluate the ability
to encode linguistic properties by testing on 10 linguistic probing tasks [CKL+18].
In particular, the Word Content task tests the ability to memorize exact words in the
sentence. BShift analyzes the encoder’s sensitivity to word order. The downstream
performance is evaluated on 10 supervised and 6 unsupervised tasks from the
SentEval framework [CK18]. We use the standard evaluation configuration that
trains a logistic regression classifier on top of the embeddings.

3.5.1 Linguistic Probing Tasks

First, we consider the linguistic probing tasks. The results are shown in Figure 3.3.
We find that CBOW and CMOW have complementary strengths and weaknesses.
While CBOW gives the highest performance in word content memorization, CMOW
outperforms CBOW on all other tasks. Most improvements vary between 1-3
percentage points. The difference is about 8 points for CoordInv and SentLen,
and even 21 points for BShift, where the CBOW model remains with random
performance as expected.

The hybrid model yields scores close to or even above the better model of
the two on all tasks. In terms of relative numbers, the hybrid model improves on
CBOW in all probing tasks but WC and SOMO. The relative improvement averaged
over all tasks is 8%. Compared to CMOW, the hybrid model shows rather small
differences. The largest loss is 4% on the CoordInv task. However, due to the large
gain in Word Content (20.9%), the overall average gain is still 1.6%.

We now compare the jointly trained H-CMOW and H-CBOW with their sepa-
rately trained 400-dimensional counterparts. We observe that CMOW loses most of
its ability to memorize word content, while CBOW shows a slight gain. However,
H-CMOW shows, among others, improvements on BShift.

3.5.2 Supervised Downstream Tasks

Figure 3.4 shows the scores obtained in the supervised downstream tasks. When
comparing the 784-dimensional models CBOW and CMOW seem to complement
each other. This time, CBOW has the upperhand, matching or outperforming

43

3. Word Matrices for Text Representation Learning

De
pt

h

BS
hi

ft

Su
bj

Nu
m

Te
ns

e

Co
or

dI
nv

Se
nt

Le
n

Ob
jN

um

To
pC

on
st

SO
M

O

W
C

CBOW/400

CMOW/400

H-CBOW/400

H-CMOW/400

CBOW/784

CMOW/784

Hybrid/800

M
od

el

32.5 50.2 78.9 78.7 53.6 73.6 79.0 69.6 48.9 86.7

34.4 68.8 80.1 79.9 59.8 81.9 79.2 70.7 50.3 70.7

31.2 50.2 77.2 78.8 52.6 77.5 76.1 66.1 49.2 87.2

32.3 70.8 81.3 76.0 59.6 82.3 77.4 70.0 50.2 38.2

33.0 49.6 79.3 78.4 53.6 74.5 78.6 72.0 49.6 89.5

35.1 70.8 82.0 80.2 61.8 82.8 79.7 74.2 50.7 72.9

35.0 70.8 81.7 81.0 59.4 84.4 79.0 74.3 49.3 87.6

40

50

60

70

80

Figure 3.3. Results on linguistic probing tasks.

SU
BJ CR M
R

M
PQ

A

M
RP

C

TR
EC

SI
CK

-E

SS
T2

SS
T5

ST
S-

B

SI
CK

-R

CB
OW

/7
84

CM
OW

/7
84

Hy
br

id
/8

00
M

od
el

90.0 79.2 74.0 87.1 71.6 85.6 78.9 78.5 42.1 61.0 78.1

87.5 73.4 70.6 87.3 69.6 88.0 77.2 74.7 37.9 56.5 76.2

90.2 78.7 73.7 87.3 72.7 87.6 79.4 79.6 43.3 63.4 77.8

40

50

60

70

80

90

Figure 3.4. Results on supervised downstream tasks

44

3.6. Discussion

CMOW on all supervised downstream tasks except TREC by up to 4 points. On the
TREC task, CMOW outperforms CBOW by 2.5 points. Our jointly trained model is
not more than 0.8 points below the better one of CBOW and CMOW on any of the
considered supervised downstream tasks. On 7 of 11 supervised tasks, the joint
model even improves on the better model, and on two-way Stanford Sentiment
Treebank, SST-5, and MRPC the difference is more than 1 point. The average relative
improvement over all tasks is 1.2%.

3.5.3 Unsupervised Downstream Tasks

STS12 STS13 STS14 STS15 STS16

CB
OW

CM
OW

Hy
br

id
M

od
el

43.5 50.0 57.7 63.2 61.0

39.2 31.9 38.7 49.7 52.2

49.6 46.0 55.1 62.4 62.1
40

50

60

Figure 3.5. Results on the unsupervised downstream tasks

On the unsupervised downstream tasks, CBOW attains higher scores than
CMOW on all datasets by wide margins. Figure 3.5 shows the results. For example,
on STS-13, CBOW’s score is 50% higher. The hybrid model is capable of repairing
this deficit, reducing the difference to 8%. It even outperforms CBOW on two of
the tasks and yields a slight improvement of 0.5% on average on all unsupervised
downstream tasks. However, the variance in relative performance is notably larger
than on the supervised downstream tasks.

3.6 Discussion

Key Results Our CMOW model produces sentence embeddings that are at the
level of fastSent [HCK16]. Thus, CMOW is a reasonable choice as a sentence
encoder. Essential to the success of our training scheme for the CMOW model
are two changes to the original word2vec training. First, our initialization strategy
improved downstream performance by 2.8% compared to Glorot initialization.
Secondly, by choosing the target word of the objective at random, the performance
of CMOW on downstream tasks improved by 20.8% on average. Hence, our novel

45

3. Word Matrices for Text Representation Learning

training scheme is the first that provides an effective way to obtain parameters for
the Compositional Matrix Space Model from unlabeled, large-scale datasets.

On linguistic probing tasks, we observe that CMOW embeddings better en-
code the linguistic properties of sentences than CBOW. CMOW gets reasonably
close to CBOW on some downstream tasks. However, in general, CMOW does
not supersede CBOW embeddings. This is because CBOW is stronger in word
content memorization, which is positively correlated with performance on most
downstream tasks [CKL+18]. However, CMOW has increased performance on the
TREC question type classification task (88.0 compared to 85.6). The rationale is
that this particular TREC task belongs to a class of downstream tasks that require
capturing other linguistic properties apart from Word Content [CKL+18].

Due to joint training, our hybrid model learns to pick up the best features
of CBOW and CMOW simultaneously. It enables both models to focus on their
respective strengths. This is best observed as H-CMOW loses its ability to memorize
word content. In return, H-CMOW has more capacity to learn other properties, as
seen in the increase in performance at BShift and others. We observe a comple-
mentary behavior for H-CBOW, which has increased scores on WC. With an 8%
improvement on average, the hybrid model is more linguistically informed than
CBOW. This transfers to a total performance improvement by 1.2% on average over
11 supervised downstream tasks, with large improvements on sentiment analysis
tasks (SST-2, SST-5), question classification (TREC), and semantic text similarity
(STS-B). These tasks arguably depend on word order information. On the other
tasks, the differences are small. Again, most tasks in the SentEval benchmark
depend mainly on word content memorization [CKL+18], where the hybrid model
does not improve on CBOW.

Limitations Please note, these models do not represent the state-of-the-art for sen-
tence embeddings. Perone, Silveira, and Paula [PSP18] show that LSTMs and Trans-
former models, but also by averaging the word embeddings from fastText [BGJ+17],
achieve better scores. These embeddings were trained on the CBOW objective and
are thus very similar to our models. However, they are trained on large corpora
(600B tokens vs 3B in our study), use large vocabularies (2M vs 30k in our study),
and incorporate numerous tricks to further enhance the quality of their models:
word subsampling, subword information, phrase representation, n-gram represen-
tations, position-dependent weighting, and corpus deduplication. In the present
study, we focus on comparing CBOW, CMOW, and the hybrid model in a scenario
where we have complete control over the independent variables. Our analysis yields

46

3.7. Summary

interesting insights into what our models learn when trained separately or jointly,
which we consider to be more valuable in the long term for the research field of
text representation learning.

Inference Speed We offer an efficient order-aware extension to embedding algo-
rithms from the bag-of-words family. Our 784-dimensional CMOW embeddings can
be computed at the same rate as CBOW embeddings. We measured an encoding
speed of 71k for CMOW vs. 61k for CBOW sentences per second. This is due to the
fast implementation of matrix multiplication in graphics processing units (GPUs).
It allows us to encode sentences about 5 times faster than using a classical Elman
RNN [Elm91] of the same size (12k per second). Our matrix embedding approach
also offers valuable theoretical advantages over RNNs and other autoregressive
models. Matrix multiplication is associative, so that merely log2 n sequential steps
are necessary to encode a sequence of size n. In addition to parallelization, we
could also employ dynamic programming techniques to further reduce the number
of matrix multiplication steps, e. g., by precomputing frequent bigrams. Thus, we
expect our matrix embedding approach to be specifically well suited for large-scale,
time-sensitive text encoding applications. Our hybrid model serves as a template
for using CMOW in conjunction with other existing embedding techniques, such
as fastText [BGJ+17].

3.7 Summary

We have presented the first efficient unsupervised learning scheme for composi-
tional matrix-space models, an efficient embedding-based model that captures word
order. We have shown that the resulting sentence embeddings capture linguistic
features that are complementary to the embeddings of CBOW. We then presented
a hybrid model with CBOW that is able to combine the complementary strengths
of both models for improved performance on downstream tasks, in particular, on
tasks that depend on word order information. Thus, our model narrows the gap of
representational power between simple word embeddings and highly nonlinear
recurrent sentence encoders. To answer the research question Q1: Can we design
efficient text representation learning models that capture word order?, we have shown
that it is possible to learn efficient and order-aware representations of text with
pretraining on large amounts of unlabeled text.

47

Chapter 4

Cross-Architecture Distillation
with Word Matrices

In this chapter, we will continue to work with word matrices for general text
representation learning. In particular, we will address the research question Q2:
Can we distill the knowledge of large-scale pretrained language models into efficient text
representation models and adapt those via fine-tuning for downstream tasks?. This chapter
is based on material published as a conference paper [GCM+22] in the International
Joint Conference on Neural Networks 2022.

Large pretrained language models (PreLMs) [DCL+19; RSR+20] have emerged
as de-facto standard methods for natural language processing [WSM+19; WPN+19].
The common strategy is to pretrain models on enormous amounts of unlabeled
text before fine-tuning them for downstream tasks. However, the drawback of
PreLMs is that the models are getting larger and larger, with up to several billions
of parameters [BMR+20]. This comes with high environmental and economic
costs [SGM19] and shifts the development and research into the hands of a few
global players [BHA+21, pp. 10-12].

Although a single pretrained model can be reused for multiple downstream
tasks, the sheer size of the model is often prohibitive. The immense resource
requirements prevent the use of these models in small-scale laboratories and
mobile devices, which is also tied to privacy concerns [SWR20].

There is a need for more efficient models or compressed versions of large models
to make AI research more inclusive and energy-friendly, while fostering deployment
in applications. Reducing the size of PreLMs using knowledge distillation [HVD15]
or model compression [BCN06] is an active area of research [SDC+20; JYS+20;
SYS+20]. Both knowledge distillation and model compression can be described
as teacher-student setups. The student is trained to mimic the predictions of the
teacher while using less resources. Typically, a large PreLM takes the role of the
teacher, while the student is a smaller version of the same architecture. Sharing
the same architecture between the student and the teacher enables the use of

49

4. Cross-Architecture Distillation with Word Matrices

dedicated distillation techniques, e. g., aligning the representations of intermediate
layers [SDC+20; SYS+20].

However, using more efficient architectures for the student has already shown
promising results, such as the task-specific distillation approaches of Tang et al.
[TLL+19] and Wasserblat, Pereg, and Izsak [WPI20]. In their work, student models
are LSTMs [HS97] or models based on a CBOW representation.

On the one hand, LSTMs are difficult to parallelize as they need at least O(n)
sequential steps to encode a sequence of length n. On the other hand, CBOW-based
models are not sensitive to word order, i. e., cannot distinguish sentences with the
same words but in different order (“cat eats mouse” vs. “mouse eats cat” are treated
as equivalent).

There are, however, more efficient models such as CMOW from the previous
Chapter 3 that do capture word order by representing each token as a matrix, instead
of a vector. We recall that a sequence in CMOW is modeled by non-commutative
matrix multiplication, which makes the encoding of a sequence dependent on the
word order.

The present work investigates how order-sensitive matrix embeddings can be
used as student models in cross-architecture distillation from large PreLM teach-
ers. Thus, we complement the existing body of work that focuses predominantly
on same-architecture distillation. All previous cross-architecture approaches are
task-specific, whereas we also explore general distillation. We aim to understand to
what extent order-sensitive embeddings are suited to capture the teacher signal of
a large PreLM such as BERT. To this end, we extend the CMOW/CBOW-Hybrid
model from Chapter 3, which unifies the strengths of CBOW and CMOW, with
a bidirectional representation of the sequences. Furthermore, we add the ability
to emit per-token representations to facilitate the use of a modern masked lan-
guage model objective [DCL+19]. We investigate both general distillation, i. e., the
distillation is applied during pretraining on unlabeled text, and task-specific distilla-
tion, when an already fine-tuned PreLM is distilled per task. We also introduce a
two-sentence encoding scheme to CMOW such that it can deal with similarity and
natural language inferencing tasks. This improves performance by 20% compared
to a naive joint encoding.

Our results show that large PreLMs can be distilled into efficient order-sensitive
embedding models and achieve performance comparable to the approach known
as Embeddings from Language Models (ELMo) [PNI+18] on the GLUE benchmark.
On certain tasks, embedding-based models even challenge other size-reduced BERT

50

4.1. Related Prior Work

models such as DistilBERT. In summary, the contributions of this chapter are as
follows:

Ź We extend order-sensitive embedding models with bidirectionality and make
them amenable for masked language model pretraining.

Ź We explore the use of order-sensitive embedding models as student models in a
cross-architecture distillation setup with BERT as a teacher and compare general
and task-specific distillation.

Ź We introduce the first encoding scheme that enables CMOW/CBOW-Hybrid to
deal with two-sentence tasks (20% increase over the naive approach).

Ź Our results show that the best distilled embedding models can be on par with
more expensive models such as ELMo or DistilBERT on certain tasks of the
GLUE benchmark, while having a higher encoding speed (thrice as high as
DistilBERT).

In the following, we describe the related work on distillation techniques be-
fore we formulate the problem and introduce preliminaries in Section 4.2. Our
embedding models, our cross-architecture distillation setup, and our two-sequence
encoding scheme are described in Section 4.3. The experiments are presented in
Section 4.5, whose results are discussed in Section 4.6, before we summarize the
chapter.

4.1 Related Prior Work

We discuss related work on general distillation, task-specific distillation, cross-
architecture distillation, and other techniques to reduce the size of large models.

General Distillation In general distillation, a PreLM is distilled into a student
model during pretraining. DistilBERT [SDC+20] is such a general-purpose language
model that has been distilled from BERT. Apart from masked language modeling
and distillation objectives, the authors also introduced a cosine loss term to align
the student and teacher’s hidden states (layer transfer). Furthermore, the student
is initialized with selected layers of the teacher. MobileBERT [SYS+20] introduced
a bottleneck to BERT such that layers can be transferred to student models with
smaller dimensions. The structure of MobileBERT changes BERT’s structure by us-
ing an inverted bottleneck before and a bottleneck after the encoder blocks, making

51

4. Cross-Architecture Distillation with Word Matrices

the model deeper and reducing its width. This makes MobileBERT amenable for
layer transfer to the smaller student [SYS+20].

Task-specific Distillation In task-specific distillation, the teacher signal is used
during fine-tuning. Approaches that use a teacher signal during pretraining and
fine-tuning also fall into this caterogy.Sun, Cheng, Gan, and Liu [SCG+19] use
layer-wise distillation objectives and initialize with teacher weights to train BERT
students with fewer layers. They explore which layers of the teacher provide the
most information e. g., using upper layers or learning from every kth layer. Jiao et al.
[JYS+20] applies knowledge distillation in both stages, pretraining and fine-tuning.
The authors also augment the training data [JYS+20], which we have also considered
but found no consistent improvement. Turc, Chang, Lee, and Toutanova [TCL+19]
analyze the interaction between pretraining and fine-tuning when distilling BERT
and report a benefit of applying distillation already during pretraining.

Mao et al. [MWW+20] propose another size-reduced BERT model that combines
knowledge distillation with pruning and matrix factorization. Other approaches
consider distillation in multilingual [TRJ+19] or multi-task settings [YSG+19].

Cross-architecture Distillation The works described above assume that the
teacher and the student share the same architecture. This allows us to use tech-
niques such as layer transfer and loss terms to align hidden states. However, the
student model does not need to have the same architecture as the teacher, which
we then call cross-architecture distillation. Wasserblat, Pereg, and Izsak [WPI20]
use a simple feed forward network with CBOW embeddings and a bidirectional
LSTM model as students. Both models perform well in several downstream tasks.
Tang et al. [TLL+19] explore distilling BERT into a single-layer BiLSTM without
using additional training data or modifications to the teacher architecture. Their
distillation-based approach yields improvements compared to a plain BiLSTM
without teacher signal: about 4 points on all reported tasks (Quora Question
Pairs (QQP), Multi-Genre Natural Language Inference corpus (MNLI), and SST-2).
This has motivated us to investigate whether even simpler models can be used as
students of a BERT teacher.

Pruning and Quantization Other techniques to reduce the size of a model are
pruning and quantization. Pruning approaches such as Sanh, Wolf, and Rush
[SWR20] reduce the number of parameters. However, the smaller resulting models

52

4.2. Problem Formulation

use the same architecture as their larger counterparts and, thus, pruning does not
necessarily improve inference speed until dedicated hardware for sparse networks
becomes available [SWR20]. Quantization is a common post-processing step to
reduce the size of the model by decreasing the floating point precision of the
weights [GAG+15; WJZ+20]. Pruning and quantization can be applied in conjunc-
tion with knowledge distillation [SWR20; SYS+20]. In addition to techniques to
reduce the size of the model, there is also a tremendous effort to improve the
efficiency of the Transformer architecture, for which we refer to the recent survey of
Tay, Dehghani, Bahri, and Metzler [TDB+20] on efficient Transformers. For now, we
focus on distillation, while pruning and quantization might even further increase
the efficiency of our proposed method.

Summary The existing literature focuses mainly on reducing the size of PreLMs
by distillation, pruning, and quantization. Specialized techniques, such as layer
transfer, depend on teacher and student sharing the same architecture and, thus,
are not applicable for cross-architecture distillation. So far, only a few recent works
consider distilling PreLMs into other architectures such as LSTMs and bag-of-
words feed-forward nets. In this work, we show that cross-architecture distillation
with order-sensitive embedding models as students outperform previous cross-
architecture distillation approaches and achieve scores comparable to ELMo, while
using less computational resources. Finally, all previous cross-architecture distilla-
tion approaches are task-specific, while we could show that general distillation can
lead to scores even higher than those for task-specific distillation.

4.2 Problem Formulation

We study the problems of knowledge distillation in a transfer learning setting. In
the following, we first distinguish between the pretraining and fine-tuning stages
of knowledge distillation. Then, we describe how knowledge distillation can be
applied in these two stages.

Transfer Learning: Pretraining and Fine-tuning In transfer learning, we distin-
guish between the pretraining and the fine-tuning stage. In the pretraining stage, a
representation learning model is trained on large amounts of unlabeled text. The
pretrained model is then transferred to downstream tasks. The parameters of the

53

4. Cross-Architecture Distillation with Word Matrices

transferred model are fine-tuned to these task. For each task, we start with a fresh
copy of the pretrained model.

Pretraining Train model fθ on unlabeled text.

Fine-tuning For each downstream task T , continue training of the same model fθ

that has been obtained by pretraining.

The task T can be an arbitrary supervised downstream task, where paired
training data are available. In particular, this includes two-sequence tasks such as
natural language inference or textual similarity. The performance measure depends
on the respective task. We will use the tasks of the general language understanding
evaluation benchmark (GLUE) benchmark to evaluate our models. The difference
from the sentence representation learning tasks considered in Chapter 3 is that the
encoding part of the model can also be adapted during fine-tuning.

Knowledge Distillation The problem of knowledge distillation [HVD15] or model
compression [BCN06] refers to learning a smaller model g that imitates the behavior
of a larger model f , such that desirably g(x) « f (x). We call the smaller model g
the student, and the larger model f the teacher. The distillation is carried out by
aligning the teacher and student outputs, e. g., through a loss term L(f (x), g(x)),
which we call the teacher signal. There are more techniques to foster distillation,
such as using the teacher’s weights as initialization for the student (see Section 4.1),
but those are only applicable when teacher and student are of the same model
architecture.

To contextualize knowledge distillation with transfer learning, we adopt the
distinction between general distillation and task-specific distillation from Tang et al.
[TLL+19].

General Distillation The distillation is carried out only in the pretraining stage. After
pretraining, the teacher is no longer needed. The student can be fine-tuned to
downstream tasks independently.

Task-specific distillation In task-specific distillation, the teacher model can be con-
sulted during fine-tuning for each downstream task.

Note that the task-specific distillation model can still be initialized with a model
obtained by general distillation. We consider this procedure also as task-specific
distillation, because the teacher has to be consulted for fine-tuning.

54

4.3. Methods

The distinction between general and task-specific distillation is important be-
cause this affects how the methods can be applied in practice. Imagine that you
want to tackle a downstream task on a mobile device. A general distillation model
would be able to learn new tasks on its own. With a task-specific distillation ap-
proach, the larger teacher model would need to be consulted on the mobile device.
Thus, both approaches differ in how they can be applied in practice and should be
considered as separate problems.

4.3 Methods

First, we introduce our bidirectional extension to the CMOW/CBOW-Hybrid
model. Subsequently, we introduce our approach for cross-architecture distillation
that we use during the pretraining and fine-tuning stages. Finally, we introduce a
two-sentence encoding scheme for order-sensitive embedding models that is crucial
for fine-tuning on downstream tasks with paired sentences.

4.3.1 Extending Matrix Embedding Models

We extend the CMOW/CBOW-Hybrid embeddings of the previous chapter with
a bidirectional component and the ability to emit per-token representations as a
foundation for cross-architecture distillation. In the following, we briefly recall
the CMOW/CBOW-Hybrid embedding model and then describe the extensions
that enable distillation, increase expressive power, and improve the processing of
sentence pairs.

Recalling CMOW/CBOW-Hybrid CMOW/CBOW-Hybrid embeddings are a
combination of matrix embeddings and vector embeddings. Compared to vector-
only embeddings, the word order can be captured because matrix multiplication
is non-commutative. Given a sequence s of n tokens with each token sj having its
corresponding matrix-space embedding Xj P Rdˆd and vector-space embedding xj P

Rdvec , the CMOW/CBOW-Hybrid embedding is the multiplication of embedding
matrices Xi concatenated (symbol ¨||¨) to the sum of embedding vectors xi:

H(CMOW) := X(CMOW)
1 ¨ X(CMOW)

2 ¨ ¨ ¨ X(CMOW)
n

h(CBOW) := ∑
1ďjďn

x(CBOW)
j

55

4. Cross-Architecture Distillation with Word Matrices

h(Hybrid) := flatten
(

H(CMOW)
)
∥ h(CBOW)

where flatten collapses the matrix into a vector. As in the previous chapter, we
initialize each embedding matrix Xj as the identity plus Gaussian noise Id +

N (0, σ2
init). We use σinit = 0.01.

the [MASK]brown jumpsquick over the [MASK] dog

X(fw)
the X(fw)

quick X(fw)
brown X(fw)[MASK]

X(bw)jumps X(bw)over X(bw)the X(bw)[MASK] X(bw)dogX(bw)[MASK]

H(fw)
4

H(bw)
4

Left-to-right Matrix Multiplication

Right-to-left Matrix Multiplication

Masked Language
Modeling Head fox

dog

lazy

...

BERT
Teacher
Signal

H(bw)
4H(fw)

4

H(CMOW)
4

1 2 3 5 6 7 8 94

Figure 4.1. The bidirectional CMOW component of our proposed architecture during
pretraining. In this example, the model predicts the masked token at position 4 by con-
catenating forward and backward matrix embeddings, which are then fed into a masked
language modeling head. Bert illustration: Melanie Poech

Bidirectional CMOW/CBOW-Hybrid Inspired by the success of bidirection in
RNNs [SP97], LSTMs [PNI+18], and Transformers [DCL+19], we extend CMOW
by a bidirectional component. Hence, we introduce a second set of matrix-space
embeddings that are multiplied in reverse order. We then have two sets of matrix
embeddings for each word: one for the forward direction X(fw) P Rnvocabˆdˆd and
one for the backward direction X(bw) P Rnvocabˆdˆd. Then, we concatenate forward
and backward directions. Figure 4.1 illustrates the bidirectional CMOW component.

Furthermore, we emit one representation per token position i, which allows
training with a masked language model objective [DCL+19]. Thus, we are able to
make use of the BERT teacher signal for pretraining. Since we can reuse computa-
tions, O(n) matrix multiplications are sufficient to encode a sequence of length n.

56

4.3. Methods

For these intermediate representations, we also modify the CBOW component in a
way that it yields partial sums for the forward and backward directions.

To ease the notation, we use Xi as a shorthand for the embedding matrix of the
token si at position i, i. e., Xi = X[si]. In this notation, CMOW/CBOW-Hybrid from
the previous chapter can be expressed as:

h(Bidi. CMOW)
i := flatten

(
X(fw)

1 ¨ X(fw)
2 ¨ ¨ ¨ X(fw)

i

)
∥ flatten

(
X(bw)

n ¨ X(bw)
n´1 ¨ ¨ ¨ X(bw)

i

)
h(Bidi. CBOW)

i :=
i

∑
j=1

x(CBOW)
j ∥

n

∑
j=i

x(CBOW)
j

h(Bidi. Hybrid)
i := H(Bidi. CMOW)

i ∥ h(Bidi. CBOW)
i

For fine-tuning on tasks with full sentences as input, e. g., natural language
inference, we do not need per-token representations. In this case, we compute the
representation of a token sequence as:

h(Bidi. CMOW) := flatten
(

X(fw)
1 ¨ X(fw)

2 ¨ ¨ ¨ X(fw)
n

)
∥ flatten(X(bw)

n ¨ X(bw)
n´1 ¨ ¨ ¨ X(bw)

1)

h(CBOW) :=
n

∑
j=1

x(CBOW)
j

h(Bidi. Hybrid) := h(Bidi. CMOW) ∥ h(CBOW)

Note that the forward and backward directions of the embedding vectors h(CBOW)

conflate to equivalent formulas when we encode entire sequences. Thus, we only
need to include a single CBOW representation along with the two CMOW com-
ponents that yield different results for the forward and backward direction. At
inference time, the model can be parallelized along the sequential dimension.

For regularization, we apply a mild dropout (p=0.1) on both the embeddings
and their aggregated representations during pretraining. Then we feed them into
a linear masked language modeling head during pretraining, see Figure 4.1, or
an MLP classification head to tackle downstream tasks. We chose an MLP be-
cause it adds nonlinearity to the model without introducing further complexity.
In pre-experiments, the MLP downstream classifier has led to the best average
performance across all tasks of the GLUE benchmark.

57

4. Cross-Architecture Distillation with Word Matrices

4.3.2 Cross-Architecture Distillation

A central question of our research is whether we can distill a large PreLM, e. g.,
BERT, into more efficient, non-Transformer architectures such as the proposed
bidirectional CMOW/CBOW-Hybrid model. This requires a cross-architecture
distillation approach, which we describe below.

In general, the idea of knowledge distillation is to compress the knowledge of a
large teacher model into a smaller student model [HVD15; BCN06] . It involves a
loss function L that is a combination of two loss terms, i. e., L = λ ¨Lhard + (1 ´ λ) ¨

Lsoft with weighting parameter λ. Lhard denotes the cross-entropy loss with respect
to the ground truth and Lsoft = Σiti ¨ log(si) is the cross-entropy between student
logits s and the teacher signal t. Optionally, the softmax within Lsoft is flattened by
a temperature parameter T. We distinguish between general distillation, where
BERT’s teacher signal is only used during pretraining, and task-specific distillation,
where the BERT teacher signal is used during fine-tuning for the downstream task.

Considering our goal of designing a cross-architecture distillation, the general
distillation approach has the conceptual benefit that the teacher model is not needed
for fine-tuning. Thus, the student model is capable of tackling downstream tasks
without the supervision of the large teacher. This has the benefit that one does
not need to carry around the BERT model to adapt to every new downstream
task. Above, we have introduced the ability to emit per-token representations
with lightweight (bidirectional) CMOW/CBOW-Hybrid embedding models. This
enables us now to use BERT’s teacher signal during pretraining together with a
masked language modeling objective. In other words, this allows us to perform
general cross-architecture distillation with matrix embeddings.

We consider three variants of cross-architecture distillation in our experiments:
a) When using general distillation, depicted in Figure 4.1, BERT acts as a teacher
during pretraining and the model is fine-tuned to downstream tasks on its own.
b) For task-specific distillation, BERT acts as a teacher during fine-tuning, as shown
in Figure 4.2. For this case, we have the option of either b1) starting with pretrained
embeddings (from general distillation, i. e., the a) variant), or b2) starting from
scratch with randomly initialized embeddings.

4.3.3 Two-Sequence Encoding with Matrix Embeddings

When fine-tuning our matrix embeddings to downstream tasks, we can deviate
from BERT’s input processing, even if BERT is used as a teacher. This is because

58

4.3. Methods

the distillation loss is computed per sentence (pair) and not per token. The input
processing of BERT encodes two sequences by joining them into one sequence. For
example, in a natural language inference task, there is a sentence A that potentially
entails a sentence B, which is encoded as one sequence using a special separator
token. This encoding scheme is less useful to our matrix embeddings without any
attention component, since order-sensitive matrix multiplications would blend the
representation of the two sequences.

To develop an appropriate two-sequence encoding scheme for matrix embed-
dings, we take inspiration from the pre-Transformer era, e. g., Mou et al. [MML+16],
and from SentenceBERT [RG19]. The key idea is to encode two sentences A and B
separately before combining them. As a combination operation, we use the absolute
elementwise difference and concatenate it to the representations of A and B, which
we denote as DiffCat:

h(DiffCat) = h(A) ∥ |h(A) ´ h(B)| ∥ h(B)

Classification Head

EntailContradict Neutral

BERT
Teacher
Signal

Sentence A Sentence B[SEP][CLS] [EOS]

CMOW
Backward

(A)

CMOW
Forward

(A)

CBOW (A)

CMOW
Backward

(B)

CMOW
Forward

(B)

CBOW (B)

CMOW
Backward

(A)

CMOW
Forward

(A)

CBOW (A)

CMOW
Backward

|A-B|

CMOW
Forward

|A-B|

CBOW |A - B|

CMOW
Forward

(B)

CBOW (B)

CMOW
Backward

(B)

Figure 4.2. Separate encoding (DiffCat) for sequence pairs using a Bidirectional
CMOW/CBOW-Hybrid model during fine-tuning, optionally, with task-specific distil-
lation with a BERT teacher. Bert illustration: Melanie Poech

We illustrate this separate encoding scheme during task-specific distillation in
Figure 4.2. The rationale for using a concatenation of both sequence representations
along with their difference is that we add a component for the similarity of the two
sequence representations, without loss of expressive power.

59

4. Cross-Architecture Distillation with Word Matrices

4.4 Datasets

Here, we briefly describe the datasets used for pretraining as well as the down-
stream tasks from the general language understanding evaluation benchmark
(GLUE) benchmark, which we use for evaluation.

4.4.1 Dataset for Pretraining

As dataset for pretraining, we use a combination of English Wikipedia (about
2,500M words) and the Toronto BookCorpus (800M words). We select this dataset
because it has been also used in the original work on BERT [DCL+19]. We also use
the same vocabulary and tokenizer as in BERT to preprocess the dataset. The BERT
tokenizer uses the WordPiece algorithm [WSC+16], which yields a high coverage
while maintaining a small vocabulary. This ensures that the teacher and the student
have the same vocabulary.

4.4.2 Datasets for Downstream Tasks

For model evaluation, we use the general language understanding evaluation
benchmark (GLUE) benchmark [WSM+19] The GLUE benchmark consists of nine
tasks for English language comprehension. These tasks comprise natural language
inference (MNLI, QNLI, WNLI, RTE), sentence similarity (QQP, STS-B, MRPC),
linguistic acceptability (CoLA), and sentiment analysis (SST-2). All tasks are defined
on pairs of sentences except for CoLA and SST-2, which are single-sentence tasks.

In the GLUE benchmark, it is allowed to use different fine-tuning strategies for
different tasks. This is different to the SentEval benchmark used in the previous
Chapter 3, where the goal was to learn a fixed sentence representation. Instead, on
GLUE, fine-tuning of the entire model for each task is encouraged.

The GLUE benchmark is widely used to evaluate natural language processing
models. Therefore, we only briefly describe the tasks of the benchmark for the sake
of completeness. All datasets for the tasks as well as a leaderboard is available
under https://gluebenchmark.com/.

Corpus of Linguistic Acceptability (CoLA) CoLA is a dataset, in which each example
is a single sentence. The dataset contains 9k training and 1k test examples and
the task is to determine whether a sentence is linguistically acceptable.

Multi-Genre Natural Language Inference corpus (MNLI) In MNLI, each example com-
prises two sentences. Given a premise and a hypothesis, the natural language

60

https://gluebenchmark.com/

4.4. Datasets

inference task is to predict whether the premise entails the hypothesis. The
dataset offers two test sets: MNLI-matched (in-domain) and MNLI-mismatched
(cross-domain).

Microsoft Research Paraphrase Corpus (MRPC) The MRPC dataset consists of pairs
of sentences from online news sources. The task is to predict whether two
sentences are semantically equivalent, i. e., whether one is a paraphrase of the
other.

Question Natural Language Inference (QNLI) The QNLI task is derived from the Stan-
ford Question Answering Dataset [RZL+16] and consists of question-paragraph
pairs where one of the paragraph’s sentences contains the answer to the ques-
tion. The original question answering task is converted to a sentence pair
classification task: decide whether one specific sentence answers the question.

Quora Question Pairs (QQP) In QQP, the task is to decide whether two questions
are semantically equivalent.

Recognizing Textual Entailment (RTE) The RTE task is another two-sentence task,
where the task is to decide whether one text can be inferred (entailed) from the
other.

Two-way Stanford Sentiment Treebank (SST-2) The SST dataset is a single-sentence
sentiment analysis task [SPW+13]. The sentences are from movie reviews. In
SST-2, we have a two-way split (positive / negative) and only use sentence-level
labels.

Semantic Textual Similarity Benchmark (STS-B) The STS-B dataset is a two-sentence
similarity task. It is the same dataset as in Chapter 3. The task is to predict
similarity scores from 1 to 5.

Winograd Natural Language Inference (WNLI) The WNLI task is natural language
inference on sentence pairs. In particular, the task tests reading comprehension
that requires world knowledge. Given a sentence with an ambiguous pronoun,
the task is to determine the referred noun. The task is converted into sentence
pair classification task by substituting the pronoun with each possible referent
and predicting whether the new sentence is entailed by the original sentence.

The performance on all four natural language inference (NLI) tasks (MNLI,
QNLI, RTE, WNLI) as well as the sentiment analysis task SST-2 is measured with

61

4. Cross-Architecture Distillation with Word Matrices

accuracy. Linguistic acceptability (CoLA) is evaluated by Matthew’s correlation
coefficient. The performance on sentence similarity tasks is measured as the average
of Pearson and Spearman correlation for the STS-B task, and as the average of
accuracy and F1-score for MRPC and QQP.

4.5 Experiments

Below, we provide the details of the experimental setup, before we provide the
results of our experiments in Section 4.5.2 to Section 4.5.5

The experimental procedure is divided in pretraining on unlabeled text and
fine-tuning on the downstream tasks, as described in Section 4.2. In the pretraining
stage, we train our proposed bidirectional CMOW/CBOW-Hybrid model with a
masked language model (MLM) objective [DCL+19] on large amounts of unlabeled
text. The MLM objective is to predict the omitted words from their context. During
pretraining, we employ an already-pretrained BERT model to act as a teacher for
knowledge distillation. The training procedure is visualized in Figure 4.1.

We put equal weights on the MLM objective and the teacher signal from BERT
(α = 0.5). As suggested by Liu et al. [LOG+19] and Sanh, Debut, Chaumond, and
Wolf [SDC+20], we do not use the next-sentence-prediction objective of BERT, but
only the MLM objective.

To reduce the environmental footprint of our experiments, we have only pre-
trained a single bidirectional CMOW/CBOW-Hybrid model with BERT-base as a
teacher on the full unlabeled training data, after pre-experiments on 10% of the
training data showed that the selected CMOW/CBOW-Hybrid with distillation
exceeded the performance of the baseline.

In the fine-tuning stage, as shown in Figure 4.2, the pretrained model is adapted
for each downstream task separately. The training objective for fine-tuning is either
cross-entropy with the ground truth (in general distillation) or a mixture of the
ground truth loss and cross-entropy with respect to the teacher’s logits (in task-
specific distillation). Again, we put equal weight on ground truth and teacher signal
(α = 0.5) and use unit temperature for the softmax.

In the case of task-specific distillation, we cast the regression task STS-B into a
classification task by binning the scores into intervals of 0.2, as also done by the T5
model [RSR+20]. This is necessary to facilitate distillation because the distillation
procedure relies on a softmax teacher signal as obtained in classification, but not
regression objectives.

62

4.5. Experiments

For task-specific distillation, we employ an uncased BERT-base model1 from the
Huggingface repository that has already been fine-tuned for each task of the GLUE
benchmark. We have fine-tuned the BERT model ourselves on the tasks STS-B,
where we applied binning, and MNLI, on which the already fine-tuned model has
led to sub-par results. We use the same fine-tuned BERT model as a teacher for all
reported results with task-specific distillation.

We seek a fair comparison between the unidirectional CMOW/CBOW-Hybrid
baseline model and our bidirectional model. As such, we allow both models
to equally benefit from the BERT’s teacher signal during fine-tuning. For this
comparison, we use random initialization for both models because the pretrained
embeddings from the previous chapter would come with a different vocabulary that
covers only 53% of the one of BERT. We also use this strategy for the comparison of
two-sentence encoding schemes, where we compare the proposed DiffCat encoding
(see Section 4.3.3) with a joint encoding similar to BERT. In the other experiments,
we initialize our bidirectional CMOW/CBOW-Hybrid with the pretrained embed-
dings from general distillation, while we isolate the effect of task-specific distillation
in a dedicated experiment.

In terms of hyperparameter choices, we use matrix embeddings of size 20 ˆ

20 = 400 (d = 20) for both the CMOW directions (forward and backward) and
vector embeddings of size dvec = 400. We optimize the learning rates in the range
[10´3, 10´6]. To determine the best model, we use each task’s evaluation measure
on the development set. We run each model for 20 epochs with early stopping
(5 epochs patience). We select appropriate batch sizes on the basis of preliminary
experiments and training data sizes. The exact bounds and optimization method for
the hyperparameters are reported in Section C.1 To fine-tune the CMOW/CBOW-
Hybrid model from general distillation, we use an MLP classification head with
three layers (or two hidden layers), a ReLU activation after the first layer, and a mild
dropout with probability 0.1 plus layer normalization before the final classification
layer. The hidden size of the MLP classifier is 1,200, which is the same as the
embedding dimension: 400 for each direction of the CMOW component plus 400
for the CBOW component.

We present the results along the design choices introduced in Section 4.3:
two-sequence encoding scheme, bidirection, cross-architecture distillation variants,
before we compare our best embedding-based methods with ELMo and BERT
distillates from the literature.

1https://huggingface.co/textattack

63

https://huggingface.co/textattack

4. Cross-Architecture Distillation with Word Matrices

4.5.1 DiffCat Encoding versus Joint Encoding

First, we compare the encoding schemes for two-sentence tasks. On the one hand,
we have the BERT-like encoding that encodes the two sentences together, separated
by a special token. On the other hand, we have the proposed DiffCat encoding,
which encodes each sentence separately before combining the representations. For
a fair comparison, we use a randomly initialized unidirectional CMOW/CBOW-
Hybrid model under task-specific distillation.

The result (see Table 4.1) shows that DiffCat encoding improves the results
consistently with the largest margin on STS-B. The most notable improvement
is the improvement from 18.5 to 58.6 in the sentence similarity task STS-B when
encoding the sentence pair input via DiffCat. The average improvement for the
two-sentence tasks of the GLUE benchmark is 20%, when the DiffCat encoding is
used over a BERT-like joint encoding of sentence pairs. In subsequent experiments,
we only report scores with DiffCat encoding.

Table 4.1. Comparison of DiffCat encoding and joint BERT-like encoding. Both variants
use randomly initialized unidirectional CMOW/CBOW-Hybrid embeddings with MLP
under task-specific distillation. The DiffCat encoding improves the average score across
two-sentence tasks by 20%.

Two-Sentence Encoding Avg. MNLI-m MRPC QNLI QQP RTE STS-B WNLI

Joint Encoding 55.8 50.0 73.0 60.4 78.6 53.8 18.5 56.3
DiffCat Sep. Encoding 66.8 62.5 74.3 71.5 86.6 58.1 58.6 56.3

4.5.2 Bidirectional versus unidirectional CMOW/CBOW-Hybrid

To isolate the effect of the bidirectional component, we compare unidirectional
with bidirectional CMOW/CBOW-Hybrid under the same conditions. Therefore,
we train both variants starting with a random initialization for the downstream
tasks, while using a BERT’s teacher signal. Table 4.2 shows the results of comparing
unidirectional Hybrid embeddings with the proposed bidirectional Hybrid embed-
dings. Having a bidirectional model helps for the tasks MNLI, MRPC, QNLI, SST-2,
STS-B, and WNLI. On the other tasks, the difference between the two variants is
small (0.1 on CoLA, 0.5 on QQP, 0.7 on RTE). We have an average improvement of
1% of the bidirectional model over the unidirectional model across all tasks of the
GLUE benchmark.

64

4.5. Experiments

Table 4.2. Comparison of unidirectional and bidirectional (prefix ‘B-’) variants of
CMOW/CBOW-Hybrid under task-specific distillation from random initialization (suffix
‘-R’). We also report pretrained (suffix ‘-P’) bidirectional Hybrid for reference. All methods
use DiffCat encoding and an MLP classifier.

Model Type Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

Hybrid-R 62.5 13.1 62.5 74.3 71.5 86.6 58.1 83.1 58.6 56.3
B-Hybrid-R 63.2 13.0 63.3 75.7 72.6 86.1 57.4 83.3 59.7 57.7
B-Hybrid-P 64.6 23.3 61.8 75.0 72.0 86.3 59.9 82.9 62.9 57.7

4.5.3 General Distillation versus Task-specific Distillation

Next, we compare general distillation with task-specific distillation. As shown
in Table 4.3, the use of general distillation leads to better results for five tasks
(MNLI, MRPC, QQP, STS-B, and RTE) compared to task-specific distillation. For
the other four tasks (CoLA, QNLI, SST-2, and WNLI), task-specific distillation
achieves higher scores. The average score for general distillation is higher than for
task-specific distillation in both pretrained and random initialization cases.

Table 4.3. Comparison of general and task-specific distillation using bidirectional
CMOW/CBOW-Hybrid embeddings and MLP classifier. Task-specific distillation models
have been either randomly initialized (suffix ‘-R’) or initialized from pretraining (suffix
‘-P’). In 5 out of 9 tasks, general distillation performs better.

Distillation Type Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

General 66.6 16.7 66.6 79.7 71.7 87.2 61.0 82.9 76.9 56.3
Task-specific-R 63.2 13.0 63.3 75.7 72.6 86.1 57.4 83.3 59.7 57.7
Task-specific-P 64.6 23.3 61.8 75.0 72.0 86.3 59.9 82.9 62.9 57.7

4.5.4 Comparing Bidirectional CMOW/CBOW-Hybrid to the Literature

Finally, Table 4.4 shows the results of the bidirectional CMOW/CBOW-Hybrid
variants that perform best using any of the three distillation methods considered.
As described by Wasserblat, Pereg, and Izsak [WPI20], a model needs to capture
context and linguistic structure to perform well on CoLA. We achieved higher
scores on CoLA and SST-2 compared to the results of the cross-architecture distil-
lation reported by Wasserblat, Pereg, and Izsak [WPI20]. Our best models scored
higher than ELMo [PNI+18] on the tasks MRPC, QNLI, QQP, RTE, and WNLI. We
achieve higher scores than DistilBERT on RTE and WNLI. In a recent extension of

65

4. Cross-Architecture Distillation with Word Matrices

CMOW, Word2rate [PLP21], the matrices are considered statistical transitions (rate
matrices) in a Taylor series. The authors report the Word2rate scores on SST-2 and
STS-B, which are lower than the CMOW/CBOW-Hybrid scores from the previous
chapter. The CMOW/CBOW-Hybrid model of the previous chapter is, in turn,
outperformed by the one explored in this chapter.

Table 4.4. Comparison of best embedding-based methods (in bold) with methods from the
literature on the validation set of the GLUE benchmark.

Method Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

ELMo [PNI+18] 68.7 44.1 68.6 76.6 71.1 86.2 53.4 91.5 70.4 56.3
DistilBERT [SDC+20] 77.0 51.3 82.2 87.5 89.2 88.5 59.9 91.3 86.9 56.3
MobileBERT [SYS+20] — 51.1 84.3 88.8 91.6 70.5 70.4 92.6 84.8 —

CBOW [WPI20] — 10.0 — — — — — 79.1 — —
BiLSTM [WPI20] — 10.0 — — — — — 80.7 — —
Hybrid [MGS19] — — — — — — — 79.6 — —
Word2rate [PLP21] — — — — — — — 65.7 — —

Bidi. Hybrid + MLP 68.0 23.3 66.6 80.9 72.6 87.2 61.0 84.0 76.9 59.2

4.5.5 Comparison of Parameter Count and Runtime Performance

Table 4.5. Number of parameters and inference time of the models. Inference time is
measured as encoding speed without gradient computation on an NVIDIA A100-SXM4-
40GB card

Model # Parameters Encoding speed (sentences / sec)

ELMo 94M 1.1k
BERT-base 109M 4.6k
DistilBERT-base 66M 9.2k
MobileBERT 25M 5.5k
Bidi. CMOW/CBOW-Hybrid 37M 30.0k

We compare the parameter count and runtime performance of the bidirectional
CMOW/CBOW-Hybrid model with ELMo, BERT, and two BERT distillates: Dis-
tilBERT and MobileBERT. To compare runtime performance, we generate 1,024
batches with 256 random sequences of length 64 and measure the time to en-
code the sequences with gradient computation disabled. As shown in Table 4.5,
CMOW/CBOW-Hybrid is more than 3 times faster than the fastest competitor,

66

4.6. Discussion

DistilBERT, and only uses about half of its parameters. The inference speed of
CMOW/CBOW-Hybrid could be increased even further because the O(n) steps to
encode a sequence of length n can be parallelized to O(log n) sequential steps, as
matrix multiplication is associative.

4.6 Discussion

Key Results We have shown that BERT can be successfully distilled into effi-
cient matrix embedding models. To facilitate this success, we have introduced
intermediate representations, a bidirectional representations, and a two-sequence
encoding scheme for matrix embedding models. We have observed that the general
distillation approach, i. e., using the BERT teacher only during pretraining, leads to
results that are often even better than those achieved with task-specific distillation.
This is an interesting result because all previous work on cross-architecture distil-
lation relied on task-specific distillation. The proposed model offers an inference
speed that is three times faster than that of DistilBERT, while reaching similar
performance on several downstream tasks such as QQP and RTE.

Limitations Currently, matrix embeddings still fall behind other BERT distillates
such as MobileBERT or DistilBERT in many of the downstream tasks. In partic-
ular, detecting linguistic acceptability remains a challenge for non-Transformer
models. However, the proposed approach provides an increased downstream task
performance compared to previous cross-architecture distillation approaches.

Potential Benefits for Explainability There is criticism on large language models
and the amplification of bias through the reduction of model size [BGM+21]. This
is particularly a problem when the model is not explainable. In the proposed
method of this chapter, we distill large-scale pretrained language models into
models that do not have a nonlinearity (except for the final classification head).
Since nonlinearities make explainability more difficult, following this approach
may lead to more explainable language models, although explainability is not the
focus of the present work.

General vs. Task-specific Distillation A central issue is whether the distillation
procedure should be carried out in a general pretraining stage or in a task-specific
training stage. On the one hand, the conceptual benefit of general distillation is that

67

4. Cross-Architecture Distillation with Word Matrices

the distilled model can be reused for multiple downstream tasks without requiring
the teacher. On the other hand, general distillation is more resource-intensive
than task-specific distillation because general distillation requires training on large
amounts of unlabeled text. In our experiments, general distillation and task-specific
distillation led to similar results. However, the average score for general distillation
was higher than for task-specific distillation. This result is in line with the findings
of Turc, Chang, Lee, and Toutanova [TCL+19] for same-architecture distillation.
This suggests that general distillation is a direction that is worth further exploration.

Threats to Validity For the comparison of CMOW/CBOW-Hybrid with the best
models from the literature, we reported the best-performing models from either
general or task-specific distillation. Although this needs to be taken into account
for interpreting the results, using a different training strategy per task is valid
under the specifications of the GLUE benchmark [WSM+19]. We have ensured that
all of the introduced extensions are compared to their respective baselines under
fair and equal conditions: the encoding scheme, the component for bidirectional
processing, and general vs. task-specific distillation. Specifically, we resorted to
using non-pretrained models for a fair comparison between the unidirectional and
bidirectional variants.

Generalizabilty We have evaluated the proposed methods on the GLUE bench-
mark. The GLUE benchmark spans a wide range of language-related tasks including
natural language inference, sentence similarity, linguistic acceptability, and senti-
ment analysis. The performance on the GLUE benchmark hints at generalizable
linguistic capabilities of the model, especially regarding two-sequence tasks. Par-
ticularly, for such two-sequence tasks, the DiffCat encoding scheme for matrix
embeddings has improved the performance by 20% compared to a BERT-like joint
encoding. We expect this encoding scheme to be particularly valuable in other set-
tings, where the relationship between two sentences is crucial, such as information
retrieval.

Practical Impact The methods presented in this chapter are especially useful in
applications, where the encoding speed is of central importance. Matrix embeddings
offer a speed-up with factor 3 compared to DistilBERT and with factor 6 compared
to BERT. Given this advantage, matrix embedding approaches could be valuable in
high-throughput areas, such as in social media.

68

4.7. Summary

4.7 Summary

We have introduced three extensions to the CMOW/CBOW-Hybrid model: a bidi-
rectional component, a separate two-sequence encoding scheme, and the ability to
emit per-token representations. These per-token representations allow us to dis-
till BERT into CMOW/CBOW-Hybrid already during pretraining with a masked
language modeling objective. Our results show that a separate encoding scheme
improves the performance of CMOW/CBOW-Hybrid on two-sentence GLUE tasks
by 20%, while adding a bidirectional component improves performance by 1%
compared to the unidirectional model. Furthermore, the results suggest that general
distillation is sufficient and task-specific distillation is not necessary for most GLUE
tasks. Compared with more expensive models from the literature, our embedding-
based approach achieves scores that match or exceed the scores of ELMo and are
competitive to DistilBERT on QQP and RTE with only half of DistilBERT’s param-
eters and three times its encoding speed. While linguistic acceptability remains
a challenge for non-Transformer models, the approach presented in this chapter
yields notably higher scores than previous cross-architecture distillation approaches.
Lastly, we note how order-sensitive matrix embeddings can be implemented and
scaled efficiently, as scaling issues that apply to Transformer-based architectures do
not apply to matrix embeddings models.

69

Chapter 5

Wide Multilayer Perceptrons for
Text Classification

In this chapter, we answer Q3: Are synthetic graph structures derived from raw text
necessary for topical text classification? The chapter is based on material from a
publication [GS22] in the Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (2022).

Text classification, or text categorization, is the task of automatically assigning
categories to text units such as documents, social media postings, or news articles.
Text classification research is an active research field, as the sheer amount of new
methods in recent surveys shows [BKR21; LPL+21; ZGL+20; KMH+19; Kad19].
Topical text classification finds application in information retrieval scenarios where
text units need to be made accessible for search. Naively extracting category names
from text units is not enough, because texts can also fall into a certain category
without explicitly naming it [GMS+17].

The traditional way to compose an input representation of text is to count word
occurrences. We then get a feature vector with the dimension of the vocabulary
of all possible words, in which each entry corresponds to the number of times
that the respective word (or token) appears in the text. This is what we call a
Bag-of-Words (BoW) in terms of a multiset of tokens (see Section 2.2.3).

Most traditional text classification methods rely on this BoW input repre-
sentation, optionally normalized in length and/or weighted by TF-IDF. Such
traditional approaches include support vector machines (SVMs), logistic regres-
sion, or k-nearest neighbors. There are also deep text classification approaches
that rely on a BoW such as deep averaging networks (DANs) [IMB+15], a deep
MLP model that operates by averaging the input BoW, simple word embedding
model (SWEM) [SWW+18] that explores different pooling strategies for pretrained
word embeddings, and fastText [BGJ+17], which uses a linear layer on top of pre-
trained word embeddings. Because these models simply count occurrences of the
tokens in the input sequence, they disregard word position and order, and then

71

5. Wide Multilayer Perceptrons for Text Classification

rely, for instance, on pretrained word embeddings and fully connected feedforward
layer(s). We call these BoW-based models.

Recently, models that make up a graph representation from words and docu-
ments for text classification became popular. For example, TextGCN [YML19] first
induces a synthetic word–document co-occurrence graph across the entire corpus
and then applies a graph neural network (GNN) to perform the classification task.
In addition to TextGCN, there are follow-up works that employ a similar strategy,
such as HeteGCN [RSI+21], TensorGCN [LYZ+20], and HyperGAT [DWL+20],
which we collectively call graph-based models.

Finally, we have the well-known Transformer [VSP+17] models such as BERT
[DCL+19], RoBERTa [LOG+19], T5 [RSR+20], and GPT-3 [BMR+20] as well as
size-reduced variants such as DistilBERT [SDC+20] and others [TDB+20; FCA21].
Here, the input is a (fixed-length) sequence of tokens, which is then fed into
multiple layers of self-attention. Lightweight versions such as DistilBERT use fewer
parameters but operate on the same type of input. Together with recurrent models
like the LSTM [HS97], we call these sequence-based models.

In this chapter, we hypothesize that text categorization can be performed
very well by simple but effective BoW-based models. We investigate this research
question in three steps: First, we conduct an in-depth analysis of the literature.
We review key research in the field of modern and classical machine learning
methods for text categorization. From this analysis, we derive the different families
of methods, the established benchmark datasets, and identify the top-performing
methods. We decide for which models we report numbers from the literature and
which models we run on our own. In total, we compared 16 different methods
from the families of BoW-based models (8 methods), sequence-based models (3
methods) and graph-based models (5 methods). We ran our own experiments for 7
of these methods on five text categorization datasets, while we report the results
from the literature for the remaining methods.

The result is surprising. The BoW-based MLP, denoted WideMLP, with only
one but wide hidden layer, outperforms many of the recent graph-based models
for text categorization [YML19; LYZ+20; RSI+21], when the test documents are
unseen at training time, i. e., the inductive learning setup. Furthermore, we did not
find any reported scores for BERT-based methods from the sequence-based family.
Thus, we fine-tuned BERT [DCL+19] and DistilBERT [SDC+20] ourselves, which
sets a new state of the art on the considered datasets.

At the meta-level, our study shows that MLPs have been largely ignored as
competitor methods in experiments. It seems as if MLPs have been forgotten as

72

5.1. Related Prior Work

a baseline in the literature, which instead is focusing mostly on other advanced
Deep Learning architectures. However, considering strong baselines is an important
means to argue about true scientific advancement [SWW+18; DCJ19].

In the following, we introduce our methodology and the results from the
literature study. Subsequently, we introduce the families of models in Section 5.3.
The datasets are described in Section 5.4. We present the experiments in Section 5.5
and discuss our findings in Section 5.6, before we summarize the chapter.

5.1 Related Prior Work

We analyze the literature on text classification. In a first step, we have consulted
recent surveys and comparison studies [BKR21; LPL+21; ZGL+20; KMH+19; Kad19;
GMS+17; ZWY+16]. These cover the range from shallow to deep classification
models. Second, we have screened the literature in key NLP and AI venues. Fi-
nally, we have complemented our search by checking the results and papers on
paperswithcode.com. Based on this input, we have determined three families of meth-
ods and benchmark datasets (see Table 5.2). We focus our analysis on identifying
models per family showing strong performance and select the methods to include
in our study. We check whether modified versions of the datasets have been used
(e. g., less classes). For all results, we have verified that the same train-test split is
used on all datasets to avoid bias and incorrectly giving advantages.

5.1.1 Bag-of-Word-based Models

Classical machine learning models that operate on a BoW-based input are exten-
sively discussed in two surveys [KMH+19; Kad19] and other comparison stud-
ies [GMS+17]. Iyyer, Manjunatha, Boyd-Graber, and III [IMB+15] proposed DAN,
which combine word embeddings and deep feedforward networks. It is an MLP
with 1-6 hidden layers, non-linear activation, dropout, and AdaGrad as the opti-
mization method. The results suggest using pretrained word embeddings such as
GloVe [PSM14] over a randomly initialized continuous BoW [KGB14] as input. In
fastText [BGJ+17; JGB+17] a linear layer is used on top of pretrained embeddings
for classification. Furthermore, Shen et al. [SWW+18] explore embedding pooling
variants and find that SWEM can rival approaches based on RNNs and 1D-CNNs.
We consider fastText, SWEM, and a DAN-like deeper MLP in our comparison.

Note that those approaches that rely on logistic regression on top of pretrained
word embeddings, e. g., fastText, share an architecture similar to that of an MLP

73

https://paperswithcode.com/task/text-classification

5. Wide Multilayer Perceptrons for Text Classification

with one hidden layer. However, the standard training protocol involves pretraining
the word embedding on large amounts of unlabeled text and then freezing the
word embeddings while training only a logistic regression [MSC+13].

5.1.2 Graph-based Models

Using graphs induced from text for the task of text categorization has a long
history in the community. An early work is the term co-occurrence graph of the
KeyGraph algorithm [OBY98]. The graph is divided into segments representing
the key concepts of the document. Co-occurrence graphs have also been used
for automatic keyword extraction, such as in the influential early work of the
automatic keyword extraction method RAKE [REC+10] and can also be used for
classification [ZDX+21].

Modern approaches exploit this idea in combination with graph neural networks
(GNN) [Ham20]. Examples of GNN-based methods operating on a word-document
co-occurrence graph are TextGCN [YML19] and its successor TensorGCN [LYZ+20]
aswell as HeteGCN [RSI+21], HyperGAT [DWL+20], and DADGNN [LGG+21]. We
briefly discuss these models.

In TextGCN, the authors created a graph based on word-word connections
given by pointwise mutual information (PMI) and word-document TF-IDF scores
based on sliding windows. They use a one-hot encoding as node features and apply
a two-layer GCN [KW17] on the graph to perform the node classification task.

TensorGCN uses multiple ways of converting text data into graph data, in-
cluding a semantic graph created with an LSTM, a syntactic graph created by
dependency parsing, and a sequential graph based on word co-occurrence. Het-
eGCN combines ideas from Predictive Text Embedding [TQM15] and TextGCN and
divides the adjacency matrix into its word–document and word–word submatrices
and fuses the different layer representations when required. HyperGAT extended
the idea of text-induced graphs for text classification to hypergraphs. The model
uses graph attention and two kinds of hyperedges. Sequential hyperedges repre-
sent the relationship between sentences and their words. Semantic hyperedges for
word-word connections are derived from topic models [BNJ03]. Finally, DADGNN
is a graph-based approach that uses attention diffusion and decoupling techniques
to tackle oversmoothing of the GNN, and thus stack more layers.

In TextGCN’s original transductive formulation, the entire graph including
the test set, needs to be known for training. This may be prohibitive in practical
applications, as each batch of new documents would require retraining of the

74

5.1. Related Prior Work

model. When these methods are adapted for inductive learning, where the test set
is unseen, they achieve considerably lower scores [RSI+21].

In general, many of the GNNs for text classification exploit corpus-level statis-
tics, e. g., PMI, to connect related words in a graph [YML19]. When these word-
word connections were omitted, the GNNs would collapse to bag-of-words MLPs.
GloVe [PSM14] also captures PMI corpus statistics by factorizing the PMI matrix
into word embeddings. Therefore, we include an MLP on GloVe input representa-
tions in our comparison.

5.1.3 Sequence-based Models

In the following, we discuss sequence models, which we further divide into the
RNN and CNN families and the Transformer family.

Sequence models based on RNNs and CNNs RNNs are a natural choice for any
NLP task However, it turned out to be challenging to find numbers reported on
text categorization in the literature that can be used as references. The bidirectional
LSTM with two-dimensional max-pooling BLSTM-2DCNN [ZQZ+16] has been ap-
plied to a stripped-down version with only 4 classes of the 20ng dataset. Therefore,
the high score of 96.5 reported for 4ng cannot be compared to the papers applied
on the entire 20ng dataset. Also TextRCNN [LXL+15], a model that combines
recurrence and convolution. uses only the four main categories in the 20ng dataset.
The results of Text-RCNN are identical to those of BLSTM-2DCNN. For the MR
dataset, BLSTM-2DCNN does not provide information on the specific split of the
dataset. RNN-Capsule [WSH+18] is a sentiment analysis method that achieves an
accuracy of 83.8 on the MR dataset, but with a different train-test split. Lyu and
Liu [LL20] combine a 2D-CNN with bidirectional RNN. Another work that applies
a combination of a convolutional layer and a LSTM layer is Wang et al. [WLC+19].
The authors experimented with five English and two Chinese datasets, which are
not in the set of representative datasets we identified. The authors report that their
approach outperforms existing models such as fastText on two of the five English
datasets and both Chinese datasets.

Sequence models based on Transformers Essentially, all Transformer-based lan-
guage models are pre-trained in a self-supervised fashion on large text corpora
and subsequently fine-tuned in supervised learning on a specific task. The leader-

75

5. Wide Multilayer Perceptrons for Text Classification

board of the GLUE benchmark datasets1 (and SuperGLUE) has become the key
battleground for comparing the performance of BERT [DCL+19] and other large
pretrained language models [LOG+19; RSR+20; BHA+21]. Despite the different
characteristics of the GLUE tasks (e. g., natural language inference, textual simi-
larity, linguistic acceptability), they basically all resemble a classification objective.
Even similarity tasks that are evaluated by correlation with ground truth can be
transformed into classification tasks [RSR+20]. Given that classification is a key
objective of BERT-style methods, it would be assumed that there is work that
considers the benchmark datasets for document-based text classification.

Recent work shows that BERT outperforms the classic TF-IDF BoW approaches
on English, Chinese, and Portuguese text classification datasets [GG21]. We have not
found any results of Transformer-based models reported on the text classification
datasets that are commonly used in graph-based approaches.

Therefore, we fine-tune BERT [DCL+19] and DistilBERT [SDC+20] on these
datasets ourselves. BERT is a large pretrained language model on the basis of
Transformers. DistilBERT [SDC+20] is a distilled version of BERT with 40% reduced
parameters while retaining 97% of the score of BERT on the GLUE benchmark. Tiny-
BERT [JYS+20] and MobileBERT [SYS+20] would be similarly suitable alternatives,
among others. We chose DistilBERT because it can be fine-tuned independently of
the BERT teacher. and its inference times are 60% faster than BERT, making it more
likely to be reusable with limited resources.

5.1.4 Summary

From our literature survey, we see that all recent methods are based on graphs.
BoW-based methods are scarce in experiments, whereas, likewise surprisingly,
Transformer-based sequence models are extremely scarce in the literature on topical
text classification. Recent surveys on text classification include both classical and
Deep Learning models, but none considered a simple MLP except for the inclusion
of DAN [IMB+15] in Li et al. [LPL+21].

Table 5.1 summarizes the basic properties of the methods found in the literature.
Most importantly, graph approaches are not inductive in their basic formulation (as
in TextGCN and TensorGCN). Follow-up works such as HeteGCN and HyperGAT
relax this constraint. Both the BoW approaches and (most) graph-based approaches
are not sensitive to word order, but rather build an input representation by count-
ing word occurrences. Although sequence models naturally take word order and

1https://gluebenchmark.com/leaderboard

76

https://gluebenchmark.com/leaderboard

5.2. Problem Formulation

Table 5.1. Properties of text classification approaches. Graph-based models that rely on
having access to unlabeled test documents such as TextGCN and TensorGCN are not
capable of inductive learning without specific modifications.

Model Builds Graph Position-Aware Arbitrary Length Inductive

Bag-of-Words No No Yes Yes
Graph: TextGCN Yes No Yes No
Graph: TensorGCN Yes Yes Yes No
Graph: HeteGCN/HyperGAT Yes No Yes Yes
Sequence: RNN/CNN No Yes Yes Yes
Sequence: BERT/DistilBERT No Yes No Yes

position into account, there is a difference between the RNNs- and CNN-based ap-
proaches and Transformers. RNNs and CNNs can deal with sequences of arbitrary
length because they combine the sequence into a single representation. Transform-
ers, on the other hand, typically have a maximum sequence length. However, there
are already efforts to design more efficient Transformers that can also be applied to
long sequences [TDA+21].

5.2 Problem Formulation

We study the problem of text classification. A model is trained on paired training
data D = {(x, y)i}, before being applied to test data Dtest, where D X Dtest = H.

We distinguish between transductive and inductive settings (cf. Section 2.4). In
the transductive setting, the model has access to the unlabeled examples of Dtest

during training. This is also called semi-supervised learning. In contrast, the test
data Dtest remain completely unseen in an inductive setting.

This distinction is important because it determines how the model can be
applied in practice. In practical applications, an inductive model is much more
useful, as it can be applied to new data without retraining [HHY+19].

5.3 Methods

We formally introduce the three families of text classification models, namely the
BoW-based, graph-based, and sequence-based models. Table 5.1 summarizes the
key properties of the approaches: whether they require a synthetic graph, whether

77

5. Wide Multilayer Perceptrons for Text Classification

the position of words is reflected in the model, whether the model can deal with
text of arbitrary length, and whether the model is capable of inductive learning.

5.3.1 Bag-of-Words-based Text Classification

Under pure BoW-based text categorization, we denote approaches that are not
sensitive to word order and operate only on the multiset of words from the input
document. Given paired training examples (x, y) P D, each consisting of a BoW
x P Rnvocab and a class label y P Y, the goal is to learn a generalizable function

ŷ = f (BoW)
θ (x) with parameters θ such that arg max(ŷ) preferably equals the true

label y for input x.
As models based on BoW input representation, we consider one hidden layer

WideMLP (i. e., two layers in total). We further experiment with pure BoW, TF-
IDF weighted or averaged GloVe input representations and two hidden layers
WideMLP-2. We also list the numbers for fastText, SWEM, and logistic regression
from Ding et al. [DWL+20] in our comparison.

5.3.2 Graph-based Text Classification

Graph-based text categorization approaches first set up a graph synthetic based
on the text corpus D in the form of an adjacency matrix Â := make-graph(D).
For instance, TextGCN the graph is set up in two parts: word-word connections
modeled by pointwise mutual information, and word-document edges resemble
that the word occurs in the document. Then, a parameterized function f (graph)

θ (X, Â)

is learned that uses the graph as input, where X are the node features. The graph
is made up of word nodes and document nodes, each receiving its own embedding
(by setting X = I). However, in inductive learning, there is no embedding of test
documents. Note that graph-based approaches from the current literature, such as
TextGCN, also disregard word order, similar to the BoW-based models described
above. A detailed discussion of the connection between TextGCN and MLP is
provided in Appendix D.2.

We consider the best graph-based models in the literature, namely TextGCN
along with its successors HeteGCN, TensorGCN, HyperGAT, DADGNN, and
simplified GCN (SGC) [WJZ+19]. We do not run our own experiments for graph-
based models, but we rely on the original work and extensive studies by Ding et al.
[DWL+20] and Ragesh et al. [RSI+21].

78

5.4. Datasets

5.3.3 Sequence-based Text Classification

As sequence-based text classification models, we consider models such as RNNs,
LSTMs, and Transformers. These models are sensitive to the ordering of words in
the input text. Thus, the key difference between the BoW-based and graph-based
families is that the order of the words is reflected in the sequence-based model.
The model signature is ŷ = f (sequence)

θ ((x1, x1, . . . , xk)), where k is the (maximum)
sequence length. In Transformers, the position and order of words are modeled by
a dedicated positional encoding. For example, in BERT each position is associated
with an embedding vector that is added to the word embedding at the input level.

For the sequence-based models, we run our own experiments with BERT and
DistilBERT, while reporting the scores of a pretrained LSTM from Ding et al.
[DWL+20] for comparison.

5.4 Datasets

Table 5.2. Characteristics of text classification datasets

Dataset N #Train #Test #Classes Avg. length and SD

20ng 18,846 11,314 7,532 20 551 ˘ 2,047
R8 7,674 5,485 2,189 8 119 ˘ 128
R52 9,100 6,532 2,568 52 126 ˘ 133
ohsumed 7,400 3,357 4,043 23 285 ˘ 123
MR 10,662 7,108 3,554 2 25 ˘ 11

We use the same datasets and train-test split as in TextGCN [YML19], which
we describe here only briefly since they are common benchmark datasets for test
classification. These datasets are 20ng, R8, R52, ohsumed, and MR.

Twenty Newsgroups (20ng) The 20ng dataset contains long posts categorized into 20
newsgroups. The mean sequence length is 551 words with a standard deviation
of 2,047. The dataset can be found at http://qwone.com/~jason/20Newsgroups/.

Reuters datasets: R8 and R52 The datasets R8 and R52 are well-established subsets
of the Reuters 21578 news dataset with 8 and 52 classes, respectively. The mean
length of the sequence and SD is 119 ˘ 128 words for R8, and 126 ˘ 133 words
for R52.

79

http://qwone.com/~jason/20Newsgroups/

5. Wide Multilayer Perceptrons for Text Classification

Ohsumed Ohsumed is a corpus of medical abstracts from the MEDLINE database
that are classified into diseases (one per abstract). The mean sequence length is
285 ˘ 123 words. The dataset can be found under http://disi.unitn.it/moschitti/

corpora.htm.

Movie Reviews (MR) The MR dataset contains a binary sentiment analysis task at
the sentence level (mean sequence length and SD: 25 ˘ 11). The original dataset
has been assembled by Pang and Lee [PL05]. We reuse the train/test-split by
Tang, Qu, and Mei [TQM15]. The dataset can be found at https://www.cs.cornell.

edu/people/pabo/movie-review-data/.

A summary of the basic characteristics of the data set, i. e., the number of
examples in the train and test set, the number of classes, and the sequence lengths
are shown in Table 5.2. Note that 20ng has the longest sequences, while MR has
the shortest.

5.5 Experiments

Below, we describe the experimental procedure before providing the results along
the dimensions effectiveness in Section 5.5.1 and efficiency in Section 5.5.2.

Procedure We distinguish between a transductive and an inductive setup for text
categorization. In the transductive setup, as used in TextGCN, the (unlabeled) test
documents are visible and are actually used to prepare the graph and train the
model. In the inductive setting, the test documents remain unseen until the test
time (i. e., they are not available at preprocessing/training time).

In practice, a transductive setup would correspond to completing the annota-
tions in a partially annotated corpus. On the other hand, an inductive model would
be able to seamlessly handle new documents continuously appearing over time,
where a transductive model would require retraining the model whenever a new
document appears.

We report the scores of the graph-based models for both setups from the
literature, where available. BoW-based and sequence-based models are inherently
inductive. Ragesh et al. [RSI+21] have evaluated a variant of TextGCN that is
capable of inductive learning, which we also include in our results.

We have extracted accuracy scores from the literature according to our system-
atic selection from Section 5.1. In the following, we provide a detailed description

80

http://disi.unitn.it/moschitti/corpora.htm
http://disi.unitn.it/moschitti/corpora.htm
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/

5.5. Experiments

of the procedure for the models that we have run ourselves. We borrowed the
tokenization strategy from BERT [DCL+19] along with its uncased vocabulary
of 30k tokens. The tokenizer is based mainly on WordPiece [WSC+16] for high
coverage while maintaining a small vocabulary.

Hyperparameter settings Our WideMLP has one hidden layer with 1,024 recti-
fied linear units (one input-to-hidden and one hidden-to-output layer). We apply
dropout after each hidden layer, notably also after the initial embedding layer. Only
for GloVe+WideMLP, neither dropout nor ReLU is applied to the frozen pretrained
embeddings, but only on subsequent layers. The rationale is that we want to avoid
cutting the entire negative range from the pretrained GloVe vectors by applying a
ReLU. The variant WideMLP-2 has two ReLU-activated hidden layers (three layers
in total) with 1, 024 hidden units each. Although this might be overparameterized
for single-label text classification tasks with few classes, we rely on recent findings
that overparameterization leads to better generalization [NLB+18; NKB+20]. In the
pre-experiments, we realized that MLPs are not very sensitive to hyperparameter
choices. Therefore, we optimize for cross-entropy with Adam [KB15] and its default
learning rate of 10´3, a linearly decaying learning rate schedule, and train for a
large number of steps [NKB+20] (we use 100 epochs) with small batch sizes (we
use 16) for sufficient stochasticity, along with a dropout ratio of 0.5.

For BERT and DistilBERT, we fine-tuned for 10 epochs with a linearly decaying
learning rate of 5 ¨ 10´5 and an effective batch size of 128 through a gradient
accumulation of 8 x 16 batches. We truncate all inputs to 512 tokens. To isolate the
influence of word order on BERT’s performance, we experiment with two further
variants. First, we set all position embeddings to zero and disable their gradient
updates (BERT w/o pos emb). By doing this, we force BERT to operate on a BoW
without any notion of word order or position. Second, we shuffle each sequence
to augment the training data. We use this augmentation strategy to double the
number of training examples (BERT w/ shuf. aug.).

Measures We report accuracy as the main evaluation metric, which is equivalent
to Micro-F1 in single-label classification (see Appendix D.3). We repeat all experi-
ments five times with different random initializations of the parameters and report
the mean and standard deviation of these five runs.

In the following, we report the results along the dimensions of effectiveness
and efficiency.

81

5. Wide Multilayer Perceptrons for Text Classification

5.5.1 Classification Accuracy

Table 5.3 shows the accuracy scores for the text classification models on the five
datasets. All graph-based models in the transductive setting show similar accuracy
scores (maximum difference is 2 points). As expected, scores decrease in the
inductive setting to a point where our WideMLP matches or even outperforms
them.

In the inductive setting, the WideMLP models perform best among the BoW
models, in particular, TF-IDF+WideMLP and WideMLP on an unweighted BoW.
The best performing graph-based model is HyperGAT, yet DADGNN has a slight
advantage on R8, R52, and MR. For sequence-based models, BERT achieves the
highest scores, closely followed by DistilBERT.

We complement the results with the scores for the pretrained bidirectional
CMOW/CBOW-Hybrid + MLP model from the previous chapter. The model
achieves reasonable scores, which are comparable to WideMLP on R8, R52, and MR.
On datasets with longer texts (20ng and MR), the BoW-based MLPs yield higher
scores.

The strong performance of WideMLP rivals all graph-based techniques reported
in the literature, particularly the recently published graph-inducing methods. MLP
only falls behind HyperGAT, which relies on topic models to set up the graph.
Another observation is that one hidden layer (but wide) is sufficient for the tasks
considered, as the scores for MLP variants with 2 hidden layers are lower. We further
observe that both pure BoW and TF-IDF weighted BoW lead to better results than
approaches that exploit pretrained word embeddings such as GloVe-MLP, fastText,
and SWEM.

With its immense pretraining, BERT attains the highest overall scores, closely
followed by DistilBERT. DistilBERT outperforms HyperGAT by 7 points on the
MR dataset while being on par with the others. BERT outperforms the strongest
graph-based competitor, HyperGAT, by 8 points on MR, 1.5 points on ohsumed, 1
point on R52 and R8, and 0.5 points on 20ng.

Augmenting BERT’s data with shuffled sequences has led to neither a consistent
decrease nor an increase in performance.

5.5.2 Efficiency

Parameter Count of the Models Table 5.4 lists the parameter counts of the models.
Although MLP is fully connected on top of a bag-of-words with the dimensionality

82

5.5. Experiments

Table 5.3. Accuracy and standard deviation on text classification datasets. Column “Prove-
nance” reports the source.

Inductive Setting 20ng R8 R52 ohsumed MR Provenance

BoW-Models
Log. Regression 83.70 93.33 90.65 61.14 76.28 [RSI+21]
SWEM 85.16 (0.29) 95.32 (0.26) 92.94 (0.24) 63.12 (0.55) 76.65 (0.63) [DWL+20]
fastText 79.38 (0.30) 96.13 (0.21) 92.81 (0.09) 57.70 (0.49) 75.14 (0.20) [DWL+20]
TF-IDF + WideMLP 84.20 (0.16) 97.08 (0.16) 93.67 (0.23) 66.06 (0.29) 76.32 (0.17) own exp.
WideMLP 83.31 (0.22) 97.27 (0.12) 93.89 (0.16) 63.95 (0.13) 76.72 (0.26) own exp.
WideMLP-2 81.02 (0.23) 96.61 (1.22) 93.98 (0.23) 61.71 (0.33) 75.91 (0.51) own exp.
GloVe+WideMLP 76.80 (0.11) 96.44 (0.08) 93.58 (0.06) 61.36 (0.22) 75.96 (0.17) own exp.
GloVe+WideMLP-2 76.33 (0.18) 96.50 (0.14) 93.19 (0.11) 61.65 (0.27) 75.72 (0.45) own exp.

Graph-based Models
TextGCN 80.88 (0.54) 94.00 (0.40) 89.39 (0.38) 56.32 (1.36) 74.60 (0.43) [RSI+21]
HeteGCN 84.59 (0.14) 97.17 (0.33) 93.89 (0.45) 63.79 (0.80) 75.62 (0.26) [RSI+21]
HyperGAT 86.62 (0.16) 97.07 (0.23) 94.98 (0.27) 69.90 (0.34) 78.32 (0.27) [RSI+21]
DADGNN — 98.15 (0.16) 95.16 (0.22) — 78.64 (0.29) [LGG+21]

Sequence-based Models
LSTM (pretrain) 75.43 (1.72) 96.09 (0.19) 90.48 (0.86) 51.10 (1.50) 77.33 (0.89) [DWL+20]
DistilBERT 86.24 (0.26) 97.89 (0.15) 95.34 (0.08) 69.08 (0.60) 85.10 (0.33) own exp.
BERT 87.21 (0.18) 98.03 (0.24) 96.17 (0.33) 71.46 (0.54) 86.61 (0.38) own exp.
BERT w/o pos emb 81.47 (0.49) 97.39 (0.20) 94.70 (0.27) 65.18 (1.53) 80.35 (0.20) own exp.
BERT w/ shuf. aug. 86.46 (0.42) 98.07 (0.21) 96.48 (0.18) 70.94 (0.60) 86.23 (0.33) own exp.
Bidi. Hybrid 79.63 97.17 93.38 64.09 76.45 own exp.

Transductive Setting 20ng R8 R52 ohsumed MR Provenance

Graph-based Models
TextGCN 86.34 97.07 93.56 68.36 76.74 [YML19]
SGC 88.5 (0.1) 97.2 (0.1) 94.0 (0.2) 68.5 (0.3) 75.9 (0.3) [WJZ+19]
TensorGCN 87.74 98.04 95.05 70.11 77.91 [LYZ+20]
HeteGCN 87.15 (0.15) 97.24 (0.51) 94.35 (0.25) 68.11 (0.70) 76.71 (0.33) [RSI+21]

of the vocabulary size, it has only half of the parameters as DistilBERT and a
quarter of the parameters of BERT. Using TF-IDF does not change the number of
model parameters. Due to the high vocabulary size, GloVe-based models have a
high number of parameters, but the majority of these are frozen and do not receive
gradient updates during training. Note that the majority of MLP parameters (about
30M for the first layer) can be implemented as an embedding layer. This way, a
table lookup is sufficient rather than a large, dense matrix multiplication.

Runtime Performance of the Models We provide the total running times in
Table 5.5 as observed while conducting the experiments on a single NVIDIA A100-

83

5. Wide Multilayer Perceptrons for Text Classification

Table 5.4. Parameter counts of the models

Model #parameters

WideMLP 31.3M
WideMLP-2 32.3M
GloVe+WideMLP 575,2M (frozen) + 0.3M
GloVe+WideMLP-2 575,2M (frozen) + 1.3M
DistilBERT 66M
BERT 110M

SXM4-40GB card. All WideMLP variants are an order of magnitude faster than
DistilBERT when considering the average runtime per epoch. DistilBERT is twice as
fast as the original BERT. The Transformers are only faster than the BoW models on
the MR dataset. This is because the sequences in the MR dataset are much shorter
and fewer O(L2) attention weights must be computed.

Table 5.5. Total runtime (training+inference). Average of five runs rounded to minutes.

Model #epochs 20ng R8 R52 ohsumed MR

WideMLP 100 7min 3min 4min 3min 4min
TF-IDF+WideMLP 100 9min 4min 4min 3min 4min
WideMLP-2 100 9min 5min 5min 3min 6min
GloVe+WideMLP 100 6min 3min 4min 3min 4min
GloVe+WideMLP-2 100 6min 4min 4min 3min 4min
DistilBERT 10 8min 4min 5min 3min 1min
BERT 10 15min 7min 8min 5min 2min

5.6 Discussion

Key Results Our experiments show that our wide MLP models that use the
BoW input representations outperform the recent graph-based models TextGCN
and HeteGCN in inductive text classification. Furthermore, the MLP models are
comparable to HyperGAT. Only Transformer-based BERT and DistilBERT models
outperform our wide MLP and set a new state-of-the-art. This result is important
for two reasons: First, the strong performance of a pure BoW-MLP questions the

84

5.6. Discussion

added value of synthetic graphs in models like TextGCN to the text categorization
task. Only HyperGAT, which uses the expensive Latent Dirichlet Allocation for
computing the graph, slightly outperforms our BoW-WideMLP in two of five
datasets. Therefore, we argue that the use of strong baseline models for text
classification is important to assess true scientific progress [DCJ19].

Second, in contrast to conventional wisdom [IMB+15], we find that pretrained
embeddings, e. g., GloVe, can have a detrimental effect compared to using an MLP
with a single wide hidden layer. Such an MLP bypasses the bottleneck of the
small dimensionality of word embeddings and has a higher capacity. Furthermore,
we experiment with more hidden layers (see WideMLP-2), but do not observe
any improvement when the single hidden layer is sufficiently wide. A possible
explanation is that a single hidden layer is sufficient to approximate any compact
function to an arbitrary degree of accuracy depending on the width of the hidden
layer [Cyb89].

Finally, the Transformer model BERT sets a new state of the art. However, as our
efficiency analysis shows, MLPs require only a fraction of the parameters and are
faster in their combined training and inference time, except for the MR dataset. The
attention mechanism of (standard) Transformers is quadratic in sequence length,
which leads to slower processing of long sequences. With larger batches, the speed
of MLP could be increased even further.

Discussion on the Use of Graphs for Text Classification Graph-based models
come with high training costs, as not only the graph has to be first computed, but
also a GNN has to be trained. For standard GNN methods, the entire graph has to fit
into the GPU memory, and mini-batching is non-trivial but possible with dedicated
sampling techniques for GNNs [FLW+21]. Furthermore, the original TextGCN
is inherently transductive, so it needs to be retrained whenever new documents
appear. Strictly transductive models are effectively useless in practice [HHY+19]
except for applications where a partially labeled corpus needs to be fully annotated.
However, recent extensions such as HeteGCN, HyperGAT, and DADGNN already
relax this constraint and enable inductive learning. However, word-document
graphs require O(N2) space, where N is the number of documents plus the size of
the vocabulary, which is a hurdle for large-scale applications.

There are also tasks where the natural structure of the graph data provides
more information than the mere text, e. g., citation graphs or connections in social
graphs. In such cases, the performance of graph neural networks is state of the
art [KW17; VCC+18] and is superior to MLPs that use only the node features and

85

5. Wide Multilayer Perceptrons for Text Classification

not the graph structure [SMB+19]. GNNs also find application in various tasks
NLP, in addition to pure classification [WCS+21].

Influence of Word Order and Positional Embeddings An interesting factor is
the ability of the models to capture word order. BoW models disregard word order
and still give good results, but fall behind order-sensitive Transformer models. In a
detailed study, Conneau et al. [CKL+18] have shown that memorizing the word
content (which words appear at all) is highly indicative of the performance on
downstream tasks. Sinha et al. [SJH+21] have experimented with pretraining BERT
by disabling word order during pretraining and show that it makes surprisingly
little difference for fine-tuning. In their study, word order is preserved during fine-
tuning. In our experiments, we have conducted complementary experiments: we
have used a BERT model that is pretrained with word order, but we have deactivated
the position encoding during fine-tuning. Our results show that the removal of
position embeddings in BERT leads to a notable decrease in performance. This
is presumably because the position embeddings were present during pretraining.
Still, it should be noted that the model does not completely fail without position
embeddings, e. g., it is still better than all other models on the MR task.

Other NLP tasks such as question answering [RZL+16] or natural language
inference [WSM+19] can also be regarded as a text classification on a technical level.
Here, the positional information of the sequence is more important than for pure
topical text categorization, so that we expect that capturing word order is more
important for these types of task.

Generalizability We expect similar observations to be made in other text classifi-
cation datasets because we have already covered a variety of different characteristics:
long and short texts, topical categorization (20ng, Reuters, and Ohsumed), and
sentiment prediction (MR) in the domains of forum posts, news, movie reviews,
and medical abstracts. Our results are in line with those of other fields, who
have reported a resurgence of MLPs. For example, in business prediction, a MLP
baseline outperforms various other Deep Learning models [VTF+21]. In computer
vision, the models by Tolstikhin et al. [THK+21] and Melas-Kyriazi [Mel21] with
attention-free MLPs are on par with the Vision Transformer [DBK+21]. In natural
language processing, Liu, Dai, So, and Le [LDS+21] show similar results, while
acknowledging that a small attention module is necessary for some tasks. These
findings point in a similar direction, even though the pure MLP-based Transformer

86

5.7. Summary

replacements are conceptually different (position aware) from the bag-of-words MLP
that we considered for text classification.

Threats to Validity We acknowledge that the experimental datasets are limited to
English. Although word order is important in the English language, it is noteworthy
that methods that disregard word order still work well for text categorization.
Another possible bias is the comparability of the results. However, we carefully
checked all relevant parameters, such as the train/test-split, the number of classes in
the datasets, if the datasets have been preprocessed in such a way that, e. g., makes
the task easier, such as reducing the number of classes, the training procedure, and
the reported evaluation metrics. Regarding our efficiency analysis, we make sure
to report the numbers for the parameter count and, a measure of speed other than
FLOPs, as recommended by Dehghani et al. [DAB+21]. Since runtime is heavily
dependent on training parameters, such as batch size, we complement this with
asymptotic complexity.

Practical Impact Our findings have an immediate impact on practitioners who
seek to employ robust text classification models in research projects and in industrial
operational environments. Furthermore, we advocate the use of a MLP baseline
in future text classification research, for which we provide concrete guidelines in
Appendix D.1.

5.7 Summary

We argue that a wide multilayer perceptron enhanced with current best practices
should be considered as a strong baseline for text classification tasks. In fact, our
experiments show that our WideMLP is often on par or even better than recently
proposed models that synthesize a graph structure from the text. Based on the
strong performance of models with a BoW input representation, we will use this
representation in subsequent chapters.

87

Chapter 6

Multimodal Autoencoders for
Document-based Recommendations

In this chapter, we seek to answer Q4: How can we design multimodal representation
learning models that jointly process text and graph data for document-based recommen-
dation tasks? This chapter is based on material published in the Proceedings of
the 26th Conference on User Modeling, Adaptation and Personalization, UMAP
2018 [GMV+18] and an extension published in the Springer Information Retrieval
journal [VGS22].

We investigate to what extent side information in the form of textual biblio-
graphic metadata improves the performance of recommender systems. In particular,
we investigate recommendation tasks, in which a document is the sole basis for
recommended items, which we call document-based recommender systems.

Applications of document-based recommender systems include multi-label clas-
sification [TK07; GMS+17; MGS18; NMK+17], a.k.a. subject indexing in the digital
library community [ISO96], document-level citation recommendation [CSM+13;
EF17; ZYW21], and research paper recommendation [BGL+16; RFP17]. A successful
recommender system for these tasks helps researchers in finding relevant literature.
In particular, we choose two scenarios, which fall in the category of document-based
recommender systems: citation recommendation and subject label recommendation.

We choose citation and subject-label recommendation as our scenarios because
of the difference in what it means when two items occur together. In the citation
scenario, when two papers are cited together, these two papers are related to each
other [Sma73]. On the contrary, in the subject indexing scenario, the professional
librarians attach labels to the documents that represent the different covered topics.
In other words, the labels of a single document are dissimilar. These two considered
tasks are two extrema with regard to the degree of similarity within item sets.
In other tasks, such as the recommendation of movies or music, the similarity of
the items is more mixed. Users can like very different genres, such as jazz and
electronic music, but the songs within each genre are rather similar. In [VGM+18],

89

6. Multimodal Autoencoders for Document-based Recommendations

we explored automatic playlist continuation as one of such tasks with the same
methods that we use throughout this chapter.

Challenges of Document-based Recommendation Tasks A particular challenge
in these recommendation tasks is that it is desirable that only the document itself
is the basis for recommendations. In other recommendation systems, the user and
its metadata are the central factor for recommendations (e. g., “What articles does
the user know already?”). However, the researcher might very well be involved
in the writing of numerous different papers with different topics, which supports
the analogy that we regard the documents themselves as pseudo-users [MAC+02].
Furthermore, professional subject indexers presumably know all candidate subjects
but need to know which fits best for the current paper in question. Therefore,
we ensure that all subject indexers receive the same recommendation for a given
document, and all coauthors of a paper draft receive the same recommendations
for articles to cite. We call these tasks document-based recommendation tasks
because the document, along with its metadata, is the basis for recommendations.

Therefore, it is crucial in such document-based recommendation tasks that the
system is able to provide recommendations for documents that were previously
unknown to the system, known as the cold start problem [SCP+19]. In recommender
systems, cold start refers to the problem of having insufficient information about
users or items to make accurate recommendations. A subproblem of the cold
start problem is the new user problem, which corresponds, in our document-
based recommendation tasks, to the problem of dealing with new documents after
training. This is a critical factor because the drafts that are being written are not
yet available at training time. Similarly, subject indexers usually annotate new
documents.

Autoencoders as Recommendation Models A commonly used model for recom-
mender systems is the autoencoder (AE) [LS17; LKH+18], sometimes also enriched
with side information [SGM16; MJ17], where side information refers to additional
user or item data aside from the ratings. AEs capture patterns in the training
data by learning to reconstruct their input. The input here is the item set, and the
reconstructed item set then determines the recommendations while removing any
items that were already present in the input.

However, previous autoencoder approaches, and also more general approaches
such as IRGAN [WYZ+17], struggle to deal with new unseen documents. This is

90

because the methods rely on learning an embedding for each user during training
and there would be no such embedding for new users. In our experiments on
document-based recommendation, all test documents are unseen by the system
during training, whereas in other recommendation scenario, the assumption is
that only a fraction of the ratings matrix remains unseen. This presents a special
challenge, which we address by building autoencoder systems that rely only on
the document and its metadata.

To alleviate the cold start problem, we extend the autoencoders to take multi-
modal input so that they become hybrid recommenders that can take advantage of
both the ratings in terms of the set of partial item set and the content in terms of
additional metadata. These extended models can receive different metadata fields
as side information, such as the title of the document, the authors, and the venue.

We compare the autoencoders with three strong baselines for a fair evaluation
and to address the question of whether neural architectures are making progress on
the considered recommendation tasks [DCJ19]. As baselines, we have selected an
Item Co-occurrence (IC) method inspired by the Co-Citation Score [Sma73], which is
reminiscent Common Neighbors from link prediction [New01; BJN+02]. We provide
an efficient implementation for IC via matrix multiplication. Second, we have a
singular value decomposition (SVD) matrix factorization approach [CSM+13],
which we extend to also take into account the textual side information. Finally, an
MLP motivated by its success in the previous Chapter 5 on text classification and
in prior work [GMS+17; MGS18].

Evaluation We evaluate the models on two recommendation tasks (citations and
subject labels) with three different options for side information (none, only titles,
all metadata) together with the item set (either citations or subject labels). We
support each task with 3 different datasets, which makes up a total of 6 datasets
from five domains: medicine, computer science, economics, politics, and news. In
addition to evaluating only previously unseen test documents, i. e., a pure cold
start evaluation, we also conduct a chronological split between training and test data.
The split along the time axis is especially important, since only already existing
papers can be cited, and thus recommended for a citation. Similarly, subject labels
suffer from concept drift [WHC+16], so a chronological split is more representative
of real-world applications. Moreover, we provide an extensive analysis of two
experimental conditions: dataset pruning, which controls the size of the dataset
by setting a minimum threshold on the number of times an item occurs, and a
drop parameter, which controls the size of the input item sets, i. e., the stage of

91

6. Multimodal Autoencoders for Document-based Recommendations

the iterative recommendation process. This effectively creates a new version of
each dataset for each value of the pruning and the drop parameter. To ensure
reproducibility with respect to the models’ random initialization and the dropped
items within dataset preparation, we repeat each experiment three times for each
configuration of models and the datasets including their variations in terms of
pruning and drop parameter.

Results The results show that side information improves the recommendations
of autoencoder-based models for both citations and subject labels. We observe
that autoencoder models even need the side information to compete with strong
collaborative filtering baselines. On the subject label side, we find that a simple MLP,
a pure content-based approach, yields the best results without using the ratings
matrix at all. We explain this phenomenon by the meaning of item co-occurrence,
which is relatedness in co-citations and diversity in co-annotations. When item
co-occurrence resembles relatedness or similarity, the ratings are more important
than when item co-occurrence resembles diversity or dissimilarity. Intuitively, it
is easier to predict similar items on the basis of others, while finding items that
complement an existing set is more difficult solely on the basis of other items. Instead,
it is easier to consult the side information, e. g., the document’s title, to find such
complementing items. We conclude that the meaning of item co-occurrence is a
critical factor for the choice of an appropriate model.

By systematically analyzing the influence of dataset pruning, we confirm that
the ranking between methods remains stable. However, absolute recommendation
performance increases with a smaller set of possible items, i. e., with a lower degree
of sparsity. For the item set size, we find that the recommendation performance is
best when a medium amount of items is available in the input, while a medium
amount of items are still to be recommended. Still, we found that VAEs deviate
from this behavior and provides comparatively good recommendations on small
item sets. This may serve as an explanation for why VAEs [KW14] are among the
most popular models in recommender systems [LS17; LKH+18; CR18; BB19].

The remainder of this chapter is structured as follows. In the following, we
review previous work on recommender systems with a focus on autoencoder-based
approaches and methods for citation and subject recommendation. Subsequently, a
formal problem statement is provided in Section 6.2. In Section 6.3, we introduce
the multimodal autoencoder models and the three baselines, before describing our
datasets in Section 6.4. The experiments are described in Section 6.5, the results of
which are discussed in Section 6.6, before we summarize the chapter.

92

6.1. Related Prior Work

6.1 Related Prior Work

Recommender systems are typically separated into three types: Collaborative filter-
ing approaches operate only on the rating matrix between users and items [FJN+13].
Approaches that provide recommendations based on item or user content are
called content-based [LGS11] recommender systems. Hybrid recommender sys-
tems [ÇM17; LWK+18] combine these two strategies and consider content and
user-item ratings. In hybrid recommender systems, one can further distinguish be-
tween loose coupling and tight coupling [WWY15]. In loose coupling, collaborative
filtering and content-based models are separate and their final output is combined,
whereas in tight coupling, a joint model operates on both input modalities.

When assuming that the documents serve as pseudo-users, our approaches
behave as collaborative filtering when only the item set is used, while they are
content-based when only the side information is used, and they behave as hybrid
approaches when both the item set and side information are used. We now review
previous work on recommender systems with a focus on autoencoder-based ap-
proaches. Then, we discuss methods and systems specifically designed for citation
and subject-label recommendation.

6.1.1 Autoencoders as Recommendation Engines

Autoencoder (AE) have recently gained great popularity for recommendation
tasks [PHY20; LKH+18; Ste19; CYL17; ZZQ+17; SMS+15], often using side infor-
mation [BB19; HMZ19; CR18; LWK+18; WWY15; MJ17; LS17; ZYX+17; SGM16;
LKF15]. AE are especially suitable for collaborative filtering and content-based
recommendations with tight coupling [BB19; WWY15; LS17]. A common strategy
is to combine the encoded features of the items with a latent factor model of the
ratings [BB19; HMZ19; LS17]. Some works also fuse user/item side information
with the respective rows/columns of the rating matrix as input to the AE [CR18;
MJ17]. Majumdar and Jain [MJ17] investigated the pure cold start problem and the
partial cold start problems, in which they assume that 10% or 20% of the ratings
are present.

Regarding model architectures, the variational autoencoder (VAE) [KW14] has
recently been used more frequently for recommendation tasks [LKH+18; BB19;
HMZ19; CR18; LS17], although other work has used (stacked) denoising autoen-
coder [LWK+18; WWY15; LKF15]. AEs find widespread applications in recom-
mender systems. The most prominent variants [LKH+18; LS17] stood the test

93

6. Multimodal Autoencoders for Document-based Recommendations

of a reproducibility study of deep learning recommender systems [DCJ19]. The
study has shown that all the autoencoder variants tested, namely Collaborative
VAE [LS17] and Mult-VAE [LKH+18] could be reproduced.

Compared to previous work, we focus on using AE for the new user prob-
lem [SCP+19] as modeled by a chronological split of the datasets along the time
axis. In contrast, most of the existing literature assumes that all users are already
present during training. Furthermore, we explicitly investigate the influence of
different meanings of item co-occurrence on the recommendation performance.
We also consider different completeness levels of the partial set in our experi-
ment, beginning from early to mid-late stages of the two scenarios of citation and
subject-label recommendation.

6.1.2 Research Paper and Citation Recommendation

Research paper recommendation is a well-known and popular topic [BGL+16;
AUK+21]. Specifically, in citation recommendation [FJ20], recommendations are
distinguished between recommendations based on a partial set of references and
recommendations based on the content of a manuscript [HKC+12]. While the former
aims at identifying missing citations on the broader document level, the latter is
suited to find matching citations for a given statement during writing. Citation
recommendation recently focuses on these context-sensitive applications, in which
concrete sentences need to be assigned to preferably relevant citations [MZL20;
EF17; ZYW21; BGL+16; HKC+12]. Instead, we revisit the problem of completion
of the reference set and do not take into account the context of the citation, as
the full text of a paper is rarely available in large-scale metadata sources [MGS18].
Co-citation analysis assumes that two articles are more related to each other, the
more they are co-cited [Sma73]. Following this idea, Caragea, Silvescu, Mitra,
and Giles [CSM+13] used singular value decomposition as a more efficient and
extendable approach to citation recommendation. Other approaches make use
of deep learning techniques for citation recommendation but focus on context-
sensitive scenarios [EF17; HWL+15; SAH20; ZM20; TSZ+20; CYL+20; AKM+20]. We
recognize the need for new methods on the document level that are not only based
on item co-occurrence but also consider additional metadata for document-based
recommendations.

Other approaches in the areas of network analysis include node embeddings
[PAS14; GL16], link prediction with graph neural networks [KW16; ZC18], and
dynamic graph representation learning [KZL19]. However, these methods and also

94

6.1. Related Prior Work

retrieval methods such as IRGAN [WYZ+17] do not apply to our problem because
they require that all documents are known in advance, while our methods need to
be applicable to new unseen data without further training. In graph representation
learning, the former is known as transductive learning, while the latter is called
inductive learning (cf., Section 2.4). Here, we assume that the test documents are
completely unseen during training, i. e., an inductive learning problem. We need
to predict citations for a paper at the time of writing that are not available during
model training. Such a scenario is particularly challenging, as it corresponds to
having only new users at test time.

6.1.3 Subject Label Recommendation

Subject label recommendation is similar to tag recommendation. In both cases, the
goal is to suggest a descriptive label for some content. Boughareb et al. [BKB+20]
show an approach to recommend tags for scientific papers, which defines the
relatedness between the tags assigned by users and the concepts extracted from
the available sections of scientific papers based on statistical, structural, and se-
mantic aspects. Sun et al. [SZJ+21] presented a hierarchical attention model for
personalized tag recommendation. Lei, Fu, Yang, and Liang [LFY+20] introduce a
tag recommendation by text classification that uses the capsule network with dy-
namic routing for tag recommendation. The capsule network encodes the intrinsic
spatial relationship between a part and a whole, constituting viewpoint-invariant
knowledge that automatically generalizes to novel viewpoints. Zhou, Xia, Wan,
and Zhang [ZXW+20] propose a hybrid method based on multimodal content
analysis, in which keywords are recommended to compose titles and tags for video
upload. They combine textual semantic analysis of original tags and recognition of
video content with deep learning. Sen, Vig, and Riedl [SVR09] proposed algorithms
that predict users’ preferences for items based on their inferred preferences for
tags. Montañés, Quevedo, Díaz, and Ranilla [MQD+09] exploited probabilistic
regression for collaborative tag recommendation, while Krestel, Fankhauser, and
Nejdl [KFN09] relied on latent Dirichlet allocation. Similarly, Sigurbjörnsson and
Zwol [SZ08] proposed a tag recommender for Flickr to support the user in the
photo annotation task, while Posch, Wagner, Singer, and Strohmaier [PWS+13]
predicted hashtag categories on Twitter. Dellschaft and Staab [DS12] measure the
influence of tag recommenders on indexing quality in collaborative tagging systems.
While these works focus on tags for social media, we consider subjects from a
standardized thesaurus for scientific documents. The recommendation of subject

95

6. Multimodal Autoencoders for Document-based Recommendations

labels is also related to social tagging systems, such as [DZS+16; WSS+14], in which
users share content-dependent tags with each other.

Furthermore, tag or label recommendation is related to the problem of multi-
label classification. Multi-label classification typically requires a hard decision per
label [GMS19]. When considering a recommendation task, we instead evaluate
the ranking of recommended items [TZY+08]. Tsoumakas, Katakis, and Vlahavas
[TKV11] propose to use random subsets of label permutations. Zhang and Zhou
[ZZ14] give an overview of approaches to multi-label learning. Zhang and Wu
[ZW15] exploit label-specific features to discriminate between classes. Nam, Mencía,
Kim, and Fürnkranz [NMK+17] propose an encoder-decoder architecture based
on sequence models as a special case of the generic set2set method [VBK16].
Here, the sequential decoder can take into account the dependencies between the
labels, similar to classifier chains [RPH+11]. They extended this approach with an
expectation maximization model to provide context-dependent label permutations
in sequential mode [NKM+19].

In our previous work on multi-label classification, we analyzed the influence of
using title-only versus full-text input data on scientific and news corpora [GMS+17].
We found that using only the title retains 90% of the accuracy obtained by using
the full text. Among many baselines, a wide MLP with a single hidden layer is
preferable. Furthermore, we showed that using only titles can be even better than
using the full text for multi-label classification tasks, when more training data is
available [MGS18]. This motivates us to use additional bibliographic metadata in
the two recommendation scenarios, rather than the full text, which is often not
available even in open access datasets [MGS18].

6.1.4 Summary

Autoencoder have been shown to be effective in recommendation tasks and have
been widely used. To our knowledge, no previous work has studied in detail the
recommendation of items at different stages of completeness of the input item set,
i. e., with a varying number of items in the input and in the new user settings.
Furthermore, we consider the differences in the meanings of item co-occurrence
in the two recommendation scenarios of citations and subject labels, as well as
different degrees of sparsity and the influence of using metadata.

96

6.2. Problem Formulation

6.2 Problem Formulation

We first describe two scenarios and how to incorporate them into a common frame-
work for document-based recommendations with side information. Subsequently,
we provide a formal problem statement for the task and describe its evaluation.

6.2.1 Scenarios and Common Framework

Scenario 1: Citation Recommendation When writing a new article, it is essential
that the authors refer to other publications that are key in the respective field
of study or relevant to the article being written. Reviewers can negatively rate
failure to do so in a peer-reviewing process. However, due to the increasing
volume of scientific literature, even some key papers are sometimes overlooked. We
address this challenge by studying the problem of recommending publications for
consideration as citation candidates. Given that the authors have already selected
some references for their scientific paper, we use these references as input for the
recommendations of other candidate documents.

Using the set of documents already cited comes with a further challenge. At
the initial stage of writing, the set has only few elements, making it difficult to
infer the topic of the draft, but there are more opportunities to make a “good”
prediction. At a later stage, the set has grown, and, while inferring the topic becomes
easier, finding the missing item becomes more difficult. In our experiments, we
explicitly consider the influence of the degree of completeness of the input set on
the recommendation performance.

Scenario 2: Subject Label Recommendation Subject indexing is a common task
in scientific libraries to make scientific documents accessible for search. New docu-
ments are manually annotated by qualified subject indexers with a set of subject
labels, i. e., categories from a, typically domain-specific, thesaurus. Fully automated
multi-label classification approaches to subject indexing are promising [NMK+17],
even when only the title metadata of the publication is used [GMS+17]. Still, profes-
sional subject indexers use the result of these approaches only as recommendations
such that human-level quality can be guaranteed. This motivates us to investigate
subject labeling from a recommender system perspective.

Similarly to the citation task, professional subject indexers add labels one by
one to the publications. Following internationally standardized guidelines [ISO96],
the indexers ensure that the labels are covering the diverse scientific aspects,

97

6. Multimodal Autoencoders for Document-based Recommendations

contributions, and methods of the papers. To this end, the indexers scan the paper’s
title, section headings, and partially read their content. Thus, properly indexing a
scientific paper with subject labels is a difficult task, which can be well supported by
a recommender system. The recommender takes the set of already assigned subject
labels as input and produces recommendations for new labels that refer to aspects
of the paper that are not yet covered. Following the same experimental approach
as for the citation task, we explicitly evaluate the influence of the different levels
of completeness of the already assigned subject labels on the recommendation
performance. Thus, we use different sizes of the input set of labels and measure
the quality of the recommendations.

Document #1

Document #2 Document #27

Document #3 Document #1

Document #122

Citing documents Cited Documents

(a) The citation recommendation scenario.

Document #1

Document #2 Theory

Document #3 Fraud Detection

Economic Crisis

Documents Subject Labels

(b) The subject indexing scenario.

Figure 6.1. Exemplary bipartite graphs of citation relationships between documents (left)
and documents annotated with subject labels (right).

Common Framework for Document-based Recommendation Tasks Figure 6.1
shows how the citation recommendation and the subject label recommendation
share the structure of a bipartite graph. In both cases, the document is linked to
multiple items, which are either cited documents in the one case and assigned
subject labels in the other. Thus, the task of recommending such items can be
regarded as predicting links in the bipartite document-item graph.

6.2.2 Formal Problem Statement

Traditionally, the recommendation problem is modeled as a matrix completion
problem. The goal is to predict missing ratings in a U ˆ I matrix, where U is

98

6.2. Problem Formulation

Table 6.1. Notation table

Symbol Description

D Set of m documents
I Set of n items
X P {0, 1}mˆn Sparse ratings matrix
S P Rmˆd Side information from document metadata
x, s Row vectors of X or S, respectively
x ∥ s Concatenation of vectors x and s
ŹŸ Natural join (on document identifiers)
I Identity matrix

the set of users and I is the set of items. As illustrated in Figure 6.1, for citation
recommendation (Scenario 1), the users are the newly authored papers and the
recommended items are the papers that are recommended to be cited. While in
subject label recommendation (Scenario 2), the users are the newly annotated papers
and the items are recommended subject labels. As in previous work [MAC+02],
we consider a matrix U ˆ I, where the set of users is in our context the set
of documents, i. e., the training corpus of documents. The rationale is that in
Scenario 1, all authors for a given paper should receive the same recommendations
of which papers to cite. Analogously for Scenario 2, a given paper should receive
the same recommendations for adding subjects labels, independently of the current
subject indexer responsible for annotating it.

Document-based Recommendations Given a set of m documents, D, and a set of
n items, I, the typical recommendation task is to model the spanned space, D ˆ I.
We model the ratings as a sparse matrix X P {0, 1}mˆn, in which Xjk indicates
implicit feedback from document j to item k. To simulate a real-world scenario,
we split the documents D into mtrain documents for training, Dtrain, and mtest

documents for evaluation, Dtest, such that Dtrain X Dtest = H. More precisely, we
conduct this split into training and test documents based on the publication year.
All documents that were published before a certain year are used as training, and
the remaining documents are used as test data. This leads to an experimental
setup that is close to real-world applications of citation recommendation and
subject-label recommendation. All models are supplied with the users’ ratings
Xtrain = Dtrain ŹŸ X along with the side information Strain = Dtrain ŹŸ S for
training. As side information S, we use the documents’ various metadata fields

99

6. Multimodal Autoencoders for Document-based Recommendations

such as title, authors, and venue. The test set Xtest, Stest is obtained analogously. A
summary of the notation used in this chapter can be found in Table 6.1.

Evaluation For evaluation, we remove randomly selected items in Xtest by setting
a fraction of non-zero entries in each row to zero. We denote the hereby created
test set by X̃test. The model ought to predict values Xpred P Rmtestˆn, given the test
set, X̃test, along with the title information, Stest. Finally, we compare the predicted
scores, Xpred, with the true ratings, Xtest, via ranking metrics. The goal is that those
items, that were omitted in X̃test are highly ranked in Xpred.

Note that a research paper is usually both a cited and a citing paper, which
is modeled here through separate roles. We follow this approach because the
number of citations that point out of the dataset is so high that there are an order
of magnitude more cited papers than citing papers. For example, the PubMed
citation dataset has 224,092 documents that cite 2,896,764 other distinct documents.
Therefore, it is reasonable to distinguish documents based on their role in the
citation relationship, i. e., citing versus cited paper. A different perspective will be
considered in Chapter 7, in which the cited and cited research papers are treated in
an interconnected graph.

6.3 Methods

Autoencoder (AE) are well suited for our task as they learn to reconstruct their
input. We make use of this capability to produce recommendations. In the following,
we describe the employed models. We first start by recapturing two well-known
baselines, singular value decomposition and item co-occurrence. Then, we describe
the employed AE base models and introduce a generic mechanism to make use of
the side information in AEs.

6.3.1 Singular Value Decomposition

We use Singular value decomposition (SVD) to factorize the co-occurrence matrix
of items XT ¨ X. Caragea, Silvescu, Mitra, and Giles [CSM+13] have successfully
used SVD for citation recommendation. We include an extended version of SVD in
our comparison, which can incorporate textual side information [GMV+18]. We
concatenate the textual features as TF-IDF weighted bag-of-words (see Section 2.2)
with the items and perform a singular value decomposition on the resulting matrix.

100

6.3. Methods

As the final predictions, we use only those indices of the reconstructed matrix that
are associated with items.

6.3.2 Item Co-Occurrence

With the goal of developing a strong non-parametric baseline, we take inspiration
from Small [Sma73]’s co-citation score and early work in document-level citation
recommendation [MAC+02]. The co-citation score counts how often two documents
have been cited together, indicating the similarity of the two documents. McNee
et al. [MAC+02] have used this co-citation score together with other collaborative
filtering approaches in a recommender scenario. The rationale is that two papers,
which have been often cited together in the past, are more likely to be cited together
in the future.

We generalize this method to arbitrary recommender scenarios by operating
on the ratings matrix X. Given training data, Xtrain, we compute the full item
co-occurrence matrix C = XT

train ¨ Xtrain P Rnˆn. Each element Ci j holds the number
of times that item i has co-occurred with item j. On the diagonal of C, we have
the total number of times that each item has occurred. At prediction time, we
obtain the scores by aggregating the co-occurrence values via matrix multiplication
Xtest ¨ C. Note that the diagonal of C only affects the predicted scores of those items
already present in the input, and thus does not alter the list of recommended items.
All matrix multiplications can be performed in a sparse format for more efficient
computation.

This item co-occurrence method is reminiscent of the Common Neighbors
method for link prediction in network data, in which the score is computed as the
number of common neighbors of any two nodes [New01]. In our terms, that would
correspond to two items having a document in common, i. e., co-occur in an item
set. Since we are considering recommender systems, we denote this method as item
co-occurrence (IC).

6.3.3 Multilayer Perceptrons

A multilayer perceptron (MLP) is a fully-connected feedforward neural network
with one or multiple hidden layers (Figure 6.2). The output is calculated by con-
secutive applications of h(i) = σ(h(i´1) ¨ W (i) + b(i)), with σ being a nonlinear
activation function. In the description of the following models, we abbreviate a
two-hidden-layer perceptron module by MLP-2.

101

6. Multimodal Autoencoders for Document-based Recommendations

Figure 6.2. A multilayer perceptron (MLP) with two hidden layers

Furthermore, we use an MLP-2 as a standalone recommendation engine, which
only operates on document metadata. In this case, we optimize binary cross-
entropy BCE(x, MLP-2(s)), where the title and other metadata s are used as input
and citations or subject labels x as target output. We use dropout [SHK+14] and
Adam optimizer [KB15]. For the purpose of a fair comparison, the MLP operates
on the same input representation, s, which we will also use as the representation
of side information for the autoencoders, which are described below.

6.3.4 Undercomplete Autoencoders

Figure 6.3. Undercomplete autoencoder

An autoencoder (AE) has two main components: the encoder enc and the
decoder dec (Figure 6.3). The encoder transforms the input x into a hidden rep-
resentation, the code z = enc(x). The decoder aims to reconstruct the input from
the code r = dec(z). The two components are jointly trained to minimize the
binary cross entropy, BCE(x, r). To avoid learning to simply copy the input x to the
output r, autoencoders need to be regularized. The most common way to regularize
autoencoders is by imposing a lower dimensionality on the code (undercomplete
autoencoder). In short, autoencoders are trained to capture the most important
explanatory factors of variation for reconstruction [BCV13]. For both the encoder
and the decoder we chose an MLP-2 module, such that the model function becomes

r = MLP-2dec(MLP-2enc(x))

102

6.3. Methods

6.3.5 Denoising Autoencoders

Figure 6.4. Denoising autoencoder (DAE)

A denoising autoencoder (DAE) is an autoencoder that receives corrupted data
as input and aims to predict the original data [VLB+08] (Figure 6.4). During training,
the initial input x is corrupted into x̃ through stochastic mapping x̃ „ qD(x̃|x), e. g.,
randomly forcing a fraction of entries to zero (white noise). The corrupted input x̃
is then mapped to a hidden representation (the code) z = enc(x̃) in the same way
as the standard undercomplete autoencoder, and from the hidden representation
the model reconstructs r = dec(z). Both the encoder and the decoder rely on a
MLP-2 module, such that the model function becomes r = MLP-2dec(MLP-2enc(x̃)).
The loss function is again binary cross-entropy.

6.3.6 Variational Autoencoders

Figure 6.5. Variational autoencoder (VAE)

A variational autoencoder (VAE) is a generative model whose posterior is ap-
proximated by a neural network, forming an autoencoder architecture [KW14],
as shown in Figure 6.5. VAEs use a variational approach to learn latent repre-
sentations, i. e., minimize the empirical lower bound of the data distribution, in
which it is assumed that the underlying data-generating distribution pdata(x|z) is a
mixture of latent variables z. The encoder pencoder(z|x) learns to infer these latent
variables, while the decoder pdecoder(x|z) learns to generate samples from these
latent variables. The goal is that pdecoder(x|z) approximates pdata after successful

103

6. Multimodal Autoencoders for Document-based Recommendations

training. A crucial component of VAEs is the reparametrization trick that facilitates
backpropagation through random operations [KW14]. Given a prior distribution
pprior(z) on the code z, a deterministic encoder learns to predict the parameters
of this distribution. The prior distribution pprior(z) of a standard VAE is Gaus-
sian [KW14]. The deterministic output of the encoder enc(x) is first divided into
two halves: one for the mean, µ, and one for the standard deviations, σ. Then
we independently sample ϵ „ N (0, 1) and compose the code as z = µ + σϵ to
be fed into the deterministic decoder. To encourage a normal distribution on the
code, the Kullback-Leibler (KL) divergence with respect to N (0, 1) is added as an
additional loss term. Intuitively, the encoder learns how much noise to inject at the
code level. We use an MLP-2 in both the encoder and the decoder and optimize the
reconstruction loss (by binary cross entropy) along with the KL divergence term.

6.3.7 Adversarial Autoencoder

Figure 6.6. Adversarial autoencoder (AAE)

Adversarial autoencoders (AAEs) [GMV+18; MSJ+16] combine generative adver-
sarial networks [GPM+14] with AEs (Figure 6.6). The AE component reconstructs
the sparse item vectors, while the discriminator distinguishes between the gener-
ated codes and samples from a selected prior distribution. Therefore, the selected
prior distribution shapes the distribution of the latent code. Although this is sim-
ilar to the VAE, which uses an explicit Gaussian prior, the AAE provides more
flexibility in the choice of the prior distribution.

The latent representations learned by distinguishing the code from a smooth
prior lead to a model that is more robust to sparse input vectors than under-
complete AEs because smoothness is the main criterion for good representations
that disentangle the explanatory factors of variation [BCV13]. Formally, we first

104

6.3. Methods

compute z = MLP-2enc(x) and r = MLP-2dec(z) and then update the parameters
of the encoder and the decoder with binary cross-entropy, BCE(x, r).

Therefore, in the regularization phase, we draw samples z̃ „ N (0, I) from
independent Gaussian distributions matching the size of z. The parameters of the
discriminator MLP-2disc are then updated, to minimize log MLP-2disc(z̃) + log(1 ´

MLP-2disc(z)) [GPM+14].
The encoder parameters are updated to maximize log MLP-2disc(z), such that

the encoder is trained to fool the discriminator. Thus, the encoder is jointly op-
timized to match the prior distribution and reconstruct the input [MSJ+16]. At
prediction time, we perform one reconstruction step by applying one encoding and
one decoding step.

6.3.8 Conditioning Autoencoder on Side Information

An advantage of AE-based recommender systems is that AEs can be conditioned on
side information. This conditioning may be performed with different strategies, e. g.,
by providing the side information as an additional input [BAB+17]. In this work, we
chose to impose the condition s on the code level of the AE. The rationale for this
strategy is that the side information may help the decoder reconstruct the item set.
This strategy is akin to the supervised case of the original work on AAEs that used
classes as a condition for reconstructing images [MSJ+16], and has the advantage
that we can apply it in the same way to all AE variants without further adaptions
specific to an individual variant (such as disabling DAE’s noise or modifying
the VAE’s KL divergence objective). Thus, the encoder still operates solely on the
partial item set while the decoder is conditioned on side information to reconstruct
the original item set: r = dec (enc(x) ∥ s), where ¨ ∥ ¨ denotes concatenation.
Furthermore, the training objective remains to optimize the reconstruction of the
item set rather than the reconstruction of the side information. In practice, we
embed the document titles into a lower-dimensional space by using pre-trained
word embeddings such as word2vec [MSC+13]. More precisely, we use a TF-IDF-
weighted bag of embedded words representation that was shown to be useful for
information retrieval [GSS17]. We use the same strategy for journal names, as they
often contain indicative words. For authors, we learn a categorical embedding
from scratch: we optimize a randomly initialized embedding vector for each author
during training. In our scenarios, the side information is composed of the title
of the documents, the name of the journal, and the authors. We consider three
cases for our experiments: (1) no conditioning, (2) conditioning on the title, and

105

6. Multimodal Autoencoders for Document-based Recommendations

(3) conditioning on all metadata. When multiple conditions are used, we combine
them again by concatenation: s = stitle ∥ sauthor ∥ sjournal. In our experiments, we
evaluated these three cases with all the AE variants described above.

For the title data stitle, we use a TF-IDF weighted embedded bag-of-words
representation [GSS17], which we have also used as input for the standalone MLP
recommendation engine. For the journal data sjournal, we use the same technique,
because journal names often contain indicative terms, while less indicative terms
receive a low weight by TF-IDF. For author data sauthor, which is a categorical
attribute, we seek a different strategy: we employ an embedding table such that
each author is associated with its own learnable embedding vector.

6.4 Datasets

We consider six datasets for our experiments. Three datasets comprise scientific
publications in the domains of medicine and computer science for the citation
recommendation task. We also used three datasets from the domains of economics,
politics, and news for the subject-label recommendation task.

Power Law Coefficient To characterize the six different datasets, we use the power
law coefficient. The power-law coefficient allows us to assess how skewed the dis-
tribution of documents’ citations or subjects is. As such, we estimate the power law

coefficient a through maximum likelihood [New05]: a = 1 + n
(

∑uPV ln degu
degmin

)´1
,

where degmin is equal to 1. Still, the pure value of the power-law coefficient does
not tell us whether there is a power-law in the underlying distribution. There-
fore, we also plot the distribution of items (i. e., citations or labels) for visual
inspection [New05].

Mutual Information (MI) We further compute the mutual information among
the items in each dataset. This quantifies the information that each item con-
veys about other items. Mutual information (MI) can be computed as the KL-
Divergence of the joint distribution with respect to the product of marginals:
I(X; Y) = DKL(p(x, y)||p(x)p(y)) [CT06]. The distribution p(x, y) models the num-
ber of documents in which two items occur together, while the marginals p(x)
and p(y) are estimated using the empirical distribution based on the number of
observed documents that have the item xi. As p(x) equals p(y) in our case, we can

106

6.4. Datasets

normalize mutual information with the entropy of X: H(X), so that we obtain I(X;X)
H(X)

as normalized mutual information.

In the following, we outline the datasets used for our experiments, organized
by recommendation task or item type. First, we introduce three datasets for citation
recommendation in Section 6.4.1. Subsequently, we introduce three datasets for
subject label recommendation Section 6.4.2.

6.4.1 Datasets for Citation Recommendation

20 40 60 80 100
Citations

0

2000

4000

6000

8000

10000

12000

14000

16000

Pa
pe

rs

100

(a) Citation distribution

0 25 50 75 100 125 150 175 200
References

0

1000

2000

3000

4000

Pa
pe

rs

130

(b) Number of references per document

(c) Number of documents by publication year
with chronological train/test split in blue and
orange, respectively.

Figure 6.7. Characteristics of the PubMed dataset

107

6. Multimodal Autoencoders for Document-based Recommendations

PubMed Citation Dataset The CITREC1 PubMed citation dataset [GML15] con-
sists of 7,546,982 citations. The dataset comprises 224, 092 distinct citing documents
published between 1928 and 2011 and 2, 896, 764 distinct cited documents. Each
document has an identifier, an article title, the title of the journal in which it
was published, a list of authors, medical subject headings (MeSH)2 labels, and
the publication year. The documents are cited between 1 and 3, 247 times with a
median of 1 and a mean of 2.61 (SD: 6.71). The citing documents hold on average
33.68 (standard deviation, SD: 27.49) citations to other documents (minimum: 1,
maximum: 2, 242) with a median of 29. The citation distribution of this dataset
follows a power law, which is typical for citation networks (cf. Figure 6.7a). The
power-law coefficient for the PubMed dataset is 1.47 for citations and 1.30 for the
number of cited documents. The normalized MI for PubMed is 0.5996.

DBLP Citation Dataset The DBLP Citation Graph3 [TZY+08] includes 25, 166, 994
citations. The dataset comprises 3, 079, 007 distinct citing documents published
between 1936 and 2018 and 1, 985, 921 distinct cited documents. Each document
has an identifier, a title, a publication venue, a list of authors, a number of citations,
a publication date, and optionally an abstract. The documents are cited between 1
and 16, 229 times with a median of 4 and a mean of 12.67 (SD: 56.17). The citing
documents hold on average 8.17 (SD: 9.71) citations to other documents (minimum:
0, maximum: 1, 532) with a median of 6. The power-law coefficient is 1.58 for
citations and 1.28 for the number of cited documents. The normalized mutual
information is 0.5407.

ACM Citation Dataset The ACM Citation Network3 [TZY+08] contains 11, 344, 141
citations. The dataset comprises 2, 385, 066 distinct citing documents published
between 1936 and 2016 and 2, 631, 128 distinct cited documents. Each document is
characterized by its identifier and comes with a title, a publication venue, a list of
authors, a publication date, and optionally an abstract. The documents are cited
between 0 and 810 times with a median of 1 and a mean of 4.76 (SD: 7.74). The
citing documents hold on average 4.31 (SD: 580.96) citations to other documents
(minimum: 1, maximum: 938, 039) with a median of 1. The power-law coefficient is
1.53 for citations and 1.32 for the number of cited documents, while the normalized
mutual information is 0.5282.

1https://www.isg.uni-konstanz.de/projects/citrec/
2https://www.nlm.nih.gov/mesh/
3https://aminer.org/citation

108

https://www.isg.uni-konstanz.de/projects/citrec/
https://www.nlm.nih.gov/mesh/
https://aminer.org/citation

6.4. Datasets

200 400 600 800 1000
Citations

0

1000

2000

3000

4000

5000

Pa
pe

rs

56

(a) Citation distribution

0 10 20 30 40 50 60
References

0

100000

200000

300000

400000

500000

600000

Pa
pe

rs

1261

(b) Number of references per document.

(c) Number of documents by publication year
with chronological train/test split in blue and
orange, respectively.

Figure 6.8. Characteristics of the DBLP dataset

6.4.2 Datasets for Subject Labels Recommendation

EconBiz Subject Labels The EconBiz4 dataset [GMS+17] provided by ZBW —
Leibniz Information Centre for Economics5 consists of 61, 619 documents with label
annotations from professional subject indexers [GMS+17; GNS15]. The controlled
vocabulary for the subject labels is Standardthesaurus Wirtschaft6, a professional
thesaurus for economics. The subset of the thesaurus that has been used within
the dataset has the size of 4, 669 subject labels. Every document has an identifier,

4https://econbiz.de/
5https://zbw.eu/
6http://zbw.eu/stw/version/latest/about

109

https://econbiz.de/
https://zbw.eu/
http://zbw.eu/stw/version/latest/about

6. Multimodal Autoencoders for Document-based Recommendations

100 200 300 400 500 600 700 800
Citations

0

100

200

300

400

500

600

700
Pa

pe
rs

12

(a) Citation distribution

0 5 10 15 20 25 30 35 40
References

0

100000

200000

300000

400000

500000

600000

700000

Pa
pe

rs

2137

(b) Number of references per document

(c) Number of documents by publication year
with chronological train/test split in blue and
orange, respectively.

Figure 6.9. Characteristics of the ACM dataset

title, authors, language label(s), subject labels, and publication year, as well as
optionally the publisher, publication country, and series. The number of documents
to which a subject label is assigned ranges between 1 and 13, 925 with a mean of 69
(SD: 316) and a median of 14. We plot the label distribution in Figure 6.10a. The
label annotations of a document range between 1 and 23 with a mean of 5.24 (SD:
1.83) and a median of 5 labels. Similar to the citation datasets, EconBiz follows a
power law distribution. The power law coefficient for the EconBiz dataset is 1.96 for
the label occurrences and 1.19 for the number of assigned labels. The normalized
mutual information is 0.2970.

110

6.4. Datasets

0 100 200 300 400 500
Occurrences

0

100

200

300

400

La
be

ls

3

(a) Label distribution

0 5 10 15 20
Labels

0

2000

4000

6000

8000

10000

12000

14000

Pa
pe

rs

240

(b) Number of labels per document

(c) Number of documents by publication year
with chronological train/test split in blue and
orange, respectively.

Figure 6.10. Characteristics of the EconBiz Dataset

IREON Subject Labels The IREON political sciences dataset has 76, 359 docu-
ments provided by the German Information Network for International Relations
and Area Studies7. Each document has an identifier, a title, a list of authors, a
language label, a list of subject labels, and a publication year. The 10, 440 subject
labels assigned to the articles are taken from the thesaurus for International Rela-
tions and Area Studies8. The number of documents to which a label is assigned
ranges between 1 and 13, 895 with a mean of 90.68 (SD: 338.63) and a median of
13. The label annotations of a document range between 0 and 70 with a mean
of 12.40 (SD: 5.91) and a median of 11. The power-law coefficient is 1.94 for the

7http://www.fiv-iblk.de/eindex.htm
8http://www.fiv-iblk.de/information/information_thesaurus.htm

111

http://www.fiv-iblk.de/eindex.htm
http://www.fiv-iblk.de/information/information_thesaurus.htm

6. Multimodal Autoencoders for Document-based Recommendations

0 100 200 300 400 500 600 700 800
Occurrences

0

25

50

75

100

125

150

175
La

be
ls

4

(a) Label distribution

0 5 10 15 20 25 30 35 40
Labels

0

1000

2000

3000

4000

5000

6000

Pa
pe

rs

17

(b) Number of labels per document

(c) Number of documents by publication year
with chronological train/test split in blue and
orange, respectively.

Figure 6.11. Characteristics of the IREON dataset

label occurrences and 1.21 for the number of assigned labels, while the normalized
mutual information is 0.1977.

Reuters Subject Labels The Reuters RCV1-v2 dataset contains 744, 693 news
articles and a thesaurus that provides a set of 104 labels [LYR+04]. Every document
includes an identifier, title, subject labels, and publication date. The number of
documents to which a label is assigned ranges between 5 and 354, 437 with mean
23, 217.35 (SD: 47, 313.01) and median 7, 315. The number of annotated labels of a
document range between 1 and 17 with a mean of 3.24 (SD: 1.42) and a median of 3
labels. Its label distribution does not follow a power-law distribution (Figure 6.12a).

112

6.4. Datasets

(a) Label distribution

0 2 4 6 8 10 12 14 16
Labels

0

50000

100000

150000

200000

250000

300000

350000

Pa
pe

rs

501

(b) Number of labels per document

(c) Number of documents by publication year

Figure 6.12. Characteristics of the Reuters dataset

The power-law coefficient is 148.15 for label occurrence and 1.14 for the number of
assigned labels. The normalized mutual information is 0.3207.

6.4.3 Availability of Side Information

Table 6.2 illustrates the metadata fields available in the considered datasets and
what percentage of the document has a value for the field. Title data are present in
all datasets. The author data are available in all datasets except Reuters. Abstracts
are only available in DBLP (89%) and a few (4%) in ACM. The journal information
is available in PubMed, DBLP (83%) and ACM. Subject labels are available in
PubMed, EconBiz, IREON, and Reuters. Citations are available in PubMed, DBLP,
and ACM.

113

6. Multimodal Autoencoders for Document-based Recommendations

Table 6.2. Availability and occurrence of metadata in the datasets considered for the two
recommendation tasks. Subject labels and item set occurrences are the same for the subject-
label datasets as the subject labels are the items to recommend (but can also be used as
additional metadata for the citation tasks).

Metadata field PubMed DBLP ACM EconBiz IREON Reuters

Title 100 % 100 % 100 % 100 % 100 % 100 %
Author 100 % 100 % 93 % 98 % 83 % -
Abstract - 89 % 4 % - - -
Venue/Journal title 100 % 83 % 100 % - - -
Subject labels 77 % - - 72 % 100 % 100 %
Citations 100 % 89 % 81 % - - -

Based on the availability of side information, we derive three conditions for the
input modalities, alongside which we will report our results.

Item set only We only use the item set as input to the model. The item set consists
of cited documents for PubMed, DBLP, and ACM, while it consists of subject
labels for EconBiz, IREON, and Reuters. We discard all documents that are not
associated with any items.

Item set and title Here, we use the item set together with the document title as side
information. The MLP baseline does not use the item set at all.

All metadata Here, we use all available metadata as side information, except for the
abstract, because it has only reasonable coverage in DBLP. The MLP baseline
uses all metadata except for the item set. As an interesting cross-over case, we
include the subject labels in the all-metadata case on PubMed, where we predict
citations. Scores without these additional metadata are reported in Section E.1.

6.4.4 Chronological Train-Test Splits

To simulate a real-world citation prediction setting, we split the data on the time
axis of the citing documents. This resembles the natural constraint that the authors
cannot cite other publications that do not yet exist. Given a specific publication year
T, we ensure that the training set Dtrain consists of all documents published earlier
than in year T, and use the remaining documents as test data Dtest. Regarding our
evaluation, we select the year 2011 for PubMed, 2017 and 2018 for DBLP, and 2014
to 2016 for ACM to obtain a 90:10 ratio between training and test documents.

114

6.5. Experiments

For the subject labeling datasets, EconBiz and IREON, we also split the data into
training and test set along the time axis (cf. Figures 6.10c and 6.11c). This resembles
a challenge because label annotations suffer from concept drift over time [TS20].
We use the years 2012 and 2013 as test documents for EconBiz and the year 2016
for IREON to obtain a 90:10 train-test ratio, as in the citation recommendation
datasets described above. Since Reuters contained only two years (1996 and 1997),
we randomly select 10% of documents for the test set, regardless of the year.

6.4.5 Evaluation Measures

For the evaluation, certain items were omitted on purpose in the test set. For each
document, the models should predict the omitted items as well as possible. Thus,
we choose mean reciprocal rank (MRR) as our evaluation metric [Cra09].

We are given a set of predictions, Xpred, for the test set, X̃test. For each row, we
compute the reciprocal rank of the missing items xtest ´ x̃test. The reciprocal rank
corresponds to one divided by the position of the first omitted item in the sorted
set of predictions, xpred. We then averaged all documents of the test set to obtain
the MRR.

To alleviate the random effects of model initialization, training data shuffle, and
selection of elements to omit, we performed three runs for each of the experiments.
For a fair comparison, the items removed from the test set remain the same for all
models during a run with a fixed pruning parameter.

6.5 Experiments

We present the results alongside the experimental settings of dataset pruning and
the degree of completeness of the input item sets. We first consider how the pruning
of the dataset influences the performance of the models in Section 6.5.1. Then, we
investigate the influence of the size of the input item sets in Section 6.5.2,

Within each of these two experimental settings, we provide results for three
citation recommendation tasks and three subject-label recommendation tasks to
contrast the different meanings of item co-occurrence. Furthermore, we analyze
the main research question of how the use of additional metadata influences the
performance of autoencoders throughout all settings.

115

6. Multimodal Autoencoders for Document-based Recommendations

6.5.1 Experiments under Varying Total Number of Items

Experimental Setup For dataset preprocessing, we perform the following three
steps: First, we build a vocabulary on the training set with items that have been
cited or assigned more than k times, which we denote as the pruning threshold.
Second, we filter both the training set and the test set and retain only items from
the vocabulary. Third, we remove documents with fewer than two of the vocabulary
items in their item set.

The pruning threshold k is crucial since it affects both the number of considered
items and the number of documents. Therefore, we systematically control the
pruning threshold k of the datasets and analyze how this influences the different
models and input modalities. Table 6.3 shows the characteristics of PubMed, DBLP,
and ACM with respect to k, while Table 6.4 illustrates the same for EconBiz, IREON,
and Reuters.

Table 6.3. Characteristics of the citation datasets with respect to different selected pruning
thresholds on the minimum item occurrence.

Dataset Pruning
Cited
docs

Citations Documents Density a MI

PubMed

20 20,270 878,359 121,374 0.000357 1.5870 0.4265
30 8,906 568,563 96,980 0.000658 1.6465 0.3958
40 4,939 413,746 79,830 0.001049 1.7090 0.3737
50 3,185 324,693 67,703 0.001506 1.7755 0.3587

DBLP

20 251,405 16,340,121 1,955,132 0.000033 1.5960 0.4879
30 157,203 13,977,243 1,839,181 0.000048 1.6046 0.4750
40 109,469 12,271,346 1,742,180 0.000064 1.6127 0.4658
50 81,817 10,991,096 1,660,462 0.000081 1.6206 0.4591

ACM

20 78,805 5,590,751 786,216 0.000090 1.5840 0.4650
30 46,782 4,752,086 751,981 0.000135 1.6099 0.4521
40 31,780 4,189,331 725,635 0.000182 1.6354 0.4435
50 23,177 3,767,585 702,158 0.000232 1.6610 0.4374

Hyperparameter Optimization The hyperparameters are selected by conducting
preliminary experiments on PubMed considering only items that appear 50 or more
times in the entire corpus. We chose this scenario because this aggressive pruning

116

6.5. Experiments

Table 6.4. Characteristics of the subject label datasets with respect to different selected
pruning thresholds on minimum item occurrence.

Dataset Pruning Classes Labels Documents Density a MI

EconBiz

1 4,568 323,670 61,104 0.001160 1.9612 0.2970
5 3,259 320,048 60,983 0.001610 2.0018 0.2917

10 2,597 314,738 60,778 0.001994 2.0483 0.2857
20 1,924 303,693 60,272 0.002619 2.1379 0.2768

IREON

1 10,324 945,888 75,558 0.001213 1.9382 0.1977
5 6,971 938,677 75,555 0.001782 1.9644 0.1928

10 5,612 928,701 75,551 0.002190 1.9930 0.1881
20 4,304 909,156 75,535 0.002797 2.0463 0.1809

Reuters

1 104 2,340,132 744,693 0.030215 148.15 0.3207
5 104 2,340,132 744,693 0.030215 148.15 0.3207

10 103 2,340,127 744,693 0.030509 146.71 0.3207
20 103 2,340,127 744,693 0.030509 146.71 0.3207

results in numbers of distinct items and documents that are similar to those of the
subject-label recommendation datasets.

For the MLP modules, we perform a grid search with hidden layer sizes between
50 and 1, 000, an initial learning rate between 0.01 and 0.00005, activation functions
Tanh, ReLU [NH10], SELU [KUM+17] along with dropout [SHK+14] (or alpha-
dropout in case of SELUs) probabilities between 0.1 and 0.5, and as optimization
algorithms a standard stochastic gradient descent and Adam [KB15].

For the autoencoder-based models, we consider code sizes between 10 and 500,
but only if the size was smaller than the hidden layer sizes of the MLP modules.
For AAEs, we experimented with Gaussian, Bernoulli, and multinomial prior
distributions, and with linear, sigmoid, and softmax activation on the code layer,
respectively.

Although a certain set of hyperparameters may perform better in a specific
scenario, we select the following, most robust set of hyperparameters: hidden
layer sizes of 100 with ReLU [NH10] nonlinearities and drop probabilities of 0.2
after each hidden layer. The optimization is carried out by Adam [KB15] with
an initial learning rate 0.001. The AE variants use a code size of 50. We further
select a Gaussian prior distribution for the adversarial autoencoder. For SVD, we
consecutively increased the number of singular values up to 1, 000. Higher amounts

117

6. Multimodal Autoencoders for Document-based Recommendations

of singular values decreased the performance. We keep this set of hyperparameters
across all models and subsequent experiments to ensure a reliable comparison of
the models.

Figure 6.13. Mean reciprocal rank of predicted citations on the test set with varying
minimum item occurrence (pruning) thresholds for the PubMed (top row), DBLP (middle
row), and ACM (bottom row) citation datasets. Left: Only the partial set of items is given.
Center: The partial set of items along with the document title is given. Right: The partial set
of items is given along with the document title, the authors, the journal title and the MeSH
labels (if available). MLP can only make use of either titles or titles, authors, journal titles,
and MeSH labels.

118

6.5. Experiments

Results for Different Pruning Thresholds in Citation Recommendation Fig-
ure 6.13 shows the results for the models with respect to the pruning parameter
that controls the number of items considered and the sparsity (see Table 6.3) on
the PubMed, DBLP, and ACM datasets, respectively. We observe a trend that a
more aggressive pruning threshold leads to higher scores among all models on
all three datasets. However, this phenomenon seems to be more attenuated on the
ACM dataset. In particular, on this data set, AE and AAE seem to be unaffected
by the threshold, or even there seems to be a slight decrease for higher thresholds.
When no title information is given, the item co-occurrence approach performs
best on PubMed and DBLP, while VAE obtained the best scores on ACM. When
titles are used, autoencoders (AAE, AE, and DAE) become competitive with the
item co-occurrence approach and outperformed other models on PubMed and
DBLP. The same holds when additional metadata are available. The results on the
ACM dataset show a similar pattern, except that DAE performs worse than VAE.
Surprisingly, more metadata yield worse results than using only the title data.

Results for Different Pruning Thresholds in Subject Labeling Figure 6.14 shows
the results of the models with respect to the pruning parameter that controls the
number of items considered and the corresponding sparsity (see Table 6.4) on the
EconBiz, IREON, and Reuters datasets, respectively. When no title information
is available, autoencoders (but VAE) are competitive to the item co-occurrence
approach. With titles, the models achieve considerably higher scores than all
models operating without this information. Specifically, VAE achieves the best
results, closely followed by MLP, on EconBiz, while AAE is the best-performing
model on IREON. On Reuters, MLP and VAE achieve the same performance.
Similarly to the citation task, using additional metadata decreases the performance
compared to using only titles, although in IREON the decline is notably lower.
VAE is particularly negatively affected by more metadata on EconBiz. Reuters only
provides titles, so it was impossible to use additional metadata.

6.5.2 Experiments under Varying Number of Items per Document

Experimental Setup In these experiments, we investigate the influence of com-
pleteness of the partial input set through the number of dropped elements and
analyze how different models and modalities behave. We run multiple experiments
by dropping different percentages of elements with respect to the size of the original
item set. We perform experiments for some given pruning thresholds on PubMed,

119

6. Multimodal Autoencoders for Document-based Recommendations

Figure 6.14. MRR of predicted subject labels on the test set with varying minimum item
occurrence thresholds for the EconBiz (top row), IREON (middle row) and Reuters (bottom
row) dataset. Left: Only the partial set of items is given. Center: The partial set of items
along with the document title is given. Right: The partial set of items along with the title
and authors is given. MLP can only use either titles or titles and authors.

120

6.5. Experiments

ACM, and all subject indexing datasets, we expect a similar behavior for other
thresholds.

Figure 6.15. MRR of predicted citations on the test set with varying number dropped
elements for the PubMed (top row) and ACM (bottom row) citation datasets. The minimum
item occurrence threshold is set to 55. Left: Only the partial set of items is given. Center: The
partial set of items along with the document title is given. Right: The partial set of items is
given along with the document title, the authors, the journal title, and the MeSH labels.
MLP can only make use of either titles or titles, authors, journal titles, and MeSH labels.

Results for Different Item Set Sizes in Citation Recommendation Figure 6.15
shows the results for the models on the citation recommendation task with respect
to the drop parameter that controls the percentage of elements dropped in the
original item sets, i. e., how the completeness of the partial set of items influences the
provided recommendation, on PubMed and ACM, respectively. On PubMed, most
models peak around a drop threshold of about 50 %, independently if metadata
are used or not. The exceptions are MLP and VAE, which also increase with higher
percentages of dropped elements. SVD with titles and AE with more metadata
plateau when 60 % of elements are dropped. MLP and SVD have low results with

121

6. Multimodal Autoencoders for Document-based Recommendations

few dropped items, but achieve good performance with high drop thresholds.
The same holds for VAE when titles or even more metadata are available. On
ACM, only item co-occurrence and SVD decrease with more than 60 % of elements
dropped. However, the different autoencoders have a lower improvement with
many dropped elements, depending on their type and additional information used
(only partial set, partial set and titles, or partial set, titles, and more metadata). On
the contrary, DAE with only the partial set tends to increase more with a drop
threshold greater than 50,%. The more metadata used, the lower the improvement
with many dropped items.

Results for Different Item Set Sizes in Subject Labeling Figure 6.16 shows the
results for the models for the subject label task with respect to the number of
dropped items on EconBiz, IREON, and Reuters, respectively. As for citations, we
performed experiments only for some given pruning thresholds, but we expect
a similar behavior for other thresholds. When no title information is available,
most of the models peak or plateau around a drop threshold of 50 % and 60 %
on Reuters and EconBiz, respectively. On IREON, item co-occurrence plateaus at
70 %, SVD peaks at 60 %, the other models show a steady increase. With titles
only, SVD performs poorly when few elements are dropped, while outperforms
various models with many elements dropped (except for IREON). When titles and
additional metadata are given, only AE, AAE, and DAE increase considerably less
with many elements dropped on EconBiz, while they peak at about 50 % on Reuters.
On IREON, all the models suffer less when many elements are dropped. VAE and
MLP are generally the best performing models in all datasets, although the most
effective varies with the dataset and the metadata used.

6.6 Discussion

We first recall the main findings and then compare the different meanings of item
co-occurrence in the two tasks. Subsequently, we discuss the results of the citation
and subject-label recommendation tasks separately with respect to dataset pruning
and the degree of completeness of the input item set.

6.6.1 Key Results

The two tasks of citation recommendation and subject label recommendation, which
are similar from a structural perspective, behave very differently in our experiments.

122

6.6. Discussion

Figure 6.16. MRR of predicted subject labels on the test set with varying number of dropped
elements for the EconBiz (top row), IREON (middle row) and Reuters (bottom row) datasets.
The minimum item occurrence threshold is set to 20. Left: Only the partial set of items is
given. Center: The partial set of items along with the title is given. Right: The partial set of
items along with the document title and authors is given. MLP can only use either titles or
titles and authors.

123

6. Multimodal Autoencoders for Document-based Recommendations

Our experiments show that what is already cited is much more informative than
which subject labels are already assigned. This is supported by mutual information,
which is greater than 0.5 for the citation datasets, but below or close to 0.3 for
the subject label datasets. In the citation recommendation task, where item co-
occurrence implies relatedness, the approach based on the co-occurrence is a strong
baseline. VAE (using only item sets) outperforms this baseline on ACM, but VAE
performs worse when titles are combined with other metadata. In the subject
label recommendation task, where co-occurrence of items implies diversity, item
co-occurrence is not effective, and the best method depends on the dataset: AAE
in IREON, VAE in EconBiz (followed by MLP), and MLP and VAE (with titles) in
Reuters. DAE seems to be less stable in optimization, since its results usually vary
greatly between multiple runs on the same dataset.

In practical applications, it is desirable to have low pruning thresholds to avoid
the “rich get richer” phenomenon, where highly cited documents or frequently
assigned labels are privileged. In fact, highly cited documents, or often used subject
labels, are also the ones most likely to be known, while recommendations should
also lead to discovering previously unknown items. However, our results confirm
that the ranking between methods is, for the most part, stable under different
pruning thresholds.

Our experiment on the varying number of dropped items has shown that the
models that do not show the boomerang-shaped curve when using metadata are
the ones that rely more on titles and other metadata than on the partial set of items.
This also enables them to perform well when very few items are given as input in
both the considered tasks. Surprisingly, aside from MLPs, where this was expected,
the VAE also shows this comparatively strong performance when only a few input
items are present. This might explain the popularity of VAEs in recommender
systems.

Finally, our results show that, counterintuitively, it is not always better to use
more metadata fields as input. Titles are usually helpful, but models that rely solely
on the partial set of items are sometimes the top performers. The title field has been
the most useful metadata field in our experiments. Adding additional metadata
did not improve performance and sometimes even decreased it.

6.6.2 Meanings of Item Co-occurrence

We observe different relationships between the factors of (i) type of recommendation
task, each with different meanings of item co-occurrence, and the performance

124

6.6. Discussion

with (ii) varying completeness of the partial set, (iii) degree of sparsity, as well as
(iv) input modalities. We discuss the results by type of recommendation task in
Section 6.6.3 and Section 6.6.4.

The performance of the recommendation depends greatly on the completeness
of the partial set. Most models perform best having around 50 % of items from
the original set, but VAE and MLP achieve good performance also with 90 % of
elements dropped. Note that pruning almost never changes the order of the top
performers, whereas the top performers differ by varying the number of dropped
elements.

Second, by applying several thresholds on minimum item occurrence, we
controlled the number of considered items and thus the degree of sparsity. The
result is that all considered models are similarly affected by the increased sparsity
and difficulty caused by the larger number of considered items. It is not surprising
that the results decrease with lower pruning thresholds, as pruning can strongly
influence the results [BGL+16]. Interestingly, there are differences between the two
tasks: Although the decrease is pronounced in the citation datasets, it is very low
in the other ones. This decrease is low in the subject label datasets presumably
because they are considerably less sparse (cf. Table 6.4 and Table 6.3). Differences
persist even when datasets are similar. EconBiz has 4, 568 classes without pruning
and PubMed has 4, 939 cited documents with pruning at 40 and 3, 904 with pruning
at 45. On PubMed (citations), the best MRR is about 21 % with item co-occurrence
(not improving with metadata), while on the EconBiz (subject labels) dataset, all
models yield similar results only when using metadata, and without metadata are
below 13 %.

Lastly, on the citation task, the partial set of citations is the most important
information to recommend potentially missing citations. For the subject label
recommendation task, the MLP model, which uses only titles, achieves the best
performance in one dataset and is generally competitive. On the citation recommen-
dation task, AE and SVD become competitive with the strong cocitation baseline
when titles.

6.6.3 Discussion of the Citation Recommendation Task

The number of elements dropped in the partial input sets affects the models
differently. Most models improve until about 50 % of elements are dropped, then
their performance decreases. In fact, the more elements are dropped, the less

125

6. Multimodal Autoencoders for Document-based Recommendations

information is used as input, but the task becomes also easier as there is more than
one correct answer (one document or label to predict).

When metadata are provided together with the partial set, the results generally
improve. This is particularly the case when the partial input set is small, that is,
many elements are removed, since additional information compensates for fewer
items in the partial set.

The results of the MLP also improve with more dropped elements because it
does not use the partial set of items. VAE shows similar behavior. It is capable of
providing good predictions even when only a few items are given as input. This
could be due to the generalization provided through the Gaussian prior to the
code. The reason is that the latent representations learned by distinguishing the
code from a smooth prior make the model more robust to sparse input vectors as
smoothness is key to good representations that disentangle the explanatory factors
of variation [BCV13]. Although both VAE and AAE impose a Gaussian prior on
the code, VAE is better in some cases. A possible explanation is that VAE is more
stable during optimization [TBG+18].

On the ACM dataset, the performance continues to improve even with very
few items in the partial set (i. e., many elements are dropped), except for item co-
occurrence and SVD. This may be due to special characteristics of the ACM dataset.
Mutual information for ACM (0.5282) is the lowest among the citation datasets
(0.5407 for DBLP and 0.5996 for PubMed). This means that already cited documents
are less informative in ACM compared to the other two datasets. Furthermore, the
difference between most cited and less cited documents is lower in ACM (700) than
in the other two datasets (5, 000 in DBLP and 16, 000 in PubMed), as shown by the
y-axes in Figures 6.7a, 6.8a, and 6.9a. So, more documents have many references. In
this case, although many references may have been dropped, more documents may
still have enough references as a basis for recommendation.

Regarding the results for the experiments with varying pruning, co-citation
is known to be an important baseline [Sma73]. However, we have shown that
this is not always the case. For the ACM dataset, VAE is the best method. This
is interesting because in other cases, such as DBLP and PubMed, the VAE is
particularly weak, especially without metadata. This may be due to ACM special
characteristics, as discussed above. Specifically, documents already cited are less
informative in ACM compared to the other two datasets due to the lower mutual
information.

In terms of metadata, MLPs and AEs have the advantage of making use of the
side information (AEs together with the partial set of citations), which improves the

126

6.6. Discussion

results. The use of language attributes, i. e., titles, is most effective. The use of other
metadata attributes, such as authors and venues, on top of titles does not improve
the recommendation performance. From the partial input set, autoencoders can
learn the co-occurrence patterns within item sets and can also learn to reflect the
prior probabilities of the items in the bias parameters, if it is helpful for the overall
objective. In this task of citation recommendation, the co-occurrence of documents
within item sets is of great importance, as related papers are typically cited together,
which explains the strength of the item co-occurrence baseline. Although MLP
can also learn bias in the output layer to model the item’s prior distribution,
autoencoders can model the relationship between cited documents from the partial
input set. MLP cannot model the relationship between cited documents because
it only uses the titles as input and not the partial set. When considering different
types of metadata in the case of MLP, using titles is generally as effective as, or
even more effective than, using available additional metadata (together with titles).
This suggests that it is because the title is more indicative than other metadata
when deciding whether to cite a paper. Although researchers may tend to cite more
often some papers from well-known venues and some authors because of similarity
in topics or because they know them, the title has a stronger relation to the paper
than the authors and venues. Furthermore, the advantage of the title is that these
metadata are always available, even in the news domain, whereas other metadata
are not. For example, in PubMed only about 77% of the documents have MeSH
labels, in ACM about 93% of the documents include authors, and in DBLP around
83% of the papers hold the venue (see Table 6.2), while all documents have a title.

6.6.4 Discussion of Subject Label Recommendation Task

The number of elements dropped has a less powerful effect on the models compared
to the citation recommendation task. Most models improve until about 50% of
the elements in the original set are dropped, then their performance plateaus or
decreases slightly. Nevertheless, some models can also provide good predictions
with few elements in the partial set. As in the citation recommendation task, the
results of MLPs and VAEs improve even with many dropped elements. Only with
the Reuters dataset, many models show a notable decline. This could be due to its
distribution of label occurrences, which is the only one that does not follow the
power-law distribution. In contrast, there is a low number (roughly 100 compared
to 4,600 in EconBiz and 10,000 in IREON) of fairly well-balanced labels to choose
from (see Figure 6.12a).

127

6. Multimodal Autoencoders for Document-based Recommendations

Another reason could be that in the Reuters dataset the labels have no hierarchy,
contrary to the other two subject-label datasets, which are based on a professional
taxonomy. Subject indexers usually assign the ancestor instead of the child subjects
when two or more subject labels with a common ancestor in the hierarchical
thesaurus match [GNS15]. Thus, two subjects that are semantically related because
they share a common ancestor are unlikely to co-occur in the annotations of a
single document. Without a hierarchy, different subject labels can be similar, and no
common ancestor is available to use instead. For example, the news “Clinton signs
law raising minimum wage to $5.15” is assigned to subjects EMPLOYMENT/LABOUR,
LABOUR, LABOUR ISSUES which are rather similar.

Finally, since the main purpose of subject indexing is retrieval, the fact that
many labels are frequently used suggests that recall is preferred over precision.
While in a library it may be desirable to retrieve fewer results, but all highly relevant
to a query, in the news domain it may be best to retrieve as many results as possible,
although some could be less relevant.

In experiments with varying pruning, MLPs and VAEs achieve the highest MRR
on two of the three datasets. Thus, already assigned subjects are less informative for
a subject-label recommendation task than titles. Two subjects that are semantically
related because they share a common ancestor are unlikely to co-occur in the
annotations of a single document since subject indexers tend to rely on the ancestor
instead of the child subjects. Instead, on the IREON dataset, autoencoders and,
notably, AAEs, are more effective. A potential reason is that IREON has many
more different subject labels than the other datasets (see Table 6.4). Therefore,
the co-occurrence statistics (which are modeled by AE variants) might be more
informative.

Regarding the influence of metadata, adding other metadata in addition to
titles generally decreases performance. For citations, other metadata seem to be less
indicative of the content of the article. Furthermore, only the authors are available
in addition to titles. The authors are present in roughly 98 % and 83 % of documents,
in EconBiz and IREON, respectively. VAE is the best model (together with MLP) in
Reuters, but it performs poorly without titles. This suggests that when given titles,
VAEs learn to ignore the input item set, which is not possible with only the partial
set of items as input.

128

6.6. Discussion

6.6.5 Threats to Validity

The availability and occurrence of metadata fields vary between datasets, as shown
in Table 6.2. Our citations datasets have had more metadata attributes available
than the subject-label datasets. Titles and authors can be used in all three citation
datasets; in PubMed also journal and MeSH labels can be exploited, and venues are
present in ACM and DBLP. For the subject label datasets, only titles and authors can
be used, apart from Reuters which offers only titles. Therefore, it was only partially
possible to use the same or similar set of metadata fields among the datasets. In
particular, we could not use abstract information because it was always or often
missing. Only ACM and DBLP contain this information, but it is rarely available in
ACM (less than 4%), so we decided not to use it in our experiments.

We tested the models’ performance and the impact of different meanings of item
co-occurrence, the completeness of partial input set, the pruning, and metadata
on various datasets, for each of the two recommendation tasks. As the results are
consistent among the datasets, we have good reasons to assume that the results
can also be generalized to other similar datasets in the considered domains. Our
method of adding metadata is general and can handle different types of metadata.
Thus, the models can also be applied to similar tasks in other domains, which could
also benefit from the use of metadata. For example, we have previously shown that
metadata are beneficial for automatic playlist continuation [VGM+18].

6.6.6 Practical Impact

Our experiments have high practical relevance, as they are close to real-world
settings. This comes in three aspects. First, we use six real-world datasets from
five different domains. Thus, the experimental results show how the recommender
models would behave in real-world contexts. Second, the splitting of the documents
in training and test set along the time axis resembles the natural constraint that
newly written publications can only cite already published works and only papers
published before are already annotated. Furthermore, applying this chronological
split to subject labels also accounts for the concept drift [WLG+18]. Third, by taking
into account the typical long-tail distribution in user feedback on items (in our case,
citations and label annotations), we have also investigated performance with low
pruning thresholds, i. e., including items with few citations and labels rarely used
to annotate documents. This further strengthens the reliability of our experimental

129

6. Multimodal Autoencoders for Document-based Recommendations

results in real-world settings, in contrast to existing studies with limited datasets
induced by only a fixed frequency-based pruning.

6.7 Summary

We have shown that using text as side information increases the performance
of autoencoders as recommendation engines. The only exception is VAE, which
is interesting because VAE is used most frequently in the literature to tackle
recommendation tasks. Aside from that, we have analyzed the interactions between
text and graph data on a wide range of datasets to argue about the relationship
between the meaning of item co-occurrence and the importance of language data.

Different meanings of item co-occurrence in recommendation tasks highly affect
the preferable input modalities. When item co-occurrence resembles relatedness,
such as in citations, the set of already cited documents is beneficial. In subject
recommendations, co-occurring subject labels do not imply that these subjects
are similar. Instead, the actual research subject of a document must be described
using multiple, diverse subject labels as annotations. Incorporating multiple input
modalities offers a conceptual benefit, but not always adding more metadata is
useful, and relying on just titles or a partial set of items can be more effective.
All evaluated methods are similarly sensitive to data sparsity, but variational
autoencoders and multilayer perceptrons are more robust with few items in the
partial set. This is likely because they rely more on titles and other metadata than
on the initial item set.

In future systems and studies, the meaning of item co-occurrence should
be taken into account when deciding whether the partial list of items should
be supplied to a recommendation model as input. Regarding the two scenarios
considered, we can state the following. In citation recommendation, where co-
occurring items are similar, the model can perform well without using additional
metadata. In subject indexing, where co-occurring items are diverse, using the
content is more effective than using the partial item set.

Coming back to Q4: How can we design multimodal representation learning models
that jointly process text and graph data for document-based recommendation tasks?, we
have shown that textual side information is crucial to tackle recommendation tasks
in which item co-occurrence does not entail the similarity of the two items. When
item co-occurrences do entail relatedness of items, then using text data as side
information leads to substantial improvements for autoencoder-based methods.

130

Chapter 7

Lifelong Learning on Evolving Graphs

In this chapter, we apply the lifelong learning paradigm to tackle the challenges
of evolving graphs and answer the question Q5: How can we adapt representation
learning models for text and graph data that evolve over time?. This chapter is based
on material from a contribution to the Representation Learning on Graphs and
Manifolds workshop at ICLR’19 [GVS19], material published in the International
Joint Conference on Neural Networks, IJCNN 2022 [GFZ+21], and an extension
that is currently under consideration for publication in a journal [GVF+21].

Large-scale graph data in the real world are often dynamic rather than static. The
data change with new nodes, edges, and even classes appearing over time, such as
in citation graphs and collaboration graphs, which typically come with textual node
attributes. Here, we tackle the problem of node classification in evolving graphs
and investigate retraining strategies, history sizes, and the automatic detection of
new classes.

As a motivation, we consider the compelling argument by Geirhos et al.
[GJM+20] that neural networks (as humans) favor the easiest way to solve a task.
The authors conclude that evaluating learning systems on standard benchmarks is
not sufficient to assess their quality. Rather, it is necessary to evaluate their perfor-
mance under more challenging testing conditions, such as real-world scenarios. In
such scenarios, the assumption of independent and identically distributed data no
longer holds. This aspect is even more crucial when dealing with graph data. Apart
from the raw conditional distribution, p(y|x), the graph structure also evolves over
time, i. e., new nodes and edges are being inserted into the graph. Worse still, the
set of classes itself, Y, changes over time with the emergence of new classes.

Moreover, building representation learning models for large and growing
graphs is particularly challenging because of the limited scalability of the meth-
ods [ZZS+20]. In the standard formulation of graph convolution [KW17], the
entire graph has to fit into the GPU memory. Still, simply removing old data
points to reduce the required memory is also problematic because they could be
connected to very recent data points on the time axis. At the same time, having

131

7. Lifelong Learning on Evolving Graphs

well-performing learning systems for evolving graphs is highly valuable because
graph representations are versatile and needed in many applications [Ham20].

GNNs [SGT+09] have emerged as state-of-the-art methods in numerous tasks on
graph-structured data such as node classification [KW17; HYL17; VCC+18; KBG19],
graph classification [YYM+18], link prediction [ZC18], and unsupervised node
representation learning [VFH+19]. An intriguing property of GNNs is that they are
capable of inductive learning [HYL17]. An inductive model for graph data depends
only on the node features and the graph structure given by its edges. In many cases,
this is an advantage over models that rely on a static node embedding [HYL17;
XRK+20; ZZS+20]. Such a static node embedding would need to be retrained
as soon as new data arrive [PAS14]. This is known as the transductive learning
scenario (as we have introduced in Section 2.4). On the contrary, inductively trained
GNNs can be applied to new data – or even a completely different graph – without
any retraining because they depend only on node features and edges, but not on a
static lookup table for node embeddings.

However, the ability to apply the same model to unseen data also presents
challenges that have not been adequately addressed in the literature so far. We
assume that we have a node classification model and new data streams over time,
i. e., new edges and nodes arrive; then even new classes may emerge. This raises
several questions.

• Do we need to retrain the model and when do we need to retrain it?

• How much of the past data should be preserved for retraining?

• Is it helpful to preserve implicit knowledge within the model parameters or
should we retrain from scratch?

• How much new labeled data are needed for stable training?

• How can we automatically detect in an unsupervised manner whether a new
class has emerged in the dataset?

Approach To answer these questions, we frame the problem as an instance of
lifelong machine learning [TM95; FWL16; CL18]. In lifelong learning, as illustrated
in Figure 7.1, the learner must perform a sequence of tasks T1, T2, . . . , Tt, and may
use knowledge K gained in previous tasks to perform the task Tt. In our case,
each task consists of classifying nodes given an attributed graph. Knowledge K
can be stored explicitly (the training data of previous tasks) or implicitly within

132

a

b

a

b

b

a

a

b

a

b

a

a

c

b

b

a

c
a

b
b

?

?

?

?

?

?

?

?

?

c

Time

t - 4 t - 3 t - 2 t - 1 t t + 1

Training data: History of
two past tasks

Eval data
of task t

Figure 7.1. Lifelong Open-World Node Classification. At each time t the learner has to
classify new vertices of task Tt (red). The learner may use knowledge from previous tasks
to adapt to the current task, eventually cut off by a history size (blue). The current task
might come with previously unseen classes. For example, the “c” appears only at task t ´ 2
and was subsequently added to the class set. After evaluating each task Tt, we continue
with task Tt+1.

the model parameters. A particular challenge of lifelong learning in the context
of graph data is that nodes cannot be processed independently because models
typically take connected nodes into account. We also consider the challenge that the
set of classes in task Tt differs from the classes in previous tasks, which is known
as the open-world classification [CL18] problem.

To address these challenges, we introduce an incremental training method
that retrains the model for each task. In our experiments, we thoroughly evaluate
representative and scalable GNN architectures and a graph-agnostic multilayer
perceptron (MLP). We use a history size that limits the amount of past data (called
here: explicit knowledge) available for training and compare limited history-size re-
training against unlimited full-history retraining. Furthermore, we compare the
reuse of model parameters from previous tasks (warm restart) against retraining
from scratch (cold restarts) to analyze the influence of implicit knowledge.

However, absolute history sizes hardly generalize to other graphs that evolve
at a different pace. Therefore, we introduce a measure tdiffk to derive comparable
history sizes between datasets. The measure operates on time differences in the

133

7. Lifelong Learning on Evolving Graphs

local neighborhood of each node and, thus, captures temporal connectivity patterns
within the graph. We show that this measure is equivariant to different temporal
granularities of the data.

Comparison of Inductive and Transductive Learning However, we first go one
step back and investigate the edge between inductive and transductive learning
on three static graph datasets. We compare models that were (pre-)trained only on
the labeled subgraph of the training data against models that are trained on the
entire graph. This is an important distinction, as it corresponds to going from task
t to task t + 1. We find that the performance of models that were pretrained on
the labeled subgraph remains on the same level when the new unlabeled data is
added.

Lifelong Learning on a Sequence of Tasks In a next step, we confirm that
incremental training is necessary when applying GNNs to evolving graphs. We
compare incrementally training models with once-trained models in the lifelong
learning scenario. Our results show that, as expected, the performance level of
static models decreases over time, whereas incrementally trained models maintain
a constant level of accuracy. Subsequently, we continue investigating the task
sequence setting and compare using different history sizes and the difference
between cold and warm restarts. We find interesting interactions between explicit
and implicit knowledge. When fewer explicit knowledge is available (smaller history
size), the influence of implicit knowledge (warm restarts) is stronger. Conversely,
reusing model parameters helps to be more data efficient. To facilitate our analyses,
we provide three new datasets: one co-authorship and two citation graph datasets
with different degrees of changes in the class set. On these datasets, we have
experimented with 48 different configurations, namely six GNN base models ˆ

four history sizes ˆ cold restarts and warm restarts. Apart from this basic lifelong
learning scenario, we consider two more scenarios that are motivated by the
challenges of real-world graph data: robustness to limited labeled data and unseen
class detection.

Limited Labeled Data In the first scenario, we limit the number of training
nodes that come with labels. We use the best performing base model and the
most challenging dataset to investigate limited labeled data with 8 different label
rates. The motivation for this experiment is that collecting ground-truth labels in

134

real-world applications is expensive. Oftentimes, it is only feasible to manually
annotate a small fraction of the data. We simulate this in a dedicated experiment
by varying the label rate in our datasets. Our results are also confirmed in this
setting. We further observe a slight trend that, with decreasing label rates, using
warm restarts becomes even more important.

Unseen Class Detection We extend our experimental setting in a way that the
models need to actively detect instances of unseen classes, while classifying in-
stances from known classes as usual. We do not introduce any additional data
(a “garbage class”) that could be used as supervised targets for unseen classes.
Instead, we focus on unsupervised detection of instances from unseen classes, i. e.,
by analyzing the distribution of the model outputs per class (logits). In order to
stay close to real-world applications, we further focus on crisp decisions rather
than a soft outlier score. The model has to decide fully autonomously whether a
node comes from a previously unknown class such that its classification can be
rejected without human intervention.

In order to automatically detect unseen classes, we propose an adaptation of
the deep open classification (DOC) [SXL17] method for text classification to the
graph domain. We further integrate this class-detection mechanism as a generic
module in our incremental training algorithm. Our main finding is that when
extending DOC to graphs (which we call gDOC), it is crucial to account for class
imbalance by reflecting the class distribution in the binary-cross-entropy loss
function. Surprisingly, we also find some indication that using fewer past data
together with warm restarts is even beneficial for unseen class detection when there
is a high number of classes.

The related work is discussed below. A problem formulation is provided in
Section 7.2. We explain our proposed training procedure, the new measure to
determine an optimal history size for graphs, and the GNN methods used in
Section 7.3. Our datasets are described in Section 7.4, while the results of our
experiments are reported in Section 7.5. We discuss the results in Section 7.6, before
we summarize the chapter.

135

7. Lifelong Learning on Evolving Graphs

7.1 Related Prior Work

We discuss work on lifelong machine learning and lifelong learning on graphs. Sub-
sequently, we discuss methods for evolving graphs, out-of-distribution detection,
as well as methods regarding history sizes.

7.1.1 Lifelong Learning

Lifelong Learning on Image Data Lifelong learning, or continual learning [LR17]),
has been present in machine learning research since the mid 1990s [TM95; Thr98;
SYL13; Liu17]. The goal of lifelong learning is to develop approaches that can adapt
existing models to new tasks. Although similar on a superficial level, it differs
from online learning [HPW05], in which the focus is on processing a data stream
efficiently. Ruvolo and Eaton [RE13] introduced a lifelong learning algorithm with
convergence guarantees that employs multitask learning so that later tasks can
improve earlier tasks. Fei, Wang, and Liu [FWL16] analyzed SVMs in a lifelong
learning setting and introduced cumulative learning. Cumulative learning is related
to our approach since we consider that some data is shared among the tasks. Lopez-
Paz and Ranzato [LR17] have introduced a gradient episodic memory framework
for the image domain, where examples can be processed independently, and tackle
the catastrophic forgetting problem, i. e., the loss of previously learned information
when new information is learned [Rob95]. For an overview of lifelong learning, we
refer to a recent textbook [CL18].

Similarly to our work, Wang, Chen, Li, and Chen [WCL+21] decompose lifelong
machine learning into the subproblems of rejecting unknown instances, classify-
ing accepted instances, and reducing the cost of learning. However, the work of
Wanget al. is on image data, in which the examples are independent of each other,
and therefore the challenges of dealing with graph data are not reflected. An-
other promising approach to lifelong learning and, in particular, class-incremental
learning, is iCaRL [RKS+17], in which the prototype vectors of known classes are
stored and the classification is carried out by taking the closest distance to these
prototypes. However, applying this method to graph data is nontrivial because
the nodes are not independent from each other, but connected via edges. For an
overview of lifelong learning in general (not specific to graphs), we refer to a recent
textbook [CL18].

136

7.1. Related Prior Work

Lifelong Learning on Evolving Graphs We now focus on the related work on
lifelong learning on graphs. The challenge of dealing with graph data is a special
challenge for lifelong learning approaches. This is because in graphs the nodes are
not independent of each other because they are connected through edges. Related
work on lifelong learning on graphs is still rather limited. We refer to Febrinanto
et al. [FXM+22] for a recent survey that covers five recent works on graph lifelong
learning.

The most similar approach to ours is Experience Replay GNN [ZC21], which
proposed to overcome catastrophic forgetting [Rob95], i. e., the problem of previous
knowledge being quickly forgotten when models are adjusted to new tasks. The
Replay GNN adapts to new tasks with the help of an experience replay buffer. The
buffer holds a subset of the graph that is determined on the basis of different selec-
tion strategies: mean of features, coverage maximization, or influence maximization.
This work is conceptually similar to ours. However, we use the time information
from the nodes in conjunction with a history size to determine which part of the
graph is kept in memory. Wang, Qiu, Gao, and Scherer [WQG+22] proposed a
very different strategy to tackle lifelong learning on graphs. The main goal was
again to alleviate catastrophic forgetting. The authors explored a preprocessing
step that transforms the node classification task into a graph classification task, i. e.,
each node is converted into a feature graph. Therefore, nodes become indepen-
dent so that they can follow the lifelong learning approach from Lopez-Paz and
Ranzato [LR17] (see above).

Continual-GNN [WSW+20] addressed the issue of catastrophic forgetting with
a regularization approach. The authors detected new patterns in the data (but
not involving any new classes) with an information propagation method. Then,
they used a combination of experience replay and model regularization to avoid
catastrophic forgetting. The result was that their approach leads to performance
comparable to model retraining. In relation to this work, we also compare our
lifelong-learned models against models retrained from scratch for each task (cold
restart), but additionally consider other conditions such as the history size. Another
recent approach [CWG+22] uses neural architecture search to find a suitable model
architecture for lifelong learning on graphs. In particular, the proposed approach
focuses on multimodal inputs, such as features extracted via BERT [DCL+19] and
vision Transformers [DBK+21], rather than dealing with new classes and how to
detect them.

So far, none of the related works on lifelong learning in graphs have considered
the problem of detecting unseen classes and rejecting the classification of the

137

7. Lifelong Learning on Evolving Graphs

respective nodes. Knowing when a model is likely to make mispredictions is a
crucial property for deploying reliable systems in practice, which motivates us to
explore the combination of lifelong learning on graphs and unseen class detection.
Moreover, also labeled data is often not fully available in real-world conditions,
which we investigate here because it has not yet been considered in previous work
on lifelong graph learning, too.

7.1.2 Graph Neural Networks

Dwivedi et al. [DJL+20] distinguish between isotropic and anisotropic GNN archi-
tectures. In isotropic GNNs, all edges are treated equally. Apart from graph convo-
lutional networks [KW17], examples of isotropic GNNs are the mean aggregation
variant of graph sampling and aggregating (GraphSAGE) [HYL17], differentiable
pooling [YYM+18], and graph isomorphism networks [XHL+19]. In anisotropic
GNNs, the weights for the edges are calculated dynamically. Instances of anisotropic
GNNs include graph attention networks [VCC+18] and MoNet [MBM+17]. There
are further approaches, which have been specifically proposed to scale GNNs to
large graphs. These approaches fall into two categories: subgraph sampling [HYL17;
HZR+18; CLS+19; ZZS+20] and separating neighborhood aggregation from the
neural network [WJZ+19; FRE+20; BKP+20]. From each of these four categories
(anisotropic versus isotropic GNN, and preprocessing versus sampling), we select
one representative for our experiments, which will be discussed in more detail in
Section 7.3.4).

Pretraining Graph Neural Networks Hu et al. [HFC+19] have explored different
strategies for pretraining GNNs, including self-supervised objectives derived from
the graph structure. Hu et al. [HLG+20] similarly explore pretraining strategies.
They find that previous strategies, comprising local (node-level) and global (graph-
level) objectives, yield only small improvements and even decrease the performance
on some downstream tasks. Instead, their approach of graph-level property predic-
tion and structural similarity prediction improves downstream performance. While
these unsupervised pretraining approaches would be technically applicable, our
setting is different in the sense that we do have supervised data from previous
tasks with which we can pretrain for the next task.

Dynamic Graphs Different methods for dynamic graphs have been proposed.
This body of work includes dynamic embedding methods [NLR+18; LNR+20],

138

7.1. Related Prior Work

autoencoder-based methods [GKH+18; GCC20], GNNs for graphs with a fixed
node set [TDW+17; SDV+18; KZL19; TFB+19; MRM20; SWG+20; RCF+20], and
inductive GNN methods that can deal with previously unseen nodes [PDC+20;
XRK+20]. These methods focus on the case with dynamic signal (cf. Section 2.3.1).
That means that a node can be in class a at time t and in class b at time t + 1.
However, in our case, the output variable is static, but the graph itself is evolving
with new nodes, edges, and classes appearing over time. In contrast, the related
approaches assume a static set of nodes, which renders them applicable to the
problem of lifelong learning in evolving graphs.

7.1.3 Unseen Class Detection and Out-of-Distribution Detection

Unseen class detection, or open-world learning, is considered a subcategory of
lifelong learning [CL18]. Still, more general methods for out-of-distribution (OOD)
detection are also related to the problem of detecting unseen classes.

Unsupervised Out-of-Distribution Detection A key challenge is that softmax
activation, which is typically used as the final layer for classification, leads to highly
confident mispredictions even when the input data is far away from the training
distribution. To address this, Liang, Li, and R. [LLR18] resort to temperature scaling,
while Lee, Lee, Lee, and Shin [LLL+18] propose to use Mahalanobis distance. Both
approaches rely on dedicated preprocessing of the input. Macêdo et al. [MRZ+21]
and Macêdo and Ludermir [ML21] replace the softmax activation by an entropy-
aware IsoMax activation. However, we are particularly interested in methods that
emit a crisp decision whether the classification of an instance should be rejected. In
this regard, there are several approaches to detect new classes with classic machine
learning methods [MGK+11; BB16; FWL16].

Wu, Pan, and Zhu [WPZ20] have used variational graph autoencoders for
uncertain node representation learning. They generate multiple versions of features
and test the certainty of a node belonging to a known class.

Supervised Out-of-Distribution Detection Other approaches rely on explicit
outlier data that can be used for supervised training of the outlier module [DGB18;
HMD19]. This is difficult to apply here because we do not distinguish between
out-of-distribution and in-distribution but between previously seen classes and
previously unseen classes. When we had the appropriate training data for the un-
seen classes, we could train directly on them rather than considering them as OOD.

139

7. Lifelong Learning on Evolving Graphs

For a detailed discussion of OOD methods, we refer to recent surveys [YZL+21;
PSC+21].

Crisp and Unsupervised Unseen Class Detection We are particularly interested
in methods that emit a crisp decision whether the classification of an instance (a
new vertex) should be rejected. In this regard, there are several approaches to detect
new classes using classic machine learning methods [MGK+11; BB16; FWL16]. For
example, Wu et al. [WPZ20] have used variational graph autoencoders for uncertain
node representation learning. They generate multiple versions of features and test
the certainty of a node belonging to a known class.

In Deep Open Classification (DOC) [SXL17], the authors proposed a method
for the detection of new classes in text categorization. To perform the detection, the
final softmax activation of a neural network is replaced by elementwise sigmoid
activation. Then, they derived a threshold for unseen class detection by measur-
ing the logits’ standard deviation across the training set. Their experiments on
datasets with a uniform class distribution indicated that DOC is preferable to
OpenMax [BB16] and cbsSVM [FWL16]. Thus, we use a DOC-inspired module on
top of graph neural networks to develop our new gDOC method for unseen class
detection.

7.1.4 Summary

In summary, lifelong learning on graphs is so far a fairly unexplored topic (only
six previous works) and so far an unexplored topic. In particular, none of the
discussed works analyzes the problem of open-world classification in graph data and
how much past training data is necessary—or how few are enough—to maintain
good predictive power.

7.2 Problem Formulation

We define the problem of open-world classification of nodes in an evolving graph as
a form of lifelong learning [TM95; Thr98; CL18]. We recall that in lifelong learning,
a model is gradually adapted to a sequence of t learning tasks, T1, T2, . . . , Tt, and
has accumulated knowledge K learned in these past tasks. At time t + 1, it is faced
with a new learning task Tt+1. The learner is able to use previous knowledge to
help perform the new learning task Tt+1. We cast this definition into a lifelong

140

7.2. Problem Formulation

graph learning problem by considering each task Tt := (Gt, X(t), y(t)) to be a
node classification task with graph Gt = (Vt, Et), corresponding node features
X(t) P R|Vt|ˆD, and node labels y(t) P N|Vt|. We denote the set of all classes at time t
as Yt.

To ensure that past knowledge is helpful in performing Tt, we impose Gt´1 X

Gt ‰ H. We assume that the features and labels of nodes do not change: X(t´1)
u =

X(t)
u , y(t´1)

u = y(t)
u if u P Vt´1 X Vt. The task is to predict the class labels for the new

nodes VtzVt´1. These nodes may come with new unseen classes, as Yt may differ
from Yt´1. In other words, we are considering the dynamic structure, the static
signal case of dynamic graphs (cf. Section 2.3.1). Note that such changes can still
be modeled by inserting a new node and removing the old one.

Furthermore, we analyze the effect of a history size c, which limits the available
past data. We call these past data explicit knowledge. In this case, we set T̃t :=
(G̃t, X̃(t), ỹ(t)) with G̃t := Gtz(G1 Y G2 ¨ ¨ ¨ Y Gt´c´1), and remove the corresponding
features and labels to construct X̃t and ỹt. Still, implicit knowledge acquired in
previous tasks, e. g., within the model parameters, may be used for the task T̃t.

We further distinguish between several variants of this problem statement for
lifelong learning on graphs.

Two-task Setting This is a simplified setting with only two tasks. This setting is
suitable for applying our approach to any (non-temporal) standard data set by
defining T1 as the training graph, and T2 as the test graph. We use this setup for
experiments that compare transductive and inductive learning in Section 7.5.1.
The idea is to compare models that have been inductively pretrained on the
labeled subgraph of the training data against models that have been trained
transductively on the training plus unlabeled test data.

Task-sequence Setting We have a chronological sequence of tasks T1, T2, . . . , TT, with
new vertices appearing over time. All past vertices have ground truth labels,
which can be used for training. Unseen classes are present and also considered
in the evaluation, but no special methods are employed to actively detect
unseen classes. This setting is considered in the experiments of Section 7.5.2
and Section 7.5.3.

Task-sequence Setting with Limited Labeled Data In this variant of the standard setting,
only a fraction of ground truth labels are available for training, rather than all
labels of all past nodes, as in the previous setting. This setting is reflected in the
experiments of Section 7.5.4.

141

7. Lifelong Learning on Evolving Graphs

Task-sequence Setting with Unseen Class Detection In the final variant, we seek to
analyze the models’ capabilities to actively detect unseen classes. In addition to
classification, models now need to make a binary decision per node, whether it
belongs to a previously known class (in-distribution) or to a new, unseen class
(out-of-distribution). This setting is reflected in the experiments of Section 7.5.5.

7.3 Methods

In the following, we introduce the incremental training procedure, by which we ap-
proach the lifelong learning problem. Subsequently, we describe our gDOC method
for unseen class detection, before we describe our method tdiffk to harmonize
absolute window sizes. Finally, we describe the base GNN models that we will use
in the experiments.

7.3.1 Incremental Training for Lifelong Graph Learning

Our incremental training algorithm for GNNs is shown in Algorithm 1. We assume
that we have a sequence of T tasks T1, . . . , TT and a model f with parameters
θ. Throughout the sequence of tasks, the graph changes in the sense that nodes
and edges are inserted and deleted. Crucially, the new nodes can come with new
classes that have not been part of the training data before. To address these changes,
we explore a simple but effective incremental training technique to adapt neural
networks to new graph-structured tasks.

As a preparation for task Tt, we retrain f on the labels of Tt´1 to obtain θ(t).
Whenever l new classes appear in the training data, we add a corresponding number
of parameters to the output layer of f (t). Therefore, we have |θ

(t)
output weights| =

|θ
(t´1)
output weights| + l ¨ nhidden and |θ

(t)
output bias| = |θ

(t´1)
output bias| + l, where nhidden is the

number of hidden units in the penultimate layer. These new parameters that
correspond to the new classes are initialized randomly. For the other parameters,
we consider two options in our incremental training procedure: warm restarts and
cold restarts. With cold restarts, we reinitialize θ(t) and retrain from scratch. On the
contrary, when using warm restarts, we initialize the parameters for training on task
Tt with the final parameters of the previous task θ(t´1). Furthermore, we consider a
generic module (lines 14–15) for unseen class detection in the incremental training
algorithm. This operates on the logits of the final output layer and determines

142

7.3. Methods

whether the classification of a particular node should be rejected because it belongs
to a class that was not part of the training data.

Algorithm 1: Incremental training for lifelong graph learning under cold-
start vs. warm-start condition

Input : Sequence of tasks T̃0, ¨ ¨ ¨ , T̃T, model f with parameters θ, flag for
cold or warm restarts

Output : Predicted labels for new nodes of each task
1 known_classes Ð H

2 θ Ð initialize_parameters()
/* Iterate through task indices */

3 for t Ð 1 to T do
4 new_classes Ð set(ỹ(t´1))zknown_classes
5 if new_classes ‰ H then
6 θ1 Ð expand_output_layer(θ, |new_classes|)
7 end
8 θ1 Ð initialize_parameters()
9 if t ą 1 and do_warm_restart = TRUE then

/* Reuse previous model */

10 θ1 Ð copy_existing_parameters(θ)
11 end

/* Train model with labels from previous task */

12 θ1 Ð train(θ1, G̃t´1, X̃(t´1), ỹ(t´1))
/* Predict classes for new nodes */

13 ỹpred Ð predict(θ1, G̃t, X̃(t)) for nodesVtzVt´1

/* Out-of-distribution detection */

14 m(t)
ood = unseen_class_detection(ŷ(t)

logits)

15 ŷ(t)
pred,i =

{
OOD if m(t)

ood,i = TRUE

arg max(ŷlogits(t),i), otherwise

/* Prepare for next task */

16 known_classes Ð known_classes Y new_classes
17 θ Ð θ1

18 end

143

7. Lifelong Learning on Evolving Graphs

7.3.2 Unseen Class Detection

A successful model for lifelong learning would not only classify new data into
known classes, but would also detect when an instance belongs to a previously un-
seen class. We seek to develop a generic method that is not specific to any particular
GNN architecture. Thus, we take inspiration from the Deep Open Classification
(DOC) [SXL17] approach that has been proposed for text classification. The key
idea is to replace the final softmax activation with element-wise sigmoid activation.
Hence, the training objective becomes binary cross-entropy rather than categorical
cross-entropy. Then, thresholds on the logit distribution over all known classes are
used to determine whether the new example belongs to an already known class or
not. Below, we briefly summarize the key risk reduction technique proposed in the
original DOC, before we describe our extensions.

Thresholds and Risk Reduction in DOC To make a clear decision, a threshold is
necessary to determine whether a vertex is considered out of distribution (OOD) at
the test time. When the output for all the known classes falls below the threshold,
the classification of that vertex is rejected, i. e., the vertex is considered OOD. Such
thresholds can be global or class-specific. A natural choice for a global threshold τ

is the inflection point of the sigmoid function, i. e., setting τ = 0.5. However, esti-
mating class-specific thresholds can further reduce the risk of incorrectly rejecting
the classification of a known class. A strategy to estimate class-specific thresh-
olds is to consult the standard deviation of logits on the training data [SXL17].
To determine a threshold τi for class i, the risk reduction technique proposed in
DOC [SXL17] collects all model outputs for instances of class i. For all these outputs
ŷ P [0, 1], a mirror point 1 + (1 ´ ŷ) is created, assuming a Gaussian distribution
with mean 1. On this distribution, the standard deviation SDi is calculated to assign
the class-specific threshold τi := max{τmin, 1 ´ α ¨ SDi}, where α is a scaling factor
for the standard deviation and τmin is the minimum threshold. For α, the original
work suggests a value of 3. The authors use a fixed τmin = 0.5.

τi := max{τmin, 1 ´ α ¨ SDi}

where α is a scaling factor for the standard deviation and τmin is the minimum
threshold. The original DOC [SXL17] has used a fixed minimum threshold of
τmin = 0.5, while we leave it open to investigate different values for τmin. For α, the
original work suggests a value of 3.

144

7.3. Methods

Extension for Dealing with Class Imbalance (gDOC) Here, we transfer the DOC
method to the graph domain. This comprises changing the base model from a 1D-
CNN on text to a GNN operating on graphs, as well as changing the loss function
for node classification from categorical cross-entropy to binary cross-entropy. In
this way, we can employ the same strategy for detecting new classes that was used
in the original work on DOC. Throughout this work, we denote this adaptation
from text to graph data as DOC.

We propose an extension, which we denote as gDOC, to make DOC more
suitable for lifelong learning on graphs, where we have to deal with a highly
imbalanced class distribution. Aside from using a GNN model to emit the logits to
begin with, we also adjust the loss scaling of binary cross-entropy to account for
class imbalance, which is inevitable in real-world graph data. This is particularly
important for unseen class detection, because here the magnitude of all outputs
is relevant for the final decision, rather than only their maximum value. In detail,
if class i appears n+ times in the training data, we multiply the loss of output
i by the factor n´n+

n+ . This is a standard weighting procedure for binary cross-
entropy that increases the loss according to the fraction of positive versus negative
examples within the training data (cf. [AAC+19]). We denote this variant as gDOC.
Furthermore, our experiments will carefully investigate different values for τmin,
while the original DOC [SXL17] used a fixed minimum threshold of τmin = 0.5.
Similarly, we also closely investigate the effect of the risk reduction factor α.

7.3.3 Measure of k-Neighborhood Time Differences

Real-world graphs grow and change at different speeds [AS14]. Some graphs
change quickly, such as social networks, while others evolve rather slowly, such
as citation networks. Furthermore, the graphs show different change behavior,
i. e., different patterns in how nodes and edges are added and removed over time.
Therefore, depending on the specific graph data, a different history of the data
must be used for training to take these factors into account. To obtain absolute
history sizes that are comparable across different temporal graphs, a measure is
needed that provides a history size that is agnostic to the specific change dynamics
of the graph (slow vs. fast). Below, we introduce such a measure.

Formal Definition of the tdiffk Measure The k-neighborhood Time Difference
Distribution measure tdiffk [GVF+21] enumerates the distribution of time differ-
ences within the k-hop neighborhood of each node. This corresponds to the receptive

145

7. Lifelong Learning on Evolving Graphs

field [CZS18] of a GNN with k-many graph convolutional layers. Intuitively, we
collect the time differences between all pairs of nodes v and w, which are reachable
within at most k edges. We aggregate these time differences based on frequency, i. e.,
we obtain the number of times a certain time difference has been observed between
v and w in the dataset. On this distribution of time differences (represented as a
multiset), we compute the percentiles and use them as candidate history sizes.

7.3.1 Definition (k-Neighborhood Time Difference Distribution). Given graph
G = (V, E) and let N k(u) be the k-hop neighborhood of vertex u P V with respect
to E, i. e., the set of nodes that are reachable from u by traversing at most k edges.
Let time : V Ñ N be a function that returns the time information for each node
v (timestamp metadata), e. g., the year of publication when considering a citation
graph. We then define tdiffk(G) as multiset of time differences, computed over all
vertices u P V to their at most k-distant neighboring vertices v P BFS(k)G (u) that
occurred before node u.

tdiffk(G) := {time(u) ´ time(v) | @u P V, @v P BFS(k)G (u) with time(v) ď time(u)}

Here, breadth-first search BFS(k)G (u) recursively enumerates adjacent nodes of
the graph G starting with node u, up to a maximum path length of k. The multiset
tdiffk, which maps each time difference to the respective number of occurrences, is
interpreted as a distribution over time differences. It is used to analyze a dataset’s
temporal distribution (percentiles) and to make datasets comparable. Figure 7.2
presents an exemplary computation of the k-neighborhood time differences tdiff2

on a graph with five nodes and five edges. In this example, the 25th percentile of
tdiff2 is 0, the 50th is 1 (also known as the median), and the 75th is 2. The 100th
percentile, or the maximum time difference in a two-hop distance is 4.

The tdiffk measure is used in our experiments to compare models trained
with a limited history size against models trained with full history. Therefore, we
calculate the 25th, 50th, and 75th percentiles of the tdiffk distribution, which we
then compare against the entire graph (100th percentile) to analyze the influence of
explicit knowledge.

Equivariance to Temporal Granularity Any good measure to determine the
discrete history sizes c : (V, E, t) ÞÑ N in evolving graphs should be equivariant
to granularity to ensure comparability between different datasets and different
granularities. This means that if we change the perspective, for instance, from years

146

7.3. Methods

Figure 7.2. Example of time differences tdiff2(G) for hops at distance of up to 2 from each
node. Node annotations show the time difference to all nodes in the two-hop neighborhood,
i. e., its contribution to the multiset tdiff2(G). The calculation for the node with time t = 21
is highlighted in orange.

to months, we should get history sizes that are about 12 times larger (on the same
data).

Formally, consider two different time measurement functions ty, tm : V Ñ Ną0

whose values differ by a constant factor a P R+ such that ty(u) = ⌊ tm(u)
a ⌋ for all

u P V . For example, a = 12 when comparing the granularities of months tm and
years ty. In fact, two arbitrary discrete-time measurement functions differ by a
constant factor, one coarser-grained (larger denominator) than the other, or both
equal (a = 1). Then, the derived history sizes should not differ by more than the
ratio between the granularity values, i. e., for the measure c to determine the history
sizes it should hold that a ¨ c(V, E, t) ´ a ď c(V, E, t1) ď a ¨ c(V, E, t) + a] where
t1 P [a ¨ t ´ a; a ¨ t + a] for all u P V. When the difference in granularity is 12, a good
measure c should return a history size times 12 plus/minus 12, when we switch
the perspective from the year level t to the month level t1 (ratio: a = 12) on the
same data. This property is also crucial for comparable history sizes across datasets
with different temporal granularities. A proof that tdiffk is equivariant to temporal
granularity in Section F.1.

147

7. Lifelong Learning on Evolving Graphs

7.3.4 Base Graph Neural Network Models

The techniques described above can be applied to arbitrary base models. In the
following, we describe the base models that we considered for our experiments. The
success of graph convolutional networks (GCNs) [KW17] has triggered a resurgence
of interest in graph neural networks [SGT+09]. In a generic formulation, the hidden
representation of node i in layer l is defined as:

h(l+1)
i = σ

 ∑
jPiYNbrs(i)

1
cij

W (l)h(l)
j

where Nbrs(¨) refers to the set of adjacent nodes and σ is a non-linear activation
function. The normalization factor cij depends on the respective model: Kipf’s origi-

nal graph convolutional network [KW17] use cij =
√

degi ¨ |degj|. GraphSAGE with

mean aggregation uses cij = |N (i)|, and GAT use learned attention weights instead
of 1

cij
which are computed by a non-linear transformation from the concatenation

of h(l)i and h(l)j .
For our experiments, we systematically select representative GNN architectures,

as well as scalable GNN techniques for our experiments on lifelong learning. For
this, we consider the different types of GNNs anisotropic vs. isotropic and standard
vs. scalable approaches, as outlined in Section 7.1. Our goal is to understand how
different approaches of GNNs react to situations of changing graphs and new
classes.

We select graph attention network (GAT) [VCC+18] as representative of the
class of anisotropic GNNs. In GATs, the representations in layer l + 1 for node i
are computed as follows:

ĥl+1
i = αl

iih
l
i + ∑

jPNbrs(i)
αl

ijh
l
j

hl+1
i = σ(U(l)ĥ(l+1)

i)

where Nbrs(i) is the set of adjacent nodes to node i, Ul are learnable parameters,
and σ is a non-linearity. The edge weights αij are computed by a self-attention
mechanism based on hi and hj, i. e., the softmax of a(U lhi ∥ U lhj) over the edges,
where a is an MLP and ¨ ∥ ¨ is the concatenation operation.

We select GraphSAGE-Mean [HYL17] as a representative for isotropic GNNs
because its special treatment of each node’s own previous representation has
been shown to be beneficial [DJL+20]. The representations of self-connections are

148

7.4. Datasets

concatenated with averaged neighbors’ representations before multiplying with the
parameters. In GraphSAGE-Mean, the procedure for obtaining representations on
layer l + 1 for node i is given by the equations:

ĥl+1
i = hl

i ∥
1

degi
∑

jPNbrs(i)
hl

j

hl+1
i = σ(U l ĥl+1

i)

We select simplified graph convolutional network (SGC) [WJZ+19] as a repre-
sentative to shift the neighborhood aggregation to preprocessing. SGC is a scalable
variant of GCN [KW17] that admits regular minibatch sampling. SGC removes
nonlinearities and collapses consecutive weight matrices into a single one. Thus,
SGC can be described by the equation

ŷSGC = softmax(SkXW)

where S is the normalized adjacency matrix and W is the weight matrix. The
hyperparameter k has a similar effect as the number of layers in regular GCNs.
Instead of using multiple layers, the k-hop neighborhood is computed by Sk, such
that SkX can be precomputed. This makes SGC efficient, while not necessarily
harming the performance [WJZ+19].

Furthermore, we include GraphSAINT [ZZS+20] as state-of-the-art subgraph
sampling technique. In GraphSAINT, entire subgraphs are sampled for training
GNNs. Subgraph sampling introduces a bias that is counteracted by normaliza-
tion coefficients for the loss function. The authors propose different sampling
methods: node sampling, edge sampling, and random-walk sampling. We use
the best-performing random-walk sampling for our experiments. The underlying
GNN is exchangeable, but the authors suggest to use jumping-knowledge net-
works (JKNets) [XLT+18]. JKNets introduce skip-connection to GNNs. Each hidden
layer has a direct connection to the output layer, in which the representations are
aggregated, e. g., by concatenation. To isolate the effect of GraphSAINT sampling,
we also include JKNets in our experiments.

7.4 Datasets

Adapting models to new data is an important problem whenever machine learning
models are deployed in production. However, many graph benchmark datasets are

149

7. Lifelong Learning on Evolving Graphs

stripped off any temporal data, which is needed to divide the data into realistic par-
titions, i. e., tasks. We scanned the literature (e. g., [DJL+20; PDC+20; XRK+20]) and
common collections (OpenGraphBenchmark [HFZ+20], KONECT1, and PyTorch
Geometric Temporal2) for datasets that meet the following criteria:

• Attributed nodes

• Node labels

• Time information on the nodes

• Evolving set of nodes (and thus also edges) over time

• Evolving set of classes over time

Surprisingly, graph datasets that meet these criteria are rare. Still, the problem is
extremely relevant for practical applications, such as social networks or publication
metadata. In those datasets with time information, either the graph is static or the
set of classes is static. Concurrent work on lifelong learning synthesizes an ordering
of nodes in standard datasets [WQG+22]. In this work, we seek to understand how
our methods deal with naturally evolving datasets. For our first experiment, we use
two different splits on standard benchmark datasets, which are described next. For
the other three lifelong learning experiments, we constructed three entirely new
datasets that we describe thereafter.

7.4.1 Static Graph Datasets

We use standard citation datasets: Cora, Citeseer, and PubMed [SNB+09] for our first
experiments on transductive versus inductive learning. Nodes are research papers
represented by textual features and annotated with a class label. Edges resemble
citation relationships, which are represented as bidirectional edges. These datasets
are often used in transductive (or semi-supervised) learning environments [YCS16;
KW17; VCC+18]. However, in our experimental setup with unseen nodes, we use
an inductive learning strategy.

We use two different train-test splits for each dataset. Setting A is derived from
the train-test split for transductive tasks [KW17]. It consists of few labeled nodes
that induce our training set and many unlabeled nodes. Setting B instead comprises
many training nodes and few test nodes. We set it up by inverting the train-test
mask of Setting A and assign the edges accordingly. Setting B is motivated by

1http://konect.cc/
2https://pytorch-geometric-temporal.readthedocs.io/

150

http://konect.cc/
https://pytorch-geometric-temporal.readthedocs.io/

7.4. Datasets

Table 7.1. Statistics for train-test splits: few-many (A) and many-few (B) settings on the
citation networks datasets: Cora, Citeseer, and PubMed. The unseen nodes and edges are
available only after the training epochs. The test samples for measuring accuracy are a
subset of the unseen nodes. The label rate is the percentage of labeled nodes for training.

Dataset Cora Citeseer PubMed

Classes 7 6 3
Features 1,433 3,703 500
Nodes 2,708 3,327 19,717
Edges 5,278 4,552 44,324
Avg. Degree 3.90 2.77 4.50

Setting A B A B A B

Train Nodes 440 2,268 620 2,707 560 19,157
Train Edges 342 3,582 139 2,939 34 41,858
Unseen Nodes 2,268 440 2,707 620 19,157 560
Unseen Edges 4,936 1,696 4,413 1,613 44,290 2,466
Test Samples 1,000 440 1,000 620 1,000 560
Label Rate 16.2% 83.8% 18.6% 81.4% 2.8% 97.2%

applications, in which a large graph is already known and incremental changes
occur over time, such as for citation recommendations, link prediction in social
networks, and others [AS14; GFZ+21]. We refer to Table 7.1 for the details of the
datasets and the two settings. We use these three data sets with two different
train-test splits in our first experiment described in Section 7.5.1.

7.4.2 Evolving Graph Datasets

We provide three new graph datasets for lifelong learning based on scientific pub-
lications: a new coauthorship graph dataset (PharmaBio) as well as two newly
compiled citation graph datasets based on DBLP (DBLP-easy and DBLP-hard). For
PharmaBio, the classes are categories of journals. For DBLP, we use the conferences
and journals in which the papers have been published, as classes. Since we select
those venues with the most publications, this serves as a proxy for a broad cate-
gorization. When new conferences and journals emerge, as they do in computer
science, new classes will be introduced to the data. The datasets were generated
by imposing a minimum threshold of publications per class per year: 100 for

151

7. Lifelong Learning on Evolving Graphs

DBLP-easy, 45 for DBLP-hard, and 20 for PharmaBio. For the coauthorship graph
PharmaBio we additionally require a minimum of two publications per author per
year. In all datasets, the node features are normalized TF-IDF representations of
the title of the publication.

Table 7.2. Global dataset characteristics: total number of nodes |V|, edges |E|, features D,
classes |Y| along with # of newly appearing classes (in braces) within the T evaluation
tasks

Dataset |V| |E| D |Y| T

DBLP-easy 45,407 112,131 2,278 12 (4 new) 12
DBLP-hard 198,675 643,734 4,043 73 (23 new) 12
PharmaBio 68,068 2,1M 4,829 7 18

Basic Characteristics Table 7.2 summarizes the basic characteristics of the datasets.
DBLP-easy and DBLP-hard are organized into 12 annual snapshots, while PharmaBio
has 18 annual snapshots. DBLP-easy has 45k nodes, 112k edges and a feature di-
mension of 2,278. The nodes are assigned to one of 12 classes, of which four only
appear at some time during the sequence of snapshots, i. e., they are not present
in the first snapshots. DBLP-hard has 199k classes, 644k edges, and a feature di-
mension of 4,043. Twenty-three of the 73 classes appear only during subsequent
snapshots. PharmaBio comes with 68k nodes, 2.1M edges, feature dimension 4,829,
7 classes, and 18 snapshots. The number of edges is much higher than in the DBLP
variants because PharmaBio is a coauthorship graph, which is more dense than
the citation graphs. Note that DBLP-easy is a subset of DBLP-hard as both were
generated by applying a minimum threshold on the number of publications per
class.

We report the label distribution of the datasets, the degree distribution, and the
distribution over time in Figure 7.3. The annual number of publications grows with
time. Only in PharmaBio, there is a higher amount between 1991-1997 than between
1998 and 2003. The global degree distributions of DBLP-easy and DBLP-hard seem
to follow a power-law distribution [New05] as the degree distribution is almost a
straight-line except for the blurry tail. For PharmaBio, the degree distribution is
more blurry, while a trend line can still be identified. Furthermore, we observe that
the number of examples per class is imbalanced in all three datasets. Although the

152

7.4. Datasets

Figure 7.3. Distribution of vertices per year on log scale (left column), degree distributions
(middle column), label distributions (right column), for our new datasets: DBLP-easy (top
row), DBLP-hard (middle row), PharmaBio (bottom row)

three classes have different numbers of classes, the shape of the label distributions
is similar.

Unseen Classes and Distribution Shift With respect to changes in the class set,
DBLP-easy has 12 venues in total, including one biannual conference and four
new venues appearing in 2005, 2006, 2007, and 2012. DBLP-hard has 73 venues,
including one discontinued, nine biannual, six irregular venues, and 23 new venues.
To quantify changes in the class set, we calculate the magnitude of the class drift as
the total variation distance [WHC+16; WLG+18]:

σt´1,t =
1
2 ∑

yPYt´1YYt

|Pt´1(y) ´ Pt(y)|

where Pt(y) is the observed class probability at time t. We visualize the drift

153

7. Lifelong Learning on Evolving Graphs

Figure 7.4. Magnitude of the class drift per dataset. The drift within the PharmaBio dataset
(no new classes) is lower than the drift of both DBLP variants. Independent and identically
distributed data would have drift magnitude zero.

magnitudes per dataset in Figure 7.4. An i.i.d. dataset would have a drift magnitude
of zero by definition. As expected, the drift magnitude is high (between 0.12
and 0.16) for the two datasets with new classes: DBLP-easy and DBLP-hard. On
PharmaBio, which does not have new classes, the drift magnitude is consistently
lower than 0.07. A detailed description of which classes are introduced at which
time is provided in Section F.2.

Figure 7.5. Distributions of time differences tdiffk (y-axis) for DBLP-easy (left), DBLP-hard
(center) and PharmaBio (right) within the k-hop neighborhood for k = {1, 2, 3} (x-axis).

Analyzing Time Differences Next, we analyze the k-neighborhood time differ-
ences tdiffk, which we have introduced in Section 7.3.3. In Figure 7.5, we show the
resulting distribution for three different values of k = 1, 2, 3. As expected, the time

154

7.5. Experiments

differences increase if we allow a longer maximum path length k. For our exper-
iments, we will use GNN models with 2 layers, i. e., which take into account the
two-hop neighborhood of each node. Thus, we use the time difference distribution
tdiff2 to derive the candidate history sizes. These are 1, 3, 6, 25 as history sizes for
DBLP-{easy,hard} and 1, 4, 8, 21 as history sizes for PharmaBio according to the
25th, 50th, 75th, and 100th percentiles of tdiff2.

Task Sequences for Lifelong Learning For each dataset, we construct the se-
quence of tasks T̃1, . . . , T̃T based on the publication year along with a given history
size c. For each task T̃t, we construct a graph with publications from time [t ´ c, t],
where publications from time t are the test nodes, and t ă c training nodes (trans-
ductive). In the inductive case that GraphSAINT uses in our experiments, we train
exclusively on T̃t´1, but still evaluate the test nodes of T̃t. We set the first evaluation
task T̃1 to the time at which 25% of the total number of publications are available.
Therefore, when mapping the data sets to our problem statement (see Figure 7.1),
our first evaluation task t = 1 corresponds to year 1999 in PharmaBio (total range:
1985–2016) and 2004 in DBLP-{easy,hard} (1990-2015). We continue with the next
years for subsequent tasks. We will use these datasets in the experiments described
in Sections 7.5.3, 7.5.4, and 7.5.5.

7.5 Experiments

In the following, we describe our experiments to analyze transductive vs. inductive
learning, lifelong learning, open-world learning, and learning with limited labeled
data. We use standard benchmark datasets (described in Section 7.4.1) for the first
experiment described in Section 7.5.1, and then use our new datasets (described in
Section 7.4.2) for subsequent experiments, which are covered in Sections 7.5.2 to
7.5.5.

7.5.1 Transductive versus Inductive Learning

In the first experiment, our objective is to learn whether accuracy increases when we
add unlabeled data to the graph after having trained a model only on the portion of
the graph that has labeled vertices. This is important for later experiments because
it affects how we move from task t to task t + 1. We answer whether we need to
retrain a model with unlabeled data from the graph at t+ 1, or is it sufficient to wait

155

7. Lifelong Learning on Evolving Graphs

until the new labeled data become part of the training set. This research question
can be very well investigated with the static graph datasets that we introduced
in Section 7.4.1. We use the training set of the static graphs as step one and the
unlabeled part of the test set as step two. In order to obtain generalizable results, we
consider two different train-test splits for each dataset, which we call setting A (few
training, many test examples) and setting B (many training, few test examples), as
described in more detail in Section 7.4.1.

In the context of lifelong learning, settings A and B correspond to different
stages of the incremental training procedure. At the very beginning, we start with
a few labeled data. After a few tasks, the amount of labeled data increases, and,
then, any new data added to the training set will make only a smaller fraction of
the already known labeled data.

In the following, we describe the procedure, hyperparameter, and metrics of our
experiments to analyze transductive vs. inductive learning on standard benchmark
datasets with two complementary train-test splits. The aim is to analyze the effect
of adding unlabeled data after (pre-)training and comparing inductively pretrained
models to models that have been trained transductively including unlabeled test
data. We will show that the addition of unlabeled data does not further improve
the performance of the inductively pretrained models.

Experimental Setup We construct a dedicated experimental setup to assess the
influence of pretraining GNNs. We include edges in the training set if and only if its
source and destination node are both in the training set. The training process is then
divided into two steps. First, we pre-train the model on the labeled training set. Then
we insert previously unseen nodes and edges into the graph and continue training
for a limited number of inference epochs. The unseen nodes do not introduce any
new labels. Instead, the unseen nodes provide features and may be connected to
known labeled nodes. We evaluate the accuracy on the test nodes, which are a
subset of the unseen nodes, before the first and after each inference epoch. For
each model, we compare using 200 pretraining epochs versus no pretraining. In
the latter case, training begins during inference, which is equivalent to retraining
from scratch whenever new nodes and edges are inserted. This allows us to assess
whether pretraining is helpful for applying graph neural networks on dynamic
graphs.

156

7.5. Experiments

Hyperparameters All employed graph neural networks use two graph convo-
lution layers that aggregate neighbor representations. The output dimension of
the second layer corresponds to the number of classes. Thus, the features within
the two-hop neighborhood of each labeled node are taken into account for its pre-
diction. We adopted the same hyperparameter values as proposed in the original
work. For GCN, we use 16 or 64 hidden units per layer (denoted by GCN and
GCN-64, respectively), ReLU activation, 0.5 dropout rate, along with a learning
rate of 0.005 and weight decay 5 ¨ 10´4 [KW17]. For GAT, we use 8 hidden units per
layer and 8 attention heads in the first layer. The second layer has 1 attention head
(8 on PubMed). We set the learning rate to 0.005 (0.01 on PubMed) with weight
decay 0.0005 (0.001 on PubMed) [VCC+18]. For GraphSAGE, we use 64 hidden
units per layer with mean aggregation, ReLU activation, and a dropout rate of 0.5.
We set the learning rate to 0.01 with weight decay 5 ¨ 10´4 [HYL17]. Our baseline
MLP has one hidden layer with 64 hidden units, ReLU activation, a dropout rate
of 0.5, a learning rate of 0.005 and weight decay 5 ¨ 10´4. In all cases, we use Glorot
initialization[GB10] and Adam [KB15] to optimize cross-entropy. We initialize the
optimizer at the beginning of the inference epochs.

Measures Our main evaluation measure is accuracy. We train each model for
35 epochs and repeat the training 100 times with different seeds. We then report
the mean accuracy plus the standard deviation of the models at each of these
training epochs. Furthermore, we compute the Jenson-Shannon divergence [Lin91]
on the accuracy distributions to quantify the similarity of the distributions in the
two different pretraining configurations (with or without) and in the two different
settings (A and B). Since the two distributions are of the same kind, we use a
symmetric measure to compare them. The Jenson-Shannon divergence (DJS) is
a symmetric measure. It compares two distributions P and Q by calculating the
(asymmetric) Kullback-Leibler divergence (DKL) in both directions:

DJS(P||Q) =
1
2

DKL(P||Q) +
1
2

DKL(Q||P)

As DJS is a divergence measure, lower values indicate more similar distributions.

Results Figure 7.6 shows the results of the three models on the three datasets:
Cora, Citeseer, and PubMed. Pretrained models score consistently higher and have
less variance than non-pretrained models. The accuracy of the pretrained models
plateaus after a few inference epochs (up to 10 on Cora-A and PubMed-B). Without

157

7. Lifelong Learning on Evolving Graphs

Figure 7.6. Test accuracy after each inference epoch for the many-few settings A (Top) and
few-many setting B (Bottom) on the datasets Cora, Citeseer, and PubMed. Each line resem-
bles the mean of 100 runs and its region shows the standard deviation. The dashed lines
show the results with 200 pretraining. The solid lines are the results without pretraining.

any pretraining, GAT shows the fastest learning process. The absolute scores of
the pretrained graph neural networks are higher than those of MLP. From a broad
perspective, the scores of pretrained graph neural networks are all on the same
level: GCN falls behind the others on Cora-B and GAT falls behind the others on
PubMed. The scores of many-few setting B are higher than those of few-many
setting A by a constant margin.

We compare the results between both settings A and B by measuring the Jensen-
Shannon divergence between the accuracy distributions. The Jenson-Shannon diver-
gence between the two settings is lower with pretraining (between 0.0057 for GAT
and 0.0115 for MLP) than without pre-training (between 0.0666 for GraphSAGE
and 0.1013 for GCN). This indicates that pretraining is helpful in both train/test
splits.

In summary, our results show that inductive graph neural networks perform
well even though we insert new unlabeled nodes and edges after training. For all

158

7.5. Experiments

three considered in this study, the accuracy plateaus after very few inference epochs.
This observation holds for both train-test split settings: many-few and few-many.
This motivates the warm-restart strategy, i. e., reusing previous parameters, which
we use in the following lifelong learning experiments. In other words, we have not
observed any gain from continued training of an inductive model on additional
unlabeled data.

7.5.2 Incrementally-trained vs Once-trained Models

So far, we have only added new unlabeled data after the initial training; now we
will tackle the task-sequential lifelong learning setup, in which labeled data are
added sequentially throughout the tasks and the models have to adapt over time.
We compare once-trained trained models (static) against incrementally trained
models (incremental).

Experimental Setup We train static models for 400 epochs on the data prior to
the first evaluation time step, which comprises 25% of the total nodes. We train
incremental models for 200 epochs with history sizes of 3 time steps (4 on the
PharmaBio dataset) before evaluating each task. Each training and evaluation run
is repeated ten times with different random seeds.

Figure 7.7. Accuracy scores of once-trained, static models (solid lines) are lower than
incrementally trained models (dashed lines).

Results In Figure 7.7, we see that the accuracy of the static models decreases
over time on DBLP-easy and DBLP-hard, where new classes appear over time. On
PharmaBio (fixed class set), the accuracy of static models plateaus, whereas the

159

7. Lifelong Learning on Evolving Graphs

accuracy of incrementally trained models increases. Since incremental training is
beneficial in all cases, we will use only incrementally trained models in subsequent
experiments.

7.5.3 Lifelong Learning on Graphs

From previous experiments, we know that inductively trained models are stable
when adding unlabeled data after training and that incremental training is necessary
to adapt to new data. Now, we focus on the case in which we continually add more
labeled data to the graph, even including new classes in addition to new nodes and
edges. The aim is to determine whether parameter reuse is helpful. We consider
this question in the context of whether and how many old nodes (and their edges)
can be discarded when dealing with evolving graphs.

Now, we report the results of our main experiments to explore the standard
lifelong learning setting, as described in Section 7.2. In this setting, the models have
to sequentially adapt to new tasks with new labeled data, including unseen classes.

Experimental Setup The evolving graph is divided into tasks according to the
time slices in years (see Section 7.4.2). We apply the incremental training algorithm
of Section 7.3.1 to each of the considered models, GraphSAGE, GAT, SGC, Graph-
SAINT, JKNet, along with a graph-agnostic MLP baseline. The rationale for the
selection of these particular base GNN models is provided in Section 7.3.4.

For each model, we distinguish between warm restart and cold restart con-
figurations, which determines whether the previous parameters are reused as
initialization for the next task (warm restart) or not (cold restart).

Furthermore, we consider the history size as a controlled parameter and vary it
according to the percentiles of tdiffk, as determined in our analyses of the datasets
in Section 7.4.2. Corresponding to two layers of graph convolution, which our
models use, the quartiles consider 25%, 50%, and 75% of the tdiff2 distribution
and are in terms of history sizes c = 1, 3, and 6 for both DBLP datasets, and 1, 4,
and 8 for the PharmaBio dataset. We compare these limited-history settings with
full-graph training, which corresponds to keeping an unlimited history of the entire
timeline of the graph.

All methods are trained in a transductive fashion, except for GraphSAINT,
which needed to use the inductive setting. However, we have ensured that the
evaluation is fair (see Section 7.4) and we have confirmed in Experiment 1 (see

160

7.5. Experiments

Section 7.5.1) that the difference between inductive and transductive training is
negligible.

We run our incremental training method for graph learning from Section 7.3.1
for each of the models in warm-restart and cold-restart configurations and for the
different history sizes. Experiments are repeated 10 times with different random
seeds.

Hyperparameters We constrain all models to two graph convolutional layers,
comparable hidden dimensions (2x32 GraphSAGE, 4x8 GAT, 2x2x16 JKNet, 64
MLP), and a 0.5 dropout rate. We fix an update step budget of 200 per task and use
Adam [KB15] to optimize cross-entropy. We implemented GAT, GraphSAGE, SGC,
and JKNet with dgl [ZWG+20] and use torch-geometric [FL19] for GraphSAINT.
We had to disable GraphSAINT’s norm recomputation for each task so that our
experiments could finish in a reasonable time. We also optimized the weight decay,
whose effect was negligible.

For the sake of a fair comparison, we have optimized the hyperparameters
separately for each possible history size and restart configuration. In more detail,
for each combination of base model, history size, and restart configuration, we
tune the learning rate on DBLP-easy. The search space for the learning rate is
{0.1, 0.05, 0.01, 0.005, 0.001, 0.0005}. We consider DBLP-easy as our development
dataset to tune the learning rate, which we then use for DBLP-hard and PharmaBio.

Evaluation Measures Our primary evaluation measure for lifelong node classifi-
cation f is accuracy. With acct(f (t)), we denote the accuracy of model f (t) on task
Tt. We aggregate accuracy scores over the sequence of tasks T1, . . . , TT by using
their unweighted average [LR17]:

acc(f) =
1
T ∑

tP1,...,T
acct(f (t))

Following Lopez-Paz and Ranzato [LR17], we use Forward Transfer (FWT) to
quantify the effect of reusing the previous parameters. This is reflected in the
accumulated differences in accuracy between the fwarm and fcold models, defined
below:

FWT(fwarm, fcold) =
1

T ´ 1 ∑
tP2,...,T

acct(f (t)warm) ´ acct(f (t)cold)

To aggregate the results over the 10 repititions with different random seeds, we
report the mean accuracy plus/minus 1.96 times the standard error of the mean.

161

7. Lifelong Learning on Evolving Graphs

Results Table 7.3 shows the aggregated results of 20,160 evaluation steps (48
configurations with 10 repetitions on two datasets with 12 tasks each and one
dataset with 18 tasks). We consider the method A better than the method B when
the mean accuracy of A is higher than that of B and the 95% confidence intervals,
as estimated by 1.96 times the standard error of the mean, do not overlap [GBC16].
In terms of the absolute best methods per setting (= dataset ˆ history size), we find
that GraphSAGE consistently gives the highest scores except for DBLP-hard, where
it is challenged by SGC .

Regarding the comparison of history sizes (i. e., explicit knowledge the highest
scores are achieved in almost all cases by using an unlimited history size, i. e.,
using the full graph’s history. However, on all datasets, the scores for training with
limited window sizes larger than 1 are close to those for full-graph training. With
history sizes that cover 50% of the GNN’s receptive field, all methods achieve at
least 95% relative accuracy compared to the same model under full-history training.
When 75% of the receptive field are covered, the models yield at least 99% relative
accuracy. To compute these percentages, we have selected the best of both cold and
warm restarts for each method.

Regarding the influence of implicit knowledge, we find that reusing parameters
(warm restarts) leads to notably higher scores than retraining from scratch, when
the history size is one (see column FWT with history size c = 1): The average
Forward Transfer across all models and datasets with history size c = 1 is five
accuracy points.

Regarding isotropic vs. anisotropic GNNs, we find that GAT and GraphSAGE
perform similarly well on DBLP-easy (on which the learning rate was tuned).
However, GraphSAGE yields higher scores on DBLP-hard and PharmaBio, which
could indicate that the GraphSAGE-mean is more robust to hyperparameters than
GAT.

Regarding memory-efficient methods, we observe that the scores of SGC are
among the highest of all methods on DBLP-hard. To understand this result, we
recall that SGC uses only one single weight matrix of shape nfeatures ˆ noutputs,
which leads to 300,000 learnable parameters on DBLP-hard, but only 27,000 and
34,000 on DBLP-easy and PharmaBio, respectively. For comparison, GraphSAGE
has 146,000 learnable parameters on DBLP-easy, 264,000 on DBLP-hard, and 310,000
on PharmaBio. On the other hand, GraphSAINT yields high scores on PharmaBio,
comparable to GraphSAGE, but lower scores on both DBLP datasets.

To summarize this experiment, the results show that in the three analyzed
datasets, with only history sizes of 3 or 4 (corresponding to 50% coverage of the

162

7.5. Experiments

Ta
b

le
7.

3.
A

cc
u

ra
cy

(w
it

h
95

%
co

nfi
d

en
ce

in
te

rv
al

s
th

ro
u

gh
1.

96
st

an
d

ar
d

er
ro

r
of

th
e

m
ea

n)
an

d
Fo

rw
ar

d
Tr

an
sf

er
(a

ve
ra

ge
d

di
ff

er
en

ce
of

w
ar

m
an

d
co

ld
re

st
ar

ts
)

in
ou

r
da

ta
se

ts
w

ith
di

ff
er

en
t

hi
st

or
y

si
ze

s
(c

ol
um

n
c)

.T
he

be
st

m
et

ho
d

pe
r

da
ta

se
t

an
d

hi
st

or
y

si
ze

is
m

ar
ke

d
in

bo
ld

,a
lo

ng
w

it
h

th
e

m
et

ho
ds

w
he

re
th

e
95

%
C

I
ov

er
la

ps
.

G
A

T
G

ra
ph

SA
G

E-
M

ea
n

M
LP

(B
as

el
in

e)
av

g.
ac

cu
ra

cy
FW

T
av

g.
ac

cu
ra

cy
FW

T
av

g.
ac

cu
ra

cy
FW

T
co

ld
w

ar
m

co
ld

w
ar

m
co

ld
w

ar
m

D
at

as
et

c

D
B

LP
-e

as
y

1
60

.8
˘

0.
5

64
.9

˘
0.

4
+

4.
5

60
.4

˘
0.

5
65

.1
˘

0.
4

+
5.

2
56

.1
˘

0.
4

62
.2

˘
0.

5
+

6.
6

3
68

.9
˘

0.
3

69
.3

˘
0.

3
+

0.
2

68
.7

˘
0.

3
69

.3
˘

0.
3

+
0.

7
61

.0
˘

0.
5

62
.9

˘
0.

4
+

2.
0

6
70

.3
˘

0.
4

70
.2

˘
0.

4
´

0.
1

71
.1

˘
0.

4
70

.9
˘

0.
4

´
0.

3
62

.7
˘

0.
3

62
.7

˘
0.

4
´

0.
2

fu
ll

70
.2

˘
0.

4
70

.2
˘

0.
4

+
0.

1
71

.6
˘

0.
4

71
.4

˘
0.

3
´

0.
2

63
.4

˘
0.

3
61

.9
˘

0.
4

´
1.

2

D
B

LP
-h

ar
d

1
39

.4
˘

0.
2

39
.1

˘
0.

2
´

0.
1

34
.5

˘
0.

4
40

.0
˘

0.
2

+
5.

9
31

.6
˘

0.
3

38
.3

˘
0.

3
+

7.
4

3
44

.0
˘

0.
2

43
.7

˘
0.

2
´

0.
4

44
.3

˘
0.

2
45

.1
˘

0.
2

+
0.

8
33

.7
˘

0.
3

38
.9

˘
0.

2
+

5.
6

6
45

.1
˘

0.
3

45
.3

˘
0.

3
+

0.
2

46
.5

˘
0.

3
46

.7
˘

0.
3

+
0.

2
39

.2
˘

0.
2

38
.3

˘
0.

2
´

0.
7

fu
ll

45
.6

˘
0.

3
45

.6
˘

0.
3

´
0.

1
46

.8
˘

0.
2

47
.1

˘
0.

3
+

0.
4

38
.2

˘
0.

2
36

.7
˘

0.
2

´
1.

1

Ph
ar

m
aB

io

1
61

.6
˘

0.
9

65
.4

˘
0.

9
+

3.
8

65
.4

˘
0.

9
68

.6
˘

1.
0

+
3.

3
62

.7
˘

0.
9

66
.3

˘
0.

9
+

3.
9

4
64

.5
˘

0.
8

65
.3

˘
0.

9
+

0.
9

68
.0

˘
0.

8
69

.0
˘

0.
8

+
1.

1
66

.3
˘

0.
7

65
.7

˘
0.

8
´

0.
7

8
65

.1
˘

0.
8

65
.4

˘
0.

8
+

0.
3

68
.8

˘
0.

7
69

.0
˘

0.
8

+
0.

2
64

.2
˘

0.
8

65
.3

˘
0.

7
+

0.
9

fu
ll

64
.3

˘
0.

8
65

.4
˘

0.
8

+
0.

2
69

.0
˘

0.
7

68
.4

˘
0.

7
´

0.
7

65
.4

˘
0.

8
64

.4
˘

0.
6

´
1.

1

SG
C

G
ra

ph
SA

IN
T

Ju
m

pi
ng

K
no

w
le

dg
e

av
g.

ac
cu

ra
cy

FW
T

av
g.

ac
cu

ra
cy

FW
T

av
g.

ac
cu

ra
cy

FW
T

co
ld

w
ar

m
co

ld
w

ar
m

co
ld

w
ar

m

D
B

LP
-e

as
y

1
57

.1
˘

0.
4

63
.7

˘
0.

4
+

7.
2

62
.1

˘
0.

3
63

.2
˘

0.
4

+
1.

2
56

.2
˘

0.
5

61
.4

˘
0.

5
+

5.
6

3
66

.4
˘

0.
3

67
.4

˘
0.

3
+

1.
2

66
.4

˘
0.

4
65

.3
˘

0.
5

´
0.

9
65

.2
˘

0.
3

65
.9

˘
0.

5
+

1.
0

6
69

.3
˘

0.
4

69
.3

˘
0.

4
+

0.
1

68
.1

˘
0.

4
65

.5
˘

0.
7

´
2.

1
68

.0
˘

0.
4

66
.9

˘
0.

6
´

0.
7

fu
ll

71
.0

˘
0.

4
70

.0
˘

0.
4

´
1.

0
68

.4
˘

0.
5

65
.7

˘
0.

5
´

2.
8

68
.7

˘
0.

4
66

.3
˘

0.
4

´
2.

5

D
B

LP
-h

ar
d

1
34

.5
˘

0.
3

41
.0

˘
0.

3
+

7.
0

35
.9

˘
0.

3
35

.6
˘

0.
4

+
0.

5
33

.0
˘

0.
2

35
.3

˘
0.

3
+

2.
9

3
44

.1
˘

0.
2

44
.8

˘
0.

3
+

0.
8

39
.3

˘
0.

3
38

.1
˘

0.
5

´
0.

6
39

.1
˘

0.
3

38
.8

˘
0.

4
+

0.
3

6
46

.9
˘

0.
3

46
.2

˘
0.

3
´

0.
4

40
.6

˘
0.

3
38

.8
˘

0.
6

´
1.

2
41

.0
˘

0.
3

40
.1

˘
0.

5
´

0.
3

fu
ll

48
.8

˘
0.

4
47

.5
˘

0.
3

´
1.

2
41

.0
˘

0.
4

40
.7

˘
0.

4
´

0.
3

41
.6

˘
0.

3
40

.8
˘

0.
2

´
0.

9

Ph
ar

m
aB

io

1
62

.3
˘

0.
9

64
.5

˘
0.

8
+

2.
3

65
.7

˘
0.

8
68

.6
˘

0.
8

+
3.

0
64

.1
˘

0.
9

68
.3

˘
0.

9
+

4.
3

4
64

.4
˘

0.
8

64
.4

˘
0.

8
´

0.
0

67
.3

˘
0.

8
68

.4
˘

0.
7

+
1.

0
67

.1
˘

0.
8

68
.2

˘
0.

8
+

1.
1

8
65

.3
˘

0.
8

64
.0

˘
0.

7
´

1.
4

68
.1

˘
0.

8
68

.0
˘

0.
7

´
0.

1
67

.8
˘

0.
8

67
.7

˘
0.

7
´

0.
3

fu
ll

62
.4

˘
0.

8
61

.7
˘

0.
6

´
0.

8
68

.2
˘

0.
8

66
.1

˘
0.

8
´

2.
2

66
.8

˘
0.

8
64

.5
˘

0.
7

´
2.

6

163

7. Lifelong Learning on Evolving Graphs

receptive field of a 2-layer GCN), almost all methods obtain 95% accuracy compared
to the same model under full-history training. Moreover, with very small history
sizes, such as using only one past task, using warm restarts is important to maintain
a high level of accuracy.

7.5.4 Lifelong Learning with Limited Labeled Data

Until now, we have assumed that the true labels of nodes become part of the
training data for subsequent tasks. Now we relax this assumption and release only
a portion of the labeled data in task t for training in the subsequent task t + 1.
This resembles real-world applications, such as the indexing of scientific articles in
libraries [MGS18]. The motivation is that labeled data is expensive to “produce”.
Again, we work with the most challenging dataset, DBLP-hard, for this experiment,
because it has the highest number of new classes.

Experimental Setup To implement the idea of learning with only a fraction of the
labeled data, we randomly sample a subset of nodes, for which the true class label
is available for training. We denote this fraction by label rate. For experiments, it is
important to sample globally rather than per task because otherwise we would get
inconsistencies: node i could have a label in task t but not in task t + 1. Therefore,
we sample the entire data set before splitting it into tasks. In this way, the subset of
nodes that comes with classes is fixed for the entire duration of the experiments.
Furthermore, we use the same subset with all different configurations and with all
repetitions of the experiment. We sample uniformly at random at the node level
without stratification between classes.

For this experiment, we use GraphSAGE-Mean as GNN model because it has
achieved the best results in the previous experiment, where the label rate was not
restricted. As before, we evaluate different history sizes (1, 3, 6) and both restart
configurations (warm and cold). As dataset, we chose to use DBLP-hard because it
has the highest number of classes and is the most challenging.

Hyperparameters Again, as in the previous experiment, the optimal hyperpa-
rameters were determined on DBLP-easy, the subset of DBLP-hard that we use
consistently to tune the hyperparameters. We have not tuned the hyperparameters
separately for each label rate, but we reuse the optimal hyperparameters from
training with a 100% label rate. The hyperparameter search space is the same as in
the previous experiment.

164

7.5. Experiments

Figure 7.8. Average accuracy of GraphSAGE with warm restarts across tasks on DBLP-hard
under varying label rate

Measures As in the previous experiment, we use the average accuracy over tasks
as evaluation metric.

Results In Figure 7.8, we plot the average accuracy across tasks as a function
of label rate. We confirm that the results of our previous experiments also hold
when labeled data are limited. Warm restarts yield higher scores than cold restarts.
This is more pronounced when the history size is small. As expected, the absolute
accuracy values decrease as the label rate decreases.

When comparing history sizes, we again observe that a larger history size leads
to better results. In particular, using the entire history gives the best results, closely
followed by a history size of 6. Still, when the label rate is decreased, the difference
between the history sizes remains constant.

With very low label rates (in the range between 10% and 30%), the accuracy of
the cold restart strategy drops faster than the accuracy with warm restarts. In other
words, the use of warm restarts leads to more stable models when dealing with
lower label rates.

165

7. Lifelong Learning on Evolving Graphs

Figure 7.9. Number of nodes with unseen classes per task on DBLP-hard

7.5.5 Self-Detection of Unseen Classes

In our evolving graphs, we have to deal with previously unseen classes. In previous
experiments on lifelong learning, these unseen classes (and the vertices that have
these classes) were already part of the test data. However, the models did not have
the opportunity to actually predict those classes, as no dedicated technique has been
used to detect nodes from unseen classes. Here, we evaluate our adaptation of the
unseen class detection method DOC to graph data, called gDOC, as introduced in
Section 7.3.2. The experiments comprise a crisp unsupervised detection of instances
of unseen classes. At the same time, the models need to make predictions as usual
for the known classes.

Experimental Setup In previous experiments, unseen classes were part of the test
data, while there was no active treatment of having them detected automatically.
In this experiment, we seek to evaluate the performance of the gDOC method in
detecting unseen classes. As before, we train on task t ´ 1 and evaluate on t over a
sequence of T tasks. However, for each node, we use our unseen class detection
module gDOC to predict whether this node belongs to a previously known class
or not. If the prediction is that the node does not belong to any previously known
class, we reject its classification and assign a special virtual class (“unseen”). As
unseen class detection modules, we compare the original DOC as a baseline with
our proposed gDOC method.

We use the DBLP-hard dataset, which has 23 new classes. In addition to the
analysis of the datasets in Section 7.4.2, we show in Figure 7.9 how many nodes

166

7.5. Experiments

belong to unseen classes in the DBLP-hard dataset. We observe that in every task
except for the last, there are nodes with unseen classes.

As the base GNN model, we use the GraphSAGE-mean model that has per-
formed best in previous experiments along with gDOC for unseen class detection
that we have introduced in Section 7.3.2. Our baseline is the original DOC method,
also applied to the outputs of the GraphSAGE-mean.

Hyperparameters As in the previous experiments, we optimize the model hyper-
parameters in our development data set DBLP-easy. We repeat the hyperparameter
optimization because the loss function has changed from categorical to binary cross-
entropy. As before, the best learning rate is selected based on the best accuracy on
DBLP-easy and transferred to DBLP-hard.

Measures We evaluate how well the models detect unseen classes. For this pur-
pose, we use two measures: Macro-F1 with a special class for instances of unseen
classes [SXL17], which we call Open Macro-F1 and the Matthews correlation co-
efficient (MCC). Note that Macro-F1 averages the F1 scores over classes such that
the effect of the ’unseen’ class is taken into account as any of the known classes. In
detail, Open Macro-F1 is calculated as

Open Macro-F1 :=
1
T

T

∑
t=1

Macro-F1(y1(t), y1
pred(t))

with

y1
pred,i :=

{
’unseen’, if example i is detected as OOD

ypred,i, otherwise

y1
i :=

{
yi if class yi is known

’unseen’, otherwise

where yi are the true labels and ypred are the predicted class labels. The arg max
of the output is replaced by a special symbol when the method has emitted an
’unseen’ decision for that instance. The true labels y are preprocessed similarly, so
that instances of previously unseen classes receive a special class symbol.

In the pre-experiments, we found that the best Open Macro-F1 scores are
achieved when the thresholds are high, i. e., no nodes are detected as coming from

167

7. Lifelong Learning on Evolving Graphs

Figure 7.10. Global MCC of GDOC (history size 3, warm) as a function of the SD Factor
for risk reduction with different minimum threshold values.

an unseen class. This is because we have a large number of classes, and the special
class contributes only very little to the overall Macro-F1 score. Thus, a large number
of false rejects diminishes the overall performance in terms of Macro-F1. False
rejects are vertices that should not be rejected (as their true class is known), but are
rejected.

The Macro-F1 score is limited in its expressiveness with respect to the detection
of unseen classes because, when averaging over classes, the ’unseen’ pseudo-class
plays only a minor role compared to all other classes. Thus, we decided to report
a further score, the Matthew’s correlation coefficient (MCC) of the ’unseen’ class
vs. all other classes (i. e., the set of known classes). MCC is a popular measure for
evaluating binary classification that accounts for class imbalance [CJ20]. Dealing
with this class imbalance is important because the number of vertices from the
known classes is much larger than the number of vertices from the unseen class. It
ranges from -1 to 1, where zero corresponds to random prediction. In more detail,
we compute the MCC score as:

MCC =
TP ¨ TN ´ FP ¨ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

168

7.5. Experiments

where TP are true positives or correctly rejected instances, TN true negatives, FP
false positives, and FN false negatives. We accumulate these numbers over the
entire sequence of tasks.

Table 7.4. Results for unseen class detection on DBLP-hard with GraphSAGE as base model
(average of 5 repetitions). α indicates that risk reduction is used with the respective factor
for the standard deviation, τ is the minimum threshold. Runs named GDOC are trained
with weighted cross entropy. DOC is our baseline.

MCC Open Macro-F1
cold warm cold warm

c Open Learning Method

1 DOC (τ = 0.50) .01 .04 .01 .01
DOC (τ = 0.50, α = 3.0) .01 .02 .01 .01
GDOC (τ = 0.50) .04 .05 .13 .13
GDOC (τ = 0.50, α = 3.0) .04 .05 .13 .13
GDOC (τ = 0.75) .04 .09 .13 .13

3 DOC (τ = 0.50) .02 .03 .02 .05
DOC (τ = 0.50, α = 3.0) .02 .03 .02 .05
GDOC (τ = 0.50) .05 .06 .15 .15
GDOC (τ = 0.50, α = 3.0) .05 .06 .15 .15
GDOC (τ = 0.75) .05 .08 .15 .15

6 DOC (τ = 0.50) .02 .03 .05 .08
DOC (τ = 0.50, α = 3.0) .02 .03 .05 .08
GDOC (τ = 0.50) .05 .06 .16 .16
GDOC (τ = 0.50, α = 3.0) .05 .06 .16 .16
GDOC (τ = 0.75) .05 .07 .16 .16

8 DOC (τ = 0.50) .02 .04 .08 .12
DOC (τ = 0.50, α = 3.0) .02 .04 .08 .12
GDOC (τ = 0.50) .04 .05 .16 .16
GDOC (τ = 0.50, α = 3.0) .05 .05 .16 .16
GDOC (τ = 0.75) .05 .07 .16 .16

Results Table 7.4 shows the results for the detection of unseen classes in DBLP-
hard. We observe that the MCC scores, which measure the correct detection of

169

7. Lifelong Learning on Evolving Graphs

new classes, are consistently higher for gDOC than for plain DOC. The same holds
for the Open Macro-F1 scores, which measure the overall performance of OOD
detection + classification: gDOC is consistently better than plain DOC.

The F1 score of plain DOC with limited history size is very low: between 0.01
for history size 1 and 0.12 for unlimited history size. In the same setting, gDOC
achieves much higher scores: already 0.13 with history size 1 and 0.16 with at least
history size 6. This shows that the class-weighted binary cross-entropy in gDOC is
necessary to achieve reasonable F1 scores.

For thresholds, the results indicate that a high threshold (0.75) is preferable
to lower thresholds. We further note that the combination of warm restarts and
a small history size leads to the highest MCC score (0.09) on DBLP-hard, while
on DBLP-easy, on which the hyperparameters have been tuned, the MCC score is
higher for larger history sizes.

In Figure 7.10, we show that risk reduction, i. e., lowering the detection threshold
based on the class-specific standard deviation, does not help to increase perfor-
mance. With a low minimum threshold (e. g., 0), we see the pure performance of
the risk reduction technique, which peaks at α = 1 before it decreases. When using
a high minimum threshold (0.5, 0.75, 1.0), applying risk reduction only decreases
the OOD performance. In other words, the absolute best OOD detection perfor-
mance is achieved when the minimum threshold τ is set to 0.75, regardless of the
risk reduction factor α. Therefore, the usefulness of risk reduction for our heavily
imbalanced datasets is questionable.

To understand this result, we recall that risk reduction is a technique to calculate
class-specific thresholds τi (see Section 7.3.2). However, this is only possible up
to the global minimum threshold τ. Thus, even with risk reduction, class-specific
thresholds cannot go below τ.

The results for the DBLP-easy dataset, on which we have tuned the hyperpa-
rameters, as well as the full results for the DBLP-hard dataset can be found in
Appendix F.3.

In summary, this experiment has shown that weighting the binary cross-entropy
loss function in gDOC is essential for unseen class detection in imbalanced
graph data. We also learned that the risk reduction technique (as proposed in
DOC [SXL17]) is not helpful on our imbalanced graph datasets. That is because the
variance among predictions in the unbalanced case is so high that the (minimum)
threshold effectively never changed. The only exceptions are very small factors
of standard deviation (ă 1). But this only decreases the unseen class detection
performance as measured by MCC. In the end, we recommend using gDOC with

170

7.6. Discussion

weighted binary cross-entropy training to account for class imbalance, but we could
not find any benefits of the risk reduction technique proposed in the original DOC.

7.6 Discussion

Our experiments show several key results. First, we have shown in Section 7.5.1
that it is not necessary to up-train GNNs when new unlabeled data arrive. Rather,
the performance of inductively pretrained GNNs remains stable, even when new
unlabeled data are added to the graph.

From the incremental training experiments with limited history sizes in Sec-
tion 7.5.3, we obtain results that are almost as good as when using the full history
of the graph: With window sizes of 3 or 4 (50% receptive field coverage), GNNs
achieve at least 95% accuracy compared to using all previous data for incremental
training. With window sizes of 6 or 8 (75% receptive field coverage), at least 99%
accuracy can be retained. This result holds for standard GNN architectures and
also for scalable and sampling-based approaches. This has direct consequences
for lifelong learning of GNNs in evolving graphs, as it impacts how GNNs can
be employed in real-world applications. More specifically, we have investigated
whether to reuse parameters from previous tasks (warm restarts). We find that
reusing an “old” model is a viable strategy, even though new classes appear during
the sequence of tasks and the history size is limited. We have shown that reusing
parameters from previous tasks becomes more important when the history sizes
are small. This is because there is less explicit knowledge available.

We have shown in Section 7.5.4 that the methods work well, even when the
labeled data are limited. This is important for real-world applications because data
annotation is expensive.

With the introduction of gDOC, we have made a first step to introduce new class
detection in lifelong graph learning in Section 7.5.5, by combining graph neural
networks with the DOC [SXL17] module and extending it to take into account class
imbalance. Our experiments on new class detection show that it is necessary to
adjust the weights of binary cross entropy training in gDOC to account for the
imbalanced label distribution. Contrary to the original DOC, we have not observed
any improvements when risk reduction (through the standard deviation of logits)
was used. Instead, the best results were achieved with an appropriate threshold
(τ = 0.75) regardless of the risk reduction factor α. We acknowledge that emitting a

171

7. Lifelong Learning on Evolving Graphs

crisp decision in unsupervised unseen class detection is an extremely challenging
problem.

Another interesting result is that the combination of warm restarts with small
history sizes has led to increased MCC scores on the most challenging DBLP-hard
dataset. It seems that omitting old data helps to better detect out-of-distribution
examples.

Regarding generalizability of our results,we have shown that our incremental
training approach can be applied to various GNN models and is orthogonal to sam-
pling and preprocessing approaches. In general, our incremental training procedure
can be applied to any GNN architecture with few caveats. If the GNN architecture
depends on transductive learning, this constraint should be considered during
incremental training. Similarly, any pre-computation steps, such as computing
normalizing constants such as in GCN [KW17] or GraphSAINT [ZZS+20], must be
performed again when adapting the model to a new task.

To reflect our work in the broader context of lifelong or continual learning,
we reconsider the gradient episodic memory framework [LR17] for image data,
in which the examples are independent. To cast graph data into independent
examples for node classification, certain preprocessing steps are required, such
as transforming each node into a graph [WQG+22]. This increases the number of
inference steps by O(|V|) compared to our approach.

7.7 Summary

Coming back to Q5: How can we adapt representation learning models for text and graph
data that evolve over time?, we have introduced a generic experimental framework
that enables lifelong learning for evolving graph data. We have introduced an incre-
mental training algorithm and a new measure for k-neighborhood time differences
tdiffk that captures temporal granularity and connectivity patterns in graphs. Using
percentiles of these time differences, we can select history sizes that are comparable
across different datasets.

In this framework, we have experimented with six representative base models,
using different history sizes, and using either warm or cold restarts. Our results
on three newly compiled datasets have shown that high levels of accuracy can be
preserved even when training only on a fraction of past data. In particular, using
warm restarts becomes more important when few past data are available. We then

172

7.7. Summary

confirmed our results in a setup with limited label data and observed a trend that
warm restarts become even more important when less labeled data is available.

Subsequently, we explored an open-world learning environment in which the
models have to detect instances from previously unseen classes while classifying
others as before. We adapted a method for crisp detection of unseen classes to the
graph case, while stressing the importance of reflecting the class distribution within
the loss function of the binary-cross-entropy training objective. Our results further
indicate that removing old data is beneficial for unseen class detection.

The settings explored with evolving graph data, limited labels, and new classes
reflect the difficulties that practitioners face when using graph neural networks
in real-world applications. This chapter sets the ground for the development of
additional techniques for lifelong learning in evolving graphs to narrow the gap
between research and application.

173

Chapter 8

Conclusion

The overarching aim of this thesis was to investigate representation learning meth-
ods that process texts and graphs together. In the introduction, we agitated three
challenges that we needed to overcome to achieve that goal: efficiency, multimodal-
ity, and adaptability. We address these challenges by investigating efficient models
for text representation learning (Chapters 3, 4, and 5), multimodal models to
combine text and graph representation learning (Chapters 6 and 7), and ways to
adapt models to new data to deal with evolving graphs with text-attributed nodes
(Chapter 7). Below, we summarize the contributions along the three challenges,
before we discuss word order, synthetic graphs, and the practical impact of this
thesis. We close with some ideas for future work.

8.1 Summary of Contributions

Efficiency In Chapter 3, we explored efficient sentence representation models. We
showed that a hybrid model between vector representations, aggregated by sum-
mation, and matrix representations, aggregated by matrix multiplication, performs
better than each alone on a wide range of tasks. Subsequently, in Chapter 4, we
have shown that the knowledge of large pretrained language models, such as BERT,
can be successfully distilled into matrix representation models. In this way, matrix
embedding models become competitive with RNN-based language models such as
ELMo [PNI+18] while being more efficient. However, we have found in Chapter 5
that a bag-of-words representation in conjunction with an MLP! already forms a
powerful model for classifying texts into topics. In particular, we have shown that
a wide MLP is competitive with many recent approaches that rely on building
synthetic graphs from pure text. In Chapter 7, we considered efficiency in the sense
of learning with limited history sizes in evolving text and graph data. In growing
graphs, e. g., social graphs or citation graphs, limiting the history helps to maintain
scalability and accuracy We have shown that maintaining a single model over time
allows us to use smaller history sizes.

175

8. Conclusion

Multimodality In Chapter 6, we analyzed multimodal autoencoders for document-
based recommendation tasks. We confirm the findings from Chapter 5 that a
BoW-MLP is a strong predictor of topical recommendations when only the text
is available. However, we found that the graph structure is more important when
dealing with citation graphs. We explain this phenomenon by the semantics of item
co-occurrence: in citation graphs, the cited works are similar to each other [Sma73],
while in the subject labeling tasks, co-occurring items are dissimilar to cover the
different aspects of a single research paper. We hypothesize that predicting similar
items is more straightforward than predicting dissimilar items only based on other
items.

Nonetheless, the effectiveness of all autoencoder models improves when con-
ditioning on textual side information. Thus, AEs serve as a solid general-purpose
model when faced with a new recommendation task and when multiple modalities
play a role. In Chapter 7, we then investigated graph representation learning as a
more general input representation. Specifically, we investigated a node classifica-
tion task in evolving graphs of interlinked documents with textual features. The
structured information from the citation graph is helpful for the classification of
publications.

Adaptability The adaptability of learning models that learn combined text and
graph representations was the central topic of Chapter 7. We have introduced three
datasets and an experimental framework for lifelong learning in evolving graphs
with nodes with textual attributes. We also considered the task of crisp detection
of previously unseen classes on the most challenging dataset. We introduced an
incremental training algorithm, a new method to derive comparable history sizes
in evolving graph data. We showed that reusing parameters is more critical when
fewer past data points are available. We found that reflecting class imbalance within
the binary cross-entropy criterion is crucial for detecting new classes. We found
that removing old data with parameter reuse is beneficial when detecting instances
from unseen classes.

8.2 General Discussion

Word Order A central factor for efficiency is whether the models consider the
order of words. Models that discard word order are more efficient than sequence
models, such as Transformers and the models presented in Chapters 3 and 4.

176

8.2. General Discussion

We have shown in Chapter 3 that modeling word order is beneficial for some
tasks, such as question-type classification, while the results of Chapter 5 show
that word order is less important for classifying texts into topics. We reflect on
Harris [Har54]’s distributional hypothesis, which states that the context of its use
determines the meaning of a word. In other words, the exact order of the words
is less important than their co-occurrence. With static sentence representations,
Conneau et al. [CKL+18] have found that the ability to memorize which words are
in a sequence is more indicative of downstream performance than other linguistic
properties.

The powerful Transformer-based language models consider word order by
actively encoding each word’s position. However, Sinha et al. [SJH+21] also have
pretrained language models on shuffled text with surprisingly good performance
on downstream tasks. We complement those results in Chapter 5 by removing
the positional encoding after pretraining. While there was a drop in accuracy,
presumably because the model relied on those encodings during pretraining, the
model performance decreased slightly. In the end, whether models should consider
word order remains to be decided on a per-task basis. However, eliminating word
order improves sample complexity, i. e., the number of necessary training examples,
because all permutations of a sequence conflate to an indentical input representa-
tion. Based on our results, we hypothesize that when learning to infer the topic of a
text, the gains in sample complexity outweigh the loss of word-order information.

Synthetic Graphs At first glance, the results of Chapter 5 and Chapter 7 might
seem to contradict each other. In Chapter 5, we see that a wide MLP is competitive
with recent graph-based approaches, while in Chapter 7, GNNs outperformed the
MLP. However, it is essential to note that the graphs are fundamentally different.
In Chapter 5, the datasets consisted of pure text. There, graphs were synthesized
from pure text, e. g., word-word and word-document relationships. In contrast, in
Chapter 7, we worked with graph data, where the edges corresponded to citations.
Here, the graph provides more information than what would have been available
from the text. Kipf and Welling [KW17] had already expected that graph convo-
lution is “especially powerful in scenarios where the adjacency matrix contains
information [otherwise] not present in the data”. Now, synthetic graphs derived
only from the pure text cannot produce new information (cf. the data processing
inequality1[CT+91]). Hence, we question the usefulness of synthetic graphs for

1If pdata Ñ X Ñ G, then I(pdata;G) ď I(pdata; X)

177

8. Conclusion

classification. Empirically, we observe that graph-based approaches only exceeded
the accuracy of a wide MLP with very expensive preprocessing Still, even the best
graph-based approaches fell behind pretrained Transformer models that only use
the text.

Significance for Practice We designed the new experimental frameworks pre-
sented in this thesis in a way close to real-world applications: we focus on transfer
learning, inductive learning, chronological train/test splits, and dealing with evolv-
ing graph data. The findings directly affect practical applications with text and
graph data that appear together, such as text classification or recommender systems.
In particular, lifelong learning on graphs, as presented in Chapter 7, is highly rele-
vant for practical applications related to social graphs or publication graphs. This
thesis provides the tools and knowledge necessary for practitioners to determine
which models and modalities best suit the task and the trade-off between efficiency
and effectiveness.

In a different regard, this work also relates to privacy considerations: First,
smaller and more efficient models are better suited to perform on-device computa-
tion without communicating with an extensive computing infrastructure. Second,
with document-based recommender systems, we have explored techniques that
work without storing user profiles. Third, we found that deleting historical data
does not harm accuracy in lifelong node classification.

Because we designed the experimental frameworks in a way close to practice,
we observed that many seemingly related approaches were, in fact, not applicable
because they could not deal with newly appearing data points after training, which
is crucial for practical applications. For instance, recommender system approaches
that rely on user embeddings cannot be applied to new users at test time without
retraining. Similarly, in evolving graphs, most approaches from the literature are
concerned with the dynamic signal case. They assume that the node set is static
through time, unlike the dynamic structure case explored in this thesis. All of these
approaches certainly have merits and possible applications, yet their applicability
to the problems investigated in this thesis is limited. Therefore, we used strong
baselines in our new experimental frameworks and explored many representative
base models, such as different types of AEs and GNNs, for which we tested the
training procedure and extensions.

178

8.3. Future Work

Significance within Field of Study We shed light on efficient alternatives to
heavy-weight Transformer-based language models, including matrix-based sen-
tence representations, cross-architecture distillation, and text classification. While
Transformers are still more powerful, the methods presented in this thesis fill a gap
between highly efficient word embeddings and more expensive sequence models.
In particular, we have shown that a wide BoW-MLP is a powerful model for text
classification. Although the method (under different configurations) has existed for
decades, it was rarely used as a baseline in research on text classification.

As for recommender systems, a unique contribution is the analysis of the
influence of the total number of considered items through dataset pruning and
the influence of the fraction of already present items in each example. On the
one hand, the ranking of methods remained stable concerning pruning, which
justifies the development of new methods on pruned datasets. On the other hand,
some methods are better than others when only a little knowledge is available. In
particular, the variational autoencoder and the multilayer perceptron are better than
other methods when only a few items are available. This result shows that the stage
of the recommendation process is an essential factor for evaluating recommender
systems.

Moreover, this is one of the first works (along with a few others [FXM+22]) that
studies lifelong learning on graph data. We designed an experimental framework
and introduced three graph datasets to investigate the maintenance of a single
model throughout the evolution of the graph. In contrast to the other works, our
datasets resemble the natural evolution of the data, and we also consider the
problem detecting unseen classes. This first step opens up various opportunities to
further develop and evaluate new methods for lifelong learning in evolving graphs.

8.3 Future Work

In this thesis, we have addressed the challenges of efficiency, multimodality, and
adaptability for learning text and graph representations. A logical continuation of
this work would employ powerful large pretrained language models and incor-
porate graph data alongside the text. For now, the size of large language models
hindered applying large language models to graphs with textual attributes. This
approach will only become feasible with further developments in efficient and long-
range Transformers. Note that there are already Transformer variants generalized to
graph data [DB21; KBH+21; YCL+21]. Still, none of them can keep the text process-

179

8. Conclusion

ing capabilities of large pretrained language models. An idea for this combination
is to spread the self-attention mechanisms across adjacent nodes in the graph, i.
e., to propagate the query representations of each token to neighboring nodes
and harvest the result of the soft key-value lookup from the neighbors. However,
there are other possible ways for combined text and graph representation learning
with Transformers. A different idea would be to flatten the adjacent nodes’ local
subgraph and supply it as extra input along with the text to a large language model.
Considering lifelong learning on graphs, future work could investigate whether
it would be beneficial to maintain a representative graph in memory throughout
the evolution of the graph. For the automatic detection of unseen classes, future
methods might make use of the graph structure more explicitly, which we used
only implicitly within the graph convolution.

8.4 Summary

The key challenges discussed in this thesis will remain relevant for future research
in joint representation learning for texts and graphs. For the time being, we have
explored efficient matrix embedding models for text representation learning. When
focusing on topical text classification, we found that a wide multilayer perceptron
operating on a bag-of-words is surprisingly powerful. We continued with the bag-
of-words representation for the analysis of multimodality, first with autoencoders
in bipartite graphs and then with graph neural networks in evolving graphs.
Adaptability to new graph data was a critical challenge we tackled with a lifelong
learning approach. However, this is not the end of the story, and the hope is that
this thesis inspires future work to continue the exploration of a more holistic
perspective on representation learning for texts and graphs.

180

Appendix A

Reproducibility and Published Resources

A.1 Reproducibility of Relevant Literature

Here, we briefly summarize reproducibility issues in the related work and show
that the results presented in this thesis are unaffected by those.

In recommender systems, Dacrema, Cremonesi, and Jannach [DCJ19] have
shown that many recently proposed approaches are, in fact, not reproducible. Only
autoencoders, which we have also used as a basis for Chapter 6 were among the
reproducible ones.

In graph neural networks, Shchur, Mumme, Bojchevski, and Günnemann
[SMB+19] have shown that commonly used benchmark datasets (Cora, Citeseer,
PubMed) are not sufficient to draw conclusions about advances in graph neural
networks. Other dataset splits led to different rankings of the models. Only in
following benchmarking and reproducibility studies [DJL+20] and by using more
profound benchmarking dataset collections [HFZ+20], the key components of suc-
cessful GNN architectures could be derived. We have considered these results in
our experiments with graph neural networks in Chapter 7.

Then again, Lv et al. [LDL+21] raise the same question “are we really making
much progress?” as in [DCJ19], but now for heterogeneous graph neural networks.
The authors could show that properly configured standard approaches such as
graph attention network, could outperform other approaches that have been specif-
ically designed for heterogeneous graphs. The results presented in Chapter 7 are
not affected by these issues, since we have worked with homogeneous GNNs.

In the research on large pretrained language model (LM), the matter of re-
producibility is different. What is now known as Foundation Models [BHA+21],
is effectively a different learning setting. Due to their ever-increasing scale, the
research and training of these large models is shifted into the hands of only few
global players. Countless technical decisions are necessary and important to build
such models, yet it is, for the most part, not clear what model design decisions

181

A. Reproducibility and Published Resources

are important. For instance, Liu, Dai, So, and Le [LDS+21] have recently raised the
question to what extent self-attention is necessary in Transformers.

Dehghani et al. [DAB+21] provide an overview of measures for efficiency and
argue that reporting multiple of them is important to fully determine the efficiency
of a method. The authors further point out that real time measurements are more
accurate as the number of floating point operations (FLOPs), as those do not
account for parallelism. Throughout our experiments on efficiency, we report the
number of parameters along with a speed measure: throughput or wall-clock time.

A.2 Reproducibility of Our Experiments

To ensure reproducibility, we have followed the key principle of investing the same
effort into hyperparameter tuning of the baselines and hyperparameter tuning
of the proposed methods. Furthermore, we adhered to at least one of the two
strategies a) to evaluate the same model on multiple tasks and datasets and b) to
repeat the experiments on the same dataset multiple times.

In more detail, in Chapters 3, 4, and 5, we followed evaluation protocols and
conventions of the community. That is the SentEval framework [CK18] to evaluate
sentence representations, the GLUE benchmark [WSM+19] to evaluate general
text representation learning models, and five commonly used datasets for (topical)
text classification [YML19]. In Chapter 6 and Chapter 7, we have created our
own experimental frameworks and respective evaluation protocols. In Chapter 6,
the difference to almost all existing recommender systems was that all test data
comes from new, previously unseen documents. In Chapter 7, we have introduced
the first generic framework for lifelong learning on graphs. In both experimental
frameworks, we opted to tune the hyperparameters on a single dataset, and then
applying the determined hyperparameters to the other datasets. In order to draw a
rich picture in these two new settings, we have evaluated a wide range of different
models (7 in Chapter 6, and 6 in Chapter 7) including strong baselines.

Each experiment has been repeated five times in Chapter 5, three times in
Chapter 6, and ten times in Chapter 7. In the other Chapters 3 and 4, we evaluated
the same models on multiple different tasks, while using the same original model
for all tasks. In Chapter 6 and Chapter 7, we have conducted chronological splits of
the data to take a realistic distribution shift into account. References to the code for
reproducing all the experiments is provided in the following section.

182

A.3. Published Resources

A.3 Published Resources

In Table A.1, we provide an overview of the resources published with this thesis
(code, data, and models) to ensure reproducibility and enable reuse.

Table A.1. Published resources in the context of this thesis

Chapter Resource Name Type Location

3 Word matrices code https://github.com/lgalke/word2mat

3 CMOW/CBOW models models https://doi.org/10.5281/zenodo.3933322

4 Cross-architecture distillation code https://github.com/lgalke/cross-architecture-distillation

4 Distilled models models https://doi.org/10.5281/zenodo.6533889

5 WideMLP and language models code https://github.com/lgalke/text-clf-baselines

6 Multimodal autoencoders code https://github.com/lgalke/aaerec

7 Lifelong learning on graphs code https://github.com/lgalke/lifelong-learning

7 Datasets for lifelong learning dataset https://doi.org/10.5281/zenodo.3764770

183

https://github.com/lgalke/word2mat
https://doi.org/10.5281/zenodo.3933322
https://github.com/lgalke/cross-architecture-distillation
https://doi.org/10.5281/zenodo.6533889
https://github.com/lgalke/text-clf-baselines
https://github.com/lgalke/aaerec
https://github.com/lgalke/lifelong-learning
https://doi.org/10.5281/zenodo.3764770

Appendix B

Supplementary Material: Word Matrices

B.1 Comparison of Training Objectives

In Section 3.3.4, we describe a more general training objective than the classical
CBOW objective by Mikolov et al. [MSC+13]. The original objective always sets the
center word from the window of tokens (wt´c, . . . , wt+c) as target word, wO = wt.
In preliminary experiments, this did not yield satisfactory results. We believe
that this was because the model relied too much on always having the same
number of matrices before and after the missing word. Hence, we experimented a
variant where the target word is sampled randomly from a uniform distribution,
wO := U ({wt´c, . . . , wt+c}).

To test the effectiveness of this modified objective, we evaluate it with the same
experimental setup as described in Section 3.5. Table B.1 lists the results on the
linguistic probing tasks. CMOW-C and CBOW-C refer to the models where the
center word is used as the target. CMOW-R and CBOW-R refer to the models where
the target word is sampled randomly. While CMOW-R and CMOW-C perform
comparably on most probing tasks, CMOW-C yields 5 points lower scores on
WordContent and BigramShift. Hence, CMOW-R also outperforms CMOW-C on 10
out of 11 supervised downstream tasks and on all unsupervised downstream tasks,
as shown in Table B.2 and Table B.3, respectively. On average over all downstream
tasks, the relative improvement is 20.8%. For CBOW, the scores on downstream
tasks increase on some tasks and decrease on others. The differences are small,
presumably because CBOW is not sensitive to word order. On average over all 16
downstream tasks, CBOW-R scores 0.1% lower than CBOW-C.

B.2 Comparison of Initialization Strategies

In Section 3.3.5, we have suggested to use an initialization strategy that is specifically
tailored towards word matrices. We argue why it is more adequate for training

185

B. Supplementary Material: Word Matrices

Table B.1. Scores for different training objectives on the linguistic probing tasks.

Method Depth BShift SubjNum Tense CoordInv Length ObjNum TopConst SOMO WC

CMOW-C 36.2 66.0 81.1 78.7 61.7 83.9 79.1 73.6 50.4 66.8
CMOW-R 35.1 70.8 82.0 80.2 61.8 82.8 79.7 74.2 50.7 72.9

CBOW-C 34.3 50.5 79.8 79.9 53.0 75.9 79.8 72.9 48.6 89.0
CBOW-R 33.0 49.6 79.3 78.4 53.6 74.5 78.6 72.0 49.6 89.5

Table B.2. Scores for different training objectives on the supervised downstream tasks.

Method SUBJ CR MR MPQA MRPC TREC SICK-E SST2 SST5 STS-B SICK-R

CMOW-C 85.9 72.1 69.4 87.0 71.9 85.4 74.2 73.8 37.6 54.6 71.3
CMOW-R 87.5 73.4 70.6 87.3 69.6 88.0 77.2 74.7 37.9 56.5 76.2

CBOW-C 90.0 79.3 74.6 87.5 72.9 85.0 80.0 78.4 41.0 60.5 79.2
CBOW-R 90.0 79.2 74.0 87.1 71.6 85.6 78.9 78.5 42.1 61.0 78.1

CMSMs than classic strategies that initialize all parameters with random values
close to zero, and use it in our experiments to train CMOW.

To verify the effectiveness of our initialization strategy empirically, we evaluate
it with the same experimental setup as described in Section 3.5. The only difference
is the initialization strategy, where we include Glorot initialization [GB10] and the
standard initialization from N (0, 0.1).

Table B.4 shows the results on the probing tasks. While Glorot achieves slightly
better results on BShift and TopConst, CMOW’s ability to memorize word content
is improved by a wide margin by our initialization strategy. This again affects the
downstream performance as shown in Table B.5 and B.6, respectively: 7 out of
11 supervised downstream tasks and 4 out of 5 unsupervised downstream tasks
improve. On average, the relative improvement of our strategy compared to Glorot
initialization is 2.8%.

Table B.3. Scores for different training objectives on the unsupervised downstream tasks.

Method STS12 STS13 STS14 STS15 STS16

CMOW-C 27.6 14.6 22.1 33.2 41.6
CMOW-R 39.2 31.9 38.7 49.7 52.2

CBOW-C 43.5 49.2 57.9 63.7 61.6
CBOW-R 43.5 50.0 57.7 63.2 61.0

186

B.2. Comparison of Initialization Strategies

Table B.4. Scores for initialization strategies on probing tasks.

Initialization Depth BShift SubjNum Tense CoordInv Length ObjNum TopConst SOMO WC

N (0, 0.1) 29.7 71.5 82.0 78.5 60.1 80.5 76.3 74.7 51.3 52.5
Glorot 31.3 72.3 81.8 78.7 59.4 81.3 76.6 74.6 50.4 57.0
Ours 35.1 70.8 82.0 80.2 61.8 82.8 79.7 74.2 50.7 72.9

Table B.5. Scores for initialization strategies on supervised downstream tasks.

Initialization SUBJ CR MR MPQA MRPC TREC SICK-E SST2 SST5 STS-B SICK-R

N (0, 0.1) 85.6 71.5 68.4 86.2 71.6 86.4 73.7 72.3 38.2 53.7 72.7
Glorot 86.2 74.4 69.5 86.5 71.4 88.4 75.4 73.2 38.2 54.1 73.6
Ours 87.5 73.4 70.6 87.3 69.6 88.0 77.2 74.7 37.9 56.5 76.2

Table B.6. Scores for initialization strategies on unsupervised downstream tasks.

Initialization STS12 STS13 STS14 STS15 STS16

N (0, 0.1) 37.7 26.5 33.3 44.7 50.3
Glorot 39.6 27.2 35.2 46.5 51.6
Ours 39.2 31.9 38.7 49.7 52.2

187

Appendix C

Supplementary Material:
Cross-Architecture Distillation

C.1 Hyperparameters for Distillation

Table C.1. Hyperparameter Search Space

Hyperparameter Range Optimization method

— General Distillation —
Learning rate {10´3, 5 ¨ 10´4, 10´4, 5 ¨ 10´5, 10´5} grid search
Warmup steps {0, 500} grid search
Embedding dropout {0, 0.1} grid search
Hidden unit dropout {0.2} fixed
Batch size {1,8,32,64,128,256} manual

— Task-specific Distillation —
Learning rate {10´3, 5 ¨ 10´4, 10´4, 5 ¨ 10´5, 10´5, 5 ¨ 10´6} grid search

We list hyperparameter search spaces along with their optimization methods
in Table C.1. We optimize over all six initial learning rates, namely {10´3, 5 ¨ 10´4,
10´4, 5 ¨ 10´5, and 10´5}. All initial learning rates decay linearly over the course of
training. For the fine-tuning we further test an even smaller learning rate 5 ¨ 10´6

Note, we also experimented with using warmup steps versus no warmup for the
learning rate schedule with negligible differences.

C.2 Extended Results

In Table C.2, we report an extended version of the comparison with the literature.
The best performing model per task are marked in bold. Here, we also include our
BERT-base teacher model as well as TinyBERT [JYS+20] and Tang et al. [TLL+19]’s
distilled BiLSTM. However, note that TinyBERT and BiLSTM are not fully compara-

189

C. Supplementary Material: Cross-Architecture Distillation

ble, because the reported numbers are on the GLUE test set, while we have used
the development set for our experiments.

Table C.2. Scores on the GLUE development set. Our best performing general distillation
and task-specific distillation models are highlighted in bold font per task. References
indicate sources of scores. The ‹-symbol indicates numbers on the official GLUE test set.
’Hybrid’ denotes CMOW/CBOW-Hybrid.

Score CoLA MNLI-m MRPC QNLI QQP RTE SST-2 STS-B WNLI

— large-scale pre-trained language models —
ELMo [SDC+20] 68.7 44.1 68.6 76.6 71.1 86.2 53.4 91.5 70.4 56.3
BERT-base [SDC+20] 79.5 56.3 86.7 88.6 91.7 89.6 69.3 92.7 89.0 53.5
BERT-base (teacher) 78.9 57.9 84.2 84.6 91.4 89.7 67.9 91.7 88.0 54.9
Word2rate Hybrid [PLP21] — — — — — — — 65.7 53.1 —

— general distillation baselines —
DistilBERT [SDC+20] 77.0 51.3 82.2 87.5 89.2 88.5 59.9 91.3 86.9 56.3
MobileBERT [SYS+20] — 51.1 84.3 88.8 91.6 70.5 70.4 92.6 84.8 —

— task-specific distillation baselines —
‹TinyBERT [JYS+20] — 54.0 84.5 90.6 91.1 88.0 70.4 93.0 90.1 —
‹BiLSTM [TLL+19] — — 73.0 — 78.2 — — 90.7
CBOW-FFN [WPI20] — 10.0 — — — — — 79.1 — —
BiLSTM [WPI20] — 10.0 — — — — — 80.7 — —

— general distillation (ours) —
Bidi. Hybrid + Linear 65.1 15.0 63.6 80.9 70.7 84.3 56.7 84.0 71.1 59.2
Bidi. Hybrid + MLP 66.6 16.7 66.6 79.7 71.7 87.2 61.0 82.9 76.9 56.3

— task-specific distillation (ours) —
Hybrid + MLP (rand. init.) 62.5 13.1 62.5 74.3 71.5 86.6 58.1 83.1 58.6 56.3
Bidi. Hybrid + MLP (rand. init.) 63.2 13.0 63.3 75.7 72.6 86.1 57.4 83.3 59.7 57.7
Bidi. Hybrid + MLP (pretrained) 64.6 23.3 61.8 75.0 72.0 86.3 59.9 82.9 62.9 57.7

190

Appendix D

Supplementary Material:
Text Classification

D.1 Practical Guidelines for Designing a WideMLP

On the basis of our results, we provide recommendations for designing a WideMLP
baseline.

Tokenization We recommend using modern subword tokenizers such as BERT-
like WordPiece [WSC+16] that yield a high coverage while needing a relatively
small vocabulary.

Input representation In contrast to conventional wisdom [IMB+15], we find that
pretrained embeddings, e. g., GloVe, can have a detrimental effect when compared
to using an MLP with one wide hidden layer. Such an MLP circumvents the
bottleneck of the small dimensionality of word embeddings and has a higher
capacity.

Depth vs. width In text classification, width seems more important than depth.
We recommend to use a single, wide hidden layer, i. e., one input-to-hidden and
one hidden-to-output layer, e. g., with 1,024 hidden units and ReLU activation.
While this might be overparameterized for single-label text classification tasks with
few classes, we rely on recent findings that overparameterization leads to better
generalization [NLB+18; NKB+20].

We further motivate the choice of using wide layers our previous results in
multilabel text classification [GMS+17], which has shown that MLP outperforms
all tested classical baselines such as support vector machines, k-Nearest Neighbors,
and logistic regression. Our follow-up work [MGS18] then found that also CNN
and LSTM models do not substantially improve over the wide MLP.

191

D. Supplementary Material: Text Classification

Having a fully-connected layer on-top of a bag-of-words leads to a high number
of learnable parameters. Still, the wide first input-to-hidden layer can be imple-
mented efficiently by using an embedding layer followed by aggregation, which
avoids large matrix multiplications.

In our experiments, we did not observe any improvement with more hidden
layers (WideMLP-2), as suggested by Iyyer, Manjunatha, Boyd-Graber, and III
[IMB+15], but it might help for other, more challenging, datasets.

Optimization and regularization We seek to find an optimization strategy that
does not require dataset-specific hyperparameter tuning. This comprises optimizing
cross-entropy with Adam [KB15] and default learning rate 10´3, a linearly decaying
learning rate schedule and training for a high amount of steps [NKB+20] (we
use 100 epochs) with small batch sizes (we use 16) for sufficient stochasticity. For
regularization during this prolonged training, we suggest to use a high dropout
ratio of 0.5. Regarding initialization, we rely on framework defaults, i. e., N (0, 1)
for the initial embedding layer and random uniform U (´

√
dinput,

√
doutput) for

subsequent layers’ weight and bias parameters.

D.2 Connection between BoW-MLP and TextGCN

TextGCN uses the PMI matrix to set up edge weights for word-word connections.
A single layer Text-GCN is a BoW-MLP, except for the document embedding. The
one-hop neighbors are words which are aggregated after a nonlinear transform.
The basic GCN equation H = σ(ÂXW) reveals that the order of transformation
and neighborhood aggregation is irrelevant. The document embedding implies
that TextGCN is a semisupervised technique. Truly new documents, as in inductive
learning scenarios, would need a special treatment such as using an all zero
embedding vector.

A two-layer MLP can be characterized by the equation ŷ = W (2)σ(W (1)x +

b(1)) + b(2). On bag-of-words inputs, the first layer W (1)x + b(1) can be replaced by
an equivalent embedding layer with weighting (e. g., TF-IDF or length normaliza-
tion) being applied during aggregation of the embedding vectors.

The first layer of TextGCN is equivalent to aggregating embedding vectors. A
standard GCN layer with shared weights has the form (assuming self-loops have
been inserted)

192

D.3. Equivalence of Micro-F1 and Accuracy in Multiclass Classification

hi = ∑
jPN(i)

aijW (1)xj + b(1)

Now in TextGCN node features are given by the identity, such that xj is one-hot.
Then we can rewrite the first layer of Text-GCN as an aggregation of embeddings
E. We gain

hi = ∑
jPN(i)

aijEj

as Wx + b may again be replaced by an embedding matrix if applied to one hot
vectors x. Now E contains two types of embedding vectors: word embeddings and
document embeddings corresponding to word nodes and document nodes. We see
that the first layer of TextGCN is essentially an aggregation of word embeddings
plus the document embedding. Only with a second layer, TextGCN considers
the embedding of other documents whose words are connected to the present
documents’ words.

D.3 Equivalence of Micro-F1 and Accuracy in Multiclass
Classification

In multiclass classification, we have a single true label for each instance and the
predictions are constrained to a single prediction per instance. As a consequence,
the measures accuracy and Micro-F1 coincide to the same formula.

Micro F1 aggregates true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) globally. It can be expressed as:

Micro ´ F1 =
2 ∑c TPc

2 ∑c TPc + ∑c FPc + ∑c FNc
,

where c iterates over all classes.

While the accuracy can be expressed as:

Acc =
∑c TPc + ∑c TNc

∑c TPc + ∑c TNc + ∑c FPc + ∑c FNc

In multiclass classification, every true positive is also a true negative for another
class. When summing those up over the entire dataset, we obtain

∑
c

TPc = ∑
c

TNc.

193

D. Supplementary Material: Text Classification

Thus, we can rewrite

2 ∑
c

TPc = ∑
c

TPc + ∑
c

TNc

and see that the Micro-F1 and accuracy are equivalent in the multiclass (a.k.a.
single-label) case.

194

Appendix E

Supplementary Material:
Recommender Systems

E.1 Extended Results on the PubMed Dataset

The PubMed dataset was a special case in Chapter 6. This is because it was the only
dataset that came with subject labels and citations. Therefore, we also included the
subject labels as input to predict citations in the “all-metadata” case. Intuitively, the
subject label input helps models to provide recommendations more easily, because
the known topic of the publication is indicative for citation candidates.

In Figure E.1 , we provide more results to isolate the effect of using MeSH labels
as input on PubMed. While using MeSH labels improves the performance, the
models are similarly affected by the drop threshold in both cases.

We also studied the effect of a larger partial set of items as input on the results.
In our experiments, MLP and VAE show a comparatively high performance when
only few items are available as input (higher values of drop ratio). In order to
decide if the reason for these results is because of larger training or because these
methods are more useful in separating relevant documents from noise, we split
the documents based on the median number of references as input. This allows
us to compare results with longer or shorter lists of references as training input.
As Table E.1 shows, all compared models benefit from having a longer input list
without any other metadata. Still, better scores are achieved when using metadata.
As expected, using metadata is particularly helpful when a smaller item set is
provided as input.

E.2 Mean Average Precision Results

In addition to the mean reciprocal rank (MRR), we also assess the mean average
precision (MAP) for the experiments investigating the effect of the number of
dropped elements. Results are provided in Figure E.2 (citations), Figure E.3 (subject

195

E. Supplementary Material: Recommender Systems

Figure E.1. MRR of predicted citations on the test set with varying number dropped
elements for the PubMed citation dataset. The minimum item occurrence threshold is set
to 55. Left: The partial set of items is given along with the document title, the authors, and
the journal title. Right: The partial set of items is given along with the document title, the
authors, the journal title, and the MeSH labels.

Table E.1. MRR of predicted citations for PubMed using either only documents with fewer
references than the median number of references or with more references than the median
number of references.

Model
<30 references ě30 references

partial list metadata partial list metadata

IC .1958 (.0019) - .2136 (.0004) -
SVD .1409 (.0004) - .1503 (.0002) -
AE .1734 (.0007) .2946 (.0013) .1996 (.0076) .2520 (.0015)
AAE .1485 (.0023) .2756 (.0013) .1957 (.0084) .2256 (.0196)
VAE .1337 (.0004) .3580 (.0010) .0907 (.0002) .2750 (.0009)
DAE .1311 (.0002) .2710 (.0024) .2022 (.0100) .2049 (.0011)
MLP - .3633 (.0014) - .2926 (.0011)

labels), and Table E.2. The models show substantially the same behavior with MAP
as with MRR. The only exception is that the VAE demonstrates an overall lower
increase of performance with an increasingly higher number of dropped elements
for the subject indexing datasets.

196

E.2. Mean Average Precision Results

Figure E.2. MAP of predicted citations on the test set with varying number dropped
elements for the PubMed (top row) and ACM (bottom row) citation datasets. The minimum
item occurrence threshold is set to 55. Left: Only the partial set of items is given. Center: The
partial set of items along with the document title is given. Right: The partial set of items is
given along with the document title, the authors, the journal title, and the MeSH labels.
MLP can only make use of either titles or titles, authors, journal titles, and MeSH labels.

Table E.2. MAP of predicted citations for PubMed using either only documents with fewer
references than the median number of references (left column) or with more references
than the median number of references (right column).

Model
<30 references ě30 references

partial list metadata partial list metadata

IC .1641 (.0015) - .1321 (.0006) -
SVD .1165 (.0009) - .0838 (.0004) -
AE .1205 (.0006) .2299 (.0011) .1199 (.0022) .1503 (.0007)
AAE .0902 (.0011) .2250 (.0007) .1187 (.0019) .1574 (.0237)
VAE .0795 (.0001) .2767 (.0009) .0384 (.0002) .1670 (.0003)
DAE .0808 (.0001) .2076 (.0018) .1190 (.0053) .1200 (.0011)
MLP - .2818 (.0017) - .1818 (.0009)

197

E. Supplementary Material: Recommender Systems

Figure E.3. MAP of predicted subject labels on the test set with varying number of dropped
elements for the EconBiz (top row), IREON (middle row), and Reuters (bottom row)
datasets. The minimum item occurrence threshold is set to 20. Left: Only the partial set
of items is given. Center: The partial set of items along with the title is given. Right: The
partial set of items along with the document title and authors is given. MLP can only use
either titles or titles and authors.

198

Appendix F

Supplementary Material:
Lifelong Learning on Graphs

F.1 Proof: k-Neighborhood Time Differences tdiffk is Equiv-
ariant to Temporal Granularity

We show that our k-neighborhood time difference measure tdiffk is equivariant
to temporal granularity: We assume without loss of generality that tm is more
fine-grained than ty, i. e., a ą 1. Because tdiffk is a multiset of time differences from
which we take percentiles to determine history sizes, it is sufficient to show that
the time difference t(u) ´ t(v) between two nodes u, v P V is equivariant to the
temporal granularity factor a, or more precisely: @u, v P V : a ¨ |ty(u) ´ ty(v)| P

]|tm(u) ´ tm(v)| ´ a; |tm(u) ´ tm(v)|+ a[.

Prerequisite (PRE) With ty(u) =
⌊

tm(u)
a

⌋
we have tm(u)

a ď ty(u) ă
tm(u)+a

a ñ

tm(u) ď a ¨ ty(u) ă tm(u) + a. Note that the left-hand side is less than or equal due
to rounding down, while the right-hand side adds a time step a, which makes it a
true inequality.

Proof. Using the prerequisite, we now show that

(i) a ¨ |ty(u) ´ ty(v)| ą |tm(u) ´ tm(v)| ´ a, and

(ii) a ¨ |ty(u) ´ ty(v)| ă |tm(u) ´ tm(v)|+ a

via case differentiation.

Case (i-a): ty(u) = ty(v) The left-hand side of inequality (i) becomes zero and
it remains to show that |tm(u) ´ tm(v)| ă a. We apply (PRE) to find the highest
possible value for the term |tm(u) ´ tm(v)| with respect to ty such that the term is
still smaller than a. The highest possible value for tm(u), expressed in terms of ty,

199

F. Supplementary Material: Lifelong Learning on Graphs

is a ¨ ty(u) + ϵ with 0 ă ϵ ă a. This is because a ¨ ty(u) is the upper bound of tm(u)
in the inequality of the prerequisite (PRE) and we insert a small but positive ϵ to
account for being “truly lower”. The smallest possible value for tm(v) is a ¨ ty(u).
Again, we take this value a ¨ ty(u) from the prerequisite, where it is the lower bound
of ty(u). Then, we have |a ¨ ty(u) + a ´ ϵ ´ a ¨ ty(v)| ă a. Now, as ty(u) = ty(v), we
obtain |a ´ ϵ| ă a.

Case (i-b): ty(u) ‰ ty(v) We transform the left-hand side of (i) to |a ¨ ty(u) ´ a ¨

ty(v)|, while recalling that ty P Ną0. We use (PRE) to obtain |tm(u) ´ tm(v)| as the
smallest possible value of the left-hand side. Now, the left and right sides are the
same except for ´a on the right. As a ą 1 (is positive), inequality (i) is valid.

Case (ii-a): ty(u) = ty(v) The left-hand side of (ii) becomes zero and it remains to
show that 0 ă |tm(u) ´ tm(v)|+ a, which is true because a ą 1.

Case (ii-b): ty(u) ‰ ty(v) Again, we transform the left-hand side of (ii) to |a ¨

ty(u) ´ a ¨ ty(v)|. This time, we are interested in the highest possible value with
respect to (PRE), which is |tm(u) + a ´ ϵ ´ tm(v)| with 0 ă ϵ ă a. This is because
the highest possible difference is between the upper bound tm + a ´ ϵ and the
lower bound tm. With the triangle inequality, we obtain |tm(u) + a ´ ϵ ´ tm(v)| ď

|tm(u) ´ tm(v)|+ |a ´ ϵ| ă |tm(u) ´ tm(v)|+ a, which is true because |a ´ ϵ| ă a.
This concludes the proof.

F.2 Details on Changes in the Class Sets

In this section, we provide details of the changes within the class set during the
evaluation period for our newly compiled datasets: PharmaBio, DBLP-easy, and
DBLP-hard. This is a major factor of the distribution shift since new classes appear
over time in the DBLP datasets.

F.2.1 PharmaBio

All seven journal categories are present during the evaluation time span 1999–2016.

200

F.2. Details on Changes in the Class Sets

F.2.2 DBLP-Easy

On DBLP-Easy has 12 venues in total within the evaluation timespan 2004–2015.
During that timespan, we have one bi-annual conference: “international conference
on document analysis and recognition” and four new venues

• Journal of Cognitive Neuroscience — starts in 2005

• IEEE Transactions on Audio, Speech, and Language Processing — starts in 2006

• Iet Communications — starts in 2007

• IEEE Wireless Communication Letters — starts in 2012

F.2.3 DBLP-Hard

DBLP-Hard has 73 venues in total over the evaluation timespan 2004–2015. In
the following we give the details, which venues were newly added during that
timespan, discontinued, were bi-annual, or were irregular.

New venues DBLP-hard has 23 new venues in total:

• PLOS Computational Biology — starts in 2005

• Journal of Cognitive Neuroscience — starts in 2005

• wireless and mobile computing, networking and communications — starts in
2005

• IEEE Transactions on Audio, Speech, and Language Processing — starts in 2006

• BMC Systems Biology — starts in 2007

• Iet Communications — starts in 2007

• Marketing Science — starts in 2008

• International Conference on Intelligent Robotics and Applications — started in
2008

• Biomedical Engineering and Informatics — starts in 2008, not held in 2010

• Workshop on Applications of Signal Processing to Audio and Acoustics — starts
in 2009 (and is biannual)

• Journal of Zhejiang University Science C — starts in 2010

201

F. Supplementary Material: Lifelong Learning on Graphs

• Broadband and Wireless Computing, Communication and Applications — starts
in 2010 (not present in 2015)

• International Conference on Multimedia Retrieval — starts in 2011

• Innovative Mobile and Internet Services in Ubiquitous Computing — starts in
2011

• Conference on Computer as a tool — starts in 2011 (and is biannual)

• International Conference on Signal and Image Processing Applications — starts
in 2011 (and is biannual)

• IEEE Wireless Communication Letters — starts in 2012

• IEEE Transactions on Human-Machine Systems — starts in 2013

• IEEE Journal of Biomedical and Health Informatics — starts in 2013

• IEEE Internet of Things Journal — starts in 2014

• Picture Coding Symposium — present in 2009, 2010, 2012, 2013, 2015

• International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics — present in 2011, 2012, 2014

• International Journal of Central Banking — present in 2011, 2014

Discontinued venues The venue “Computational Intelligence for Modelling, Con-
trol and Automation” was present in 2005, 2006, 2008, and was then discontinued.

Bi-annual venues Nine venues occur every second year.

• International Conference on Control, Automation, Robotics and Vision

• Affective Computing and Intelligent Interaction

• World of Wireless Mobile and Multimedia Networks

• World Haptics Conference

• International Conference on Document Analysis and Recognition

• Information Sciences, Signal Processing and their Applications

• Workshop on Applications of Signal Processing to Audio and Acoustics

• Conference on Computer as a Tool

• International Conference on Signal and Image Processing Applications

202

F.3. Extended Results for Unseen Class Detection

Irregular venues The following 6 venues had some irregularities:

• International Symposium on Biomedical Imaging — not present in 2005

• Sensor Mesh and ad hoc Communications and Networks — not present in 2006,
2014, 2015

• Robotics and Biomimetics — not present in 2008

• Picture Coding Symposium — present in 2009, 2010, 2012, 2013, 2015

• International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics — present in 2011, 2012, 2014

• International Journal of Central Banking — present in 2011, 2014

F.3 Extended Results for Unseen Class Detection

As in the main part of this thesis, the measures we report are MCC of the reject
decision and Macro-F1 with a virtual OOD class. To recall, the MCC score specifi-
cally reflects the capabilities to detect unseen classes and the Open Macro-F1 score
reflects the performance on all classes including a special class for instances from
unseen classes.

In Table F.1, we report the results for the development dataset DBLP-easy,
on which the hyperparameters were tuned for maximum accuracy, before the
hyperparameters have been transferred to the test dataset DBLP-hard.

In Table F.2 and Table F.3, we report the full results of our experiments on
unseen class detection on the DBLP-hard dataset.

When comparing DBLP-easy and DBLP-hard, we see that the absolute F1 score
and the MCC score attained on DBLP-easy are higher than the absolute scores on
DBLP-hard, which is expected since DBLP-hard has more classes and DBLP-easy is
the subset of data on which hyperparameters were tuned.

203

F. Supplementary Material: Lifelong Learning on Graphs

Table F.1. Results for unseen class detection on the development set DBLP-easy with
GraphSAGE as base model (average of 5 repetitions). α indicates that risk reduction is used
with the respective factor for the standard deviation, τ is the minimum threshold. Runs
named gDOC are trained with weighted cross entropy. DOC is our baseline.

MCC Open Macro-F1
cold warm cold warm

c Open Learning Method

1 DOC (τ = 0.50) .05 .07 .25 .25
DOC (τ = 0.50, α = 3.0) .05 .07 .25 .25
gDOC (τ = 0.50) .04 .08 .30 .33
gDOC (τ = 0.50, α = 3.0) .04 .05 .30 .32
gDOC (τ = 0.75) .04 .07 .30 .30

3 DOC (τ = 0.50) .05 .05 .28 .30
DOC (τ = 0.50, α = 3.0) .05 .05 .28 .30
gDOC (τ = 0.50) .05 .08 .34 .34
gDOC (τ = 0.50, α = 3.0) .06 .08 .34 .34
gDOC (τ = 0.75) .07 .09 .34 .34

6 DOC (τ = 0.50) .06 .06 .31 .32
DOC (τ = 0.50, α = 3.0) .06 .06 .31 .32
gDOC (τ = 0.50) .07 .07 .35 .35
gDOC (τ = 0.50, α = 3.0) .07 .07 .35 .35
gDOC (τ = 0.75) .09 .10 .35 .35

8 DOC (τ = 0.50) .07 .07 .32 .33
DOC (τ = 0.50, α = 3.0) .07 .07 .32 .33
gDOC (τ = 0.50) .06 .06 .35 .35
gDOC (τ = 0.50, α = 3.0) .06 .06 .35 .35
gDOC (τ = 0.75) .08 .10 .35 .35

204

F.3. Extended Results for Unseen Class Detection

Table F.2. Extended results for unseen class detection on DBLP-hard with GraphSAGE
as base model (average of 5 repetitions). α indicates that risk reduction is used with the
respective factor for the standard deviation, τ is the minimum threshold. The gDOC models
are trained with weighted binary-cross entropy. History sizes 1 and 3.

MCC Open Macro-F1
cold warm cold warm

c Open Learning Method

1 DOC (τ = 0.50) .01 .04 .01 .01
DOC (τ = 0.25) .01 .02 .04 .04
DOC (τ = 0.50, α = 3.0) .01 .02 .01 .01
DOC (τ = 0.50, α = 1.5) .01 .02 .01 .01
DOC (τ = 0.25, α = 1.5) .01 .04 .04 .04
gDOC (τ = 0.75) .04 .09 .13 .13
gDOC (τ = 0.50) .04 .05 .13 .13
gDOC (τ = 0.25) .01 - .13 .13
gDOC (τ = 0.50, α = 3.0) .04 .05 .13 .13
gDOC (τ = 0.50, α = 1.5) .05 .05 .13 .13
gDOC (τ = 0.25, α = 1.5) .05 .00 .13 .13
gDOC (τ = 0.75, α = 3.0) .04 .09 .13 .13
gDOC (τ = 0.75, α = 1.5) .04 .09 .13 .13

3 DOC (τ = 0.50) .02 .03 .02 .05
DOC (τ = 0.25) .02 .04 .06 .12
DOC (τ = 0.50, α = 3.0) .02 .03 .02 .05
DOC (τ = 0.50, α = 1.5) .02 .03 .02 .05
DOC (τ = 0.25, α = 1.5) .02 .04 .06 .12
gDOC (τ = 0.75) .05 .08 .15 .15
gDOC (τ = 0.50) .05 .06 .15 .15
gDOC (τ = 0.25) .01 .00 .15 .15
gDOC (τ = 0.50, α = 3.0) .05 .06 .15 .15
gDOC (τ = 0.50, α = 1.5) .06 .06 .15 .15
gDOC (τ = 0.25, α = 1.5) .06 .04 .15 .15
gDOC (τ = 0.75, α = 3.0) .05 .08 .15 .15
gDOC (τ = 0.75, α = 1.5) .05 .08 .15 .15

205

F. Supplementary Material: Lifelong Learning on Graphs

Table F.3. Extended results for unseen class detection on DBLP-hard with GraphSAGE
as base model (average of 5 repetitions). α indicates that risk reduction is used with the
respective factor for the standard deviation, τ is the minimum threshold. The gDOC models
are trained with weighted binary-cross entropy. History sizes 6 and 3.

MCC Open Macro-F1
cold warm cold warm

c Open Learning Method

6 DOC (τ = 0.50) .02 .03 .05 .08
DOC (τ = 0.25) .02 .05 .11 .14
DOC (τ = 0.50, α = 3.0) .02 .03 .05 .08
DOC (τ = 0.50, α = 1.5) .02 .03 .05 .08
DOC (τ = 0.25, α = 1.5) .02 .05 .11 .14
gDOC (τ = 0.75) .05 .07 .16 .16
gDOC (τ = 0.50) .05 .06 .16 .16
gDOC (τ = 0.25) .02 .02 .16 .15
gDOC (τ = 0.50, α = 3.0) .05 .06 .16 .16
gDOC (τ = 0.50, α = 1.5) .06 .06 .16 .16
gDOC (τ = 0.25, α = 1.5) .06 .07 .16 .16
gDOC (τ = 0.75, α = 3.0) .05 .07 .16 .16
gDOC (τ = 0.75, α = 1.5) .05 .07 .16 .16

8 DOC (τ = 0.50) .02 .04 .08 .12
DOC (τ = 0.25) .03 .06 .13 .16
DOC (τ = 0.50, α = 3.0) .02 .04 .08 .12
DOC (τ = 0.50, α = 1.5) .02 .04 .08 .12
DOC (τ = 0.25, α = 1.5) .04 .06 .13 .16
gDOC (τ = 0.75) .05 .07 .16 .16
gDOC (τ = 0.50) .04 .05 .16 .16
gDOC (τ = 0.25) .02 .01 .16 .16
gDOC (τ = 0.50, α = 3.0) .05 .05 .16 .16
gDOC (τ = 0.50, α = 1.5) .06 .06 .16 .16
gDOC (τ = 0.25, α = 1.5) .06 .06 .16 .16
gDOC (τ = 0.75, α = 3.0) .05 .07 .16 .16
gDOC (τ = 0.75, α = 1.5) .05 .07 .16 .16

206

Bibliography

[AAC+19] Yuri Sousa Aurelio, Gustavo Matheus de Almeida, Cristiano Leite
Castro, and Antônio de Pádua Braga. “Learning from imbalanced
data sets with weighted cross-entropy function”. In: Neural Process.
Lett. 50.2 (2019), pp. 1937–1949. doi: 10.1007/s11063-018-09977-1. url: https:
//doi.org/10.1007/s11063-018-09977-1.

[AKM+20] Zafar Ali, Pavlos Kefalas, Khan Muhammad, Bahadar Ali, and
Muhammad Imran. “Deep learning in citation recommendation
models survey”. In: Expert Syst. Appl. 162 (2020), p. 113790. doi:
10.1016/j.eswa.2020.113790.

[ALM17] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. “A simple but tough-
to-beat baseline for sentence embeddings”. In: 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. url:
https://openreview.net/forum?id=SyK00v5xx.

[AR17] Shima Asaadi and Sebastian Rudolph. “Gradual learning of matrix-
space models of language for sentiment analysis”. In: Rep4NLP@ACL.
Association for Computational Linguistics, 2017, pp. 178–185.

[AS14] Charu Aggarwal and Karthik Subbian. “Evolutionary network anal-
ysis: a survey”. In: ACM Comput. Surv. 47.1 (May 2014), 10:1–10:36.
issn: 0360-0300. doi: 10.1145/2601412.

[AUK+21] Zafar Ali, Irfan Ullah, Amin Khan, Asim Ullah Jan, and Khan Muham-
mad. “An overview and evaluation of citation recommendation mod-
els”. In: Scientometrics (Mar. 2021). issn: 1588-2861. doi: 10.1007/s11192-

021-03909-y.

[BAB+17] Julio Barbieri, Leandro G. M. Alvim, Filipe Braida, and Geraldo Zim-
brão. “Autoencoders and recommender systems: COFILS approach”.
In: Expert Syst. Appl. 89 (2017), pp. 81–90.

[BB16] Abhijit Bendale and Terrance E. Boult. “Towards open set deep net-
works”. In: CVPR. IEEE, 2016. doi: 10.1109/CVPR.2016.173.

207

https://doi.org/10.1007/s11063-018-09977-1
https://doi.org/10.1007/s11063-018-09977-1
https://doi.org/10.1007/s11063-018-09977-1
https://doi.org/10.1016/j.eswa.2020.113790
https://openreview.net/forum?id=SyK00v5xx
https://doi.org/10.1145/2601412
https://doi.org/10.1007/s11192-021-03909-y
https://doi.org/10.1007/s11192-021-03909-y
https://doi.org/10.1109/CVPR.2016.173

Bibliography

[BB19] Jinxin Bai and Zhijie Ban. “Collaborative multi-auxiliary information
variational autoencoder for recommender systems”. In: Proceedings
of the 2019 11th International Conference on Machine Learning and Com-
puting, ICMLC ’19, Zhuhai, China, February 22-24, 2019. ACM, 2019,
pp. 501–505. doi: 10.1145/3318299.3318336.

[BBC+21] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković.
Geometric deep learning: grids, groups, graphs, geodesics, and gauges. 2021.
arXiv: 2104.13478 [cs.LG].

[BCB15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural
machine translation by jointly learning to align and translate”. In:
3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015. url:
http://arxiv.org/abs/1409.0473.

[BCN06] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. “Model
compression”. In: Proceedings of the Twelfth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Philadel-
phia, PA, USA, August 20-23, 2006. ACM, 2006, pp. 535–541. doi:
10.1145/1150402.1150464.

[BCV13] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. “Representa-
tion learning: A review and new perspectives”. In: IEEE Trans. Pattern
Anal. Mach. Intell. 35.8 (2013), pp. 1798–1828. doi: 10.1109/TPAMI.2013.50.

[BGJ+17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov.
“Enriching word vectors with subword information”. In: Trans. Assoc.
Comput. Linguistics 5 (2017), pp. 135–146. url: https://transacl.org/ojs/
index.php/tacl/article/view/999.

[BGL+16] Jőran Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. “Re-
search-paper recommender systems: a literature survey”. In: Int. J.
Digit. Libr. 17.4 (2016), pp. 305–338. doi: 10.1007/s00799-015-0156-0.

[BGM+21] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and
Shmargaret Shmitchell. “On the dangers of stochastic parrots: can
language models be too big?” In: FAccT ’21: 2021 ACM Conference
on Fairness, Accountability, and Transparency, Virtual Event / Toronto,
Canada, March 3-10, 2021. ACM, 2021, pp. 610–623. doi: 10.1145/3442188.

3445922.

208

https://doi.org/10.1145/3318299.3318336
https://arxiv.org/abs/2104.13478
http://arxiv.org/abs/1409.0473
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1109/TPAMI.2013.50
https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999
https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922

Bibliography

[BHA+21] Rishi Bommasani et al. On the opportunities and risks of foundation
models. 2021. arXiv: 2108.07258 [cs.LG].

[BHB+18] Peter W. Battaglia et al. Relational inductive biases, deep learning, and
graph networks. 2018. arXiv: 1806.01261 [cs.LG].

[BJN+02] Albert-Laszlo Barabâsi, Hawoong Jeong, Zoltan Néda, Erzsebet Ra-
vasz, Andras Schubert, and Tamas Vicsek. “Evolution of the social
network of scientific collaborations”. In: Physica A: Statistical mechanics
and its applications 311.3-4 (2002), pp. 590–614.

[BKB+20] Djalila Boughareb, Abdennour Khobizi, Rima Boughareb, Nadir
Farah, and Hamid Seridi. “A graph-based tag recommendation for
just abstracted scientific articles tagging”. In: Int. J. Cooperative Inf.
Syst. 29.3 (2020), 2050004:1–2050004:30. doi: 10.1142/S0218843020500045.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
normalization. 2016. arXiv: 1607.06450 [stat.ML].

[BKP+20] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol
Kapoor, Martin Blais, Benedek Rózemberczki, Michal Lukasik, and
Stephan Günnemann. “Scaling graph neural networks with approxi-
mate pagerank”. In: KDD ’20: The 26th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August
23-27, 2020. ACM, 2020, pp. 2464–2473. doi: 10.1145/3394486.3403296.

[BKR21] Markus Bayer, Marc-André Kaufhold, and Christian Reuter. A survey
on data augmentation for text classification. 2021. arXiv: 2107.03158 [cs.CL].

[BMR+20] Tom B. Brown et al. “Language models are few-shot learners”. In:
Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual. 2020.

[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent dirichlet
allocation”. In: J. Mach. Learn. Res. 3 (2003), pp. 993–1022. url: http:
//jmlr.org/papers/v3/blei03a.html.

[Bor17] Gábor Borbély. “Language modeling with matrix embeddings”. In:
K + K = 120 (2017). Papers dedicated to László Kálmán and András
Kornai on the occasion of their 60th birthdays.

209

https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/1806.01261
https://doi.org/10.1142/S0218843020500045
https://arxiv.org/abs/1607.06450
https://doi.org/10.1145/3394486.3403296
https://arxiv.org/abs/2107.03158
http://jmlr.org/papers/v3/blei03a.html
http://jmlr.org/papers/v3/blei03a.html

Bibliography

[Bot19] Léon Bottou. Learning representations using causal invariance. Invited
Talk at the International Conference for Learning Representations
(ICLR 2019). 2019. url: https://youtube.videoken.com/embed/8UxS4ls6g1g?

tocitem=2.

[BP98] Sergey Brin and Lawrence Page. “The anatomy of a large-scale hy-
pertextual web search engine”. In: Comput. Networks 30.1-7 (1998),
pp. 107–117. doi: 10.1016/S0169-7552(98)00110-X. url: https://doi.org/10.1016/

S0169-7552(98)00110-X.

[CDA+17] Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and
Lucia Specia. “Semeval-2017 task 1: semantic textual similarity mul-
tilingual and crosslingual focused evaluation”. In: Proceedings of the
11th International Workshop on Semantic Evaluation, SemEval@ACL 2017,
Vancouver, Canada, August 3-4, 2017. Association for Computational
Linguistics, 2017, pp. 1–14. doi: 10.18653/v1/S17-2001.

[Che21] Peng Chen. “Permuteformer: efficient relative position encoding for
long sequences”. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November, 2021. Association
for Computational Linguistics, 2021, pp. 10606–10618. url: https:

//aclanthology.org/2021.emnlp-main.828.

[CJ20] Davide Chicco and Giuseppe Jurman. “The advantages of the Mat-
thews correlation coefficient (MCC) over F1 score and accuracy in
binary classification evaluation”. In: BMC genomics 21.1 (2020), pp. 1–
13.

[CK18] Alexis Conneau and Douwe Kiela. “SentEval: An evaluation toolkit
for universal sentence representations”. In: Proceedings of the Eleventh
International Conference on Language Resources and Evaluation, LREC
2018, Miyazaki, Japan, May 7-12, 2018. European Language Resources
Association (ELRA), 2018. url: http://www.lrec-conf.org/proceedings/

lrec2018/summaries/757.html.

[CKL+18] Alexis Conneau, Germán Kruszewski, Guillaume Lample, Loic Bar-
rault, and Marco Baroni. “What you can cram into a single vec-
tor: probing sentence embeddings for linguistic properties”. In: Pro-
ceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018,

210

https://youtube.videoken.com/embed/8UxS4ls6g1g?tocitem=2
https://youtube.videoken.com/embed/8UxS4ls6g1g?tocitem=2
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.18653/v1/S17-2001
https://aclanthology.org/2021.emnlp-main.828
https://aclanthology.org/2021.emnlp-main.828
http://www.lrec-conf.org/proceedings/lrec2018/summaries/757.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/757.html

Bibliography

Volume 1: Long Papers. Association for Computational Linguistics,
2018, pp. 2126–2136. doi: 10.18653/v1/P18-1198.

[CKS+17] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and
Antoine Bordes. “Supervised learning of universal sentence represen-
tations from natural language inference data”. In: Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017. Association
for Computational Linguistics, 2017, pp. 670–680. doi: 10.18653/v1/d17-

1070.

[CL18] Zhiyuan Chen and Bing Liu. Lifelong machine learning, second edition.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2018.

[CLS+19] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and
Cho-Jui Hsieh. “Cluster-GCN: An efficient algorithm for training
deep and large graph convolutional networks”. In: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. ACM,
2019, pp. 257–266. doi: 10.1145/3292500.3330925.

[ÇM17] Erion Çano and Maurizio Morisio. “Hybrid recommender systems:
A systematic literature review”. In: Intell. Data Anal. 21.6 (2017),
pp. 1487–1524. doi: 10.3233/IDA-163209.

[CMB+14] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and
Yoshua Bengio. “On the properties of neural machine translation:
encoder-decoder approaches”. In: Proceedings of SSST@EMNLP 2014,
Eighth Workshop on Syntax, Semantics and Structure in Statistical Trans-
lation, Doha, Qatar, 25 October 2014. Association for Computational
Linguistics, 2014, pp. 103–111. doi: 10.3115/v1/W14- 4012. url: https://

aclanthology.org/W14-4012/.

[CR18] Yifan Chen and Maarten de Rijke. “A collective variational autoen-
coder for top-n recommendation with side information”. In: Proceed-
ings of the 3rd Workshop on Deep Learning for Recommender Systems,
DLRS@RecSys 2018, Vancouver, BC, Canada, October 6, 2018. ACM,
2018, pp. 3–9. doi: 10.1145/3270323.3270326.

[Cra09] Nick Craswell. “Mean reciprocal rank”. In: Encyclopedia of Database
Systems. Springer, 2009, pp. 1703–1703. isbn: 978-0-387-39940-9.

211

https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/d17-1070
https://doi.org/10.18653/v1/d17-1070
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.3233/IDA-163209
https://doi.org/10.3115/v1/W14-4012
https://aclanthology.org/W14-4012/
https://aclanthology.org/W14-4012/
https://doi.org/10.1145/3270323.3270326

Bibliography

[CSM+13] Cornelia Caragea, Adrian Silvescu, Prasenjit Mitra, and C. Lee Giles.
“Can’t see the forest for the trees?: a citation recommendation system”.
In: 13th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’13,
Indianapolis, IN, USA, July 22 - 26, 2013. ACM, 2013, pp. 111–114. doi:
10.1145/2467696.2467743.

[CT+91] Thomas M Cover, Joy A Thomas, et al. “Entropy, relative entropy
and mutual information”. In: Elements of information theory 2.1 (1991),
pp. 12–13.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory.
Wiley, 2006. isbn: 0471241954.

[CW08] Ronan Collobert and Jason Weston. “A unified architecture for natu-
ral language processing: deep neural networks with multitask learn-
ing”. In: Machine Learning, Proceedings of the Twenty-Fifth International
Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008. Vol. 307. ACM
International Conference Proceeding Series. ACM, 2008, pp. 160–167.
doi: 10.1145/1390156.1390177.

[CWB18] Woojin Chung, Sheng-Fu Wang, and Samuel R. Bowman. “The lifted
matrix-space model for semantic composition”. In: Proceedings of the
22nd Conference on Computational Natural Language Learning, CoNLL
2018, Brussels, Belgium, October 31 - November 1, 2018. Association for
Computational Linguistics, 2018, pp. 508–518. doi: 10.18653/v1/k18-1049.

[CWG+22] Jie Cai, Xin Wang, Chaoyu Guan, Yateng Tang, Jin Xu, Bin Zhong,
and Wenwu Zhu. “Multimodal continual graph learning with neural
architecture search”. In: WWW ’22: The ACM Web Conference 2022,
Virtual Event, Lyon, France, April 25 - 29, 2022. ACM, 2022, pp. 1292–
1300. doi: 10.1145/3485447.3512176. url: https://doi.org/10.1145/3485447.

3512176.

[Cyb89] George Cybenko. “Approximation by superpositions of a sigmoidal
function”. In: Math. Control. Signals Syst. 2.4 (1989), pp. 303–314. doi:
10.1007/BF02551274.

[CYL+20] Haihua Chen, Yunhan Yang, Wei Lu, and Jiangping Chen. “Explor-
ing multiple diversification strategies for academic citation contexts
recommendation”. In: Electron. Libr. 38.4 (2020), pp. 821–842. doi:
10.1108/EL-02-2020-0046.

212

https://doi.org/10.1145/2467696.2467743
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.18653/v1/k18-1049
https://doi.org/10.1145/3485447.3512176
https://doi.org/10.1145/3485447.3512176
https://doi.org/10.1145/3485447.3512176
https://doi.org/10.1007/BF02551274
https://doi.org/10.1108/EL-02-2020-0046

Bibliography

[CYL17] Sanxing Cao, Nan Yang, and Zhengzheng Liu. “Online news recom-
mender based on stacked auto-encoder”. In: 16th IEEE/ACIS Interna-
tional Conference on Computer and Information Science, ICIS 2017, Wuhan,
China, May 24-26, 2017. IEEE Computer Society, 2017, pp. 721–726.
doi: 10.1109/ICIS.2017.7960088.

[CZS18] Jianfei Chen, Jun Zhu, and Le Song. “Stochastic training of graph
convolutional networks with variance reduction”. In: Proceedings
of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Vol. 80. Pro-
ceedings of Machine Learning Research. PMLR, 2018, pp. 941–949.
url: http://proceedings.mlr.press/v80/chen18p.html.

[DAB+21] Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish Vaswani, and
Yi Tay. The efficiency misnomer. 2021. arXiv: 2110.12894 [cs.LG].

[DB21] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of trans-
former networks to graphs. 2021. arXiv: 2012.09699 [cs.LG].

[DBK+21] Alexey Dosovitskiy et al. “An image is worth 16x16 words: transform-
ers for image recognition at scale”. In: 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. url: https://openreview.net/forum?id=

YicbFdNTTy.

[DCJ19] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach.
“Are we really making much progress? A worrying analysis of recent
neural recommendation approaches”. In: Proceedings of the 13th ACM
Conference on Recommender Systems, RecSys 2019, Copenhagen, Denmark,
September 16-20, 2019. ACM, 2019, pp. 101–109. doi: 10.1145/3298689.3347058.

[DCL+19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: pre-training of deep bidirectional transformers for language
understanding”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers). Association for Com-
putational Linguistics, 2019, pp. 4171–4186. doi: 10.18653/v1/n19-1423.

[DGB18] Akshay Raj Dhamija, Manuel Günther, and Terrance E. Boult. “Re-
ducing network agnostophobia”. In: Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Process-

213

https://doi.org/10.1109/ICIS.2017.7960088
http://proceedings.mlr.press/v80/chen18p.html
https://arxiv.org/abs/2110.12894
https://arxiv.org/abs/2012.09699
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.18653/v1/n19-1423

Bibliography

ing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada.
2018, pp. 9175–9186. url: https://proceedings.neurips.cc/paper/2018/hash/
48db71587df6c7c442e5b76cc723169a-Abstract.html.

[DJL+20] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua
Bengio, and Xavier Bresson. Benchmarking graph neural networks. 2020.
arXiv: 2003.00982 [cs.LG].

[DQB04] Bill Dolan, Chris Quirk, and Chris Brockett. “Unsupervised construc-
tion of large paraphrase corpora: exploiting massively parallel news
sources”. In: COLING 2004, 20th International Conference on Compu-
tational Linguistics, Proceedings of the Conference, 23-27 August 2004,
Geneva, Switzerland. 2004. url: https://aclanthology.org/C04-1051/.

[DS12] Klaas Dellschaft and Steffen Staab. “Measuring the influence of tag
recommenders on the indexing quality in tagging systems”. In: 23rd
ACM Conference on Hypertext and Social Media, HT ’12, Milwaukee, WI,
USA, June 25-28, 2012. ACM, 2012, pp. 73–82. doi: 10.1145/2309996.2310009.

[DWL+20] Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li, and Huan Liu.
“Be more with less: Hypergraph attention networks for inductive
text classification”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020. Association for Computational Linguistics, 2020,
pp. 4927–4936. doi: 10.18653/v1/2020.emnlp-main.399.

[DZS+16] Stephan Doerfel, Daniel Zoller, Philipp Singer, Thomas Niebler, An-
dreas Hotho, and Markus Strohmaier. “What users actually do in a
social tagging system: a study of user behavior in bibsonomy”. In:
ACM Trans. Web 10.2 (May 2016). issn: 1559-1131. doi: 10.1145/2896821.

[EF17] Travis Ebesu and Yi Fang. “Neural citation network for context-aware
citation recommendation”. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, Shinjuku, Tokyo, Japan, August 7-11, 2017. ACM, 2017, pp. 1093–
1096. doi: 10.1145/3077136.3080730.

[Elm91] Jeffrey L. Elman. “Distributed representations, simple recurrent net-
works, and grammatical structure”. In: Mach. Learn. 7 (1991), pp. 195–
225. doi: 10.1007/BF00114844.

214

https://proceedings.neurips.cc/paper/2018/hash/48db71587df6c7c442e5b76cc723169a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/48db71587df6c7c442e5b76cc723169a-Abstract.html
https://arxiv.org/abs/2003.00982
https://aclanthology.org/C04-1051/
https://doi.org/10.1145/2309996.2310009
https://doi.org/10.18653/v1/2020.emnlp-main.399
https://doi.org/10.1145/2896821
https://doi.org/10.1145/3077136.3080730
https://doi.org/10.1007/BF00114844

Bibliography

[FCA21] Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. A
practical survey on faster and lighter transformers. 2021. arXiv: 2103.14636

[cs.LG].

[FJ20] Michael Färber and Adam Jatowt. “Citation recommendation: ap-
proaches and datasets”. In: Int. J. Digit. Libr. 21.4 (2020), pp. 375–405.
doi: 10.1007/s00799-020-00288-2.

[FJN+13] Alexander Felfernig, Michael Jeran, Gerald Ninaus, Florian Reinfrank,
and Stefan Reiterer. “Toward the next generation of recommender
systems: applications and research challenges”. In: Multimedia Services
in Intelligent Environments: Advances in Recommender Systems. Springer,
2013, pp. 81–98. isbn: 978-3-319-00372-6. doi: 10.1007/978-3-319-00372-6_5.

[FL19] Matthias Fey and Jan E. Lenssen. “Fast graph representation learn-
ing with PyTorch Geometric”. In: ICLR Workshop on Representation
Learning on Graphs and Manifolds. 2019.

[FLW+21] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Jure Leskovec.
“GNNAutoScale: scalable and expressive graph neural networks
via historical embeddings”. In: Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event. Vol. 139. Proceedings of Machine Learning Research. PMLR,
2021, pp. 3294–3304. url: http://proceedings.mlr.press/v139/fey21a.html.

[FRE+20] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain,
Michael Bronstein, and Federico Monti. “SIGN: Scalable inception
graph neural networks”. In: (2020). arXiv: 2004.11198 [cs.LG].

[FWL16] Geli Fei, Shuai Wang, and Bing Liu. “Learning cumulatively to be-
come more knowledgeable”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016. ACM, 2016, pp. 1565–1574.
doi: 10.1145/2939672.2939835.

[FXM+22] Falih Gozi Febrinanto, Feng Xia, Kristen Moore, Chandra Thapa,
and Charu Aggarwal. Graph Lifelong Learning: A Survey. 2022. arXiv:
2202.10688 [cs].

[FZM+20] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. “MAGNN:
metapath aggregated graph neural network for heterogeneous graph
embedding”. In: WWW ’20: The Web Conference 2020, Taipei, Taiwan,
April 20-24, 2020. ACM, 2020, pp. 2331–2341. doi: 10.1145/3366423.3380297.

215

https://arxiv.org/abs/2103.14636
https://arxiv.org/abs/2103.14636
https://doi.org/10.1007/s00799-020-00288-2
https://doi.org/10.1007/978-3-319-00372-6_5
http://proceedings.mlr.press/v139/fey21a.html
https://arxiv.org/abs/2004.11198
https://doi.org/10.1145/2939672.2939835
https://arxiv.org/abs/2202.10688
https://doi.org/10.1145/3366423.3380297

Bibliography

[FZS21] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers:
scaling to trillion parameter models with simple and efficient sparsity. 2021.
arXiv: 2101.03961 [cs.LG].

[GAG+15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. “Deep learning with limited numerical precision”. In:
Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015. Vol. 37. JMLR Workshop
and Conference Proceedings. JMLR.org, 2015, pp. 1737–1746. url:
http://proceedings.mlr.press/v37/gupta15.html.

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of
training deep feedforward neural networks”. In: Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010.
Vol. 9. JMLR Proceedings. JMLR.org, 2010, pp. 249–256. url: http:

//proceedings.mlr.press/v9/glorot10a.html.

[GBC16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep
learning. Adaptive computation and machine learning. MIT Press,
2016. isbn: 978-0-262-03561-3. url: http://www.deeplearningbook.org/.

[GCC20] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. “Dyn-
graph2vec: capturing network dynamics using dynamic graph repre-
sentation learning”. In: Knowl.-Based Syst. 187 (2020).

[GCM+22] Lukas Galke, Isabelle Cuber, Christoph Meyer, Henrik Ferdinand
Nölscher, Angelina Sonderecker, and Ansgar Scherp. “General cross-
architecture distillation of pretrained language models into matrix
embeddings”. In: International Joint Conference on Neural Networks,
IJCNN 2022, Padua, Italy, July 18-23, 2022. IEEE, 2022, pp. 1–10. doi:
10.1109/IJCNN55064.2022.9892144. url: https://doi.org/10.1109/IJCNN55064.2022.

9892144.

[GFZ+21] Lukas Galke, Benedikt Franke, Tobias Zielke, and Ansgar Scherp.
“Lifelong learning of graph neural networks for open-world node
classification”. In: International Joint Conference on Neural Networks,
IJCNN 2021, Shenzhen, China, July 18-22, 2021. IEEE, 2021, pp. 1–8.
doi: 10.1109/IJCNN52387.2021.9533412.

216

https://arxiv.org/abs/2101.03961
http://proceedings.mlr.press/v37/gupta15.html
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://www.deeplearningbook.org/
https://doi.org/10.1109/IJCNN55064.2022.9892144
https://doi.org/10.1109/IJCNN55064.2022.9892144
https://doi.org/10.1109/IJCNN55064.2022.9892144
https://doi.org/10.1109/IJCNN52387.2021.9533412

Bibliography

[GG21] Santiago González-Carvajal and Eduardo C. Garrido-Merchán. Com-
paring bert against traditional machine learning text classification. 2021.
arXiv: 2005.13012 [cs.CL].

[GJM+20] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard S.
Zemel, Wieland Brendel, Matthias Bethge, and Felix A. Wichmann.
“Shortcut learning in deep neural networks”. In: Nat Mach Intell 2
(2020), pp. 665–683. doi: 10.1038/s42256-020-00257-z.

[GKH+18] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. DynGEM: deep
embedding method for dynamic graphs. 2018. arXiv: 1805.11273 [cs.SI].

[GL16] Aditya Grover and Jure Leskovec. “Node2vec: scalable feature learn-
ing for networks”. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Fran-
cisco, CA, USA, August 13-17, 2016. ACM, 2016, pp. 855–864. doi:
10.1145/2939672.2939754.

[GML15] Bela Gipp, Norman Meuschke, and Mario Lipinski. “CITREC: An
Evaluation Framework for Citation-Based Similarity Measures based
on TREC Genomics and PubMed Central”. In: iConference. Mar. 2015.

[GMS+17] Lukas Galke, Florian Mai, Alan Schelten, Dennis Brunsch, and Ans-
gar Scherp. “Using titles vs. full-text as source for automated seman-
tic document annotation”. In: Proceedings of the Knowledge Capture
Conference, K-CAP 2017, Austin, TX, USA, December 4-6, 2017. ACM,
2017, 20:1–20:4. doi: 10.1145/3148011.3148039.

[GMS19] Lukas Galke, Florian Mai, and Ansgar Scherp. “What if we encoded
words as matrices and used matrix multiplication as composition
function?” In: 49. Jahrestagung der Gesellschaft für Informatik, 50 Jahre
Gesellschaft für Informatik - Informatik für Gesellschaft, INFORMATIK
2019, Kassel, Germany, September 23-26, 2019. Vol. P-294. LNI. GI, 2019,
pp. 287–288. doi: 10.18420/inf2019_47.

[GMV+18] Lukas Galke, Florian Mai, Iacopo Vagliano, and Ansgar Scherp.
“Multi-modal adversarial autoencoders for recommendations of cita-
tions and subject labels”. In: Proceedings of the 26th Conference on User
Modeling, Adaptation and Personalization, UMAP 2018, Singapore, July
08-11, 2018. ACM, 2018, pp. 197–205. doi: 10.1145/3209219.3209236.

217

https://arxiv.org/abs/2005.13012
https://doi.org/10.1038/s42256-020-00257-z
https://arxiv.org/abs/1805.11273
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/3148011.3148039
https://doi.org/10.18420/inf2019_47
https://doi.org/10.1145/3209219.3209236

Bibliography

[GNS15] Gregor Große-Bölting, Chifumi Nishioka, and Ansgar Scherp. “A
comparison of different strategies for automated semantic document
annotation”. In: Proceedings of the 8th International Conference on Knowl-
edge Capture, K-CAP 2015, Palisades, NY, USA, October 7-10, 2015. ACM,
2015, 8:1–8:8. doi: 10.1145/2815833.2815838.

[Gol17] Yoav Goldberg. Neural network methods for natural language processing.
Synthesis Lectures on Human Language Technologies. Morgan &
Claypool Publishers, 2017. doi: 10.2200/S00762ED1V01Y201703HLT037.

[Got16] Gregory Goth. “Deep or shallow, NLP is breaking out”. In: Commun.
ACM 59.3 (2016), pp. 13–16. doi: 10.1145/2874915.

[GPH+17] Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xiaodong He,
and Lawrence Carin. “Learning generic sentence representations
using convolutional neural networks”. In: Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017. Association for Com-
putational Linguistics, 2017, pp. 2390–2400. doi: 10.18653/v1/d17-1254.

[GPM+14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Ben-
gio. “Generative adversarial nets”. In: Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada.
2014, pp. 2672–2680. url: https://proceedings.neurips.cc/paper/2014/hash/
5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html.

[GS11] Edward Grefenstette and Mehrnoosh Sadrzadeh. “Experimental sup-
port for a categorical compositional distributional model of mean-
ing”. In: Proceedings of the 2011 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2011, 27-31 July 2011, John McIn-
tyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL. ACL, 2011, pp. 1394–1404. url: https:

//aclanthology.org/D11-1129/.

[GS22] Lukas Galke and Ansgar Scherp. “Bag-of-words vs. graph vs. se-
quence in text classification: Questioning the necessity of text-graphs
and the surprising strength of a wide MLP”. In: Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Dublin, Ireland: Association for Computational Lin-

218

https://doi.org/10.1145/2815833.2815838
https://doi.org/10.2200/S00762ED1V01Y201703HLT037
https://doi.org/10.1145/2874915
https://doi.org/10.18653/v1/d17-1254
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://aclanthology.org/D11-1129/
https://aclanthology.org/D11-1129/

Bibliography

guistics, May 2022, pp. 4038–4051. doi: 10.18653/v1/2022.acl-long.279. url:
https://aclanthology.org/2022.acl-long.279.

[GSS17] Lukas Galke, Ahmed Saleh, and Ansgar Scherp. “Word embeddings
for practical information retrieval”. In: 47. Jahrestagung der Gesellschaft
für Informatik, Digitale Kulturen, INFORMATIK 2017, Chemnitz, Ger-
many, September 25-29, 2017. Vol. P-275. LNI. GI, 2017, pp. 2155–2167.
doi: 10.18420/in2017_215. url: https://doi.org/10.18420/in2017_215.

[GVF+21] Lukas Galke, Iacopo Vagliano, Benedikt Franke, Tobias Zielke, and
Ansgar Scherp. Lifelong learning in evolving graphs with limited labeled
data and unseen class detection. Under review. 2021. arXiv: 2112.10558

[cs.LG].

[GVS19] Lukas Galke, Iacopo Vagliano, and Ansgar Scherp. “Can graph neural
networks go “online”? An analysis of pretraining and inference”. In:
Representation Learning on Graphs and Manifolds, ICLR Workshop. 2019.
url: https://rlgm.github.io/papers/21.pdf.

[Ham20] William L. Hamilton. Graph representation learning. Vol. 14. Synthesis
Lectures on Artificial Intelligence and Machine Learning 3. Morgan
& Claypool Publishers, 2020, pp. 1–159. url: https://www.cs.mcgill.ca/
~wlh/grl_book/.

[Har54] Zellig S Harris. “Distributional structure”. In: Word 10.2-3 (1954),
pp. 146–162.

[HCK16] Felix Hill, Kyunghyun Cho, and Anna Korhonen. “Learning dis-
tributed representations of sentences from unlabelled data”. In:
NAACL HLT 2016, The 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technolo-
gies, San Diego California, USA, June 12-17, 2016. The Association for
Computational Linguistics, 2016, pp. 1367–1377. doi: 10.18653/v1/n16-1162.

[HFC+19] Ziniu Hu, Changjun Fan, Ting Chen, Kai-Wei Chang, and Yizhou
Sun. “Unsupervised pre-training of graph convolutional networks”.
In: Representation Learning on Graphs and Manifolds workshop at ICLR.
2019. url: https://rlgm.github.io/papers/73.pdf.

[HFZ+20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu
Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. “Open graph
benchmark: datasets for machine learning on graphs”. In: Advances in
Neural Information Processing Systems 33: Annual Conference on Neural

219

https://doi.org/10.18653/v1/2022.acl-long.279
https://aclanthology.org/2022.acl-long.279
https://doi.org/10.18420/in2017_215
https://doi.org/10.18420/in2017_215
https://arxiv.org/abs/2112.10558
https://arxiv.org/abs/2112.10558
https://rlgm.github.io/papers/21.pdf
https://www.cs.mcgill.ca/~wlh/grl_book/
https://www.cs.mcgill.ca/~wlh/grl_book/
https://doi.org/10.18653/v1/n16-1162
https://rlgm.github.io/papers/73.pdf

Bibliography

Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual. 2020. url: https://proceedings.neurips.cc/paper/2020/hash/

fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

[HHY+19] Lu Haonan, Seth H. Huang, Tian Ye, and Guo Xiuyan. Graph star net
for generalized multi-task learning. 2019. arXiv: 1906.12330 [cs.SI].

[HKC+12] Wenyi Huang, Saurabh Kataria, Cornelia Caragea, Prasenjit Mitra,
C. Lee Giles, and Lior Rokach. “Recommending citations: translating
papers into references”. In: 21st ACM International Conference on Infor-
mation and Knowledge Management, CIKM’12, Maui, HI, USA, October
29 - November 02, 2012. ACM, 2012, pp. 1910–1914. doi: 10.1145/2396761.

2398542.

[HKF+13] Lushan Han, Abhay L. Kashyap, Tim Finin, James Mayfield, and
Jonathan Weese. “Umbc ebiquity-core: semantic textual similarity
systems”. In: Proceedings of the Second Joint Conference on Lexical and
Computational Semantics, *SEM 2013, June 13-14, 2013, Atlanta, Georgia,
USA. Association for Computational Linguistics, 2013, pp. 44–52. url:
https://aclanthology.org/S13-1005/.

[HL04] Minqing Hu and Bing Liu. “Mining and summarizing customer re-
views”. In: Proceedings of the Tenth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Seattle, Washington, USA,
August 22-25, 2004. ACM, 2004, pp. 168–177. doi: 10.1145/1014052.1014073.

[HLG+20] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang,
Vijay S. Pande, and Jure Leskovec. “Strategies for pre-training graph
neural networks”. In: 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. url: https://openreview.net/forum?id=HJlWWJSFDH.

[HMD19] Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich. “Deep
anomaly detection with outlier exposure”. In: 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. url: https://openreview.net/forum?
id=HyxCxhRcY7.

[HMZ19] Ming He, Qian Meng, and Shaozong Zhang. “Collaborative addi-
tional variational autoencoder for top-n recommender systems”. In:
IEEE Access 7 (2019), pp. 5707–5713. doi: 10.1109/ACCESS.2018.2890293.

220

https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://arxiv.org/abs/1906.12330
https://doi.org/10.1145/2396761.2398542
https://doi.org/10.1145/2396761.2398542
https://aclanthology.org/S13-1005/
https://doi.org/10.1145/1014052.1014073
https://openreview.net/forum?id=HJlWWJSFDH
https://openreview.net/forum?id=HyxCxhRcY7
https://openreview.net/forum?id=HyxCxhRcY7
https://doi.org/10.1109/ACCESS.2018.2890293

Bibliography

[HPW05] Mark Herbster, Massimiliano Pontil, and Lisa Wainer. “Online learn-
ing over graphs”. In: ICML. Vol. 119. ACM, 2005.

[HR18] Jeremy Howard and Sebastian Ruder. “Universal language model
fine-tuning for text classification”. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 1: Long Papers. Association
for Computational Linguistics, 2018, pp. 328–339. doi: 10.18653/v1/P18-

1031.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-
ory”. In: Neural Comput. 9.8 (1997), pp. 1735–1780. doi: 10.1162/neco.1997.

9.8.1735.

[HVD15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. 2015. arXiv: 1503.02531 [stat.ML].

[HWL+15] Wenyi Huang, Zhaohui Wu, Chen Liang, Prasenjit Mitra, and C. Lee
Giles. “A neural probabilistic model for context based citation rec-
ommendation”. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. AAAI
Press, 2015, pp. 2404–2410. url: http://www.aaai.org/ocs/index.php/AAAI/
AAAI15/paper/view/9737.

[HYL17] William L. Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive
representation learning on large graphs”. In: Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA.
2017, pp. 1024–1034. url: https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

[HZR+15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delv-
ing deep into rectifiers: surpassing human-level performance on
imagenet classification”. In: 2015 IEEE International Conference on Com-
puter Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015. IEEE
Computer Society, 2015, pp. 1026–1034. doi: 10.1109/ICCV.2015.123.

[HZR+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
residual learning for image recognition”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016. IEEE Computer Society, 2016, pp. 770–778.
doi: 10.1109/CVPR.2016.90. url: https://doi.org/10.1109/CVPR.2016.90.

221

https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1503.02531
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9737
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9737
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

Bibliography

[HZR+18] Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. “Adap-
tive sampling towards fast graph representation learning”. In: Ad-
vances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada. 2018, pp. 4563–4572. url: https://proceedings.

neurips.cc/paper/2018/hash/01eee509ee2f68dc6014898c309e86bf-Abstract.html.

[IMB+15] Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-Graber, and Hal
Daumé III. “Deep unordered composition rivals syntactic methods
for text classification”. In: Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China,
Volume 1: Long Papers. The Association for Computer Linguistics,
2015, pp. 1681–1691. doi: 10.3115/v1/p15-1162.

[ISO96] ISO 999. Information and documentation — guidelines for the content,
organization and presentation of indexes. 1996.

[JGB+17] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov.
“Bag of tricks for efficient text classification”. In: EACL (2). ACL, 2017,
pp. 427–431. url: https://www.aclweb.org/anthology/E17-2068/.

[JYS+20] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin
Li, Fang Wang, and Qun Liu. “Tinybert: distilling BERT for natural
language understanding”. In: EMNLP (Findings). Vol. EMNLP 2020.
Findings of ACL. Association for Computational Linguistics, 2020,
pp. 4163–4174. doi: 10.18653/v1/2020.findings-emnlp.372.

[Kad19] Ammar Ismael Kadhim. “Survey on supervised machine learning
techniques for automatic text classification”. In: Artif. Intell. Rev. 52.1
(2019), pp. 273–292.

[Kat87] Slava M. Katz. “Estimation of probabilities from sparse data for
the language model component of a speech recognizer”. In: IEEE
Trans. Acoust. Speech Signal Process. 35.3 (1987), pp. 400–401. doi:
10.1109/TASSP.1987.1165125. url: https://doi.org/10.1109/TASSP.1987.1165125.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. 2015. url: http://arxiv.org/abs/1412.6980.

222

https://proceedings.neurips.cc/paper/2018/hash/01eee509ee2f68dc6014898c309e86bf-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/01eee509ee2f68dc6014898c309e86bf-Abstract.html
https://doi.org/10.3115/v1/p15-1162
https://www.aclweb.org/anthology/E17-2068/
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.1109/TASSP.1987.1165125
https://doi.org/10.1109/TASSP.1987.1165125
http://arxiv.org/abs/1412.6980

Bibliography

[KBG19] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann.
“Predict then propagate: graph neural networks meet personalized
pagerank”. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. url: https://openreview.net/forum?id=H1gL-2A9Ym.

[KBH+21] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent
Létourneau, and Prudencio Tossou. Rethinking graph transformers with
spectral attention. 2021. arXiv: 2106.03893 [cs.LG].

[KFN09] Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. “Latent Dirichlet
allocation for tag recommendation”. In: Proceedings of the 2009 ACM
Conference on Recommender Systems, RecSys 2009, New York, NY, USA,
October 23-25, 2009. ACM, 2009, pp. 61–68. doi: 10.1145/1639714.1639726.

[KGB14] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A con-
volutional neural network for modelling sentences”. In: Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics,
ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers.
The Association for Computer Linguistics, 2014, pp. 655–665. doi:
10.3115/v1/p14-1062.

[KMH+19] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, San-
jana Mendu, Laura E. Barnes, and Donald E. Brown. “Text classifica-
tion algorithms: A survey”. In: Inf. 10.4 (2019), p. 150.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in Neural Information Processing Systems 25: 26th Annual Conference
on Neural Information Processing Systems 2012. Proceedings of a meet-
ing held December 3-6, 2012, Lake Tahoe, Nevada, United States. 2012,
pp. 1106–1114. url: https : / / proceedings . neurips . cc / paper / 2012 / hash /

c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[KSH17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Commun.
ACM 60.6 (2017), pp. 84–90. doi: 10.1145/3065386.

[KUM+17] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp
Hochreiter. “Self-normalizing neural networks”. In: Advances in Neu-
ral Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach,

223

https://openreview.net/forum?id=H1gL-2A9Ym
https://arxiv.org/abs/2106.03893
https://doi.org/10.1145/1639714.1639726
https://doi.org/10.3115/v1/p14-1062
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1145/3065386

Bibliography

CA, USA. 2017, pp. 971–980. url: https://proceedings.neurips.cc/paper/

2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html.

[KW14] Diederik P. Kingma and Max Welling. “Auto-encoding variational
bayes”. In: 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Pro-
ceedings. 2014. url: http://arxiv.org/abs/1312.6114.

[KW16] Thomas N. Kipf and Max Welling. “Variational graph auto-encoders”.
In: Bayesian Deep Learning NIPS 2016 Workshop. 2016.

[KW17] Thomas N. Kipf and Max Welling. “Semi-supervised classification
with graph convolutional networks”. In: 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. url: https:
//openreview.net/forum?id=SJU4ayYgl.

[KZL19] Srijan Kumar, Xikun Zhang, and Jure Leskovec. “Predicting dynamic
embedding trajectory in temporal interaction networks”. In: Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8,
2019. ACM, 2019, pp. 1269–1278. doi: 10.1145/3292500.3330895.

[KZS+15] Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel,
Raquel Urtasun, Antonio Torralba, and Sanja Fidler. “Skip-thought
vectors”. In: Advances in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada. 2015, pp. 3294–3302. url: https:
//proceedings.neurips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-

Abstract.html.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. “Deep learn-
ing”. In: Nat. 521.7553 (2015), pp. 436–444. doi: 10.1038/nature14539.

[LDL+21] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng,
Siming He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang.
“Are we really making much progress?: revisiting, benchmarking and
refining heterogeneous graph neural networks”. In: KDD ’21: The 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Virtual Event, Singapore, August 14-18, 2021. ACM, 2021, pp. 1150–1160.
doi: 10.1145/3447548.3467350.

224

https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html
http://arxiv.org/abs/1312.6114
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3292500.3330895
https://proceedings.neurips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/f442d33fa06832082290ad8544a8da27-Abstract.html
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3447548.3467350

Bibliography

[LDS+21] Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. Pay attention
to MLPs. 2021. arXiv: 2105.08050 [cs.LG].

[LDS89] Yann LeCun, John S. Denker, and Sara A. Solla. “Optimal brain dam-
age”. In: Advances in Neural Information Processing Systems 2, [NIPS
Conference, Denver, Colorado, USA, November 27-30, 1989]. Morgan
Kaufmann, 1989, pp. 598–605. url: http://papers.nips.cc/paper/250-

optimal-brain-damage.

[LFY+20] Kai Lei, Qiuai Fu, Min Yang, and Yuzhi Liang. “Tag recommenda-
tion by text classification with attention-based capsule network”. In:
Neurocomputing 391 (2020), pp. 65–73. doi: 10.1016/j.neucom.2020.01.091.

[LG14] Omer Levy and Yoav Goldberg. “Neural word embedding as im-
plicit matrix factorization”. In: Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. 2014,
pp. 2177–2185. url: https : / / proceedings . neurips . cc / paper / 2014 / hash /

feab05aa91085b7a8012516bc3533958-Abstract.html.

[LGG+21] Yonghao Liu, Renchu Guan, Fausto Giunchiglia, Yanchun Liang, and
Xiaoyue Feng. “Deep attention diffusion graph neural networks for
text classification”. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November, 2021. Association
for Computational Linguistics, 2021, pp. 8142–8152. url: https://

aclanthology.org/2021.emnlp-main.642.

[LGS11] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. “Content-
based recommender systems: state of the art and trends”. In: Recom-
mender Systems Handbook. Springer, 2011, pp. 73–105. isbn: 978-0-387-
85820-3. doi: 10.1007/978-0-387-85820-3_3.

[LH19] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regu-
larization”. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. url: https://openreview.net/forum?id=Bkg6RiCqY7.

[Lin91] Jianhua Lin. “Divergence measures based on the Shannon entropy”.
In: IEEE Trans. Information Theory 37.1 (1991), pp. 145–151. doi: 10.1109/

18.61115.

225

https://arxiv.org/abs/2105.08050
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage
https://doi.org/10.1016/j.neucom.2020.01.091
https://proceedings.neurips.cc/paper/2014/hash/feab05aa91085b7a8012516bc3533958-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/feab05aa91085b7a8012516bc3533958-Abstract.html
https://aclanthology.org/2021.emnlp-main.642
https://aclanthology.org/2021.emnlp-main.642
https://doi.org/10.1007/978-0-387-85820-3_3
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/18.61115

Bibliography

[Liu17] Bing Liu. “Lifelong machine learning: a paradigm for continuous
learning”. In: Frontiers of Computer Science 11.3 (2017).

[LKF15] Sheng Li, Jaya Kawale, and Yun Fu. “Deep collaborative filtering via
marginalized denoising auto-encoder”. In: Proceedings of the 24th ACM
International Conference on Information and Knowledge Management,
CIKM 2015, Melbourne, VIC, Australia, October 19 - 23, 2015. ACM,
2015, pp. 811–820. doi: 10.1145/2806416.2806527.

[LKH+18] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony
Jebara. “Variational autoencoders for collaborative filtering”. In: Pro-
ceedings of the 2018 World Wide Web Conference on World Wide Web,
WWW 2018, Lyon, France, April 23-27, 2018. ACM, 2018, pp. 689–698.
doi: 10.1145/3178876.3186150.

[LL18] Lajanugen Logeswaran and Honglak Lee. “An efficient framework
for learning sentence representations”. In: 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
url: https://openreview.net/forum?id=rJvJXZb0W.

[LL20] Shengfei Lyu and Jiaqi Liu. Combine convolution with recurrent networks
for text classification. 2020. arXiv: 2006.15795 [cs.CL].

[LLL+18] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. “A simple
unified framework for detecting out-of-distribution samples and
adversarial attacks”. In: NeurIPS. 2018. url: https://proceedings.neurips.
cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html.

[LLR18] Shiyu Liang, Yixuan Li, and Srikant R. “Enhancing the reliability
of out-of-distribution image detection in neural networks”. In: 6th
International Conference on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. url: https://openreview.net/forum?id=H1VGkIxRZ.

[LNR+20] John Boaz Lee, Giang Nguyen, Ryan A Rossi, Nesreen K Ahmed, Eun-
yee Koh, and Sungchul Kim. “Dynamic node embeddings from edge
streams”. In: IEEE Transactions on Emerging Topics in Computational
Intelligence (2020).

226

https://doi.org/10.1145/2806416.2806527
https://doi.org/10.1145/3178876.3186150
https://openreview.net/forum?id=rJvJXZb0W
https://arxiv.org/abs/2006.15795
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
https://openreview.net/forum?id=H1VGkIxRZ

Bibliography

[LOG+19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: a robustly optimized bert pretraining approach. 2019. arXiv:
1907.11692 [cs.CL].

[LPL+21] Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao
Sun, Philip S. Yu, and Lifang He. A survey on text classification: from
shallow to deep learning. 2021. arXiv: 2008.00364 [cs.CL].

[LR02] Xin Li and Dan Roth. “Learning question classifiers”. In: 19th Interna-
tional Conference on Computational Linguistics, COLING 2002, Howard
International House and Academia Sinica, Taipei, Taiwan, August 24 -
September 1, 2002. 2002. url: https://aclanthology.org/C02-1150/.

[LR17] David Lopez-Paz and Marc’Aurelio Ranzato. “Gradient episodic
memory for continual learning”. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. 2017,
pp. 6467–6476. url: https : / / proceedings . neurips . cc / paper / 2017 / hash /

f87522788a2be2d171666752f97ddebb-Abstract.html.

[LS17] Xiaopeng Li and James She. “Collaborative variational autoencoder
for recommender systems”. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Hali-
fax, NS, Canada, August 13 - 17, 2017. ACM, 2017, pp. 305–314. doi:
10.1145/3097983.3098077.

[LWK+18] Yu Liu, Shuai Wang, M. Shahrukh Khan, and Jieyu He. “A novel
deep hybrid recommender system based on auto-encoder with neural
collaborative filtering”. In: Big Data Min. Anal. 1.3 (2018), pp. 211–221.

[LXL+15] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. “Recurrent convo-
lutional neural networks for text classification”. In: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA. AAAI Press, 2015, pp. 2267–2273. url:
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9745.

[LYR+04] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. “RCV1: a new
benchmark collection for text categorization research”. In: Machine
Learning Research 5 (2004).

227

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2008.00364
https://aclanthology.org/C02-1150/
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
https://doi.org/10.1145/3097983.3098077
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9745

Bibliography

[LYZ+20] Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv. “Tensor
graph convolutional networks for text classification”. In: The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI
Press, 2020, pp. 8409–8416. url: https://aaai.org/ojs/index.php/AAAI/

article/view/6359.

[MAC+02] Sean M. McNee, István Albert, Dan Cosley, Prateep Gopalkrishnan,
Shyong K. Lam, Al Mamunur Rashid, Joseph A. Konstan, and John
Riedl. “On the recommending of citations for research papers”. In:
CSCW 2002, Proceeding on the ACM 2002 Conference on Computer Sup-
ported Cooperative Work, New Orleans, Louisiana, USA, November 16-20,
2002. ACM, 2002, pp. 116–125. doi: 10.1145/587078.587096.

[MBM+17] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà,
Jan Svoboda, and Michael M. Bronstein. “Geometric deep learning
on graphs and manifolds using mixture model cnns”. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society, 2017,
pp. 5425–5434. doi: 10.1109/CVPR.2017.576.

[MBX+17] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher.
“Learned in translation: contextualized word vectors”. In: Advances in
Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA. 2017, pp. 6294–6305. url: https://proceedings.neurips.cc/paper/
2017/hash/20c86a628232a67e7bd46f76fba7ce12-Abstract.html.

[Mel21] Luke Melas-Kyriazi. Do you even need attention? a stack of feed-forward
layers does surprisingly well on imagenet. 2021. arXiv: 2105.02723 [cs.CV].

[MGK+11] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, and
Bhavani M. Thuraisingham. “Classification and novel class detection
in concept-drifting data streams under time constraints”. In: IEEE
Trans. Knowl. Data Eng. (2011).

[MGS18] Florian Mai, Lukas Galke, and Ansgar Scherp. “Using deep learning
for title-based semantic subject indexing to reach competitive per-
formance to full-text”. In: Proceedings of the 18th ACM/IEEE on Joint

228

https://aaai.org/ojs/index.php/AAAI/article/view/6359
https://aaai.org/ojs/index.php/AAAI/article/view/6359
https://doi.org/10.1145/587078.587096
https://doi.org/10.1109/CVPR.2017.576
https://proceedings.neurips.cc/paper/2017/hash/20c86a628232a67e7bd46f76fba7ce12-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/20c86a628232a67e7bd46f76fba7ce12-Abstract.html
https://arxiv.org/abs/2105.02723

Bibliography

Conference on Digital Libraries, JCDL 2018, Fort Worth, TX, USA, June
03-07, 2018. ACM, 2018, pp. 169–178. doi: 10.1145/3197026.3197039.

[MGS19] Florian Mai, Lukas Galke, and Ansgar Scherp. “CBOW is not all
you need: Combining CBOW with the compositional matrix space
model”. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. url: https://openreview.net/forum?id=H1MgjoR9tQ.

[MJ17] Angshul Majumdar and Anant Jain. “Cold-start, warm-start and ev-
erything in between: an autoencoder based approach to recommenda-
tion”. In: 2017 International Joint Conference on Neural Networks, IJCNN
2017, Anchorage, AK, USA, May 14-19, 2017. IEEE, 2017, pp. 3656–3663.
doi: 10.1109/IJCNN.2017.7966316.

[ML21] David Macêdo and Teresa Ludermir. A seamless and high-performance
out-of-distribution detection approach simply replacing the softmax loss.
2021. arXiv: 2105.14399 [cs.LG].

[MML+16] Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin.
“Natural language inference by tree-based convolution and heuristic
matching”. In: ACL (2). The Association for Computer Linguistics,
2016. url: https://aclanthology.org/P16-2022/.

[MQD+09] Elena Montañés, José Ramón Quevedo, Irene Díaz, and José Ranilla.
“Collaborative tag recommendation system based on logistic regres-
sion”. In: Proceedings of ECML PKDD (The European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in
Databases) Discovery Challenge 2009, Bled, Slovenia, September 7, 2009.
Vol. 497. CEUR Workshop Proceedings. CEUR-WS.org, 2009. url:
http://ceur-ws.org/Vol-497/paper%5C_20.pdf.

[MRM20] Franco Manessi, Alessandro Rozza, and Mario Manzo. “Dynamic
graph convolutional networks”. In: Pattern Recognition 97 (2020).

[MRZ+21] David Macêdo, Tsang Ing Ren, Cleber Zanchettin, Adriano L. I.
Oliveira, and Teresa Bernarda Ludermir. “Entropic out-of-distribution
detection”. In: International Joint Conference on Neural Networks, IJCNN
2021, Shenzhen, China, July 18-22, 2021. IEEE, 2021, pp. 1–8. doi:
10.1109/IJCNN52387.2021.9533899.

229

https://doi.org/10.1145/3197026.3197039
https://openreview.net/forum?id=H1MgjoR9tQ
https://doi.org/10.1109/IJCNN.2017.7966316
https://arxiv.org/abs/2105.14399
https://aclanthology.org/P16-2022/
http://ceur-ws.org/Vol-497/paper%5C_20.pdf
https://doi.org/10.1109/IJCNN52387.2021.9533899

Bibliography

[MSC+13] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. “Distributed representations of words and phrases and
their compositionality”. In: Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural Information Processing Sys-
tems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States. 2013, pp. 3111–3119. url: https://proceedings.

neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html.

[MSJ+16] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfel-
low, and Brendan Frey. Adversarial autoencoders. 2016. arXiv: 1511.05644

[cs.LG].

[MT04] Rada Mihalcea and Paul Tarau. “Textrank: bringing order into text”.
In: Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing , EMNLP 2004, A meeting of SIGDAT, a Special
Interest Group of the ACL, held in conjunction with ACL 2004, 25-26
July 2004, Barcelona, Spain. ACL, 2004, pp. 404–411. url: https://

aclanthology.org/W04-3252/.

[MWW+20] Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang, Yang Wang,
Quanlu Zhang, Yaming Yang, Yunhai Tong, and Jing Bai. “Ladabert:
lightweight adaptation of BERT through hybrid model compression”.
In: COLING. International Committee on Computational Linguistics,
2020, pp. 3225–3234. doi: 10.18653/v1/2020.coling-main.287.

[MZL20] Shutian Ma, Chengzhi Zhang, and Xiaozhong Liu. “A review of
citation recommendation: from textual content to enriched context”.
In: Scientometrics 122.3 (2020), pp. 1445–1472. doi: 10.1007/s11192-019-03336-

0.

[NBG19] Allen Nie, Erin Bennett, and Noah D. Goodman. “Dissent: learn-
ing sentence representations from explicit discourse relations”. In:
Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers. Association for Computational Linguistics, 2019,
pp. 4497–4510. doi: 10.18653/v1/p19-1442.

[New01] M. E. J. Newman. “Clustering and preferential attachment in growing
networks”. In: Phys. Rev. E 64 (2 July 2001), p. 025102. doi: 10.1103/

PhysRevE.64.025102.

230

https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://arxiv.org/abs/1511.05644
https://arxiv.org/abs/1511.05644
https://aclanthology.org/W04-3252/
https://aclanthology.org/W04-3252/
https://doi.org/10.18653/v1/2020.coling-main.287
https://doi.org/10.1007/s11192-019-03336-0
https://doi.org/10.1007/s11192-019-03336-0
https://doi.org/10.18653/v1/p19-1442
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.1103/PhysRevE.64.025102

Bibliography

[New05] Mark EJ Newman. “Power laws, Pareto distributions and Zipf’s law”.
In: Contemporary physics 46.5 (2005).

[NH10] Vinod Nair and Geoffrey E. Hinton. “Rectified linear units improve
restricted boltzmann machines”. In: Proceedings of the 27th International
Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel.
Omnipress, 2010, pp. 807–814. url: https://icml.cc/Conferences/2010/

papers/432.pdf.

[NIK10] Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi. “Dependency
tree-based sentiment classification using crfs with hidden variables”.
In: Human Language Technologies: Conference of the North American Chap-
ter of the Association of Computational Linguistics, Proceedings, June 2-4,
2010, Los Angeles, California, USA. The Association for Computational
Linguistics, 2010, pp. 786–794. url: https://aclanthology.org/N10-1120/.

[NKB+20] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz
Barak, and Ilya Sutskever. “Deep double descent: where bigger mod-
els and more data hurt”. In: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. url: https://openreview.net/forum?id=B1g5sA4twr.

[NKM+19] Jinseok Nam, Young-Bum Kim, Eneldo Loza Mencía, Sunghyun
Park, Ruhi Sarikaya, and Johannes Fürnkranz. “Learning context-
dependent label permutations for multi-label classification”. In: Pro-
ceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA. Vol. 97. Proceedings
of Machine Learning Research. PMLR, 2019, pp. 4733–4742. url:
http://proceedings.mlr.press/v97/nam19a.html.

[NLB+18] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun,
and Nathan Srebro. Towards understanding the role of over-parametrization
in generalization of neural networks. 2018. arXiv: 1805.12076 [cs.LG].

[NLR+18] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K.
Ahmed, Eunyee Koh, and Sungchul Kim. “Continuous-time dynamic
network embeddings”. In: WWW. 2018.

[NMK+17] Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J. Kim, and Johannes
Fürnkranz. “Maximizing subset accuracy with recurrent neural net-
works in multi-label classification”. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Pro-

231

https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://aclanthology.org/N10-1120/
https://openreview.net/forum?id=B1g5sA4twr
http://proceedings.mlr.press/v97/nam19a.html
https://arxiv.org/abs/1805.12076

Bibliography

cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. 2017,
pp. 5413–5423. url: https : / / proceedings . neurips . cc / paper / 2017 / hash /

2eb5657d37f474e4c4cf01e4882b8962-Abstract.html.

[OBY98] Yukio Ohsawa, Nels E. Benson, and Masahiko Yachida. “Keygraph:
Automatic indexing by co-occurrence graph based on building con-
struction metaphor”. In: Proceedings of the IEEE Forum on Research
and Technology Advances in Digital Libraries, IEEE ADL ’98, Santa Bar-
bara, California, USA, April 22-24, 1998. IEEE Computer Society, 1998,
pp. 12–18. doi: 10.1109/ADL.1998.670375. url: https://doi.org/10.1109/ADL.1998.
670375.

[PAS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: online
learning of social representations”. In: The 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’14,
New York, NY, USA - August 24 - 27, 2014. ACM, 2014, pp. 701–710.
doi: 10.1145/2623330.2623732.

[PDC+20] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro
Suzumura, Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles
E. Leiserson. “EvolveGCN: Evolving graph convolutional networks
for dynamic graphs”. In: The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 5363–5370. url:
https://aaai.org/ojs/index.php/AAAI/article/view/5984.

[PGJ18] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. “Unsupervised
learning of sentence embeddings using compositional n-gram fea-
tures”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 1 (Long Papers). Association for Computational
Linguistics, 2018, pp. 528–540. doi: 10.18653/v1/n18-1049.

[PHY20] Yiteng Pan, Fazhi He, and Haiping Yu. “Learning social represen-
tations with deep autoencoder for recommender system”. In: World
Wide Web 23.4 (2020), pp. 2259–2279. doi: 10.1007/s11280-020-00793-z.

232

https://proceedings.neurips.cc/paper/2017/hash/2eb5657d37f474e4c4cf01e4882b8962-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2eb5657d37f474e4c4cf01e4882b8962-Abstract.html
https://doi.org/10.1109/ADL.1998.670375
https://doi.org/10.1109/ADL.1998.670375
https://doi.org/10.1109/ADL.1998.670375
https://doi.org/10.1145/2623330.2623732
https://aaai.org/ojs/index.php/AAAI/article/view/5984
https://doi.org/10.18653/v1/n18-1049
https://doi.org/10.1007/s11280-020-00793-z

Bibliography

[PL04] Bo Pang and Lillian Lee. “A sentimental education: sentiment analy-
sis using subjectivity summarization based on minimum cuts”. In:
Proceedings of the 42nd Annual Meeting of the Association for Computa-
tional Linguistics, 21-26 July, 2004, Barcelona, Spain. ACL, 2004, pp. 271–
278. doi: 10.3115/1218955.1218990. url: https://aclanthology.org/P04-1035/.

[PL05] Bo Pang and Lillian Lee. “Seeing stars: exploiting class relationships
for sentiment categorization with respect to rating scales”. In: Pro-
ceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05). Ann Arbor, Michigan: ACL, June 2005, pp. 115–
124. doi: 10.3115/1219840.1219855. url: https://aclanthology.org/P05-1015.

[PLP21] Gary Phua, Shaowei Lin, and Dario Poletti. Word2rate: training and
evaluating multiple word embeddings as statistical transitions. 2021. arXiv:
2104.08173 [cs.CL].

[PNI+18] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer. “Deep contex-
tualized word representations”. In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT 2018, New Orleans,
Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers). Association for
Computational Linguistics, 2018, pp. 2227–2237. doi: 10.18653/v1/n18-1202.

[PSC+21] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton van den
Hengel. “Deep learning for anomaly detection: A review”. In: ACM
Comput. Surv. 54.2 (2021), 38:1–38:38. doi: 10.1145/3439950.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.
“Glove: global vectors for word representation”. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL. ACL, 2014, pp. 1532–1543. doi:
10.3115/v1/d14-1162.

[PSP18] Christian S. Perone, Roberto Silveira, and Thomas S. Paula. Evaluation
of sentence embeddings in downstream and linguistic probing tasks. 2018.
arXiv: 1806.06259 [cs.CL].

[PWS+13] Lisa Posch, Claudia Wagner, Philipp Singer, and Markus Strohmaier.
“Meaning as collective use: predicting semantic hashtag categories on
twitter”. In: 22nd International World Wide Web Conference, WWW ’13,

233

https://doi.org/10.3115/1218955.1218990
https://aclanthology.org/P04-1035/
https://doi.org/10.3115/1219840.1219855
https://aclanthology.org/P05-1015
https://arxiv.org/abs/2104.08173
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.1145/3439950
https://doi.org/10.3115/v1/d14-1162
https://arxiv.org/abs/1806.06259

Bibliography

Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume. International
World Wide Web Conferences Steering Committee / ACM, 2013,
pp. 621–628. doi: 10.1145/2487788.2488008.

[RCF+20] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard,
Federico Monti, and Michael Bronstein. Temporal graph networks for
deep learning on dynamic graphs. 2020. arXiv: 2006.10637 [cs.LG].

[RE13] Paul Ruvolo and Eric Eaton. “ELLA: an efficient lifelong learning al-
gorithm”. In: Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013. Vol. 28. JMLR
Workshop and Conference Proceedings. JMLR.org, 2013, pp. 507–515.
url: http://proceedings.mlr.press/v28/ruvolo13.html.

[REC+10] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. “Au-
tomatic keyword extraction from individual documents”. In: Text
Mining. Applications and Theory. John Wiley and Sons, Ltd, 2010,
pp. 1–20. isbn: 9780470689646. doi: 10.1002/9780470689646.ch1.

[RFP17] Aravind Sesagiri Raamkumar, Schubert Foo, and Natalie Pang. “Us-
ing author-specified keywords in building an initial reading list of
research papers in scientific paper retrieval and recommender sys-
tems”. In: Inf. Process. Manag. 53.3 (2017), pp. 577–594. doi: 10.1016/j.

ipm.2016.12.006.

[RG10] Sebastian Rudolph and Eugenie Giesbrecht. “Compositional matrix-
space models of language”. In: ACL. The Association for Computer
Linguistics, 2010, pp. 907–916. url: https://aclanthology.org/P10-1093/.

[RG19] Nils Reimers and Iryna Gurevych. “Sentence-bert: sentence embed-
dings using siamese bert-networks”. In: Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7, 2019. Association for
Computational Linguistics, 2019, pp. 3980–3990. doi: 10.18653/v1/D19-1410.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
“Learning representations by back-propagating errors”. In: nature
323.6088 (1986), pp. 533–536.

234

https://doi.org/10.1145/2487788.2488008
https://arxiv.org/abs/2006.10637
http://proceedings.mlr.press/v28/ruvolo13.html
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1016/j.ipm.2016.12.006
https://doi.org/10.1016/j.ipm.2016.12.006
https://aclanthology.org/P10-1093/
https://doi.org/10.18653/v1/D19-1410

Bibliography

[RKS+17] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and
Christoph H. Lampert. “Icarl: incremental classifier and representa-
tion learning”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE
Computer Society, 2017, pp. 5533–5542. doi: 10.1109/CVPR.2017.587. url:
https://doi.org/10.1109/CVPR.2017.587.

[Rob95] Anthony V. Robins. “Catastrophic forgetting, rehearsal and pseudore-
hearsal”. In: Connect. Sci. 7.2 (1995).

[RPH+11] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank.
“Classifier chains for multi-label classification”. In: Mach. Learn. 85.3
(2011), pp. 333–359.

[RSI+21] Rahul Ragesh, Sundararajan Sellamanickam, Arun Iyer, Ramakrishna
Bairi, and Vijay Lingam. “Hetegcn: heterogeneous graph convolu-
tional networks for text classification”. In: WSDM ’21, The Fourteenth
ACM International Conference on Web Search and Data Mining, Vir-
tual Event, Israel, March 8-12, 2021. ACM, 2021, pp. 860–868. doi:
10.1145/3437963.3441746.

[RSR+20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sha-
ran Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
“Exploring the limits of transfer learning with a unified text-to-text
transformer”. In: J. Mach. Learn. Res. 21 (2020), 140:1–140:67. url:
http://jmlr.org/papers/v21/20-074.html.

[Rud19] Sebastian Ruder. “Neural transfer learning for natural language
processing”. PhD thesis. National University of Ireland, Galway,
2019.

[RZL+16] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
“Squad: 100, 000+ questions for machine comprehension of text”.
In: Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4,
2016. The Association for Computational Linguistics, 2016, pp. 2383–
2392. doi: 10.18653/v1/d16-1264.

[SAH20] Nazmus Sakib, Rodina Binti Ahmad, and Khalid Haruna. “A col-
laborative approach toward scientific paper recommendation using
citation context”. In: IEEE Access 8 (2020), pp. 51246–51255. doi:
10.1109/ACCESS.2020.2980589.

235

https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1145/3437963.3441746
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.1109/ACCESS.2020.2980589

Bibliography

[SB88] Gerard Salton and Christopher Buckley. “Term-weighting approaches
in automatic text retrieval”. In: Information processing & management
24.5 (1988).

[SCG+19] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. “Patient knowledge
distillation for BERT model compression”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019. As-
sociation for Computational Linguistics, 2019, pp. 4322–4331. doi:
10.18653/v1/D19-1441.

[SCP+19] Nícollas Silva, Diego Carvalho, Adriano C. M. Pereira, Fernando
Mourão, and Leonardo C. da Rocha. “The pure cold-start problem:
A deep study about how to conquer first-time users in recommenda-
tions domains”. In: Inf. Syst. 80 (2019), pp. 1–12.

[SDC+20] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter.
2020. arXiv: 1910.01108 [cs.CL].

[SDV+18] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier
Bresson. “Structured sequence modeling with graph convolutional re-
current networks”. In: Neural Information Processing - 25th International
Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018,
Proceedings, Part I. Vol. 11301. Lecture Notes in Computer Science.
Springer, 2018, pp. 362–373. doi: 10.1007/978-3-030-04167-0_33.

[SGM16] Florian Strub, Romaric Gaudel, and Jérémie Mary. “Hybrid recom-
mender system based on autoencoders”. In: Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems, DLRS@RecSys
2016, Boston, MA, USA, September 15, 2016. ACM, 2016, pp. 11–16.
doi: 10.1145/2988450.2988456.

[SGM19] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy
and policy considerations for deep learning in NLP”. In: ACL (1).
Association for Computational Linguistics, 2019, pp. 3645–3650. url:
10.18653/v1/p19-1355.

[SGT+09] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. “The graph neural network model”. In:
IEEE Trans. Neural Networks 20.1 (2009).

236

https://doi.org/10.18653/v1/D19-1441
https://arxiv.org/abs/1910.01108
https://doi.org/10.1007/978-3-030-04167-0_33
https://doi.org/10.1145/2988450.2988456
10.18653/v1/p19-1355

Bibliography

[SHK+14] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Dropout: a simple way to prevent neu-
ral networks from overfitting”. In: J. Mach. Learn. Res. 15.1 (2014),
pp. 1929–1958. url: http://dl.acm.org/citation.cfm?id=2670313.

[SHM+12] Richard Socher, Brody Huval, Christopher D. Manning, and Andrew
Y. Ng. “Semantic compositionality through recursive matrix-vector
spaces”. In: Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea.
ACL, 2012, pp. 1201–1211. url: https://aclanthology.org/D12-1110/.

[SJH+21] Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina
Williams, and Douwe Kiela. “Masked language modeling and the dis-
tributional hypothesis: order word matters pre-training for little”. In:
Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 7-11 November, 2021. Association for Computational Lin-
guistics, 2021, pp. 2888–2913. url: https://aclanthology.org/2021.emnlp-

main.230.

[Sma73] Henry Small. “Co-citation in the scientific literature: A new measure
of the relationship between two documents”. In: J. Am. Soc. Inf. Sci.
24.4 (1973), pp. 265–269. doi: 10.1002/asi.4630240406.

[SMB+19] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and
Stephan Günnemann. Pitfalls of graph neural network evaluation. 2019.
arXiv: 1811.05868 [cs.LG].

[SMD+13] Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hin-
ton. “On the importance of initialization and momentum in deep
learning”. In: Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013. Vol. 28. JMLR
Workshop and Conference Proceedings. JMLR.org, 2013, pp. 1139–
1147. url: http://proceedings.mlr.press/v28/sutskever13.html.

[SMS+15] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie.
“AutoRec: Autoencoders meet collaborative filtering”. In: Proceedings
of the 24th International Conference on World Wide Web Companion,
WWW 2015, Florence, Italy, May 18-22, 2015 - Companion Volume. ACM,
2015, pp. 111–112. doi: 10.1145/2740908.2742726.

237

http://dl.acm.org/citation.cfm?id=2670313
https://aclanthology.org/D12-1110/
https://aclanthology.org/2021.emnlp-main.230
https://aclanthology.org/2021.emnlp-main.230
https://doi.org/10.1002/asi.4630240406
https://arxiv.org/abs/1811.05868
http://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.1145/2740908.2742726

Bibliography

[SNB+09] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian
Gallagher, and Tina Eliassi-Rad. “Collective classification in network
data”. In: AI Mag. 29.3 (2009), pp. 93–106. doi: 10.1609/aimag.v29i3.2157.

[SP97] Mike Schuster and Kuldip K. Paliwal. “Bidirectional recurrent neural
networks”. In: IEEE Trans. Signal Process. 45.11 (1997), pp. 2673–2681.
doi: 10.1109/78.650093.

[SPW+13] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher
D. Manning, Andrew Y. Ng, and Christopher Potts. “Recursive deep
models for semantic compositionality over a sentiment treebank”.
In: Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt
Seattle, Seattle, Washington, USA, A meeting of SIGDAT, a Special Interest
Group of the ACL. ACL, 2013, pp. 1631–1642. url: https://aclanthology.
org/D13-1170/.

[STB+18] Sandeep Subramanian, Adam Trischler, Yoshua Bengio, and Christo-
pher J. Pal. “Learning general purpose distributed sentence represen-
tations via large scale multi-task learning”. In: 6th International Con-
ference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. url: https://openreview.net/forum?id=B18WgG-CZ.

[Ste19] Harald Steck. “Embarrassingly shallow autoencoders for sparse data”.
In: The World Wide Web Conference, WWW 2019, San Francisco, CA, USA,
May 13-17, 2019. ACM, 2019, pp. 3251–3257. doi: 10.1145/3308558.3313710.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence
learning with neural networks”. In: Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada.
2014, pp. 3104–3112. url: https://proceedings.neurips.cc/paper/2014/hash/
a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

[SVR09] Shilad Sen, Jesse Vig, and John Riedl. “Tagommenders: Connecting
users to items through tags”. In: Proceedings of the 18th International
Conference on World Wide Web, WWW 2009, Madrid, Spain, April 20-24,
2009. ACM, 2009, pp. 671–680. doi: 10.1145/1526709.1526800. url: https:

//doi.org/10.1145/1526709.1526800.

238

https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1109/78.650093
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://openreview.net/forum?id=B18WgG-CZ
https://doi.org/10.1145/3308558.3313710
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.1145/1526709.1526800
https://doi.org/10.1145/1526709.1526800
https://doi.org/10.1145/1526709.1526800

Bibliography

[SWG+20] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao
Yang. “DySAT: Deep neural representation learning on dynamic
graphs via self-attention networks”. In: WSDM ’20: The Thirteenth
ACM International Conference on Web Search and Data Mining, Houston,
TX, USA, February 3-7, 2020. ACM, 2020, pp. 519–527. doi: 10.1145/

3336191.3371845.

[SWR20] Victor Sanh, Thomas Wolf, and Alexander M. Rush. “Movement
pruning: adaptive sparsity by fine-tuning”. In: Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual. 2020. url: https://proceedings.neurips.cc/paper/2020/hash/

eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html.

[SWW+18] Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin Renqiang Min,
Qinliang Su, et al. “Baseline needs more love: on simple word-
embedding-based models and associated pooling mechanisms”. In:
Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Vol-
ume 1: Long Papers. Association for Computational Linguistics, 2018,
pp. 440–450. doi: 10.18653/v1/P18- 1041. url: https://aclanthology.org/P18-

1041/.

[SXL17] Lei Shu, Hu Xu, and Bing Liu. “DOC: Deep open classification of text
documents”. In: Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark,
September 9-11, 2017. Association for Computational Linguistics, 2017,
pp. 2911–2916. doi: 10.18653/v1/d17-1314.

[SYL13] Daniel L. Silver, Qiang Yang, and Lianghao Li. “Lifelong machine
learning systems: beyond learning algorithms”. In: AAAI Spring
Symposium: Lifelong Machine Learning. Vol. SS-13-05. AAAI, 2013.

[SYS+20] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang,
and Denny Zhou. “Mobilebert: a compact task-agnostic BERT for
resource-limited devices”. In: ACL. Association for Computational
Linguistics, 2020, pp. 2158–2170. doi: 10.18653/v1/2020.acl-main.195.

[SZ08] Börkur Sigurbjörnsson and Roelof van Zwol. “Flickr tag recommen-
dation based on collective knowledge”. In: Proceedings of the 17th

239

https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1145/3336191.3371845
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://doi.org/10.18653/v1/P18-1041
https://aclanthology.org/P18-1041/
https://aclanthology.org/P18-1041/
https://doi.org/10.18653/v1/d17-1314
https://doi.org/10.18653/v1/2020.acl-main.195

Bibliography

International Conference on World Wide Web, WWW 2008, Beijing, China,
April 21-25, 2008. ACM, 2008, pp. 327–336. doi: 10.1145/1367497.1367542.

[SZJ+21] Jianshan Sun, Mingyue Zhu, Yuanchun Jiang, Ye-Zheng Liu, and
Le Wu. “Hierarchical attention model for personalized tag recom-
mendation”. In: J. Assoc. Inf. Sci. Technol. 72.2 (2021), pp. 173–189. doi:
10.1002/asi.24400.

[TBG+18] Ilya O. Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard
Schölkopf. “Wasserstein auto-encoders”. In: 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. url: https://openreview.net/forum?id=HkL7n1-0b.

[TCL+19] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Well-read students learn better: on the importance of pre-training compact
models. 2019. arXiv: 1908.08962 [cs.CL].

[TDA+21] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri,
Philip Pham, Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald
Metzler. “Long range arena : A benchmark for efficient transformers”.
In: 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. url:
https://openreview.net/forum?id=qVyeW-grC2k.

[TDB+20] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient
transformers: a survey. 2020. arXiv: 2009.06732 [cs.LG].

[TDW+17] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. “Know-
evolve: deep temporal reasoning for dynamic knowledge graphs”.
In: Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017. Vol. 70. Pro-
ceedings of Machine Learning Research. PMLR, 2017, pp. 3462–3471.
url: http://proceedings.mlr.press/v70/trivedi17a.html.

[TFB+19] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan
Zha. “DyRep: Learning representations over dynamic graphs”. In:
7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. url:
https://openreview.net/forum?id=HyePrhR5KX.

[THK+21] Ilya Tolstikhin et al. Mlp-mixer: an all-mlp architecture for vision. 2021.
arXiv: 2105.01601 [cs.CV].

240

https://doi.org/10.1145/1367497.1367542
https://doi.org/10.1002/asi.24400
https://openreview.net/forum?id=HkL7n1-0b
https://arxiv.org/abs/1908.08962
https://openreview.net/forum?id=qVyeW-grC2k
https://arxiv.org/abs/2009.06732
http://proceedings.mlr.press/v70/trivedi17a.html
https://openreview.net/forum?id=HyePrhR5KX
https://arxiv.org/abs/2105.01601

Bibliography

[Thr98] Sebastian Thrun. “Lifelong learning algorithms”. In: Learning to learn.
Springer, 1998.

[TJF+17] Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang, and Virginia R.
de Sa. “Rethinking skip-thought: A neighborhood based approach”.
In: Proceedings of the 2nd Workshop on Representation Learning for NLP,
Rep4NLP@ACL 2017, Vancouver, Canada, August 3, 2017. Association
for Computational Linguistics, 2017, pp. 211–218. doi: 10.18653/v1/w17-

2625.

[TK07] Grigorios Tsoumakas and Ioannis Katakis. “Multi-label classification:
an overview”. In: Int. J. Data Warehous. Min. 3.3 (2007), pp. 1–13.

[TKV11] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis P. Vlahavas. “Ran-
dom k-labelsets for multilabel classification”. In: IEEE Trans. Knowl.
Data Eng. 23.7 (2011), pp. 1079–1089.

[TLL+19] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and
Jimmy Lin. Distilling task-specific knowledge from bert into simple neural
networks. 2019. arXiv: 1903.12136 [cs.CL].

[TM95] Sebastian Thrun and Tom M. Mitchell. “Learning one more thing”. In:
Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2
Volumes. Morgan Kaufmann, 1995, pp. 1217–1225. url: http://ijcai.

org/Proceedings/95-2/Papers/026.pdf.

[TQM15] Jian Tang, Meng Qu, and Qiaozhu Mei. “PTE: predictive text embed-
ding through large-scale heterogeneous text networks”. In: Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015.
ACM, 2015, pp. 1165–1174. doi: 10.1145/2783258.2783307.

[TRJ+19] Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Arivazhagan, Xin Li,
and Amelia Archer. “Small and practical BERT models for sequence
labeling”. In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019. Association for Computational Linguistics, 2019,
pp. 3630–3634. doi: 10.18653/v1/D19-1374.

241

https://doi.org/10.18653/v1/w17-2625
https://doi.org/10.18653/v1/w17-2625
https://arxiv.org/abs/1903.12136
http://ijcai.org/Proceedings/95-2/Papers/026.pdf
http://ijcai.org/Proceedings/95-2/Papers/026.pdf
https://doi.org/10.1145/2783258.2783307
https://doi.org/10.18653/v1/D19-1374

Bibliography

[TS20] Martin Toepfer and Christin Seifert. “Fusion architectures for auto-
matic subject indexing under concept drift”. In: Int. J. Digit. Libr. 21.2
(2020), pp. 169–189. doi: 10.1007/s00799-018-0240-3. url: https://doi.org/10.

1007/s00799-018-0240-3.

[TSZ+20] Shaoyu Tao, Chaoyuan Shen, Li Zhu, and Tao Dai. “SVD-CNN: A con-
volutional neural network model with orthogonal constraints based
on SVD for context-aware citation recommendation”. In: Comput. In-
tell. Neurosci. 2020 (2020), 5343214:1–5343214:12. doi: 10.1155/2020/5343214.

[TZY+08] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.
“Arnetminer: extraction and mining of academic social networks”.
In: Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August
24-27, 2008. ACM, 2008, pp. 990–998. doi: 10.1145/1401890.1402008.

[VBK16] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. “Order matters:
sequence to sequence for sets”. In: 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings. 2016. url: http://arxiv.org/abs/1511.
06391.

[VCC+18] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio. “Graph attention networks”.
In: 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net, 2018. url: https://openreview.net/forum?id=

rJXMpikCZ.

[VFH+19] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò,
Yoshua Bengio, and R. Devon Hjelm. “Deep graph infomax”. In:
7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. url:
https://openreview.net/forum?id=rklz9iAcKQ.

[VGM+18] Iacopo Vagliano, Lukas Galke, Florian Mai, and Ansgar Scherp. “Us-
ing adversarial autoencoders for multi-modal automatic playlist con-
tinuation”. In: Proceedings of the ACM Recommender Systems Challenge,
RecSys Challenge 2018, Vancouver, BC, Canada, October 2, 2018. ACM,
2018, 5:1–5:6. doi: 10.1145/3267471.3267476.

242

https://doi.org/10.1007/s00799-018-0240-3
https://doi.org/10.1007/s00799-018-0240-3
https://doi.org/10.1007/s00799-018-0240-3
https://doi.org/10.1155/2020/5343214
https://doi.org/10.1145/1401890.1402008
http://arxiv.org/abs/1511.06391
http://arxiv.org/abs/1511.06391
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rklz9iAcKQ
https://doi.org/10.1145/3267471.3267476

Bibliography

[VGS22] I. Vagliano, L. Galke, and A. Scherp. “Recommendations for item
set completion: On the semantics of item co-occurrence with data
sparsity, input size, and input modalities”. In: Information Retrieval
Journal (Apr. 2022). issn: 1573-7659. doi: 10.1007/s10791-022-09408-9.

[VLB+08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. “Extracting and composing robust features with denoising
autoencoders”. In: Machine Learning, Proceedings of the Twenty-Fifth
International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008.
Vol. 307. ACM International Conference Proceeding Series. ACM,
2008, pp. 1096–1103. doi: 10.1145/1390156.1390294. url: https://doi.org/10.

1145/1390156.1390294.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “At-
tention is all you need”. In: Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Information Process-
ing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. 2017,
pp. 5998–6008. url: https : / / proceedings . neurips . cc / paper / 2017 / hash /

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[VTF+21] Ishwar Venugopal, Jessica Töllich, Michael Fairbank, and Ansgar
Scherp. “A comparison of deep-learning methods for analysing and
predicting business processes”. In: IJCNN. IEEE, 2021. url: https:

//arxiv.org/abs/2102.07838.

[WBG+16] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. “To-
wards universal paraphrastic sentence embeddings”. In: 4th Inter-
national Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings. 2016. url:
http://arxiv.org/abs/1511.08198.

[WCL+21] Bi Wang, Yang Chen, Xuelian Li, and Junfu Chen. “Lifelong classifi-
cation in open world with limited storage requirements”. In: Neural
Comput. 33.7 (2021), pp. 1818–1852.

[WCS+21] Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng
Li, Jian Pei, and Bo Long. Graph neural networks for natural language
processing: a survey. 2021. arXiv: 2106.06090 [cs.CL].

243

https://doi.org/10.1007/s10791-022-09408-9
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2102.07838
https://arxiv.org/abs/2102.07838
http://arxiv.org/abs/1511.08198
https://arxiv.org/abs/2106.06090

Bibliography

[WHC+16] Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and
Francois Petitjean. “Characterizing concept drift”. In: Data Mining
and Knowledge Discovery 30.4 (2016).

[WJS+19] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui,
and Philip S. Yu. “Heterogeneous graph attention network”. In: The
World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May
13-17, 2019. ACM, 2019, pp. 2022–2032. doi: 10.1145/3308558.3313562.

[WJZ+19] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty,
Tao Yu, and Kilian Q. Weinberger. “Simplifying graph convolutional
networks”. In: Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA.
Vol. 97. Proceedings of Machine Learning Research. PMLR, 2019,
pp. 6861–6871. url: http://proceedings.mlr.press/v97/wu19e.html.

[WJZ+20] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius
Micikevicius. Integer quantization for deep learning inference: principles
and empirical evaluation. 2020. arXiv: 2004.09602 [cs.LG].

[WK19] John Wieting and Douwe Kiela. “No training required: exploring
random encoders for sentence classification”. In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. url: https://openreview.net/
forum?id=BkgPajAcY7.

[WLC+19] Ruishuang Wang, Zhao Li, Jian Cao, Tong Chen, and Lei Wang.
“Convolutional recurrent neural networks for text classification”. In:
International Joint Conference on Neural Networks, IJCNN 2019 Budapest,
Hungary, July 14-19, 2019. IEEE, 2019, pp. 1–6. doi: 10.1109/IJCNN.2019.

8852406.

[WLG+18] Geoffrey I Webb, Loong Kuan Lee, Bart Goethals, and François Petit-
jean. “Analyzing concept drift and shift from sample data”. In: Data
Mining and Knowledge Discovery 32.5 (2018), pp. 1179–1199.

[WM12] Sida I. Wang and Christopher D. Manning. “Baselines and bigrams:
simple, good sentiment and topic classification”. In: The 50th Annual
Meeting of the Association for Computational Linguistics, Proceedings
of the Conference, July 8-14, 2012, Jeju Island, Korea - Volume 2: Short
Papers. The Association for Computer Linguistics, 2012, pp. 90–94.
url: https://aclanthology.org/P12-2018/.

244

https://doi.org/10.1145/3308558.3313562
http://proceedings.mlr.press/v97/wu19e.html
https://arxiv.org/abs/2004.09602
https://openreview.net/forum?id=BkgPajAcY7
https://openreview.net/forum?id=BkgPajAcY7
https://doi.org/10.1109/IJCNN.2019.8852406
https://doi.org/10.1109/IJCNN.2019.8852406
https://aclanthology.org/P12-2018/

Bibliography

[WPI20] Moshe Wasserblat, Oren Pereg, and Peter Izsak. “Exploring the
boundaries of low-resource BERT distillation”. In: Proceedings of Sus-
taiNLP: Workshop on Simple and Efficient Natural Language Processing.
Association for Computational Linguistics, Nov. 2020, pp. 35–40. doi:
10.18653/v1/2020.sustainlp-1.5. url: https://aclanthology.org/2020.sustainlp-1.5.

[WPN+19] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh,
Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. “Su-
perGLUE: A stickier benchmark for general-purpose language un-
derstanding systems”. In: Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada.
2019, pp. 3261–3275. url: https://proceedings.neurips.cc/paper/2019/hash/
4496bf24afe7fab6f046bf4923da8de6-Abstract.html.

[WPZ20] Man Wu, Shirui Pan, and Xingquan Zhu. “Openwgl: open-world
graph learning”. In: 20th IEEE International Conference on Data Mining,
ICDM 2020, Sorrento, Italy, November 17-20, 2020. IEEE, 2020, pp. 681–
690. doi: 10.1109/ICDM50108.2020.00077.

[WQG+22] Chen Wang, Yuheng Qiu, Dasong Gao, and Sebastian Scherer. “Life-
long Graph Learning”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2022, pp. 13719–13728.

[WSC+16] Yonghui Wu et al. Google’s neural machine translation system: bridging
the gap between human and machine translation. 2016. arXiv: 1609.08144

[cs.CL].

[WSH+18] Yequan Wang, Aixin Sun, Jialong Han, Ying Liu, and Xiaoyan Zhu.
“Sentiment analysis by capsules”. In: Proceedings of the 2018 World
Wide Web Conference on World Wide Web, WWW 2018, Lyon, France,
April 23-27, 2018. ACM, 2018, pp. 1165–1174. doi: 10.1145/3178876.3186015.
url: https://doi.org/10.1145/3178876.3186015.

[WSM+19] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. “GLUE: A multi-task benchmark and analy-
sis platform for natural language understanding”. In: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. url: https://openreview.net/
forum?id=rJ4km2R5t7.

245

https://doi.org/10.18653/v1/2020.sustainlp-1.5
https://aclanthology.org/2020.sustainlp-1.5
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://doi.org/10.1109/ICDM50108.2020.00077
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://doi.org/10.1145/3178876.3186015
https://doi.org/10.1145/3178876.3186015
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

Bibliography

[WSS+14] Claudia Wagner, Philipp Singer, Markus Strohmaier, and Bernardo
A. Huberman. “Semantic stability and implicit consensus in social
tagging streams”. In: IEEE Trans. Comput. Soc. Syst. 1.1 (2014), pp. 108–
120. doi: 10.1109/TCSS.2014.2307455. url: https://doi.org/10.1109/TCSS.2014.

2307455.

[WSW+20] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. “Streaming
graph neural networks via continual learning”. In: CIKM ’20: The 29th
ACM International Conference on Information and Knowledge Manage-
ment, Virtual Event, Ireland, October 19-23, 2020. ACM, 2020, pp. 1515–
1524. doi: 10.1145/3340531.3411963. url: https://doi.org/10.1145/3340531.

3411963.

[WWC05] Janyce Wiebe, Theresa Wilson, and Claire Cardie. “Annotating expres-
sions of opinions and emotions in language”. In: Language resources
and evaluation 39.2 (2005), pp. 165–210.

[WWY15] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. “Collaborative deep
learning for recommender systems”. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Sydney, NSW, Australia, August 10-13, 2015. ACM, 2015, pp. 1235–
1244. doi: 10.1145/2783258.2783273.

[WYZ+17] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou
Wang, Peng Zhang, and Dell Zhang. “IRGAN: A minimax game for
unifying generative and discriminative information retrieval models”.
In: Proceedings of the 40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, Shinjuku, Tokyo, Japan,
August 7-11, 2017. ACM, 2017, pp. 515–524. doi: 10.1145/3077136.3080786.

[XHL+19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How
powerful are graph neural networks?” In: 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. url: https://openreview.net/forum?id=

ryGs6iA5Km.

[XLT+18] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. “Representation learning on
graphs with jumping knowledge networks”. In: Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018. Vol. 80. Proceedings

246

https://doi.org/10.1109/TCSS.2014.2307455
https://doi.org/10.1109/TCSS.2014.2307455
https://doi.org/10.1109/TCSS.2014.2307455
https://doi.org/10.1145/3340531.3411963
https://doi.org/10.1145/3340531.3411963
https://doi.org/10.1145/3340531.3411963
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.1145/3077136.3080786
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Bibliography

of Machine Learning Research. PMLR, 2018, pp. 5449–5458. url:
http://proceedings.mlr.press/v80/xu18c.html.

[XRK+20] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kan-
nan Achan. “Inductive representation learning on temporal graphs”.
In: 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. url:
https://openreview.net/forum?id=rJeW1yHYwH.

[YC11] Ainur Yessenalina and Claire Cardie. “Compositional matrix-space
models for sentiment analysis”. In: Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2011,
27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A
meeting of SIGDAT, a Special Interest Group of the ACL. ACL, 2011,
pp. 172–182. url: https://aclanthology.org/D11-1016/.

[YCL+21] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin
Ke, Di He, Yanming Shen, and Tie-Yan Liu. “Do transformers really
perform badly for graph representation?” In: Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual.
2021, pp. 28877–28888. url: https://proceedings.neurips.cc/paper/2021/

hash/f1c1592588411002af340cbaedd6fc33-Abstract.html.

[YCS16] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. “Revisit-
ing semi-supervised learning with graph embeddings”. In: Proceed-
ings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016. Vol. 48. JMLR Work-
shop and Conference Proceedings. JMLR.org, 2016, pp. 40–48. url:
http://proceedings.mlr.press/v48/yanga16.html.

[YJK+19] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and
Hyunwoo J. Kim. “Graph transformer networks”. In: Advances in
Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada. 2019, pp. 11960–11970. url: https://proceedings.
neurips.cc/paper/2019/hash/9d63484abb477c97640154d40595a3bb-Abstract.html.

[YML19] Liang Yao, Chengsheng Mao, and Yuan Luo. “Graph convolutional
networks for text classification”. In: The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Appli-

247

http://proceedings.mlr.press/v80/xu18c.html
https://openreview.net/forum?id=rJeW1yHYwH
https://aclanthology.org/D11-1016/
https://proceedings.neurips.cc/paper/2021/hash/f1c1592588411002af340cbaedd6fc33-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f1c1592588411002af340cbaedd6fc33-Abstract.html
http://proceedings.mlr.press/v48/yanga16.html
https://proceedings.neurips.cc/paper/2019/hash/9d63484abb477c97640154d40595a3bb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9d63484abb477c97640154d40595a3bb-Abstract.html

Bibliography

cations of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press,
2019, pp. 7370–7377. doi: 10.1609/aaai.v33i01.33017370.

[YSG+19] Ze Yang, Linjun Shou, Ming Gong, Wutao Lin, and Daxin Jiang.
Model compression with multi-task knowledge distillation for web-scale
question answering system. 2019. arXiv: 1904.09636 [cs.CL].

[YYM+18] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L.
Hamilton, and Jure Leskovec. “Hierarchical graph representation
learning with differentiable pooling”. In: Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. 2018, pp. 4805–4815. url: https://proceedings.neurips.cc/paper/

2018/hash/e77dbaf6759253c7c6d0efc5690369c7-Abstract.html.

[YZL+21] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized
out-of-distribution detection: A survey. 2021. arXiv: 2110.11334.

[ZC18] Muhan Zhang and Yixin Chen. “Link prediction based on graph
neural networks”. In: Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. 2018, pp. 5171–
5181.

[ZC21] Fan Zhou and Chengtai Cao. “Overcoming catastrophic forgetting
in graph neural networks with experience replay”. In: Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Con-
ference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021,
pp. 4714–4722. url: https://ojs.aaai.org/index.php/AAAI/article/view/

16602.

[ZDX+21] Lu Zhang, Jiandong Ding, Yi Xu, Yingyao Liu, and Shuigeng Zhou.
“Weakly-supervised text classification based on keyword graph”. In:
Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 7-11 November, 2021. Association for Computational Lin-

248

https://doi.org/10.1609/aaai.v33i01.33017370
https://arxiv.org/abs/1904.09636
https://proceedings.neurips.cc/paper/2018/hash/e77dbaf6759253c7c6d0efc5690369c7-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e77dbaf6759253c7c6d0efc5690369c7-Abstract.html
https://arxiv.org/abs/2110.11334
https://ojs.aaai.org/index.php/AAAI/article/view/16602
https://ojs.aaai.org/index.php/AAAI/article/view/16602

Bibliography

guistics, 2021, pp. 2803–2813. url: https://aclanthology.org/2021.emnlp-

main.222.

[ZGL+20] Xujuan Zhou, Raj Gururajan, Yuefeng Li, Revathi Venkataraman,
Xiaohui Tao, Ghazal Bargshady, Prabal Datta Barua, and Srinivas
Kondalsamy-Chennakesavan. “A survey on text classification and its
applications”. In: Web Intell. 18.3 (2020), pp. 205–216.

[ZM20] Yang Zhang and Qiang Ma. “DocCit2Vec: citation recommendation
via embedding of content and structural contexts”. In: IEEE Access 8
(2020), pp. 115865–115875. doi: 10.1109/ACCESS.2020.3004599.

[ZQZ+16] Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao,
and Bo Xu. “Text classification improved by integrating bidirectional
LSTM with two-dimensional max pooling”. In: COLING 2016, 26th
International Conference on Computational Linguistics, Proceedings of the
Conference: Technical Papers, December 11-16, 2016, Osaka, Japan. ACL,
2016, pp. 3485–3495. url: https://aclanthology.org/C16-1329/.

[ZSH+19] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and
Nitesh V. Chawla. “Heterogeneous graph neural network”. In: Pro-
ceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8,
2019. ACM, 2019, pp. 793–803. doi: 10.1145/3292500.3330961.

[ZW15] Min-Ling Zhang and Lei Wu. “Lift: Multi-label learning with label-
specific features”. In: IEEE Trans. Pattern Anal. Mach. Intell. 37.1 (2015),
pp. 107–120. doi: 10.1109/TPAMI.2014.2339815. url: https://doi.org/10.1109/

TPAMI.2014.2339815.

[ZWG+20] Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, and George
Karypis. “Learning graph neural networks with deep graph library”.
In: Companion of The 2020 Web Conference 2020, Taipei, Taiwan, April
20-24, 2020. ACM, 2020, pp. 305–306. doi: 10.1145/3366424.3383111.

[ZWY+16] Dell Zhang, Jun Wang, Emine Yilmaz, Xiaoling Wang, and Yuxin
Zhou. “Bayesian performance comparison of text classifiers”. In:
Proceedings of the 39th International ACM SIGIR conference on Research
and Development in Information Retrieval, SIGIR 2016, Pisa, Italy, July
17-21, 2016. ACM, 2016, pp. 15–24. doi: 10.1145/2911451.2911547.

249

https://aclanthology.org/2021.emnlp-main.222
https://aclanthology.org/2021.emnlp-main.222
https://doi.org/10.1109/ACCESS.2020.3004599
https://aclanthology.org/C16-1329/
https://doi.org/10.1145/3292500.3330961
https://doi.org/10.1109/TPAMI.2014.2339815
https://doi.org/10.1109/TPAMI.2014.2339815
https://doi.org/10.1109/TPAMI.2014.2339815
https://doi.org/10.1145/3366424.3383111
https://doi.org/10.1145/2911451.2911547

Bibliography

[ZXW+20] Renjie Zhou, Dongchen Xia, Jian Wan, and Sanyuan Zhang. “An
intelligent video tag recommendation method for improving video
popularity in mobile computing environment”. In: IEEE Access 8
(2020), pp. 6954–6967. doi: 10.1109/ACCESS.2019.2961392.

[ZYW21] Weidong Zhao, Zhaoxin Yu, and Ran Wu. “A citation recommenda-
tion method based on context correlation”. In: Intell. Data Anal. 25.1
(2021), pp. 225–243. doi: 10.3233/IDA-195041.

[ZYX+17] Shuai Zhang, Lina Yao, Xiwei Xu, Sen Wang, and Liming Zhu. “Hy-
brid collaborative recommendation via semi-autoencoder”. In: Neural
Information Processing - 24th International Conference, ICONIP 2017,
Guangzhou, China, November 14-18, 2017, Proceedings, Part I. Vol. 10634.
Lecture Notes in Computer Science. Springer, 2017, pp. 185–193. doi:
10.1007/978-3-319-70087-8_20.

[ZZ14] Min-Ling Zhang and Zhi-Hua Zhou. “A review on multi-label learn-
ing algorithms”. In: IEEE Trans. Knowl. Data Eng. 26.8 (2014), pp. 1819–
1837. doi: 10.1109/TKDE.2013.39.

[ZZP+19] Shichao Zhu, Chuan Zhou, Shirui Pan, Xingquan Zhu, and Bin Wang.
“Relation structure-aware heterogeneous graph neural network”. In:
2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing,
China, November 8-11, 2019. IEEE, 2019, pp. 1534–1539. doi: 10.1109/ICDM.

2019.00203.

[ZZQ+17] Fuzhen Zhuang, Zhiqiang Zhang, Mingda Qian, Chuan Shi, Xing
Xie, and Qing He. “Representation learning via dual-autoencoder
for recommendation”. In: Neural Networks 90 (2017), pp. 83–89. doi:
10.1016/j.neunet.2017.03.009.

[ZZS+20] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kan-
nan, and Viktor K. Prasanna. “GraphSAINT: Graph sampling based
inductive learning method”. In: 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. url: https://openreview.net/forum?id=BJe8pkHFwS.

250

https://doi.org/10.1109/ACCESS.2019.2961392
https://doi.org/10.3233/IDA-195041
https://doi.org/10.1007/978-3-319-70087-8_20
https://doi.org/10.1109/TKDE.2013.39
https://doi.org/10.1109/ICDM.2019.00203
https://doi.org/10.1109/ICDM.2019.00203
https://doi.org/10.1016/j.neunet.2017.03.009
https://openreview.net/forum?id=BJe8pkHFwS

	Zusammenfassung
	Abstract
	Table of Contents
	List of Publications
	List of Acronyms
	Terminology and Notation
	Introduction
	Advances and Challenges in Text and Graph Representation Learning
	A Unified Perspective on Representation Learning for Texts and Graphs
	Outline and Contributions

	Background
	Representation Learning
	Multilayer Perceptron
	Autoencoder
	Training of Neural Networks

	Text Representation Learning
	Tokenization and the Vocabulary
	One-Hot Encoding
	Bag-of-Words Representation
	Word Embeddings
	Transformers and Language Models

	Graph Representation Learning
	Types of Graphs
	Graph Neural Networks
	Graph Approaches to NLP

	Learning Paradigms
	Summary

	Word Matrices for Text Representation Learning
	Related Prior Work
	Problem Formulation
	Methods
	Continuous Bag-of-Words
	Continual Multiplication of Words
	CMOW/CBOW-Hybrid
	Training Objective
	Initialization

	Datasets
	Dataset for Pretraining
	Datasets for Linguistic Probing Tasks
	Datasets for Supervised and Unsupervised Downstream Tasks

	Experiments
	Linguistic Probing Tasks
	Supervised Downstream Tasks
	Unsupervised Downstream Tasks

	Discussion
	Summary

	Cross-Architecture Distillation with Word Matrices
	Related Prior Work
	Problem Formulation
	Methods
	Extending Matrix Embedding Models
	Cross-Architecture Distillation
	Two-Sequence Encoding with Matrix Embeddings

	Datasets
	Dataset for Pretraining
	Datasets for Downstream Tasks

	Experiments
	DiffCat Encoding versus Joint Encoding
	Bidirectional versus unidirectional CMOW/CBOW-Hybrid
	General Distillation versus Task-specific Distillation
	Comparing Bidirectional CMOW/CBOW-Hybrid to the Literature
	Comparison of Parameter Count and Runtime Performance

	Discussion
	Summary

	Wide Multilayer Perceptrons for Text Classification
	Related Prior Work
	Bag-of-Word-based Models
	Graph-based Models
	Sequence-based Models
	Summary

	Problem Formulation
	Methods
	Bag-of-Words-based Text Classification
	Graph-based Text Classification
	Sequence-based Text Classification

	Datasets
	Experiments
	Classification Accuracy
	Efficiency

	Discussion
	Summary

	Multimodal Autoencoders for Document-based Recommendations
	Related Prior Work
	Autoencoders as Recommendation Engines
	Research Paper and Citation Recommendation
	Subject Label Recommendation
	Summary

	Problem Formulation
	Scenarios and Common Framework
	Formal Problem Statement

	Methods
	Singular Value Decomposition
	Item Co-Occurrence
	Multilayer Perceptrons
	Undercomplete Autoencoders
	Denoising Autoencoders
	Variational Autoencoders
	Adversarial Autoencoder
	Conditioning autoencoder on Side Information

	Datasets
	Datasets for Citation Recommendation
	Datasets for Subject Labels Recommendation
	Availability of Side Information
	Chronological Train-Test Splits
	Evaluation Measures

	Experiments
	Experiments under Varying Total Number of Items
	Experiments under Varying Number of Items per Document

	Discussion
	Key Results
	Meanings of Item Co-occurrence
	Discussion of the Citation Recommendation Task
	Discussion of Subject Label Recommendation Task
	Threats to Validity
	Practical Impact

	Summary

	Lifelong Learning on Evolving Graphs
	Related Prior Work
	Lifelong Learning
	Graph Neural Networks
	Unseen Class Detection and Out-of-Distribution Detection
	Summary

	Problem Formulation
	Methods
	Incremental Training for Lifelong Graph Learning
	Unseen Class Detection
	Measure of k-Neighborhood Time Differences
	Base Graph Neural Network Models

	Datasets
	Static Graph Datasets
	Evolving Graph Datasets

	Experiments
	Transductive versus Inductive Learning
	Incrementally-trained vs Once-trained Models
	Lifelong Learning on Graphs
	Lifelong Learning with Limited Labeled Data
	Self-Detection of Unseen Classes

	Discussion
	Summary

	Conclusion
	Summary of Contributions
	General Discussion
	Future Work
	Summary

	Reproducibility and Published Resources
	Reproducibility of Relevant Literature
	Reproducibility of Our Experiments
	Published Resources

	Supplementary Material: Word Matrices
	Comparison of Training Objectives
	Comparison of Initialization Strategies

	Supplementary Material: Cross-Architecture Distillation
	Hyperparameters for Distillation
	Extended Results

	Supplementary Material: Text Classification
	Practical Guidelines for Designing a WideMLP
	Connection between BoW-MLP and TextGCN
	Equivalence of Micro-F1 and Accuracy in Multiclass Classification

	Supplementary Material: Recommender Systems
	Extended Results on the PubMed Dataset
	Mean Average Precision Results

	Supplementary Material: Lifelong Learning on Graphs
	Proof: k-Neighborhood Time Differences tdiffk is Equivariant to Temporal Granularity
	Details on Changes in the Class Sets
	PharmaBio
	DBLP-Easy
	DBLP-Hard

	Extended Results for Unseen Class Detection

	Bibliography

